1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2016-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #ifndef QEMU_AVR_CPU_H 22 #define QEMU_AVR_CPU_H 23 24 #include "cpu-qom.h" 25 #include "exec/cpu-defs.h" 26 #include "exec/cpu-interrupt.h" 27 #include "system/memory.h" 28 29 #ifdef CONFIG_USER_ONLY 30 #error "AVR 8-bit does not support user mode" 31 #endif 32 33 #define CPU_RESOLVING_TYPE TYPE_AVR_CPU 34 35 /* 36 * AVR has two memory spaces, data & code. 37 * e.g. both have 0 address 38 * ST/LD instructions access data space 39 * LPM/SPM and instruction fetching access code memory space 40 */ 41 #define MMU_CODE_IDX 0 42 #define MMU_DATA_IDX 1 43 44 #define EXCP_RESET 1 45 #define EXCP_INT(n) (EXCP_RESET + (n) + 1) 46 47 /* Number of CPU registers */ 48 #define NUMBER_OF_CPU_REGISTERS 32 49 50 /* CPU registers mapped into i/o ports 0x38-0x3f. */ 51 #define REG_38_RAMPD 0 52 #define REG_38_RAMPX 1 53 #define REG_38_RAMPY 2 54 #define REG_38_RAMPZ 3 55 #define REG_38_EIDN 4 56 #define REG_38_SPL 5 57 #define REG_38_SPH 6 58 #define REG_38_SREG 7 59 60 /* 61 * Offsets of AVR memory regions in host memory space. 62 * 63 * This is needed because the AVR has separate code and data address 64 * spaces that both have start from zero but have to go somewhere in 65 * host memory. 66 * 67 * It's also useful to know where some things are, like the IO registers. 68 */ 69 /* Flash program memory */ 70 #define OFFSET_CODE 0x00000000 71 /* CPU registers, IO registers, and SRAM */ 72 #define OFFSET_DATA 0x00800000 73 /* 74 * IO registers, including status register, stack pointer, and memory 75 * mapped peripherals, mapped just after CPU registers 76 */ 77 #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS) 78 79 typedef enum AVRFeature { 80 AVR_FEATURE_SRAM, 81 82 AVR_FEATURE_1_BYTE_PC, 83 AVR_FEATURE_2_BYTE_PC, 84 AVR_FEATURE_3_BYTE_PC, 85 86 AVR_FEATURE_1_BYTE_SP, 87 AVR_FEATURE_2_BYTE_SP, 88 89 AVR_FEATURE_BREAK, 90 AVR_FEATURE_DES, 91 AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */ 92 93 AVR_FEATURE_EIJMP_EICALL, 94 AVR_FEATURE_IJMP_ICALL, 95 AVR_FEATURE_JMP_CALL, 96 97 AVR_FEATURE_ADIW_SBIW, 98 99 AVR_FEATURE_SPM, 100 AVR_FEATURE_SPMX, 101 102 AVR_FEATURE_ELPMX, 103 AVR_FEATURE_ELPM, 104 AVR_FEATURE_LPMX, 105 AVR_FEATURE_LPM, 106 107 AVR_FEATURE_MOVW, 108 AVR_FEATURE_MUL, 109 AVR_FEATURE_RAMPD, 110 AVR_FEATURE_RAMPX, 111 AVR_FEATURE_RAMPY, 112 AVR_FEATURE_RAMPZ, 113 } AVRFeature; 114 115 typedef struct CPUArchState { 116 uint32_t pc_w; /* 0x003fffff up to 22 bits */ 117 118 uint32_t sregC; /* 0x00000001 1 bit */ 119 uint32_t sregZ; /* 0x00000001 1 bit */ 120 uint32_t sregN; /* 0x00000001 1 bit */ 121 uint32_t sregV; /* 0x00000001 1 bit */ 122 uint32_t sregS; /* 0x00000001 1 bit */ 123 uint32_t sregH; /* 0x00000001 1 bit */ 124 uint32_t sregT; /* 0x00000001 1 bit */ 125 uint32_t sregI; /* 0x00000001 1 bit */ 126 127 uint32_t rampD; /* 0x00ff0000 8 bits */ 128 uint32_t rampX; /* 0x00ff0000 8 bits */ 129 uint32_t rampY; /* 0x00ff0000 8 bits */ 130 uint32_t rampZ; /* 0x00ff0000 8 bits */ 131 uint32_t eind; /* 0x00ff0000 8 bits */ 132 133 uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */ 134 uint32_t sp; /* 16 bits */ 135 136 uint32_t