xref: /qemu/target/arm/tcg/vec_helper.c (revision 525d9b6d42844e187211d25b69be8b378785bc24)
1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
40 {
41     uint64_t *d = vd + opr_sz;
42     uintptr_t i;
43 
44     for (i = opr_sz; i < max_sz; i += 8) {
45         *d++ = 0;
46     }
47 }
48 
49 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
50 static int16_t inl_qrdmlah_s16(int16_t src1, int16_t src2,
51                                int16_t src3, uint32_t *sat)
52 {
53     /* Simplify:
54      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
55      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
56      */
57     int32_t ret = (int32_t)src1 * src2;
58     ret = ((int32_t)src3 << 15) + ret + (1 << 14);
59     ret >>= 15;
60     if (ret != (int16_t)ret) {
61         *sat = 1;
62         ret = (ret < 0 ? -0x8000 : 0x7fff);
63     }
64     return ret;
65 }
66 
67 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
68                                   uint32_t src2, uint32_t src3)
69 {
70     uint32_t *sat = &env->vfp.qc[0];
71     uint16_t e1 = inl_qrdmlah_s16(src1, src2, src3, sat);
72     uint16_t e2 = inl_qrdmlah_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
73     return deposit32(e1, 16, 16, e2);
74 }
75 
76 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
77                               void *vq, uint32_t desc)
78 {
79     uintptr_t opr_sz = simd_oprsz(desc);
80     int16_t *d = vd;
81     int16_t *n = vn;
82     int16_t *m = vm;
83     uintptr_t i;
84 
85     for (i = 0; i < opr_sz / 2; ++i) {
86         d[i] = inl_qrdmlah_s16(n[i], m[i], d[i], vq);
87     }
88     clear_tail(d, opr_sz, simd_maxsz(desc));
89 }
90 
91 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
92 static int16_t inl_qrdmlsh_s16(int16_t src1, int16_t src2,
93                                int16_t src3, uint32_t *sat)
94 {
95     /* Similarly, using subtraction:
96      * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
97      * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
98      */
99     int32_t ret = (int32_t)src1 * src2;
100     ret = ((int32_t)src3 << 15) - ret + (1 << 14);
101     ret >>= 15;
102     if (ret != (int16_t)ret) {
103         *sat = 1;
104         ret = (ret < 0 ? -0x8000 : 0x7fff);
105     }
106     return ret;
107 }
108 
109 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
110                                   uint32_t src2, uint32_t src3)
111 {
112     uint32_t *sat = &env->vfp.qc[0];
113     uint16_t e1 = inl_qrdmlsh_s16(src1, src2, src3, sat);
114     uint16_t e2 = inl_qrdmlsh_s16(src1 >> 16, src2 >> 16, src3 >> 16, sat);
115     return deposit32(e1, 16, 16, e2);
116 }
117 
118 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
119                               void *vq, uint32_t desc)
120 {
121     uintptr_t opr_sz = simd_oprsz(desc);
122     int16_t *d = vd;
123     int16_t *n = vn;
124     int16_t *m = vm;
125     uintptr_t i;
126 
127     for (i = 0; i < opr_sz / 2; ++i) {
128         d[i] = inl_qrdmlsh_s16(n[i], m[i], d[i], vq);
129     }
130     clear_tail(d, opr_sz, simd_maxsz(desc));
131 }
132 
133 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
134 static int32_t inl_qrdmlah_s32(int32_t src1, int32_t src2,
135                                int32_t src3, uint32_t *sat)
136 {
137     /* Simplify similarly to int_qrdmlah_s16 above.  */
138     int64_t ret = (int64_t)src1 * src2;
139     ret = ((int64_t)src3 << 31) + ret + (1 << 30);
140     ret >>= 31;
141     if (ret != (int32_t)ret) {
142         *sat = 1;
143         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
144     }
145     return ret;
146 }
147 
148 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
149                                   int32_t src2, int32_t src3)
150 {
151     uint32_t *sat = &env->vfp.qc[0];
152     return inl_qrdmlah_s32(src1, src2, src3, sat);
153 }
154 
155 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
156                               void *vq, uint32_t desc)
157 {
158     uintptr_t opr_sz = simd_oprsz(desc);
159     int32_t *d = vd;
160     int32_t *n = vn;
161     int32_t *m = vm;
162     uintptr_t i;
163 
164     for (i = 0; i < opr_sz / 4; ++i) {
165         d[i] = inl_qrdmlah_s32(n[i], m[i], d[i], vq);
166     }
167     clear_tail(d, opr_sz, simd_maxsz(desc));
168 }
169 
170 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
171 static int32_t inl_qrdmlsh_s32(int32_t src1, int32_t src2,
172                                int32_t src3, uint32_t *sat)
173 {
174     /* Simplify similarly to int_qrdmlsh_s16 above.  */
175     int64_t ret = (int64_t)src1 * src2;
176     ret = ((int64_t)src3 << 31) - ret + (1 << 30);
177     ret >>= 31;
178     if (ret != (int32_t)ret) {
179         *sat = 1;
180         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
181     }
182     return ret;
183 }
184 
185 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
186                                   int32_t src2, int32_t src3)
187 {
188     uint32_t *sat = &env->vfp.qc[0];
189     return inl_qrdmlsh_s32(src1, src2, src3, sat);
190 }
191 
192 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
193                               void *vq, uint32_t desc)
194 {
195     uintptr_t opr_sz = simd_oprsz(desc);
196     int32_t *d = vd;
197     int32_t *n = vn;
198     int32_t *m = vm;
199     uintptr_t i;
200 
201     for (i = 0; i < opr_sz / 4; ++i) {
202         d[i] = inl_qrdmlsh_s32(n[i], m[i], d[i], vq);
203     }
204     clear_tail(d, opr_sz, simd_maxsz(desc));
205 }
206 
207 /* Integer 8 and 16-bit dot-product.
