xref: /qemu/target/avr/helper.c (revision 9e1b2375daabc4d133baf08766676c5d301bade5)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28 
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31     bool ret = false;
32     AVRCPU *cpu = AVR_CPU(cs);
33     CPUAVRState *env = &cpu->env;
34 
35     if (interrupt_request & CPU_INTERRUPT_RESET) {
36         if (cpu_interrupts_enabled(env)) {
37             cs->exception_index = EXCP_RESET;
38             avr_cpu_do_interrupt(cs);
39 
40             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
41 
42             ret = true;
43         }
44     }
45     if (interrupt_request & CPU_INTERRUPT_HARD) {
46         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
47             int index = ctz32(env->intsrc);
48             cs->exception_index = EXCP_INT(index);
49             avr_cpu_do_interrupt(cs);
50 
51             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
52             if (!env->intsrc) {
53                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
54             }
55 
56             ret = true;
57         }
58     }
59     return ret;
60 }
61 
62 void avr_cpu_do_interrupt(CPUState *cs)
63 {
64     AVRCPU *cpu = AVR_CPU(cs);
65     CPUAVRState *env = &cpu->env;
66 
67     uint32_t ret = env->pc_w;
68     int vector = 0;
69     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
70     int base = 0;
71 
72     if (cs->exception_index == EXCP_RESET) {
73         vector = 0;
74     } else if (env->intsrc != 0) {
75         vector = ctz32(env->intsrc) + 1;
76     }
77 
78     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
79         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
80         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
81         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
82     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
83         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
84         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
85     } else {
86         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87     }
88 
89     env->pc_w = base + vector * size;
90     env->sregI = 0; /* clear Global Interrupt Flag */
91 
92     cs->exception_index = -1;
93 }
94 
95 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
96 {
97     return addr; /* I assume 1:1 address correspondence */
98 }
99 
100 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
101                       MMUAccessType access_type, int mmu_idx,
102                       bool probe, uintptr_t retaddr)
103 {
104     int prot, page_size = TARGET_PAGE_SIZE;
105     uint32_t paddr;
106 
107     address &= TARGET_PAGE_MASK;
108 
109     if (mmu_idx == MMU_CODE_IDX) {
110         /* Access to code in flash. */
111         paddr = OFFSET_CODE + address;
112         prot = PAGE_READ | PAGE_EXEC;
113         if (paddr >= OFFSET_DATA) {
114             /*
115              * This should not be possible via any architectural operations.
116              * There is certainly not an exception that we can deliver.
117              * Accept probing that might come from generic code.
118              */
119             if (probe) {
120                 return false;
121             }
122             error_report("execution left flash memory");
123             abort();
124         }
125     } else {
126         /* Access to memory. */
127         paddr = OFFSET_DATA + address;
128         prot = PAGE_READ | PAGE_WRITE;
129         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
130             /*
131              * Access to CPU registers, exit and rebuilt this TB to use
132              * full access in case it touches specially handled registers
133              * like SREG or SP.  For probing, set page_size = 1, in order
134              * to force tlb_fill to be called for the next access.
135              */
136             if (probe) {
137                 page_size = 1;
138             } else {
139                 AVRCPU *cpu = AVR_CPU(cs);
140                 CPUAVRState *env = &cpu->env;
141                 env->fullacc = 1;
142                 cpu_loop_exit_restore(cs, retaddr);
143             }
144         }
145     }
146 
147     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
148     return true;
149 }
150 
151 /*
152  *  helpers
153  */
154 
155 void helper_sleep(CPUAVRState *env)
156 {
157     CPUState *cs = env_cpu(env);
158 
159     cs->exception_index = EXCP_HLT;
160     cpu_loop_exit(cs);
161 }
162 
163 void helper_unsupported(CPUAVRState *env)
164 {
165     CPUState *cs = env_cpu(env);
166 
167     /*
168      *  I count not find what happens on the real platform, so
169      *  it's EXCP_DEBUG for meanwhile
170      */
171     cs->exception_index = EXCP_DEBUG;
172     if (qemu_loglevel_mask(LOG_UNIMP)) {
173         qemu_log("UNSUPPORTED\n");
174         cpu_dump_state(cs, stderr, 0);
175     }
176     cpu_loop_exit(cs);
177 }
178 
179 void helper_debug(CPUAVRState *env)
180 {
181     CPUState *cs = env_cpu(env);
182 
183     cs->exception_index = EXCP_DEBUG;
184     cpu_loop_exit(cs);
185 }
186 
187 void helper_break(CPUAVRState *env)
188 {
189     CPUState *cs = env_cpu(env);
190 
191     cs->exception_index = EXCP_DEBUG;
192     cpu_loop_exit(cs);
193 }
194 
195 void helper_wdr(CPUAVRState *env)
196 {
197     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
198 }
199 
200 /*
201  * This function implements IN instruction
202  *
203  * It does the following
204  * a.  if an IO register belongs to CPU, its value is read and returned
205  * b.  otherwise io address is translated to mem address and physical memory
206  *     is read.
