1 /* 2 * QEMU AVR CPU 3 * 4 * Copyright (c) 2019-2020 Michael Rolnik 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see 18 * <http://www.gnu.org/licenses/lgpl-2.1.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qapi/error.h" 23 #include "qemu/qemu-print.h" 24 #include "exec/translation-block.h" 25 #include "system/address-spaces.h" 26 #include "cpu.h" 27 #include "disas/dis-asm.h" 28 #include "tcg/debug-assert.h" 29 #include "hw/qdev-properties.h" 30 #include "accel/tcg/cpu-ops.h" 31 32 static void avr_cpu_set_pc(CPUState *cs, vaddr value) 33 { 34 AVRCPU *cpu = AVR_CPU(cs); 35 36 cpu->env.pc_w = value / 2; /* internally PC points to words */ 37 } 38 39 static vaddr avr_cpu_get_pc(CPUState *cs) 40 { 41 AVRCPU *cpu = AVR_CPU(cs); 42 43 return cpu->env.pc_w * 2; 44 } 45 46 static bool avr_cpu_has_work(CPUState *cs) 47 { 48 return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET)) 49 && cpu_interrupts_enabled(cpu_env(cs)); 50 } 51 52 static int avr_cpu_mmu_index(CPUState *cs, bool ifetch) 53 { 54 return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX; 55 } 56 57 static TCGTBCPUState avr_get_tb_cpu_state(CPUState *cs) 58 { 59 CPUAVRState *env = cpu_env(cs); 60 uint32_t flags = 0; 61 62 if (env->fullacc) { 63 flags |= TB_FLAGS_FULL_ACCESS; 64 } 65 if (env->skip) { 66 flags |= TB_FLAGS_SKIP; 67 } 68 69 return (TCGTBCPUState){ .pc = env->pc_w * 2, .flags = flags }; 70 } 71 72 static void avr_cpu_synchronize_from_tb(CPUState *cs, 73 const TranslationBlock *tb) 74 { 75 tcg_debug_assert(!tcg_cflags_has(cs, CF_PCREL)); 76 cpu_env(cs)->pc_w = tb->pc / 2; /* internally PC points to words */ 77 } 78 79 static void avr_restore_state_to_opc(CPUState *cs, 80 const TranslationBlock *tb, 81 const uint64_t *data) 82 { 83 cpu_env(cs)->pc_w = data[0]; 84 } 85 86 static void avr_cpu_reset_hold(Object *obj, ResetType type) 87 { 88 CPUState *cs = CPU(obj); 89 AVRCPU *cpu = AVR_CPU(cs); 90 AVRCPUClass *mcc = AVR_CPU_GET_CLASS(obj); 91 CPUAVRState *env = &cpu->env; 92 93 if (mcc->parent_phases.hold) { 94 mcc->parent_phases.hold(obj, type); 95 } 96 97 env->pc_w = 0; 98 env->sregI = 1; 99 env->sregC = 0; 100 env->sregZ = 0; 101 env->sregN = 0; 102 env->sregV = 0; 103 env->sregS = 0; 104 env->sregH = 0; 105 env->sregT = 0; 106 107 env->rampD = 0; 108 env->rampX = 0; 109 env->rampY = 0; 110 env->rampZ = 0; 111 env->eind = 0; 112 env->sp = cpu->init_sp; 113 114 env->skip = 0; 115 116 memset(env->r, 0, sizeof(env->r)); 117 } 118 119 static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info) 120 { 121 info->endian = BFD_ENDIAN_LITTLE; 122 info->mach = bfd_arch_avr; 123 info->print_insn = avr_print_insn; 124 } 125 126 static void avr_cpu_realizefn(DeviceState *dev, Error **errp) 127 { 128 CPUState *cs = CPU(dev); 129 CPUAVRState *env = cpu_env(cs); 130 AVRCPU *cpu = env_archcpu(env); 131 AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev); 132 Error *local_err = NULL; 133 134 cpu_exec_realizefn(cs, &local_err); 135 if (local_err != NULL) { 136 error_propagate(errp, local_err); 137 return; 138 } 139 qemu_init_vcpu(cs); 140 cpu_reset(cs); 141 142 mcc->parent_realize(dev, errp); 143 144 /* 145 * Two blocks in the low data space loop back into cpu registers. 