xref: /qemu/target/arm/tcg/vec_helper.c (revision e4a6d4a69e239becfd83bdcd996476e7b8e1138d)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41                              bool neg, bool round, uint32_t *sat)
42 {
43     /*
44      * Simplify:
45      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47      */
48     int32_t ret = (int32_t)src1 * src2;
49     if (neg) {
50         ret = -ret;
51     }
52     ret += ((int32_t)src3 << 15) + (round << 14);
53     ret >>= 15;
54 
55     if (ret != (int16_t)ret) {
56         *sat = 1;
57         ret = (ret < 0 ? INT16_MIN : INT16_MAX);
58     }
59     return ret;
60 }
61 
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63                                   uint32_t src2, uint32_t src3)
64 {
65     uint32_t *sat = &env->vfp.qc[0];
66     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68                                 false, true, sat);
69     return deposit32(e1, 16, 16, e2);
70 }
71 
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73                               void *vq, uint32_t desc)
74 {
75     uintptr_t opr_sz = simd_oprsz(desc);
76     int16_t *d = vd;
77     int16_t *n = vn;
78     int16_t *m = vm;
79     uintptr_t i;
80 
81     for (i = 0; i < opr_sz / 2; ++i) {
82         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
83     }
84     clear_tail(d, opr_sz, simd_maxsz(desc));
85 }
86 
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88                                   uint32_t src2, uint32_t src3)
89 {
90     uint32_t *sat = &env->vfp.qc[0];
91     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93                                 true, true, sat);
94     return deposit32(e1, 16, 16, e2);
95 }
96 
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98                               void *vq, uint32_t desc)
99 {
100     uintptr_t opr_sz = simd_oprsz(desc);
101     int16_t *d = vd;
102     int16_t *n = vn;
103     int16_t *m = vm;
104     uintptr_t i;
105 
106     for (i = 0; i < opr_sz / 2; ++i) {
107         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
108     }
109     clear_tail(d, opr_sz, simd_maxsz(desc));
110 }
111 
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113                             void *vq, uint32_t desc)
114 {
115     intptr_t i, opr_sz = simd_oprsz(desc);
116     int16_t *d = vd, *n = vn, *m = vm;
117 
118     for (i = 0; i < opr_sz / 2; ++i) {
119         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
120     }
121     clear_tail(d, opr_sz, simd_maxsz(desc));
122 }
123 
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125                              void *vq, uint32_t desc)
126 {
127     intptr_t i, opr_sz = simd_oprsz(desc);
128     int16_t *d = vd, *n = vn, *m = vm;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138                              bool neg, bool round, uint32_t *sat)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     if (neg) {
143         ret = -ret;
144     }
145     ret += ((int64_t)src3 << 31) + (round << 30);
146     ret >>= 31;
147 
148     if (ret != (int32_t)ret) {
149         *sat = 1;
150         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
151     }
152     return ret;
153 }
154 
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156                                   int32_t src2, int32_t src3)
157 {
158     uint32_t *sat = &env->vfp.qc[0];
159     return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
160 }
161 
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163                               void *vq, uint32_t desc)
164 {
165     uintptr_t opr_sz = simd_oprsz(desc);
166     int32_t *d = vd;
167     int32_t *n = vn;
168     int32_t *m = vm;
169     uintptr_t i;
170 
171     for (i = 0; i < opr_sz / 4; ++i) {
172         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
173     }
174     clear_tail(d, opr_sz, simd_maxsz(desc));
175 }
176 
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178                                   int32_t src2, int32_t src3)
179 {
180     uint32_t *sat = &env->vfp.qc[0];
181     return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
182 }
183 
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185                               void *vq, uint32_t desc)
186 {
187     uintptr_t opr_sz = simd_oprsz(desc);
188     int32_t *d = vd;
189     int32_t *n = vn;
190     int32_t *m = vm;
191     uintptr_t i;
192 
193     for (i = 0; i < opr_sz / 4; ++i) {
194         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
195     }
196     clear_tail(d, opr_sz, simd_maxsz(desc));
197 }
198 
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200                             void *vq, uint32_t desc)
201 {
202     intptr_t i, opr_sz = simd_oprsz(desc);
203     int32_t *d = vd, *n = vn, *m = vm;
204 
205     for (i = 0; i < opr_sz / 4; ++i) {
206         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
207     }
208     clear_tail(d, opr_sz, simd_maxsz(desc));
209 }
210 
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212                              void *vq, uint32_t desc)
213 {
214     intptr_t i, opr_sz = simd_oprsz(desc);
215     int32_t *d = vd, *n = vn, *m = vm;
216 
217     for (i = 0; i < opr_sz / 4; ++i) {
218         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
219     }
220     clear_tail(d, opr_sz, simd_maxsz(desc));
221 }
222 
223 /* Integer 8 and 16-bit dot-product.
224  *
225  * Note that for the loops herein, host endianness does not matter
226  * with respect to the ordering of data within the 64-bit lanes.
227  * All elements are treated equally, no matter where they are.
