xref: /qemu/target/arm/tcg/vec_helper.c (revision bb2741da186ebaebc7d5189372be4401e1ff9972)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41                              bool neg, bool round, uint32_t *sat)
42 {
43     /*
44      * Simplify:
45      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47      */
48     int32_t ret = (int32_t)src1 * src2;
49     if (neg) {
50         ret = -ret;
51     }
52     ret += ((int32_t)src3 << 15) + (round << 14);
53     ret >>= 15;
54 
55     if (ret != (int16_t)ret) {
56         *sat = 1;
57         ret = (ret < 0 ? INT16_MIN : INT16_MAX);
58     }
59     return ret;
60 }
61 
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63                                   uint32_t src2, uint32_t src3)
64 {
65     uint32_t *sat = &env->vfp.qc[0];
66     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68                                 false, true, sat);
69     return deposit32(e1, 16, 16, e2);
70 }
71 
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73                               void *vq, uint32_t desc)
74 {
75     uintptr_t opr_sz = simd_oprsz(desc);
76     int16_t *d = vd;
77     int16_t *n = vn;
78     int16_t *m = vm;
79     uintptr_t i;
80 
81     for (i = 0; i < opr_sz / 2; ++i) {
82         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
83     }
84     clear_tail(d, opr_sz, simd_maxsz(desc));
85 }
86 
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88                                   uint32_t src2, uint32_t src3)
89 {
90     uint32_t *sat = &env->vfp.qc[0];
91     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93                                 true, true, sat);
94     return deposit32(e1, 16, 16, e2);
95 }
96 
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98                               void *vq, uint32_t desc)
99 {
100     uintptr_t opr_sz = simd_oprsz(desc);
101     int16_t *d = vd;
102     int16_t *n = vn;
103     int16_t *m = vm;
104     uintptr_t i;
105 
106     for (i = 0; i < opr_sz / 2; ++i) {
107         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
108     }
109     clear_tail(d, opr_sz, simd_maxsz(desc));
110 }
111 
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113                             void *vq, uint32_t desc)
114 {
115     intptr_t i, opr_sz = simd_oprsz(desc);
116     int16_t *d = vd, *n = vn, *m = vm;
117 
118     for (i = 0; i < opr_sz / 2; ++i) {
119         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
120     }
121     clear_tail(d, opr_sz, simd_maxsz(desc));
122 }
123 
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125                              void *vq, uint32_t desc)
126 {
127     intptr_t i, opr_sz = simd_oprsz(desc);
128     int16_t *d = vd, *n = vn, *m = vm;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138                              bool neg, bool round, uint32_t *sat)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     if (neg) {
143         ret = -ret;
144     }
145     ret += ((int64_t)src3 << 31) + (round << 30);
146     ret >>= 31;
147 
148     if (ret != (int32_t)ret) {
149         *sat = 1;
150         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
151     }
152     return ret;
153 }
154 
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156                                   int32_t src2, int32_t src3)
157 {
158     uint32_t *sat = &env->vfp.qc[0];
159     return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
160 }
161 
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163                               void *vq, uint32_t desc)
164 {
165     uintptr_t opr_sz = simd_oprsz(desc);
166     int32_t *d = vd;
167     int32_t *n = vn;
168     int32_t *m = vm;
169     uintptr_t i;
170 
171     for (i = 0; i < opr_sz / 4; ++i) {
172         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
173     }
174     clear_tail(d, opr_sz, simd_maxsz(desc));
175 }
176 
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178                                   int32_t src2, int32_t src3)
179 {
180     uint32_t *sat = &env->vfp.qc[0];
181     return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
182 }
183 
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185                               void *vq, uint32_t desc)
186 {
187     uintptr_t opr_sz = simd_oprsz(desc);
188     int32_t *d = vd;
189     int32_t *n = vn;
190     int32_t *m = vm;
191     uintptr_t i;
192 
193     for (i = 0; i < opr_sz / 4; ++i) {
194         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
195     }
196     clear_tail(d, opr_sz, simd_maxsz(desc));
197 }
198 
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200                             void *vq, uint32_t desc)
201 {
202     intptr_t i, opr_sz = simd_oprsz(desc);
203     int32_t *d = vd, *n = vn, *m = vm;
204 
205     for (i = 0; i < opr_sz / 4; ++i) {
206         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
207     }
208     clear_tail(d, opr_sz, simd_maxsz(desc));
209 }
210 
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212                              void *vq, uint32_t desc)
213 {
214     intptr_t i, opr_sz = simd_oprsz(desc);
215     int32_t *d = vd, *n = vn, *m = vm;
216 
217     for (i = 0; i < opr_sz / 4; ++i) {
218         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
219     }
220     clear_tail(d, opr_sz, simd_maxsz(desc));
221 }
222 
223 /* Integer 8 and 16-bit dot-product.
224  *
225  * Note that for the loops herein, host endianness does not matter
226  * with respect to the ordering of data within the 64-bit lanes.
227  * All elements are treated equally, no matter where they are.