207  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
208  *
209  */
210 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
211 {
212     target_ulong data = 0;
213 
214     switch (port) {
215     case 0x38: /* RAMPD */
216         data = 0xff & (env->rampD >> 16);
217         break;
218     case 0x39: /* RAMPX */
219         data = 0xff & (env->rampX >> 16);
220         break;
221     case 0x3a: /* RAMPY */
222         data = 0xff & (env->rampY >> 16);
223         break;
224     case 0x3b: /* RAMPZ */
225         data = 0xff & (env->rampZ >> 16);
226         break;
227     case 0x3c: /* EIND */
228         data = 0xff & (env->eind >> 16);
229         break;
230     case 0x3d: /* SPL */
231         data = env->sp & 0x00ff;
232         break;
233     case 0x3e: /* SPH */
234         data = env->sp >> 8;
235         break;
236     case 0x3f: /* SREG */
237         data = cpu_get_sreg(env);
238         break;
239     default:
240         /* not a special register, pass to normal memory access */
241         data = address_space_ldub(&address_space_memory,
242                                   OFFSET_IO_REGISTERS + port,
243                                   MEMTXATTRS_UNSPECIFIED, NULL);
244     }
245 
246     return data;
247 }
248 
249 /*
250  *  This function implements OUT instruction
251  *
252  *  It does the following
253  *  a.  if an IO register belongs to CPU, its value is written into the register
254  *  b.  otherwise io address is translated to mem address and physical memory
255  *      is written.
256  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
257  *
258  */
259 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
260 {
261     data &= 0x000000ff;
262 
263     switch (port) {
264     case 0x38: /* RAMPD */
265         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
266             env->rampD = (data & 0xff) << 16;
267         }
268         break;
269     case 0x39: /* RAMPX */
270         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
271             env->rampX = (data & 0xff) << 16;
272         }
273         break;
274     case 0x3a: /* RAMPY */
275         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
276             env->rampY = (data & 0xff) << 16;
277         }
278         break;
279     case 0x3b: /* RAMPZ */
280         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
281             env->rampZ = (data & 0xff) << 16;
282         }
283         break;
284     case 0x3c: /* EIDN */
285         env->eind = (data & 0xff) << 16;
286         break;
287     case 0x3d: /* SPL */
288         env->sp = (env->sp & 0xff00) | (data);
289         break;
290     case 0x3e: /* SPH */
291         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
292             env->sp = (env->sp & 0x00ff) | (data << 8);
293         }
294         break;
295     case 0x3f: /* SREG */
296         cpu_set_sreg(env, data);
297         break;
298     default:
299         /* not a special register, pass to normal memory access */
300         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
301                           data, MEMTXATTRS_UNSPECIFIED, NULL);
302     }
303 }
304 
305 /*
306  *  this function implements LD instruction when there is a possibility to read
307  *  from a CPU register
308  */
309 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
310 {
311     uint8_t data;
312 
313     env->fullacc = false;
314 
315     if (addr < NUMBER_OF_CPU_REGISTERS) {
316         /* CPU registers */
317         data = env->r[addr];
318     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
319         /* IO registers */
320         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
321     } else {
322         /* memory */
323         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
324                                   MEMTXATTRS_UNSPECIFIED, NULL);
325     }
326     return data;
327 }
328 
329 /*
330  *  this function implements ST instruction when there is a possibility to write
331  *  into a CPU register
332  */
333 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
334 {
335     env->fullacc = false;
336 
337     /* Following logic assumes this: */
338     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
339     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
340                                   NUMBER_OF_CPU_REGISTERS);
341 
342     if (addr < NUMBER_OF_CPU_REGISTERS) {
343         /* CPU registers */
344         env->r[addr] = data;
345     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
346         /* IO registers */
347         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
348     } else {
349         /* memory */
350         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
351                           MEMTXATTRS_UNSPECIFIED, NULL);
352     }
353 }
354