xref: /qemu/target/arm/tcg/vec_helper.c (revision ac8c62c4e5a3f24e6d47f52ec1bfb20994caefa5)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41                              bool neg, bool round, uint32_t *sat)
42 {
43     /*
44      * Simplify:
45      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47      */
48     int32_t ret = (int32_t)src1 * src2;
49     if (neg) {
50         ret = -ret;
51     }
52     ret += ((int32_t)src3 << 15) + (round << 14);
53     ret >>= 15;
54 
55     if (ret != (int16_t)ret) {
56         *sat = 1;
57         ret = (ret < 0 ? INT16_MIN : INT16_MAX);
58     }
59     return ret;
60 }
61 
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63                                   uint32_t src2, uint32_t src3)
64 {
65     uint32_t *sat = &env->vfp.qc[0];
66     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68                                 false, true, sat);
69     return deposit32(e1, 16, 16, e2);
70 }
71 
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73                               void *vq, uint32_t desc)
74 {
75     uintptr_t opr_sz = simd_oprsz(desc);
76     int16_t *d = vd;
77     int16_t *n = vn;
78     int16_t *m = vm;
79     uintptr_t i;
80 
81     for (i = 0; i < opr_sz / 2; ++i) {
82         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
83     }
84     clear_tail(d, opr_sz, simd_maxsz(desc));
85 }
86 
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88                                   uint32_t src2, uint32_t src3)
89 {
90     uint32_t *sat = &env->vfp.qc[0];
91     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93                                 true, true, sat);
94     return deposit32(e1, 16, 16, e2);
95 }
96 
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98                               void *vq, uint32_t desc)
99 {
100     uintptr_t opr_sz = simd_oprsz(desc);
101     int16_t *d = vd;
102     int16_t *n = vn;
103     int16_t *m = vm;
104     uintptr_t i;
105 
106     for (i = 0; i < opr_sz / 2; ++i) {
107         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
108     }
109     clear_tail(d, opr_sz, simd_maxsz(desc));
110 }
111 
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113                             void *vq, uint32_t desc)
114 {
115     intptr_t i, opr_sz = simd_oprsz(desc);
116     int16_t *d = vd, *n = vn, *m = vm;
117 
118     for (i = 0; i < opr_sz / 2; ++i) {
119         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
120     }
121     clear_tail(d, opr_sz, simd_maxsz(desc));
122 }
123 
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125                              void *vq, uint32_t desc)
126 {
127     intptr_t i, opr_sz = simd_oprsz(desc);
128     int16_t *d = vd, *n = vn, *m = vm;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138                              bool neg, bool round, uint32_t *sat)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     if (neg) {
143         ret = -ret;
144     }
145     ret += ((int64_t)src3 << 31) + (round << 30);
146     ret >>= 31;
147 
148     if (ret != (int32_t)ret) {
149         *sat = 1;
150         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
151     }
152     return ret;
153 }
154 
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156                                   int32_t src2, int32_t src3)
157 {
158     uint32_t *sat = &env->vfp.qc[0];
159     return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
160 }
161 
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163                               void *vq, uint32_t desc)
164 {
165     uintptr_t opr_sz = simd_oprsz(desc);
166     int32_t *d = vd;
167     int32_t *n = vn;
168     int32_t *m = vm;
169     uintptr_t i;
170 
171     for (i = 0; i < opr_sz / 4; ++i) {
172         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
173     }
174     clear_tail(d, opr_sz, simd_maxsz(desc));
175 }
176 
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178                                   int32_t src2, int32_t src3)
179 {
180     uint32_t *sat = &env->vfp.qc[0];
181     return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
182 }
183 
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185                               void *vq, uint32_t desc)
186 {
187     uintptr_t opr_sz = simd_oprsz(desc);
188     int32_t *d = vd;
189     int32_t *n = vn;
190     int32_t *m = vm;
191     uintptr_t i;
192 
193     for (i = 0; i < opr_sz / 4; ++i) {
194         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
195     }
196     clear_tail(d, opr_sz, simd_maxsz(desc));
197 }
198 
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200                             void *vq, uint32_t desc)
201 {
202     intptr_t i, opr_sz = simd_oprsz(desc);
203     int32_t *d = vd, *n = vn, *m = vm;
204 
205     for (i = 0; i < opr_sz / 4; ++i) {
206         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
207     }
208     clear_tail(d, opr_sz, simd_maxsz(desc));
209 }
210 
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212                              void *vq, uint32_t desc)
213 {
214     intptr_t i, opr_sz = simd_oprsz(desc);
215     int32_t *d = vd, *n = vn, *m = vm;
216 
217     for (i = 0; i < opr_sz / 4; ++i) {
218         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
219     }
220     clear_tail(d, opr_sz, simd_maxsz(desc));
221 }
222 
223 /* Integer 8 and 16-bit dot-product.
224  *
225  * Note that for the loops herein, host endianness does not matter
226  * with respect to the ordering of data within the 64-bit lanes.
227  * All elements are treated equally, no matter where they are.
228  */
229 
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 {
232     intptr_t i, opr_sz = simd_oprsz(desc);
233     uint32_t *d = vd;
234     int8_t *n = vn, *m = vm;
235 
236     for (i = 0; i < opr_sz / 4; ++i) {
237         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238               + n[i * 4 + 1] * m[i * 4 + 1]
239               + n[i * 4 + 2] * m[i * 4 + 2]
240               + n[i * 4 + 3] * m[i * 4 + 3];
241     }
242     clear_tail(d, opr_sz, simd_maxsz(desc));
243 }
244 
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
246 {
247     intptr_t i, opr_sz = simd_oprsz(desc);
248     uint32_t *d = vd;
249     uint8_t *n = vn, *m = vm;
250 
251     for (i = 0; i < opr_sz / 4; ++i) {
252         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253               + n[i * 4 + 1] * m[i * 4 + 1]
254               + n[i * 4 + 2] * m[i * 4 + 2]
255               + n[i * 4 + 3] * m[i * 4 + 3];
256     }
257     clear_tail(d, opr_sz, simd_maxsz(desc));
258 }
259 
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 {
262     intptr_t i, opr_sz = simd_oprsz(desc);
263     uint64_t *d = vd;
264     int16_t *n = vn, *m = vm;
265 
266     for (i = 0; i < opr_sz / 8; ++i) {
267         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
271     }
272     clear_tail(d, opr_sz, simd_maxsz(desc));
273 }
274 
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
276 {
277     intptr_t i, opr_sz = simd_oprsz(desc);
278     uint64_t *d = vd;
279     uint16_t *n = vn, *m = vm;
280 
281     for (i = 0; i < opr_sz / 8; ++i) {
282         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
286     }
287     clear_tail(d, opr_sz, simd_maxsz(desc));
288 }
289 
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
291 {
292     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293     intptr_t index = simd_data(desc);
294     uint32_t *d = vd;
295     int8_t *n = vn;
296     int8_t *m_indexed = (int8_t *)vm + index * 4;
297 
298     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299      * Otherwise opr_sz is a multiple of 16.