228  */
229 
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 {
232     intptr_t i, opr_sz = simd_oprsz(desc);
233     uint32_t *d = vd;
234     int8_t *n = vn, *m = vm;
235 
236     for (i = 0; i < opr_sz / 4; ++i) {
237         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238               + n[i * 4 + 1] * m[i * 4 + 1]
239               + n[i * 4 + 2] * m[i * 4 + 2]
240               + n[i * 4 + 3] * m[i * 4 + 3];
241     }
242     clear_tail(d, opr_sz, simd_maxsz(desc));
243 }
244 
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
246 {
247     intptr_t i, opr_sz = simd_oprsz(desc);
248     uint32_t *d = vd;
249     uint8_t *n = vn, *m = vm;
250 
251     for (i = 0; i < opr_sz / 4; ++i) {
252         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253               + n[i * 4 + 1] * m[i * 4 + 1]
254               + n[i * 4 + 2] * m[i * 4 + 2]
255               + n[i * 4 + 3] * m[i * 4 + 3];
256     }
257     clear_tail(d, opr_sz, simd_maxsz(desc));
258 }
259 
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 {
262     intptr_t i, opr_sz = simd_oprsz(desc);
263     uint64_t *d = vd;
264     int16_t *n = vn, *m = vm;
265 
266     for (i = 0; i < opr_sz / 8; ++i) {
267         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
271     }
272     clear_tail(d, opr_sz, simd_maxsz(desc));
273 }
274 
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
276 {
277     intptr_t i, opr_sz = simd_oprsz(desc);
278     uint64_t *d = vd;
279     uint16_t *n = vn, *m = vm;
280 
281     for (i = 0; i < opr_sz / 8; ++i) {
282         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
286     }
287     clear_tail(d, opr_sz, simd_maxsz(desc));
288 }
289 
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
291 {
292     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293     intptr_t index = simd_data(desc);
294     uint32_t *d = vd;
295     int8_t *n = vn;
296     int8_t *m_indexed = (int8_t *)vm + index * 4;
297 
298     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299      * Otherwise opr_sz is a multiple of 16.
300      */
301     segend = MIN(4, opr_sz_4);
302     i = 0;
303     do {
304         int8_t m0 = m_indexed[i * 4 + 0];
305         int8_t m1 = m_indexed[i * 4 + 1];
306         int8_t m2 = m_indexed[i * 4 + 2];
307         int8_t m3 = m_indexed[i * 4 + 3];
308 
309         do {
310             d[i] += n[i * 4 + 0] * m0
311                   + n[i * 4 + 1] * m1
312                   + n[i * 4 + 2] * m2
313                   + n[i * 4 + 3] * m3;
314         } while (++i < segend);
315         segend = i + 4;
316     } while (i < opr_sz_4);
317 
318     clear_tail(d, opr_sz, simd_maxsz(desc));
319 }
320 
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
322 {
323     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324     intptr_t index = simd_data(desc);
325     uint32_t *d = vd;
326     uint8_t *n = vn;
327     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
328 
329     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330      * Otherwise opr_sz is a multiple of 16.
331      */
332     segend = MIN(4, opr_sz_4);
333     i = 0;
334     do {
335         uint8_t m0 = m_indexed[i * 4 + 0];
336         uint8_t m1 = m_indexed[i * 4 + 1];
337         uint8_t m2 = m_indexed[i * 4 + 2];
338         uint8_t m3 = m_indexed[i * 4 + 3];
339 
340         do {
341             d[i] += n[i * 4 + 0] * m0
342                   + n[i * 4 + 1] * m1
343                   + n[i * 4 + 2] * m2
344                   + n[i * 4 + 3] * m3;
345         } while (++i < segend);
346         segend = i + 4;
347     } while (i < opr_sz_4);
348 
349     clear_tail(d, opr_sz, simd_maxsz(desc));
350 }
351 
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
353 {
354     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355     intptr_t index = simd_data(desc);
356     uint64_t *d = vd;
357     int16_t *n = vn;
358     int16_t *m_indexed = (int16_t *)vm + index * 4;
359 
360     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361      * Process the entire segment all at once, writing back the results
362      * only after we've consumed all of the inputs.
363      */
364     for (i = 0; i < opr_sz_8 ; i += 2) {
365         uint64_t d0, d1;
366 
367         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
375 
376         d[i + 0] += d0;
377         d[i + 1] += d1;
378     }
379 
380     clear_tail(d, opr_sz, simd_maxsz(desc));
381 }
382 
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
384 {
385     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386     intptr_t index = simd_data(desc);
387     uint64_t *d = vd;
388     uint16_t *n = vn;
389     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
390 
391     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392      * Process the entire segment all at once, writing back the results
393      * only after we've consumed all of the inputs.
394      */
395     for (i = 0; i < opr_sz_8 ; i += 2) {
396         uint64_t d0, d1;
397 
398         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
406 
407         d[i + 0] += d0;
408         d[i + 1] += d1;
409     }
410 
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float16 *d = vd;
419     float16 *n = vn;
420     float16 *m = vm;
421     float_status *fpst = vfpst;
422     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = neg_real ^ 1;
424     uintptr_t i;
425 
426     /* Shift boolean to the sign bit so we can xor to negate.  */
427     neg_real <<= 15;
428     neg_imag <<= 15;
429 
430     for (i = 0; i < opr_sz / 2; i += 2) {
431         float16 e0 = n[H2(i)];
432         float16 e1 = m[H2(i + 1)] ^ neg_imag;
433         float16 e2 = n[H2(i + 1)];
434         float16 e3 = m[H2(i)] ^ neg_real;
435 
436         d[H2(i)] = float16_add(e0, e1, fpst);
437         d[H2(i + 1)] = float16_add(e2, e3, fpst);
438     }
439     clear_tail(d, opr_sz, simd_maxsz(desc));
440 }
441 
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443                          void *vfpst, uint32_t desc)
444 {
445     uintptr_t opr_sz = simd_oprsz(desc);
446     float32 *d = vd;
447     float32 *n = vn;
448     float32 *m = vm;
449     float_status *fpst = vfpst;
450     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451     uint32_t neg_imag = neg_real ^ 1;
452     uintptr_t i;
453 
454     /* Shift boolean to the sign bit so we can xor to negate.  */
455     neg_real <<= 31;
456     neg_imag <<= 31;
457 
