1 /* 2 * ARM AdvSIMD / SVE Vector Helpers 3 * 4 * Copyright (c) 2020 Linaro 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef TARGET_ARM_VEC_INTERNAL_H 21 #define TARGET_ARM_VEC_INTERNAL_H 22 23 #include "fpu/softfloat.h" 24 25 typedef struct CPUArchState CPUARMState; 26 27 /* 28 * Note that vector data is stored in host-endian 64-bit chunks, 29 * so addressing units smaller than that needs a host-endian fixup. 30 * 31 * The H<N> macros are used when indexing an array of elements of size N. 32 * 33 * The H1_<N> macros are used when performing byte arithmetic and then 34 * casting the final pointer to a type of size N. 35 */ 36 #if HOST_BIG_ENDIAN 37 #define H1(x) ((x) ^ 7) 38 #define H1_2(x) ((x) ^ 6) 39 #define H1_4(x) ((x) ^ 4) 40 #define H2(x) ((x) ^ 3) 41 #define H4(x) ((x) ^ 1) 42 #else 43 #define H1(x) (x) 44 #define H1_2(x) (x) 45 #define H1_4(x) (x) 46 #define H2(x) (x) 47 #define H4(x) (x) 48 #endif 49 /* 50 * Access to 64-bit elements isn't host-endian dependent; we provide H8 51 * and H1_8 so that when a function is being generated from a macro we 52 * can pass these rather than an empty macro argument, for clarity. 53 */ 54 #define H8(x) (x) 55 #define H1_8(x) (x) 56 57 /* 58 * Expand active predicate bits to bytes, for byte elements. 59 */ 60 extern const uint64_t expand_pred_b_data[256]; 61 static inline uint64_t expand_pred_b(uint8_t byte) 62 { 63 return expand_pred_b_data[byte]; 64 } 65 66 /* Similarly for half-word elements. */ 67 extern const uint64_t expand_pred_h_data[0x55 + 1]; 68 static inline uint64_t expand_pred_h(uint8_t byte) 69 { 70 return expand_pred_h_data[byte & 0x55]; 71 } 72 73 static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz) 74 { 75 uint64_t *d = vd + opr_sz; 76 uintptr_t i; 77 78 for (i = opr_sz; i < max_sz; i += 8) { 79 *d++ = 0; 80 } 81 } 82 83 static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits, 84 bool round, uint32_t *sat) 85 { 86 if (shift <= -bits) { 87 /* Rounding the sign bit always produces 0. */ 88 if (round) { 89 return 0; 90 } 91 return src >> 31; 92 } else if (shift < 0) { 93 if (round) { 94 src >>= -shift - 1; 95 return (src >> 1) + (src & 1); 96 } 97 return src >> -shift; 98 } else if (shift < bits) { 99 int32_t val = src << shift; 100 if (bits == 32) { 101 if (!sat || val >> shift == src) { 102 return val; 103 } 104 } else { 105 int32_t extval = sextract32(val, 0, bits); 106 if (!sat || val == extval) { 107 return extval; 108 } 109 } 110 } else if (!sat || src == 0) { 111 return 0; 112 } 113 114 *sat = 1; 115 return (1u << (bits - 1)) - (src >= 0); 116 } 117 118 static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits, 119 bool round, uint32_t *sat) 120 { 121 if (shift <= -(bits + round)) { 122 return 0; 123 } else if (shift < 0) { 124 if (round) { 125 src >>= -shift - 1; 126 return (src >> 1) + (src & 1); 127 } 128 return src >> -shift; 129 } else if (shift < bits) { 130 uint32_t val = src << shift; 131 if (bits == 32) { 132 if (!sat || val >> shift == src) { 133 return val; 134 } 135 } else { 136 uint32_t extval = extract32(val, 0, bits); 137 if (!sat || val == extval) { 138 return extval; 139 } 140 } 141 } else if (!sat || src == 0) { 142 return 0; 143 } 144 145 *sat = 1; 146 return MAKE_64BIT_MASK(0, bits); 147 } 148 149 static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits, 150 bool round, uint32_t *sat) 151 { 152 if (sat && src < 0) { 153 *sat = 1; 154 return 0; 155 } 156 return do_uqrshl_bhs(src, shift, bits, round, sat); 157 } 158 159 static inline int64_t do_sqrshl_d(int64_t src, int64_t shift, 160 bool round, uint32_t *sat) 161 { 162 if (shift <= -64) { 163 /* Rounding the sign bit always produces 0. */ 164 if (round) { 165 return 0; 166 } 167 return src >> 63; 168 } else if (shift < 0) { 169 if (round) { 170 src >>= -shift - 1; 171 return (src >> 1) + (src & 1); 172 } 173 return src >> -shift; 174 } else if (shift < 64) { 175 int64_t val = src << shift; 176 if (!sat || val >> shift == src) { 177 return val; 178 } 179 } else if (!sat || src == 0) { 180 return 0; 181 } 182 183 *sat = 1; 184 return src < 0 ? INT64_MIN : INT64_MAX; 185 } 186 187 static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift, 188 bool round, uint32_t *sat) 189 { 190 if (shift <= -(64 + round)) { 191 return 0; 192 } else if (shift < 0) { 193 if (round) { 194 src >>= -shift - 1; 195 return (src >> 1) + (src & 1); 196 } 197 return src >> -shift; 198 } else if (shift < 64) { 199 uint64_t val = src << shift; 200 if (!sat || val >> shift == src) { 201 return val; 202 } 203 } else if (!sat || src == 0) { 204 return 0; 205 } 206 207 *sat = 1; 208 return UINT64_MAX; 209 } 210 211 static inline int64_t do_suqrshl_d(int64_t src, int64_t shift, 212 bool round, uint32_t *sat) 213 { 214 if (sat && src < 0) { 215 *sat = 1; 216 return 0; 217 } 218 return do_uqrshl_d(src, shift, round, sat); 219 } 220 221 int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool); 222 int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *); 223 int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *); 224 int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool); 225 226 /** 227 * bfdotadd: 228 * @sum: addend 229 * @e1, @e2: multiplicand vectors 230 * @fpst: floating-point status to use 231 * 232 * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. 233 * The @e1 and @e2 operands correspond to the 32-bit source vector 234 * slots and contain two Bfloat16 values each. 235 * 236 * Corresponds to the ARM pseudocode function BFDotAdd, specialized 237 * for the FPCR.EBF == 0 case. 238 */ 239 float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst); 240 /** 241 * bfdotadd_ebf: 242 * @sum: addend 243 * @e1, @e2: multiplicand vectors 244 * @fpst: floating-point status to use 245 * @fpst_odd: floating-point status to use for round-to-odd operations 246 * 247 * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. 248 * The @e1 and @e2 operands correspond to the 32-bit source vector 249 * slots and contain two Bfloat16 values each. 250 * 251 * Corresponds to the ARM pseudocode function BFDotAdd, specialized 252 * for the FPCR.EBF == 1 case. 253 */ 254 float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2, 255 float_status *fpst, float_status *fpst_odd); 256 257 /** 258 * is_ebf: 259 * @env: CPU state 260 * @statusp: pointer to floating point status to fill in 261 * @oddstatusp: pointer to floating point status to fill in for round-to-odd 262 * 263 * Determine whether a BFDotAdd operation should use FPCR.EBF = 0 264 * or FPCR.EBF = 1 semantics. On return, has initialized *statusp 265 * and *oddstatusp to suitable float_status arguments to use with either 266 * bfdotadd() or bfdotadd_ebf(). 267 * Returns true for EBF = 1, false for EBF = 0. (The caller should use this 268 * to decide whether to call bfdotadd() or bfdotadd_ebf().) 269 */ 270 bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp); 271 272 /* 273 * Negate as for FPCR.AH=1 -- do not negate NaNs. 274 */ 275 static inline float16 float16_ah_chs(float16 a) 276 { 277 return float16_is_any_nan(a) ? a : float16_chs(a); 278 } 279 280 static inline float32 float32_ah_chs(float32 a) 281 { 282 return float32_is_any_nan(a) ? a : float32_chs(a); 283 } 284 285 static inline float64 float64_ah_chs(float64 a) 286 { 287 return float64_is_any_nan(a) ? a : float64_chs(a); 288 } 289 290 static inline float16 float16_maybe_ah_chs(float16 a, bool fpcr_ah) 291 { 292 return fpcr_ah && float16_is_any_nan(a) ? a : float16_chs(a); 293 } 294 295 static inline float32 float32_maybe_ah_chs(float32 a, bool fpcr_ah) 296 { 297 return fpcr_ah && float32_is_any_nan(a) ? a : float32_chs(a); 298 } 299 300 static inline float64 float64_maybe_ah_chs(float64 a, bool fpcr_ah) 301 { 302 return fpcr_ah && float64_is_any_nan(a) ? a : float64_chs(a); 303 } 304 305 #endif /* TARGET_ARM_VEC_INTERNAL_H */ 306