300      */
301     segend = MIN(4, opr_sz_4);
302     i = 0;
303     do {
304         int8_t m0 = m_indexed[i * 4 + 0];
305         int8_t m1 = m_indexed[i * 4 + 1];
306         int8_t m2 = m_indexed[i * 4 + 2];
307         int8_t m3 = m_indexed[i * 4 + 3];
308 
309         do {
310             d[i] += n[i * 4 + 0] * m0
311                   + n[i * 4 + 1] * m1
312                   + n[i * 4 + 2] * m2
313                   + n[i * 4 + 3] * m3;
314         } while (++i < segend);
315         segend = i + 4;
316     } while (i < opr_sz_4);
317 
318     clear_tail(d, opr_sz, simd_maxsz(desc));
319 }
320 
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
322 {
323     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324     intptr_t index = simd_data(desc);
325     uint32_t *d = vd;
326     uint8_t *n = vn;
327     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
328 
329     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330      * Otherwise opr_sz is a multiple of 16.
331      */
332     segend = MIN(4, opr_sz_4);
333     i = 0;
334     do {
335         uint8_t m0 = m_indexed[i * 4 + 0];
336         uint8_t m1 = m_indexed[i * 4 + 1];
337         uint8_t m2 = m_indexed[i * 4 + 2];
338         uint8_t m3 = m_indexed[i * 4 + 3];
339 
340         do {
341             d[i] += n[i * 4 + 0] * m0
342                   + n[i * 4 + 1] * m1
343                   + n[i * 4 + 2] * m2
344                   + n[i * 4 + 3] * m3;
345         } while (++i < segend);
346         segend = i + 4;
347     } while (i < opr_sz_4);
348 
349     clear_tail(d, opr_sz, simd_maxsz(desc));
350 }
351 
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
353 {
354     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355     intptr_t index = simd_data(desc);
356     uint64_t *d = vd;
357     int16_t *n = vn;
358     int16_t *m_indexed = (int16_t *)vm + index * 4;
359 
360     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361      * Process the entire segment all at once, writing back the results
362      * only after we've consumed all of the inputs.
363      */
364     for (i = 0; i < opr_sz_8 ; i += 2) {
365         uint64_t d0, d1;
366 
367         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
375 
376         d[i + 0] += d0;
377         d[i + 1] += d1;
378     }
379 
380     clear_tail(d, opr_sz, simd_maxsz(desc));
381 }
382 
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
384 {
385     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386     intptr_t index = simd_data(desc);
387     uint64_t *d = vd;
388     uint16_t *n = vn;
389     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
390 
391     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392      * Process the entire segment all at once, writing back the results
393      * only after we've consumed all of the inputs.
394      */
395     for (i = 0; i < opr_sz_8 ; i += 2) {
396         uint64_t d0, d1;
397 
398         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
406 
407         d[i + 0] += d0;
408         d[i + 1] += d1;
409     }
410 
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float16 *d = vd;
419     float16 *n = vn;
420     float16 *m = vm;
421     float_status *fpst = vfpst;
422     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = neg_real ^ 1;
424     uintptr_t i;
425 
426     /* Shift boolean to the sign bit so we can xor to negate.  */
427     neg_real <<= 15;
428     neg_imag <<= 15;
429 
430     for (i = 0; i < opr_sz / 2; i += 2) {
431         float16 e0 = n[H2(i)];
432         float16 e1 = m[H2(i + 1)] ^ neg_imag;
433         float16 e2 = n[H2(i + 1)];
434         float16 e3 = m[H2(i)] ^ neg_real;
435 
436         d[H2(i)] = float16_add(e0, e1, fpst);
437         d[H2(i + 1)] = float16_add(e2, e3, fpst);
438     }
439     clear_tail(d, opr_sz, simd_maxsz(desc));
440 }
441 
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443                          void *vfpst, uint32_t desc)
444 {
445     uintptr_t opr_sz = simd_oprsz(desc);
446     float32 *d = vd;
447     float32 *n = vn;
448     float32 *m = vm;
449     float_status *fpst = vfpst;
450     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451     uint32_t neg_imag = neg_real ^ 1;
452     uintptr_t i;
453 
454     /* Shift boolean to the sign bit so we can xor to negate.  */
455     neg_real <<= 31;
456     neg_imag <<= 31;
457 
458     for (i = 0; i < opr_sz / 4; i += 2) {
459         float32 e0 = n[H4(i)];
460         float32 e1 = m[H4(i + 1)] ^ neg_imag;
461         float32 e2 = n[H4(i + 1)];
462         float32 e3 = m[H4(i)] ^ neg_real;
463 
464         d[H4(i)] = float32_add(e0, e1, fpst);
465         d[H4(i + 1)] = float32_add(e2, e3, fpst);
466     }
467     clear_tail(d, opr_sz, simd_maxsz(desc));
468 }
469 
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471                          void *vfpst, uint32_t desc)
472 {
473     uintptr_t opr_sz = simd_oprsz(desc);
474     float64 *d = vd;
475     float64 *n = vn;
476     float64 *m = vm;
477     float_status *fpst = vfpst;
478     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479     uint64_t neg_imag = neg_real ^ 1;
480     uintptr_t i;
481 
482     /* Shift boolean to the sign bit so we can xor to negate.  */
483     neg_real <<= 63;
484     neg_imag <<= 63;
485 
486     for (i = 0; i < opr_sz / 8; i += 2) {
487         float64 e0 = n[i];
488         float64 e1 = m[i + 1] ^ neg_imag;
489         float64 e2 = n[i + 1];
490         float64 e3 = m[i] ^ neg_real;
491 
492         d[i] = float64_add(e0, e1, fpst);
493         d[i + 1] = float64_add(e2, e3, fpst);
494     }
495     clear_tail(d, opr_sz, simd_maxsz(desc));
496 }
497 
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499                          void *vfpst, uint32_t desc)
500 {
501     uintptr_t opr_sz = simd_oprsz(desc);
502     float16 *d = vd;
503     float16 *n = vn;
504     float16 *m = vm;
505     float_status *fpst = vfpst;
506     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508     uint32_t neg_real = flip ^ neg_imag;
509     uintptr_t i;
510 
511     /* Shift boolean to the sign bit so we can xor to negate.  */
512     neg_real <<= 15;
513     neg_imag <<= 15;
514 
515     for (i = 0; i < opr_sz / 2; i += 2) {
516         float16 e2 = n[H2(i + flip)];
517         float16 e1 = m[H2(i + flip)] ^ neg_real;
518         float16 e4 = e2;
519         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
520 
521         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
523     }
524     clear_tail(d, opr_sz, simd_maxsz(desc));
525 }
526 
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528                              void *vfpst, uint32_t desc)
529 {
530     uintptr_t opr_sz = simd_oprsz(desc);
531     float16 *d = vd;
532     float16 *n = vn;
533     float16 *m = vm;
534     float_status *fpst = vfpst;
535     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538     uint32_t neg_real = flip ^ neg_imag;
539     intptr_t elements = opr_sz / sizeof(float16);
540     intptr_t eltspersegment = 16 / sizeof(float16);
541     intptr_t i, j;
542 
543     /* Shift boolean to the sign bit so we can xor to negate.  */
544     neg_real <<= 15;
545     neg_imag <<= 15;