458     for (i = 0; i < opr_sz / 4; i += 2) {
459         float32 e0 = n[H4(i)];
460         float32 e1 = m[H4(i + 1)] ^ neg_imag;
461         float32 e2 = n[H4(i + 1)];
462         float32 e3 = m[H4(i)] ^ neg_real;
463 
464         d[H4(i)] = float32_add(e0, e1, fpst);
465         d[H4(i + 1)] = float32_add(e2, e3, fpst);
466     }
467     clear_tail(d, opr_sz, simd_maxsz(desc));
468 }
469 
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471                          void *vfpst, uint32_t desc)
472 {
473     uintptr_t opr_sz = simd_oprsz(desc);
474     float64 *d = vd;
475     float64 *n = vn;
476     float64 *m = vm;
477     float_status *fpst = vfpst;
478     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479     uint64_t neg_imag = neg_real ^ 1;
480     uintptr_t i;
481 
482     /* Shift boolean to the sign bit so we can xor to negate.  */
483     neg_real <<= 63;
484     neg_imag <<= 63;
485 
486     for (i = 0; i < opr_sz / 8; i += 2) {
487         float64 e0 = n[i];
488         float64 e1 = m[i + 1] ^ neg_imag;
489         float64 e2 = n[i + 1];
490         float64 e3 = m[i] ^ neg_real;
491 
492         d[i] = float64_add(e0, e1, fpst);
493         d[i + 1] = float64_add(e2, e3, fpst);
494     }
495     clear_tail(d, opr_sz, simd_maxsz(desc));
496 }
497 
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499                          void *vfpst, uint32_t desc)
500 {
501     uintptr_t opr_sz = simd_oprsz(desc);
502     float16 *d = vd;
503     float16 *n = vn;
504     float16 *m = vm;
505     float_status *fpst = vfpst;
506     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508     uint32_t neg_real = flip ^ neg_imag;
509     uintptr_t i;
510 
511     /* Shift boolean to the sign bit so we can xor to negate.  */
512     neg_real <<= 15;
513     neg_imag <<= 15;
514 
515     for (i = 0; i < opr_sz / 2; i += 2) {
516         float16 e2 = n[H2(i + flip)];
517         float16 e1 = m[H2(i + flip)] ^ neg_real;
518         float16 e4 = e2;
519         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
520 
521         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
523     }
524     clear_tail(d, opr_sz, simd_maxsz(desc));
525 }
526 
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528                              void *vfpst, uint32_t desc)
529 {
530     uintptr_t opr_sz = simd_oprsz(desc);
531     float16 *d = vd;
532     float16 *n = vn;
533     float16 *m = vm;
534     float_status *fpst = vfpst;
535     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538     uint32_t neg_real = flip ^ neg_imag;
539     intptr_t elements = opr_sz / sizeof(float16);
540     intptr_t eltspersegment = 16 / sizeof(float16);
541     intptr_t i, j;
542 
543     /* Shift boolean to the sign bit so we can xor to negate.  */
544     neg_real <<= 15;
545     neg_imag <<= 15;
546 
547     for (i = 0; i < elements; i += eltspersegment) {
548         float16 mr = m[H2(i + 2 * index + 0)];
549         float16 mi = m[H2(i + 2 * index + 1)];
550         float16 e1 = neg_real ^ (flip ? mi : mr);
551         float16 e3 = neg_imag ^ (flip ? mr : mi);
552 
553         for (j = i; j < i + eltspersegment; j += 2) {
554             float16 e2 = n[H2(j + flip)];
555             float16 e4 = e2;
556 
557             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
559         }
560     }
561     clear_tail(d, opr_sz, simd_maxsz(desc));
562 }
563 
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565                          void *vfpst, uint32_t desc)
566 {
567     uintptr_t opr_sz = simd_oprsz(desc);
568     float32 *d = vd;
569     float32 *n = vn;
570     float32 *m = vm;
571     float_status *fpst = vfpst;
572     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574     uint32_t neg_real = flip ^ neg_imag;
575     uintptr_t i;
576 
577     /* Shift boolean to the sign bit so we can xor to negate.  */
578     neg_real <<= 31;
579     neg_imag <<= 31;
580 
581     for (i = 0; i < opr_sz / 4; i += 2) {
582         float32 e2 = n[H4(i + flip)];
583         float32 e1 = m[H4(i + flip)] ^ neg_real;
584         float32 e4 = e2;
585         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
586 
587         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
589     }
590     clear_tail(d, opr_sz, simd_maxsz(desc));
591 }
592 
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594                              void *vfpst, uint32_t desc)
595 {
596     uintptr_t opr_sz = simd_oprsz(desc);
597     float32 *d = vd;
598     float32 *n = vn;
599     float32 *m = vm;
600     float_status *fpst = vfpst;
601     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604     uint32_t neg_real = flip ^ neg_imag;
605     intptr_t elements = opr_sz / sizeof(float32);
606     intptr_t eltspersegment = 16 / sizeof(float32);
607     intptr_t i, j;
608 
609     /* Shift boolean to the sign bit so we can xor to negate.  */
610     neg_real <<= 31;
611     neg_imag <<= 31;
612 
613     for (i = 0; i < elements; i += eltspersegment) {
614         float32 mr = m[H4(i + 2 * index + 0)];
615         float32 mi = m[H4(i + 2 * index + 1)];
616         float32 e1 = neg_real ^ (flip ? mi : mr);
617         float32 e3 = neg_imag ^ (flip ? mr : mi);
618 
619         for (j = i; j < i + eltspersegment; j += 2) {
620             float32 e2 = n[H4(j + flip)];
621             float32 e4 = e2;
622 
623             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
625         }
626     }
627     clear_tail(d, opr_sz, simd_maxsz(desc));
628 }
629 
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631                          void *vfpst, uint32_t desc)
632 {
633     uintptr_t opr_sz = simd_oprsz(desc);
634     float64 *d = vd;
635     float64 *n = vn;
636     float64 *m = vm;
637     float_status *fpst = vfpst;
638     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640     uint64_t neg_real = flip ^ neg_imag;
641     uintptr_t i;
642 
643     /* Shift boolean to the sign bit so we can xor to negate.  */
644     neg_real <<= 63;
645     neg_imag <<= 63;
646 
647     for (i = 0; i < opr_sz / 8; i += 2) {
648         float64 e2 = n[i + flip];
649         float64 e1 = m[i + flip] ^ neg_real;
650         float64 e4 = e2;
651         float64 e3 = m[i + 1 - flip] ^ neg_imag;
652 
653         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
655     }
656     clear_tail(d, opr_sz, simd_maxsz(desc));
657 }
658 
659 /*
660  * Floating point comparisons producing an integer result (all 1s or all 0s).
