xref: /qemu/target/arm/tcg/vec_helper.c (revision cf722d75b329ef3f86b869e7e68cbfb1607b3bde)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41                              bool neg, bool round, uint32_t *sat)
42 {
43     /*
44      * Simplify:
45      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47      */
48     int32_t ret = (int32_t)src1 * src2;
49     if (neg) {
50         ret = -ret;
51     }
52     ret += ((int32_t)src3 << 15) + (round << 14);
53     ret >>= 15;
54 
55     if (ret != (int16_t)ret) {
56         *sat = 1;
57         ret = (ret < 0 ? INT16_MIN : INT16_MAX);
58     }
59     return ret;
60 }
61 
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63                                   uint32_t src2, uint32_t src3)
64 {
65     uint32_t *sat = &env->vfp.qc[0];
66     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68                                 false, true, sat);
69     return deposit32(e1, 16, 16, e2);
70 }
71 
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73                               void *vq, uint32_t desc)
74 {
75     uintptr_t opr_sz = simd_oprsz(desc);
76     int16_t *d = vd;
77     int16_t *n = vn;
78     int16_t *m = vm;
79     uintptr_t i;
80 
81     for (i = 0; i < opr_sz / 2; ++i) {
82         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
83     }
84     clear_tail(d, opr_sz, simd_maxsz(desc));
85 }
86 
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88                                   uint32_t src2, uint32_t src3)
89 {
90     uint32_t *sat = &env->vfp.qc[0];
91     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93                                 true, true, sat);
94     return deposit32(e1, 16, 16, e2);
95 }
96 
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98                               void *vq, uint32_t desc)
99 {
100     uintptr_t opr_sz = simd_oprsz(desc);
101     int16_t *d = vd;
102     int16_t *n = vn;
103     int16_t *m = vm;
104     uintptr_t i;
105 
106     for (i = 0; i < opr_sz / 2; ++i) {
107         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
108     }
109     clear_tail(d, opr_sz, simd_maxsz(desc));
110 }
111 
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113                             void *vq, uint32_t desc)
114 {
115     intptr_t i, opr_sz = simd_oprsz(desc);
116     int16_t *d = vd, *n = vn, *m = vm;
117 
118     for (i = 0; i < opr_sz / 2; ++i) {
119         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
120     }
121     clear_tail(d, opr_sz, simd_maxsz(desc));
122 }
123 
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125                              void *vq, uint32_t desc)
126 {
127     intptr_t i, opr_sz = simd_oprsz(desc);
128     int16_t *d = vd, *n = vn, *m = vm;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138                              bool neg, bool round, uint32_t *sat)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     if (neg) {
143         ret = -ret;
144     }
145     ret += ((int64_t)src3 << 31) + (round << 30);
146     ret >>= 31;
147 
148     if (ret != (int32_t)ret) {
149         *sat = 1;
150         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
151     }
152     return ret;
153 }
154 
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156                                   int32_t src2, int32_t src3)
157 {
158     uint32_t *sat = &env->vfp.qc[0];
159     return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
160 }
161 
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163                               void *vq, uint32_t desc)
164 {
165     uintptr_t opr_sz = simd_oprsz(desc);
166     int32_t *d = vd;
167     int32_t *n = vn;
168     int32_t *m = vm;
169     uintptr_t i;
170 
171     for (i = 0; i < opr_sz / 4; ++i) {
172         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
173     }
174     clear_tail(d, opr_sz, simd_maxsz(desc));
175 }
176 
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178                                   int32_t src2, int32_t src3)
179 {
180     uint32_t *sat = &env->vfp.qc[0];
181     return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
182 }
183 
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185                               void *vq, uint32_t desc)
186 {
187     uintptr_t opr_sz = simd_oprsz(desc);
188     int32_t *d = vd;
189     int32_t *n = vn;
190     int32_t *m = vm;
191     uintptr_t i;
192 
193     for (i = 0; i < opr_sz / 4; ++i) {
194         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
195     }
196     clear_tail(d, opr_sz, simd_maxsz(desc));
197 }
198 
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200                             void *vq, uint32_t desc)
201 {
202     intptr_t i, opr_sz = simd_oprsz(desc);
203     int32_t *d = vd, *n = vn, *m = vm;
204 
205     for (i = 0; i < opr_sz / 4; ++i) {
206         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
207     }
208     clear_tail(d, opr_sz, simd_maxsz(desc));
209 }
210 
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212                              void *vq, uint32_t desc)
213 {
214     intptr_t i, opr_sz = simd_oprsz(desc);
215     int32_t *d = vd, *n = vn, *m = vm;
216 
217     for (i = 0; i < opr_sz / 4; ++i) {
218         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
219     }
220     clear_tail(d, opr_sz, simd_maxsz(desc));
221 }
222 
223 /* Integer 8 and 16-bit dot-product.
224  *
225  * Note that for the loops herein, host endianness does not matter
226  * with respect to the ordering of data within the 64-bit lanes.
227  * All elements are treated equally, no matter where they are.
228  */
229 
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 {
232     intptr_t i, opr_sz = simd_oprsz(desc);
233     uint32_t *d = vd;
234     int8_t *n = vn, *m = vm;
235 
236     for (i = 0; i < opr_sz / 4; ++i) {
237         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238               + n[i * 4 + 1] * m[i * 4 + 1]
239               + n[i * 4 + 2] * m[i * 4 + 2]
240               + n[i * 4 + 3] * m[i * 4 + 3];
241     }
242     clear_tail(d, opr_sz, simd_maxsz(desc));
243 }
244 
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
246 {
247     intptr_t i, opr_sz = simd_oprsz(desc);
248     uint32_t *d = vd;
249     uint8_t *n = vn, *m = vm;
250 
251     for (i = 0; i < opr_sz / 4; ++i) {
252         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253               + n[i * 4 + 1] * m[i * 4 + 1]
254               + n[i * 4 + 2] * m[i * 4 + 2]
255               + n[i * 4 + 3] * m[i * 4 + 3];
256     }
257     clear_tail(d, opr_sz, simd_maxsz(desc));
258 }
259 
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 {
262     intptr_t i, opr_sz = simd_oprsz(desc);
263     uint64_t *d = vd;
264     int16_t *n = vn, *m = vm;
265 
266     for (i = 0; i < opr_sz / 8; ++i) {
267         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
271     }
272     clear_tail(d, opr_sz, simd_maxsz(desc));
273 }
274 
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
276 {
277     intptr_t i, opr_sz = simd_oprsz(desc);
278     uint64_t *d = vd;
279     uint16_t *n = vn, *m = vm;
280 
281     for (i = 0; i < opr_sz / 8; ++i) {
282         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
286     }
287     clear_tail(d, opr_sz, simd_maxsz(desc));
288 }
289 
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
291 {
292     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293     intptr_t index = simd_data(desc);
294     uint32_t *d = vd;
295     int8_t *n = vn;
296     int8_t *m_indexed = (int8_t *)vm + index * 4;
297 
298     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299      * Otherwise opr_sz is a multiple of 16.