546 
547     for (i = 0; i < elements; i += eltspersegment) {
548         float16 mr = m[H2(i + 2 * index + 0)];
549         float16 mi = m[H2(i + 2 * index + 1)];
550         float16 e1 = neg_real ^ (flip ? mi : mr);
551         float16 e3 = neg_imag ^ (flip ? mr : mi);
552 
553         for (j = i; j < i + eltspersegment; j += 2) {
554             float16 e2 = n[H2(j + flip)];
555             float16 e4 = e2;
556 
557             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
559         }
560     }
561     clear_tail(d, opr_sz, simd_maxsz(desc));
562 }
563 
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565                          void *vfpst, uint32_t desc)
566 {
567     uintptr_t opr_sz = simd_oprsz(desc);
568     float32 *d = vd;
569     float32 *n = vn;
570     float32 *m = vm;
571     float_status *fpst = vfpst;
572     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574     uint32_t neg_real = flip ^ neg_imag;
575     uintptr_t i;
576 
577     /* Shift boolean to the sign bit so we can xor to negate.  */
578     neg_real <<= 31;
579     neg_imag <<= 31;
580 
581     for (i = 0; i < opr_sz / 4; i += 2) {
582         float32 e2 = n[H4(i + flip)];
583         float32 e1 = m[H4(i + flip)] ^ neg_real;
584         float32 e4 = e2;
585         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
586 
587         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
589     }
590     clear_tail(d, opr_sz, simd_maxsz(desc));
591 }
592 
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594                              void *vfpst, uint32_t desc)
595 {
596     uintptr_t opr_sz = simd_oprsz(desc);
597     float32 *d = vd;
598     float32 *n = vn;
599     float32 *m = vm;
600     float_status *fpst = vfpst;
601     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604     uint32_t neg_real = flip ^ neg_imag;
605     intptr_t elements = opr_sz / sizeof(float32);
606     intptr_t eltspersegment = 16 / sizeof(float32);
607     intptr_t i, j;
608 
609     /* Shift boolean to the sign bit so we can xor to negate.  */
610     neg_real <<= 31;
611     neg_imag <<= 31;
612 
613     for (i = 0; i < elements; i += eltspersegment) {
614         float32 mr = m[H4(i + 2 * index + 0)];
615         float32 mi = m[H4(i + 2 * index + 1)];
616         float32 e1 = neg_real ^ (flip ? mi : mr);
617         float32 e3 = neg_imag ^ (flip ? mr : mi);
618 
619         for (j = i; j < i + eltspersegment; j += 2) {
620             float32 e2 = n[H4(j + flip)];
621             float32 e4 = e2;
622 
623             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
625         }
626     }
627     clear_tail(d, opr_sz, simd_maxsz(desc));
628 }
629 
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631                          void *vfpst, uint32_t desc)
632 {
633     uintptr_t opr_sz = simd_oprsz(desc);
634     float64 *d = vd;
635     float64 *n = vn;
636     float64 *m = vm;
637     float_status *fpst = vfpst;
638     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640     uint64_t neg_real = flip ^ neg_imag;
641     uintptr_t i;
642 
643     /* Shift boolean to the sign bit so we can xor to negate.  */
644     neg_real <<= 63;
645     neg_imag <<= 63;
646 
647     for (i = 0; i < opr_sz / 8; i += 2) {
648         float64 e2 = n[i + flip];
649         float64 e1 = m[i + flip] ^ neg_real;
650         float64 e4 = e2;
651         float64 e3 = m[i + 1 - flip] ^ neg_imag;
652 
653         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
655     }
656     clear_tail(d, opr_sz, simd_maxsz(desc));
657 }
658 
659 /*
660  * Floating point comparisons producing an integer result (all 1s or all 0s).
661  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
662  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
663  */
664 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
665 {
666     return -float16_eq_quiet(op1, op2, stat);
667 }
668 
669 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
670 {
671     return -float32_eq_quiet(op1, op2, stat);
672 }
673 
674 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
675 {
676     return -float16_le(op2, op1, stat);
677 }
678 
679 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
680 {
681     return -float32_le(op2, op1, stat);
682 }
683 
684 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
685 {
686     return -float16_lt(op2, op1, stat);
687 }
688 
689 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
690 {
691     return -float32_lt(op2, op1, stat);
692 }
693 
694 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
695 {
696     return -float16_le(float16_abs(op2), float16_abs(op1), stat);
697 }
698 
699 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
700 {
701     return -float32_le(float32_abs(op2), float32_abs(op1), stat);
702 }
703 
704 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
705 {
706     return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
707 }
708 
709 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
710 {
711     return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
712 }
713 
714 #define DO_2OP(NAME, FUNC, TYPE) \
715 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
716 {                                                                 \
717     intptr_t i, oprsz = simd_oprsz(desc);                         \
718     TYPE *d = vd, *n = vn;                                        \
719     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
720         d[i] = FUNC(n[i], stat);                                  \
721     }                                                             \
722     clear_tail(d, oprsz, simd_maxsz(desc));                       \
723 }
724 
725 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
726 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
727 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
728 
729 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
730 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
731 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
732 
733 #define WRAP_CMP0_FWD(FN, CMPOP, TYPE)                          \
734     static TYPE TYPE##_##FN##0(TYPE op, float_status *stat)     \
735     {                                                           \
736         return TYPE##_##CMPOP(op, TYPE##_zero, stat);           \
737     }
738 
739 #define WRAP_CMP0_REV(FN, CMPOP, TYPE)                          \
740     static TYPE TYPE##_##FN##0(TYPE op, float_status *stat)    \
741     {                                                           \
742         return TYPE##_##CMPOP(TYPE##_zero, op, stat);           \
743     }
744 
745 #define DO_2OP_CMP0(FN, CMPOP, DIRN)                    \
746     WRAP_CMP0_##DIRN(FN, CMPOP, float16)                \
747     WRAP_CMP0_##DIRN(FN, CMPOP, float32)                \
748     DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16)   \
749     DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32)
750 
751 DO_2OP_CMP0(cgt, cgt, FWD)
752 DO_2OP_CMP0(cge, cge, FWD)
753 DO_2OP_CMP0(ceq, ceq, FWD)
754 DO_2OP_CMP0(clt, cgt, REV)
755 DO_2OP_CMP0(cle, cge, REV)
756 
757 #undef DO_2OP
758 #undef DO_2OP_CMP0
759 
760 /* Floating-point trigonometric starting value.
