xref: /qemu/target/arm/tcg/translate.h (revision cc3d262aa93a42e19c38f6acb6d0f6012a71eb4b)
1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/translation-block.h"
10 #include "exec/helper-gen.h"
11 #include "internals.h"
12 #include "cpu-features.h"
13 
14 /* internal defines */
15 
16 /*
17  * Save pc_save across a branch, so that we may restore the value from
18  * before the branch at the point the label is emitted.
19  */
20 typedef struct DisasLabel {
21     TCGLabel *label;
22     target_ulong pc_save;
23 } DisasLabel;
24 
25 typedef struct DisasContext {
26     DisasContextBase base;
27     const ARMISARegisters *isar;
28 
29     /* The address of the current instruction being translated. */
30     target_ulong pc_curr;
31     /*
32      * For CF_PCREL, the full value of cpu_pc is not known
33      * (although the page offset is known).  For convenience, the
34      * translation loop uses the full virtual address that triggered
35      * the translation, from base.pc_start through pc_curr.
36      * For efficiency, we do not update cpu_pc for every instruction.
37      * Instead, pc_save has the value of pc_curr at the time of the
38      * last update to cpu_pc, which allows us to compute the addend
39      * needed to bring cpu_pc current: pc_curr - pc_save.
40      * If cpu_pc now contains the destination of an indirect branch,
41      * pc_save contains -1 to indicate that relative updates are no
42      * longer possible.
43      */
44     target_ulong pc_save;
45     target_ulong page_start;
46     uint32_t insn;
47     /* Nonzero if this instruction has been conditionally skipped.  */
48     int condjmp;
49     /* The label that will be jumped to when the instruction is skipped.  */
50     DisasLabel condlabel;
51     /* Thumb-2 conditional execution bits.  */
52     int condexec_mask;
53     int condexec_cond;
54     /* M-profile ECI/ICI exception-continuable instruction state */
55     int eci;
56     /*
57      * trans_ functions for insns which are continuable should set this true
58      * after decode (ie after any UNDEF checks)
59      */
60     bool eci_handled;
61     int sctlr_b;
62     MemOp be_data;
63 #if !defined(CONFIG_USER_ONLY)
64     int user;
65 #endif
66     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
67     uint8_t tbii;      /* TBI1|TBI0 for insns */
68     uint8_t tbid;      /* TBI1|TBI0 for data */
69     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
70     bool ns;        /* Use non-secure CPREG bank on access */
71     int fp_excp_el; /* FP exception EL or 0 if enabled */
72     int sve_excp_el; /* SVE exception EL or 0 if enabled */
73     int sme_excp_el; /* SME exception EL or 0 if enabled */
74     int vl;          /* current vector length in bytes */
75     int svl;         /* current streaming vector length in bytes */
76     bool vfp_enabled; /* FP enabled via FPSCR.EN */
77     int vec_len;
78     int vec_stride;
79     bool v7m_handler_mode;
80     bool v8m_secure; /* true if v8M and we're in Secure mode */
81     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
82     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
83     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
84     bool v7m_lspact; /* FPCCR.LSPACT set */
85     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
86      * so that top level loop can generate correct syndrome information.
87      */
88     uint32_t svc_imm;
89     int current_el;
90     GHashTable *cp_regs;
91     uint64_t features; /* CPU features bits */
92     bool aarch64;
93     bool thumb;
94     bool lse2;
95     /*
96      * Because unallocated encodings generate different exception syndrome
97      * information from traps due to FP being disabled, we can't do a single
98      * "is fp access disabled" check at a high level in the decode tree.
99      * To help in catching bugs where the access check was forgotten in some
100      * code path, we set this flag when the access check is done, and assert
101      * that it is set at the point where we actually touch the FP regs.
102      *   0: not checked,
103      *   1: checked, access ok
104      *  -1: checked, access denied
105      */
106     int8_t fp_access_checked;
107     int8_t sve_access_checked;
108     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
109      * single-step support).
