xref: /qemu/target/arm/tcg/vec_helper.c (revision 635187aaa92f21ab001e2868e803b3c5460261ca)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 #include "vec_internal.h"
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
40 static int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
41                              bool neg, bool round, uint32_t *sat)
42 {
43     /*
44      * Simplify:
45      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
46      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
47      */
48     int32_t ret = (int32_t)src1 * src2;
49     if (neg) {
50         ret = -ret;
51     }
52     ret += ((int32_t)src3 << 15) + (round << 14);
53     ret >>= 15;
54 
55     if (ret != (int16_t)ret) {
56         *sat = 1;
57         ret = (ret < 0 ? INT16_MIN : INT16_MAX);
58     }
59     return ret;
60 }
61 
62 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
63                                   uint32_t src2, uint32_t src3)
64 {
65     uint32_t *sat = &env->vfp.qc[0];
66     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
67     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
68                                 false, true, sat);
69     return deposit32(e1, 16, 16, e2);
70 }
71 
72 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
73                               void *vq, uint32_t desc)
74 {
75     uintptr_t opr_sz = simd_oprsz(desc);
76     int16_t *d = vd;
77     int16_t *n = vn;
78     int16_t *m = vm;
79     uintptr_t i;
80 
81     for (i = 0; i < opr_sz / 2; ++i) {
82         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
83     }
84     clear_tail(d, opr_sz, simd_maxsz(desc));
85 }
86 
87 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
88                                   uint32_t src2, uint32_t src3)
89 {
90     uint32_t *sat = &env->vfp.qc[0];
91     uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
92     uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
93                                 true, true, sat);
94     return deposit32(e1, 16, 16, e2);
95 }
96 
97 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
98                               void *vq, uint32_t desc)
99 {
100     uintptr_t opr_sz = simd_oprsz(desc);
101     int16_t *d = vd;
102     int16_t *n = vn;
103     int16_t *m = vm;
104     uintptr_t i;
105 
106     for (i = 0; i < opr_sz / 2; ++i) {
107         d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
108     }
109     clear_tail(d, opr_sz, simd_maxsz(desc));
110 }
111 
112 void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
113                             void *vq, uint32_t desc)
114 {
115     intptr_t i, opr_sz = simd_oprsz(desc);
116     int16_t *d = vd, *n = vn, *m = vm;
117 
118     for (i = 0; i < opr_sz / 2; ++i) {
119         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
120     }
121     clear_tail(d, opr_sz, simd_maxsz(desc));
122 }
123 
124 void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
125                              void *vq, uint32_t desc)
126 {
127     intptr_t i, opr_sz = simd_oprsz(desc);
128     int16_t *d = vd, *n = vn, *m = vm;
129 
130     for (i = 0; i < opr_sz / 2; ++i) {
131         d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
132     }
133     clear_tail(d, opr_sz, simd_maxsz(desc));
134 }
135 
136 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
137 static int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
138                              bool neg, bool round, uint32_t *sat)
139 {
140     /* Simplify similarly to int_qrdmlah_s16 above.  */
141     int64_t ret = (int64_t)src1 * src2;
142     if (neg) {
143         ret = -ret;
144     }
145     ret += ((int64_t)src3 << 31) + (round << 30);
146     ret >>= 31;
147 
148     if (ret != (int32_t)ret) {
149         *sat = 1;
150         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
151     }
152     return ret;
153 }
154 
155 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
156                                   int32_t src2, int32_t src3)
157 {
158     uint32_t *sat = &env->vfp.qc[0];
159     return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
160 }
161 
162 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
163                               void *vq, uint32_t desc)
164 {
165     uintptr_t opr_sz = simd_oprsz(desc);
166     int32_t *d = vd;
167     int32_t *n = vn;
168     int32_t *m = vm;
169     uintptr_t i;
170 
171     for (i = 0; i < opr_sz / 4; ++i) {
172         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
173     }
174     clear_tail(d, opr_sz, simd_maxsz(desc));
175 }
176 
177 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
178                                   int32_t src2, int32_t src3)
179 {
180     uint32_t *sat = &env->vfp.qc[0];
181     return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
182 }
183 
184 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
185                               void *vq, uint32_t desc)
186 {
187     uintptr_t opr_sz = simd_oprsz(desc);
188     int32_t *d = vd;
189     int32_t *n = vn;
190     int32_t *m = vm;
191     uintptr_t i;
192 
193     for (i = 0; i < opr_sz / 4; ++i) {
194         d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
195     }
196     clear_tail(d, opr_sz, simd_maxsz(desc));
197 }
198 
199 void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
200                             void *vq, uint32_t desc)
201 {
202     intptr_t i, opr_sz = simd_oprsz(desc);
203     int32_t *d = vd, *n = vn, *m = vm;
204 
205     for (i = 0; i < opr_sz / 4; ++i) {
206         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
207     }
208     clear_tail(d, opr_sz, simd_maxsz(desc));
209 }
210 
211 void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
212                              void *vq, uint32_t desc)
213 {
214     intptr_t i, opr_sz = simd_oprsz(desc);
215     int32_t *d = vd, *n = vn, *m = vm;
216 
217     for (i = 0; i < opr_sz / 4; ++i) {
218         d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
219     }
220     clear_tail(d, opr_sz, simd_maxsz(desc));
221 }
222 
223 /* Integer 8 and 16-bit dot-product.
224  *
225  * Note that for the loops herein, host endianness does not matter
226  * with respect to the ordering of data within the 64-bit lanes.
227  * All elements are treated equally, no matter where they are.