300      */
301     segend = MIN(4, opr_sz_4);
302     i = 0;
303     do {
304         int8_t m0 = m_indexed[i * 4 + 0];
305         int8_t m1 = m_indexed[i * 4 + 1];
306         int8_t m2 = m_indexed[i * 4 + 2];
307         int8_t m3 = m_indexed[i * 4 + 3];
308 
309         do {
310             d[i] += n[i * 4 + 0] * m0
311                   + n[i * 4 + 1] * m1
312                   + n[i * 4 + 2] * m2
313                   + n[i * 4 + 3] * m3;
314         } while (++i < segend);
315         segend = i + 4;
316     } while (i < opr_sz_4);
317 
318     clear_tail(d, opr_sz, simd_maxsz(desc));
319 }
320 
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
322 {
323     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324     intptr_t index = simd_data(desc);
325     uint32_t *d = vd;
326     uint8_t *n = vn;
327     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
328 
329     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330      * Otherwise opr_sz is a multiple of 16.
331      */
332     segend = MIN(4, opr_sz_4);
333     i = 0;
334     do {
335         uint8_t m0 = m_indexed[i * 4 + 0];
336         uint8_t m1 = m_indexed[i * 4 + 1];
337         uint8_t m2 = m_indexed[i * 4 + 2];
338         uint8_t m3 = m_indexed[i * 4 + 3];
339 
340         do {
341             d[i] += n[i * 4 + 0] * m0
342                   + n[i * 4 + 1] * m1
343                   + n[i * 4 + 2] * m2
344                   + n[i * 4 + 3] * m3;
345         } while (++i < segend);
346         segend = i + 4;
347     } while (i < opr_sz_4);
348 
349     clear_tail(d, opr_sz, simd_maxsz(desc));
350 }
351 
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
353 {
354     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355     intptr_t index = simd_data(desc);
356     uint64_t *d = vd;
357     int16_t *n = vn;
358     int16_t *m_indexed = (int16_t *)vm + index * 4;
359 
360     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361      * Process the entire segment all at once, writing back the results
362      * only after we've consumed all of the inputs.
363      */
364     for (i = 0; i < opr_sz_8 ; i += 2) {
365         uint64_t d0, d1;
366 
367         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
375 
376         d[i + 0] += d0;
377         d[i + 1] += d1;
378     }
379 
380     clear_tail(d, opr_sz, simd_maxsz(desc));
381 }
382 
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
384 {
385     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386     intptr_t index = simd_data(desc);
387     uint64_t *d = vd;
388     uint16_t *n = vn;
389     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
390 
391     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392      * Process the entire segment all at once, writing back the results
393      * only after we've consumed all of the inputs.
394      */
395     for (i = 0; i < opr_sz_8 ; i += 2) {
396         uint64_t d0, d1;
397 
398         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
406 
407         d[i + 0] += d0;
408         d[i + 1] += d1;
409     }
410 
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float16 *d = vd;
419     float16 *n = vn;
420     float16 *m = vm;
421     float_status *fpst = vfpst;
422     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = neg_real ^ 1;
424     uintptr_t i;
425 
426     /* Shift boolean to the sign bit so we can xor to negate.  */
427     neg_real <<= 15;
428     neg_imag <<= 15;
429 
430     for (i = 0; i < opr_sz / 2; i += 2) {
431         float16 e0 = n[H2(i)];
432         float16 e1 = m[H2(i + 1)] ^ neg_imag;
433         float16 e2 = n[H2(i + 1)];
434         float16 e3 = m[H2(i)] ^ neg_real;
435 
436         d[H2(i)] = float16_add(e0, e1, fpst);
437         d[H2(i + 1)] = float16_add(e2, e3, fpst);
438     }
439     clear_tail(d, opr_sz, simd_maxsz(desc));
440 }
441 
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443                          void *vfpst, uint32_t desc)
444 {
445     uintptr_t opr_sz = simd_oprsz(desc);
446     float32 *d = vd;
447     float32 *n = vn;
448     float32 *m = vm;
449     float_status *fpst = vfpst;
450     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451     uint32_t neg_imag = neg_real ^ 1;
452     uintptr_t i;
453 
454     /* Shift boolean to the sign bit so we can xor to negate.  */
455     neg_real <<= 31;
456     neg_imag <<= 31;
457 
458     for (i = 0; i < opr_sz / 4; i += 2) {
459         float32 e0 = n[H4(i)];
460         float32 e1 = m[H4(i + 1)] ^ neg_imag;
461         float32 e2 = n[H4(i + 1)];
462         float32 e3 = m[H4(i)] ^ neg_real;
463 
464         d[H4(i)] = float32_add(e0, e1, fpst);
465         d[H4(i + 1)] = float32_add(e2, e3, fpst);
466     }
467     clear_tail(d, opr_sz, simd_maxsz(desc));
468 }
469 
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471                          void *vfpst, uint32_t desc)
472 {
473     uintptr_t opr_sz = simd_oprsz(desc);
474     float64 *d = vd;
475     float64 *n = vn;
476     float64 *m = vm;
477     float_status *fpst = vfpst;
478     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479     uint64_t neg_imag = neg_real ^ 1;
480     uintptr_t i;
481 
482     /* Shift boolean to the sign bit so we can xor to negate.  */
483     neg_real <<= 63;
484     neg_imag <<= 63;
485 
486     for (i = 0; i < opr_sz / 8; i += 2) {
487         float64 e0 = n[i];
488         float64 e1 = m[i + 1] ^ neg_imag;
