xref: /qemu/target/arm/tcg/vec_helper.c (revision d17b7cdcf4ea3e858ceee8b86fc8544bb71561e6)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "tcg/tcg-gvec-desc.h"
25 #include "fpu/softfloat.h"
26 
27 
28 /* Note that vector data is stored in host-endian 64-bit chunks,
29    so addressing units smaller than that needs a host-endian fixup.  */
30 #ifdef HOST_WORDS_BIGENDIAN
31 #define H1(x)  ((x) ^ 7)
32 #define H2(x)  ((x) ^ 3)
33 #define H4(x)  ((x) ^ 1)
34 #else
35 #define H1(x)  (x)
36 #define H2(x)  (x)
37 #define H4(x)  (x)
38 #endif
39 
40 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
41 
42 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
43 {
44     uint64_t *d = vd + opr_sz;
45     uintptr_t i;
46 
47     for (i = opr_sz; i < max_sz; i += 8) {
48         *d++ = 0;
49     }
50 }
51 
52 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
53 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
54                                 int16_t src2, int16_t src3)
55 {
56     /* Simplify:
57      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
58      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
59      */
60     int32_t ret = (int32_t)src1 * src2;
61     ret = ((int32_t)src3 << 15) + ret + (1 << 14);
62     ret >>= 15;
63     if (ret != (int16_t)ret) {
64         SET_QC();
65         ret = (ret < 0 ? -0x8000 : 0x7fff);
66     }
67     return ret;
68 }
69 
70 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
71                                   uint32_t src2, uint32_t src3)
72 {
73     uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
74     uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
75     return deposit32(e1, 16, 16, e2);
76 }
77 
78 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
79                               void *ve, uint32_t desc)
80 {
81     uintptr_t opr_sz = simd_oprsz(desc);
82     int16_t *d = vd;
83     int16_t *n = vn;
84     int16_t *m = vm;
85     CPUARMState *env = ve;
86     uintptr_t i;
87 
88     for (i = 0; i < opr_sz / 2; ++i) {
89         d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
90     }
91     clear_tail(d, opr_sz, simd_maxsz(desc));
92 }
93 
94 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
95 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
96                                 int16_t src2, int16_t src3)
97 {
98     /* Similarly, using subtraction:
99      * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
100      * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
101      */
102     int32_t ret = (int32_t)src1 * src2;
103     ret = ((int32_t)src3 << 15) - ret + (1 << 14);
104     ret >>= 15;
105     if (ret != (int16_t)ret) {
106         SET_QC();
107         ret = (ret < 0 ? -0x8000 : 0x7fff);
108     }
109     return ret;
110 }
111 
112 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
113                                   uint32_t src2, uint32_t src3)
114 {
115     uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
116     uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
117     return deposit32(e1, 16, 16, e2);
118 }
119 
120 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
121                               void *ve, uint32_t desc)
122 {
123     uintptr_t opr_sz = simd_oprsz(desc);
124     int16_t *d = vd;
125     int16_t *n = vn;
126     int16_t *m = vm;
127     CPUARMState *env = ve;
128     uintptr_t i;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
138                                   int32_t src2, int32_t src3)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     ret = ((int64_t)src3 << 31) + ret + (1 << 30);
143     ret >>= 31;
144     if (ret != (int32_t)ret) {
145         SET_QC();
146         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
147     }
148     return ret;
149 }
150 
151 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
152                               void *ve, uint32_t desc)
153 {
154     uintptr_t opr_sz = simd_oprsz(desc);
155     int32_t *d = vd;
156     int32_t *n = vn;
157     int32_t *m = vm;
158     CPUARMState *env = ve;
159     uintptr_t i;
160 
161     for (i = 0; i < opr_sz / 4; ++i) {
162         d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
163     }
164     clear_tail(d, opr_sz, simd_maxsz(desc));
165 }
166 
167 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
168 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