228  */
229 
230 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
231 {
232     intptr_t i, opr_sz = simd_oprsz(desc);
233     uint32_t *d = vd;
234     int8_t *n = vn, *m = vm;
235 
236     for (i = 0; i < opr_sz / 4; ++i) {
237         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
238               + n[i * 4 + 1] * m[i * 4 + 1]
239               + n[i * 4 + 2] * m[i * 4 + 2]
240               + n[i * 4 + 3] * m[i * 4 + 3];
241     }
242     clear_tail(d, opr_sz, simd_maxsz(desc));
243 }
244 
245 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
246 {
247     intptr_t i, opr_sz = simd_oprsz(desc);
248     uint32_t *d = vd;
249     uint8_t *n = vn, *m = vm;
250 
251     for (i = 0; i < opr_sz / 4; ++i) {
252         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
253               + n[i * 4 + 1] * m[i * 4 + 1]
254               + n[i * 4 + 2] * m[i * 4 + 2]
255               + n[i * 4 + 3] * m[i * 4 + 3];
256     }
257     clear_tail(d, opr_sz, simd_maxsz(desc));
258 }
259 
260 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
261 {
262     intptr_t i, opr_sz = simd_oprsz(desc);
263     uint64_t *d = vd;
264     int16_t *n = vn, *m = vm;
265 
266     for (i = 0; i < opr_sz / 8; ++i) {
267         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
268               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
269               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
270               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
271     }
272     clear_tail(d, opr_sz, simd_maxsz(desc));
273 }
274 
275 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
276 {
277     intptr_t i, opr_sz = simd_oprsz(desc);
278     uint64_t *d = vd;
279     uint16_t *n = vn, *m = vm;
280 
281     for (i = 0; i < opr_sz / 8; ++i) {
282         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
283               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
284               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
285               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
286     }
287     clear_tail(d, opr_sz, simd_maxsz(desc));
288 }
289 
290 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
291 {
292     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
293     intptr_t index = simd_data(desc);
294     uint32_t *d = vd;
295     int8_t *n = vn;
296     int8_t *m_indexed = (int8_t *)vm + index * 4;
297 
298     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
299      * Otherwise opr_sz is a multiple of 16.
300      */
301     segend = MIN(4, opr_sz_4);
302     i = 0;
303     do {
304         int8_t m0 = m_indexed[i * 4 + 0];
305         int8_t m1 = m_indexed[i * 4 + 1];
306         int8_t m2 = m_indexed[i * 4 + 2];
307         int8_t m3 = m_indexed[i * 4 + 3];
308 
309         do {
310             d[i] += n[i * 4 + 0] * m0
311                   + n[i * 4 + 1] * m1
312                   + n[i * 4 + 2] * m2
313                   + n[i * 4 + 3] * m3;
314         } while (++i < segend);
315         segend = i + 4;
316     } while (i < opr_sz_4);
317 
318     clear_tail(d, opr_sz, simd_maxsz(desc));
319 }
320 
321 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
322 {
323     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
324     intptr_t index = simd_data(desc);
325     uint32_t *d = vd;
326     uint8_t *n = vn;
327     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
328 
329     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
330      * Otherwise opr_sz is a multiple of 16.
331      */
332     segend = MIN(4, opr_sz_4);
333     i = 0;
334     do {
335         uint8_t m0 = m_indexed[i * 4 + 0];
336         uint8_t m1 = m_indexed[i * 4 + 1];
337         uint8_t m2 = m_indexed[i * 4 + 2];
338         uint8_t m3 = m_indexed[i * 4 + 3];
339 
340         do {
341             d[i] += n[i * 4 + 0] * m0
342                   + n[i * 4 + 1] * m1
343                   + n[i * 4 + 2] * m2
344                   + n[i * 4 + 3] * m3;
345         } while (++i < segend);
346         segend = i + 4;
347     } while (i < opr_sz_4);
348 
349     clear_tail(d, opr_sz, simd_maxsz(desc));
350 }
351 
352 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
353 {
354     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
355     intptr_t index = simd_data(desc);
356     uint64_t *d = vd;
357     int16_t *n = vn;
358     int16_t *m_indexed = (int16_t *)vm + index * 4;
359 
360     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
361      * Process the entire segment all at once, writing back the results
362      * only after we've consumed all of the inputs.
363      */
364     for (i = 0; i < opr_sz_8 ; i += 2) {
365         uint64_t d0, d1;
366 
367         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
368         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
369         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
370         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
371         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
372         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
373         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
374         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
375 
376         d[i + 0] += d0;
377         d[i + 1] += d1;
378     }
379 
380     clear_tail(d, opr_sz, simd_maxsz(desc));
381 }
382 
383 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
384 {
385     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
386     intptr_t index = simd_data(desc);
387     uint64_t *d = vd;
388     uint16_t *n = vn;
389     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
390 
391     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
392      * Process the entire segment all at once, writing back the results
393      * only after we've consumed all of the inputs.
394      */
395     for (i = 0; i < opr_sz_8 ; i += 2) {
396         uint64_t d0, d1;
397 
398         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
399         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
400         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
401         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
402         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
403         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
404         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
405         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
406 
407         d[i + 0] += d0;
408         d[i + 1] += d1;
409     }
410 
411     clear_tail(d, opr_sz, simd_maxsz(desc));
412 }
413 
414 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
415                          void *vfpst, uint32_t desc)
416 {
417     uintptr_t opr_sz = simd_oprsz(desc);
418     float16 *d = vd;
419     float16 *n = vn;
420     float16 *m = vm;
421     float_status *fpst = vfpst;
422     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
423     uint32_t neg_imag = neg_real ^ 1;
424     uintptr_t i;
425 
426     /* Shift boolean to the sign bit so we can xor to negate.  */
427     neg_real <<= 15;
428     neg_imag <<= 15;
429 
430     for (i = 0; i < opr_sz / 2; i += 2) {
431         float16 e0 = n[H2(i)];
432         float16 e1 = m[H2(i + 1)] ^ neg_imag;
433         float16 e2 = n[H2(i + 1)];
434         float16 e3 = m[H2(i)] ^ neg_real;
435 
436         d[H2(i)] = float16_add(e0, e1, fpst);
437         d[H2(i + 1)] = float16_add(e2, e3, fpst);
438     }
439     clear_tail(d, opr_sz, simd_maxsz(desc));
440 }
441 
442 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
443                          void *vfpst, uint32_t desc)
444 {