489         float64 e2 = n[i + 1];
490         float64 e3 = m[i] ^ neg_real;
491 
492         d[i] = float64_add(e0, e1, fpst);
493         d[i + 1] = float64_add(e2, e3, fpst);
494     }
495     clear_tail(d, opr_sz, simd_maxsz(desc));
496 }
497 
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499                          void *vfpst, uint32_t desc)
500 {
501     uintptr_t opr_sz = simd_oprsz(desc);
502     float16 *d = vd;
503     float16 *n = vn;
504     float16 *m = vm;
505     float_status *fpst = vfpst;
506     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508     uint32_t neg_real = flip ^ neg_imag;
509     uintptr_t i;
510 
511     /* Shift boolean to the sign bit so we can xor to negate.  */
512     neg_real <<= 15;
513     neg_imag <<= 15;
514 
515     for (i = 0; i < opr_sz / 2; i += 2) {
516         float16 e2 = n[H2(i + flip)];
517         float16 e1 = m[H2(i + flip)] ^ neg_real;
518         float16 e4 = e2;
519         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
520 
521         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
523     }
524     clear_tail(d, opr_sz, simd_maxsz(desc));
525 }
526 
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528                              void *vfpst, uint32_t desc)
529 {
530     uintptr_t opr_sz = simd_oprsz(desc);
531     float16 *d = vd;
532     float16 *n = vn;
533     float16 *m = vm;
534     float_status *fpst = vfpst;
535     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538     uint32_t neg_real = flip ^ neg_imag;
539     intptr_t elements = opr_sz / sizeof(float16);
540     intptr_t eltspersegment = 16 / sizeof(float16);
541     intptr_t i, j;
542 
543     /* Shift boolean to the sign bit so we can xor to negate.  */
544     neg_real <<= 15;
545     neg_imag <<= 15;
546 
547     for (i = 0; i < elements; i += eltspersegment) {
548         float16 mr = m[H2(i + 2 * index + 0)];
549         float16 mi = m[H2(i + 2 * index + 1)];
550         float16 e1 = neg_real ^ (flip ? mi : mr);
551         float16 e3 = neg_imag ^ (flip ? mr : mi);
552 
553         for (j = i; j < i + eltspersegment; j += 2) {
554             float16 e2 = n[H2(j + flip)];
555             float16 e4 = e2;
556 
557             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
559         }
560     }
561     clear_tail(d, opr_sz, simd_maxsz(desc));
562 }
563 
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565                          void *vfpst, uint32_t desc)
566 {
567     uintptr_t opr_sz = simd_oprsz(desc);
568     float32 *d = vd;
569     float32 *n = vn;
570     float32 *m = vm;
571     float_status *fpst = vfpst;
572     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574     uint32_t neg_real = flip ^ neg_imag;
575     uintptr_t i;
576 
577     /* Shift boolean to the sign bit so we can xor to negate.  */
578     neg_real <<= 31;
579     neg_imag <<= 31;
580 
581     for (i = 0; i < opr_sz / 4; i += 2) {
582         float32 e2 = n[H4(i + flip)];
583         float32 e1 = m[H4(i + flip)] ^ neg_real;
584         float32 e4 = e2;
585         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
586 
587         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
589     }
590     clear_tail(d, opr_sz, simd_maxsz(desc));
591 }
592 
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594                              void *vfpst, uint32_t desc)
595 {
596     uintptr_t opr_sz = simd_oprsz(desc);
597     float32 *d = vd;
598     float32 *n = vn;
599     float32 *m = vm;
600     float_status *fpst = vfpst;
601     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604     uint32_t neg_real = flip ^ neg_imag;
605     intptr_t elements = opr_sz / sizeof(float32);
606     intptr_t eltspersegment = 16 / sizeof(float32);
607     intptr_t i, j;
608 
609     /* Shift boolean to the sign bit so we can xor to negate.  */
610     neg_real <<= 31;
611     neg_imag <<= 31;
612 
613     for (i = 0; i < elements; i += eltspersegment) {
614         float32 mr = m[H4(i + 2 * index + 0)];
615         float32 mi = m[H4(i + 2 * index + 1)];
616         float32 e1 = neg_real ^ (flip ? mi : mr);
617         float32 e3 = neg_imag ^ (flip ? mr : mi);
618 
619         for (j = i; j < i + eltspersegment; j += 2) {
620             float32 e2 = n[H4(j + flip)];
621             float32 e4 = e2;
622 
623             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
625         }
626     }
627     clear_tail(d, opr_sz, simd_maxsz(desc));
628 }
629 
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631                          void *vfpst, uint32_t desc)
632 {
633     uintptr_t opr_sz = simd_oprsz(desc);
634     float64 *d = vd;
635     float64 *n = vn;
636     float64 *m = vm;
637     float_status *fpst = vfpst;
638     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640     uint64_t neg_real = flip ^ neg_imag;
641     uintptr_t i;
642 
643     /* Shift boolean to the sign bit so we can xor to negate.  */
644     neg_real <<= 63;
645     neg_imag <<= 63;
646 
647     for (i = 0; i < opr_sz / 8; i += 2) {
648         float64 e2 = n[i + flip];
649         float64 e1 = m[i + flip] ^ neg_real;
650         float64 e4 = e2;
651         float64 e3 = m[i + 1 - flip] ^ neg_imag;
652 
653         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
655     }
656     clear_tail(d, opr_sz, simd_maxsz(desc));
657 }
658 
659 /*
660  * Floating point comparisons producing an integer result (all 1s or all 0s).