228  */
229 
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 {
232     intptr_t i, opr_sz = simd_oprsz(desc);
233     uint32_t *d = vd;
234     int8_t *n = vn, *m = vm;
235 
236     for (i = 0; i < opr_sz / 4; ++i) {
237         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238               + n[i * 4 + 1] * m[i * 4 + 1]
239               + n[i * 4 + 2] * m[i * 4 + 2]
240               + n[i * 4 + 3] * m[i * 4 + 3];
241     }
242     clear_tail(d, opr_sz, simd_maxsz(desc));
243 }
244 
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
246 {
247     intptr_t i, opr_sz = simd_oprsz(desc);
248     uint32_t *d = vd;
249     uint8_t *n = vn, *m = vm;
250 
251     for (i = 0; i < opr_sz / 4; ++i) {
252         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253               + n[i * 4 + 1] * m[i * 4 + 1]
254               + n[i * 4 + 2] * m[i * 4 + 2]
255               + n[i * 4 + 3] * m[i * 4 + 3];
256     }
257     clear_tail(d, opr_sz, simd_maxsz(desc));
258 }
259 
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 {
262     intptr_t i, opr_sz = simd_oprsz(desc);
263     uint64_t *d = vd;
264     int16_t *n = vn, *m = vm;
265 
266     for (i = 0; i < opr_sz / 8; ++i) {
267         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
271     }
272     clear_tail(d, opr_sz, simd_maxsz(desc));
273 }
274 
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
276 {
277     intptr_t i, opr_sz = simd_oprsz(desc);
278     uint64_t *d = vd;
279     uint16_t *n = vn, *m = vm;
280 
281     for (i = 0; i < opr_sz / 8; ++i) {
282         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
286     }
287     clear_tail(d, opr_sz, simd_maxsz(desc));
288 }
289 
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
291 {
292     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293     intptr_t index = simd_data(desc);
294     uint32_t *d = vd;
295     int8_t *n = vn;
296     int8_t *m_indexed = (int8_t *)vm + index * 4;
297 
298     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299      * Otherwise opr_sz is a multiple of 16.
300      */
301     segend = MIN(4, opr_sz_4);
302     i = 0;
303     do {
304         int8_t m0 = m_indexed[i * 4 + 0];
305         int8_t m1 = m_indexed[i * 4 + 1];
306         int8_t m2 = m_indexed[i * 4 + 2];
307         int8_t m3 = m_indexed[i * 4 + 3];
308 
309         do {
310             d[i] += n[i * 4 + 0] * m0
311                   + n[i * 4 + 1] * m1
312                   + n[i * 4 + 2] * m2
313                   + n[i * 4 + 3] * m3;
314         } while (++i < segend);
315         segend = i + 4;
316     } while (i < opr_sz_4);
317 
318     clear_tail(d, opr_sz, simd_maxsz(desc));
319 }
320 
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
322 {
323     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324     intptr_t index = simd_data(desc);
325     uint32_t *d = vd;
326     uint8_t *n = vn;
327     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
328 
329     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330      * Otherwise opr_sz is a multiple of 16.
331      */
332     segend = MIN(4, opr_sz_4);
333     i = 0;
334     do {
335         uint8_t m0 = m_indexed[i * 4 + 0];
336         uint8_t m1 = m_indexed[i * 4 + 1];
337         uint8_t m2 = m_indexed[i * 4 + 2];
338         uint8_t m3 = m_indexed[i * 4 + 3];
339 
340         do {
341             d[i] += n[i * 4 + 0] * m0
342                   + n[i * 4 + 1] * m1
343                   + n[i * 4 + 2] * m2
344                   + n[i * 4 + 3] * m3;
345         } while (++i < segend);
346         segend = i + 4;
347     } while (i < opr_sz_4);
348 
349     clear_tail(d, opr_sz, simd_maxsz(desc));
350 }
351 
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
353 {
354     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355     intptr_t index = simd_data(desc);
356     uint64_t *d = vd;
357     int16_t *n = vn;
358     int16_t *m_indexed = (int16_t *)vm + index * 4;
359 
360     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361      * Process the entire segment all at once, writing back the results
362      * only after we've consumed all of the inputs.
363      */
364     for (i = 0; i < opr_sz_8 ; i += 2) {
365         uint64_t d0, d1;
366 
367         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
375 
376         d[i + 0] += d0;
377         d[i + 1] += d1;
378     }
379 
380     clear_tail(d, opr_sz, simd_maxsz(desc));
381 }
382 
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
384 {
385     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386     intptr_t index = simd_data(desc);
387     uint64_t *d = vd;
388     uint16_t *n = vn;
389     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
390 
391     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392      * Process the entire segment all at once, writing back the results
393      * only after we've consumed all of the inputs.
394      */
395     for (i = 0; i < opr_sz_8 ; i += 2) {
396         uint64_t d0, d1;
397 
398         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
406 
407         d[i + 0] += d0;
408         d[i + 1] += d1;
409     }
410 
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float16 *d = vd;
419     float16 *n = vn;
420     float16 *m = vm;
421     float_status *fpst = vfpst;
422     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = neg_real ^ 1;
424     uintptr_t i;
425 
426     /* Shift boolean to the sign bit so we can xor to negate.  */
427     neg_real <<= 15;
428     neg_imag <<= 15;
429 
430     for (i = 0; i < opr_sz / 2; i += 2) {
431         float16 e0 = n[H2(i)];
432         float16 e1 = m[H2(i + 1)] ^ neg_imag;
433         float16 e2 = n[H2(i + 1)];
434         float16 e3 = m[H2(i)] ^ neg_real;
435 
436         d[H2(i)] = float16_add(e0, e1, fpst);
437         d[H2(i + 1)] = float16_add(e2, e3, fpst);
438     }
439     clear_tail(d, opr_sz, simd_maxsz(desc));
440 }
441 
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443                          void *vfpst, uint32_t desc)
444 {
445     uintptr_t opr_sz = simd_oprsz(desc);
446     float32 *d = vd;
447     float32 *n = vn;
448     float32 *m = vm;
449     float_status *fpst = vfpst;
450     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451     uint32_t neg_imag = neg_real ^ 1;
452     uintptr_t i;
453 
454     /* Shift boolean to the sign bit so we can xor to negate.  */
455     neg_real <<= 31;
456     neg_imag <<= 31;
457 
458     for (i = 0; i < opr_sz / 4; i += 2) {
459         float32 e0 = n[H4(i)];
460         float32 e1 = m[H4(i + 1)] ^ neg_imag;
461         float32 e2 = n[H4(i + 1)];
462         float32 e3 = m[H4(i)] ^ neg_real;
463 
464         d[H4(i)] = float32_add(e0, e1, fpst);
465         d[H4(i + 1)] = float32_add(e2, e3, fpst);
466     }
467     clear_tail(d, opr_sz, simd_maxsz(desc));
468 }
469 
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471                          void *vfpst, uint32_t desc)