445     uintptr_t opr_sz = simd_oprsz(desc);
446     float32 *d = vd;
447     float32 *n = vn;
448     float32 *m = vm;
449     float_status *fpst = vfpst;
450     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
451     uint32_t neg_imag = neg_real ^ 1;
452     uintptr_t i;
453 
454     /* Shift boolean to the sign bit so we can xor to negate.  */
455     neg_real <<= 31;
456     neg_imag <<= 31;
457 
458     for (i = 0; i < opr_sz / 4; i += 2) {
459         float32 e0 = n[H4(i)];
460         float32 e1 = m[H4(i + 1)] ^ neg_imag;
461         float32 e2 = n[H4(i + 1)];
462         float32 e3 = m[H4(i)] ^ neg_real;
463 
464         d[H4(i)] = float32_add(e0, e1, fpst);
465         d[H4(i + 1)] = float32_add(e2, e3, fpst);
466     }
467     clear_tail(d, opr_sz, simd_maxsz(desc));
468 }
469 
470 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
471                          void *vfpst, uint32_t desc)
472 {
473     uintptr_t opr_sz = simd_oprsz(desc);
474     float64 *d = vd;
475     float64 *n = vn;
476     float64 *m = vm;
477     float_status *fpst = vfpst;
478     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
479     uint64_t neg_imag = neg_real ^ 1;
480     uintptr_t i;
481 
482     /* Shift boolean to the sign bit so we can xor to negate.  */
483     neg_real <<= 63;
484     neg_imag <<= 63;
485 
486     for (i = 0; i < opr_sz / 8; i += 2) {
487         float64 e0 = n[i];
488         float64 e1 = m[i + 1] ^ neg_imag;
489         float64 e2 = n[i + 1];
490         float64 e3 = m[i] ^ neg_real;
491 
492         d[i] = float64_add(e0, e1, fpst);
493         d[i + 1] = float64_add(e2, e3, fpst);
494     }
495     clear_tail(d, opr_sz, simd_maxsz(desc));
496 }
497 
498 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
499                          void *vfpst, uint32_t desc)
500 {
501     uintptr_t opr_sz = simd_oprsz(desc);
502     float16 *d = vd;
503     float16 *n = vn;
504     float16 *m = vm;
505     float_status *fpst = vfpst;
506     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
507     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
508     uint32_t neg_real = flip ^ neg_imag;
509     uintptr_t i;
510 
511     /* Shift boolean to the sign bit so we can xor to negate.  */
512     neg_real <<= 15;
513     neg_imag <<= 15;
514 
515     for (i = 0; i < opr_sz / 2; i += 2) {
516         float16 e2 = n[H2(i + flip)];
517         float16 e1 = m[H2(i + flip)] ^ neg_real;
518         float16 e4 = e2;
519         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
520 
521         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
522         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
523     }
524     clear_tail(d, opr_sz, simd_maxsz(desc));
525 }
526 
527 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
528                              void *vfpst, uint32_t desc)
529 {
530     uintptr_t opr_sz = simd_oprsz(desc);
531     float16 *d = vd;
532     float16 *n = vn;
533     float16 *m = vm;
534     float_status *fpst = vfpst;
535     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
536     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
537     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
538     uint32_t neg_real = flip ^ neg_imag;
539     intptr_t elements = opr_sz / sizeof(float16);
540     intptr_t eltspersegment = 16 / sizeof(float16);
541     intptr_t i, j;
542 
543     /* Shift boolean to the sign bit so we can xor to negate.  */
544     neg_real <<= 15;
545     neg_imag <<= 15;
546 
547     for (i = 0; i < elements; i += eltspersegment) {
548         float16 mr = m[H2(i + 2 * index + 0)];
549         float16 mi = m[H2(i + 2 * index + 1)];
550         float16 e1 = neg_real ^ (flip ? mi : mr);
551         float16 e3 = neg_imag ^ (flip ? mr : mi);
552 
553         for (j = i; j < i + eltspersegment; j += 2) {
554             float16 e2 = n[H2(j + flip)];
555             float16 e4 = e2;
556 
557             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
558             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
559         }
560     }
561     clear_tail(d, opr_sz, simd_maxsz(desc));
562 }
563 
564 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
565                          void *vfpst, uint32_t desc)
566 {
567     uintptr_t opr_sz = simd_oprsz(desc);
568     float32 *d = vd;
569     float32 *n = vn;
570     float32 *m = vm;
571     float_status *fpst = vfpst;
572     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
573     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
574     uint32_t neg_real = flip ^ neg_imag;
575     uintptr_t i;
576 
577     /* Shift boolean to the sign bit so we can xor to negate.  */
578     neg_real <<= 31;
579     neg_imag <<= 31;
580 
581     for (i = 0; i < opr_sz / 4; i += 2) {
582         float32 e2 = n[H4(i + flip)];
583         float32 e1 = m[H4(i + flip)] ^ neg_real;
584         float32 e4 = e2;
585         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
586 
587         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
588         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
589     }
590     clear_tail(d, opr_sz, simd_maxsz(desc));
591 }
592 
593 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
594                              void *vfpst, uint32_t desc)
595 {
596     uintptr_t opr_sz = simd_oprsz(desc);
597     float32 *d = vd;
598     float32 *n = vn;
599     float32 *m = vm;
600     float_status *fpst = vfpst;
601     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
602     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
603     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
604     uint32_t neg_real = flip ^ neg_imag;
605     intptr_t elements = opr_sz / sizeof(float32);
606     intptr_t eltspersegment = 16 / sizeof(float32);
607     intptr_t i, j;
608 
609     /* Shift boolean to the sign bit so we can xor to negate.  */
610     neg_real <<= 31;
611     neg_imag <<= 31;
612 
613     for (i = 0; i < elements; i += eltspersegment) {
614         float32 mr = m[H4(i + 2 * index + 0)];
615         float32 mi = m[H4(i + 2 * index + 1)];
616         float32 e1 = neg_real ^ (flip ? mi : mr);
617         float32 e3 = neg_imag ^ (flip ? mr : mi);
618 
619         for (j = i; j < i + eltspersegment; j += 2) {
620             float32 e2 = n[H4(j + flip)];
621             float32 e4 = e2;
622 
623             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
624             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
625         }
626     }
627     clear_tail(d, opr_sz, simd_maxsz(desc));
628 }
629 
630 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
631                          void *vfpst, uint32_t desc)
632 {
633     uintptr_t opr_sz = simd_oprsz(desc);
634     float64 *d = vd;
635     float64 *n = vn;
636     float64 *m = vm;
637     float_status *fpst = vfpst;
638     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
639     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
640     uint64_t neg_real = flip ^ neg_imag;
641     uintptr_t i;
642 
643     /* Shift boolean to the sign bit so we can xor to negate.  */
644     neg_real <<= 63;
645     neg_imag <<= 63;
646 
647     for (i = 0; i < opr_sz / 8; i += 2) {
648         float64 e2 = n[i + flip];
649         float64 e1 = m[i + flip] ^ neg_real;
650         float64 e4 = e2;
651         float64 e3 = m[i + 1 - flip] ^ neg_imag;
652 
653         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
654         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
655     }
656     clear_tail(d, opr_sz, simd_maxsz(desc));
657 }
658 
659 /*
660  * Floating point comparisons producing an integer result (all 1s or all 0s).