146 */ 147 memory_region_init_io(&cpu->cpu_reg1, OBJECT(cpu), &avr_cpu_reg1, env, 148 "avr-cpu-reg1", 32); 149 memory_region_add_subregion(get_system_memory(), 150 OFFSET_DATA, &cpu->cpu_reg1); 151 152 memory_region_init_io(&cpu->cpu_reg2, OBJECT(cpu), &avr_cpu_reg2, env, 153 "avr-cpu-reg2", 8); 154 memory_region_add_subregion(get_system_memory(), 155 OFFSET_DATA + 0x58, &cpu->cpu_reg2); 156 } 157 158 static void avr_cpu_set_int(void *opaque, int irq, int level) 159 { 160 AVRCPU *cpu = opaque; 161 CPUAVRState *env = &cpu->env; 162 CPUState *cs = CPU(cpu); 163 uint64_t mask = (1ull << irq); 164 165 if (level) { 166 env->intsrc |= mask; 167 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 168 } else { 169 env->intsrc &= ~mask; 170 if (env->intsrc == 0) { 171 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 172 } 173 } 174 } 175 176 static void avr_cpu_initfn(Object *obj) 177 { 178 AVRCPU *cpu = AVR_CPU(obj); 179 180 /* Set the number of interrupts supported by the CPU. */ 181 qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, 182 sizeof(cpu->env.intsrc) * 8); 183 } 184 185 static const Property avr_cpu_properties[] = { 186 DEFINE_PROP_UINT32("init-sp", AVRCPU, init_sp, 0), 187 }; 188 189 static ObjectClass *avr_cpu_class_by_name(const char *cpu_model) 190 { 191 return object_class_by_name(cpu_model); 192 } 193 194 static void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags) 195 { 196 CPUAVRState *env = cpu_env(cs); 197 int i; 198 199 qemu_fprintf(f, "\n"); 200 qemu_fprintf(f, "PC: %06x\n", env->pc_w * 2); /* PC points to words */ 201 qemu_fprintf(f, "SP: %04x\n", env->sp); 202 qemu_fprintf(f, "rampD: %02x\n", env->rampD >> 16); 203 qemu_fprintf(f, "rampX: %02x\n", env->rampX >> 16); 204 qemu_fprintf(f, "rampY: %02x\n", env->rampY >> 16); 205 qemu_fprintf(f, "rampZ: %02x\n", env->rampZ >> 16); 206 qemu_fprintf(f, "EIND: %02x\n", env->eind >> 16); 207 qemu_fprintf(f, "X: %02x%02x\n", env->r[27], env->r[26]); 208 qemu_fprintf(f, "Y: %02x%02x\n", env->r[29], env->r[28]); 209 qemu_fprintf(f, "Z: %02x%02x\n", env->r[31], env->r[30]); 210 qemu_fprintf(f, "SREG: [ %c %c %c %c %c %c %c %c ]\n", 211 env->sregI ? 'I' : '-', 212 env->sregT ? 'T' : '-', 213 env->sregH ? 'H' : '-', 214 env->sregS ? 'S' : '-', 215 env->sregV ? 'V' : '-', 216 env->sregN ? '-' : 'N', /* Zf has negative logic */ 217 env->sregZ ? 'Z' : '-', 218 env->sregC ? 'I' : '-'); 219 qemu_fprintf(f, "SKIP: %02x\n", env->skip); 220 221 qemu_fprintf(f, "\n"); 222 for (i = 0; i < ARRAY_SIZE(env->r); i++) { 223 qemu_fprintf(f, "R[%02d]: %02x ", i, env->r[i]); 224 225 if ((i % 8) == 7) { 226 qemu_fprintf(f, "\n"); 227 } 228 } 229 qemu_fprintf(f, "\n"); 230 } 231 232 #include "hw/core/sysemu-cpu-ops.h" 233 234 static const struct SysemuCPUOps avr_sysemu_ops = { 235 .has_work = avr_cpu_has_work, 236 .get_phys_page_debug = avr_cpu_get_phys_page_debug, 237 }; 238 239 static const TCGCPUOps avr_tcg_ops = { 240 .guest_default_memory_order = 0, 241 .mttcg_supported = false, 242 .initialize = avr_cpu_tcg_init, 243 .translate_code = avr_cpu_translate_code, 244 .get_tb_cpu_state = avr_get_tb_cpu_state, 245 .synchronize_from_tb = avr_cpu_synchronize_from_tb, 246 .restore_state_to_opc = avr_restore_state_to_opc, 247 .mmu_index = avr_cpu_mmu_index, 248 .cpu_exec_interrupt = avr_cpu_exec_interrupt, 249 .cpu_exec_halt = avr_cpu_has_work, 250 .cpu_exec_reset = cpu_reset, 