208  *
209  * Note that for the loops herein, host endianness does not matter
210  * with respect to the ordering of data within the 64-bit lanes.
211  * All elements are treated equally, no matter where they are.
212  */
213 
214 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
215 {
216     intptr_t i, opr_sz = simd_oprsz(desc);
217     uint32_t *d = vd;
218     int8_t *n = vn, *m = vm;
219 
220     for (i = 0; i < opr_sz / 4; ++i) {
221         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
222               + n[i * 4 + 1] * m[i * 4 + 1]
223               + n[i * 4 + 2] * m[i * 4 + 2]
224               + n[i * 4 + 3] * m[i * 4 + 3];
225     }
226     clear_tail(d, opr_sz, simd_maxsz(desc));
227 }
228 
229 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
230 {
231     intptr_t i, opr_sz = simd_oprsz(desc);
232     uint32_t *d = vd;
233     uint8_t *n = vn, *m = vm;
234 
235     for (i = 0; i < opr_sz / 4; ++i) {
236         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
237               + n[i * 4 + 1] * m[i * 4 + 1]
238               + n[i * 4 + 2] * m[i * 4 + 2]
239               + n[i * 4 + 3] * m[i * 4 + 3];
240     }
241     clear_tail(d, opr_sz, simd_maxsz(desc));
242 }
243 
244 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
245 {
246     intptr_t i, opr_sz = simd_oprsz(desc);
247     uint64_t *d = vd;
248     int16_t *n = vn, *m = vm;
249 
250     for (i = 0; i < opr_sz / 8; ++i) {
251         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
252               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
253               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
254               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
255     }
256     clear_tail(d, opr_sz, simd_maxsz(desc));
257 }
258 
259 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
260 {
261     intptr_t i, opr_sz = simd_oprsz(desc);
262     uint64_t *d = vd;
263     uint16_t *n = vn, *m = vm;
264 
265     for (i = 0; i < opr_sz / 8; ++i) {
266         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
267               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
268               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
269               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
270     }
271     clear_tail(d, opr_sz, simd_maxsz(desc));
272 }
273 
274 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
275 {
276     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
277     intptr_t index = simd_data(desc);
278     uint32_t *d = vd;
279     int8_t *n = vn;
280     int8_t *m_indexed = (int8_t *)vm + index * 4;
281 
282     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
283      * Otherwise opr_sz is a multiple of 16.
284      */
285     segend = MIN(4, opr_sz_4);
286     i = 0;
287     do {
288         int8_t m0 = m_indexed[i * 4 + 0];
289         int8_t m1 = m_indexed[i * 4 + 1];
290         int8_t m2 = m_indexed[i * 4 + 2];
291         int8_t m3 = m_indexed[i * 4 + 3];
292 
293         do {
294             d[i] += n[i * 4 + 0] * m0
295                   + n[i * 4 + 1] * m1
296                   + n[i * 4 + 2] * m2
297                   + n[i * 4 + 3] * m3;
298         } while (++i < segend);
299         segend = i + 4;
300     } while (i < opr_sz_4);
301 
302     clear_tail(d, opr_sz, simd_maxsz(desc));
303 }
304 
305 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
306 {
307     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
308     intptr_t index = simd_data(desc);
309     uint32_t *d = vd;
310     uint8_t *n = vn;
311     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
312 
313     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
314      * Otherwise opr_sz is a multiple of 16.
315      */
316     segend = MIN(4, opr_sz_4);
317     i = 0;
318     do {
319         uint8_t m0 = m_indexed[i * 4 + 0];
320         uint8_t m1 = m_indexed[i * 4 + 1];
321         uint8_t m2 = m_indexed[i * 4 + 2];
322         uint8_t m3 = m_indexed[i * 4 + 3];
323 
324         do {
325             d[i] += n[i * 4 + 0] * m0
326                   + n[i * 4 + 1] * m1
327                   + n[i * 4 + 2] * m2
328                   + n[i * 4 + 3] * m3;
329         } while (++i < segend);
330         segend = i + 4;
331     } while (i < opr_sz_4);
332 
333     clear_tail(d, opr_sz, simd_maxsz(desc));
334 }
335 
336 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
337 {
338     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
339     intptr_t index = simd_data(desc);
340     uint64_t *d = vd;
341     int16_t *n = vn;
342     int16_t *m_indexed = (int16_t *)vm + index * 4;
343 
344     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
345      * Process the entire segment all at once, writing back the results
346      * only after we've consumed all of the inputs.
347      */
348     for (i = 0; i < opr_sz_8 ; i += 2) {
349         uint64_t d0, d1;
350 
351         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
352         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
353         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
354         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
355         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
356         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
357         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
358         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
359 
360         d[i + 0] += d0;
361         d[i + 1] += d1;
362     }
363 
364     clear_tail(d, opr_sz, simd_maxsz(desc));
365 }
366 
367 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
368 {
369     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
370     intptr_t index = simd_data(desc);
371     uint64_t *d = vd;
372     uint16_t *n = vn;
373     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
374 
375     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
376      * Process the entire segment all at once, writing back the results
377      * only after we've consumed all of the inputs.