661  * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
662  * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
663  */
664 static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
665 {
666     return -float16_eq_quiet(op1, op2, stat);
667 }
668 
669 static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
670 {
671     return -float32_eq_quiet(op1, op2, stat);
672 }
673 
674 static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
675 {
676     return -float16_le(op2, op1, stat);
677 }
678 
679 static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
680 {
681     return -float32_le(op2, op1, stat);
682 }
683 
684 static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
685 {
686     return -float16_lt(op2, op1, stat);
687 }
688 
689 static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
690 {
691     return -float32_lt(op2, op1, stat);
692 }
693 
694 static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
695 {
696     return -float16_le(float16_abs(op2), float16_abs(op1), stat);
697 }
698 
699 static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
700 {
701     return -float32_le(float32_abs(op2), float32_abs(op1), stat);
702 }
703 
704 static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
705 {
706     return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
707 }
708 
709 static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
710 {
711     return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
712 }
713 
714 #define DO_2OP(NAME, FUNC, TYPE) \
715 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
716 {                                                                 \
717     intptr_t i, oprsz = simd_oprsz(desc);                         \
718     TYPE *d = vd, *n = vn;                                        \
719     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
720         d[i] = FUNC(n[i], stat);                                  \
721     }                                                             \
722     clear_tail(d, oprsz, simd_maxsz(desc));                       \
723 }
724 
725 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
726 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
727 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
728 
729 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
730 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
731 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
732 
733 #define WRAP_CMP0_FWD(FN, CMPOP, TYPE)                          \
734     static TYPE TYPE##_##FN##0(TYPE op, float_status *stat)     \
735     {                                                           \
736         return TYPE##_##CMPOP(op, TYPE##_zero, stat);           \
737     }
738 
739 #define WRAP_CMP0_REV(FN, CMPOP, TYPE)                          \
740     static TYPE TYPE##_##FN##0(TYPE op, float_status *stat)    \
741     {                                                           \
742         return TYPE##_##CMPOP(TYPE##_zero, op, stat);           \
743     }
744 
745 #define DO_2OP_CMP0(FN, CMPOP, DIRN)                    \
746     WRAP_CMP0_##DIRN(FN, CMPOP, float16)                \
747     WRAP_CMP0_##DIRN(FN, CMPOP, float32)                \
748     DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16)   \
749     DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32)
750 
751 DO_2OP_CMP0(cgt, cgt, FWD)
752 DO_2OP_CMP0(cge, cge, FWD)
753 DO_2OP_CMP0(ceq, ceq, FWD)
754 DO_2OP_CMP0(clt, cgt, REV)
755 DO_2OP_CMP0(cle, cge, REV)
756 
757 #undef DO_2OP
758 #undef DO_2OP_CMP0
759 
760 /* Floating-point trigonometric starting value.
761  * See the ARM ARM pseudocode function FPTrigSMul.
762  */
763 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
764 {
765     float16 result = float16_mul(op1, op1, stat);
766     if (!float16_is_any_nan(result)) {
767         result = float16_set_sign(result, op2 & 1);
768     }
769     return result;
770 }
771 
772 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
773 {
774     float32 result = float32_mul(op1, op1, stat);
775     if (!float32_is_any_nan(result)) {
776         result = float32_set_sign(result, op2 & 1);
777     }
778     return result;
779 }
780 
781 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
782 {
783     float64 result = float64_mul(op1, op1, stat);
784     if (!float64_is_any_nan(result)) {
785         result = float64_set_sign(result, op2 & 1);
786     }
787     return result;
788 }
789 
790 static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
791 {
792     return float16_abs(float16_sub(op1, op2, stat));
793 }
794 
795 static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
796 {
797     return float32_abs(float32_sub(op1, op2, stat));
798 }
799 
800 #define DO_3OP(NAME, FUNC, TYPE) \
801 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
802 {                                                                          \
803     intptr_t i, oprsz = simd_oprsz(desc);                                  \
804     TYPE *d = vd, *n = vn, *m = vm;                                        \
805     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
806         d[i] = FUNC(n[i], m[i], stat);                                     \
807     }                                                                      \
808     clear_tail(d, oprsz, simd_maxsz(desc));                                \
809 }
810 
811 DO_3OP(gvec_fadd_h, float16_add, float16)
812 DO_3OP(gvec_fadd_s, float32_add, float32)
813 DO_3OP(gvec_fadd_d, float64_add, float64)
814 
815 DO_3OP(gvec_fsub_h, float16_sub, float16)
816 DO_3OP(gvec_fsub_s, float32_sub, float32)
817 DO_3OP(gvec_fsub_d, float64_sub, float64)
818 
819 DO_3OP(gvec_fmul_h, float16_mul, float16)
820 DO_3OP(gvec_fmul_s, float32_mul, float32)
821 DO_3OP(gvec_fmul_d, float64_mul, float64)
822 
823 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
824 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
825 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
826 
827 DO_3OP(gvec_fabd_h, float16_abd, float16)
828 DO_3OP(gvec_fabd_s, float32_abd, float32)
829 
830 DO_3OP(gvec_fceq_h, float16_ceq, float16)
831 DO_3OP(gvec_fceq_s, float32_ceq, float32)
832 
833 DO_3OP(gvec_fcge_h, float16_cge, float16)
834 DO_3OP(gvec_fcge_s, float32_cge, float32)
835 
836 DO_3OP(gvec_fcgt_h, float16_cgt, float16)
837 DO_3OP(gvec_fcgt_s, float32_cgt, float32)
838 
839 DO_3OP(gvec_facge_h, float16_acge, float16)
840 DO_3OP(gvec_facge_s, float32_acge, float32)
841 
842 DO_3OP(gvec_facgt_h, float16_acgt, float16)
843 DO_3OP(gvec_facgt_s, float32_acgt, float32)
844 
845 DO_3OP(gvec_fmax_h, float16_max, float16)
846 DO_3OP(gvec_fmax_s, float32_max, float32)
847 
848 DO_3OP(gvec_fmin_h, float16_min, float16)
849 DO_3OP(gvec_fmin_s, float32_min, float32)
850 
851 DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
852 DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
853 
854 DO_3OP(gvec_fminnum_h, float16_minnum, float16)
855 DO_3OP(gvec_fminnum_s, float32_minnum, float32)
856 
857 #ifdef TARGET_AARCH64
858 
859 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
860 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
861 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
862 
863 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
864 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
865 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
866 
867 #endif
868 #undef DO_3OP
869 
870 /* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
871 static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
872                                  float_status *stat)
873 {
874     return float16_add(dest, float16_mul(op1, op2, stat), stat);
875 }
876 
877 static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
878                                  float_status *stat)
879 {
880     return float32_add(dest, float32_mul(op1, op2, stat), stat);
881 }
882 
883 static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
884                                  float_status *stat)
885 {
886     return float16_sub(dest, float16_mul(op1, op2, stat), stat);
887 }
888 
889 static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
890                                  float_status *stat)
891 {
892     return float32_sub(dest, float32_mul(op1, op2, stat), stat);
893 }
894 
895 /* Fused versions; these have the semantics Neon VFMA/VFMS want */
896 static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
897                                 float_status *stat)
898 {
899     return float16_muladd(op1, op2, dest, 0, stat);
900 }
901 
902 static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
903                                  float_status *stat)
904 {
905     return float32_muladd(op1, op2, dest, 0, stat);
906 }
907 
908 static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
909                                  float_status *stat)
910 {
911     return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
912 }
913 
914 static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
915                                  float_status *stat)
916 {
917     return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
918 }
919 
920 #define DO_MULADD(NAME, FUNC, TYPE)                                     \
921 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
922 {                                                                          \
923     intptr_t i, oprsz = simd_oprsz(desc);                                  \
924     TYPE *d = vd, *n = vn, *m = vm;                                        \
925     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
926         d[i] = FUNC(d[i], n[i], m[i], stat);                               \
927     }                                                                      \
928     clear_tail(d, oprsz, simd_maxsz(desc));                                \
929 }
930 
931 DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
932 DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
933 
934 DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
935 DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
936 
937 DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
938 DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
939 
940 DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
941 DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
942 
943 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
944  * For AdvSIMD, there is of course only one such vector segment.