169                                   int32_t src2, int32_t src3)
170 {
171     /* Simplify similarly to int_qrdmlsh_s16 above.  */
172     int64_t ret = (int64_t)src1 * src2;
173     ret = ((int64_t)src3 << 31) - ret + (1 << 30);
174     ret >>= 31;
175     if (ret != (int32_t)ret) {
176         SET_QC();
177         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
178     }
179     return ret;
180 }
181 
182 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
183                               void *ve, uint32_t desc)
184 {
185     uintptr_t opr_sz = simd_oprsz(desc);
186     int32_t *d = vd;
187     int32_t *n = vn;
188     int32_t *m = vm;
189     CPUARMState *env = ve;
190     uintptr_t i;
191 
192     for (i = 0; i < opr_sz / 4; ++i) {
193         d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
194     }
195     clear_tail(d, opr_sz, simd_maxsz(desc));
196 }
197 
198 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
199                          void *vfpst, uint32_t desc)
200 {
201     uintptr_t opr_sz = simd_oprsz(desc);
202     float16 *d = vd;
203     float16 *n = vn;
204     float16 *m = vm;
205     float_status *fpst = vfpst;
206     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
207     uint32_t neg_imag = neg_real ^ 1;
208     uintptr_t i;
209 
210     /* Shift boolean to the sign bit so we can xor to negate.  */
211     neg_real <<= 15;
212     neg_imag <<= 15;
213 
214     for (i = 0; i < opr_sz / 2; i += 2) {
215         float16 e0 = n[H2(i)];
216         float16 e1 = m[H2(i + 1)] ^ neg_imag;
217         float16 e2 = n[H2(i + 1)];
218         float16 e3 = m[H2(i)] ^ neg_real;
219 
220         d[H2(i)] = float16_add(e0, e1, fpst);
221         d[H2(i + 1)] = float16_add(e2, e3, fpst);
222     }
223     clear_tail(d, opr_sz, simd_maxsz(desc));
224 }
225 
226 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
227                          void *vfpst, uint32_t desc)
228 {
229     uintptr_t opr_sz = simd_oprsz(desc);
230     float32 *d = vd;
231     float32 *n = vn;
232     float32 *m = vm;
233     float_status *fpst = vfpst;
234     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
235     uint32_t neg_imag = neg_real ^ 1;
236     uintptr_t i;
237 
238     /* Shift boolean to the sign bit so we can xor to negate.  */
239     neg_real <<= 31;
240     neg_imag <<= 31;
241 
242     for (i = 0; i < opr_sz / 4; i += 2) {
243         float32 e0 = n[H4(i)];
244         float32 e1 = m[H4(i + 1)] ^ neg_imag;
245         float32 e2 = n[H4(i + 1)];
246         float32 e3 = m[H4(i)] ^ neg_real;
247 
248         d[H4(i)] = float32_add(e0, e1, fpst);
249         d[H4(i + 1)] = float32_add(e2, e3, fpst);
250     }
251     clear_tail(d, opr_sz, simd_maxsz(desc));
252 }
253 
254 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
255                          void *vfpst, uint32_t desc)
256 {
257     uintptr_t opr_sz = simd_oprsz(desc);
258     float64 *d = vd;
259     float64 *n = vn;
260     float64 *m = vm;
261     float_status *fpst = vfpst;
262     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
263     uint64_t neg_imag = neg_real ^ 1;
264     uintptr_t i;
265 
266     /* Shift boolean to the sign bit so we can xor to negate.  */
267     neg_real <<= 63;
268     neg_imag <<= 63;
269 
270     for (i = 0; i < opr_sz / 8; i += 2) {
271         float64 e0 = n[i];
272         float64 e1 = m[i + 1] ^ neg_imag;
273         float64 e2 = n[i + 1];
274         float64 e3 = m[i] ^ neg_real;
275 
276         d[i] = float64_add(e0, e1, fpst);
277         d[i + 1] = float64_add(e2, e3, fpst);
278     }
279     clear_tail(d, opr_sz, simd_maxsz(desc));
280 }
281 
282 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
283                          void *vfpst, uint32_t desc)
284 {
285     uintptr_t opr_sz = simd_oprsz(desc);
286     float16 *d = vd;
287     float16 *n = vn;
288     float16 *m = vm;
289     float_status *fpst = vfpst;
290     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
291     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
292     uint32_t neg_real = flip ^ neg_imag;
293     uintptr_t i;
294 
295     /* Shift boolean to the sign bit so we can xor to negate.  */
296     neg_real <<= 15;
297     neg_imag <<= 15;
298 
299     for (i = 0; i < opr_sz / 2; i += 2) {
300         float16 e2 = n[H2(i + flip)];
301         float16 e1 = m[H2(i + flip)] ^ neg_real;
302         float16 e4 = e2;