378      */
379     for (i = 0; i < opr_sz_8 ; i += 2) {
380         uint64_t d0, d1;
381 
382         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
383         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
384         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
385         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
386         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
387         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
388         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
389         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
390 
391         d[i + 0] += d0;
392         d[i + 1] += d1;
393     }
394 
395     clear_tail(d, opr_sz, simd_maxsz(desc));
396 }
397 
398 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
399                          void *vfpst, uint32_t desc)
400 {
401     uintptr_t opr_sz = simd_oprsz(desc);
402     float16 *d = vd;
403     float16 *n = vn;
404     float16 *m = vm;
405     float_status *fpst = vfpst;
406     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
407     uint32_t neg_imag = neg_real ^ 1;
408     uintptr_t i;
409 
410     /* Shift boolean to the sign bit so we can xor to negate.  */
411     neg_real <<= 15;
412     neg_imag <<= 15;
413 
414     for (i = 0; i < opr_sz / 2; i += 2) {
415         float16 e0 = n[H2(i)];
416         float16 e1 = m[H2(i + 1)] ^ neg_imag;
417         float16 e2 = n[H2(i + 1)];
418         float16 e3 = m[H2(i)] ^ neg_real;
419 
420         d[H2(i)] = float16_add(e0, e1, fpst);
421         d[H2(i + 1)] = float16_add(e2, e3, fpst);
422     }
423     clear_tail(d, opr_sz, simd_maxsz(desc));
424 }
425 
426 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
427                          void *vfpst, uint32_t desc)
428 {
429     uintptr_t opr_sz = simd_oprsz(desc);
430     float32 *d = vd;
431     float32 *n = vn;
432     float32 *m = vm;
433     float_status *fpst = vfpst;
434     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
435     uint32_t neg_imag = neg_real ^ 1;
436     uintptr_t i;
437 
438     /* Shift boolean to the sign bit so we can xor to negate.  */
439     neg_real <<= 31;
440     neg_imag <<= 31;
441 
442     for (i = 0; i < opr_sz / 4; i += 2) {
443         float32 e0 = n[H4(i)];
444         float32 e1 = m[H4(i + 1)] ^ neg_imag;
445         float32 e2 = n[H4(i + 1)];
446         float32 e3 = m[H4(i)] ^ neg_real;
447 
448         d[H4(i)] = float32_add(e0, e1, fpst);
449         d[H4(i + 1)] = float32_add(e2, e3, fpst);
450     }
451     clear_tail(d, opr_sz, simd_maxsz(desc));
452 }
453 
454 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
455                          void *vfpst, uint32_t desc)
456 {
457     uintptr_t opr_sz = simd_oprsz(desc);
458     float64 *d = vd;
459     float64 *n = vn;
460     float64 *m = vm;
461     float_status *fpst = vfpst;
462     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
463     uint64_t neg_imag = neg_real ^ 1;
464     uintptr_t i;
465 
466     /* Shift boolean to the sign bit so we can xor to negate.  */
467     neg_real <<= 63;
468     neg_imag <<= 63;
469 
470     for (i = 0; i < opr_sz / 8; i += 2) {
471         float64 e0 = n[i];
472         float64 e1 = m[i + 1] ^ neg_imag;
473         float64 e2 = n[i + 1];
474         float64 e3 = m[i] ^ neg_real;
475 
476         d[i] = float64_add(e0, e1, fpst);
477         d[i + 1] = float64_add(e2, e3, fpst);
478     }
479     clear_tail(d, opr_sz, simd_maxsz(desc));
480 }
481 
482 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
483                          void *vfpst, uint32_t desc)
484 {
485     uintptr_t opr_sz = simd_oprsz(desc);
486     float16 *d = vd;
487     float16 *n = vn;
488     float16 *m = vm;
489     float_status *fpst = vfpst;
490     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
491     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
492     uint32_t neg_real = flip ^ neg_imag;
493     uintptr_t i;
494 
495     /* Shift boolean to the sign bit so we can xor to negate.  */
496     neg_real <<= 15;
497     neg_imag <<= 15;
498 
499     for (i = 0; i < opr_sz / 2; i += 2) {
500         float16 e2 = n[H2(i + flip)];
501         float16 e1 = m[H2(i + flip)] ^ neg_real;
502         float16 e4 = e2;
503         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
504 
505         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
506         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
507     }
508     clear_tail(d, opr_sz, simd_maxsz(desc));
509 }
510 
511 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
512                              void *vfpst, uint32_t desc)
513 {
514     uintptr_t opr_sz = simd_oprsz(desc);
515     float16 *d = vd;
516     float16 *n = vn;
517     float16 *m = vm;
518     float_status *fpst = vfpst;
519     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
520     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
521     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
522     uint32_t neg_real = flip ^ neg_imag;
523     intptr_t elements = opr_sz / sizeof(float16);
524     intptr_t eltspersegment = 16 / sizeof(float16);
525     intptr_t i, j;
526 
527     /* Shift boolean to the sign bit so we can xor to negate.  */
528     neg_real <<= 15;
529     neg_imag <<= 15;
530 
531     for (i = 0; i < elements; i += eltspersegment) {
532         float16 mr = m[H2(i + 2 * index + 0)];
533         float16 mi = m[H2(i + 2 * index + 1)];
534         float16 e1 = neg_real ^ (flip ? mi : mr);
535         float16 e3 = neg_imag ^ (flip ? mr : mi);
536 
537         for (j = i; j < i + eltspersegment; j += 2) {
538             float16 e2 = n[H2(j + flip)];
539             float16 e4 = e2;
540 
541             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
542             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
543         }
544     }
545     clear_tail(d, opr_sz, simd_maxsz(desc));
546 }
547 
548 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
549                          void *vfpst, uint32_t desc)
550 {
551     uintptr_t opr_sz = simd_oprsz(desc);
552     float32 *d = vd;
553     float32 *n = vn;
554     float32 *m = vm;
555     float_status *fpst = vfpst;
556     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
557     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
558     uint32_t neg_real = flip ^ neg_imag;
559     uintptr_t i;
560 
561     /* Shift boolean to the sign bit so we can xor to negate.  */
562     neg_real <<= 31;
563     neg_imag <<= 31;
564 