761  * See the ARM ARM pseudocode function FPTrigSMul.
762  */
763 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
764 {
765     float16 result = float16_mul(op1, op1, stat);
766     if (!float16_is_any_nan(result)) {
767         result = float16_set_sign(result, op2 & 1);
768     }
769     return result;
770 }
771 
772 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
773 {
774     float32 result = float32_mul(op1, op1, stat);
775     if (!float32_is_any_nan(result)) {
776         result = float32_set_sign(result, op2 & 1);
777     }
778     return result;
779 }
780 
781 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
782 {
783     float64 result = float64_mul(op1, op1, stat);
784     if (!float64_is_any_nan(result)) {
785         result = float64_set_sign(result, op2 & 1);
786     }
787     return result;
788 }
789 
790 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
791 {
792     return float16_abs(float16_sub(op1, op2, stat));
793 }
794 
795 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
796 {
797     return float32_abs(float32_sub(op1, op2, stat));
798 }
799 
800 /*
801  * Reciprocal step. These are the AArch32 version which uses a
802  * non-fused multiply-and-subtract.
803  */
804 static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat)
805 {
806     op1 = float16_squash_input_denormal(op1, stat);
807     op2 = float16_squash_input_denormal(op2, stat);
808 
809     if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
810         (float16_is_infinity(op2) && float16_is_zero(op1))) {
811         return float16_two;
812     }
813     return float16_sub(float16_two, float16_mul(op1, op2, stat), stat);
814 }
815 
816 static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat)
817 {
818     op1 = float32_squash_input_denormal(op1, stat);
819     op2 = float32_squash_input_denormal(op2, stat);
820 
821     if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
822         (float32_is_infinity(op2) && float32_is_zero(op1))) {
823         return float32_two;
824     }
825     return float32_sub(float32_two, float32_mul(op1, op2, stat), stat);
826 }
827 
828 #define DO_3OP(NAME, FUNC, TYPE) \
829 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
830 {                                                                          \
831     intptr_t i, oprsz = simd_oprsz(desc);                                  \
832     TYPE *d = vd, *n = vn, *m = vm;                                        \
833     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
834         d[i] = FUNC(n[i], m[i], stat);                                     \
835     }                                                                      \
836     clear_tail(d, oprsz, simd_maxsz(desc));                                \
837 }
838 
839 DO_3OP(gvec_fadd_h, float16_add, float16)
840 DO_3OP(gvec_fadd_s, float32_add, float32)
841 DO_3OP(gvec_fadd_d, float64_add, float64)
842 
843 DO_3OP(gvec_fsub_h, float16_sub, float16)
844 DO_3OP(gvec_fsub_s, float32_sub, float32)
845 DO_3OP(gvec_fsub_d, float64_sub, float64)
846 
847 DO_3OP(gvec_fmul_h, float16_mul, float16)
848 DO_3OP(gvec_fmul_s, float32_mul, float32)
849 DO_3OP(gvec_fmul_d, float64_mul, float64)
850 
851 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
852 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
853 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
854 
855 DO_3OP(gvec_fabd_h, float16_abd, float16)
856 DO_3OP(gvec_fabd_s, float32_abd, float32)
857 
858 DO_3OP(gvec_fceq_h, float16_ceq, float16)
859 DO_3OP(gvec_fceq_s, float32_ceq, float32)
860 
861 DO_3OP(gvec_fcge_h, float16_cge, float16)
862 DO_3OP(gvec_fcge_s, float32_cge, float32)
863 
864 DO_3OP(gvec_fcgt_h, float16_cgt, float16)
865 DO_3OP(gvec_fcgt_s, float32_cgt, float32)
866 
867 DO_3OP(gvec_facge_h, float16_acge, float16)
868 DO_3OP(gvec_facge_s, float32_acge, float32)
869 
870 DO_3OP(gvec_facgt_h, float16_acgt, float16)
871 DO_3OP(gvec_facgt_s, float32_acgt, float32)
872 
873 DO_3OP(gvec_fmax_h, float16_max, float16)
874 DO_3OP(gvec_fmax_s, float32_max, float32)
875 
876 DO_3OP(gvec_fmin_h, float16_min, float16)
877 DO_3OP(gvec_fmin_s, float32_min, float32)
878 
879 DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
880 DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
881 
882 DO_3OP(gvec_fminnum_h, float16_minnum, float16)
883 DO_3OP(gvec_fminnum_s, float32_minnum, float32)
884 
885 DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16)
886 DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32)
887 
888 #ifdef TARGET_AARCH64
889 
890 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
891 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
892 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
893 
894 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
895 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
896 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
897 
898 #endif
899 #undef DO_3OP
900 
901 /* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
902 static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
903                                  float_status *stat)
904 {
905     return float16_add(dest, float16_mul(op1, op2, stat), stat);
906 }
907 
908 static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
909                                  float_status *stat)
910 {
911     return float32_add(dest, float32_mul(op1, op2, stat), stat);
912 }
913 
914 static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
915                                  float_status *stat)
916 {
917     return float16_sub(dest, float16_mul(op1, op2, stat), stat);
918 }
919 
920 static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
921                                  float_status *stat)
922 {
923     return float32_sub(dest, float32_mul(op1, op2, stat), stat);
924 }
925 
926 /* Fused versions; these have the semantics Neon VFMA/VFMS want */
927 static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
928                                 float_status *stat)
929 {
930     return float16_muladd(op1, op2, dest, 0, stat);
931 }
932 
933 static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
934                                  float_status *stat)
935 {
936     return float32_muladd(op1, op2, dest, 0, stat);
937 }
938 
939 static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
940                                  float_status *stat)
941 {
942     return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
943 }
944 
945 static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
946                                  float_status *stat)
947 {
948     return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
949 }
950 
951 #define DO_MULADD(NAME, FUNC, TYPE)                                     \
952 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
953 {                                                                          \
954     intptr_t i, oprsz = simd_oprsz(desc);                                  \
955     TYPE *d = vd, *n = vn, *m = vm;                                        \
956     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
957         d[i] = FUNC(d[i], n[i], m[i], stat);                               \
958     }                                                                      \
959     clear_tail(d, oprsz, simd_maxsz(desc));                                \
960 }
961 
962 DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
963 DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
964 
965 DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
966 DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
967 
968 DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
969 DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
970 
971 DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
972 DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
973 
974 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
975  * For AdvSIMD, there is of course only one such vector segment.
