xref: /qemu/target/arm/tcg/translate-mve.c (revision ce75c43f6db70b409bcb03f8dea05463928e12e0)
1 /*
2  *  ARM translation: M-profile MVE instructions
3  *
4  *  Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/exec-all.h"
24 #include "exec/gen-icount.h"
25 #include "translate.h"
26 #include "translate-a32.h"
27 
28 static inline int vidup_imm(DisasContext *s, int x)
29 {
30     return 1 << x;
31 }
32 
33 /* Include the generated decoder */
34 #include "decode-mve.c.inc"
35 
36 typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
37 typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
38 typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32);
39 typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
40 typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
41 typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
42 typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
43 typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
44 typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
45 typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
46 typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
47 typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
48 typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
49 typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
50 typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
51 typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
52 typedef void MVEGenVCVTRmodeFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
53 
54 /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
55 static inline long mve_qreg_offset(unsigned reg)
56 {
57     return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
58 }
59 
60 static TCGv_ptr mve_qreg_ptr(unsigned reg)
61 {
62     TCGv_ptr ret = tcg_temp_new_ptr();
63     tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
64     return ret;
65 }
66 
67 static bool mve_no_predication(DisasContext *s)
68 {
69     /*
70      * Return true if we are executing the entire MVE instruction
71      * with no predication or partial-execution, and so we can safely
72      * use an inline TCG vector implementation.
73      */
74     return s->eci == 0 && s->mve_no_pred;
75 }
76 
77 static bool mve_check_qreg_bank(DisasContext *s, int qmask)
78 {
79     /*
80      * Check whether Qregs are in range. For v8.1M only Q0..Q7
81      * are supported, see VFPSmallRegisterBank().
82      */
83     return qmask < 8;
84 }
85 
86 bool mve_eci_check(DisasContext *s)
87 {
88     /*
89      * This is a beatwise insn: check that ECI is valid (not a
90      * reserved value) and note that we are handling it.
91      * Return true if OK, false if we generated an exception.
92      */
93     s->eci_handled = true;
94     switch (s->eci) {
95     case ECI_NONE:
96     case ECI_A0:
97     case ECI_A0A1:
98     case ECI_A0A1A2:
99     case ECI_A0A1A2B0:
100         return true;
101     default:
102         /* Reserved value: INVSTATE UsageFault */
103         gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
104                            default_exception_el(s));
105         return false;
106     }
107 }
108 
109 void mve_update_eci(DisasContext *s)
110 {
111     /*
112      * The helper function will always update the CPUState field,
113      * so we only need to update the DisasContext field.
114      */
115     if (s->eci) {
116         s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
117     }
118 }
119 
120 void mve_update_and_store_eci(DisasContext *s)
121 {
122     /*
123      * For insns which don't call a helper function that will call
124      * mve_advance_vpt(), this version updates s->eci and also stores
125      * it out to the CPUState field.
126      */
127     if (s->eci) {
128         mve_update_eci(s);
129         store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
130     }
131 }
132 
133 static bool mve_skip_first_beat(DisasContext *s)
134 {
135     /* Return true if PSR.ECI says we must skip the first beat of this insn */
136     switch (s->eci) {
137     case ECI_NONE:
138         return false;
139     case ECI_A0:
140     case ECI_A0A1:
141     case ECI_A0A1A2:
142     case ECI_A0A1A2B0:
143         return true;
144     default:
145         g_assert_not_reached();
146     }
147 }
148 
149 static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
150                     unsigned msize)
151 {
152     TCGv_i32 addr;
153     uint32_t offset;
154     TCGv_ptr qreg;
155 
156     if (!dc_isar_feature(aa32_mve, s) ||
157         !mve_check_qreg_bank(s, a->qd) ||
158         !fn) {
159         return false;
160     }
161 
162     /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
163     if (a->rn == 15 || (a->rn == 13 && a->w)) {
164         return false;
165     }
166 
167     if (!mve_eci_check(s) || !vfp_access_check(s)) {
168         return true;
169     }
170 
171     offset = a->imm << msize;
172     if (!a->a) {
173         offset = -offset;
174     }
175     addr = load_reg(s, a->rn);
176     if (a->p) {
177         tcg_gen_addi_i32(addr, addr, offset);
178     }
179 
180     qreg = mve_qreg_ptr(a->qd);
181     fn(cpu_env, qreg, addr);
182     tcg_temp_free_ptr(qreg);
183 
184     /*
185      * Writeback always happens after the last beat of the insn,
186      * regardless of predication
187      */
188     if (a->w) {
189         if (!a->p) {
190             tcg_gen_addi_i32(addr, addr, offset);
191         }
192         store_reg(s, a->rn, addr);
193     } else {
194         tcg_temp_free_i32(addr);
195     }
196     mve_update_eci(s);
197     return true;
198 }
199 
200 static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
201 {
202     static MVEGenLdStFn * const ldstfns[4][2] = {
203         { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
204         { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
205         { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
206         { NULL, NULL }
207     };
208     return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
209 }
210 
211 #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE)           \
212     static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a)   \
213     {                                                           \
214         static MVEGenLdStFn * const ldstfns[2][2] = {           \
215             { gen_helper_mve_##ST, gen_helper_mve_##SLD },      \
216             { NULL, gen_helper_mve_##ULD },                     \
217         };                                                      \
218         return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE);       \
219     }
220 
221 DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
222 DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
223 DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
224 
225 static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn)
226 {
227     TCGv_i32 addr;
228     TCGv_ptr qd, qm;
229 
230     if (!dc_isar_feature(aa32_mve, s) ||
231         !mve_check_qreg_bank(s, a->qd | a->qm) ||
232         !fn || a->rn == 15) {
233         /* Rn case is UNPREDICTABLE */
234         return false;
235     }
236 
237     if (!mve_eci_check(s) || !vfp_access_check(s)) {
238         return true;
239     }
240 
241     addr = load_reg(s, a->rn);
242 
243     qd = mve_qreg_ptr(a->qd);
244     qm = mve_qreg_ptr(a->qm);
245     fn(cpu_env, qd, qm, addr);
246     tcg_temp_free_ptr(qd);
247     tcg_temp_free_ptr(qm);
248     tcg_temp_free_i32(addr);
249     mve_update_eci(s);
250     return true;
251 }
252 
253 /*
254  * The naming scheme here is "vldrb_sg_sh == in-memory byte loads
255  * signextended to halfword elements in register". _os_ indicates that
256  * the offsets in Qm should be scaled by the element size.