472 {
473     uintptr_t opr_sz = simd_oprsz(desc);
474     float64 *d = vd;
475     float64 *n = vn;
476     float64 *m = vm;
477     float_status *fpst = vfpst;
478     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479     uint64_t neg_imag = neg_real ^ 1;
480     uintptr_t i;
481 
482     /* Shift boolean to the sign bit so we can xor to negate.  */
483     neg_real <<= 63;
484     neg_imag <<= 63;
485 
486     for (i = 0; i < opr_sz / 8; i += 2) {
487         float64 e0 = n[i];
488         float64 e1 = m[i + 1] ^ neg_imag;
489         float64 e2 = n[i + 1];
490         float64 e3 = m[i] ^ neg_real;
491 
492         d[i] = float64_add(e0, e1, fpst);
493         d[i + 1] = float64_add(e2, e3, fpst);
494     }
495     clear_tail(d, opr_sz, simd_maxsz(desc));
496 }
497 
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499                          void *vfpst, uint32_t desc)
500 {
501     uintptr_t opr_sz = simd_oprsz(desc);
502     float16 *d = vd;
503     float16 *n = vn;
504     float16 *m = vm;
505     float_status *fpst = vfpst;
506     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508     uint32_t neg_real = flip ^ neg_imag;
509     uintptr_t i;
510 
511     /* Shift boolean to the sign bit so we can xor to negate.  */
512     neg_real <<= 15;
513     neg_imag <<= 15;
514 
515     for (i = 0; i < opr_sz / 2; i += 2) {
516         float16 e2 = n[H2(i + flip)];
517         float16 e1 = m[H2(i + flip)] ^ neg_real;
518         float16 e4 = e2;
519         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
520 
521         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
523     }
524     clear_tail(d, opr_sz, simd_maxsz(desc));
525 }
526 
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528                              void *vfpst, uint32_t desc)
529 {
530     uintptr_t opr_sz = simd_oprsz(desc);
531     float16 *d = vd;
532     float16 *n = vn;
533     float16 *m = vm;
534     float_status *fpst = vfpst;
535     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538     uint32_t neg_real = flip ^ neg_imag;
539     intptr_t elements = opr_sz / sizeof(float16);
540     intptr_t eltspersegment = 16 / sizeof(float16);
541     intptr_t i, j;
542 
543     /* Shift boolean to the sign bit so we can xor to negate.  */
544     neg_real <<= 15;
545     neg_imag <<= 15;
546 
547     for (i = 0; i < elements; i += eltspersegment) {
548         float16 mr = m[H2(i + 2 * index + 0)];
549         float16 mi = m[H2(i + 2 * index + 1)];
550         float16 e1 = neg_real ^ (flip ? mi : mr);
551         float16 e3 = neg_imag ^ (flip ? mr : mi);
552 
553         for (j = i; j < i + eltspersegment; j += 2) {
554             float16 e2 = n[H2(j + flip)];
555             float16 e4 = e2;
556 
557             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
559         }
560     }
561     clear_tail(d, opr_sz, simd_maxsz(desc));
562 }
563 
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565                          void *vfpst, uint32_t desc)
566 {
567     uintptr_t opr_sz = simd_oprsz(desc);
568     float32 *d = vd;
569     float32 *n = vn;
570     float32 *m = vm;
571     float_status *fpst = vfpst;
572     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574     uint32_t neg_real = flip ^ neg_imag;
575     uintptr_t i;
576 
577     /* Shift boolean to the sign bit so we can xor to negate.  */
578     neg_real <<= 31;
579     neg_imag <<= 31;
580 
581     for (i = 0; i < opr_sz / 4; i += 2) {
582         float32 e2 = n[H4(i + flip)];
583         float32 e1 = m[H4(i + flip)] ^ neg_real;
584         float32 e4 = e2;
585         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
586 
587         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
589     }
590     clear_tail(d, opr_sz, simd_maxsz(desc));
591 }
592 
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594                              void *vfpst, uint32_t desc)
595 {
596     uintptr_t opr_sz = simd_oprsz(desc);
597     float32 *d = vd;
598     float32 *n = vn;
599     float32 *m = vm;
600     float_status *fpst = vfpst;
601     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604     uint32_t neg_real = flip ^ neg_imag;
605     intptr_t elements = opr_sz / sizeof(float32);
606     intptr_t eltspersegment = 16 / sizeof(float32);
607     intptr_t i, j;
608 
609     /* Shift boolean to the sign bit so we can xor to negate.  */
610     neg_real <<= 31;
611     neg_imag <<= 31;
612 
613     for (i = 0; i < elements; i += eltspersegment) {
614         float32 mr = m[H4(i + 2 * index + 0)];
615         float32 mi = m[H4(i + 2 * index + 1)];
616         float32 e1 = neg_real ^ (flip ? mi : mr);
617         float32 e3 = neg_imag ^ (flip ? mr : mi);
618 
619         for (j = i; j < i + eltspersegment; j += 2) {
620             float32 e2 = n[H4(j + flip)];
621             float32 e4 = e2;
622 
623             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
625         }
626     }
627     clear_tail(d, opr_sz, simd_maxsz(desc));
628 }
629 
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631                          void *vfpst, uint32_t desc)
632 {
633     uintptr_t opr_sz = simd_oprsz(desc);
634     float64 *d = vd;
635     float64 *n = vn;
636     float64 *m = vm;
637     float_status *fpst = vfpst;
638     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640     uint64_t neg_real = flip ^ neg_imag;
641     uintptr_t i;
642 
643     /* Shift boolean to the sign bit so we can xor to negate.  */
644     neg_real <<= 63;
645     neg_imag <<= 63;
646 
647     for (i = 0; i < opr_sz / 8; i += 2) {
648         float64 e2 = n[i + flip];
649         float64 e1 = m[i + flip] ^ neg_real;
650         float64 e4 = e2;
651         float64 e3 = m[i + 1 - flip] ^ neg_imag;
652 
653         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
655     }
656     clear_tail(d, opr_sz, simd_maxsz(desc));
657 }
658 
659 #define DO_2OP(NAME, FUNC, TYPE) \
660 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
661 {                                                                 \
662     intptr_t i, oprsz = simd_oprsz(desc);                         \
663     TYPE *d = vd, *n = vn;                                        \
664     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
665         d[i] = FUNC(n[i], stat);                                  \
666     }                                                             \
667     clear_tail(d, oprsz, simd_maxsz(desc));                       \
668 }
669 
670 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
671 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
672 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
673 
674 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
675 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
676 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
677 
678 #undef DO_2OP
679 
680 /* Floating-point trigonometric starting value.