110      */
111     bool ss_active;
112     bool pstate_ss;
113     /* True if the insn just emitted was a load-exclusive instruction
114      * (necessary for syndrome information for single step exceptions),
115      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
116      */
117     bool is_ldex;
118     /* True if AccType_UNPRIV should be used for LDTR et al */
119     bool unpriv;
120     /* True if v8.3-PAuth is active.  */
121     bool pauth_active;
122     /* True if v8.5-MTE access to tags is enabled; index with is_unpriv.  */
123     bool ata[2];
124     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
125     bool mte_active[2];
126     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
127     bool bt;
128     /* True if any CP15 access is trapped by HSTR_EL2 */
129     bool hstr_active;
130     /* True if memory operations require alignment */
131     bool align_mem;
132     /* True if PSTATE.IL is set */
133     bool pstate_il;
134     /* True if PSTATE.SM is set. */
135     bool pstate_sm;
136     /* True if PSTATE.ZA is set. */
137     bool pstate_za;
138     /* True if non-streaming insns should raise an SME Streaming exception. */
139     bool sme_trap_nonstreaming;
140     /* True if the current instruction is non-streaming. */
141     bool is_nonstreaming;
142     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
143     bool mve_no_pred;
144     /* True if fine-grained traps are active */
145     bool fgt_active;
146     /* True if fine-grained trap on SVC is enabled */
147     bool fgt_svc;
148     /* True if a trap on ERET is enabled (FGT or NV) */
149     bool trap_eret;
150     /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
151     bool naa;
152     /* True if FEAT_NV HCR_EL2.NV is enabled */
153     bool nv;
154     /* True if NV enabled and HCR_EL2.NV1 is set */
155     bool nv1;
156     /* True if NV enabled and HCR_EL2.NV2 is set */
157     bool nv2;
158     /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
159     bool nv2_mem_e20;
160     /* True if NV2 enabled and NV2 RAM accesses are big-endian */
161     bool nv2_mem_be;
162     /* True if FPCR.AH is 1 (alternate floating point handling) */
163     bool fpcr_ah;
164     /* True if FPCR.NEP is 1 (FEAT_AFP scalar upper-element result handling) */
165     bool fpcr_nep;
166     /*
167      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
168      *  < 0, set by the current instruction.
169      */
170     int8_t btype;
171     /* A copy of cpu->dcz_blocksize. */
172     uint8_t dcz_blocksize;
173     /* A copy of cpu->gm_blocksize. */
174     uint8_t gm_blocksize;
175     /* True if the current insn_start has been updated. */
176     bool insn_start_updated;
177     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
178     int c15_cpar;
179     /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
180     uint32_t nv2_redirect_offset;
181 } DisasContext;
182 
183 typedef struct DisasCompare {
184     TCGCond cond;
185     TCGv_i32 value;
186 } DisasCompare;
187 
188 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
189 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
190 extern TCGv_i64 cpu_exclusive_addr;
191 extern TCGv_i64 cpu_exclusive_val;
192 
193 /*
194  * Constant expanders for the decoders.