257  */
258 /* This macro is just to make the arrays more compact in these functions */
259 #define F(N) gen_helper_mve_##N
260 
261 /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */
262 static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a)
263 {
264     static MVEGenLdStSGFn * const fns[2][4][4] = { {
265             { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL },
266             { NULL, NULL,           F(vldrh_sg_sw), NULL },
267             { NULL, NULL,           NULL,           NULL },
268             { NULL, NULL,           NULL,           NULL }
269         }, {
270             { NULL, NULL,              NULL,              NULL },
271             { NULL, NULL,              F(vldrh_sg_os_sw), NULL },
272             { NULL, NULL,              NULL,              NULL },
273             { NULL, NULL,              NULL,              NULL }
274         }
275     };
276     if (a->qd == a->qm) {
277         return false; /* UNPREDICTABLE */
278     }
279     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
280 }
281 
282 static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a)
283 {
284     static MVEGenLdStSGFn * const fns[2][4][4] = { {
285             { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL },
286             { NULL,           F(vldrh_sg_uh), F(vldrh_sg_uw), NULL },
287             { NULL,           NULL,           F(vldrw_sg_uw), NULL },
288             { NULL,           NULL,           NULL,           F(vldrd_sg_ud) }
289         }, {
290             { NULL, NULL,              NULL,              NULL },
291             { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL },
292             { NULL, NULL,              F(vldrw_sg_os_uw), NULL },
293             { NULL, NULL,              NULL,              F(vldrd_sg_os_ud) }
294         }
295     };
296     if (a->qd == a->qm) {
297         return false; /* UNPREDICTABLE */
298     }
299     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
300 }
301 
302 static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a)
303 {
304     static MVEGenLdStSGFn * const fns[2][4][4] = { {
305             { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL },
306             { NULL,           F(vstrh_sg_uh), F(vstrh_sg_uw), NULL },
307             { NULL,           NULL,           F(vstrw_sg_uw), NULL },
308             { NULL,           NULL,           NULL,           F(vstrd_sg_ud) }
309         }, {
310             { NULL, NULL,              NULL,              NULL },
311             { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL },
312             { NULL, NULL,              F(vstrw_sg_os_uw), NULL },
313             { NULL, NULL,              NULL,              F(vstrd_sg_os_ud) }
314         }
315     };
316     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
317 }
318 
319 #undef F
320 
321 static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a,
322                            MVEGenLdStSGFn *fn, unsigned msize)
323 {
324     uint32_t offset;
325     TCGv_ptr qd, qm;
326 
327     if (!dc_isar_feature(aa32_mve, s) ||
328         !mve_check_qreg_bank(s, a->qd | a->qm) ||
329         !fn) {
330         return false;
331     }
332 
333     if (!mve_eci_check(s) || !vfp_access_check(s)) {
334         return true;
335     }
336 
337     offset = a->imm << msize;
338     if (!a->a) {
339         offset = -offset;
340     }
341 
342     qd = mve_qreg_ptr(a->qd);
343     qm = mve_qreg_ptr(a->qm);
344     fn(cpu_env, qd, qm, tcg_constant_i32(offset));
345     tcg_temp_free_ptr(qd);
346     tcg_temp_free_ptr(qm);
347     mve_update_eci(s);
348     return true;
349 }
350 
351 static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
352 {
353     static MVEGenLdStSGFn * const fns[] = {
354         gen_helper_mve_vldrw_sg_uw,
355         gen_helper_mve_vldrw_sg_wb_uw,
356     };
357     if (a->qd == a->qm) {
358         return false; /* UNPREDICTABLE */
359     }
360     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
361 }
362 
363 static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
364 {
365     static MVEGenLdStSGFn * const fns[] = {
366         gen_helper_mve_vldrd_sg_ud,
367         gen_helper_mve_vldrd_sg_wb_ud,
368     };
369     if (a->qd == a->qm) {
370         return false; /* UNPREDICTABLE */
371     }
372     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
373 }
374 
375 static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
376 {
377     static MVEGenLdStSGFn * const fns[] = {
378         gen_helper_mve_vstrw_sg_uw,
379         gen_helper_mve_vstrw_sg_wb_uw,
380     };
381     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
382 }
383 
384 static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
385 {
386     static MVEGenLdStSGFn * const fns[] = {
387         gen_helper_mve_vstrd_sg_ud,
388         gen_helper_mve_vstrd_sg_wb_ud,
389     };
390     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
391 }
392 
393 static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn,
394                         int addrinc)
395 {
396     TCGv_i32 rn;
397 
398     if (!dc_isar_feature(aa32_mve, s) ||
399         !mve_check_qreg_bank(s, a->qd) ||
400         !fn || (a->rn == 13 && a->w) || a->rn == 15) {
401         /* Variously UNPREDICTABLE or UNDEF or related-encoding */
402         return false;
403     }
404     if (!mve_eci_check(s) || !vfp_access_check(s)) {
405         return true;
406     }
407 
408     rn = load_reg(s, a->rn);
409     /*
410      * We pass the index of Qd, not a pointer, because the helper must
411      * access multiple Q registers starting at Qd and working up.
412      */
413     fn(cpu_env, tcg_constant_i32(a->qd), rn);
414 
415     if (a->w) {
416         tcg_gen_addi_i32(rn, rn, addrinc);
417         store_reg(s, a->rn, rn);
418     } else {
419         tcg_temp_free_i32(rn);
420     }
421     mve_update_and_store_eci(s);
422     return true;
423 }
424 
425 /* This macro is just to make the arrays more compact in these functions */
426 #define F(N) gen_helper_mve_##N
427 
428 static bool trans_VLD2(DisasContext *s, arg_vldst_il *a)
429 {
430     static MVEGenLdStIlFn * const fns[4][4] = {
431         { F(vld20b), F(vld20h), F(vld20w), NULL, },
432         { F(vld21b), F(vld21h), F(vld21w), NULL, },
433         { NULL, NULL, NULL, NULL },
434         { NULL, NULL, NULL, NULL },
435     };
436     if (a->qd > 6) {
437         return false;
438     }
439     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
440 }
441 
442 static bool trans_VLD4(DisasContext *s, arg_vldst_il *a)
443 {
444     static MVEGenLdStIlFn * const fns[4][4] = {
445         { F(vld40b), F(vld40h), F(vld40w), NULL, },
446         { F(vld41b), F(vld41h), F(vld41w), NULL, },
447         { F(vld42b), F(vld42h), F(vld42w), NULL, },
448         { F(vld43b), F(vld43h), F(vld43w), NULL, },
449     };
450     if (a->qd > 4) {
451         return false;
452     }
453     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
454 }
455 
456 static bool trans_VST2(DisasContext *s, arg_vldst_il *a)
457 {
458     static MVEGenLdStIlFn * const fns[4][4] = {
459         { F(vst20b), F(vst20h), F(vst20w), NULL, },
460         { F(vst21b), F(vst21h), F(vst21w), NULL, },
461         { NULL, NULL, NULL, NULL },
462         { NULL, NULL, NULL, NULL },
463     };
464     if (a->qd > 6) {
465         return false;
466     }
467     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
468 }
469 
470 static bool trans_VST4(DisasContext *s, arg_vldst_il *a)
471 {
472     static MVEGenLdStIlFn * const fns[4][4] = {
473         { F(vst40b), F(vst40h), F(vst40w), NULL, },
474         { F(vst41b), F(vst41h), F(vst41w), NULL, },
475         { F(vst42b), F(vst42h), F(vst42w), NULL, },
476         { F(vst43b), F(vst43h), F(vst43w), NULL, },
477     };
478     if (a->qd > 4) {
479         return false;
480     }
481     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
482 }
483 
484 #undef F
485 
486 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
487 {
488     TCGv_ptr qd;
489     TCGv_i32 rt;
490 
491     if (!dc_isar_feature(aa32_mve, s) ||
492         !mve_check_qreg_bank(s, a->qd)) {
493         return false;
494     }
495     if (a->rt == 13 || a->rt == 15) {