681  * See the ARM ARM pseudocode function FPTrigSMul.
682  */
683 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
684 {
685     float16 result = float16_mul(op1, op1, stat);
686     if (!float16_is_any_nan(result)) {
687         result = float16_set_sign(result, op2 & 1);
688     }
689     return result;
690 }
691 
692 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
693 {
694     float32 result = float32_mul(op1, op1, stat);
695     if (!float32_is_any_nan(result)) {
696         result = float32_set_sign(result, op2 & 1);
697     }
698     return result;
699 }
700 
701 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
702 {
703     float64 result = float64_mul(op1, op1, stat);
704     if (!float64_is_any_nan(result)) {
705         result = float64_set_sign(result, op2 & 1);
706     }
707     return result;
708 }
709 
710 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
711 {
712     return float16_abs(float16_sub(op1, op2, stat));
713 }
714 
715 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
716 {
717     return float32_abs(float32_sub(op1, op2, stat));
718 }
719 
720 #define DO_3OP(NAME, FUNC, TYPE) \
721 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
722 {                                                                          \
723     intptr_t i, oprsz = simd_oprsz(desc);                                  \
724     TYPE *d = vd, *n = vn, *m = vm;                                        \
725     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
726         d[i] = FUNC(n[i], m[i], stat);                                     \
727     }                                                                      \
728     clear_tail(d, oprsz, simd_maxsz(desc));                                \
729 }
730 
731 DO_3OP(gvec_fadd_h, float16_add, float16)
732 DO_3OP(gvec_fadd_s, float32_add, float32)
733 DO_3OP(gvec_fadd_d, float64_add, float64)
734 
735 DO_3OP(gvec_fsub_h, float16_sub, float16)
736 DO_3OP(gvec_fsub_s, float32_sub, float32)
737 DO_3OP(gvec_fsub_d, float64_sub, float64)
738 
739 DO_3OP(gvec_fmul_h, float16_mul, float16)
740 DO_3OP(gvec_fmul_s, float32_mul, float32)
741 DO_3OP(gvec_fmul_d, float64_mul, float64)
742 
743 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
744 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
745 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
746 
747 DO_3OP(gvec_fabd_h, float16_abd, float16)
748 DO_3OP(gvec_fabd_s, float32_abd, float32)
749 
750 #ifdef TARGET_AARCH64
751 
752 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
753 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
754 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
755 
756 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
757 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
758 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
759 
760 #endif
761 #undef DO_3OP
762 
763 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
764  * For AdvSIMD, there is of course only one such vector segment.
765  */
766 
767 #define DO_MUL_IDX(NAME, TYPE, H) \
768 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
769 {                                                                          \
770     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
771     intptr_t idx = simd_data(desc);                                        \
772     TYPE *d = vd, *n = vn, *m = vm;                                        \
773     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
774         TYPE mm = m[H(i + idx)];                                           \
775         for (j = 0; j < segment; j++) {                                    \
776             d[i + j] = n[i + j] * mm;                                      \
777         }                                                                  \
778     }                                                                      \
779     clear_tail(d, oprsz, simd_maxsz(desc));                                \
780 }
781 
782 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
783 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
784 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
785 
786 #undef DO_MUL_IDX
787 
788 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
789 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)   \
790 {                                                                          \
791     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
792     intptr_t idx = simd_data(desc);                                        \
793     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
794     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
795         TYPE mm = m[H(i + idx)];                                           \
796         for (j = 0; j < segment; j++) {                                    \
797             d[i + j] = a[i + j] OP n[i + j] * mm;                          \
798         }                                                                  \
799     }                                                                      \
800     clear_tail(d, oprsz, simd_maxsz(desc));                                \
801 }
802 
803 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
804 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
805 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +,   )
806 
807 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
808 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
809 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -,   )
810 
811 #undef DO_MLA_IDX
812 
813 #define DO_FMUL_IDX(NAME, TYPE, H) \
814 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
815 {                                                                          \
816     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
817     intptr_t idx = simd_data(desc);                                        \
818     TYPE *d = vd, *n = vn, *m = vm;                                        \
819     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
820         TYPE mm = m[H(i + idx)];                                           \
821         for (j = 0; j < segment; j++) {                                    \
822             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
823         }                                                                  \
824     }                                                                      \
825     clear_tail(d, oprsz, simd_maxsz(desc));                                \
826 }
827 
828 DO_FMUL_IDX(gvec_fmul_idx_h, float16, H2)
829 DO_FMUL_IDX(gvec_fmul_idx_s, float32, H4)