195  */
196 
197 static inline int negate(DisasContext *s, int x)
198 {
199     return -x;
200 }
201 
202 static inline int plus_1(DisasContext *s, int x)
203 {
204     return x + 1;
205 }
206 
207 static inline int plus_2(DisasContext *s, int x)
208 {
209     return x + 2;
210 }
211 
212 static inline int plus_12(DisasContext *s, int x)
213 {
214     return x + 12;
215 }
216 
217 static inline int times_2(DisasContext *s, int x)
218 {
219     return x * 2;
220 }
221 
222 static inline int times_4(DisasContext *s, int x)
223 {
224     return x * 4;
225 }
226 
227 static inline int times_8(DisasContext *s, int x)
228 {
229     return x * 8;
230 }
231 
232 static inline int times_2_plus_1(DisasContext *s, int x)
233 {
234     return x * 2 + 1;
235 }
236 
237 static inline int rsub_64(DisasContext *s, int x)
238 {
239     return 64 - x;
240 }
241 
242 static inline int rsub_32(DisasContext *s, int x)
243 {
244     return 32 - x;
245 }
246 
247 static inline int rsub_16(DisasContext *s, int x)
248 {
249     return 16 - x;
250 }
251 
252 static inline int rsub_8(DisasContext *s, int x)
253 {
254     return 8 - x;
255 }
256 
257 static inline int shl_12(DisasContext *s, int x)
258 {
259     return x << 12;
260 }
261 
262 static inline int xor_2(DisasContext *s, int x)
263 {
264     return x ^ 2;
265 }
266 
267 static inline int neon_3same_fp_size(DisasContext *s, int x)
268 {
269     /* Convert 0==fp32, 1==fp16 into a MO_* value */
270     return MO_32 - x;
271 }
272 
273 static inline int arm_dc_feature(DisasContext *dc, int feature)
274 {
275     return (dc->features & (1ULL << feature)) != 0;
276 }
277 
278 static inline int get_mem_index(DisasContext *s)
279 {
280     return arm_to_core_mmu_idx(s->mmu_idx);
281 }
282 
283 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
284 {
285     /* We don't need to save all of the syndrome so we mask and shift
286      * out unneeded bits to help the sleb128 encoder do a better job.
287      */
288     syn &= ARM_INSN_START_WORD2_MASK;
289     syn >>= ARM_INSN_START_WORD2_SHIFT;
290 
291     /* Check for multiple updates.  */
292     assert(!s->insn_start_updated);
293     s->insn_start_updated = true;
294     tcg_set_insn_start_param(s->base.insn_start, 2, syn);
295 }
296 
297 static inline int curr_insn_len(DisasContext *s)
298 {
299     return s->base.pc_next - s->pc_curr;
300 }
301 
302 /* is_jmp field values */
303 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
304 /* CPU state was modified dynamically; exit to main loop for interrupts. */
305 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
306 /* These instructions trap after executing, so the A32/T32 decoder must
307  * defer them until after the conditional execution state has been updated.
308  * WFI also needs special handling when single-stepping.
309  */
310 #define DISAS_WFI       DISAS_TARGET_2
311 #define DISAS_SWI       DISAS_TARGET_3
312 /* WFE */
313 #define DISAS_WFE       DISAS_TARGET_4
314 #define DISAS_HVC       DISAS_TARGET_5
315 #define DISAS_SMC       DISAS_TARGET_6
316 #define DISAS_YIELD     DISAS_TARGET_7
317 /* M profile branch which might be an exception return (and so needs
318  * custom end-of-TB code)
319  */
320 #define DISAS_BX_EXCRET DISAS_TARGET_8
321 /*
322  * For instructions which want an immediate exit to the main loop, as opposed
323  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
324  * doesn't write the PC on exiting the translation loop so you need to ensure
325  * something (gen_a64_update_pc or runtime helper) has done so before we reach
326  * return from cpu_tb_exec.