496         /* UNPREDICTABLE; we choose to UNDEF */
497         return false;
498     }
499     if (!mve_eci_check(s) || !vfp_access_check(s)) {
500         return true;
501     }
502 
503     rt = load_reg(s, a->rt);
504     if (mve_no_predication(s)) {
505         tcg_gen_gvec_dup_i32(a->size, mve_qreg_offset(a->qd), 16, 16, rt);
506     } else {
507         qd = mve_qreg_ptr(a->qd);
508         tcg_gen_dup_i32(a->size, rt, rt);
509         gen_helper_mve_vdup(cpu_env, qd, rt);
510         tcg_temp_free_ptr(qd);
511     }
512     tcg_temp_free_i32(rt);
513     mve_update_eci(s);
514     return true;
515 }
516 
517 static bool do_1op_vec(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn,
518                        GVecGen2Fn vecfn)
519 {
520     TCGv_ptr qd, qm;
521 
522     if (!dc_isar_feature(aa32_mve, s) ||
523         !mve_check_qreg_bank(s, a->qd | a->qm) ||
524         !fn) {
525         return false;
526     }
527 
528     if (!mve_eci_check(s) || !vfp_access_check(s)) {
529         return true;
530     }
531 
532     if (vecfn && mve_no_predication(s)) {
533         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm), 16, 16);
534     } else {
535         qd = mve_qreg_ptr(a->qd);
536         qm = mve_qreg_ptr(a->qm);
537         fn(cpu_env, qd, qm);
538         tcg_temp_free_ptr(qd);
539         tcg_temp_free_ptr(qm);
540     }
541     mve_update_eci(s);
542     return true;
543 }
544 
545 static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
546 {
547     return do_1op_vec(s, a, fn, NULL);
548 }
549 
550 #define DO_1OP_VEC(INSN, FN, VECFN)                             \
551     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
552     {                                                           \
553         static MVEGenOneOpFn * const fns[] = {                  \
554             gen_helper_mve_##FN##b,                             \
555             gen_helper_mve_##FN##h,                             \
556             gen_helper_mve_##FN##w,                             \
557             NULL,                                               \
558         };                                                      \
559         return do_1op_vec(s, a, fns[a->size], VECFN);           \
560     }
561 
562 #define DO_1OP(INSN, FN) DO_1OP_VEC(INSN, FN, NULL)
563 
564 DO_1OP(VCLZ, vclz)
565 DO_1OP(VCLS, vcls)
566 DO_1OP_VEC(VABS, vabs, tcg_gen_gvec_abs)
567 DO_1OP_VEC(VNEG, vneg, tcg_gen_gvec_neg)
568 DO_1OP(VQABS, vqabs)
569 DO_1OP(VQNEG, vqneg)
570 DO_1OP(VMAXA, vmaxa)
571 DO_1OP(VMINA, vmina)
572 
573 /*
574  * For simple float/int conversions we use the fixed-point
575  * conversion helpers with a zero shift count
576  */
577 #define DO_VCVT(INSN, HFN, SFN)                                         \
578     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
579     {                                                                   \
580         gen_helper_mve_##HFN(env, qd, qm, tcg_constant_i32(0));         \
581     }                                                                   \
582     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
583     {                                                                   \
584         gen_helper_mve_##SFN(env, qd, qm, tcg_constant_i32(0));         \
585     }                                                                   \
586     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
587     {                                                                   \
588         static MVEGenOneOpFn * const fns[] = {                          \
589             NULL,                                                       \
590             gen_##INSN##h,                                              \
591             gen_##INSN##s,                                              \
592             NULL,                                                       \
593         };                                                              \
594         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
595             return false;                                               \
596         }                                                               \
597         return do_1op(s, a, fns[a->size]);                              \
598     }
599 
600 DO_VCVT(VCVT_SF, vcvt_sh, vcvt_sf)
601 DO_VCVT(VCVT_UF, vcvt_uh, vcvt_uf)
602 DO_VCVT(VCVT_FS, vcvt_hs, vcvt_fs)
603 DO_VCVT(VCVT_FU, vcvt_hu, vcvt_fu)
604 
605 static bool do_vcvt_rmode(DisasContext *s, arg_1op *a,
606                           enum arm_fprounding rmode, bool u)
607 {
608     /*
609      * Handle VCVT fp to int with specified rounding mode.
610      * This is a 1op fn but we must pass the rounding mode as
611      * an immediate to the helper.
612      */
613     TCGv_ptr qd, qm;
614     static MVEGenVCVTRmodeFn * const fns[4][2] = {
615         { NULL, NULL },
616         { gen_helper_mve_vcvt_rm_sh, gen_helper_mve_vcvt_rm_uh },
617         { gen_helper_mve_vcvt_rm_ss, gen_helper_mve_vcvt_rm_us },
618         { NULL, NULL },
619     };
620     MVEGenVCVTRmodeFn *fn = fns[a->size][u];
621 
622     if (!dc_isar_feature(aa32_mve_fp, s) ||
623         !mve_check_qreg_bank(s, a->qd | a->qm) ||
624         !fn) {
625         return false;
626     }
627 
628     if (!mve_eci_check(s) || !vfp_access_check(s)) {
629         return true;
630     }
631 
632     qd = mve_qreg_ptr(a->qd);
633     qm = mve_qreg_ptr(a->qm);
634     fn(cpu_env, qd, qm, tcg_constant_i32(arm_rmode_to_sf(rmode)));
635     tcg_temp_free_ptr(qd);
636     tcg_temp_free_ptr(qm);
637     mve_update_eci(s);
638     return true;
639 }
640 
641 #define DO_VCVT_RMODE(INSN, RMODE, U)                           \
642     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
643     {                                                           \
644         return do_vcvt_rmode(s, a, RMODE, U);                   \
645     }                                                           \
646 
647 DO_VCVT_RMODE(VCVTAS, FPROUNDING_TIEAWAY, false)
648 DO_VCVT_RMODE(VCVTAU, FPROUNDING_TIEAWAY, true)
649 DO_VCVT_RMODE(VCVTNS, FPROUNDING_TIEEVEN, false)
650 DO_VCVT_RMODE(VCVTNU, FPROUNDING_TIEEVEN, true)
651 DO_VCVT_RMODE(VCVTPS, FPROUNDING_POSINF, false)
652 DO_VCVT_RMODE(VCVTPU, FPROUNDING_POSINF, true)
653 DO_VCVT_RMODE(VCVTMS, FPROUNDING_NEGINF, false)
654 DO_VCVT_RMODE(VCVTMU, FPROUNDING_NEGINF, true)
655 
656 #define DO_VCVT_SH(INSN, FN)                                    \
657     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
658     {                                                           \
659         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
660             return false;                                       \
661         }                                                       \
662         return do_1op(s, a, gen_helper_mve_##FN);               \
663     }                                                           \
664 
665 DO_VCVT_SH(VCVTB_SH, vcvtb_sh)
666 DO_VCVT_SH(VCVTT_SH, vcvtt_sh)
667 DO_VCVT_SH(VCVTB_HS, vcvtb_hs)
668 DO_VCVT_SH(VCVTT_HS, vcvtt_hs)
669 
670 #define DO_VRINT(INSN, RMODE)                                           \
671     static void gen_##INSN##h(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
672     {                                                                   \
673         gen_helper_mve_vrint_rm_h(env, qd, qm,                          \
674                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
675     }                                                                   \
676     static void gen_##INSN##s(TCGv_ptr env, TCGv_ptr qd, TCGv_ptr qm)   \
677     {                                                                   \
678         gen_helper_mve_vrint_rm_s(env, qd, qm,                          \
679                                   tcg_constant_i32(arm_rmode_to_sf(RMODE))); \
680     }                                                                   \
681     static bool trans_##INSN(DisasContext *s, arg_1op *a)               \
682     {                                                                   \
683         static MVEGenOneOpFn * const fns[] = {                          \
684             NULL,                                                       \