830 DO_FMUL_IDX(gvec_fmul_idx_d, float64, )
831 
832 #undef DO_FMUL_IDX
833 
834 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
835 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
836                   void *stat, uint32_t desc)                               \
837 {                                                                          \
838     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
839     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
840     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
841     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
842     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
843     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
844         TYPE mm = m[H(i + idx)];                                           \
845         for (j = 0; j < segment; j++) {                                    \
846             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
847                                      mm, a[i + j], 0, stat);               \
848         }                                                                  \
849     }                                                                      \
850     clear_tail(d, oprsz, simd_maxsz(desc));                                \
851 }
852 
853 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
854 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
855 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
856 
857 #undef DO_FMLA_IDX
858 
859 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
860 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
861 {                                                                          \
862     intptr_t i, oprsz = simd_oprsz(desc);                                  \
863     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
864     bool q = false;                                                        \
865     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
866         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
867         if (dd < MIN) {                                                    \
868             dd = MIN;                                                      \
869             q = true;                                                      \
870         } else if (dd > MAX) {                                             \
871             dd = MAX;                                                      \
872             q = true;                                                      \
873         }                                                                  \
874         d[i] = dd;                                                         \
875     }                                                                      \
876     if (q) {                                                               \
877         uint32_t *qc = vq;                                                 \
878         qc[0] = 1;                                                         \
879     }                                                                      \
880     clear_tail(d, oprsz, simd_maxsz(desc));                                \
881 }
882 
883 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
884 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
885 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
886 
887 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
888 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
889 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
890 
891 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
892 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
893 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
894 
895 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
896 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
897 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
898 
899 #undef DO_SAT
900 
901 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
902                           void *vm, uint32_t desc)
903 {
904     intptr_t i, oprsz = simd_oprsz(desc);
905     uint64_t *d = vd, *n = vn, *m = vm;
906     bool q = false;
907 
908     for (i = 0; i < oprsz / 8; i++) {
909         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
910         if (dd < nn) {
911             dd = UINT64_MAX;
912             q = true;
913         }
914         d[i] = dd;
915     }
916     if (q) {
917         uint32_t *qc = vq;
918         qc[0] = 1;
919     }
920     clear_tail(d, oprsz, simd_maxsz(desc));
921 }
922 
923 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
924                           void *vm, uint32_t desc)
925 {
926     intptr_t i, oprsz = simd_oprsz(desc);
927     uint64_t *d = vd, *n = vn, *m = vm;
928     bool q = false;
929 
930     for (i = 0; i < oprsz / 8; i++) {
931         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
932         if (nn < mm) {
933             dd = 0;
934             q = true;
935         }
936         d[i] = dd;
937     }
938     if (q) {
939         uint32_t *qc = vq;
940         qc[0] = 1;
941     }
942     clear_tail(d, oprsz, simd_maxsz(desc));
943 }
944 
945 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
946                           void *vm, uint32_t desc)
947 {
948     intptr_t i, oprsz = simd_oprsz(desc);
949     int64_t *d = vd, *n = vn, *m = vm;
950     bool q = false;
951 
952     for (i = 0; i < oprsz / 8; i++) {
953         int64_t nn = n[i], mm = m[i], dd = nn + mm;
954         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
955             dd = (nn >> 63) ^ ~INT64_MIN;
956             q = true;
957         }
958         d[i] = dd;
959     }
960     if (q) {
961         uint32_t *qc = vq;
962         qc[0] = 1;
963     }
964     clear_tail(d, oprsz, simd_maxsz(desc));
965 }
966 
967 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
968                           void *vm, uint32_t desc)
969 {
970     intptr_t i, oprsz = simd_oprsz(desc);
971     int64_t *d = vd, *n = vn, *m = vm;
972     bool q = false;
973 
974     for (i = 0; i < oprsz / 8; i++) {
975         int64_t nn = n[i], mm = m[i], dd = nn - mm;
976         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
977             dd = (nn >> 63) ^ ~INT64_MIN;
978             q = true;
979         }
980         d[i] = dd;
981     }
982     if (q) {
983         uint32_t *qc = vq;
984         qc[0] = 1;
985     }
986     clear_tail(d, oprsz, simd_maxsz(desc));
987 }
988 
989 
990 #define DO_SRA(NAME, TYPE)                              \
991 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
992 {                                                       \