976  */
977 
978 #define DO_MUL_IDX(NAME, TYPE, H) \
979 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
980 {                                                                          \
981     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
982     intptr_t idx = simd_data(desc);                                        \
983     TYPE *d = vd, *n = vn, *m = vm;                                        \
984     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
985         TYPE mm = m[H(i + idx)];                                           \
986         for (j = 0; j < segment; j++) {                                    \
987             d[i + j] = n[i + j] * mm;                                      \
988         }                                                                  \
989     }                                                                      \
990     clear_tail(d, oprsz, simd_maxsz(desc));                                \
991 }
992 
993 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
994 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
995 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
996 
997 #undef DO_MUL_IDX
998 
999 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
1000 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)   \
1001 {                                                                          \
1002     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
1003     intptr_t idx = simd_data(desc);                                        \
1004     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
1005     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
1006         TYPE mm = m[H(i + idx)];                                           \
1007         for (j = 0; j < segment; j++) {                                    \
1008             d[i + j] = a[i + j] OP n[i + j] * mm;                          \
1009         }                                                                  \
1010     }                                                                      \
1011     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1012 }
1013 
1014 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
1015 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
1016 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +,   )
1017 
1018 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
1019 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
1020 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -,   )
1021 
1022 #undef DO_MLA_IDX
1023 
1024 #define DO_FMUL_IDX(NAME, TYPE, H) \
1025 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
1026 {                                                                          \
1027     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
1028     intptr_t idx = simd_data(desc);                                        \
1029     TYPE *d = vd, *n = vn, *m = vm;                                        \
1030     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
1031         TYPE mm = m[H(i + idx)];                                           \
1032         for (j = 0; j < segment; j++) {                                    \
1033             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
1034         }                                                                  \
1035     }                                                                      \
1036     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1037 }
1038 
1039 DO_FMUL_IDX(gvec_fmul_idx_h, float16, H2)
1040 DO_FMUL_IDX(gvec_fmul_idx_s, float32, H4)
1041 DO_FMUL_IDX(gvec_fmul_idx_d, float64, )
1042 
1043 #undef DO_FMUL_IDX
1044 
1045 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
1046 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
1047                   void *stat, uint32_t desc)                               \
1048 {                                                                          \
1049     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
1050     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
1051     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
1052     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
1053     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
1054     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
1055         TYPE mm = m[H(i + idx)];                                           \
1056         for (j = 0; j < segment; j++) {                                    \
1057             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
1058                                      mm, a[i + j], 0, stat);               \
1059         }                                                                  \
1060     }                                                                      \
1061     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1062 }
1063 
1064 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
1065 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
1066 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
1067 
1068 #undef DO_FMLA_IDX
1069 
1070 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
1071 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
1072 {                                                                          \
1073     intptr_t i, oprsz = simd_oprsz(desc);                                  \
1074     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
1075     bool q = false;                                                        \
1076     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
1077         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
1078         if (dd < MIN) {                                                    \
1079             dd = MIN;                                                      \
1080             q = true;                                                      \
1081         } else if (dd > MAX) {                                             \
1082             dd = MAX;                                                      \
1083             q = true;                                                      \
1084         }                                                                  \
1085         d[i] = dd;                                                         \
1086     }                                                                      \
1087     if (q) {                                                               \
1088         uint32_t *qc = vq;                                                 \
1089         qc[0] = 1;                                                         \
1090     }                                                                      \
1091     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1092 }
1093 
1094 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
1095 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
1096 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
1097 
1098 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
1099 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
1100 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
1101 
1102 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
1103 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
1104 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
1105 
1106 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
1107 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
1108 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
1109 
1110 #undef DO_SAT
1111 
1112 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
1113                           void *vm, uint32_t desc)
1114 {
1115     intptr_t i, oprsz = simd_oprsz(desc);
1116     uint64_t *d = vd, *n = vn, *m = vm;
1117     bool q = false;
1118 
1119     for (i = 0; i < oprsz / 8; i++) {