skip; /* if set skip instruction */ 137 138 uint64_t intsrc; /* interrupt sources */ 139 bool fullacc; /* CPU/MEM if true MEM only otherwise */ 140 141 uint64_t features; 142 } CPUAVRState; 143 144 /** 145 * AVRCPU: 146 * @env: #CPUAVRState 147 * 148 * A AVR CPU. 149 */ 150 struct ArchCPU { 151 CPUState parent_obj; 152 153 CPUAVRState env; 154 155 MemoryRegion cpu_reg1; 156 MemoryRegion cpu_reg2; 157 158 /* Initial value of stack pointer */ 159 uint32_t init_sp; 160 }; 161 162 /** 163 * AVRCPUClass: 164 * @parent_realize: The parent class' realize handler. 165 * @parent_phases: The parent class' reset phase handlers. 166 * 167 * A AVR CPU model. 168 */ 169 struct AVRCPUClass { 170 CPUClass parent_class; 171 172 DeviceRealize parent_realize; 173 ResettablePhases parent_phases; 174 }; 175 176 extern const struct VMStateDescription vms_avr_cpu; 177 178 void avr_cpu_do_interrupt(CPUState *cpu); 179 bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req); 180 hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 181 int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 182 int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 183 int avr_print_insn(bfd_vma addr, disassemble_info *info); 184 vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr); 185 186 static inline int avr_feature(CPUAVRState *env, AVRFeature feature) 187 { 188 return (env->features & (1U << feature)) != 0; 189 } 190 191 static inline void set_avr_feature(CPUAVRState *env, int feature) 192 { 193 env->features |= (1U << feature); 194 } 195 196 void avr_cpu_tcg_init(void); 197 void avr_cpu_translate_code(CPUState *cs, TranslationBlock *tb, 198 int *max_insns, vaddr pc, void *host_pc); 199 200 int cpu_avr_exec(CPUState *cpu); 201 202 enum { 203 TB_FLAGS_FULL_ACCESS = 1, 204 TB_FLAGS_SKIP = 2, 205 }; 206 207 static inline void cpu_get_tb_cpu_state(CPUAVRState *env, vaddr *pc, 208 uint64_t *cs_base, uint32_t *pflags) 209 { 210 uint32_t flags = 0; 211 212 *pc = env->pc_w * 2; 213 *cs_base = 0; 214 215 if (env->fullacc) { 216 flags |= TB_FLAGS_FULL_ACCESS; 217 } 218 if (env->skip) { 219 flags |= TB_FLAGS_SKIP; 220 } 221 222 *pflags = flags; 223 } 224 225 static inline int cpu_interrupts_enabled(CPUAVRState *env) 226 { 227 return env->sregI != 0; 228 } 229 230 static inline uint8_t cpu_get_sreg(CPUAVRState *env) 231 { 232 return (env->sregC) << 0 233 | (env->sregZ) << 1 234 | (env->sregN) << 2 235 | (env->sregV) << 3 236 | (env->sregS) << 4 237 | (env->sregH) << 5 238 | (env->sregT) << 6 239 | (env->sregI) << 7; 240 } 241 242 static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg) 243 { 244 env->sregC = (sreg >> 0) & 0x01; 245 env->sregZ = (sreg >> 1) & 0x01; 246 env->sregN = (sreg >> 2) & 0x01; 247 env->sregV = (sreg >> 3) & 0x01; 248 env->sregS = (sreg >> 4) & 0x01; 249 env->sregH = (sreg >> 5) & 0x01; 250 env->sregT = (sreg >> 6) & 0x01; 251 env->sregI = (sreg >> 7) & 0x01; 252 } 253 254 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 255 MMUAccessType access_type, int mmu_idx, 256 bool probe, uintptr_t retaddr); 257 258 extern const MemoryRegionOps avr_cpu_reg1; 259 extern const MemoryRegionOps avr_cpu_reg2; 260 261 #include "exec/cpu-all.h" 262 263 #endif /* QEMU_AVR_CPU_H */ 264