661  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
662  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
663  */
664 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
665 {
666     return -float16_eq_quiet(op1, op2, stat);
667 }
668 
669 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
670 {
671     return -float32_eq_quiet(op1, op2, stat);
672 }
673 
674 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
675 {
676     return -float16_le(op2, op1, stat);
677 }
678 
679 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
680 {
681     return -float32_le(op2, op1, stat);
682 }
683 
684 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
685 {
686     return -float16_lt(op2, op1, stat);
687 }
688 
689 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
690 {
691     return -float32_lt(op2, op1, stat);
692 }
693 
694 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
695 {
696     return -float16_le(float16_abs(op2), float16_abs(op1), stat);
697 }
698 
699 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
700 {
701     return -float32_le(float32_abs(op2), float32_abs(op1), stat);
702 }
703 
704 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
705 {
706     return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
707 }
708 
709 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
710 {
711     return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
712 }
713 
714 #define DO_2OP(NAME, FUNC, TYPE) \
715 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
716 {                                                                 \
717     intptr_t i, oprsz = simd_oprsz(desc);                         \
718     TYPE *d = vd, *n = vn;                                        \
719     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
720         d[i] = FUNC(n[i], stat);                                  \
721     }                                                             \
722     clear_tail(d, oprsz, simd_maxsz(desc));                       \
723 }
724 
725 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
726 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
727 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
728 
729 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
730 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
731 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
732 
733 #undef DO_2OP
734 
735 /* Floating-point trigonometric starting value.
736  * See the ARM ARM pseudocode function FPTrigSMul.
737  */
738 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
739 {
740     float16 result = float16_mul(op1, op1, stat);
741     if (!float16_is_any_nan(result)) {
742         result = float16_set_sign(result, op2 & 1);
743     }
744     return result;
745 }
746 
747 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
748 {
749     float32 result = float32_mul(op1, op1, stat);
750     if (!float32_is_any_nan(result)) {
751         result = float32_set_sign(result, op2 & 1);
752     }
753     return result;
754 }
755 
756 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
757 {
758     float64 result = float64_mul(op1, op1, stat);
759     if (!float64_is_any_nan(result)) {
760         result = float64_set_sign(result, op2 & 1);
761     }
762     return result;
763 }
764 
765 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
766 {
767     return float16_abs(float16_sub(op1, op2, stat));
768 }
769 
770 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
771 {
772     return float32_abs(float32_sub(op1, op2, stat));
773 }
774 
775 #define DO_3OP(NAME, FUNC, TYPE) \
776 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
777 {                                                                          \
778     intptr_t i, oprsz = simd_oprsz(desc);                                  \
779     TYPE *d = vd, *n = vn, *m = vm;                                        \
780     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
781         d[i] = FUNC(n[i], m[i], stat);                                     \
782     }                                                                      \
783     clear_tail(d, oprsz, simd_maxsz(desc));                                \
784 }
785 
786 DO_3OP(gvec_fadd_h, float16_add, float16)
787 DO_3OP(gvec_fadd_s, float32_add, float32)
788 DO_3OP(gvec_fadd_d, float64_add, float64)
789 
790 DO_3OP(gvec_fsub_h, float16_sub, float16)
791 DO_3OP(gvec_fsub_s, float32_sub, float32)
792 DO_3OP(gvec_fsub_d, float64_sub, float64)
793 
794 DO_3OP(gvec_fmul_h, float16_mul, float16)
795 DO_3OP(gvec_fmul_s, float32_mul, float32)
796 DO_3OP(gvec_fmul_d, float64_mul, float64)
797 
798 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
799 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
800 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
801 
802 DO_3OP(gvec_fabd_h, float16_abd, float16)
803 DO_3OP(gvec_fabd_s, float32_abd, float32)
804 
805 DO_3OP(gvec_fceq_h, float16_ceq, float16)
806 DO_3OP(gvec_fceq_s, float32_ceq, float32)
807 
808 DO_3OP(gvec_fcge_h, float16_cge, float16)
809 DO_3OP(gvec_fcge_s, float32_cge, float32)
810 
811 DO_3OP(gvec_fcgt_h, float16_cgt, float16)
812 DO_3OP(gvec_fcgt_s, float32_cgt, float32)
813 
814 DO_3OP(gvec_facge_h, float16_acge, float16)
815 DO_3OP(gvec_facge_s, float32_acge, float32)
816 
817 DO_3OP(gvec_facgt_h, float16_acgt, float16)
818 DO_3OP(gvec_facgt_s, float32_acgt, float32)
819 
820 DO_3OP(gvec_fmax_h, float16_max, float16)
821 DO_3OP(gvec_fmax_s, float32_max, float32)
822 
823 DO_3OP(gvec_fmin_h, float16_min, float16)
824 DO_3OP(gvec_fmin_s, float32_min, float32)
825 
826 DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
827 DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
828 
829 DO_3OP(gvec_fminnum_h, float16_minnum, float16)
830 DO_3OP(gvec_fminnum_s, float32_minnum, float32)
831 
832 #ifdef TARGET_AARCH64
833 
834 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
835 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
836 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
837 
838 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
839 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
840 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
841 
842 #endif
843 #undef DO_3OP
844 
845 /* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
846 static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
847                                  float_status *stat)
848 {
849     return float16_add(dest, float16_mul(op1, op2, stat), stat);
850 }
851 
852 static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
853                                  float_status *stat)
854 {
855     return float32_add(dest, float32_mul(op1, op2, stat), stat);
856 }
857 
858 static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
859                                  float_status *stat)
860 {
861     return float16_sub(dest, float16_mul(op1, op2, stat), stat);
862 }
863 
864 static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
865                                  float_status *stat)
866 {
867     return float32_sub(dest, float32_mul(op1, op2, stat), stat);
868 }
869 
870 /* Fused versions; these have the semantics Neon VFMA/VFMS want */
871 static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
872                                 float_status *stat)
873 {
874     return float16_muladd(op1, op2, dest, 0, stat);
875 }
876 
877 static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
878                                  float_status *stat)
879 {
880     return float32_muladd(op1, op2, dest, 0, stat);
881 }
882 
883 static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
884                                  float_status *stat)
885 {
886     return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
887 }
888 
889 static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
890                                  float_status *stat)
891 {
892     return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
893 }
894 
895 #define DO_MULADD(NAME, FUNC, TYPE)                                     \
896 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
897 {                                                                          \
898     intptr_t i, oprsz = simd_oprsz(desc);                                  \
899     TYPE *d = vd, *n = vn, *m = vm;                                        \
900     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
901         d[i] = FUNC(d[i], n[i], m[i], stat);                               \
902     }                                                                      \
903     clear_tail(d, oprsz, simd_maxsz(desc));                                \
904 }
905 
906 DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
907 DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
908 
909 DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
910 DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
911 
912 DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
913 DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
914 
915 DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
916 DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
917 
918 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
919  * For AdvSIMD, there is of course only one such vector segment.