661  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
662  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
663  */
664 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
665 {
666     return -float16_eq_quiet(op1, op2, stat);
667 }
668 
669 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
670 {
671     return -float32_eq_quiet(op1, op2, stat);
672 }
673 
674 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
675 {
676     return -float16_le(op2, op1, stat);
677 }
678 
679 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
680 {
681     return -float32_le(op2, op1, stat);
682 }
683 
684 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
685 {
686     return -float16_lt(op2, op1, stat);
687 }
688 
689 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
690 {
691     return -float32_lt(op2, op1, stat);
692 }
693 
694 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
695 {
696     return -float16_le(float16_abs(op2), float16_abs(op1), stat);
697 }
698 
699 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
700 {
701     return -float32_le(float32_abs(op2), float32_abs(op1), stat);
702 }
703 
704 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
705 {
706     return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
707 }
708 
709 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
710 {
711     return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
712 }
713 
714 #define DO_2OP(NAME, FUNC, TYPE) \
715 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
716 {                                                                 \
717     intptr_t i, oprsz = simd_oprsz(desc);                         \
718     TYPE *d = vd, *n = vn;                                        \
719     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
720         d[i] = FUNC(n[i], stat);                                  \
721     }                                                             \
722     clear_tail(d, oprsz, simd_maxsz(desc));                       \
723 }
724 
725 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
726 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
727 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
728 
729 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
730 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
731 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
732 
733 #undef DO_2OP
734 
735 /* Floating-point trigonometric starting value.
736  * See the ARM ARM pseudocode function FPTrigSMul.
737  */
738 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
739 {
740     float16 result = float16_mul(op1, op1, stat);
741     if (!float16_is_any_nan(result)) {
742         result = float16_set_sign(result, op2 & 1);
743     }
744     return result;
745 }
746 
747 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
748 {
749     float32 result = float32_mul(op1, op1, stat);
750     if (!float32_is_any_nan(result)) {
751         result = float32_set_sign(result, op2 & 1);
752     }
753     return result;
754 }
755 
756 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
757 {
758     float64 result = float64_mul(op1, op1, stat);
759     if (!float64_is_any_nan(result)) {
760         result = float64_set_sign(result, op2 & 1);
761     }
762     return result;
763 }
764 
765 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
766 {
767     return float16_abs(float16_sub(op1, op2, stat));
768 }
769 
770 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
771 {
772     return float32_abs(float32_sub(op1, op2, stat));
773 }
774 
775 #define DO_3OP(NAME, FUNC, TYPE) \
776 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
777 {                                                                          \
778     intptr_t i, oprsz = simd_oprsz(desc);                                  \
779     TYPE *d = vd, *n = vn, *m = vm;                                        \
780     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
781         d[i] = FUNC(n[i], m[i], stat);                                     \
782     }                                                                      \
783     clear_tail(d, oprsz, simd_maxsz(desc));                                \
784 }
785 
786 DO_3OP(gvec_fadd_h, float16_add, float16)
787 DO_3OP(gvec_fadd_s, float32_add, float32)
788 DO_3OP(gvec_fadd_d, float64_add, float64)
789 
790 DO_3OP(gvec_fsub_h, float16_sub, float16)
791 DO_3OP(gvec_fsub_s, float32_sub, float32)
792 DO_3OP(gvec_fsub_d, float64_sub, float64)
793 
794 DO_3OP(gvec_fmul_h, float16_mul, float16)
795 DO_3OP(gvec_fmul_s, float32_mul, float32)
796 DO_3OP(gvec_fmul_d, float64_mul, float64)
797 
798 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
799 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
800 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
801 
802 DO_3OP(gvec_fabd_h, float16_abd, float16)
803 DO_3OP(gvec_fabd_s, float32_abd, float32)
804 
805 DO_3OP(gvec_fceq_h, float16_ceq, float16)
806 DO_3OP(gvec_fceq_s, float32_ceq, float32)
807 
808 DO_3OP(gvec_fcge_h, float16_cge, float16)
809 DO_3OP(gvec_fcge_s, float32_cge, float32)
810 
811 DO_3OP(gvec_fcgt_h, float16_cgt, float16)
812 DO_3OP(gvec_fcgt_s, float32_cgt, float32)
813 
814 DO_3OP(gvec_facge_h, float16_acge, float16)
815 DO_3OP(gvec_facge_s, float32_acge, float32)
816 
817 DO_3OP(gvec_facgt_h, float16_acgt, float16)
818 DO_3OP(gvec_facgt_s, float32_acgt, float32)
819 
820 #ifdef TARGET_AARCH64
821 
822 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
823 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
824 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
825 
826 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
827 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
828 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
829 
830 #endif
831 #undef DO_3OP
832 
833 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
834  * For AdvSIMD, there is of course only one such vector segment.