685             gen_##INSN##h,                                              \
686             gen_##INSN##s,                                              \
687             NULL,                                                       \
688         };                                                              \
689         if (!dc_isar_feature(aa32_mve_fp, s)) {                         \
690             return false;                                               \
691         }                                                               \
692         return do_1op(s, a, fns[a->size]);                              \
693     }
694 
695 DO_VRINT(VRINTN, FPROUNDING_TIEEVEN)
696 DO_VRINT(VRINTA, FPROUNDING_TIEAWAY)
697 DO_VRINT(VRINTZ, FPROUNDING_ZERO)
698 DO_VRINT(VRINTM, FPROUNDING_NEGINF)
699 DO_VRINT(VRINTP, FPROUNDING_POSINF)
700 
701 static bool trans_VRINTX(DisasContext *s, arg_1op *a)
702 {
703     static MVEGenOneOpFn * const fns[] = {
704         NULL,
705         gen_helper_mve_vrintx_h,
706         gen_helper_mve_vrintx_s,
707         NULL,
708     };
709     if (!dc_isar_feature(aa32_mve_fp, s)) {
710         return false;
711     }
712     return do_1op(s, a, fns[a->size]);
713 }
714 
715 /* Narrowing moves: only size 0 and 1 are valid */
716 #define DO_VMOVN(INSN, FN) \
717     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
718     {                                                           \
719         static MVEGenOneOpFn * const fns[] = {                  \
720             gen_helper_mve_##FN##b,                             \
721             gen_helper_mve_##FN##h,                             \
722             NULL,                                               \
723             NULL,                                               \
724         };                                                      \
725         return do_1op(s, a, fns[a->size]);                      \
726     }
727 
728 DO_VMOVN(VMOVNB, vmovnb)
729 DO_VMOVN(VMOVNT, vmovnt)
730 DO_VMOVN(VQMOVUNB, vqmovunb)
731 DO_VMOVN(VQMOVUNT, vqmovunt)
732 DO_VMOVN(VQMOVN_BS, vqmovnbs)
733 DO_VMOVN(VQMOVN_TS, vqmovnts)
734 DO_VMOVN(VQMOVN_BU, vqmovnbu)
735 DO_VMOVN(VQMOVN_TU, vqmovntu)
736 
737 static bool trans_VREV16(DisasContext *s, arg_1op *a)
738 {
739     static MVEGenOneOpFn * const fns[] = {
740         gen_helper_mve_vrev16b,
741         NULL,
742         NULL,
743         NULL,
744     };
745     return do_1op(s, a, fns[a->size]);
746 }
747 
748 static bool trans_VREV32(DisasContext *s, arg_1op *a)
749 {
750     static MVEGenOneOpFn * const fns[] = {
751         gen_helper_mve_vrev32b,
752         gen_helper_mve_vrev32h,
753         NULL,
754         NULL,
755     };
756     return do_1op(s, a, fns[a->size]);
757 }
758 
759 static bool trans_VREV64(DisasContext *s, arg_1op *a)
760 {
761     static MVEGenOneOpFn * const fns[] = {
762         gen_helper_mve_vrev64b,
763         gen_helper_mve_vrev64h,
764         gen_helper_mve_vrev64w,
765         NULL,
766     };
767     return do_1op(s, a, fns[a->size]);
768 }
769 
770 static bool trans_VMVN(DisasContext *s, arg_1op *a)
771 {
772     return do_1op_vec(s, a, gen_helper_mve_vmvn, tcg_gen_gvec_not);
773 }
774 
775 static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
776 {
777     static MVEGenOneOpFn * const fns[] = {
778         NULL,
779         gen_helper_mve_vfabsh,
780         gen_helper_mve_vfabss,
781         NULL,
782     };
783     if (!dc_isar_feature(aa32_mve_fp, s)) {
784         return false;
785     }
786     return do_1op(s, a, fns[a->size]);
787 }
788 
789 static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
790 {
791     static MVEGenOneOpFn * const fns[] = {
792         NULL,
793         gen_helper_mve_vfnegh,
794         gen_helper_mve_vfnegs,
795         NULL,
796     };
797     if (!dc_isar_feature(aa32_mve_fp, s)) {
798         return false;
799     }
800     return do_1op(s, a, fns[a->size]);
801 }
802 
803 static bool do_2op_vec(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn,
804                        GVecGen3Fn *vecfn)
805 {
806     TCGv_ptr qd, qn, qm;
807 
808     if (!dc_isar_feature(aa32_mve, s) ||
809         !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
810         !fn) {
811         return false;
812     }
813     if (!mve_eci_check(s) || !vfp_access_check(s)) {
814         return true;
815     }
816 
817     if (vecfn && mve_no_predication(s)) {
818         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qn),
819               mve_qreg_offset(a->qm), 16, 16);
820     } else {
821         qd = mve_qreg_ptr(a->qd);
822         qn = mve_qreg_ptr(a->qn);
823         qm = mve_qreg_ptr(a->qm);
824         fn(cpu_env, qd, qn, qm);
825         tcg_temp_free_ptr(qd);
826         tcg_temp_free_ptr(qn);
827         tcg_temp_free_ptr(qm);
828     }
829     mve_update_eci(s);
830     return true;
831 }
832 
833 static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn *fn)
834 {
835     return do_2op_vec(s, a, fn, NULL);
836 }
837 
838 #define DO_LOGIC(INSN, HELPER, VECFN)                           \
839     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
840     {                                                           \
841         return do_2op_vec(s, a, HELPER, VECFN);                 \
842     }
843 
844 DO_LOGIC(VAND, gen_helper_mve_vand, tcg_gen_gvec_and)
845 DO_LOGIC(VBIC, gen_helper_mve_vbic, tcg_gen_gvec_andc)
846 DO_LOGIC(VORR, gen_helper_mve_vorr, tcg_gen_gvec_or)
847 DO_LOGIC(VORN, gen_helper_mve_vorn, tcg_gen_gvec_orc)
848 DO_LOGIC(VEOR, gen_helper_mve_veor, tcg_gen_gvec_xor)
849 
850 static bool trans_VPSEL(DisasContext *s, arg_2op *a)
851 {
852     /* This insn updates predication bits */
853     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
854     return do_2op(s, a, gen_helper_mve_vpsel);
855 }
856 
857 #define DO_2OP_VEC(INSN, FN, VECFN)                             \
858     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
859     {                                                           \
860         static MVEGenTwoOpFn * const fns[] = {                  \
861             gen_helper_mve_##FN##b,                             \
862             gen_helper_mve_##FN##h,                             \
863             gen_helper_mve_##FN##w,                             \
864             NULL,                                               \
865         };                                                      \
866         return do_2op_vec(s, a, fns[a->size], VECFN);           \
867     }
868 
869 #define DO_2OP(INSN, FN) DO_2OP_VEC(INSN, FN, NULL)
870 
871 DO_2OP_VEC(VADD, vadd, tcg_gen_gvec_add)
872 DO_2OP_VEC(VSUB, vsub, tcg_gen_gvec_sub)
873 DO_2OP_VEC(VMUL, vmul, tcg_gen_gvec_mul)
874 DO_2OP(VMULH_S, vmulhs)
875 DO_2OP(VMULH_U, vmulhu)
876 DO_2OP(VRMULH_S, vrmulhs)
877 DO_2OP(VRMULH_U, vrmulhu)
878 DO_2OP_VEC(VMAX_S, vmaxs, tcg_gen_gvec_smax)
879 DO_2OP_VEC(VMAX_U, vmaxu, tcg_gen_gvec_umax)
880 DO_2OP_VEC(VMIN_S, vmins, tcg_gen_gvec_smin)
881 DO_2OP_VEC(VMIN_U, vminu, tcg_gen_gvec_umin)
882 DO_2OP(VABD_S, vabds)
883 DO_2OP(VABD_U, vabdu)
884 DO_2OP(VHADD_S, vhadds)
885 DO_2OP(VHADD_U, vhaddu)
886 DO_2OP(VHSUB_S, vhsubs)
887 DO_2OP(VHSUB_U, vhsubu)
888 DO_2OP(VMULL_BS, vmullbs)
889 DO_2OP(VMULL_BU, vmullbu)
890 DO_2OP(VMULL_TS, vmullts)
891 DO_2OP(VMULL_TU, vmulltu)
892 DO_2OP(VQDMULH, vqdmulh)
893 DO_2OP(VQRDMULH, vqrdmulh)
894 DO_2OP(VQADD_S, vqadds)
895 DO_2OP(VQADD_U, vqaddu)
896 DO_2OP(VQSUB_S, vqsubs)
897 DO_2OP(VQSUB_U, vqsubu)
898 DO_2OP(VSHL_S, vshls)
899 DO_2OP(VSHL_U, vshlu)
900 DO_2OP(VRSHL_S, vrshls)
901 DO_2OP(VRSHL_U, vrshlu)
902 DO_2OP(VQSHL_S, vqshls)
903 DO_2OP(VQSHL_U, vqshlu)
904 DO_2OP(VQRSHL_S, vqrshls)
905 DO_2OP(VQRSHL_U, vqrshlu)
906 DO_2OP(VQDMLADH, vqdmladh)
907 DO_2OP(VQDMLADHX, vqdmladhx)
908 DO_2OP(VQRDMLADH, vqrdmladh)
909 DO_2OP(VQRDMLADHX, vqrdmladhx)
910 DO_2OP(VQDMLSDH, vqdmlsdh)
911 DO_2OP(VQDMLSDHX, vqdmlsdhx)
912 DO_2OP(VQRDMLSDH, vqrdmlsdh)
913 DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
914 DO_2OP(VRHADD_S, vrhadds)
915 DO_2OP(VRHADD_U, vrhaddu)
916 /*
917  * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
918  * so we can reuse the DO_2OP macro. (Our implementation calculates the
919  * "expected" results in this case.) Similarly for VHCADD.
