xref: /qemu/target/arm/tcg/vec_helper.c (revision d730ecaae77ac696515207a5ef99509240fc792b)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
40 
41 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
42 {
43     uint64_t *d = vd + opr_sz;
44     uintptr_t i;
45 
46     for (i = opr_sz; i < max_sz; i += 8) {
47         *d++ = 0;
48     }
49 }
50 
51 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
52 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
53                                 int16_t src2, int16_t src3)
54 {
55     /* Simplify:
56      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
57      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
58      */
59     int32_t ret = (int32_t)src1 * src2;
60     ret = ((int32_t)src3 << 15) + ret + (1 << 14);
61     ret >>= 15;
62     if (ret != (int16_t)ret) {
63         SET_QC();
64         ret = (ret < 0 ? -0x8000 : 0x7fff);
65     }
66     return ret;
67 }
68 
69 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
70                                   uint32_t src2, uint32_t src3)
71 {
72     uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
73     uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
74     return deposit32(e1, 16, 16, e2);
75 }
76 
77 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
78                               void *ve, uint32_t desc)
79 {
80     uintptr_t opr_sz = simd_oprsz(desc);
81     int16_t *d = vd;
82     int16_t *n = vn;
83     int16_t *m = vm;
84     CPUARMState *env = ve;
85     uintptr_t i;
86 
87     for (i = 0; i < opr_sz / 2; ++i) {
88         d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
89     }
90     clear_tail(d, opr_sz, simd_maxsz(desc));
91 }
92 
93 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
94 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
95                                 int16_t src2, int16_t src3)
96 {
97     /* Similarly, using subtraction:
98      * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
99      * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
100      */
101     int32_t ret = (int32_t)src1 * src2;
102     ret = ((int32_t)src3 << 15) - ret + (1 << 14);
103     ret >>= 15;
104     if (ret != (int16_t)ret) {
105         SET_QC();
106         ret = (ret < 0 ? -0x8000 : 0x7fff);
107     }
108     return ret;
109 }
110 
111 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
112                                   uint32_t src2, uint32_t src3)
113 {
114     uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
115     uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
116     return deposit32(e1, 16, 16, e2);
117 }
118 
119 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
120                               void *ve, uint32_t desc)
121 {
122     uintptr_t opr_sz = simd_oprsz(desc);
123     int16_t *d = vd;
124     int16_t *n = vn;
125     int16_t *m = vm;
126     CPUARMState *env = ve;
127     uintptr_t i;
128 
129     for (i = 0; i < opr_sz / 2; ++i) {
130         d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
131     }
132     clear_tail(d, opr_sz, simd_maxsz(desc));
133 }
134 
135 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
136 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
137                                   int32_t src2, int32_t src3)
138 {
139     /* Simplify similarly to int_qrdmlah_s16 above.  */
140     int64_t ret = (int64_t)src1 * src2;
141     ret = ((int64_t)src3 << 31) + ret + (1 << 30);
142     ret >>= 31;
143     if (ret != (int32_t)ret) {
144         SET_QC();
145         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
146     }
147     return ret;
148 }
149 
150 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
151                               void *ve, uint32_t desc)
152 {
153     uintptr_t opr_sz = simd_oprsz(desc);
154     int32_t *d = vd;
155     int32_t *n = vn;
156     int32_t *m = vm;
157     CPUARMState *env = ve;
158     uintptr_t i;
159 
160     for (i = 0; i < opr_sz / 4; ++i) {
161         d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
162     }
163     clear_tail(d, opr_sz, simd_maxsz(desc));
164 }
165 
166 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
167 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
168                                   int32_t src2, int32_t src3)
169 {
170     /* Simplify similarly to int_qrdmlsh_s16 above.  */
171     int64_t ret = (int64_t)src1 * src2;
172     ret = ((int64_t)src3 << 31) - ret + (1 << 30);
173     ret >>= 31;
174     if (ret != (int32_t)ret) {
175         SET_QC();
176         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
177     }
178     return ret;
179 }
180 
181 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
182                               void *ve, uint32_t desc)
183 {
184     uintptr_t opr_sz = simd_oprsz(desc);
185     int32_t *d = vd;
186     int32_t *n = vn;
187     int32_t *m = vm;
188     CPUARMState *env = ve;
189     uintptr_t i;
190 
191     for (i = 0; i < opr_sz / 4; ++i) {
192         d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
193     }
194     clear_tail(d, opr_sz, simd_maxsz(desc));
195 }
196 
197 /* Integer 8 and 16-bit dot-product.
198  *
199  * Note that for the loops herein, host endianness does not matter
200  * with respect to the ordering of data within the 64-bit lanes.