945  */
946 
947 #define DO_MUL_IDX(NAME, TYPE, H) \
948 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
949 {                                                                          \
950     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
951     intptr_t idx = simd_data(desc);                                        \
952     TYPE *d = vd, *n = vn, *m = vm;                                        \
953     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
954         TYPE mm = m[H(i + idx)];                                           \
955         for (j = 0; j < segment; j++) {                                    \
956             d[i + j] = n[i + j] * mm;                                      \
957         }                                                                  \
958     }                                                                      \
959     clear_tail(d, oprsz, simd_maxsz(desc));                                \
960 }
961 
962 DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
963 DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
964 DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
965 
966 #undef DO_MUL_IDX
967 
968 #define DO_MLA_IDX(NAME, TYPE, OP, H) \
969 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)   \
970 {                                                                          \
971     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
972     intptr_t idx = simd_data(desc);                                        \
973     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
974     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
975         TYPE mm = m[H(i + idx)];                                           \
976         for (j = 0; j < segment; j++) {                                    \
977             d[i + j] = a[i + j] OP n[i + j] * mm;                          \
978         }                                                                  \
979     }                                                                      \
980     clear_tail(d, oprsz, simd_maxsz(desc));                                \
981 }
982 
983 DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
984 DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
985 DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +,   )
986 
987 DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
988 DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
989 DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -,   )
990 
991 #undef DO_MLA_IDX
992 
993 #define DO_FMUL_IDX(NAME, TYPE, H) \
994 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
995 {                                                                          \
996     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
997     intptr_t idx = simd_data(desc);                                        \
998     TYPE *d = vd, *n = vn, *m = vm;                                        \
999     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
1000         TYPE mm = m[H(i + idx)];                                           \
1001         for (j = 0; j < segment; j++) {                                    \
1002             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
1003         }                                                                  \
1004     }                                                                      \
1005     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1006 }
1007 
1008 DO_FMUL_IDX(gvec_fmul_idx_h, float16, H2)
1009 DO_FMUL_IDX(gvec_fmul_idx_s, float32, H4)
1010 DO_FMUL_IDX(gvec_fmul_idx_d, float64, )
1011 
1012 #undef DO_FMUL_IDX
1013 
1014 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
1015 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
1016                   void *stat, uint32_t desc)                               \
1017 {                                                                          \
1018     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
1019     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
1020     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
1021     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
1022     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
1023     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
1024         TYPE mm = m[H(i + idx)];                                           \
1025         for (j = 0; j < segment; j++) {                                    \
1026             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
1027                                      mm, a[i + j], 0, stat);               \
1028         }                                                                  \
1029     }                                                                      \
1030     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1031 }
1032 
1033 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
1034 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
1035 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
1036 
1037 #undef DO_FMLA_IDX
1038 
1039 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
1040 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
1041 {                                                                          \
1042     intptr_t i, oprsz = simd_oprsz(desc);                                  \
1043     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
1044     bool q = false;                                                        \
1045     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
1046         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
1047         if (dd < MIN) {                                                    \
1048             dd = MIN;                                                      \
1049             q = true;                                                      \
1050         } else if (dd > MAX) {                                             \
1051             dd = MAX;                                                      \
1052             q = true;                                                      \
1053         }                                                                  \
1054         d[i] = dd;                                                         \
1055     }                                                                      \
1056     if (q) {                                                               \
1057         uint32_t *qc = vq;                                                 \
1058         qc[0] = 1;                                                         \
1059     }                                                                      \
1060     clear_tail(d, oprsz, simd_maxsz(desc));                                \
1061 }
1062 
1063 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
1064 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
1065 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
1066 
1067 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
1068 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
1069 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
1070 
1071 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
1072 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
1073 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
1074 
1075 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
1076 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
1077 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
1078 
1079 #undef DO_SAT
1080 
1081 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
1082                           void *vm, uint32_t desc)
1083 {
1084     intptr_t i, oprsz = simd_oprsz(desc);
1085     uint64_t *d = vd, *n = vn, *m = vm;
1086     bool q = false;
1087 