303         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
304 
305         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
306         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
307     }
308     clear_tail(d, opr_sz, simd_maxsz(desc));
309 }
310 
311 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
312                              void *vfpst, uint32_t desc)
313 {
314     uintptr_t opr_sz = simd_oprsz(desc);
315     float16 *d = vd;
316     float16 *n = vn;
317     float16 *m = vm;
318     float_status *fpst = vfpst;
319     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
320     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
321     uint32_t neg_real = flip ^ neg_imag;
322     uintptr_t i;
323     float16 e1 = m[H2(flip)];
324     float16 e3 = m[H2(1 - flip)];
325 
326     /* Shift boolean to the sign bit so we can xor to negate.  */
327     neg_real <<= 15;
328     neg_imag <<= 15;
329     e1 ^= neg_real;
330     e3 ^= neg_imag;
331 
332     for (i = 0; i < opr_sz / 2; i += 2) {
333         float16 e2 = n[H2(i + flip)];
334         float16 e4 = e2;
335 
336         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
337         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
338     }
339     clear_tail(d, opr_sz, simd_maxsz(desc));
340 }
341 
342 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
343                          void *vfpst, uint32_t desc)
344 {
345     uintptr_t opr_sz = simd_oprsz(desc);
346     float32 *d = vd;
347     float32 *n = vn;
348     float32 *m = vm;
349     float_status *fpst = vfpst;
350     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
351     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
352     uint32_t neg_real = flip ^ neg_imag;
353     uintptr_t i;
354 
355     /* Shift boolean to the sign bit so we can xor to negate.  */
356     neg_real <<= 31;
357     neg_imag <<= 31;
358 
359     for (i = 0; i < opr_sz / 4; i += 2) {
360         float32 e2 = n[H4(i + flip)];
361         float32 e1 = m[H4(i + flip)] ^ neg_real;
362         float32 e4 = e2;
363         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
364 
365         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
366         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
367     }
368     clear_tail(d, opr_sz, simd_maxsz(desc));
369 }
370 
371 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
372                              void *vfpst, uint32_t desc)
373 {
374     uintptr_t opr_sz = simd_oprsz(desc);
375     float32 *d = vd;
376     float32 *n = vn;
377     float32 *m = vm;
378     float_status *fpst = vfpst;
379     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
380     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
381     uint32_t neg_real = flip ^ neg_imag;
382     uintptr_t i;
383     float32 e1 = m[H4(flip)];
384     float32 e3 = m[H4(1 - flip)];
385 
386     /* Shift boolean to the sign bit so we can xor to negate.  */
387     neg_real <<= 31;
388     neg_imag <<= 31;
389     e1 ^= neg_real;
390     e3 ^= neg_imag;
391 
392     for (i = 0; i < opr_sz / 4; i += 2) {
393         float32 e2 = n[H4(i + flip)];
394         float32 e4 = e2;
395 
396         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
397         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
398     }
399     clear_tail(d, opr_sz, simd_maxsz(desc));
400 }
401 
402 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
403                          void *vfpst, uint32_t desc)
404 {
405     uintptr_t opr_sz = simd_oprsz(desc);
406     float64 *d = vd;
407     float64 *n = vn;
408     float64 *m = vm;
409     float_status *fpst = vfpst;
410     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
411     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
412     uint64_t neg_real = flip ^ neg_imag;
413     uintptr_t i;
414 
415     /* Shift boolean to the sign bit so we can xor to negate.  */
416     neg_real <<= 63;
417     neg_imag <<= 63;
418 
419     for (i = 0; i < opr_sz / 8; i += 2) {
420         float64 e2 = n[i + flip];
421         float64 e1 = m[i + flip] ^ neg_real;
422         float64 e4 = e2;
423         float64 e3 = m[i + 1 - flip] ^ neg_imag;
424 
425         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
426         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
427     }
428     clear_tail(d, opr_sz, simd_maxsz(desc));
429 }
430