565     for (i = 0; i < opr_sz / 4; i += 2) {
566         float32 e2 = n[H4(i + flip)];
567         float32 e1 = m[H4(i + flip)] ^ neg_real;
568         float32 e4 = e2;
569         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
570 
571         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
572         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
573     }
574     clear_tail(d, opr_sz, simd_maxsz(desc));
575 }
576 
577 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
578                              void *vfpst, uint32_t desc)
579 {
580     uintptr_t opr_sz = simd_oprsz(desc);
581     float32 *d = vd;
582     float32 *n = vn;
583     float32 *m = vm;
584     float_status *fpst = vfpst;
585     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
586     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
587     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
588     uint32_t neg_real = flip ^ neg_imag;
589     intptr_t elements = opr_sz / sizeof(float32);
590     intptr_t eltspersegment = 16 / sizeof(float32);
591     intptr_t i, j;
592 
593     /* Shift boolean to the sign bit so we can xor to negate.  */
594     neg_real <<= 31;
595     neg_imag <<= 31;
596 
597     for (i = 0; i < elements; i += eltspersegment) {
598         float32 mr = m[H4(i + 2 * index + 0)];
599         float32 mi = m[H4(i + 2 * index + 1)];
600         float32 e1 = neg_real ^ (flip ? mi : mr);
601         float32 e3 = neg_imag ^ (flip ? mr : mi);
602 
603         for (j = i; j < i + eltspersegment; j += 2) {
604             float32 e2 = n[H4(j + flip)];
605             float32 e4 = e2;
606 
607             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
608             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
609         }
610     }
611     clear_tail(d, opr_sz, simd_maxsz(desc));
612 }
613 
614 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
615                          void *vfpst, uint32_t desc)
616 {
617     uintptr_t opr_sz = simd_oprsz(desc);
618     float64 *d = vd;
619     float64 *n = vn;
620     float64 *m = vm;
621     float_status *fpst = vfpst;
622     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
623     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
624     uint64_t neg_real = flip ^ neg_imag;
625     uintptr_t i;
626 
627     /* Shift boolean to the sign bit so we can xor to negate.  */
628     neg_real <<= 63;
629     neg_imag <<= 63;
630 
631     for (i = 0; i < opr_sz / 8; i += 2) {
632         float64 e2 = n[i + flip];
633         float64 e1 = m[i + flip] ^ neg_real;
634         float64 e4 = e2;
635         float64 e3 = m[i + 1 - flip] ^ neg_imag;
636 
637         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
638         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
639     }
640     clear_tail(d, opr_sz, simd_maxsz(desc));
641 }
642 
643 #define DO_2OP(NAME, FUNC, TYPE) \
644 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
645 {                                                                 \
646     intptr_t i, oprsz = simd_oprsz(desc);                         \
647     TYPE *d = vd, *n = vn;                                        \
648     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
649         d[i] = FUNC(n[i], stat);                                  \
650     }                                                             \
651     clear_tail(d, oprsz, simd_maxsz(desc));                       \
652 }
653 
654 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
655 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
656 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
657 
658 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
659 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
660 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
661 
662 #undef DO_2OP
663 
664 /* Floating-point trigonometric starting value.
665  * See the ARM ARM pseudocode function FPTrigSMul.
666  */
667 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
668 {
669     float16 result = float16_mul(op1, op1, stat);
670     if (!float16_is_any_nan(result)) {
671         result = float16_set_sign(result, op2 & 1);
672     }
673     return result;
674 }
675 
676 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
677 {
678     float32 result = float32_mul(op1, op1, stat);
679     if (!float32_is_any_nan(result)) {
680         result = float32_set_sign(result, op2 & 1);
681     }
682     return result;
683 }
684 
685 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
686 {
687     float64 result = float64_mul(op1, op1, stat);
688     if (!float64_is_any_nan(result)) {
689         result = float64_set_sign(result, op2 & 1);
690     }
691     return result;
692 }
693 
694 #define DO_3OP(NAME, FUNC, TYPE) \
695 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
696 {                                                                          \
697     intptr_t i, oprsz = simd_oprsz(desc);                                  \
698     TYPE *d = vd, *n = vn, *m = vm;                                        \
699     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
700         d[i] = FUNC(n[i], m[i], stat);                                     \
701     }                                                                      \
702     clear_tail(d, oprsz, simd_maxsz(desc));                                \
703 }
704 
705 DO_3OP(gvec_fadd_h, float16_add, float16)
706 DO_3OP(gvec_fadd_s, float32_add, float32)
707 DO_3OP(gvec_fadd_d, float64_add, float64)
708 
709 DO_3OP(gvec_fsub_h, float16_sub, float16)
710 DO_3OP(gvec_fsub_s, float32_sub, float32)
711 DO_3OP(gvec_fsub_d, float64_sub, float64)
712 
713 DO_3OP(gvec_fmul_h, float16_mul, float16)
714 DO_3OP(gvec_fmul_s, float32_mul, float32)
715 DO_3OP(gvec_fmul_d, float64_mul, float64)
716 
717 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
718 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
719 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
720 
721 #ifdef TARGET_AARCH64
722 
723 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
724 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
725 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
726 
727 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
728 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
729 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
730 
731 #endif
732 #undef DO_3OP
733 
734 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
735  * For AdvSIMD, there is of course only one such vector segment.
