xref: /qemu/target/avr/cpu.h (revision a2860ff908da0d71ce25adcb02388fe26b467390)
1 /*
2  * QEMU AVR CPU
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #ifndef QEMU_AVR_CPU_H
22 #define QEMU_AVR_CPU_H
23 
24 #include "cpu-qom.h"
25 #include "exec/cpu-defs.h"
26 
27 #ifdef CONFIG_USER_ONLY
28 #error "AVR 8-bit does not support user mode"
29 #endif
30 
31 #define CPU_RESOLVING_TYPE TYPE_AVR_CPU
32 
33 /*
34  * AVR has two memory spaces, data & code.
35  * e.g. both have 0 address
36  * ST/LD instructions access data space
37  * LPM/SPM and instruction fetching access code memory space
38  */
39 #define MMU_CODE_IDX 0
40 #define MMU_DATA_IDX 1
41 
42 #define EXCP_RESET 1
43 #define EXCP_INT(n) (EXCP_RESET + (n) + 1)
44 
45 /* Number of CPU registers */
46 #define NUMBER_OF_CPU_REGISTERS 32
47 /* Number of IO registers accessible by ld/st/in/out */
48 #define NUMBER_OF_IO_REGISTERS 64
49 
50 /* CPU registers mapped into i/o ports 0x38-0x3f. */
51 #define REG_38_RAMPD  0
52 #define REG_38_RAMPX  1
53 #define REG_38_RAMPY  2
54 #define REG_38_RAMPZ  3
55 #define REG_38_EIDN   4
56 #define REG_38_SPL    5
57 #define REG_38_SPH    6
58 #define REG_38_SREG   7
59 
60 /*
61  * Offsets of AVR memory regions in host memory space.
62  *
63  * This is needed because the AVR has separate code and data address
64  * spaces that both have start from zero but have to go somewhere in
65  * host memory.
66  *
67  * It's also useful to know where some things are, like the IO registers.
68  */
69 /* Flash program memory */
70 #define OFFSET_CODE 0x00000000
71 /* CPU registers, IO registers, and SRAM */
72 #define OFFSET_DATA 0x00800000
73 /*
74  * IO registers, including status register, stack pointer, and memory
75  * mapped peripherals, mapped just after CPU registers
76  */
77 #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
78 
79 typedef enum AVRFeature {
80     AVR_FEATURE_SRAM,
81 
82     AVR_FEATURE_1_BYTE_PC,
83     AVR_FEATURE_2_BYTE_PC,
84     AVR_FEATURE_3_BYTE_PC,
85 
86     AVR_FEATURE_1_BYTE_SP,
87     AVR_FEATURE_2_BYTE_SP,
88 
89     AVR_FEATURE_BREAK,
90     AVR_FEATURE_DES,
91     AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
92 
93     AVR_FEATURE_EIJMP_EICALL,
94     AVR_FEATURE_IJMP_ICALL,
95     AVR_FEATURE_JMP_CALL,
96 
97     AVR_FEATURE_ADIW_SBIW,
98 
99     AVR_FEATURE_SPM,
100     AVR_FEATURE_SPMX,
101 
102     AVR_FEATURE_ELPMX,
103     AVR_FEATURE_ELPM,
104     AVR_FEATURE_LPMX,
105     AVR_FEATURE_LPM,
106 
107     AVR_FEATURE_MOVW,
108     AVR_FEATURE_MUL,
109     AVR_FEATURE_RAMPD,
110     AVR_FEATURE_RAMPX,
111     AVR_FEATURE_RAMPY,
112     AVR_FEATURE_RAMPZ,
113 } AVRFeature;
114 
115 typedef struct CPUArchState {
116     uint32_t pc_w; /* 0x003fffff up to 22 bits */
117 
118     uint32_t sregC; /* 0x00000001 1 bit */
119     uint32_t sregZ; /* 0x00000001 1 bit */
120     uint32_t sregN; /* 0x00000001 1 bit */
121     uint32_t sregV; /* 0x00000001 1 bit */
122     uint32_t sregS; /* 0x00000001 1 bit */
123     uint32_t sregH; /* 0x00000001 1 bit */
124     uint32_t sregT; /* 0x00000001 1 bit */
125     uint32_t sregI; /* 0x00000001 1 bit */
126 
127     uint32_t rampD; /* 0x00ff0000 8 bits */
128     uint32_t rampX; /* 0x00ff0000 8 bits */
129     uint32_t rampY; /* 0x00ff0000 8 bits */
130     uint32_t rampZ; /* 0x00ff0000 8 bits */
131     uint32_t eind; /* 0x00ff0000 8 bits */
132 
133     uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
134     uint32_t sp; /* 16 bits */
135 
136     uint32_t skip; /* if set skip instruction */
137 
138     uint64_t intsrc; /* interrupt sources */
139     bool fullacc; /* CPU/MEM if true MEM only otherwise */
140 
141     uint64_t features;
142 } CPUAVRState;
143 
144 /**
145  *  AVRCPU:
146  *  @env: #CPUAVRState
147  *
148  *  A AVR CPU.