1088     for (i = 0; i < oprsz / 8; i++) {
1089         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
1090         if (dd < nn) {
1091             dd = UINT64_MAX;
1092             q = true;
1093         }
1094         d[i] = dd;
1095     }
1096     if (q) {
1097         uint32_t *qc = vq;
1098         qc[0] = 1;
1099     }
1100     clear_tail(d, oprsz, simd_maxsz(desc));
1101 }
1102 
1103 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
1104                           void *vm, uint32_t desc)
1105 {
1106     intptr_t i, oprsz = simd_oprsz(desc);
1107     uint64_t *d = vd, *n = vn, *m = vm;
1108     bool q = false;
1109 
1110     for (i = 0; i < oprsz / 8; i++) {
1111         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
1112         if (nn < mm) {
1113             dd = 0;
1114             q = true;
1115         }
1116         d[i] = dd;
1117     }
1118     if (q) {
1119         uint32_t *qc = vq;
1120         qc[0] = 1;
1121     }
1122     clear_tail(d, oprsz, simd_maxsz(desc));
1123 }
1124 
1125 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
1126                           void *vm, uint32_t desc)
1127 {
1128     intptr_t i, oprsz = simd_oprsz(desc);
1129     int64_t *d = vd, *n = vn, *m = vm;
1130     bool q = false;
1131 
1132     for (i = 0; i < oprsz / 8; i++) {
1133         int64_t nn = n[i], mm = m[i], dd = nn + mm;
1134         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
1135             dd = (nn >> 63) ^ ~INT64_MIN;
1136             q = true;
1137         }
1138         d[i] = dd;
1139     }
1140     if (q) {
1141         uint32_t *qc = vq;
1142         qc[0] = 1;
1143     }
1144     clear_tail(d, oprsz, simd_maxsz(desc));
1145 }
1146 
1147 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
1148                           void *vm, uint32_t desc)
1149 {
1150     intptr_t i, oprsz = simd_oprsz(desc);
1151     int64_t *d = vd, *n = vn, *m = vm;
1152     bool q = false;
1153 
1154     for (i = 0; i < oprsz / 8; i++) {
1155         int64_t nn = n[i], mm = m[i], dd = nn - mm;
1156         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
1157             dd = (nn >> 63) ^ ~INT64_MIN;
1158             q = true;
1159         }
1160         d[i] = dd;
1161     }
1162     if (q) {
1163         uint32_t *qc = vq;
1164         qc[0] = 1;
1165     }
1166     clear_tail(d, oprsz, simd_maxsz(desc));
1167 }
1168 
1169 
1170 #define DO_SRA(NAME, TYPE)                              \
1171 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1172 {                                                       \
1173     intptr_t i, oprsz = simd_oprsz(desc);               \
1174     int shift = simd_data(desc);                        \
1175     TYPE *d = vd, *n = vn;                              \
1176     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1177         d[i] += n[i] >> shift;                          \
1178     }                                                   \
1179     clear_tail(d, oprsz, simd_maxsz(desc));             \
1180 }
1181 
1182 DO_SRA(gvec_ssra_b, int8_t)
1183 DO_SRA(gvec_ssra_h, int16_t)
1184 DO_SRA(gvec_ssra_s, int32_t)
1185 DO_SRA(gvec_ssra_d, int64_t)
1186 
1187 DO_SRA(gvec_usra_b, uint8_t)
1188 DO_SRA(gvec_usra_h, uint16_t)
1189 DO_SRA(gvec_usra_s, uint32_t)
1190 DO_SRA(gvec_usra_d, uint64_t)
1191 
1192 #undef DO_SRA
1193 
1194 #define DO_RSHR(NAME, TYPE)                             \
1195 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1196 {                                                       \
1197     intptr_t i, oprsz = simd_oprsz(desc);               \
1198     int shift = simd_data(desc);                        \
1199     TYPE *d = vd, *n = vn;                              \
1200     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1201         TYPE tmp = n[i] >> (shift - 1);                 \
1202         d[i] = (tmp >> 1) + (tmp & 1);                  \
1203     }                                                   \
1204     clear_tail(d, oprsz, simd_maxsz(desc));             \
1205 }
1206 
1207 DO_RSHR(gvec_srshr_b, int8_t)
1208 DO_RSHR(gvec_srshr_h, int16_t)
1209 DO_RSHR(gvec_srshr_s, int32_t)
1210 DO_RSHR(gvec_srshr_d, int64_t)
1211 
1212 DO_RSHR(gvec_urshr_b, uint8_t)
1213 DO_RSHR(gvec_urshr_h, uint16_t)
1214 DO_RSHR(gvec_urshr_s, uint32_t)
1215 DO_RSHR(gvec_urshr_d, uint64_t)
1216 
1217 #undef DO_RSHR
1218 
1219 #define DO_RSRA(NAME, TYPE)                             \
1220 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1221 {                                                       \
1222     intptr_t i, oprsz = simd_oprsz(desc);               \
1223     int shift = simd_data(desc);                        \
1224     TYPE *d = vd, *n = vn;                              \
1225     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1226         TYPE tmp = n[i] >> (shift - 1);                 \
1227         d[i] += (tmp >> 1) + (tmp & 1);                 \
1228     }                                                   \
1229     clear_tail(d, oprsz, simd_maxsz(desc));             \
1230 }
1231 
1232 DO_RSRA(gvec_srsra_b, int8_t)
1233 DO_RSRA(gvec_srsra_h, int16_t)
1234 DO_RSRA(gvec_srsra_s, int32_t)
1235 DO_RSRA(gvec_srsra_d, int64_t)
1236 
1237 DO_RSRA(gvec_ursra_b, uint8_t)
1238 DO_RSRA(gvec_ursra_h, uint16_t)
1239 DO_RSRA(gvec_ursra_s, uint32_t)
1240 DO_RSRA(gvec_ursra_d, uint64_t)
1241 
1242 #undef DO_RSRA
1243 
1244 #define DO_SRI(NAME, TYPE)                              \
1245 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1246 {                                                       \
1247     intptr_t i, oprsz = simd_oprsz(desc);               \
1248     int shift = simd_data(desc);                        \
1249     TYPE *d = vd, *n = vn;                              \
1250     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1251         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
1252     }                                                   \
1253     clear_tail(d, oprsz, simd_maxsz(desc));             \
1254 }
1255 
1256 DO_SRI(gvec_sri_b, uint8_t)
1257 DO_SRI(gvec_sri_h, uint16_t)
1258 DO_SRI(gvec_sri_s, uint32_t)
1259 DO_SRI(gvec_sri_d, uint64_t)
1260 
1261 #undef DO_SRI
1262 
1263 #define DO_SLI(NAME, TYPE)                              \
1264 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1265 {                                                       \
1266     intptr_t i, oprsz = simd_oprsz(desc);               \
1267     int shift = simd_data(desc);                        \
1268     TYPE *d = vd, *n = vn;                              \
1269     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1270         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1271     }                                                   \
1272     clear_tail(d, oprsz, simd_maxsz(desc));             \
1273 }
1274 
1275 DO_SLI(gvec_sli_b, uint8_t)
1276 DO_SLI(gvec_sli_h, uint16_t)
1277 DO_SLI(gvec_sli_s, uint32_t)
1278 DO_SLI(gvec_sli_d, uint64_t)
1279 
1280 #undef DO_SLI
1281 
1282 /*
1283  * Convert float16 to float32, raising no exceptions and
1284  * preserving exceptional values, including SNaN.
1285  * This is effectively an unpack+repack operation.
1286  */
1287 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1288 {
1289     const int f16_bias = 15;
1290     const int f32_bias = 127;
1291     uint32_t sign = extract32(f16, 15, 1);
1292     uint32_t exp = extract32(f16, 10, 5);
1293     uint32_t frac = extract32(f16, 0, 10);
1294 
1295     if (exp == 0x1f) {
1296         /* Inf or NaN */
1297         exp = 0xff;
1298     } else if (exp == 0) {
1299         /* Zero or denormal.  */
1300         if (frac != 0) {
1301             if (fz16) {
1302                 frac = 0;
1303             } else {
1304                 /*
1305                  * Denormal; these are all normal float32.