835  */
836 
837 #define DO_MUL_IDX(NAME, TYPE, H) \
838 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
839 {                                                                          \
840     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
841     intptr_t idx = simd_data(desc);                                        \
842     TYPE *d = vd, *n = vn, *m = vm;                                        \
843     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
844         TYPE mm = m[H(i + idx)];                                           \
845         for (j = 0; j < segment; j++) {                                    \
846             d[i + j] = n[i + j] * mm;                                      \
847         }                                                                  \
848     }                                                                      \
849     clear_tail(d, oprsz, simd_maxsz(desc));                                \
850 }
851 
852 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
853 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
854 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
855 
856 #undef DO_MUL_IDX
857 
858 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
859 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)   \
860 {                                                                          \
861     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
862     intptr_t idx = simd_data(desc);                                        \
863     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
864     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
865         TYPE mm = m[H(i + idx)];                                           \
866         for (j = 0; j < segment; j++) {                                    \
867             d[i + j] = a[i + j] OP n[i + j] * mm;                          \
868         }                                                                  \
869     }                                                                      \
870     clear_tail(d, oprsz, simd_maxsz(desc));                                \
871 }
872 
873 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
874 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
875 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +,   )
876 
877 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
878 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
879 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -,   )
880 
881 #undef DO_MLA_IDX
882 
883 #define DO_FMUL_IDX(NAME, TYPE, H) \
884 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
885 {                                                                          \
886     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
887     intptr_t idx = simd_data(desc);                                        \
888     TYPE *d = vd, *n = vn, *m = vm;                                        \
889     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
890         TYPE mm = m[H(i + idx)];                                           \
891         for (j = 0; j < segment; j++) {                                    \
892             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
893         }                                                                  \
894     }                                                                      \
895     clear_tail(d, oprsz, simd_maxsz(desc));                                \
896 }
897 
898 DO_FMUL_IDX(gvec_fmul_idx_h, float16, H2)
899 DO_FMUL_IDX(gvec_fmul_idx_s, float32, H4)
900 DO_FMUL_IDX(gvec_fmul_idx_d, float64, )
901 
902 #undef DO_FMUL_IDX
903 
904 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
905 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
906                   void *stat, uint32_t desc)                               \
907 {                                                                          \
908     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
909     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
910     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
911     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
912     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
913     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
914         TYPE mm = m[H(i + idx)];                                           \
915         for (j = 0; j < segment; j++) {                                    \
916             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
917                                      mm, a[i + j], 0, stat);               \
918         }                                                                  \
919     }                                                                      \
920     clear_tail(d, oprsz, simd_maxsz(desc));                                \
921 }
922 
923 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
924 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
925 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
926 
927 #undef DO_FMLA_IDX
928 
929 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
930 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
931 {                                                                          \
932     intptr_t i, oprsz = simd_oprsz(desc);                                  \
933     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
934     bool q = false;                                                        \
935     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
936         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
937         if (dd < MIN) {                                                    \
938             dd = MIN;                                                      \
939             q = true;                                                      \
940         } else if (dd > MAX) {                                             \
941             dd = MAX;                                                      \
942             q = true;                                                      \
943         }                                                                  \
944         d[i] = dd;                                                         \
945     }                                                                      \
946     if (q) {                                                               \
947         uint32_t *qc = vq;                                                 \
948         qc[0] = 1;                                                         \
949     }                                                                      \
950     clear_tail(d, oprsz, simd_maxsz(desc));                                \
951 }
952 
953 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
954 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
955 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
956 
957 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
958 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
959 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
960 
961 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
962 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
963 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
964 
965 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
966 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
967 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
968 
969 #undef DO_SAT
970 
971 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
972                           void *vm, uint32_t desc)
973 {
974     intptr_t i, oprsz = simd_oprsz(desc);
975     uint64_t *d = vd, *n = vn, *m = vm;
976     bool q = false;
977 
978     for (i = 0; i < oprsz / 8; i++) {
979         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
980         if (dd < nn) {
981             dd = UINT64_MAX;
982             q = true;
983         }
984         d[i] = dd;
985     }
986     if (q) {
987         uint32_t *qc = vq;
988         qc[0] = 1;
989     }
990     clear_tail(d, oprsz, simd_maxsz(desc));
991 }
992 
993 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
994                           void *vm, uint32_t desc)
995 {
996     intptr_t i, oprsz = simd_oprsz(desc);