920  */
921 
922 #define DO_MUL_IDX(NAME, TYPE, H) \
923 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
924 {                                                                          \
925     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
926     intptr_t idx = simd_data(desc);                                        \
927     TYPE *d = vd, *n = vn, *m = vm;                                        \
928     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
929         TYPE mm = m[H(i + idx)];                                           \
930         for (j = 0; j < segment; j++) {                                    \
931             d[i + j] = n[i + j] * mm;                                      \
932         }                                                                  \
933     }                                                                      \
934     clear_tail(d, oprsz, simd_maxsz(desc));                                \
935 }
936 
937 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
938 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
939 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
940 
941 #undef DO_MUL_IDX
942 
943 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
944 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)   \
945 {                                                                          \
946     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
947     intptr_t idx = simd_data(desc);                                        \
948     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
949     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
950         TYPE mm = m[H(i + idx)];                                           \
951         for (j = 0; j < segment; j++) {                                    \
952             d[i + j] = a[i + j] OP n[i + j] * mm;                          \
953         }                                                                  \
954     }                                                                      \
955     clear_tail(d, oprsz, simd_maxsz(desc));                                \
956 }
957 
958 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
959 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
960 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +,   )
961 
962 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
963 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
964 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -,   )
965 
966 #undef DO_MLA_IDX
967 
968 #define DO_FMUL_IDX(NAME, TYPE, H) \
969 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
970 {                                                                          \
971     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
972     intptr_t idx = simd_data(desc);                                        \
973     TYPE *d = vd, *n = vn, *m = vm;                                        \
974     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
975         TYPE mm = m[H(i + idx)];                                           \
976         for (j = 0; j < segment; j++) {                                    \
977             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
978         }                                                                  \
979     }                                                                      \
980     clear_tail(d, oprsz, simd_maxsz(desc));                                \
981 }
982 
983 DO_FMUL_IDX(gvec_fmul_idx_h, float16, H2)
984 DO_FMUL_IDX(gvec_fmul_idx_s, float32, H4)
985 DO_FMUL_IDX(gvec_fmul_idx_d, float64, )
986 
987 #undef DO_FMUL_IDX
988 
989 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
990 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
991                   void *stat, uint32_t desc)                               \
992 {                                                                          \
993     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
994     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
995     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
996     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
997     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
998     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
999         TYPE mm = m[H(i + idx)];                                           \
1000         for (j = 0; j < segment; j++) {                                    \
1001             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
1002                                      mm, a[i + j], 0, stat);               \
1003         }                                                                  \
1004     }                                                                      \
1005     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1006 }
1007 
1008 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
1009 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
1010 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
1011 
1012 #undef DO_FMLA_IDX
1013 
1014 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
1015 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
1016 {                                                                          \
1017     intptr_t i, oprsz = simd_oprsz(desc);                                  \
1018     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
1019     bool q = false;                                                        \
1020     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
1021         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
1022         if (dd < MIN) {                                                    \
1023             dd = MIN;                                                      \
1024             q = true;                                                      \
1025         } else if (dd > MAX) {                                             \
1026             dd = MAX;                                                      \
1027             q = true;                                                      \
1028         }                                                                  \
1029         d[i] = dd;                                                         \
1030     }                                                                      \
1031     if (q) {                                                               \
1032         uint32_t *qc = vq;                                                 \
1033         qc[0] = 1;                                                         \
1034     }                                                                      \
1035     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1036 }
1037 
1038 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
1039 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
1040 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
1041 
1042 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
1043 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
1044 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
1045 
1046 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
1047 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
1048 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
1049 
1050 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
1051 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
1052 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
1053 
1054 #undef DO_SAT
1055 
1056 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
1057                           void *vm, uint32_t desc)
1058 {
1059     intptr_t i, oprsz = simd_oprsz(desc);
1060     uint64_t *d = vd, *n = vn, *m = vm;
1061     bool q = false;
1062 
1063     for (i = 0; i < oprsz / 8; i++) {
1064         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
1065         if (dd < nn) {
1066             dd = UINT64_MAX;
1067             q = true;