1306                  * Shift the fraction so that the msb is at bit 11,
1307                  * then remove bit 11 as the implicit bit of the
1308                  * normalized float32.  Note that we still go through
1309                  * the shift for normal numbers below, to put the
1310                  * float32 fraction at the right place.
1311                  */
1312                 int shift = clz32(frac) - 21;
1313                 frac = (frac << shift) & 0x3ff;
1314                 exp = f32_bias - f16_bias - shift + 1;
1315             }
1316         }
1317     } else {
1318         /* Normal number; adjust the bias.  */
1319         exp += f32_bias - f16_bias;
1320     }
1321     sign <<= 31;
1322     exp <<= 23;
1323     frac <<= 23 - 10;
1324 
1325     return sign | exp | frac;
1326 }
1327 
1328 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1329 {
1330     /*
1331      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1332      * Load the 2nd qword iff is_q & is_2.
1333      * Shift to the 2nd dword iff !is_q & is_2.
1334      * For !is_q & !is_2, the upper bits of the result are garbage.
1335      */
1336     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1337 }
1338 
1339 /*
1340  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1341  * as there is not yet SVE versions that might use blocking.
1342  */
1343 
1344 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1345                      uint32_t desc, bool fz16)
1346 {
1347     intptr_t i, oprsz = simd_oprsz(desc);
1348     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1349     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1350     int is_q = oprsz == 16;
1351     uint64_t n_4, m_4;
1352 
1353     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1354     n_4 = load4_f16(vn, is_q, is_2);
1355     m_4 = load4_f16(vm, is_q, is_2);
1356 
1357     /* Negate all inputs for FMLSL at once.  */
1358     if (is_s) {
1359         n_4 ^= 0x8000800080008000ull;
1360     }
1361 
1362     for (i = 0; i < oprsz / 4; i++) {
1363         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1364         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1365         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1366     }
1367     clear_tail(d, oprsz, simd_maxsz(desc));
1368 }
1369 
1370 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1371                             void *venv, uint32_t desc)
1372 {
1373     CPUARMState *env = venv;
1374     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1375              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1376 }
1377 
1378 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1379                             void *venv, uint32_t desc)
1380 {
1381     CPUARMState *env = venv;
1382     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1383              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1384 }
1385 
1386 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1387                          uint32_t desc, bool fz16)
1388 {
1389     intptr_t i, oprsz = simd_oprsz(desc);
1390     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1391     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1392     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1393     int is_q = oprsz == 16;
1394     uint64_t n_4;
1395     float32 m_1;
1396 
1397     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1398     n_4 = load4_f16(vn, is_q, is_2);
1399 
1400     /* Negate all inputs for FMLSL at once.  */
1401     if (is_s) {
1402         n_4 ^= 0x8000800080008000ull;
1403     }
1404 
1405     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1406 
1407     for (i = 0; i < oprsz / 4; i++) {
1408         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1409         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1410     }
1411     clear_tail(d, oprsz, simd_maxsz(desc));
1412 }
1413 
1414 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1415                                 void *venv, uint32_t desc)
1416 {
1417     CPUARMState *env = venv;
1418     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1419                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1420 }
1421 
1422 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1423                                 void *venv, uint32_t desc)
1424 {
1425     CPUARMState *env = venv;
1426     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1427                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1428 }
1429 
1430 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1431 {
1432     intptr_t i, opr_sz = simd_oprsz(desc);
1433     int8_t *d = vd, *n = vn, *m = vm;
1434 
1435     for (i = 0; i < opr_sz; ++i) {
1436         int8_t mm = m[i];
1437         int8_t nn = n[i];
1438         int8_t res = 0;
1439         if (mm >= 0) {
1440             if (mm < 8) {
1441                 res = nn << mm;
1442             }
1443         } else {
1444             res = nn >> (mm > -8 ? -mm : 7);
1445         }
1446         d[i] = res;
1447     }
1448     clear_tail(d, opr_sz, simd_maxsz(desc));
1449 }
1450 
1451 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1452 {
1453     intptr_t i, opr_sz = simd_oprsz(desc);
1454     int16_t *d = vd, *n = vn, *m = vm;
1455 
1456     for (i = 0; i < opr_sz / 2; ++i) {
1457         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1458         int16_t nn = n[i];
1459         int16_t res = 0;
1460         if (mm >= 0) {
1461             if (mm < 16) {
1462                 res = nn << mm;
1463             }
1464         } else {
1465             res = nn >> (mm > -16 ? -mm : 15);
1466         }
1467         d[i] = res;
1468     }
1469     clear_tail(d, opr_sz, simd_maxsz(desc));
1470 }
1471 
1472 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1473 {
1474     intptr_t i, opr_sz = simd_oprsz(desc);
1475     uint8_t *d = vd, *n = vn, *m = vm;
1476 
1477     for (i = 0; i < opr_sz; ++i) {
1478         int8_t mm = m[i];
1479         uint8_t nn = n[i];
1480         uint8_t res = 0;
1481         if (mm >= 0) {
1482             if (mm < 8) {
1483                 res = nn << mm;
1484             }
1485         } else {
1486             if (mm > -8) {
1487                 res = nn >> -mm;
1488             }
1489         }
1490         d[i] = res;
1491     }
1492     clear_tail(d, opr_sz, simd_maxsz(desc));
1493 }
1494 
1495 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1496 {
1497     intptr_t i, opr_sz = simd_oprsz(desc);
1498     uint16_t *d = vd, *n = vn, *m = vm;
1499 
1500     for (i = 0; i < opr_sz / 2; ++i) {
1501         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1502         uint16_t nn = n[i];
1503         uint16_t res = 0;
1504         if (mm >= 0) {
1505             if (mm < 16) {
1506                 res = nn << mm;
1507             }
1508         } else {
1509             if (mm > -16) {
1510                 res = nn >> -mm;
1511             }
1512         }
1513         d[i] = res;
1514     }
1515     clear_tail(d, opr_sz, simd_maxsz(desc));
1516 }
1517 
1518 /*
1519  * 8x8->8 polynomial multiply.
1520  *
1521  * Polynomial multiplication is like integer multiplication except the
1522  * partial products are XORed, not added.
1523  *
1524  * TODO: expose this as a generic vector operation, as it is a common
1525  * crypto building block.