201  * All elements are treated equally, no matter where they are.
202  */
203 
204 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
205 {
206     intptr_t i, opr_sz = simd_oprsz(desc);
207     uint32_t *d = vd;
208     int8_t *n = vn, *m = vm;
209 
210     for (i = 0; i < opr_sz / 4; ++i) {
211         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
212               + n[i * 4 + 1] * m[i * 4 + 1]
213               + n[i * 4 + 2] * m[i * 4 + 2]
214               + n[i * 4 + 3] * m[i * 4 + 3];
215     }
216     clear_tail(d, opr_sz, simd_maxsz(desc));
217 }
218 
219 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
220 {
221     intptr_t i, opr_sz = simd_oprsz(desc);
222     uint32_t *d = vd;
223     uint8_t *n = vn, *m = vm;
224 
225     for (i = 0; i < opr_sz / 4; ++i) {
226         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
227               + n[i * 4 + 1] * m[i * 4 + 1]
228               + n[i * 4 + 2] * m[i * 4 + 2]
229               + n[i * 4 + 3] * m[i * 4 + 3];
230     }
231     clear_tail(d, opr_sz, simd_maxsz(desc));
232 }
233 
234 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
235 {
236     intptr_t i, opr_sz = simd_oprsz(desc);
237     uint64_t *d = vd;
238     int16_t *n = vn, *m = vm;
239 
240     for (i = 0; i < opr_sz / 8; ++i) {
241         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
242               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
243               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
244               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
245     }
246     clear_tail(d, opr_sz, simd_maxsz(desc));
247 }
248 
249 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
250 {
251     intptr_t i, opr_sz = simd_oprsz(desc);
252     uint64_t *d = vd;
253     uint16_t *n = vn, *m = vm;
254 
255     for (i = 0; i < opr_sz / 8; ++i) {
256         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
257               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
258               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
259               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
260     }
261     clear_tail(d, opr_sz, simd_maxsz(desc));
262 }
263 
264 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
265                          void *vfpst, uint32_t desc)
266 {
267     uintptr_t opr_sz = simd_oprsz(desc);
268     float16 *d = vd;
269     float16 *n = vn;
270     float16 *m = vm;
271     float_status *fpst = vfpst;
272     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
273     uint32_t neg_imag = neg_real ^ 1;
274     uintptr_t i;
275 
276     /* Shift boolean to the sign bit so we can xor to negate.  */
277     neg_real <<= 15;
278     neg_imag <<= 15;
279 
280     for (i = 0; i < opr_sz / 2; i += 2) {
281         float16 e0 = n[H2(i)];
282         float16 e1 = m[H2(i + 1)] ^ neg_imag;
283         float16 e2 = n[H2(i + 1)];
284         float16 e3 = m[H2(i)] ^ neg_real;
285 
286         d[H2(i)] = float16_add(e0, e1, fpst);
287         d[H2(i + 1)] = float16_add(e2, e3, fpst);
288     }
289     clear_tail(d, opr_sz, simd_maxsz(desc));
290 }
291 
292 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
293                          void *vfpst, uint32_t desc)
294 {
295     uintptr_t opr_sz = simd_oprsz(desc);
296     float32 *d = vd;
297     float32 *n = vn;
298     float32 *m = vm;
299     float_status *fpst = vfpst;
300     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
301     uint32_t neg_imag = neg_real ^ 1;
302     uintptr_t i;
303 
304     /* Shift boolean to the sign bit so we can xor to negate.  */
305     neg_real <<= 31;
306     neg_imag <<= 31;
307 
308     for (i = 0; i < opr_sz / 4; i += 2) {
309         float32 e0 = n[H4(i)];
310         float32 e1 = m[H4(i + 1)] ^ neg_imag;
311         float32 e2 = n[H4(i + 1)];
312         float32 e3 = m[H4(i)] ^ neg_real;
313 
314         d[H4(i)] = float32_add(e0, e1, fpst);
315         d[H4(i + 1)] = float32_add(e2, e3, fpst);
316     }
317     clear_tail(d, opr_sz, simd_maxsz(desc));
318 }
319 
320 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
321                          void *vfpst, uint32_t desc)
322 {
323     uintptr_t opr_sz = simd_oprsz(desc);
324     float64 *d = vd;
325     float64 *n = vn;
326     float64 *m = vm;
327     float_status *fpst = vfpst;
328     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
329     uint64_t neg_imag = neg_real ^ 1;
330     uintptr_t i;
331 
332     /* Shift boolean to the sign bit so we can xor to negate.  */
333     neg_real <<= 63;
334     neg_imag <<= 63;
335 
336     for (i = 0; i < opr_sz / 8; i += 2) {
337         float64 e0 = n[i];
338         float64 e1 = m[i + 1] ^ neg_imag;
339         float64 e2 = n[i + 1];
340         float64 e3 = m[i] ^ neg_real;
341 
342         d[i] = float64_add(e0, e1, fpst);
343         d[i + 1] = float64_add(e2, e3, fpst);
344     }
345     clear_tail(d, opr_sz, simd_maxsz(desc));
346 }
347 
348 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
349                          void *vfpst, uint32_t desc)
350 {
351     uintptr_t opr_sz = simd_oprsz(desc);
352     float16 *d = vd;
353     float16 *n = vn;
354     float16 *m = vm;
355     float_status *fpst = vfpst;
356     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
357     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
358     uint32_t neg_real = flip ^ neg_imag;
359     uintptr_t i;
360 
361     /* Shift boolean to the sign bit so we can xor to negate.  */
362     neg_real <<= 15;