993     intptr_t i, oprsz = simd_oprsz(desc);               \
994     int shift = simd_data(desc);                        \
995     TYPE *d = vd, *n = vn;                              \
996     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
997         d[i] += n[i] >> shift;                          \
998     }                                                   \
999     clear_tail(d, oprsz, simd_maxsz(desc));             \
1000 }
1001 
1002 DO_SRA(gvec_ssra_b, int8_t)
1003 DO_SRA(gvec_ssra_h, int16_t)
1004 DO_SRA(gvec_ssra_s, int32_t)
1005 DO_SRA(gvec_ssra_d, int64_t)
1006 
1007 DO_SRA(gvec_usra_b, uint8_t)
1008 DO_SRA(gvec_usra_h, uint16_t)
1009 DO_SRA(gvec_usra_s, uint32_t)
1010 DO_SRA(gvec_usra_d, uint64_t)
1011 
1012 #undef DO_SRA
1013 
1014 #define DO_RSHR(NAME, TYPE)                             \
1015 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1016 {                                                       \
1017     intptr_t i, oprsz = simd_oprsz(desc);               \
1018     int shift = simd_data(desc);                        \
1019     TYPE *d = vd, *n = vn;                              \
1020     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1021         TYPE tmp = n[i] >> (shift - 1);                 \
1022         d[i] = (tmp >> 1) + (tmp & 1);                  \
1023     }                                                   \
1024     clear_tail(d, oprsz, simd_maxsz(desc));             \
1025 }
1026 
1027 DO_RSHR(gvec_srshr_b, int8_t)
1028 DO_RSHR(gvec_srshr_h, int16_t)
1029 DO_RSHR(gvec_srshr_s, int32_t)
1030 DO_RSHR(gvec_srshr_d, int64_t)
1031 
1032 DO_RSHR(gvec_urshr_b, uint8_t)
1033 DO_RSHR(gvec_urshr_h, uint16_t)
1034 DO_RSHR(gvec_urshr_s, uint32_t)
1035 DO_RSHR(gvec_urshr_d, uint64_t)
1036 
1037 #undef DO_RSHR
1038 
1039 #define DO_RSRA(NAME, TYPE)                             \
1040 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1041 {                                                       \
1042     intptr_t i, oprsz = simd_oprsz(desc);               \
1043     int shift = simd_data(desc);                        \
1044     TYPE *d = vd, *n = vn;                              \
1045     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1046         TYPE tmp = n[i] >> (shift - 1);                 \
1047         d[i] += (tmp >> 1) + (tmp & 1);                 \
1048     }                                                   \
1049     clear_tail(d, oprsz, simd_maxsz(desc));             \
1050 }
1051 
1052 DO_RSRA(gvec_srsra_b, int8_t)
1053 DO_RSRA(gvec_srsra_h, int16_t)
1054 DO_RSRA(gvec_srsra_s, int32_t)
1055 DO_RSRA(gvec_srsra_d, int64_t)
1056 
1057 DO_RSRA(gvec_ursra_b, uint8_t)
1058 DO_RSRA(gvec_ursra_h, uint16_t)
1059 DO_RSRA(gvec_ursra_s, uint32_t)
1060 DO_RSRA(gvec_ursra_d, uint64_t)
1061 
1062 #undef DO_RSRA
1063 
1064 #define DO_SRI(NAME, TYPE)                              \
1065 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1066 {                                                       \
1067     intptr_t i, oprsz = simd_oprsz(desc);               \
1068     int shift = simd_data(desc);                        \
1069     TYPE *d = vd, *n = vn;                              \
1070     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1071         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1072     }                                                   \
1073     clear_tail(d, oprsz, simd_maxsz(desc));             \
1074 }
1075 
1076 DO_SRI(gvec_sri_b, uint8_t)
1077 DO_SRI(gvec_sri_h, uint16_t)
1078 DO_SRI(gvec_sri_s, uint32_t)
1079 DO_SRI(gvec_sri_d, uint64_t)
1080 
1081 #undef DO_SRI
1082 
1083 #define DO_SLI(NAME, TYPE)                              \
1084 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1085 {                                                       \
1086     intptr_t i, oprsz = simd_oprsz(desc);               \
1087     int shift = simd_data(desc);                        \
1088     TYPE *d = vd, *n = vn;                              \
1089     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1090         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1091     }                                                   \
1092     clear_tail(d, oprsz, simd_maxsz(desc));             \
1093 }
1094 
1095 DO_SLI(gvec_sli_b, uint8_t)
1096 DO_SLI(gvec_sli_h, uint16_t)
1097 DO_SLI(gvec_sli_s, uint32_t)
1098 DO_SLI(gvec_sli_d, uint64_t)
1099 
1100 #undef DO_SLI
1101 
1102 /*
1103  * Convert float16 to float32, raising no exceptions and
1104  * preserving exceptional values, including SNaN.
1105  * This is effectively an unpack+repack operation.
1106  */
1107 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1108 {
1109     const int f16_bias = 15;
1110     const int f32_bias = 127;
1111     uint32_t sign = extract32(f16, 15, 1);
1112     uint32_t exp = extract32(f16, 10, 5);
1113     uint32_t frac = extract32(f16, 0, 10);
1114 
1115     if (exp == 0x1f) {
1116         /* Inf or NaN */
1117         exp = 0xff;
1118     } else if (exp == 0) {
1119         /* Zero or denormal.  */
1120         if (frac != 0) {
1121             if (fz16) {
1122                 frac = 0;
1123             } else {
1124                 /*
1125                  * Denormal; these are all normal float32.
1126                  * Shift the fraction so that the msb is at bit 11,
1127                  * then remove bit 11 as the implicit bit of the
1128                  * normalized float32.  Note that we still go through
1129                  * the shift for normal numbers below, to put the
1130                  * float32 fraction at the right place.
1131                  */
1132                 int shift = clz32(frac) - 21;
1133                 frac = (frac << shift) & 0x3ff;
1134                 exp = f32_bias - f16_bias - shift + 1;
1135             }
1136         }
1137     } else {
1138         /* Normal number; adjust the bias.  */
1139         exp += f32_bias - f16_bias;
1140     }
1141     sign <<= 31;
1142     exp <<= 23;
1143     frac <<= 23 - 10;
1144 
1145     return sign | exp | frac;
1146 }
1147 
1148 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1149 {
1150     /*
1151      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1152      * Load the 2nd qword iff is_q & is_2.
1153      * Shift to the 2nd dword iff !is_q & is_2.
1154      * For !is_q & !is_2, the upper bits of the result are garbage.
1155      */
1156     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1157 }
1158 
1159 /*
1160  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1161  * as there is not yet SVE versions that might use blocking.