327  */
328 #define DISAS_EXIT      DISAS_TARGET_9
329 /* CPU state was modified dynamically; no need to exit, but do not chain. */
330 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
331 
332 #ifdef TARGET_AARCH64
333 void a64_translate_init(void);
334 void gen_a64_update_pc(DisasContext *s, target_long diff);
335 extern const TranslatorOps aarch64_translator_ops;
336 #else
337 static inline void a64_translate_init(void)
338 {
339 }
340 
341 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
342 {
343 }
344 #endif
345 
346 void arm_test_cc(DisasCompare *cmp, int cc);
347 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
348 void arm_gen_test_cc(int cc, TCGLabel *label);
349 MemOp pow2_align(unsigned i);
350 void unallocated_encoding(DisasContext *s);
351 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
352                            uint32_t syn, uint32_t target_el);
353 void gen_exception_insn(DisasContext *s, target_long pc_diff,
354                         int excp, uint32_t syn);
355 
356 /* Return state of Alternate Half-precision flag, caller frees result */
357 static inline TCGv_i32 get_ahp_flag(void)
358 {
359     TCGv_i32 ret = tcg_temp_new_i32();
360 
361     tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
362     tcg_gen_extract_i32(ret, ret, 26, 1);
363 
364     return ret;
365 }
366 
367 /* Set bits within PSTATE.  */
368 static inline void set_pstate_bits(uint32_t bits)
369 {
370     TCGv_i32 p = tcg_temp_new_i32();
371 
372     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
373 
374     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
375     tcg_gen_ori_i32(p, p, bits);
376     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
377 }
378 
379 /* Clear bits within PSTATE.  */
380 static inline void clear_pstate_bits(uint32_t bits)
381 {
382     TCGv_i32 p = tcg_temp_new_i32();
383 
384     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
385 
386     tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
387     tcg_gen_andi_i32(p, p, ~bits);
388     tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
389 }
390 
391 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
392 static inline void gen_ss_advance(DisasContext *s)
393 {
394     if (s->ss_active) {
395         s->pstate_ss = 0;
396         clear_pstate_bits(PSTATE_SS);
397     }
398 }
399 
400 /* Generate an architectural singlestep exception */
401 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
402 {
403     /* Fill in the same_el field of the syndrome in the helper. */
404     uint32_t syn = syn_swstep(false, isv, ex);
405     gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
406 }
407 
408 /*
409  * Given a VFP floating point constant encoded into an 8 bit immediate in an
410  * instruction, expand it to the actual constant value of the specified
411  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
412  */
413 uint64_t vfp_expand_imm(int size, uint8_t imm8);
414 
415 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
416 {
417     tcg_gen_andi_i32(d, s, INT16_MAX);
418 }
419 
420 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
421 {
422     tcg_gen_andi_i32(d, s, INT32_MAX);
423 }
424 
425 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
426 {
427     tcg_gen_andi_i64(d, s, INT64_MAX);
428 }
429 
430 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
431 {
432     tcg_gen_xori_i32(d, s, 1u << 15);
433 }
434 
435 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
436 {
437     tcg_gen_xori_i32(d, s, 1u << 31);
438 }
439 
440 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
441 {
442     tcg_gen_xori_i64(d, s, 1ull << 63);
443 }
444 
445 /* Vector operations shared between ARM and AArch64.  */
446 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
447                    uint32_t opr_sz, uint32_t max_sz);
448 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
449                    uint32_t opr_sz, uint32_t max_sz);
450 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
451                    uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
453                    uint32_t opr_sz, uint32_t max_sz);
454 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
455                    uint32_t opr_sz, uint32_t max_sz);
456 
457 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 
462 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
463                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
464 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
465                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
466 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
467                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
468 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
469                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
470 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
471                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
472 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
473                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
474 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
475                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
476 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
478 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
479                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
480 
481 void gen_neon_sqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
482                      int64_t c, uint32_t opr_sz, uint32_t max_sz);
483 void gen_neon_uqshli(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
484                      int64_t c, uint32_t opr_sz, uint32_t max_sz);
485 void gen_neon_sqshlui(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
486                       int64_t c, uint32_t opr_sz, uint32_t max_sz);
487 
488 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
489                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
490 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
491                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
492 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
493                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
494 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
495                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
496 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
497                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
498 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
499                      uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
500 
501 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
502 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
503 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
504 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
505 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
506 
507 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
508                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
509 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
510 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
511                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
512 
513 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
514                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
515 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
516 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
517                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
518 
519 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
520                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
521 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
522 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
523                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
524 
525 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
526                    TCGv_i64 a, TCGv_i64 b, MemOp esz);
527 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
528 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
529                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
530 
531 void gen_gvec_sshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
532                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
533 void gen_gvec_ushr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
534                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
535 