251 .tlb_fill = avr_cpu_tlb_fill, 252 .do_interrupt = avr_cpu_do_interrupt, 253 /* 254 * TODO: code and data wrapping are different, but for the most part 255 * AVR only references bytes or aligned code fetches. But we use 256 * non-aligned MO_16 accesses for stack push/pop. 257 */ 258 .pointer_wrap = cpu_pointer_wrap_uint32, 259 }; 260 261 static void avr_cpu_class_init(ObjectClass *oc, const void *data) 262 { 263 DeviceClass *dc = DEVICE_CLASS(oc); 264 CPUClass *cc = CPU_CLASS(oc); 265 AVRCPUClass *mcc = AVR_CPU_CLASS(oc); 266 ResettableClass *rc = RESETTABLE_CLASS(oc); 267 268 device_class_set_parent_realize(dc, avr_cpu_realizefn, &mcc->parent_realize); 269 270 device_class_set_props(dc, avr_cpu_properties); 271 272 resettable_class_set_parent_phases(rc, NULL, avr_cpu_reset_hold, NULL, 273 &mcc->parent_phases); 274 275 cc->class_by_name = avr_cpu_class_by_name; 276 277 cc->dump_state = avr_cpu_dump_state; 278 cc->set_pc = avr_cpu_set_pc; 279 cc->get_pc = avr_cpu_get_pc; 280 dc->vmsd = &vms_avr_cpu; 281 cc->sysemu_ops = &avr_sysemu_ops; 282 cc->disas_set_info = avr_cpu_disas_set_info; 283 cc->gdb_read_register = avr_cpu_gdb_read_register; 284 cc->gdb_write_register = avr_cpu_gdb_write_register; 285 cc->gdb_adjust_breakpoint = avr_cpu_gdb_adjust_breakpoint; 286 cc->gdb_core_xml_file = "avr-cpu.xml"; 287 cc->tcg_ops = &avr_tcg_ops; 288 } 289 290 /* 291 * Setting features of AVR core type avr5 292 * -------------------------------------- 293 * 294 * This type of AVR core is present in the following AVR MCUs: 295 * 296 * ata5702m322, ata5782, ata5790, ata5790n, ata5791, ata5795, ata5831, ata6613c, 297 * ata6614q, ata8210, ata8510, atmega16, atmega16a, atmega161, atmega162, 298 * atmega163, atmega164a, atmega164p, atmega164pa, atmega165, atmega165a, 299 * atmega165p, atmega165pa, atmega168, atmega168a, atmega168p, atmega168pa, 300 * atmega168pb, atmega169, atmega169a, atmega169p, atmega169pa, atmega16hvb, 301 * atmega16hvbrevb, atmega16m1, atmega16u4, atmega32a, atmega32, atmega323, 302 * atmega324a, atmega324p, atmega324pa, atmega325, atmega325a, atmega325p, 303 * atmega325pa, atmega3250, atmega3250a, atmega3250p, atmega3250pa, atmega328, 304 * atmega328p, atmega328pb, atmega329, atmega329a, atmega329p, atmega329pa, 305 * atmega3290, atmega3290a, atmega3290p, atmega3290pa, atmega32c1, atmega32m1, 306 * atmega32u4, atmega32u6, atmega406, atmega64, atmega64a, atmega640, atmega644, 307 * atmega644a, atmega644p, atmega644pa, atmega645, atmega645a, atmega645p, 308 * atmega6450, atmega6450a, atmega6450p, atmega649, atmega649a, atmega649p, 309 * atmega6490, atmega16hva, atmega16hva2, atmega32hvb, atmega6490a, atmega6490p, 310 * atmega64c1, atmega64m1, atmega64hve, atmega64hve2, atmega64rfr2, 311 * atmega644rfr2, atmega32hvbrevb, at90can32, at90can64, at90pwm161, at90pwm216, 312 * at90pwm316, at90scr100, at90usb646, at90usb647, at94k, m3000 313 */ 314 static void avr_avr5_initfn(Object *obj) 315 { 316 CPUAVRState *env = cpu_env(CPU(obj)); 317 318 set_avr_feature(env, AVR_FEATURE_LPM); 319 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 320 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 321 set_avr_feature(env, AVR_FEATURE_SRAM); 322 set_avr_feature(env, AVR_FEATURE_BREAK); 323 324 set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); 