1120         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
1121         if (dd < nn) {
1122             dd = UINT64_MAX;
1123             q = true;
1124         }
1125         d[i] = dd;
1126     }
1127     if (q) {
1128         uint32_t *qc = vq;
1129         qc[0] = 1;
1130     }
1131     clear_tail(d, oprsz, simd_maxsz(desc));
1132 }
1133 
1134 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
1135                           void *vm, uint32_t desc)
1136 {
1137     intptr_t i, oprsz = simd_oprsz(desc);
1138     uint64_t *d = vd, *n = vn, *m = vm;
1139     bool q = false;
1140 
1141     for (i = 0; i < oprsz / 8; i++) {
1142         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
1143         if (nn < mm) {
1144             dd = 0;
1145             q = true;
1146         }
1147         d[i] = dd;
1148     }
1149     if (q) {
1150         uint32_t *qc = vq;
1151         qc[0] = 1;
1152     }
1153     clear_tail(d, oprsz, simd_maxsz(desc));
1154 }
1155 
1156 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
1157                           void *vm, uint32_t desc)
1158 {
1159     intptr_t i, oprsz = simd_oprsz(desc);
1160     int64_t *d = vd, *n = vn, *m = vm;
1161     bool q = false;
1162 
1163     for (i = 0; i < oprsz / 8; i++) {
1164         int64_t nn = n[i], mm = m[i], dd = nn + mm;
1165         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
1166             dd = (nn >> 63) ^ ~INT64_MIN;
1167             q = true;
1168         }
1169         d[i] = dd;
1170     }
1171     if (q) {
1172         uint32_t *qc = vq;
1173         qc[0] = 1;
1174     }
1175     clear_tail(d, oprsz, simd_maxsz(desc));
1176 }
1177 
1178 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
1179                           void *vm, uint32_t desc)
1180 {
1181     intptr_t i, oprsz = simd_oprsz(desc);
1182     int64_t *d = vd, *n = vn, *m = vm;
1183     bool q = false;
1184 
1185     for (i = 0; i < oprsz / 8; i++) {
1186         int64_t nn = n[i], mm = m[i], dd = nn - mm;
1187         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
1188             dd = (nn >> 63) ^ ~INT64_MIN;
1189             q = true;
1190         }
1191         d[i] = dd;
1192     }
1193     if (q) {
1194         uint32_t *qc = vq;
1195         qc[0] = 1;
1196     }
1197     clear_tail(d, oprsz, simd_maxsz(desc));
1198 }
1199 
1200 
1201 #define DO_SRA(NAME, TYPE)                              \
1202 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1203 {                                                       \
1204     intptr_t i, oprsz = simd_oprsz(desc);               \
1205     int shift = simd_data(desc);                        \
1206     TYPE *d = vd, *n = vn;                              \
1207     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1208         d[i] += n[i] >> shift;                          \
1209     }                                                   \
1210     clear_tail(d, oprsz, simd_maxsz(desc));             \
1211 }
1212 
1213 DO_SRA(gvec_ssra_b, int8_t)
1214 DO_SRA(gvec_ssra_h, int16_t)
1215 DO_SRA(gvec_ssra_s, int32_t)
1216 DO_SRA(gvec_ssra_d, int64_t)
1217 
1218 DO_SRA(gvec_usra_b, uint8_t)
1219 DO_SRA(gvec_usra_h, uint16_t)
1220 DO_SRA(gvec_usra_s, uint32_t)
1221 DO_SRA(gvec_usra_d, uint64_t)
1222 
1223 #undef DO_SRA
1224 
1225 #define DO_RSHR(NAME, TYPE)                             \
1226 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1227 {                                                       \
1228     intptr_t i, oprsz = simd_oprsz(desc);               \
1229     int shift = simd_data(desc);                        \
1230     TYPE *d = vd, *n = vn;                              \
1231     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1232         TYPE tmp = n[i] >> (shift - 1);                 \
1233         d[i] = (tmp >> 1) + (tmp & 1);                  \
1234     }                                                   \
1235     clear_tail(d, oprsz, simd_maxsz(desc));             \
1236 }
1237 
1238 DO_RSHR(gvec_srshr_b, int8_t)
1239 DO_RSHR(gvec_srshr_h, int16_t)
1240 DO_RSHR(gvec_srshr_s, int32_t)
1241 DO_RSHR(gvec_srshr_d, int64_t)
1242 
1243 DO_RSHR(gvec_urshr_b, uint8_t)
1244 DO_RSHR(gvec_urshr_h, uint16_t)
1245 DO_RSHR(gvec_urshr_s, uint32_t)
1246 DO_RSHR(gvec_urshr_d, uint64_t)
1247 
1248 #undef DO_RSHR
1249 
1250 #define DO_RSRA(NAME, TYPE)                             \
1251 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1252 {                                                       \
1253     intptr_t i, oprsz = simd_oprsz(desc);               \
1254     int shift = simd_data(desc);                        \
1255     TYPE *d = vd, *n = vn;                              \
1256     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1257         TYPE tmp = n[i] >> (shift - 1);                 \
1258         d[i] += (tmp >> 1) + (tmp & 1);                 \
1259     }                                                   \
1260     clear_tail(d, oprsz, simd_maxsz(desc));             \
1261 }
1262 
1263 DO_RSRA(gvec_srsra_b, int8_t)
1264 DO_RSRA(gvec_srsra_h, int16_t)
1265 DO_RSRA(gvec_srsra_s, int32_t)
1266 DO_RSRA(gvec_srsra_d, int64_t)
1267 
1268 DO_RSRA(gvec_ursra_b, uint8_t)
1269 DO_RSRA(gvec_ursra_h, uint16_t)
1270 DO_RSRA(gvec_ursra_s, uint32_t)
1271 DO_RSRA(gvec_ursra_d, uint64_t)
1272 
1273 #undef DO_RSRA
1274 
1275 #define DO_SRI(NAME, TYPE)                              \
1276 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1277 {                                                       \
1278     intptr_t i, oprsz = simd_oprsz(desc);               \
1279     int shift = simd_data(desc);                        \
1280     TYPE *d = vd, *n = vn;                              \
1281     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1282         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1283     }                                                   \
1284     clear_tail(d, oprsz, simd_maxsz(desc));             \
1285 }
1286 
1287 DO_SRI(gvec_sri_b, uint8_t)
1288 DO_SRI(gvec_sri_h, uint16_t)
1289 DO_SRI(gvec_sri_s, uint32_t)
1290 DO_SRI(gvec_sri_d, uint64_t)
1291 
1292 #undef DO_SRI
1293 
1294 #define DO_SLI(NAME, TYPE)                              \
1295 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1296 {                                                       \
1297     intptr_t i, oprsz = simd_oprsz(desc);               \
1298     int shift = simd_data(desc);                        \
1299     TYPE *d = vd, *n = vn;                              \
1300     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1301         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1302     }                                                   \
1303     clear_tail(d, oprsz, simd_maxsz(desc));             \
1304 }
1305 
1306 DO_SLI(gvec_sli_b, uint8_t)
1307 DO_SLI(gvec_sli_h, uint16_t)
1308 DO_SLI(gvec_sli_s, uint32_t)
1309 DO_SLI(gvec_sli_d, uint64_t)
1310 
1311 #undef DO_SLI
1312 
1313 /*
1314  * Convert float16 to float32, raising no exceptions and
1315  * preserving exceptional values, including SNaN.
1316  * This is effectively an unpack+repack operation.
1317  */
1318 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1319 {
1320     const int f16_bias = 15;
1321     const int f32_bias = 127;
1322     uint32_t sign = extract32(f16, 15, 1);
1323     uint32_t exp = extract32(f16, 10, 5);
1324     uint32_t frac = extract32(f16, 0, 10);
1325 
1326     if (exp == 0x1f) {
1327         /* Inf or NaN */
1328         exp = 0xff;
1329     } else if (exp == 0) {
1330         /* Zero or denormal.  */
1331         if (frac != 0) {
1332             if (fz16) {
1333                 frac = 0;
1334             } else {
1335                 /*
1336                  * Denormal; these are all normal float32.