536 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
537                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
538 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
539                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
540 
541 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
542 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
543 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
544 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
545 
546 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
547                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
548 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
549                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
550 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
551                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
552 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
553                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
554 
555 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
556                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
557 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
558                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
559 
560 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
561                          uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
562 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
563                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
564 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
565                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
566 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
567                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
568 
569 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
570                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
571 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
572                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
573 
574 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
575                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
576 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
577                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
578 
579 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
580                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
581 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
582                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
583 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
584                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
585 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
586                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
587 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
588                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
589 
590 void gen_gvec_cls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
591                   uint32_t opr_sz, uint32_t max_sz);
592 void gen_gvec_clz(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
593                   uint32_t opr_sz, uint32_t max_sz);
594 void gen_gvec_cnt(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
595                   uint32_t opr_sz, uint32_t max_sz);
596 void gen_gvec_rbit(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
597                    uint32_t opr_sz, uint32_t max_sz);
598 void gen_gvec_rev16(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
599                     uint32_t opr_sz, uint32_t max_sz);
600 void gen_gvec_rev32(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
601                     uint32_t opr_sz, uint32_t max_sz);
602 void gen_gvec_rev64(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
603                     uint32_t opr_sz, uint32_t max_sz);
604 
605 void gen_gvec_saddlp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
606                      uint32_t opr_sz, uint32_t max_sz);
607 void gen_gvec_sadalp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
608                      uint32_t opr_sz, uint32_t max_sz);
609 void gen_gvec_uaddlp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
610                      uint32_t opr_sz, uint32_t max_sz);
611 void gen_gvec_uadalp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
612                      uint32_t opr_sz, uint32_t max_sz);
613 
614 /* These exclusively manipulate the sign bit. */
615 void gen_gvec_fabs(unsigned vece, uint32_t dofs, uint32_t aofs,
616                    uint32_t oprsz, uint32_t maxsz);
617 void gen_gvec_fneg(unsigned vece, uint32_t dofs, uint32_t aofs,
618                    uint32_t oprsz, uint32_t maxsz);
619 
620 void gen_gvec_urecpe(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
621                      uint32_t opr_sz, uint32_t max_sz);
622 void gen_gvec_ursqrte(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
623                       uint32_t opr_sz, uint32_t max_sz);
624 
625 /*
626  * Forward to the isar_feature_* tests given a DisasContext pointer.
627  */
628 #define dc_isar_feature(name, ctx) \
629     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
630 
631 /* Note that the gvec expanders operate on offsets + sizes.  */
632 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
633 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
634                          uint32_t, uint32_t);
635 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
636                         uint32_t, uint32_t, uint32_t);
637 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
638                         uint32_t, uint32_t, uint32_t);
639 
640 /* Function prototype for gen_ functions for calling Neon helpers */
641 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
642 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
643 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
644 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
645 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
646                                  TCGv_i32, TCGv_i32);
647 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
648 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
649 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
650 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
651 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
652 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
653 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
654 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
655 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
656 typedef void NeonGenOne64OpEnvFn(TCGv_i64, TCGv_env, TCGv_i64);
657 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
658 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
659 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
660 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
661 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
662 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
663 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
664 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
665 
666 /**
667  * arm_tbflags_from_tb:
668  * @tb: the TranslationBlock
669  *
670  * Extract the flag values from @tb.
671  */
672 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
673 {
674     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
675 }
676 
677 /**
678  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
679  *
680  * We have multiple softfloat float_status fields in the Arm CPU state struct
681  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
682  * been set up to point to the requested field in the CPU state struct.
683  */
684 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
685 {
686     TCGv_ptr statusptr = tcg_temp_new_ptr();
687     int offset = offsetof(CPUARMState, vfp.fp_status[flavour]);
688 
689     tcg_gen_addi_ptr(statusptr, tcg_env, offset);
690     return statusptr;
691 }
692 
693 /**
694  * finalize_memop_atom:
695  * @s: DisasContext
696  * @opc: size+sign+align of the memory operation
697  * @atom: atomicity of the memory operation
698  *
699  * Build the complete MemOp for a memory operation, including alignment,
700  * endianness, and atomicity.
701  *
702  * If (op & MO_AMASK) then the operation already contains the required
703  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
704  * unaligned operation, e.g. for AccType_NORMAL.