149  */
150 struct ArchCPU {
151     CPUState parent_obj;
152 
153     CPUAVRState env;
154 
155     /* Initial value of stack pointer */
156     uint32_t init_sp;
157 };
158 
159 /**
160  *  AVRCPUClass:
161  *  @parent_realize: The parent class' realize handler.
162  *  @parent_phases: The parent class' reset phase handlers.
163  *
164  *  A AVR CPU model.
165  */
166 struct AVRCPUClass {
167     CPUClass parent_class;
168 
169     DeviceRealize parent_realize;
170     ResettablePhases parent_phases;
171 };
172 
173 extern const struct VMStateDescription vms_avr_cpu;
174 
175 void avr_cpu_do_interrupt(CPUState *cpu);
176 bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
177 hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
178 int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
179 int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
180 int avr_print_insn(bfd_vma addr, disassemble_info *info);
181 vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
182 
183 static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
184 {
185     return (env->features & (1U << feature)) != 0;
186 }
187 
188 static inline void set_avr_feature(CPUAVRState *env, int feature)
189 {
190     env->features |= (1U << feature);
191 }
192 
193 void avr_cpu_tcg_init(void);
194 void avr_cpu_translate_code(CPUState *cs, TranslationBlock *tb,
195                             int *max_insns, vaddr pc, void *host_pc);
196 
197 int cpu_avr_exec(CPUState *cpu);
198 
199 enum {
200     TB_FLAGS_FULL_ACCESS = 1,
201     TB_FLAGS_SKIP = 2,
202 };
203 
204 static inline void cpu_get_tb_cpu_state(CPUAVRState *env, vaddr *pc,
205                                         uint64_t *cs_base, uint32_t *pflags)
206 {
207     uint32_t flags = 0;
208 
209     *pc = env->pc_w * 2;
210     *cs_base = 0;
211 
212     if (env->fullacc) {
213         flags |= TB_FLAGS_FULL_ACCESS;
214     }
215     if (env->skip) {
216         flags |= TB_FLAGS_SKIP;
217     }
218 
219     *pflags = flags;
220 }
221 
222 static inline int cpu_interrupts_enabled(CPUAVRState *env)
223 {
224     return env->sregI != 0;
225 }
226 
227 static inline uint8_t cpu_get_sreg(CPUAVRState *env)
228 {
229     return (env->sregC) << 0
230          | (env->sregZ) << 1
231          | (env->sregN) << 2
232          | (env->sregV) << 3
233          | (env->sregS) << 4
234          | (env->sregH) << 5
235          | (env->sregT) << 6
236          | (env->sregI) << 7;
237 }
238 
239 static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
240 {
241     env->sregC = (sreg >> 0) & 0x01;
242     env->sregZ = (sreg >> 1) & 0x01;
243     env->sregN = (sreg >> 2) & 0x01;
244     env->sregV = (sreg >> 3) & 0x01;
245     env->sregS = (sreg >> 4) & 0x01;
246     env->sregH = (sreg >> 5) & 0x01;
247     env->sregT = (sreg >> 6) & 0x01;
248     env->sregI = (sreg >> 7) & 0x01;
249 }
250 
251 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
252                       MMUAccessType access_type, int mmu_idx,
253                       bool probe, uintptr_t retaddr);
254 
255 #include "exec/cpu-all.h"
256 
257 #endif /* QEMU_AVR_CPU_H */
258