1068         }
1069         d[i] = dd;
1070     }
1071     if (q) {
1072         uint32_t *qc = vq;
1073         qc[0] = 1;
1074     }
1075     clear_tail(d, oprsz, simd_maxsz(desc));
1076 }
1077 
1078 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
1079                           void *vm, uint32_t desc)
1080 {
1081     intptr_t i, oprsz = simd_oprsz(desc);
1082     uint64_t *d = vd, *n = vn, *m = vm;
1083     bool q = false;
1084 
1085     for (i = 0; i < oprsz / 8; i++) {
1086         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
1087         if (nn < mm) {
1088             dd = 0;
1089             q = true;
1090         }
1091         d[i] = dd;
1092     }
1093     if (q) {
1094         uint32_t *qc = vq;
1095         qc[0] = 1;
1096     }
1097     clear_tail(d, oprsz, simd_maxsz(desc));
1098 }
1099 
1100 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
1101                           void *vm, uint32_t desc)
1102 {
1103     intptr_t i, oprsz = simd_oprsz(desc);
1104     int64_t *d = vd, *n = vn, *m = vm;
1105     bool q = false;
1106 
1107     for (i = 0; i < oprsz / 8; i++) {
1108         int64_t nn = n[i], mm = m[i], dd = nn + mm;
1109         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
1110             dd = (nn >> 63) ^ ~INT64_MIN;
1111             q = true;
1112         }
1113         d[i] = dd;
1114     }
1115     if (q) {
1116         uint32_t *qc = vq;
1117         qc[0] = 1;
1118     }
1119     clear_tail(d, oprsz, simd_maxsz(desc));
1120 }
1121 
1122 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
1123                           void *vm, uint32_t desc)
1124 {
1125     intptr_t i, oprsz = simd_oprsz(desc);
1126     int64_t *d = vd, *n = vn, *m = vm;
1127     bool q = false;
1128 
1129     for (i = 0; i < oprsz / 8; i++) {
1130         int64_t nn = n[i], mm = m[i], dd = nn - mm;
1131         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
1132             dd = (nn >> 63) ^ ~INT64_MIN;
1133             q = true;
1134         }
1135         d[i] = dd;
1136     }
1137     if (q) {
1138         uint32_t *qc = vq;
1139         qc[0] = 1;
1140     }
1141     clear_tail(d, oprsz, simd_maxsz(desc));
1142 }
1143 
1144 
1145 #define DO_SRA(NAME, TYPE)                              \
1146 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1147 {                                                       \
1148     intptr_t i, oprsz = simd_oprsz(desc);               \
1149     int shift = simd_data(desc);                        \
1150     TYPE *d = vd, *n = vn;                              \
1151     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1152         d[i] += n[i] >> shift;                          \
1153     }                                                   \
1154     clear_tail(d, oprsz, simd_maxsz(desc));             \
1155 }
1156 
1157 DO_SRA(gvec_ssra_b, int8_t)
1158 DO_SRA(gvec_ssra_h, int16_t)
1159 DO_SRA(gvec_ssra_s, int32_t)
1160 DO_SRA(gvec_ssra_d, int64_t)
1161 
1162 DO_SRA(gvec_usra_b, uint8_t)
1163 DO_SRA(gvec_usra_h, uint16_t)
1164 DO_SRA(gvec_usra_s, uint32_t)
1165 DO_SRA(gvec_usra_d, uint64_t)
1166 
1167 #undef DO_SRA
1168 
1169 #define DO_RSHR(NAME, TYPE)                             \
1170 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1171 {                                                       \
1172     intptr_t i, oprsz = simd_oprsz(desc);               \
1173     int shift = simd_data(desc);                        \
1174     TYPE *d = vd, *n = vn;                              \
1175     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1176         TYPE tmp = n[i] >> (shift - 1);                 \
1177         d[i] = (tmp >> 1) + (tmp & 1);                  \
1178     }                                                   \
1179     clear_tail(d, oprsz, simd_maxsz(desc));             \
1180 }
1181 
1182 DO_RSHR(gvec_srshr_b, int8_t)
1183 DO_RSHR(gvec_srshr_h, int16_t)
1184 DO_RSHR(gvec_srshr_s, int32_t)
1185 DO_RSHR(gvec_srshr_d, int64_t)
1186 
1187 DO_RSHR(gvec_urshr_b, uint8_t)
1188 DO_RSHR(gvec_urshr_h, uint16_t)
1189 DO_RSHR(gvec_urshr_s, uint32_t)
1190 DO_RSHR(gvec_urshr_d, uint64_t)
1191 
1192 #undef DO_RSHR
1193 
1194 #define DO_RSRA(NAME, TYPE)                             \
1195 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1196 {                                                       \
1197     intptr_t i, oprsz = simd_oprsz(desc);               \
1198     int shift = simd_data(desc);                        \
1199     TYPE *d = vd, *n = vn;                              \
1200     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1201         TYPE tmp = n[i] >> (shift - 1);                 \
1202         d[i] += (tmp >> 1) + (tmp & 1);                 \
1203     }                                                   \
1204     clear_tail(d, oprsz, simd_maxsz(desc));             \
1205 }
1206 
1207 DO_RSRA(gvec_srsra_b, int8_t)
1208 DO_RSRA(gvec_srsra_h, int16_t)
1209 DO_RSRA(gvec_srsra_s, int32_t)
1210 DO_RSRA(gvec_srsra_d, int64_t)
1211 
1212 DO_RSRA(gvec_ursra_b, uint8_t)
1213 DO_RSRA(gvec_ursra_h, uint16_t)
1214 DO_RSRA(gvec_ursra_s, uint32_t)
1215 DO_RSRA(gvec_ursra_d, uint64_t)
1216 
1217 #undef DO_RSRA
1218 
1219 #define DO_SRI(NAME, TYPE)                              \
1220 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1221 {                                                       \
1222     intptr_t i, oprsz = simd_oprsz(desc);               \
1223     int shift = simd_data(desc);                        \
1224     TYPE *d = vd, *n = vn;                              \
1225     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1226         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1227     }                                                   \
1228     clear_tail(d, oprsz, simd_maxsz(desc));             \
1229 }
1230 
1231 DO_SRI(gvec_sri_b, uint8_t)
1232 DO_SRI(gvec_sri_h, uint16_t)
1233 DO_SRI(gvec_sri_s, uint32_t)
1234 DO_SRI(gvec_sri_d, uint64_t)
1235 
1236 #undef DO_SRI
1237 
1238 #define DO_SLI(NAME, TYPE)                              \
1239 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1240 {                                                       \
1241     intptr_t i, oprsz = simd_oprsz(desc);               \
1242     int shift = simd_data(desc);                        \
1243     TYPE *d = vd, *n = vn;                              \
1244     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1245         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1246     }                                                   \
1247     clear_tail(d, oprsz, simd_maxsz(desc));             \
1248 }
1249 
1250 DO_SLI(gvec_sli_b, uint8_t)
1251 DO_SLI(gvec_sli_h, uint16_t)
1252 DO_SLI(gvec_sli_s, uint32_t)
1253 DO_SLI(gvec_sli_d, uint64_t)
1254 
1255 #undef DO_SLI
1256 
1257 /*
1258  * Convert float16 to float32, raising no exceptions and
1259  * preserving exceptional values, including SNaN.
1260  * This is effectively an unpack+repack operation.
1261  */
1262 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1263 {
1264     const int f16_bias = 15;
1265     const int f32_bias = 127;
1266     uint32_t sign = extract32(f16, 15, 1);
1267     uint32_t exp = extract32(f16, 10, 5);
1268     uint32_t frac = extract32(f16, 0, 10);
1269 
1270     if (exp == 0x1f) {
1271         /* Inf or NaN */
1272         exp = 0xff;
1273     } else if (exp == 0) {
1274         /* Zero or denormal.  */
1275         if (frac != 0) {
1276             if (fz16) {
1277                 frac = 0;
1278             } else {
1279                 /*
1280                  * Denormal; these are all normal float32.
1281                  * Shift the fraction so that the msb is at bit 11,
1282                  * then remove bit 11 as the implicit bit of the
1283                  * normalized float32.  Note that we still go through
1284                  * the shift for normal numbers below, to put the
1285                  * float32 fraction at the right place.