363     neg_imag <<= 15;
364 
365     for (i = 0; i < opr_sz / 2; i += 2) {
366         float16 e2 = n[H2(i + flip)];
367         float16 e1 = m[H2(i + flip)] ^ neg_real;
368         float16 e4 = e2;
369         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
370 
371         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
372         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
373     }
374     clear_tail(d, opr_sz, simd_maxsz(desc));
375 }
376 
377 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
378                              void *vfpst, uint32_t desc)
379 {
380     uintptr_t opr_sz = simd_oprsz(desc);
381     float16 *d = vd;
382     float16 *n = vn;
383     float16 *m = vm;
384     float_status *fpst = vfpst;
385     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
386     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
387     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
388     uint32_t neg_real = flip ^ neg_imag;
389     intptr_t elements = opr_sz / sizeof(float16);
390     intptr_t eltspersegment = 16 / sizeof(float16);
391     intptr_t i, j;
392 
393     /* Shift boolean to the sign bit so we can xor to negate.  */
394     neg_real <<= 15;
395     neg_imag <<= 15;
396 
397     for (i = 0; i < elements; i += eltspersegment) {
398         float16 mr = m[H2(i + 2 * index + 0)];
399         float16 mi = m[H2(i + 2 * index + 1)];
400         float16 e1 = neg_real ^ (flip ? mi : mr);
401         float16 e3 = neg_imag ^ (flip ? mr : mi);
402 
403         for (j = i; j < i + eltspersegment; j += 2) {
404             float16 e2 = n[H2(j + flip)];
405             float16 e4 = e2;
406 
407             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
408             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
409         }
410     }
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float32 *d = vd;
419     float32 *n = vn;
420     float32 *m = vm;
421     float_status *fpst = vfpst;
422     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
424     uint32_t neg_real = flip ^ neg_imag;
425     uintptr_t i;
426 
427     /* Shift boolean to the sign bit so we can xor to negate.  */
428     neg_real <<= 31;
429     neg_imag <<= 31;
430 
431     for (i = 0; i < opr_sz / 4; i += 2) {
432         float32 e2 = n[H4(i + flip)];
433         float32 e1 = m[H4(i + flip)] ^ neg_real;
434         float32 e4 = e2;
435         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
436 
437         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
438         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
439     }
440     clear_tail(d, opr_sz, simd_maxsz(desc));
441 }
442 
443 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
444                              void *vfpst, uint32_t desc)
445 {
446     uintptr_t opr_sz = simd_oprsz(desc);
447     float32 *d = vd;
448     float32 *n = vn;
449     float32 *m = vm;
450     float_status *fpst = vfpst;
451     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
452     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
453     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
454     uint32_t neg_real = flip ^ neg_imag;
455     intptr_t elements = opr_sz / sizeof(float32);
456     intptr_t eltspersegment = 16 / sizeof(float32);
457     intptr_t i, j;
458 
459     /* Shift boolean to the sign bit so we can xor to negate.  */
460     neg_real <<= 31;
461     neg_imag <<= 31;
462 
463     for (i = 0; i < elements; i += eltspersegment) {
464         float32 mr = m[H4(i + 2 * index + 0)];
465         float32 mi = m[H4(i + 2 * index + 1)];
466         float32 e1 = neg_real ^ (flip ? mi : mr);
467         float32 e3 = neg_imag ^ (flip ? mr : mi);
468 
469         for (j = i; j < i + eltspersegment; j += 2) {
470             float32 e2 = n[H4(j + flip)];
471             float32 e4 = e2;
472 
473             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
474             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
475         }
476     }
477     clear_tail(d, opr_sz, simd_maxsz(desc));
478 }
479 
480 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
481                          void *vfpst, uint32_t desc)
482 {
483     uintptr_t opr_sz = simd_oprsz(desc);
484     float64 *d = vd;
485     float64 *n = vn;
486     float64 *m = vm;
487     float_status *fpst = vfpst;
488     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
489     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
490     uint64_t neg_real = flip ^ neg_imag;
491     uintptr_t i;
492 
493     /* Shift boolean to the sign bit so we can xor to negate.  */
494     neg_real <<= 63;
495     neg_imag <<= 63;
496 
497     for (i = 0; i < opr_sz / 8; i += 2) {
498         float64 e2 = n[i + flip];
499         float64 e1 = m[i + flip] ^ neg_real;
500         float64 e4 = e2;
501         float64 e3 = m[i + 1 - flip] ^ neg_imag;
502 
503         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
504         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
505     }
506     clear_tail(d, opr_sz, simd_maxsz(desc));
507 }
508 
509 #define DO_2OP(NAME, FUNC, TYPE) \
510 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
511 {                                                                 \
512     intptr_t i, oprsz = simd_oprsz(desc);                         \
513     TYPE *d = vd, *n = vn;                                        \
514     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
515         d[i] = FUNC(n[i], stat);                                  \