736  */
737 
738 #define DO_MUL_IDX(NAME, TYPE, H) \
739 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
740 {                                                                          \
741     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
742     intptr_t idx = simd_data(desc);                                        \
743     TYPE *d = vd, *n = vn, *m = vm;                                        \
744     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
745         TYPE mm = m[H(i + idx)];                                           \
746         for (j = 0; j < segment; j++) {                                    \
747             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
748         }                                                                  \
749     }                                                                      \
750     clear_tail(d, oprsz, simd_maxsz(desc));                                \
751 }
752 
753 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
754 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
755 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
756 
757 #undef DO_MUL_IDX
758 
759 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
760 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
761                   void *stat, uint32_t desc)                               \
762 {                                                                          \
763     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
764     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
765     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
766     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
767     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
768     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
769         TYPE mm = m[H(i + idx)];                                           \
770         for (j = 0; j < segment; j++) {                                    \
771             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
772                                      mm, a[i + j], 0, stat);               \
773         }                                                                  \
774     }                                                                      \
775     clear_tail(d, oprsz, simd_maxsz(desc));                                \
776 }
777 
778 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
779 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
780 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
781 
782 #undef DO_FMLA_IDX
783 
784 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
785 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
786 {                                                                          \
787     intptr_t i, oprsz = simd_oprsz(desc);                                  \
788     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
789     bool q = false;                                                        \
790     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
791         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
792         if (dd < MIN) {                                                    \
793             dd = MIN;                                                      \
794             q = true;                                                      \
795         } else if (dd > MAX) {                                             \
796             dd = MAX;                                                      \
797             q = true;                                                      \
798         }                                                                  \
799         d[i] = dd;                                                         \
800     }                                                                      \
801     if (q) {                                                               \
802         uint32_t *qc = vq;                                                 \
803         qc[0] = 1;                                                         \
804     }                                                                      \
805     clear_tail(d, oprsz, simd_maxsz(desc));                                \
806 }
807 
808 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
809 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
810 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
811 
812 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
813 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
814 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
815 
816 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
817 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
818 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
819 
820 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
821 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
822 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
823 
824 #undef DO_SAT
825 
826 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
827                           void *vm, uint32_t desc)
828 {
829     intptr_t i, oprsz = simd_oprsz(desc);
830     uint64_t *d = vd, *n = vn, *m = vm;
831     bool q = false;
832 
833     for (i = 0; i < oprsz / 8; i++) {
834         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
835         if (dd < nn) {
836             dd = UINT64_MAX;
837             q = true;
838         }
839         d[i] = dd;
840     }
841     if (q) {
842         uint32_t *qc = vq;
843         qc[0] = 1;
844     }
845     clear_tail(d, oprsz, simd_maxsz(desc));
846 }
847 
848 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
849                           void *vm, uint32_t desc)
850 {
851     intptr_t i, oprsz = simd_oprsz(desc);
852     uint64_t *d = vd, *n = vn, *m = vm;
853     bool q = false;
854 
855     for (i = 0; i < oprsz / 8; i++) {
856         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
857         if (nn < mm) {
858             dd = 0;
859             q = true;
860         }
861         d[i] = dd;
862     }
863     if (q) {
864         uint32_t *qc = vq;
865         qc[0] = 1;
866     }
867     clear_tail(d, oprsz, simd_maxsz(desc));
868 }
869 
870 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
871                           void *vm, uint32_t desc)
872 {
873     intptr_t i, oprsz = simd_oprsz(desc);
874     int64_t *d = vd, *n = vn, *m = vm;
875     bool q = false;
876 
877     for (i = 0; i < oprsz / 8; i++) {
878         int64_t nn = n[i], mm = m[i], dd = nn + mm;
879         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