1286                  */
1287                 int shift = clz32(frac) - 21;
1288                 frac = (frac << shift) & 0x3ff;
1289                 exp = f32_bias - f16_bias - shift + 1;
1290             }
1291         }
1292     } else {
1293         /* Normal number; adjust the bias.  */
1294         exp += f32_bias - f16_bias;
1295     }
1296     sign <<= 31;
1297     exp <<= 23;
1298     frac <<= 23 - 10;
1299 
1300     return sign | exp | frac;
1301 }
1302 
1303 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1304 {
1305     /*
1306      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1307      * Load the 2nd qword iff is_q & is_2.
1308      * Shift to the 2nd dword iff !is_q & is_2.
1309      * For !is_q & !is_2, the upper bits of the result are garbage.
1310      */
1311     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1312 }
1313 
1314 /*
1315  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1316  * as there is not yet SVE versions that might use blocking.
1317  */
1318 
1319 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1320                      uint32_t desc, bool fz16)
1321 {
1322     intptr_t i, oprsz = simd_oprsz(desc);
1323     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1324     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1325     int is_q = oprsz == 16;
1326     uint64_t n_4, m_4;
1327 
1328     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1329     n_4 = load4_f16(vn, is_q, is_2);
1330     m_4 = load4_f16(vm, is_q, is_2);
1331 
1332     /* Negate all inputs for FMLSL at once.  */
1333     if (is_s) {
1334         n_4 ^= 0x8000800080008000ull;
1335     }
1336 
1337     for (i = 0; i < oprsz / 4; i++) {
1338         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1339         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1340         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1341     }
1342     clear_tail(d, oprsz, simd_maxsz(desc));
1343 }
1344 
1345 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1346                             void *venv, uint32_t desc)
1347 {
1348     CPUARMState *env = venv;
1349     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1350              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1351 }
1352 
1353 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1354                             void *venv, uint32_t desc)
1355 {
1356     CPUARMState *env = venv;
1357     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1358              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1359 }
1360 
1361 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1362                          uint32_t desc, bool fz16)
1363 {
1364     intptr_t i, oprsz = simd_oprsz(desc);
1365     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1366     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1367     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1368     int is_q = oprsz == 16;
1369     uint64_t n_4;
1370     float32 m_1;
1371 
1372     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1373     n_4 = load4_f16(vn, is_q, is_2);
1374 
1375     /* Negate all inputs for FMLSL at once.  */
1376     if (is_s) {
1377         n_4 ^= 0x8000800080008000ull;
1378     }
1379 
1380     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1381 
1382     for (i = 0; i < oprsz / 4; i++) {
1383         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1384         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1385     }
1386     clear_tail(d, oprsz, simd_maxsz(desc));
1387 }
1388 
1389 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1390                                 void *venv, uint32_t desc)
1391 {
1392     CPUARMState *env = venv;
1393     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1394                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1395 }
1396 
1397 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1398                                 void *venv, uint32_t desc)
1399 {
1400     CPUARMState *env = venv;
1401     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1402                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1403 }
1404 
1405 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1406 {
1407     intptr_t i, opr_sz = simd_oprsz(desc);
1408     int8_t *d = vd, *n = vn, *m = vm;
1409 
1410     for (i = 0; i < opr_sz; ++i) {
1411         int8_t mm = m[i];
1412         int8_t nn = n[i];
1413         int8_t res = 0;
1414         if (mm >= 0) {
1415             if (mm < 8) {
1416                 res = nn << mm;
1417             }
1418         } else {
1419             res = nn >> (mm > -8 ? -mm : 7);
1420         }
1421         d[i] = res;
1422     }
1423     clear_tail(d, opr_sz, simd_maxsz(desc));
1424 }
1425 
1426 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1427 {
1428     intptr_t i, opr_sz = simd_oprsz(desc);
1429     int16_t *d = vd, *n = vn, *m = vm;
1430 
1431     for (i = 0; i < opr_sz / 2; ++i) {
1432         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1433         int16_t nn = n[i];
1434         int16_t res = 0;
1435         if (mm >= 0) {
1436             if (mm < 16) {
1437                 res = nn << mm;
1438             }
1439         } else {
1440             res = nn >> (mm > -16 ? -mm : 15);
1441         }
1442         d[i] = res;
1443     }
1444     clear_tail(d, opr_sz, simd_maxsz(desc));
1445 }
1446 
1447 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1448 {
1449     intptr_t i, opr_sz = simd_oprsz(desc);
1450     uint8_t *d = vd, *n = vn, *m = vm;
1451 
1452     for (i = 0; i < opr_sz; ++i) {
1453         int8_t mm = m[i];
1454         uint8_t nn = n[i];
1455         uint8_t res = 0;
1456         if (mm >= 0) {
1457             if (mm < 8) {
1458                 res = nn << mm;
1459             }
1460         } else {
1461             if (mm > -8) {
1462                 res = nn >> -mm;
1463             }
1464         }
1465         d[i] = res;
1466     }
1467     clear_tail(d, opr_sz, simd_maxsz(desc));
1468 }
1469 
1470 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1471 {
1472     intptr_t i, opr_sz = simd_oprsz(desc);
1473     uint16_t *d = vd, *n = vn, *m = vm;
1474 
1475     for (i = 0; i < opr_sz / 2; ++i) {
1476         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1477         uint16_t nn = n[i];
1478         uint16_t res = 0;
1479         if (mm >= 0) {
1480             if (mm < 16) {
1481                 res = nn << mm;
1482             }
1483         } else {
1484             if (mm > -16) {
1485                 res = nn >> -mm;
1486             }
1487         }
1488         d[i] = res;
1489     }
1490     clear_tail(d, opr_sz, simd_maxsz(desc));
1491 }
1492 
1493 /*
1494  * 8x8->8 polynomial multiply.
1495  *
1496  * Polynomial multiplication is like integer multiplication except the
1497  * partial products are XORed, not added.
1498  *
1499  * TODO: expose this as a generic vector operation, as it is a common
1500  * crypto building block.