705  *
706  * In the latter case, there are configuration bits that require alignment,
707  * and this is applied here.  Note that there is no way to indicate that
708  * no alignment should ever be enforced; this must be handled manually.
709  */
710 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
711 {
712     if (s->align_mem && !(opc & MO_AMASK)) {
713         opc |= MO_ALIGN;
714     }
715     return opc | atom | s->be_data;
716 }
717 
718 /**
719  * finalize_memop:
720  * @s: DisasContext
721  * @opc: size+sign+align of the memory operation
722  *
723  * Like finalize_memop_atom, but with default atomicity.
724  */
725 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
726 {
727     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
728     return finalize_memop_atom(s, opc, atom);
729 }
730 
731 /**
732  * finalize_memop_pair:
733  * @s: DisasContext
734  * @opc: size+sign+align of the memory operation
735  *
736  * Like finalize_memop_atom, but with atomicity for a pair.
737  * C.f. Pseudocode for Mem[], operand ispair.
738  */
739 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
740 {
741     MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
742     return finalize_memop_atom(s, opc, atom);
743 }
744 
745 /**
746  * finalize_memop_asimd:
747  * @s: DisasContext
748  * @opc: size+sign+align of the memory operation
749  *
750  * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
751  */
752 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
753 {
754     /*
755      * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
756      * if IsAligned(8), the first case provides separate atomicity for
757      * the pair of 64-bit accesses.  If !IsAligned(8), the middle cases
758      * do not apply, and we're left with the final case of no atomicity.
759      * Thus MO_ATOM_IFALIGN_PAIR.
760      *
761      * For other sizes, normal LSE2 rules apply.
762      */
763     if ((opc & MO_SIZE) == MO_128) {
764         return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
765     }
766     return finalize_memop(s, opc);
767 }
768 
769 /**
770  * asimd_imm_const: Expand an encoded SIMD constant value
771  *
772  * Expand a SIMD constant value. This is essentially the pseudocode
773  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
774  * VMVN and VBIC (when cmode < 14 && op == 1).
775  *
776  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
777  * callers must catch this; we return the 64-bit constant value defined
778  * for AArch64.
779  *
780  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
781  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
782  * we produce an immediate constant value of 0 in these cases.
783  */
784 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
785 
786 /*
787  * gen_disas_label:
788  * Create a label and cache a copy of pc_save.
789  */
790 static inline DisasLabel gen_disas_label(DisasContext *s)
791 {
792     return (DisasLabel){
793         .label = gen_new_label(),
794         .pc_save = s->pc_save,
795     };
796 }
797 
798 /*
799  * set_disas_label:
800  * Emit a label and restore the cached copy of pc_save.
801  */
802 static inline void set_disas_label(DisasContext *s, DisasLabel l)
803 {
804     gen_set_label(l.label);
805     s->pc_save = l.pc_save;
806 }
807 
808 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
809 {
810     TCGv_ptr ret = tcg_temp_new_ptr();
811     gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
812     return ret;
813 }
814 
815 /*
816  * Set and reset rounding mode around another operation.
817  */
818 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
819 {
820     TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
821     TCGv_i32 old = tcg_temp_new_i32();
822 
823     gen_helper_set_rmode(old, new, fpst);
824     return old;
825 }
826 
827 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
828 {
829     gen_helper_set_rmode(old, old, fpst);
830 }
831 
832 /*
833  * Helpers for implementing sets of trans_* functions.
834  * Defer the implementation of NAME to FUNC, with optional extra arguments.
835  */
836 #define TRANS(NAME, FUNC, ...) \
837     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
838     { return FUNC(s, __VA_ARGS__); }
839 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
840     static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
841     { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
842 
843 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...)            \
844     static bool trans_##NAME(DisasContext *s, arg_##NAME *a)      \
845     {                                                             \
846         s->is_nonstreaming = true;                                \
847         return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__);  \
848     }
849 
850 #endif /* TARGET_ARM_TRANSLATE_H */
851