997     uint64_t *d = vd, *n = vn, *m = vm;
998     bool q = false;
999 
1000     for (i = 0; i < oprsz / 8; i++) {
1001         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
1002         if (nn < mm) {
1003             dd = 0;
1004             q = true;
1005         }
1006         d[i] = dd;
1007     }
1008     if (q) {
1009         uint32_t *qc = vq;
1010         qc[0] = 1;
1011     }
1012     clear_tail(d, oprsz, simd_maxsz(desc));
1013 }
1014 
1015 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
1016                           void *vm, uint32_t desc)
1017 {
1018     intptr_t i, oprsz = simd_oprsz(desc);
1019     int64_t *d = vd, *n = vn, *m = vm;
1020     bool q = false;
1021 
1022     for (i = 0; i < oprsz / 8; i++) {
1023         int64_t nn = n[i], mm = m[i], dd = nn + mm;
1024         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
1025             dd = (nn >> 63) ^ ~INT64_MIN;
1026             q = true;
1027         }
1028         d[i] = dd;
1029     }
1030     if (q) {
1031         uint32_t *qc = vq;
1032         qc[0] = 1;
1033     }
1034     clear_tail(d, oprsz, simd_maxsz(desc));
1035 }
1036 
1037 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
1038                           void *vm, uint32_t desc)
1039 {
1040     intptr_t i, oprsz = simd_oprsz(desc);
1041     int64_t *d = vd, *n = vn, *m = vm;
1042     bool q = false;
1043 
1044     for (i = 0; i < oprsz / 8; i++) {
1045         int64_t nn = n[i], mm = m[i], dd = nn - mm;
1046         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
1047             dd = (nn >> 63) ^ ~INT64_MIN;
1048             q = true;
1049         }
1050         d[i] = dd;
1051     }
1052     if (q) {
1053         uint32_t *qc = vq;
1054         qc[0] = 1;
1055     }
1056     clear_tail(d, oprsz, simd_maxsz(desc));
1057 }
1058 
1059 
1060 #define DO_SRA(NAME, TYPE)                              \
1061 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1062 {                                                       \
1063     intptr_t i, oprsz = simd_oprsz(desc);               \
1064     int shift = simd_data(desc);                        \
1065     TYPE *d = vd, *n = vn;                              \
1066     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1067         d[i] += n[i] >> shift;                          \
1068     }                                                   \
1069     clear_tail(d, oprsz, simd_maxsz(desc));             \
1070 }
1071 
1072 DO_SRA(gvec_ssra_b, int8_t)
1073 DO_SRA(gvec_ssra_h, int16_t)
1074 DO_SRA(gvec_ssra_s, int32_t)
1075 DO_SRA(gvec_ssra_d, int64_t)
1076 
1077 DO_SRA(gvec_usra_b, uint8_t)
1078 DO_SRA(gvec_usra_h, uint16_t)
1079 DO_SRA(gvec_usra_s, uint32_t)
1080 DO_SRA(gvec_usra_d, uint64_t)
1081 
1082 #undef DO_SRA
1083 
1084 #define DO_RSHR(NAME, TYPE)                             \
1085 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1086 {                                                       \
1087     intptr_t i, oprsz = simd_oprsz(desc);               \
1088     int shift = simd_data(desc);                        \
1089     TYPE *d = vd, *n = vn;                              \
1090     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1091         TYPE tmp = n[i] >> (shift - 1);                 \
1092         d[i] = (tmp >> 1) + (tmp & 1);                  \
1093     }                                                   \
1094     clear_tail(d, oprsz, simd_maxsz(desc));             \
1095 }
1096 
1097 DO_RSHR(gvec_srshr_b, int8_t)
1098 DO_RSHR(gvec_srshr_h, int16_t)
1099 DO_RSHR(gvec_srshr_s, int32_t)
1100 DO_RSHR(gvec_srshr_d, int64_t)
1101 
1102 DO_RSHR(gvec_urshr_b, uint8_t)
1103 DO_RSHR(gvec_urshr_h, uint16_t)
1104 DO_RSHR(gvec_urshr_s, uint32_t)
1105 DO_RSHR(gvec_urshr_d, uint64_t)
1106 
1107 #undef DO_RSHR
1108 
1109 #define DO_RSRA(NAME, TYPE)                             \
1110 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1111 {                                                       \
1112     intptr_t i, oprsz = simd_oprsz(desc);               \
1113     int shift = simd_data(desc);                        \
1114     TYPE *d = vd, *n = vn;                              \
1115     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1116         TYPE tmp = n[i] >> (shift - 1);                 \
1117         d[i] += (tmp >> 1) + (tmp & 1);                 \
1118     }                                                   \
1119     clear_tail(d, oprsz, simd_maxsz(desc));             \
1120 }
1121 
1122 DO_RSRA(gvec_srsra_b, int8_t)
1123 DO_RSRA(gvec_srsra_h, int16_t)
1124 DO_RSRA(gvec_srsra_s, int32_t)
1125 DO_RSRA(gvec_srsra_d, int64_t)
1126 
1127 DO_RSRA(gvec_ursra_b, uint8_t)
1128 DO_RSRA(gvec_ursra_h, uint16_t)
1129 DO_RSRA(gvec_ursra_s, uint32_t)
1130 DO_RSRA(gvec_ursra_d, uint64_t)
1131 
1132 #undef DO_RSRA
1133 
1134 #define DO_SRI(NAME, TYPE)                              \
1135 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1136 {                                                       \
1137     intptr_t i, oprsz = simd_oprsz(desc);               \
1138     int shift = simd_data(desc);                        \
1139     TYPE *d = vd, *n = vn;                              \
1140     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1141         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1142     }                                                   \
1143     clear_tail(d, oprsz, simd_maxsz(desc));             \
1144 }
1145 
1146 DO_SRI(gvec_sri_b, uint8_t)
1147 DO_SRI(gvec_sri_h, uint16_t)
1148 DO_SRI(gvec_sri_s, uint32_t)
1149 DO_SRI(gvec_sri_d, uint64_t)
1150 
1151 #undef DO_SRI
1152 
1153 #define DO_SLI(NAME, TYPE)                              \
1154 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1155 {                                                       \
1156     intptr_t i, oprsz = simd_oprsz(desc);               \
1157     int shift = simd_data(desc);                        \
1158     TYPE *d = vd, *n = vn;                              \
1159     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1160         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1161     }                                                   \
1162     clear_tail(d, oprsz, simd_maxsz(desc));             \
1163 }
1164 
1165 DO_SLI(gvec_sli_b, uint8_t)
1166 DO_SLI(gvec_sli_h, uint16_t)
1167 DO_SLI(gvec_sli_s, uint32_t)
1168 DO_SLI(gvec_sli_d, uint64_t)
1169 
1170 #undef DO_SLI
1171 
1172 /*
1173  * Convert float16 to float32, raising no exceptions and
1174  * preserving exceptional values, including SNaN.
1175  * This is effectively an unpack+repack operation.
1176  */
1177 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1178 {
1179     const int f16_bias = 15;
1180     const int f32_bias = 127;
1181     uint32_t sign = extract32(f16, 15, 1);
1182     uint32_t exp = extract32(f16, 10, 5);
1183     uint32_t frac = extract32(f16, 0, 10);
1184 
1185     if (exp == 0x1f) {
1186         /* Inf or NaN */
1187         exp = 0xff;
1188     } else if (exp == 0) {
1189         /* Zero or denormal.  */
1190         if (frac != 0) {
1191             if (fz16) {
1192                 frac = 0;
1193             } else {
1194                 /*
1195                  * Denormal; these are all normal float32.
1196                  * Shift the fraction so that the msb is at bit 11,
1197                  * then remove bit 11 as the implicit bit of the
1198                  * normalized float32.  Note that we still go through
1199                  * the shift for normal numbers below, to put the
1200                  * float32 fraction at the right place.
1201                  */
1202                 int shift = clz32(frac) - 21;
1203                 frac = (frac << shift) & 0x3ff;
1204                 exp = f32_bias - f16_bias - shift + 1;
1205             }
1206         }
1207     } else {
1208         /* Normal number; adjust the bias.  */
1209         exp += f32_bias - f16_bias;
1210     }
1211     sign <<= 31;
1212     exp <<= 23;
1213     frac <<= 23 - 10;
1214 
1215     return sign | exp | frac;
1216 }
1217 
1218 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1219 {
1220     /*
1221      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1222      * Load the 2nd qword iff is_q & is_2.