1337                  * Shift the fraction so that the msb is at bit 11,
1338                  * then remove bit 11 as the implicit bit of the
1339                  * normalized float32.  Note that we still go through
1340                  * the shift for normal numbers below, to put the
1341                  * float32 fraction at the right place.
1342                  */
1343                 int shift = clz32(frac) - 21;
1344                 frac = (frac << shift) & 0x3ff;
1345                 exp = f32_bias - f16_bias - shift + 1;
1346             }
1347         }
1348     } else {
1349         /* Normal number; adjust the bias.  */
1350         exp += f32_bias - f16_bias;
1351     }
1352     sign <<= 31;
1353     exp <<= 23;
1354     frac <<= 23 - 10;
1355 
1356     return sign | exp | frac;
1357 }
1358 
1359 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1360 {
1361     /*
1362      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1363      * Load the 2nd qword iff is_q & is_2.
1364      * Shift to the 2nd dword iff !is_q & is_2.
1365      * For !is_q & !is_2, the upper bits of the result are garbage.
1366      */
1367     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1368 }
1369 
1370 /*
1371  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1372  * as there is not yet SVE versions that might use blocking.
1373  */
1374 
1375 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1376                      uint32_t desc, bool fz16)
1377 {
1378     intptr_t i, oprsz = simd_oprsz(desc);
1379     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1380     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1381     int is_q = oprsz == 16;
1382     uint64_t n_4, m_4;
1383 
1384     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1385     n_4 = load4_f16(vn, is_q, is_2);
1386     m_4 = load4_f16(vm, is_q, is_2);
1387 
1388     /* Negate all inputs for FMLSL at once.  */
1389     if (is_s) {
1390         n_4 ^= 0x8000800080008000ull;
1391     }
1392 
1393     for (i = 0; i < oprsz / 4; i++) {
1394         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1395         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1396         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1397     }
1398     clear_tail(d, oprsz, simd_maxsz(desc));
1399 }
1400 
1401 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1402                             void *venv, uint32_t desc)
1403 {
1404     CPUARMState *env = venv;
1405     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1406              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1407 }
1408 
1409 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1410                             void *venv, uint32_t desc)
1411 {
1412     CPUARMState *env = venv;
1413     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1414              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1415 }
1416 
1417 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1418                          uint32_t desc, bool fz16)
1419 {
1420     intptr_t i, oprsz = simd_oprsz(desc);
1421     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1422     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1423     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1424     int is_q = oprsz == 16;
1425     uint64_t n_4;
1426     float32 m_1;
1427 
1428     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1429     n_4 = load4_f16(vn, is_q, is_2);
1430 
1431     /* Negate all inputs for FMLSL at once.  */
1432     if (is_s) {
1433         n_4 ^= 0x8000800080008000ull;
1434     }
1435 
1436     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1437 
1438     for (i = 0; i < oprsz / 4; i++) {
1439         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1440         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1441     }
1442     clear_tail(d, oprsz, simd_maxsz(desc));
1443 }
1444 
1445 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1446                                 void *venv, uint32_t desc)
1447 {
1448     CPUARMState *env = venv;
1449     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1450                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1451 }
1452 
1453 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1454                                 void *venv, uint32_t desc)
1455 {
1456     CPUARMState *env = venv;
1457     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1458                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1459 }
1460 
1461 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1462 {
1463     intptr_t i, opr_sz = simd_oprsz(desc);
1464     int8_t *d = vd, *n = vn, *m = vm;
1465 
1466     for (i = 0; i < opr_sz; ++i) {
1467         int8_t mm = m[i];
1468         int8_t nn = n[i];
1469         int8_t res = 0;
1470         if (mm >= 0) {
1471             if (mm < 8) {
1472                 res = nn << mm;
1473             }
1474         } else {
1475             res = nn >> (mm > -8 ? -mm : 7);
1476         }
1477         d[i] = res;
1478     }
1479     clear_tail(d, opr_sz, simd_maxsz(desc));
1480 }
1481 
1482 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1483 {
1484     intptr_t i, opr_sz = simd_oprsz(desc);
1485     int16_t *d = vd, *n = vn, *m = vm;
1486 
1487     for (i = 0; i < opr_sz / 2; ++i) {
1488         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1489         int16_t nn = n[i];
1490         int16_t res = 0;
1491         if (mm >= 0) {
1492             if (mm < 16) {
1493                 res = nn << mm;
1494             }
1495         } else {
1496             res = nn >> (mm > -16 ? -mm : 15);
1497         }
1498         d[i] = res;
1499     }
1500     clear_tail(d, opr_sz, simd_maxsz(desc));
1501 }
1502 
1503 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1504 {
1505     intptr_t i, opr_sz = simd_oprsz(desc);
1506     uint8_t *d = vd, *n = vn, *m = vm;
1507 
1508     for (i = 0; i < opr_sz; ++i) {
1509         int8_t mm = m[i];
1510         uint8_t nn = n[i];
1511         uint8_t res = 0;
1512         if (mm >= 0) {
1513             if (mm < 8) {
1514                 res = nn << mm;
1515             }
1516         } else {
1517             if (mm > -8) {
1518                 res = nn >> -mm;
1519             }
1520         }
1521         d[i] = res;
1522     }
1523     clear_tail(d, opr_sz, simd_maxsz(desc));
1524 }
1525 
1526 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1527 {
1528     intptr_t i, opr_sz = simd_oprsz(desc);
1529     uint16_t *d = vd, *n = vn, *m = vm;
1530 
1531     for (i = 0; i < opr_sz / 2; ++i) {
1532         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1533         uint16_t nn = n[i];
1534         uint16_t res = 0;
1535         if (mm >= 0) {
1536             if (mm < 16) {
1537                 res = nn << mm;
1538             }
1539         } else {
1540             if (mm > -16) {
1541                 res = nn >> -mm;
1542             }
1543         }
1544         d[i] = res;
1545     }
1546     clear_tail(d, opr_sz, simd_maxsz(desc));
1547 }
1548 
1549 /*
1550  * 8x8->8 polynomial multiply.
1551  *
1552  * Polynomial multiplication is like integer multiplication except the
1553  * partial products are XORed, not added.
1554  *
1555  * TODO: expose this as a generic vector operation, as it is a common
1556  * crypto building block.