1526  */
1527 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1528 {
1529     intptr_t i, j, opr_sz = simd_oprsz(desc);
1530     uint64_t *d = vd, *n = vn, *m = vm;
1531 
1532     for (i = 0; i < opr_sz / 8; ++i) {
1533         uint64_t nn = n[i];
1534         uint64_t mm = m[i];
1535         uint64_t rr = 0;
1536 
1537         for (j = 0; j < 8; ++j) {
1538             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1539             rr ^= mm & mask;
1540             mm = (mm << 1) & 0xfefefefefefefefeull;
1541             nn >>= 1;
1542         }
1543         d[i] = rr;
1544     }
1545     clear_tail(d, opr_sz, simd_maxsz(desc));
1546 }
1547 
1548 /*
1549  * 64x64->128 polynomial multiply.
1550  * Because of the lanes are not accessed in strict columns,
1551  * this probably cannot be turned into a generic helper.
1552  */
1553 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1554 {
1555     intptr_t i, j, opr_sz = simd_oprsz(desc);
1556     intptr_t hi = simd_data(desc);
1557     uint64_t *d = vd, *n = vn, *m = vm;
1558 
1559     for (i = 0; i < opr_sz / 8; i += 2) {
1560         uint64_t nn = n[i + hi];
1561         uint64_t mm = m[i + hi];
1562         uint64_t rhi = 0;
1563         uint64_t rlo = 0;
1564 
1565         /* Bit 0 can only influence the low 64-bit result.  */
1566         if (nn & 1) {
1567             rlo = mm;
1568         }
1569 
1570         for (j = 1; j < 64; ++j) {
1571             uint64_t mask = -((nn >> j) & 1);
1572             rlo ^= (mm << j) & mask;
1573             rhi ^= (mm >> (64 - j)) & mask;
1574         }
1575         d[i] = rlo;
1576         d[i + 1] = rhi;
1577     }
1578     clear_tail(d, opr_sz, simd_maxsz(desc));
1579 }
1580 
1581 /*
1582  * 8x8->16 polynomial multiply.
1583  *
1584  * The byte inputs are expanded to (or extracted from) half-words.
1585  * Note that neon and sve2 get the inputs from different positions.
1586  * This allows 4 bytes to be processed in parallel with uint64_t.
1587  */
1588 
1589 static uint64_t expand_byte_to_half(uint64_t x)
1590 {
1591     return  (x & 0x000000ff)
1592          | ((x & 0x0000ff00) << 8)
1593          | ((x & 0x00ff0000) << 16)
1594          | ((x & 0xff000000) << 24);
1595 }
1596 
1597 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1598 {
1599     uint64_t result = 0;
1600     int i;
1601 
1602     for (i = 0; i < 8; ++i) {
1603         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1604         result ^= op2 & mask;
1605         op1 >>= 1;
1606         op2 <<= 1;
1607     }
1608     return result;
1609 }
1610 
1611 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1612 {
1613     int hi = simd_data(desc);
1614     uint64_t *d = vd, *n = vn, *m = vm;
1615     uint64_t nn = n[hi], mm = m[hi];
1616 
1617     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1618     nn >>= 32;
1619     mm >>= 32;
1620     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1621 
1622     clear_tail(d, 16, simd_maxsz(desc));
1623 }
1624 
1625 #ifdef TARGET_AARCH64
1626 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1627 {
1628     int shift = simd_data(desc) * 8;
1629     intptr_t i, opr_sz = simd_oprsz(desc);
1630     uint64_t *d = vd, *n = vn, *m = vm;
1631 
1632     for (i = 0; i < opr_sz / 8; ++i) {
1633         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1634         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1635 
1636         d[i] = pmull_h(nn, mm);
1637     }
1638 }
1639 #endif
1640 
1641 #define DO_CMP0(NAME, TYPE, OP)                         \
1642 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1643 {                                                       \
1644     intptr_t i, opr_sz = simd_oprsz(desc);              \
1645     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1646         TYPE nn = *(TYPE *)(vn + i);                    \
1647         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1648     }                                                   \
1649     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1650 }
1651 
1652 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1653 DO_CMP0(gvec_clt0_b, int8_t, <)
1654 DO_CMP0(gvec_cle0_b, int8_t, <=)
1655 DO_CMP0(gvec_cgt0_b, int8_t, >)
1656 DO_CMP0(gvec_cge0_b, int8_t, >=)
1657 
1658 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1659 DO_CMP0(gvec_clt0_h, int16_t, <)
1660 DO_CMP0(gvec_cle0_h, int16_t, <=)
1661 DO_CMP0(gvec_cgt0_h, int16_t, >)
1662 DO_CMP0(gvec_cge0_h, int16_t, >=)
1663 
1664 #undef DO_CMP0
1665 
1666 #define DO_ABD(NAME, TYPE)                                      \
1667 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1668 {                                                               \
1669     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1670     TYPE *d = vd, *n = vn, *m = vm;                             \
1671                                                                 \
1672     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1673         d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];         \
1674     }                                                           \
1675     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1676 }
1677 
1678 DO_ABD(gvec_sabd_b, int8_t)
1679 DO_ABD(gvec_sabd_h, int16_t)
1680 DO_ABD(gvec_sabd_s, int32_t)
1681 DO_ABD(gvec_sabd_d, int64_t)
1682 
1683 DO_ABD(gvec_uabd_b, uint8_t)
1684 DO_ABD(gvec_uabd_h, uint16_t)
1685 DO_ABD(gvec_uabd_s, uint32_t)
1686 DO_ABD(gvec_uabd_d, uint64_t)
1687 
1688 #undef DO_ABD
1689 
1690 #define DO_ABA(NAME, TYPE)                                      \
1691 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
1692 {                                                               \
1693     intptr_t i, opr_sz = simd_oprsz(desc);                      \
1694     TYPE *d = vd, *n = vn, *m = vm;                             \
1695                                                                 \
1696     for (i = 0; i < opr_sz / sizeof(TYPE); ++i) {               \
1697         d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i];        \
1698     }                                                           \
1699     clear_tail(d, opr_sz, simd_maxsz(desc));                    \
1700 }
1701 
1702 DO_ABA(gvec_saba_b, int8_t)
1703 DO_ABA(gvec_saba_h, int16_t)
1704 DO_ABA(gvec_saba_s, int32_t)
1705 DO_ABA(gvec_saba_d, int64_t)
1706 
1707 DO_ABA(gvec_uaba_b, uint8_t)
1708 DO_ABA(gvec_uaba_h, uint16_t)
1709 DO_ABA(gvec_uaba_s, uint32_t)
1710 DO_ABA(gvec_uaba_d, uint64_t)
1711 
1712 #undef DO_ABA
1713