516     }                                                             \
517 }
518 
519 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
520 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
521 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
522 
523 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
524 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
525 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
526 
527 #undef DO_2OP
528 
529 /* Floating-point trigonometric starting value.
530  * See the ARM ARM pseudocode function FPTrigSMul.
531  */
532 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
533 {
534     float16 result = float16_mul(op1, op1, stat);
535     if (!float16_is_any_nan(result)) {
536         result = float16_set_sign(result, op2 & 1);
537     }
538     return result;
539 }
540 
541 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
542 {
543     float32 result = float32_mul(op1, op1, stat);
544     if (!float32_is_any_nan(result)) {
545         result = float32_set_sign(result, op2 & 1);
546     }
547     return result;
548 }
549 
550 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
551 {
552     float64 result = float64_mul(op1, op1, stat);
553     if (!float64_is_any_nan(result)) {
554         result = float64_set_sign(result, op2 & 1);
555     }
556     return result;
557 }
558 
559 #define DO_3OP(NAME, FUNC, TYPE) \
560 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
561 {                                                                          \
562     intptr_t i, oprsz = simd_oprsz(desc);                                  \
563     TYPE *d = vd, *n = vn, *m = vm;                                        \
564     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
565         d[i] = FUNC(n[i], m[i], stat);                                     \
566     }                                                                      \
567 }
568 
569 DO_3OP(gvec_fadd_h, float16_add, float16)
570 DO_3OP(gvec_fadd_s, float32_add, float32)
571 DO_3OP(gvec_fadd_d, float64_add, float64)
572 
573 DO_3OP(gvec_fsub_h, float16_sub, float16)
574 DO_3OP(gvec_fsub_s, float32_sub, float32)
575 DO_3OP(gvec_fsub_d, float64_sub, float64)
576 
577 DO_3OP(gvec_fmul_h, float16_mul, float16)
578 DO_3OP(gvec_fmul_s, float32_mul, float32)
579 DO_3OP(gvec_fmul_d, float64_mul, float64)
580 
581 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
582 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
583 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
584 
585 #ifdef TARGET_AARCH64
586 
587 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
588 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
589 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
590 
591 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
592 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
593 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
594 
595 #endif
596 #undef DO_3OP
597 
598 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
599  * For AdvSIMD, there is of course only one such vector segment.
600  */
601 
602 #define DO_MUL_IDX(NAME, TYPE, H) \
603 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
604 {                                                                          \
605     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
606     intptr_t idx = simd_data(desc);                                        \
607     TYPE *d = vd, *n = vn, *m = vm;                                        \
608     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
609         TYPE mm = m[H(i + idx)];                                           \
610         for (j = 0; j < segment; j++) {                                    \
611             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
612         }                                                                  \
613     }                                                                      \
614 }
615 
616 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
617 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
618 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
619 
620 #undef DO_MUL_IDX
621 
622 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
623 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
624                   void *stat, uint32_t desc)                               \
625 {                                                                          \
626     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
627     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
628     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
629     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
630     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
631     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
632         TYPE mm = m[H(i + idx)];                                           \
633         for (j = 0; j < segment; j++) {                                    \
634             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
635                                      mm, a[i + j], 0, stat);               \
636         }                                                                  \
637     }                                                                      \
638 }
639 
640 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
641 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
642 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
643 
644 #undef DO_FMLA_IDX
645