1162  */
1163 
1164 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1165                      uint32_t desc, bool fz16)
1166 {
1167     intptr_t i, oprsz = simd_oprsz(desc);
1168     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1169     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1170     int is_q = oprsz == 16;
1171     uint64_t n_4, m_4;
1172 
1173     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1174     n_4 = load4_f16(vn, is_q, is_2);
1175     m_4 = load4_f16(vm, is_q, is_2);
1176 
1177     /* Negate all inputs for FMLSL at once.  */
1178     if (is_s) {
1179         n_4 ^= 0x8000800080008000ull;
1180     }
1181 
1182     for (i = 0; i < oprsz / 4; i++) {
1183         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1184         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1185         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1186     }
1187     clear_tail(d, oprsz, simd_maxsz(desc));
1188 }
1189 
1190 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1191                             void *venv, uint32_t desc)
1192 {
1193     CPUARMState *env = venv;
1194     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1195              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1196 }
1197 
1198 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1199                             void *venv, uint32_t desc)
1200 {
1201     CPUARMState *env = venv;
1202     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1203              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1204 }
1205 
1206 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1207                          uint32_t desc, bool fz16)
1208 {
1209     intptr_t i, oprsz = simd_oprsz(desc);
1210     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1211     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1212     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1213     int is_q = oprsz == 16;
1214     uint64_t n_4;
1215     float32 m_1;
1216 
1217     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1218     n_4 = load4_f16(vn, is_q, is_2);
1219 
1220     /* Negate all inputs for FMLSL at once.  */
1221     if (is_s) {
1222         n_4 ^= 0x8000800080008000ull;
1223     }
1224 
1225     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1226 
1227     for (i = 0; i < oprsz / 4; i++) {
1228         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1229         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1230     }
1231     clear_tail(d, oprsz, simd_maxsz(desc));
1232 }
1233 
1234 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1235                                 void *venv, uint32_t desc)
1236 {
1237     CPUARMState *env = venv;
1238     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1239                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1240 }
1241 
1242 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1243                                 void *venv, uint32_t desc)
1244 {
1245     CPUARMState *env = venv;
1246     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1247                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1248 }
1249 
1250 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1251 {
1252     intptr_t i, opr_sz = simd_oprsz(desc);
1253     int8_t *d = vd, *n = vn, *m = vm;
1254 
1255     for (i = 0; i < opr_sz; ++i) {
1256         int8_t mm = m[i];
1257         int8_t nn = n[i];
1258         int8_t res = 0;
1259         if (mm >= 0) {
1260             if (mm < 8) {
1261                 res = nn << mm;
1262             }
1263         } else {
1264             res = nn >> (mm > -8 ? -mm : 7);
1265         }
1266         d[i] = res;
1267     }
1268     clear_tail(d, opr_sz, simd_maxsz(desc));
1269 }
1270 
1271 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1272 {
1273     intptr_t i, opr_sz = simd_oprsz(desc);
1274     int16_t *d = vd, *n = vn, *m = vm;
1275 
1276     for (i = 0; i < opr_sz / 2; ++i) {
1277         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1278         int16_t nn = n[i];
1279         int16_t res = 0;
1280         if (mm >= 0) {
1281             if (mm < 16) {
1282                 res = nn << mm;
1283             }
1284         } else {
1285             res = nn >> (mm > -16 ? -mm : 15);
1286         }
1287         d[i] = res;
1288     }
1289     clear_tail(d, opr_sz, simd_maxsz(desc));
1290 }
1291 
1292 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1293 {
1294     intptr_t i, opr_sz = simd_oprsz(desc);
1295     uint8_t *d = vd, *n = vn, *m = vm;
1296 
1297     for (i = 0; i < opr_sz; ++i) {
1298         int8_t mm = m[i];
1299         uint8_t nn = n[i];
1300         uint8_t res = 0;
1301         if (mm >= 0) {
1302             if (mm < 8) {
1303                 res = nn << mm;
1304             }
1305         } else {
1306             if (mm > -8) {
1307                 res = nn >> -mm;
1308             }
1309         }
1310         d[i] = res;
1311     }
1312     clear_tail(d, opr_sz, simd_maxsz(desc));
1313 }
1314 
1315 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1316 {
1317     intptr_t i, opr_sz = simd_oprsz(desc);
1318     uint16_t *d = vd, *n = vn, *m = vm;
1319 
1320     for (i = 0; i < opr_sz / 2; ++i) {
1321         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1322         uint16_t nn = n[i];
1323         uint16_t res = 0;
1324         if (mm >= 0) {
1325             if (mm < 16) {
1326                 res = nn << mm;
1327             }
1328         } else {
1329             if (mm > -16) {
1330                 res = nn >> -mm;
1331             }
1332         }
1333         d[i] = res;
1334     }
1335     clear_tail(d, opr_sz, simd_maxsz(desc));
1336 }
1337 
1338 /*
1339  * 8x8->8 polynomial multiply.
1340  *
1341  * Polynomial multiplication is like integer multiplication except the
1342  * partial products are XORed, not added.
1343  *
1344  * TODO: expose this as a generic vector operation, as it is a common
1345  * crypto building block.
1346  */
1347 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1348 {
1349     intptr_t i, j, opr_sz = simd_oprsz(desc);
1350     uint64_t *d = vd, *n = vn, *m = vm;
1351 
1352     for (i = 0; i < opr_sz / 8; ++i) {
1353         uint64_t nn = n[i];
1354         uint64_t mm = m[i];
1355         uint64_t rr = 0;
1356 
1357         for (j = 0; j < 8; ++j) {
1358             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1359             rr ^= mm & mask;
1360             mm = (mm << 1) & 0xfefefefefefefefeull;
1361             nn >>= 1;
1362         }
1363         d[i] = rr;
1364     }
1365     clear_tail(d, opr_sz, simd_maxsz(desc));
1366 }
1367 
1368 /*
1369  * 64x64->128 polynomial multiply.