1501  */
1502 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1503 {
1504     intptr_t i, j, opr_sz = simd_oprsz(desc);
1505     uint64_t *d = vd, *n = vn, *m = vm;
1506 
1507     for (i = 0; i < opr_sz / 8; ++i) {
1508         uint64_t nn = n[i];
1509         uint64_t mm = m[i];
1510         uint64_t rr = 0;
1511 
1512         for (j = 0; j < 8; ++j) {
1513             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1514             rr ^= mm & mask;
1515             mm = (mm << 1) & 0xfefefefefefefefeull;
1516             nn >>= 1;
1517         }
1518         d[i] = rr;
1519     }
1520     clear_tail(d, opr_sz, simd_maxsz(desc));
1521 }
1522 
1523 /*
1524  * 64x64->128 polynomial multiply.
1525  * Because of the lanes are not accessed in strict columns,
1526  * this probably cannot be turned into a generic helper.
1527  */
1528 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1529 {
1530     intptr_t i, j, opr_sz = simd_oprsz(desc);
1531     intptr_t hi = simd_data(desc);
1532     uint64_t *d = vd, *n = vn, *m = vm;
1533 
1534     for (i = 0; i < opr_sz / 8; i += 2) {
1535         uint64_t nn = n[i + hi];
1536         uint64_t mm = m[i + hi];
1537         uint64_t rhi = 0;
1538         uint64_t rlo = 0;
1539 
1540         /* Bit 0 can only influence the low 64-bit result.  */
1541         if (nn & 1) {
1542             rlo = mm;
1543         }
1544 
1545         for (j = 1; j < 64; ++j) {
1546             uint64_t mask = -((nn >> j) & 1);
1547             rlo ^= (mm << j) & mask;
1548             rhi ^= (mm >> (64 - j)) & mask;
1549         }
1550         d[i] = rlo;
1551         d[i + 1] = rhi;
1552     }
1553     clear_tail(d, opr_sz, simd_maxsz(desc));
1554 }
1555 
1556 /*
1557  * 8x8->16 polynomial multiply.
1558  *
1559  * The byte inputs are expanded to (or extracted from) half-words.
1560  * Note that neon and sve2 get the inputs from different positions.
1561  * This allows 4 bytes to be processed in parallel with uint64_t.
1562  */
1563 
1564 static uint64_t expand_byte_to_half(uint64_t x)
1565 {
1566     return  (x & 0x000000ff)
1567          | ((x & 0x0000ff00) << 8)
1568          | ((x & 0x00ff0000) << 16)
1569          | ((x & 0xff000000) << 24);
1570 }
1571 
1572 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1573 {
1574     uint64_t result = 0;
1575     int i;
1576 
1577     for (i = 0; i < 8; ++i) {
1578         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1579         result ^= op2 & mask;
1580         op1 >>= 1;
1581         op2 <<= 1;
1582     }
1583     return result;
1584 }
1585 
1586 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1587 {
1588     int hi = simd_data(desc);
1589     uint64_t *d = vd, *n = vn, *m = vm;
1590     uint64_t nn = n[hi], mm = m[hi];
1591 
1592     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1593     nn >>= 32;
1594     mm >>= 32;
1595     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1596 
1597     clear_tail(d, 16, simd_maxsz(desc));
1598 }
1599 
1600 #ifdef TARGET_AARCH64
1601 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1602 {
1603     int shift = simd_data(desc) * 8;
1604     intptr_t i, opr_sz = simd_oprsz(desc);
1605     uint64_t *d = vd, *n = vn, *m = vm;
1606 
1607     for (i = 0; i < opr_sz / 8; ++i) {
1608         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1609         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1610 
1611         d[i] = pmull_h(nn, mm);
1612     }
1613 }
1614 #endif
1615 
1616 #define DO_CMP0(NAME, TYPE, OP)                         \
1617 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1618 {                                                       \
1619     intptr_t i, opr_sz = simd_oprsz(desc);              \
1620     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1621         TYPE nn = *(TYPE *)(vn + i);                    \
1622         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1623     }                                                   \
1624     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1625 }
1626 
1627 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1628 DO_CMP0(gvec_clt0_b, int8_t, <)
1629 DO_CMP0(gvec_cle0_b, int8_t, <=)
1630 DO_CMP0(gvec_cgt0_b, int8_t, >)
1631 DO_CMP0(gvec_cge0_b, int8_t, >=)
1632 
1633 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1634 DO_CMP0(gvec_clt0_h, int16_t, <)
1635 DO_CMP0(gvec_cle0_h, int16_t, <=)
1636 DO_CMP0(gvec_cgt0_h, int16_t, >)
1637 DO_CMP0(gvec_cge0_h, int16_t, >=)
1638 
1639 #undef DO_CMP0
1640 
1641 #define DO_ABD(NAME, TYPE)                                      \
1642 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1643 {                                                               \
1644     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1645     TYPE *d = vd, *n = vn, *m = vm;                             \
1646                                                                 \
1647     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1648         d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];         \
1649     }                                                           \
1650     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1651 }
1652 
1653 DO_ABD(gvec_sabd_b, int8_t)
1654 DO_ABD(gvec_sabd_h, int16_t)
1655 DO_ABD(gvec_sabd_s, int32_t)
1656 DO_ABD(gvec_sabd_d, int64_t)
1657 
1658 DO_ABD(gvec_uabd_b, uint8_t)
1659 DO_ABD(gvec_uabd_h, uint16_t)
1660 DO_ABD(gvec_uabd_s, uint32_t)
1661 DO_ABD(gvec_uabd_d, uint64_t)
1662 
1663 #undef DO_ABD
1664 
1665 #define DO_ABA(NAME, TYPE)                                      \
1666 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1667 {                                                               \
1668     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1669     TYPE *d = vd, *n = vn, *m = vm;                             \
1670                                                                 \
1671     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1672         d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];        \
1673     }                                                           \
1674     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1675 }
1676 
1677 DO_ABA(gvec_saba_b, int8_t)
1678 DO_ABA(gvec_saba_h, int16_t)
1679 DO_ABA(gvec_saba_s, int32_t)
1680 DO_ABA(gvec_saba_d, int64_t)
1681 
1682 DO_ABA(gvec_uaba_b, uint8_t)
1683 DO_ABA(gvec_uaba_h, uint16_t)
1684 DO_ABA(gvec_uaba_s, uint32_t)
1685 DO_ABA(gvec_uaba_d, uint64_t)
1686 
1687 #undef DO_ABA
1688