880             dd = (nn >> 63) ^ ~INT64_MIN;
881             q = true;
882         }
883         d[i] = dd;
884     }
885     if (q) {
886         uint32_t *qc = vq;
887         qc[0] = 1;
888     }
889     clear_tail(d, oprsz, simd_maxsz(desc));
890 }
891 
892 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
893                           void *vm, uint32_t desc)
894 {
895     intptr_t i, oprsz = simd_oprsz(desc);
896     int64_t *d = vd, *n = vn, *m = vm;
897     bool q = false;
898 
899     for (i = 0; i < oprsz / 8; i++) {
900         int64_t nn = n[i], mm = m[i], dd = nn - mm;
901         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
902             dd = (nn >> 63) ^ ~INT64_MIN;
903             q = true;
904         }
905         d[i] = dd;
906     }
907     if (q) {
908         uint32_t *qc = vq;
909         qc[0] = 1;
910     }
911     clear_tail(d, oprsz, simd_maxsz(desc));
912 }
913 
914 
915 #define DO_SRA(NAME, TYPE)                              \
916 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
917 {                                                       \
918     intptr_t i, oprsz = simd_oprsz(desc);               \
919     int shift = simd_data(desc);                        \
920     TYPE *d = vd, *n = vn;                              \
921     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
922         d[i] += n[i] >> shift;                          \
923     }                                                   \
924     clear_tail(d, oprsz, simd_maxsz(desc));             \
925 }
926 
927 DO_SRA(gvec_ssra_b, int8_t)
928 DO_SRA(gvec_ssra_h, int16_t)
929 DO_SRA(gvec_ssra_s, int32_t)
930 DO_SRA(gvec_ssra_d, int64_t)
931 
932 DO_SRA(gvec_usra_b, uint8_t)
933 DO_SRA(gvec_usra_h, uint16_t)
934 DO_SRA(gvec_usra_s, uint32_t)
935 DO_SRA(gvec_usra_d, uint64_t)
936 
937 #undef DO_SRA
938 
939 #define DO_RSHR(NAME, TYPE)                             \
940 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
941 {                                                       \
942     intptr_t i, oprsz = simd_oprsz(desc);               \
943     int shift = simd_data(desc);                        \
944     TYPE *d = vd, *n = vn;                              \
945     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
946         TYPE tmp = n[i] >> (shift - 1);                 \
947         d[i] = (tmp >> 1) + (tmp & 1);                  \
948     }                                                   \
949     clear_tail(d, oprsz, simd_maxsz(desc));             \
950 }
951 
952 DO_RSHR(gvec_srshr_b, int8_t)
953 DO_RSHR(gvec_srshr_h, int16_t)
954 DO_RSHR(gvec_srshr_s, int32_t)
955 DO_RSHR(gvec_srshr_d, int64_t)
956 
957 DO_RSHR(gvec_urshr_b, uint8_t)
958 DO_RSHR(gvec_urshr_h, uint16_t)
959 DO_RSHR(gvec_urshr_s, uint32_t)
960 DO_RSHR(gvec_urshr_d, uint64_t)
961 
962 #undef DO_RSHR
963 
964 #define DO_RSRA(NAME, TYPE)                             \
965 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
966 {                                                       \
967     intptr_t i, oprsz = simd_oprsz(desc);               \
968     int shift = simd_data(desc);                        \
969     TYPE *d = vd, *n = vn;                              \
970     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
971         TYPE tmp = n[i] >> (shift - 1);                 \
972         d[i] += (tmp >> 1) + (tmp & 1);                 \
973     }                                                   \
974     clear_tail(d, oprsz, simd_maxsz(desc));             \
975 }
976 
977 DO_RSRA(gvec_srsra_b, int8_t)
978 DO_RSRA(gvec_srsra_h, int16_t)
979 DO_RSRA(gvec_srsra_s, int32_t)
980 DO_RSRA(gvec_srsra_d, int64_t)
981 
982 DO_RSRA(gvec_ursra_b, uint8_t)
983 DO_RSRA(gvec_ursra_h, uint16_t)
984 DO_RSRA(gvec_ursra_s, uint32_t)
985 DO_RSRA(gvec_ursra_d, uint64_t)
986 
987 #undef DO_RSRA
988 
989 #define DO_SRI(NAME, TYPE)                              \
990 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
991 {                                                       \
992     intptr_t i, oprsz = simd_oprsz(desc);               \
993     int shift = simd_data(desc);                        \
994     TYPE *d = vd, *n = vn;                              \
995     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
996         d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
997     }                                                   \
998     clear_tail(d, oprsz, simd_maxsz(desc));             \
999 }
1000 
1001 DO_SRI(gvec_sri_b, uint8_t)
1002 DO_SRI(gvec_sri_h, uint16_t)
1003 DO_SRI(gvec_sri_s, uint32_t)
1004 DO_SRI(gvec_sri_d, uint64_t)
1005 
1006 #undef DO_SRI
1007 
1008 #define DO_SLI(NAME, TYPE)                              \
1009 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1010 {                                                       \
1011     intptr_t i, oprsz = simd_oprsz(desc);               \
1012     int shift = simd_data(desc);                        \
1013     TYPE *d = vd, *n = vn;                              \
1014     for (i = 0; i < oprsz / sizeof(TYPE); i++) {        \
1015         d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
1016     }                                                   \
1017     clear_tail(d, oprsz, simd_maxsz(desc));             \
1018 }
1019 
1020 DO_SLI(gvec_sli_b, uint8_t)
1021 DO_SLI(gvec_sli_h, uint16_t)
1022 DO_SLI(gvec_sli_s, uint32_t)
1023 DO_SLI(gvec_sli_d, uint64_t)
1024 
1025 #undef DO_SLI
1026 
1027 /*
1028  * Convert float16 to float32, raising no exceptions and
1029  * preserving exceptional values, including SNaN.
1030  * This is effectively an unpack+repack operation.
1031  */
1032 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
1033 {
1034     const int f16_bias = 15;
1035     const int f32_bias = 127;
1036     uint32_t sign = extract32(f16, 15, 1);
1037     uint32_t exp = extract32(f16, 10, 5);
1038     uint32_t frac = extract32(f16, 0, 10);
1039 
1040     if (exp == 0x1f) {
1041         /* Inf or NaN */
1042         exp = 0xff;
1043     } else if (exp == 0) {
1044         /* Zero or denormal.  */
1045         if (frac != 0) {
1046             if (fz16) {
1047                 frac = 0;
1048             } else {
1049                 /*
1050                  * Denormal; these are all normal float32.
1051                  * Shift the fraction so that the msb is at bit 11,
1052                  * then remove bit 11 as the implicit bit of the
1053                  * normalized float32.  Note that we still go through
1054                  * the shift for normal numbers below, to put the
1055                  * float32 fraction at the right place.