920  */
921 DO_2OP(VCADD90, vcadd90)
922 DO_2OP(VCADD270, vcadd270)
923 DO_2OP(VHCADD90, vhcadd90)
924 DO_2OP(VHCADD270, vhcadd270)
925 
926 static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
927 {
928     static MVEGenTwoOpFn * const fns[] = {
929         NULL,
930         gen_helper_mve_vqdmullbh,
931         gen_helper_mve_vqdmullbw,
932         NULL,
933     };
934     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
935         /* UNPREDICTABLE; we choose to undef */
936         return false;
937     }
938     return do_2op(s, a, fns[a->size]);
939 }
940 
941 static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
942 {
943     static MVEGenTwoOpFn * const fns[] = {
944         NULL,
945         gen_helper_mve_vqdmullth,
946         gen_helper_mve_vqdmulltw,
947         NULL,
948     };
949     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
950         /* UNPREDICTABLE; we choose to undef */
951         return false;
952     }
953     return do_2op(s, a, fns[a->size]);
954 }
955 
956 static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
957 {
958     /*
959      * Note that a->size indicates the output size, ie VMULL.P8
960      * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
961      * is the 16x16->32 operation and a->size is MO_32.
962      */
963     static MVEGenTwoOpFn * const fns[] = {
964         NULL,
965         gen_helper_mve_vmullpbh,
966         gen_helper_mve_vmullpbw,
967         NULL,
968     };
969     return do_2op(s, a, fns[a->size]);
970 }
971 
972 static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
973 {
974     /* a->size is as for trans_VMULLP_B */
975     static MVEGenTwoOpFn * const fns[] = {
976         NULL,
977         gen_helper_mve_vmullpth,
978         gen_helper_mve_vmullptw,
979         NULL,
980     };
981     return do_2op(s, a, fns[a->size]);
982 }
983 
984 /*
985  * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
986  * of the 32-bit elements in each lane of the input vectors, where the
987  * carry-out of each add is the carry-in of the next.  The initial carry
988  * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
989  * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
990  * These insns are subject to beat-wise execution.  Partial execution
991  * of an I=1 (initial carry input fixed) insn which does not
992  * execute the first beat must start with the current FPSCR.NZCV
993  * value, not the fixed constant input.
994  */
995 static bool trans_VADC(DisasContext *s, arg_2op *a)
996 {
997     return do_2op(s, a, gen_helper_mve_vadc);
998 }
999 
1000 static bool trans_VADCI(DisasContext *s, arg_2op *a)
1001 {
1002     if (mve_skip_first_beat(s)) {
1003         return trans_VADC(s, a);
1004     }
1005     return do_2op(s, a, gen_helper_mve_vadci);
1006 }
1007 
1008 static bool trans_VSBC(DisasContext *s, arg_2op *a)
1009 {
1010     return do_2op(s, a, gen_helper_mve_vsbc);
1011 }
1012 
1013 static bool trans_VSBCI(DisasContext *s, arg_2op *a)
1014 {
1015     if (mve_skip_first_beat(s)) {
1016         return trans_VSBC(s, a);
1017     }
1018     return do_2op(s, a, gen_helper_mve_vsbci);
1019 }
1020 
1021 #define DO_2OP_FP(INSN, FN)                                     \
1022     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
1023     {                                                           \
1024         static MVEGenTwoOpFn * const fns[] = {                  \
1025             NULL,                                               \
1026             gen_helper_mve_##FN##h,                             \
1027             gen_helper_mve_##FN##s,                             \
1028             NULL,                                               \
1029         };                                                      \
1030         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1031             return false;                                       \
1032         }                                                       \
1033         return do_2op(s, a, fns[a->size]);                      \
1034     }
1035 
1036 DO_2OP_FP(VADD_fp, vfadd)
1037 DO_2OP_FP(VSUB_fp, vfsub)
1038 DO_2OP_FP(VMUL_fp, vfmul)
1039 DO_2OP_FP(VABD_fp, vfabd)
1040 DO_2OP_FP(VMAXNM, vmaxnm)
1041 DO_2OP_FP(VMINNM, vminnm)
1042 DO_2OP_FP(VCADD90_fp, vfcadd90)
1043 DO_2OP_FP(VCADD270_fp, vfcadd270)
1044 DO_2OP_FP(VFMA, vfma)
1045 DO_2OP_FP(VFMS, vfms)
1046 DO_2OP_FP(VCMUL0, vcmul0)
1047 DO_2OP_FP(VCMUL90, vcmul90)
1048 DO_2OP_FP(VCMUL180, vcmul180)
1049 DO_2OP_FP(VCMUL270, vcmul270)
1050 DO_2OP_FP(VCMLA0, vcmla0)
1051 DO_2OP_FP(VCMLA90, vcmla90)
1052 DO_2OP_FP(VCMLA180, vcmla180)
1053 DO_2OP_FP(VCMLA270, vcmla270)
1054 DO_2OP_FP(VMAXNMA, vmaxnma)
1055 DO_2OP_FP(VMINNMA, vminnma)
1056 
1057 static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
1058                           MVEGenTwoOpScalarFn fn)
1059 {
1060     TCGv_ptr qd, qn;
1061     TCGv_i32 rm;
1062 
1063     if (!dc_isar_feature(aa32_mve, s) ||
1064         !mve_check_qreg_bank(s, a->qd | a->qn) ||
1065         !fn) {
1066         return false;
1067     }
1068     if (a->rm == 13 || a->rm == 15) {
1069         /* UNPREDICTABLE */
1070         return false;
1071     }
1072     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1073         return true;
1074     }
1075 
1076     qd = mve_qreg_ptr(a->qd);
1077     qn = mve_qreg_ptr(a->qn);
1078     rm = load_reg(s, a->rm);
1079     fn(cpu_env, qd, qn, rm);
1080     tcg_temp_free_i32(rm);
1081     tcg_temp_free_ptr(qd);
1082     tcg_temp_free_ptr(qn);
1083     mve_update_eci(s);
1084     return true;
1085 }
1086 
1087 #define DO_2OP_SCALAR(INSN, FN)                                 \
1088     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1089     {                                                           \
1090         static MVEGenTwoOpScalarFn * const fns[] = {            \
1091             gen_helper_mve_##FN##b,                             \
1092             gen_helper_mve_##FN##h,                             \
1093             gen_helper_mve_##FN##w,                             \
1094             NULL,                                               \
1095         };                                                      \
1096         return do_2op_scalar(s, a, fns[a->size]);               \
1097     }
1098 
1099 DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
1100 DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
1101 DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
1102 DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
1103 DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
1104 DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
1105 DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
1106 DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
1107 DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
1108 DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
1109 DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
1110 DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
1111 DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
1112 DO_2OP_SCALAR(VBRSR, vbrsr)
1113 DO_2OP_SCALAR(VMLA, vmla)
1114 DO_2OP_SCALAR(VMLAS, vmlas)
1115 DO_2OP_SCALAR(VQDMLAH, vqdmlah)
1116 DO_2OP_SCALAR(VQRDMLAH, vqrdmlah)
1117 DO_2OP_SCALAR(VQDMLASH, vqdmlash)
1118 DO_2OP_SCALAR(VQRDMLASH, vqrdmlash)
1119 
1120 static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
1121 {
1122     static MVEGenTwoOpScalarFn * const fns[] = {
1123         NULL,
1124         gen_helper_mve_vqdmullb_scalarh,
1125         gen_helper_mve_vqdmullb_scalarw,
1126         NULL,
1127     };
1128     if (a->qd == a->qn && a->size == MO_32) {
1129         /* UNPREDICTABLE; we choose to undef */
1130         return false;
1131     }
1132     return do_2op_scalar(s, a, fns[a->size]);
1133 }
1134 
1135 static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
1136 {
1137     static MVEGenTwoOpScalarFn * const fns[] = {
1138         NULL,
1139         gen_helper_mve_vqdmullt_scalarh,
1140         gen_helper_mve_vqdmullt_scalarw,
1141         NULL,
1142     };
1143     if (a->qd == a->qn && a->size == MO_32) {
1144         /* UNPREDICTABLE; we choose to undef */
1145         return false;
1146     }
1147     return do_2op_scalar(s, a, fns[a->size]);
1148 }
1149 
1150 
1151 #define DO_2OP_FP_SCALAR(INSN, FN)                              \
1152     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
1153     {                                                           \
1154         static MVEGenTwoOpScalarFn * const fns[] = {            \
1155             NULL,                                               \
1156             gen_helper_mve_##FN##h,                             \
1157             gen_helper_mve_##FN##s,                             \
1158             NULL,                                               \
1159         };                                                      \
1160         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1161             return false;                                       \
1162         }                                                       \
1163         return do_2op_scalar(s, a, fns[a->size]);               \
1164     }
1165 
1166 DO_2OP_FP_SCALAR(VADD_fp_scalar, vfadd_scalar)
1167 DO_2OP_FP_SCALAR(VSUB_fp_scalar, vfsub_scalar)
1168 DO_2OP_FP_SCALAR(VMUL_fp_scalar, vfmul_scalar)
1169 DO_2OP_FP_SCALAR(VFMA_scalar, vfma_scalar)
1170 DO_2OP_FP_SCALAR(VFMAS_scalar, vfmas_scalar)
1171 
1172 static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
1173                              MVEGenLongDualAccOpFn *fn)
1174 {
1175     TCGv_ptr qn, qm;
1176     TCGv_i64 rda;
1177     TCGv_i32 rdalo, rdahi;
1178 
1179     if (!dc_isar_feature(aa32_mve, s) ||
1180         !mve_check_qreg_bank(s, a->qn | a->qm) ||
1181         !fn) {
1182         return false;
1183     }
1184     /*
1185      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1186      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1187      */
1188     if (a->rdahi == 13 || a->rdahi == 15) {
1189         return false;
1190     }
1191     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1192         return true;
1193     }
1194 
1195     qn = mve_qreg_ptr(a->qn);
1196     qm = mve_qreg_ptr(a->qm);
1197 
1198     /*
1199      * This insn is subject to beat-wise execution. Partial execution
1200      * of an A=0 (no-accumulate) insn which does not execute the first
1201      * beat must start with the current rda value, not 0.