1557  */
1558 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1559 {
1560     intptr_t i, j, opr_sz = simd_oprsz(desc);
1561     uint64_t *d = vd, *n = vn, *m = vm;
1562 
1563     for (i = 0; i < opr_sz / 8; ++i) {
1564         uint64_t nn = n[i];
1565         uint64_t mm = m[i];
1566         uint64_t rr = 0;
1567 
1568         for (j = 0; j < 8; ++j) {
1569             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1570             rr ^= mm & mask;
1571             mm = (mm << 1) & 0xfefefefefefefefeull;
1572             nn >>= 1;
1573         }
1574         d[i] = rr;
1575     }
1576     clear_tail(d, opr_sz, simd_maxsz(desc));
1577 }
1578 
1579 /*
1580  * 64x64->128 polynomial multiply.
1581  * Because of the lanes are not accessed in strict columns,
1582  * this probably cannot be turned into a generic helper.
1583  */
1584 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1585 {
1586     intptr_t i, j, opr_sz = simd_oprsz(desc);
1587     intptr_t hi = simd_data(desc);
1588     uint64_t *d = vd, *n = vn, *m = vm;
1589 
1590     for (i = 0; i < opr_sz / 8; i += 2) {
1591         uint64_t nn = n[i + hi];
1592         uint64_t mm = m[i + hi];
1593         uint64_t rhi = 0;
1594         uint64_t rlo = 0;
1595 
1596         /* Bit 0 can only influence the low 64-bit result.  */
1597         if (nn & 1) {
1598             rlo = mm;
1599         }
1600 
1601         for (j = 1; j < 64; ++j) {
1602             uint64_t mask = -((nn >> j) & 1);
1603             rlo ^= (mm << j) & mask;
1604             rhi ^= (mm >> (64 - j)) & mask;
1605         }
1606         d[i] = rlo;
1607         d[i + 1] = rhi;
1608     }
1609     clear_tail(d, opr_sz, simd_maxsz(desc));
1610 }
1611 
1612 /*
1613  * 8x8->16 polynomial multiply.
1614  *
1615  * The byte inputs are expanded to (or extracted from) half-words.
1616  * Note that neon and sve2 get the inputs from different positions.
1617  * This allows 4 bytes to be processed in parallel with uint64_t.
1618  */
1619 
1620 static uint64_t expand_byte_to_half(uint64_t x)
1621 {
1622     return  (x & 0x000000ff)
1623          | ((x & 0x0000ff00) << 8)
1624          | ((x & 0x00ff0000) << 16)
1625          | ((x & 0xff000000) << 24);
1626 }
1627 
1628 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1629 {
1630     uint64_t result = 0;
1631     int i;
1632 
1633     for (i = 0; i < 8; ++i) {
1634         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1635         result ^= op2 & mask;
1636         op1 >>= 1;
1637         op2 <<= 1;
1638     }
1639     return result;
1640 }
1641 
1642 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1643 {
1644     int hi = simd_data(desc);
1645     uint64_t *d = vd, *n = vn, *m = vm;
1646     uint64_t nn = n[hi], mm = m[hi];
1647 
1648     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1649     nn >>= 32;
1650     mm >>= 32;
1651     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1652 
1653     clear_tail(d, 16, simd_maxsz(desc));
1654 }
1655 
1656 #ifdef TARGET_AARCH64
1657 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1658 {
1659     int shift = simd_data(desc) * 8;
1660     intptr_t i, opr_sz = simd_oprsz(desc);
1661     uint64_t *d = vd, *n = vn, *m = vm;
1662 
1663     for (i = 0; i < opr_sz / 8; ++i) {
1664         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1665         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1666 
1667         d[i] = pmull_h(nn, mm);
1668     }
1669 }
1670 #endif
1671 
1672 #define DO_CMP0(NAME, TYPE, OP)                         \
1673 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1674 {                                                       \
1675     intptr_t i, opr_sz = simd_oprsz(desc);              \
1676     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1677         TYPE nn = *(TYPE *)(vn + i);                    \
1678         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1679     }                                                   \
1680     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1681 }
1682 
1683 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1684 DO_CMP0(gvec_clt0_b, int8_t, <)
1685 DO_CMP0(gvec_cle0_b, int8_t, <=)
1686 DO_CMP0(gvec_cgt0_b, int8_t, >)
1687 DO_CMP0(gvec_cge0_b, int8_t, >=)
1688 
1689 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1690 DO_CMP0(gvec_clt0_h, int16_t, <)
1691 DO_CMP0(gvec_cle0_h, int16_t, <=)
1692 DO_CMP0(gvec_cgt0_h, int16_t, >)
1693 DO_CMP0(gvec_cge0_h, int16_t, >=)
1694 
1695 #undef DO_CMP0
1696 
1697 #define DO_ABD(NAME, TYPE)                                      \
1698 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1699 {                                                               \
1700     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1701     TYPE *d = vd, *n = vn, *m = vm;                             \
1702                                                                 \
1703     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1704         d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];         \
1705     }                                                           \
1706     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1707 }
1708 
1709 DO_ABD(gvec_sabd_b, int8_t)
1710 DO_ABD(gvec_sabd_h, int16_t)
1711 DO_ABD(gvec_sabd_s, int32_t)
1712 DO_ABD(gvec_sabd_d, int64_t)
1713 
1714 DO_ABD(gvec_uabd_b, uint8_t)
1715 DO_ABD(gvec_uabd_h, uint16_t)
1716 DO_ABD(gvec_uabd_s, uint32_t)
1717 DO_ABD(gvec_uabd_d, uint64_t)
1718 
1719 #undef DO_ABD
1720 
1721 #define DO_ABA(NAME, TYPE)                                      \
1722 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1723 {                                                               \
1724     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1725     TYPE *d = vd, *n = vn, *m = vm;                             \
1726                                                                 \
1727     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1728         d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];        \
1729     }                                                           \
1730     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1731 }
1732 
1733 DO_ABA(gvec_saba_b, int8_t)
1734 DO_ABA(gvec_saba_h, int16_t)
1735 DO_ABA(gvec_saba_s, int32_t)
1736 DO_ABA(gvec_saba_d, int64_t)
1737 
1738 DO_ABA(gvec_uaba_b, uint8_t)
1739 DO_ABA(gvec_uaba_h, uint16_t)
1740 DO_ABA(gvec_uaba_s, uint32_t)
1741 DO_ABA(gvec_uaba_d, uint64_t)
1742 
1743 #undef DO_ABA
1744