1056                  */
1057                 int shift = clz32(frac) - 21;
1058                 frac = (frac << shift) & 0x3ff;
1059                 exp = f32_bias - f16_bias - shift + 1;
1060             }
1061         }
1062     } else {
1063         /* Normal number; adjust the bias.  */
1064         exp += f32_bias - f16_bias;
1065     }
1066     sign <<= 31;
1067     exp <<= 23;
1068     frac <<= 23 - 10;
1069 
1070     return sign | exp | frac;
1071 }
1072 
1073 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
1074 {
1075     /*
1076      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
1077      * Load the 2nd qword iff is_q & is_2.
1078      * Shift to the 2nd dword iff !is_q & is_2.
1079      * For !is_q & !is_2, the upper bits of the result are garbage.
1080      */
1081     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
1082 }
1083 
1084 /*
1085  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
1086  * as there is not yet SVE versions that might use blocking.
1087  */
1088 
1089 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
1090                      uint32_t desc, bool fz16)
1091 {
1092     intptr_t i, oprsz = simd_oprsz(desc);
1093     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1094     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1095     int is_q = oprsz == 16;
1096     uint64_t n_4, m_4;
1097 
1098     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1099     n_4 = load4_f16(vn, is_q, is_2);
1100     m_4 = load4_f16(vm, is_q, is_2);
1101 
1102     /* Negate all inputs for FMLSL at once.  */
1103     if (is_s) {
1104         n_4 ^= 0x8000800080008000ull;
1105     }
1106 
1107     for (i = 0; i < oprsz / 4; i++) {
1108         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1109         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
1110         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1111     }
1112     clear_tail(d, oprsz, simd_maxsz(desc));
1113 }
1114 
1115 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
1116                             void *venv, uint32_t desc)
1117 {
1118     CPUARMState *env = venv;
1119     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1120              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1121 }
1122 
1123 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
1124                             void *venv, uint32_t desc)
1125 {
1126     CPUARMState *env = venv;
1127     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1128              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1129 }
1130 
1131 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1132                          uint32_t desc, bool fz16)
1133 {
1134     intptr_t i, oprsz = simd_oprsz(desc);
1135     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1136     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1137     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1138     int is_q = oprsz == 16;
1139     uint64_t n_4;
1140     float32 m_1;
1141 
1142     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1143     n_4 = load4_f16(vn, is_q, is_2);
1144 
1145     /* Negate all inputs for FMLSL at once.  */
1146     if (is_s) {
1147         n_4 ^= 0x8000800080008000ull;
1148     }
1149 
1150     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1151 
1152     for (i = 0; i < oprsz / 4; i++) {
1153         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1154         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1155     }
1156     clear_tail(d, oprsz, simd_maxsz(desc));
1157 }
1158 
1159 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1160                                 void *venv, uint32_t desc)
1161 {
1162     CPUARMState *env = venv;
1163     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1164                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1165 }
1166 
1167 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1168                                 void *venv, uint32_t desc)
1169 {
1170     CPUARMState *env = venv;
1171     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1172                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1173 }
1174 
1175 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1176 {
1177     intptr_t i, opr_sz = simd_oprsz(desc);
1178     int8_t *d = vd, *n = vn, *m = vm;
1179 
1180     for (i = 0; i < opr_sz; ++i) {
1181         int8_t mm = m[i];
1182         int8_t nn = n[i];
1183         int8_t res = 0;
1184         if (mm >= 0) {
1185             if (mm < 8) {
1186                 res = nn << mm;
1187             }
1188         } else {
1189             res = nn >> (mm > -8 ? -mm : 7);
1190         }
1191         d[i] = res;
1192     }
1193     clear_tail(d, opr_sz, simd_maxsz(desc));
1194 }
1195 
1196 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1197 {
1198     intptr_t i, opr_sz = simd_oprsz(desc);
1199     int16_t *d = vd, *n = vn, *m = vm;
1200 
1201     for (i = 0; i < opr_sz / 2; ++i) {
1202         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1203         int16_t nn = n[i];
1204         int16_t res = 0;
1205         if (mm >= 0) {
1206             if (mm < 16) {
1207                 res = nn << mm;
1208             }
1209         } else {
1210             res = nn >> (mm > -16 ? -mm : 15);
1211         }
1212         d[i] = res;
1213     }
1214     clear_tail(d, opr_sz, simd_maxsz(desc));
1215 }
1216 
1217 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1218 {
1219     intptr_t i, opr_sz = simd_oprsz(desc);
1220     uint8_t *d = vd, *n = vn, *m = vm;
1221 
1222     for (i = 0; i < opr_sz; ++i) {
1223         int8_t mm = m[i];
1224         uint8_t nn = n[i];
1225         uint8_t res = 0;
1226         if (mm >= 0) {
1227             if (mm < 8) {
1228                 res = nn << mm;
1229             }
1230         } else {
1231             if (mm > -8) {
1232                 res = nn >> -mm;
1233             }
1234         }
1235         d[i] = res;
1236     }
1237     clear_tail(d, opr_sz, simd_maxsz(desc));
1238 }
1239 
1240 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1241 {
1242     intptr_t i, opr_sz = simd_oprsz(desc);
1243     uint16_t *d = vd, *n = vn, *m = vm;
1244 
1245     for (i = 0; i < opr_sz / 2; ++i) {
1246         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1247         uint16_t nn = n[i];
1248         uint16_t res = 0;
1249         if (mm >= 0) {
1250             if (mm < 16) {
1251                 res = nn << mm;
1252             }
1253         } else {
1254             if (mm > -16) {
1255                 res = nn >> -mm;
1256             }
1257         }
1258         d[i] = res;
1259     }
1260     clear_tail(d, opr_sz, simd_maxsz(desc));
1261 }
1262 
1263 /*
1264  * 8x8->8 polynomial multiply.