1202      */
1203     if (a->a || mve_skip_first_beat(s)) {
1204         rda = tcg_temp_new_i64();
1205         rdalo = load_reg(s, a->rdalo);
1206         rdahi = load_reg(s, a->rdahi);
1207         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1208         tcg_temp_free_i32(rdalo);
1209         tcg_temp_free_i32(rdahi);
1210     } else {
1211         rda = tcg_const_i64(0);
1212     }
1213 
1214     fn(rda, cpu_env, qn, qm, rda);
1215     tcg_temp_free_ptr(qn);
1216     tcg_temp_free_ptr(qm);
1217 
1218     rdalo = tcg_temp_new_i32();
1219     rdahi = tcg_temp_new_i32();
1220     tcg_gen_extrl_i64_i32(rdalo, rda);
1221     tcg_gen_extrh_i64_i32(rdahi, rda);
1222     store_reg(s, a->rdalo, rdalo);
1223     store_reg(s, a->rdahi, rdahi);
1224     tcg_temp_free_i64(rda);
1225     mve_update_eci(s);
1226     return true;
1227 }
1228 
1229 static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
1230 {
1231     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1232         { NULL, NULL },
1233         { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
1234         { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
1235         { NULL, NULL },
1236     };
1237     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1238 }
1239 
1240 static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
1241 {
1242     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1243         { NULL, NULL },
1244         { gen_helper_mve_vmlaldavuh, NULL },
1245         { gen_helper_mve_vmlaldavuw, NULL },
1246         { NULL, NULL },
1247     };
1248     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1249 }
1250 
1251 static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
1252 {
1253     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1254         { NULL, NULL },
1255         { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
1256         { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
1257         { NULL, NULL },
1258     };
1259     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1260 }
1261 
1262 static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
1263 {
1264     static MVEGenLongDualAccOpFn * const fns[] = {
1265         gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
1266     };
1267     return do_long_dual_acc(s, a, fns[a->x]);
1268 }
1269 
1270 static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
1271 {
1272     static MVEGenLongDualAccOpFn * const fns[] = {
1273         gen_helper_mve_vrmlaldavhuw, NULL,
1274     };
1275     return do_long_dual_acc(s, a, fns[a->x]);
1276 }
1277 
1278 static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
1279 {
1280     static MVEGenLongDualAccOpFn * const fns[] = {
1281         gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
1282     };
1283     return do_long_dual_acc(s, a, fns[a->x]);
1284 }
1285 
1286 static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn)
1287 {
1288     TCGv_ptr qn, qm;
1289     TCGv_i32 rda;
1290 
1291     if (!dc_isar_feature(aa32_mve, s) ||
1292         !mve_check_qreg_bank(s, a->qn) ||
1293         !fn) {
1294         return false;
1295     }
1296     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1297         return true;
1298     }
1299 
1300     qn = mve_qreg_ptr(a->qn);
1301     qm = mve_qreg_ptr(a->qm);
1302 
1303     /*
1304      * This insn is subject to beat-wise execution. Partial execution
1305      * of an A=0 (no-accumulate) insn which does not execute the first
1306      * beat must start with the current rda value, not 0.
1307      */
1308     if (a->a || mve_skip_first_beat(s)) {
1309         rda = load_reg(s, a->rda);
1310     } else {
1311         rda = tcg_const_i32(0);
1312     }
1313 
1314     fn(rda, cpu_env, qn, qm, rda);
1315     store_reg(s, a->rda, rda);
1316     tcg_temp_free_ptr(qn);
1317     tcg_temp_free_ptr(qm);
1318 
1319     mve_update_eci(s);
1320     return true;
1321 }
1322 
1323 #define DO_DUAL_ACC(INSN, FN)                                           \
1324     static bool trans_##INSN(DisasContext *s, arg_vmladav *a)           \
1325     {                                                                   \
1326         static MVEGenDualAccOpFn * const fns[4][2] = {                  \
1327             { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb },        \
1328             { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh },        \
1329             { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw },        \
1330             { NULL, NULL },                                             \
1331         };                                                              \
1332         return do_dual_acc(s, a, fns[a->size][a->x]);                   \
1333     }
1334 
1335 DO_DUAL_ACC(VMLADAV_S, vmladavs)
1336 DO_DUAL_ACC(VMLSDAV, vmlsdav)
1337 
1338 static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a)
1339 {
1340     static MVEGenDualAccOpFn * const fns[4][2] = {
1341         { gen_helper_mve_vmladavub, NULL },
1342         { gen_helper_mve_vmladavuh, NULL },
1343         { gen_helper_mve_vmladavuw, NULL },
1344         { NULL, NULL },
1345     };
1346     return do_dual_acc(s, a, fns[a->size][a->x]);
1347 }
1348 
1349 static void gen_vpst(DisasContext *s, uint32_t mask)
1350 {
1351     /*
1352      * Set the VPR mask fields. We take advantage of MASK01 and MASK23
1353      * being adjacent fields in the register.
1354      *
1355      * Updating the masks is not predicated, but it is subject to beat-wise
1356      * execution, and the mask is updated on the odd-numbered beats.
1357      * So if PSR.ECI says we should skip beat 1, we mustn't update the
1358      * 01 mask field.
1359      */
1360     TCGv_i32 vpr = load_cpu_field(v7m.vpr);
1361     switch (s->eci) {
1362     case ECI_NONE:
1363     case ECI_A0:
1364         /* Update both 01 and 23 fields */
1365         tcg_gen_deposit_i32(vpr, vpr,
1366                             tcg_constant_i32(mask | (mask << 4)),
1367                             R_V7M_VPR_MASK01_SHIFT,
1368                             R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
1369         break;
1370     case ECI_A0A1:
1371     case ECI_A0A1A2:
1372     case ECI_A0A1A2B0:
1373         /* Update only the 23 mask field */
1374         tcg_gen_deposit_i32(vpr, vpr,
1375                             tcg_constant_i32(mask),
1376                             R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
1377         break;
1378     default:
1379         g_assert_not_reached();
1380     }
1381     store_cpu_field(vpr, v7m.vpr);
1382 }
1383 
1384 static bool trans_VPST(DisasContext *s, arg_VPST *a)
1385 {
1386     /* mask == 0 is a "related encoding" */
1387     if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
1388         return false;
1389     }
1390     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1391         return true;
1392     }
1393     gen_vpst(s, a->mask);
1394     mve_update_and_store_eci(s);
1395     return true;
1396 }
1397 
1398 static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a)
1399 {
1400     /*
1401      * Invert the predicate in VPR.P0. We have call out to
1402      * a helper because this insn itself is beatwise and can
1403      * be predicated.