1223      * Shift to the 2nd dword iff !is_q & is_2.
1224      * For !is_q & !is_2, the upper bits of the result are garbage.
1225      */
1226     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1227 }
1228 
1229 /*
1230  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1231  * as there is not yet SVE versions that might use blocking.
1232  */
1233 
1234 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1235                      uint32_t desc, bool fz16)
1236 {
1237     intptr_t i, oprsz = simd_oprsz(desc);
1238     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1239     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1240     int is_q = oprsz == 16;
1241     uint64_t n_4, m_4;
1242 
1243     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1244     n_4 = load4_f16(vn, is_q, is_2);
1245     m_4 = load4_f16(vm, is_q, is_2);
1246 
1247     /* Negate all inputs for FMLSL at once.  */
1248     if (is_s) {
1249         n_4 ^= 0x8000800080008000ull;
1250     }
1251 
1252     for (i = 0; i < oprsz / 4; i++) {
1253         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1254         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1255         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1256     }
1257     clear_tail(d, oprsz, simd_maxsz(desc));
1258 }
1259 
1260 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1261                             void *venv, uint32_t desc)
1262 {
1263     CPUARMState *env = venv;
1264     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1265              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1266 }
1267 
1268 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1269                             void *venv, uint32_t desc)
1270 {
1271     CPUARMState *env = venv;
1272     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1273              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1274 }
1275 
1276 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1277                          uint32_t desc, bool fz16)
1278 {
1279     intptr_t i, oprsz = simd_oprsz(desc);
1280     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1281     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1282     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1283     int is_q = oprsz == 16;
1284     uint64_t n_4;
1285     float32 m_1;
1286 
1287     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1288     n_4 = load4_f16(vn, is_q, is_2);
1289 
1290     /* Negate all inputs for FMLSL at once.  */
1291     if (is_s) {
1292         n_4 ^= 0x8000800080008000ull;
1293     }
1294 
1295     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1296 
1297     for (i = 0; i < oprsz / 4; i++) {
1298         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1299         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1300     }
1301     clear_tail(d, oprsz, simd_maxsz(desc));
1302 }
1303 
1304 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1305                                 void *venv, uint32_t desc)
1306 {
1307     CPUARMState *env = venv;
1308     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1309                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1310 }
1311 
1312 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1313                                 void *venv, uint32_t desc)
1314 {
1315     CPUARMState *env = venv;
1316     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1317                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1318 }
1319 
1320 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1321 {
1322     intptr_t i, opr_sz = simd_oprsz(desc);
1323     int8_t *d = vd, *n = vn, *m = vm;
1324 
1325     for (i = 0; i < opr_sz; ++i) {
1326         int8_t mm = m[i];
1327         int8_t nn = n[i];
1328         int8_t res = 0;
1329         if (mm >= 0) {
1330             if (mm < 8) {
1331                 res = nn << mm;
1332             }
1333         } else {
1334             res = nn >> (mm > -8 ? -mm : 7);
1335         }
1336         d[i] = res;
1337     }
1338     clear_tail(d, opr_sz, simd_maxsz(desc));
1339 }
1340 
1341 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1342 {
1343     intptr_t i, opr_sz = simd_oprsz(desc);
1344     int16_t *d = vd, *n = vn, *m = vm;
1345 
1346     for (i = 0; i < opr_sz / 2; ++i) {
1347         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1348         int16_t nn = n[i];
1349         int16_t res = 0;
1350         if (mm >= 0) {
1351             if (mm < 16) {
1352                 res = nn << mm;
1353             }
1354         } else {
1355             res = nn >> (mm > -16 ? -mm : 15);
1356         }
1357         d[i] = res;
1358     }
1359     clear_tail(d, opr_sz, simd_maxsz(desc));
1360 }
1361 
1362 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1363 {
1364     intptr_t i, opr_sz = simd_oprsz(desc);
1365     uint8_t *d = vd, *n = vn, *m = vm;
1366 
1367     for (i = 0; i < opr_sz; ++i) {
1368         int8_t mm = m[i];
1369         uint8_t nn = n[i];
1370         uint8_t res = 0;
1371         if (mm >= 0) {
1372             if (mm < 8) {
1373                 res = nn << mm;
1374             }
1375         } else {
1376             if (mm > -8) {
1377                 res = nn >> -mm;
1378             }
1379         }
1380         d[i] = res;
1381     }
1382     clear_tail(d, opr_sz, simd_maxsz(desc));
1383 }
1384 
1385 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1386 {
1387     intptr_t i, opr_sz = simd_oprsz(desc);
1388     uint16_t *d = vd, *n = vn, *m = vm;
1389 
1390     for (i = 0; i < opr_sz / 2; ++i) {
1391         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1392         uint16_t nn = n[i];
1393         uint16_t res = 0;
1394         if (mm >= 0) {
1395             if (mm < 16) {
1396                 res = nn << mm;
1397             }
1398         } else {
1399             if (mm > -16) {
1400                 res = nn >> -mm;
1401             }
1402         }
1403         d[i] = res;
1404     }
1405     clear_tail(d, opr_sz, simd_maxsz(desc));
1406 }
1407 
1408 /*
1409  * 8x8->8 polynomial multiply.
1410  *
1411  * Polynomial multiplication is like integer multiplication except the
1412  * partial products are XORed, not added.
1413  *
1414  * TODO: expose this as a generic vector operation, as it is a common
1415  * crypto building block.
1416  */
1417 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1418 {
1419     intptr_t i, j, opr_sz = simd_oprsz(desc);
1420     uint64_t *d = vd, *n = vn, *m = vm;
1421 
1422     for (i = 0; i < opr_sz / 8; ++i) {
1423         uint64_t nn = n[i];
1424         uint64_t mm = m[i];
1425         uint64_t rr = 0;
1426 
1427         for (j = 0; j < 8; ++j) {
1428             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1429             rr ^= mm & mask;
1430             mm = (mm << 1) & 0xfefefefefefefefeull;
1431             nn >>= 1;
1432         }
1433         d[i] = rr;
1434     }
1435     clear_tail(d, opr_sz, simd_maxsz(desc));
1436 }
1437 
1438 /*
1439  * 64x64->128 polynomial multiply.