1370  * Because of the lanes are not accessed in strict columns,
1371  * this probably cannot be turned into a generic helper.
1372  */
1373 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1374 {
1375     intptr_t i, j, opr_sz = simd_oprsz(desc);
1376     intptr_t hi = simd_data(desc);
1377     uint64_t *d = vd, *n = vn, *m = vm;
1378 
1379     for (i = 0; i < opr_sz / 8; i += 2) {
1380         uint64_t nn = n[i + hi];
1381         uint64_t mm = m[i + hi];
1382         uint64_t rhi = 0;
1383         uint64_t rlo = 0;
1384 
1385         /* Bit 0 can only influence the low 64-bit result.  */
1386         if (nn & 1) {
1387             rlo = mm;
1388         }
1389 
1390         for (j = 1; j < 64; ++j) {
1391             uint64_t mask = -((nn >> j) & 1);
1392             rlo ^= (mm << j) & mask;
1393             rhi ^= (mm >> (64 - j)) & mask;
1394         }
1395         d[i] = rlo;
1396         d[i + 1] = rhi;
1397     }
1398     clear_tail(d, opr_sz, simd_maxsz(desc));
1399 }
1400 
1401 /*
1402  * 8x8->16 polynomial multiply.
1403  *
1404  * The byte inputs are expanded to (or extracted from) half-words.
1405  * Note that neon and sve2 get the inputs from different positions.
1406  * This allows 4 bytes to be processed in parallel with uint64_t.
1407  */
1408 
1409 static uint64_t expand_byte_to_half(uint64_t x)
1410 {
1411     return  (x & 0x000000ff)
1412          | ((x & 0x0000ff00) << 8)
1413          | ((x & 0x00ff0000) << 16)
1414          | ((x & 0xff000000) << 24);
1415 }
1416 
1417 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1418 {
1419     uint64_t result = 0;
1420     int i;
1421 
1422     for (i = 0; i < 8; ++i) {
1423         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1424         result ^= op2 & mask;
1425         op1 >>= 1;
1426         op2 <<= 1;
1427     }
1428     return result;
1429 }
1430 
1431 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1432 {
1433     int hi = simd_data(desc);
1434     uint64_t *d = vd, *n = vn, *m = vm;
1435     uint64_t nn = n[hi], mm = m[hi];
1436 
1437     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1438     nn >>= 32;
1439     mm >>= 32;
1440     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1441 
1442     clear_tail(d, 16, simd_maxsz(desc));
1443 }
1444 
1445 #ifdef TARGET_AARCH64
1446 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1447 {
1448     int shift = simd_data(desc) * 8;
1449     intptr_t i, opr_sz = simd_oprsz(desc);
1450     uint64_t *d = vd, *n = vn, *m = vm;
1451 
1452     for (i = 0; i < opr_sz / 8; ++i) {
1453         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1454         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1455 
1456         d[i] = pmull_h(nn, mm);
1457     }
1458 }
1459 #endif
1460 
1461 #define DO_CMP0(NAME, TYPE, OP)                         \
1462 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1463 {                                                       \
1464     intptr_t i, opr_sz = simd_oprsz(desc);              \
1465     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1466         TYPE nn = *(TYPE *)(vn + i);                    \
1467         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1468     }                                                   \
1469     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1470 }
1471 
1472 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1473 DO_CMP0(gvec_clt0_b, int8_t, <)
1474 DO_CMP0(gvec_cle0_b, int8_t, <=)
1475 DO_CMP0(gvec_cgt0_b, int8_t, >)
1476 DO_CMP0(gvec_cge0_b, int8_t, >=)
1477 
1478 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1479 DO_CMP0(gvec_clt0_h, int16_t, <)
1480 DO_CMP0(gvec_cle0_h, int16_t, <=)
1481 DO_CMP0(gvec_cgt0_h, int16_t, >)
1482 DO_CMP0(gvec_cge0_h, int16_t, >=)
1483 
1484 #undef DO_CMP0
1485 
1486 #define DO_ABD(NAME, TYPE)                                      \
1487 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1488 {                                                               \
1489     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1490     TYPE *d = vd, *n = vn, *m = vm;                             \
1491                                                                 \
1492     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1493         d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];         \
1494     }                                                           \
1495     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1496 }
1497 
1498 DO_ABD(gvec_sabd_b, int8_t)
1499 DO_ABD(gvec_sabd_h, int16_t)
1500 DO_ABD(gvec_sabd_s, int32_t)
1501 DO_ABD(gvec_sabd_d, int64_t)
1502 
1503 DO_ABD(gvec_uabd_b, uint8_t)
1504 DO_ABD(gvec_uabd_h, uint16_t)
1505 DO_ABD(gvec_uabd_s, uint32_t)
1506 DO_ABD(gvec_uabd_d, uint64_t)
1507 
1508 #undef DO_ABD
1509 
1510 #define DO_ABA(NAME, TYPE)                                      \
1511 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1512 {                                                               \
1513     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1514     TYPE *d = vd, *n = vn, *m = vm;                             \
1515                                                                 \
1516     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1517         d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];        \
1518     }                                                           \
1519     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1520 }
1521 
1522 DO_ABA(gvec_saba_b, int8_t)
1523 DO_ABA(gvec_saba_h, int16_t)
1524 DO_ABA(gvec_saba_s, int32_t)
1525 DO_ABA(gvec_saba_d, int64_t)
1526 
1527 DO_ABA(gvec_uaba_b, uint8_t)
1528 DO_ABA(gvec_uaba_h, uint16_t)
1529 DO_ABA(gvec_uaba_s, uint32_t)
1530 DO_ABA(gvec_uaba_d, uint64_t)
1531 
1532 #undef DO_ABA
1533