1404      */
1405     if (!dc_isar_feature(aa32_mve, s)) {
1406         return false;
1407     }
1408     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1409         return true;
1410     }
1411 
1412     gen_helper_mve_vpnot(cpu_env);
1413     /* This insn updates predication bits */
1414     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1415     mve_update_eci(s);
1416     return true;
1417 }
1418 
1419 static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
1420 {
1421     /* VADDV: vector add across vector */
1422     static MVEGenVADDVFn * const fns[4][2] = {
1423         { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
1424         { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
1425         { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
1426         { NULL, NULL }
1427     };
1428     TCGv_ptr qm;
1429     TCGv_i32 rda;
1430 
1431     if (!dc_isar_feature(aa32_mve, s) ||
1432         a->size == 3) {
1433         return false;
1434     }
1435     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1436         return true;
1437     }
1438 
1439     /*
1440      * This insn is subject to beat-wise execution. Partial execution
1441      * of an A=0 (no-accumulate) insn which does not execute the first
1442      * beat must start with the current value of Rda, not zero.
1443      */
1444     if (a->a || mve_skip_first_beat(s)) {
1445         /* Accumulate input from Rda */
1446         rda = load_reg(s, a->rda);
1447     } else {
1448         /* Accumulate starting at zero */
1449         rda = tcg_const_i32(0);
1450     }
1451 
1452     qm = mve_qreg_ptr(a->qm);
1453     fns[a->size][a->u](rda, cpu_env, qm, rda);
1454     store_reg(s, a->rda, rda);
1455     tcg_temp_free_ptr(qm);
1456 
1457     mve_update_eci(s);
1458     return true;
1459 }
1460 
1461 static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
1462 {
1463     /*
1464      * Vector Add Long Across Vector: accumulate the 32-bit
1465      * elements of the vector into a 64-bit result stored in
1466      * a pair of general-purpose registers.
1467      * No need to check Qm's bank: it is only 3 bits in decode.
1468      */
1469     TCGv_ptr qm;
1470     TCGv_i64 rda;
1471     TCGv_i32 rdalo, rdahi;
1472 
1473     if (!dc_isar_feature(aa32_mve, s)) {
1474         return false;
1475     }
1476     /*
1477      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1478      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1479      */
1480     if (a->rdahi == 13 || a->rdahi == 15) {
1481         return false;
1482     }
1483     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1484         return true;
1485     }
1486 
1487     /*
1488      * This insn is subject to beat-wise execution. Partial execution
1489      * of an A=0 (no-accumulate) insn which does not execute the first
1490      * beat must start with the current value of RdaHi:RdaLo, not zero.
1491      */
1492     if (a->a || mve_skip_first_beat(s)) {
1493         /* Accumulate input from RdaHi:RdaLo */
1494         rda = tcg_temp_new_i64();
1495         rdalo = load_reg(s, a->rdalo);
1496         rdahi = load_reg(s, a->rdahi);
1497         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1498         tcg_temp_free_i32(rdalo);
1499         tcg_temp_free_i32(rdahi);
1500     } else {
1501         /* Accumulate starting at zero */
1502         rda = tcg_const_i64(0);
1503     }
1504 
1505     qm = mve_qreg_ptr(a->qm);
1506     if (a->u) {
1507         gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
1508     } else {
1509         gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
1510     }
1511     tcg_temp_free_ptr(qm);
1512 
1513     rdalo = tcg_temp_new_i32();
1514     rdahi = tcg_temp_new_i32();
1515     tcg_gen_extrl_i64_i32(rdalo, rda);
1516     tcg_gen_extrh_i64_i32(rdahi, rda);
1517     store_reg(s, a->rdalo, rdalo);
1518     store_reg(s, a->rdahi, rdahi);
1519     tcg_temp_free_i64(rda);
1520     mve_update_eci(s);
1521     return true;
1522 }
1523 
1524 static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn)
1525 {
1526     TCGv_ptr qd;
1527     uint64_t imm;
1528 
1529     if (!dc_isar_feature(aa32_mve, s) ||
1530         !mve_check_qreg_bank(s, a->qd) ||
1531         !fn) {
1532         return false;
1533     }
1534     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1535         return true;
1536     }
1537 
1538     imm = asimd_imm_const(a->imm, a->cmode, a->op);
1539 
1540     qd = mve_qreg_ptr(a->qd);
1541     fn(cpu_env, qd, tcg_constant_i64(imm));
1542     tcg_temp_free_ptr(qd);
1543     mve_update_eci(s);
1544     return true;
1545 }
1546 
1547 static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
1548 {
1549     /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
1550     MVEGenOneOpImmFn *fn;
1551 
1552     if ((a->cmode & 1) && a->cmode < 12) {
1553         if (a->op) {
1554             /*
1555              * For op=1, the immediate will be inverted by asimd_imm_const(),
1556              * so the VBIC becomes a logical AND operation.
1557              */
1558             fn = gen_helper_mve_vandi;
1559         } else {
1560             fn = gen_helper_mve_vorri;
1561         }
1562     } else {
1563         /* There is one unallocated cmode/op combination in this space */
1564         if (a->cmode == 15 && a->op == 1) {
1565             return false;
1566         }
1567         /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
1568         fn = gen_helper_mve_vmovi;
1569     }
1570     return do_1imm(s, a, fn);
1571 }
1572 
1573 static bool do_2shift_vec(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1574                           bool negateshift, GVecGen2iFn vecfn)
1575 {
1576     TCGv_ptr qd, qm;
1577     int shift = a->shift;
1578 
1579     if (!dc_isar_feature(aa32_mve, s) ||
1580         !mve_check_qreg_bank(s, a->qd | a->qm) ||
1581         !fn) {
1582         return false;
1583     }
1584     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1585         return true;
1586     }
1587 
1588     /*
1589      * When we handle a right shift insn using a left-shift helper
1590      * which permits a negative shift count to indicate a right-shift,
1591      * we must negate the shift count.
1592      */
1593     if (negateshift) {
1594         shift = -shift;
1595     }
1596 
1597     if (vecfn && mve_no_predication(s)) {
1598         vecfn(a->size, mve_qreg_offset(a->qd), mve_qreg_offset(a->qm),
1599               shift, 16, 16);
1600     } else {
1601         qd = mve_qreg_ptr(a->qd);
1602         qm = mve_qreg_ptr(a->qm);
1603         fn(cpu_env, qd, qm, tcg_constant_i32(shift));
1604         tcg_temp_free_ptr(qd);
1605         tcg_temp_free_ptr(qm);
1606     }
1607     mve_update_eci(s);
1608     return true;
1609 }
1610 
1611 static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1612                       bool negateshift)
1613 {
1614     return do_2shift_vec(s, a, fn, negateshift, NULL);
1615 }
1616 
1617 #define DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, VECFN)                     \
1618     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1619     {                                                                   \
1620         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1621             gen_helper_mve_##FN##b,                                     \
1622             gen_helper_mve_##FN##h,                                     \
1623             gen_helper_mve_##FN##w,                                     \
1624             NULL,                                                       \
1625         };                                                              \
1626         return do_2shift_vec(s, a, fns[a->size], NEGATESHIFT, VECFN);   \
1627     }
1628 
1629 #define DO_2SHIFT(INSN, FN, NEGATESHIFT)        \
1630     DO_2SHIFT_VEC(INSN, FN, NEGATESHIFT, NULL)
1631 
1632 static void do_gvec_shri_s(unsigned vece, uint32_t dofs, uint32_t aofs,
1633                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1634 {
1635     /*
1636      * We get here with a negated shift count, and we must handle
1637      * shifts by the element size, which tcg_gen_gvec_sari() does not do.