1265  *
1266  * Polynomial multiplication is like integer multiplication except the
1267  * partial products are XORed, not added.
1268  *
1269  * TODO: expose this as a generic vector operation, as it is a common
1270  * crypto building block.
1271  */
1272 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1273 {
1274     intptr_t i, j, opr_sz = simd_oprsz(desc);
1275     uint64_t *d = vd, *n = vn, *m = vm;
1276 
1277     for (i = 0; i < opr_sz / 8; ++i) {
1278         uint64_t nn = n[i];
1279         uint64_t mm = m[i];
1280         uint64_t rr = 0;
1281 
1282         for (j = 0; j < 8; ++j) {
1283             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1284             rr ^= mm & mask;
1285             mm = (mm << 1) & 0xfefefefefefefefeull;
1286             nn >>= 1;
1287         }
1288         d[i] = rr;
1289     }
1290     clear_tail(d, opr_sz, simd_maxsz(desc));
1291 }
1292 
1293 /*
1294  * 64x64->128 polynomial multiply.
1295  * Because of the lanes are not accessed in strict columns,
1296  * this probably cannot be turned into a generic helper.
1297  */
1298 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1299 {
1300     intptr_t i, j, opr_sz = simd_oprsz(desc);
1301     intptr_t hi = simd_data(desc);
1302     uint64_t *d = vd, *n = vn, *m = vm;
1303 
1304     for (i = 0; i < opr_sz / 8; i += 2) {
1305         uint64_t nn = n[i + hi];
1306         uint64_t mm = m[i + hi];
1307         uint64_t rhi = 0;
1308         uint64_t rlo = 0;
1309 
1310         /* Bit 0 can only influence the low 64-bit result.  */
1311         if (nn & 1) {
1312             rlo = mm;
1313         }
1314 
1315         for (j = 1; j < 64; ++j) {
1316             uint64_t mask = -((nn >> j) & 1);
1317             rlo ^= (mm << j) & mask;
1318             rhi ^= (mm >> (64 - j)) & mask;
1319         }
1320         d[i] = rlo;
1321         d[i + 1] = rhi;
1322     }
1323     clear_tail(d, opr_sz, simd_maxsz(desc));
1324 }
1325 
1326 /*
1327  * 8x8->16 polynomial multiply.
1328  *
1329  * The byte inputs are expanded to (or extracted from) half-words.
1330  * Note that neon and sve2 get the inputs from different positions.
1331  * This allows 4 bytes to be processed in parallel with uint64_t.
1332  */
1333 
1334 static uint64_t expand_byte_to_half(uint64_t x)
1335 {
1336     return  (x & 0x000000ff)
1337          | ((x & 0x0000ff00) << 8)
1338          | ((x & 0x00ff0000) << 16)
1339          | ((x & 0xff000000) << 24);
1340 }
1341 
1342 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1343 {
1344     uint64_t result = 0;
1345     int i;
1346 
1347     for (i = 0; i < 8; ++i) {
1348         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1349         result ^= op2 & mask;
1350         op1 >>= 1;
1351         op2 <<= 1;
1352     }
1353     return result;
1354 }
1355 
1356 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1357 {
1358     int hi = simd_data(desc);
1359     uint64_t *d = vd, *n = vn, *m = vm;
1360     uint64_t nn = n[hi], mm = m[hi];
1361 
1362     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1363     nn >>= 32;
1364     mm >>= 32;
1365     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1366 
1367     clear_tail(d, 16, simd_maxsz(desc));
1368 }
1369 
1370 #ifdef TARGET_AARCH64
1371 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1372 {
1373     int shift = simd_data(desc) * 8;
1374     intptr_t i, opr_sz = simd_oprsz(desc);
1375     uint64_t *d = vd, *n = vn, *m = vm;
1376 
1377     for (i = 0; i < opr_sz / 8; ++i) {
1378         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1379         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1380 
1381         d[i] = pmull_h(nn, mm);
1382     }
1383 }
1384 #endif
1385 
1386 #define DO_CMP0(NAME, TYPE, OP)                         \
1387 void HELPER(NAME)(void *vd, void *vn, uint32_t desc)    \
1388 {                                                       \
1389     intptr_t i, opr_sz = simd_oprsz(desc);              \
1390     for (i = 0; i < opr_sz; i += sizeof(TYPE)) {        \
1391         TYPE nn = *(TYPE *)(vn + i);                    \
1392         *(TYPE *)(vd + i) = -(nn OP 0);                 \
1393     }                                                   \
1394     clear_tail(vd, opr_sz, simd_maxsz(desc));           \
1395 }
1396 
1397 DO_CMP0(gvec_ceq0_b, int8_t, ==)
1398 DO_CMP0(gvec_clt0_b, int8_t, <)
1399 DO_CMP0(gvec_cle0_b, int8_t, <=)
1400 DO_CMP0(gvec_cgt0_b, int8_t, >)
1401 DO_CMP0(gvec_cge0_b, int8_t, >=)
1402 
1403 DO_CMP0(gvec_ceq0_h, int16_t, ==)
1404 DO_CMP0(gvec_clt0_h, int16_t, <)
1405 DO_CMP0(gvec_cle0_h, int16_t, <=)
1406 DO_CMP0(gvec_cgt0_h, int16_t, >)
1407 DO_CMP0(gvec_cge0_h, int16_t, >=)
1408 
1409 #undef DO_CMP0
1410