325 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 326 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 327 set_avr_feature(env, AVR_FEATURE_LPMX); 328 set_avr_feature(env, AVR_FEATURE_MOVW); 329 set_avr_feature(env, AVR_FEATURE_MUL); 330 } 331 332 /* 333 * Setting features of AVR core type avr51 334 * -------------------------------------- 335 * 336 * This type of AVR core is present in the following AVR MCUs: 337 * 338 * atmega128, atmega128a, atmega1280, atmega1281, atmega1284, atmega1284p, 339 * atmega128rfa1, atmega128rfr2, atmega1284rfr2, at90can128, at90usb1286, 340 * at90usb1287 341 */ 342 static void avr_avr51_initfn(Object *obj) 343 { 344 CPUAVRState *env = cpu_env(CPU(obj)); 345 346 set_avr_feature(env, AVR_FEATURE_LPM); 347 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 348 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 349 set_avr_feature(env, AVR_FEATURE_SRAM); 350 set_avr_feature(env, AVR_FEATURE_BREAK); 351 352 set_avr_feature(env, AVR_FEATURE_2_BYTE_PC); 353 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 354 set_avr_feature(env, AVR_FEATURE_RAMPZ); 355 set_avr_feature(env, AVR_FEATURE_ELPMX); 356 set_avr_feature(env, AVR_FEATURE_ELPM); 357 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 358 set_avr_feature(env, AVR_FEATURE_LPMX); 359 set_avr_feature(env, AVR_FEATURE_MOVW); 360 set_avr_feature(env, AVR_FEATURE_MUL); 361 } 362 363 /* 364 * Setting features of AVR core type avr6 365 * -------------------------------------- 366 * 367 * This type of AVR core is present in the following AVR MCUs: 368 * 369 * atmega2560, atmega2561, atmega256rfr2, atmega2564rfr2 370 */ 371 static void avr_avr6_initfn(Object *obj) 372 { 373 CPUAVRState *env = cpu_env(CPU(obj)); 374 375 set_avr_feature(env, AVR_FEATURE_LPM); 376 set_avr_feature(env, AVR_FEATURE_IJMP_ICALL); 377 set_avr_feature(env, AVR_FEATURE_ADIW_SBIW); 378 set_avr_feature(env, AVR_FEATURE_SRAM); 379 set_avr_feature(env, AVR_FEATURE_BREAK); 380 381 set_avr_feature(env, AVR_FEATURE_3_BYTE_PC); 382 set_avr_feature(env, AVR_FEATURE_2_BYTE_SP); 383 set_avr_feature(env, AVR_FEATURE_RAMPZ); 384 set_avr_feature(env, AVR_FEATURE_EIJMP_EICALL); 385 set_avr_feature(env, AVR_FEATURE_ELPMX); 386 set_avr_feature(env, AVR_FEATURE_ELPM); 387 set_avr_feature(env, AVR_FEATURE_JMP_CALL); 388 set_avr_feature(env, AVR_FEATURE_LPMX); 389 set_avr_feature(env, AVR_FEATURE_MOVW); 390 set_avr_feature(env, AVR_FEATURE_MUL); 391 } 392 393 typedef struct AVRCPUInfo { 394 const char *name; 395 void (*initfn)(Object *obj); 396 } AVRCPUInfo; 397 398 399 #define DEFINE_AVR_CPU_TYPE(model, initfn) \ 400 { \ 401 .parent = TYPE_AVR_CPU, \ 402 .instance_init = initfn, \ 403 .name = AVR_CPU_TYPE_NAME(model), \ 404 } 405 406 static const TypeInfo avr_cpu_type_info[] = { 407 { 408 .name = TYPE_AVR_CPU, 409 .parent = TYPE_CPU, 410 .instance_size = sizeof(AVRCPU), 411 .instance_align = __alignof(AVRCPU), 412 .instance_init = avr_cpu_initfn, 413 .class_size = sizeof(AVRCPUClass), 414 .class_init = avr_cpu_class_init, 415 .abstract = true, 416 }, 417 DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn), 418 DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn), 419 DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn), 420 }; 421 422 DEFINE_TYPES(avr_cpu_type_info) 423