1440  * Because of the lanes are not accessed in strict columns,
1441  * this probably cannot be turned into a generic helper.
1442  */
1443 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1444 {
1445     intptr_t i, j, opr_sz = simd_oprsz(desc);
1446     intptr_t hi = simd_data(desc);
1447     uint64_t *d = vd, *n = vn, *m = vm;
1448 
1449     for (i = 0; i < opr_sz / 8; i += 2) {
1450         uint64_t nn = n[i + hi];
1451         uint64_t mm = m[i + hi];
1452         uint64_t rhi = 0;
1453         uint64_t rlo = 0;
1454 
1455         /* Bit 0 can only influence the low 64-bit result.  */
1456         if (nn & 1) {
1457             rlo = mm;
1458         }
1459 
1460         for (j = 1; j < 64; ++j) {
1461             uint64_t mask = -((nn >> j) & 1);
1462             rlo ^= (mm << j) & mask;
1463             rhi ^= (mm >> (64 - j)) & mask;
1464         }
1465         d[i] = rlo;
1466         d[i + 1] = rhi;
1467     }
1468     clear_tail(d, opr_sz, simd_maxsz(desc));
1469 }
1470 
1471 /*
1472  * 8x8->16 polynomial multiply.
1473  *
1474  * The byte inputs are expanded to (or extracted from) half-words.
1475  * Note that neon and sve2 get the inputs from different positions.
1476  * This allows 4 bytes to be processed in parallel with uint64_t.
1477  */
1478 
1479 static uint64_t expand_byte_to_half(uint64_t x)
1480 {
1481     return  (x & 0x000000ff)
1482          | ((x & 0x0000ff00) << 8)
1483          | ((x & 0x00ff0000) << 16)
1484          | ((x & 0xff000000) << 24);
1485 }
1486 
1487 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1488 {
1489     uint64_t result = 0;
1490     int i;
1491 
1492     for (i = 0; i < 8; ++i) {
1493         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1494         result ^= op2 & mask;
1495         op1 >>= 1;
1496         op2 <<= 1;
1497     }
1498     return result;
1499 }
1500 
1501 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1502 {
1503     int hi = simd_data(desc);
1504     uint64_t *d = vd, *n = vn, *m = vm;
1505     uint64_t nn = n[hi], mm = m[hi];
1506 
1507     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1508     nn >>= 32;
1509     mm >>= 32;
1510     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1511 
1512     clear_tail(d, 16, simd_maxsz(desc));
1513 }
1514 
1515 #ifdef TARGET_AARCH64
1516 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1517 {
1518     int shift = simd_data(desc) * 8;
1519     intptr_t i, opr_sz = simd_oprsz(desc);
1520     uint64_t *d = vd, *n = vn, *m = vm;
1521 
1522     for (i = 0; i < opr_sz / 8; ++i) {
1523         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1524         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1525 
1526         d[i] = pmull_h(nn, mm);
1527     }
1528 }
1529 #endif
1530 
1531 #define DO_CMP0(NAME, TYPE, OP)                         \
1532 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1533 {                                                       \
1534     intptr_t i, opr_sz = simd_oprsz(desc);              \
1535     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1536         TYPE nn = *(TYPE *)(vn + i);                    \
1537         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1538     }                                                   \
1539     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1540 }
1541 
1542 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1543 DO_CMP0(gvec_clt0_b, int8_t, <)
1544 DO_CMP0(gvec_cle0_b, int8_t, <=)
1545 DO_CMP0(gvec_cgt0_b, int8_t, >)
1546 DO_CMP0(gvec_cge0_b, int8_t, >=)
1547 
1548 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1549 DO_CMP0(gvec_clt0_h, int16_t, <)
1550 DO_CMP0(gvec_cle0_h, int16_t, <=)
1551 DO_CMP0(gvec_cgt0_h, int16_t, >)
1552 DO_CMP0(gvec_cge0_h, int16_t, >=)
1553 
1554 #undef DO_CMP0
1555 
1556 #define DO_ABD(NAME, TYPE)                                      \
1557 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1558 {                                                               \
1559     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1560     TYPE *d = vd, *n = vn, *m = vm;                             \
1561                                                                 \
1562     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1563         d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];         \
1564     }                                                           \
1565     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1566 }
1567 
1568 DO_ABD(gvec_sabd_b, int8_t)
1569 DO_ABD(gvec_sabd_h, int16_t)
1570 DO_ABD(gvec_sabd_s, int32_t)
1571 DO_ABD(gvec_sabd_d, int64_t)
1572 
1573 DO_ABD(gvec_uabd_b, uint8_t)
1574 DO_ABD(gvec_uabd_h, uint16_t)
1575 DO_ABD(gvec_uabd_s, uint32_t)
1576 DO_ABD(gvec_uabd_d, uint64_t)
1577 
1578 #undef DO_ABD
1579 
1580 #define DO_ABA(NAME, TYPE)                                      \
1581 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1582 {                                                               \
1583     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1584     TYPE *d = vd, *n = vn, *m = vm;                             \
1585                                                                 \
1586     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1587         d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];        \
1588     }                                                           \
1589     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1590 }
1591 
1592 DO_ABA(gvec_saba_b, int8_t)
1593 DO_ABA(gvec_saba_h, int16_t)
1594 DO_ABA(gvec_saba_s, int32_t)
1595 DO_ABA(gvec_saba_d, int64_t)
1596 
1597 DO_ABA(gvec_uaba_b, uint8_t)
1598 DO_ABA(gvec_uaba_h, uint16_t)
1599 DO_ABA(gvec_uaba_s, uint32_t)
1600 DO_ABA(gvec_uaba_d, uint64_t)
1601 
1602 #undef DO_ABA
1603