1638      */
1639     shift = -shift;
1640     if (shift == (8 << vece)) {
1641         shift--;
1642     }
1643     tcg_gen_gvec_sari(vece, dofs, aofs, shift, oprsz, maxsz);
1644 }
1645 
1646 static void do_gvec_shri_u(unsigned vece, uint32_t dofs, uint32_t aofs,
1647                            int64_t shift, uint32_t oprsz, uint32_t maxsz)
1648 {
1649     /*
1650      * We get here with a negated shift count, and we must handle
1651      * shifts by the element size, which tcg_gen_gvec_shri() does not do.
1652      */
1653     shift = -shift;
1654     if (shift == (8 << vece)) {
1655         tcg_gen_gvec_dup_imm(vece, dofs, oprsz, maxsz, 0);
1656     } else {
1657         tcg_gen_gvec_shri(vece, dofs, aofs, shift, oprsz, maxsz);
1658     }
1659 }
1660 
1661 DO_2SHIFT_VEC(VSHLI, vshli_u, false, tcg_gen_gvec_shli)
1662 DO_2SHIFT(VQSHLI_S, vqshli_s, false)
1663 DO_2SHIFT(VQSHLI_U, vqshli_u, false)
1664 DO_2SHIFT(VQSHLUI, vqshlui_s, false)
1665 /* These right shifts use a left-shift helper with negated shift count */
1666 DO_2SHIFT_VEC(VSHRI_S, vshli_s, true, do_gvec_shri_s)
1667 DO_2SHIFT_VEC(VSHRI_U, vshli_u, true, do_gvec_shri_u)
1668 DO_2SHIFT(VRSHRI_S, vrshli_s, true)
1669 DO_2SHIFT(VRSHRI_U, vrshli_u, true)
1670 
1671 DO_2SHIFT_VEC(VSRI, vsri, false, gen_gvec_sri)
1672 DO_2SHIFT_VEC(VSLI, vsli, false, gen_gvec_sli)
1673 
1674 #define DO_2SHIFT_FP(INSN, FN)                                  \
1675     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1676     {                                                           \
1677         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
1678             return false;                                       \
1679         }                                                       \
1680         return do_2shift(s, a, gen_helper_mve_##FN, false);     \
1681     }
1682 
1683 DO_2SHIFT_FP(VCVT_SH_fixed, vcvt_sh)
1684 DO_2SHIFT_FP(VCVT_UH_fixed, vcvt_uh)
1685 DO_2SHIFT_FP(VCVT_HS_fixed, vcvt_hs)
1686 DO_2SHIFT_FP(VCVT_HU_fixed, vcvt_hu)
1687 DO_2SHIFT_FP(VCVT_SF_fixed, vcvt_sf)
1688 DO_2SHIFT_FP(VCVT_UF_fixed, vcvt_uf)
1689 DO_2SHIFT_FP(VCVT_FS_fixed, vcvt_fs)
1690 DO_2SHIFT_FP(VCVT_FU_fixed, vcvt_fu)
1691 
1692 static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
1693                              MVEGenTwoOpShiftFn *fn)
1694 {
1695     TCGv_ptr qda;
1696     TCGv_i32 rm;
1697 
1698     if (!dc_isar_feature(aa32_mve, s) ||
1699         !mve_check_qreg_bank(s, a->qda) ||
1700         a->rm == 13 || a->rm == 15 || !fn) {
1701         /* Rm cases are UNPREDICTABLE */
1702         return false;
1703     }
1704     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1705         return true;
1706     }
1707 
1708     qda = mve_qreg_ptr(a->qda);
1709     rm = load_reg(s, a->rm);
1710     fn(cpu_env, qda, qda, rm);
1711     tcg_temp_free_ptr(qda);
1712     tcg_temp_free_i32(rm);
1713     mve_update_eci(s);
1714     return true;
1715 }
1716 
1717 #define DO_2SHIFT_SCALAR(INSN, FN)                                      \
1718     static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a)        \
1719     {                                                                   \
1720         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1721             gen_helper_mve_##FN##b,                                     \
1722             gen_helper_mve_##FN##h,                                     \
1723             gen_helper_mve_##FN##w,                                     \
1724             NULL,                                                       \
1725         };                                                              \
1726         return do_2shift_scalar(s, a, fns[a->size]);                    \
1727     }
1728 
1729 DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s)
1730 DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u)
1731 DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s)
1732 DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u)
1733 DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s)
1734 DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u)
1735 DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s)
1736 DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u)
1737 
1738 #define DO_VSHLL(INSN, FN)                                              \
1739     static bool trans_##INSN(DisasContext *s, arg_2shift *a)            \
1740     {                                                                   \
1741         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1742             gen_helper_mve_##FN##b,                                     \
1743             gen_helper_mve_##FN##h,                                     \
1744         };                                                              \
1745         return do_2shift_vec(s, a, fns[a->size], false, do_gvec_##FN);  \
1746     }
1747 
1748 /*
1749  * For the VSHLL vector helpers, the vece is the size of the input
1750  * (ie MO_8 or MO_16); the helpers want to work in the output size.
1751  * The shift count can be 0..<input size>, inclusive. (0 is VMOVL.)
1752  */
1753 static void do_gvec_vshllbs(unsigned vece, uint32_t dofs, uint32_t aofs,
1754                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1755 {
1756     unsigned ovece = vece + 1;
1757     unsigned ibits = vece == MO_8 ? 8 : 16;
1758     tcg_gen_gvec_shli(ovece, dofs, aofs, ibits, oprsz, maxsz);
1759     tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1760 }
1761 
1762 static void do_gvec_vshllbu(unsigned vece, uint32_t dofs, uint32_t aofs,
1763                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1764 {
1765     unsigned ovece = vece + 1;
1766     tcg_gen_gvec_andi(ovece, dofs, aofs,
1767                       ovece == MO_16 ? 0xff : 0xffff, oprsz, maxsz);
1768     tcg_gen_gvec_shli(ovece, dofs, dofs, shift, oprsz, maxsz);
1769 }
1770 
1771 static void do_gvec_vshllts(unsigned vece, uint32_t dofs, uint32_t aofs,
1772                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1773 {
1774     unsigned ovece = vece + 1;
1775     unsigned ibits = vece == MO_8 ? 8 : 16;
1776     if (shift == 0) {
1777         tcg_gen_gvec_sari(ovece, dofs, aofs, ibits, oprsz, maxsz);
1778     } else {
1779         tcg_gen_gvec_andi(ovece, dofs, aofs,
1780                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1781         tcg_gen_gvec_sari(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1782     }
1783 }
1784 
1785 static void do_gvec_vshlltu(unsigned vece, uint32_t dofs, uint32_t aofs,
1786                             int64_t shift, uint32_t oprsz, uint32_t maxsz)
1787 {
1788     unsigned ovece = vece + 1;
1789     unsigned ibits = vece == MO_8 ? 8 : 16;
1790     if (shift == 0) {
1791         tcg_gen_gvec_shri(ovece, dofs, aofs, ibits, oprsz, maxsz);
1792     } else {
1793         tcg_gen_gvec_andi(ovece, dofs, aofs,
1794                           ovece == MO_16 ? 0xff00 : 0xffff0000, oprsz, maxsz);
1795         tcg_gen_gvec_shri(ovece, dofs, dofs, ibits - shift, oprsz, maxsz);
1796     }
1797 }
1798 
1799 DO_VSHLL(VSHLL_BS, vshllbs)
1800 DO_VSHLL(VSHLL_BU, vshllbu)
1801 DO_VSHLL(VSHLL_TS, vshllts)
1802 DO_VSHLL(VSHLL_TU, vshlltu)
1803 
1804 #define DO_2SHIFT_N(INSN, FN)                                   \
1805     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1806     {                                                           \
1807         static MVEGenTwoOpShiftFn * const fns[] = {             \
1808             gen_helper_mve_##FN##b,                             \
1809             gen_helper_mve_##FN##h,                             \
1810         };                                                      \
1811         return do_2shift(s, a, fns[a->size], false);            \
1812     }
1813 
1814 DO_2SHIFT_N(VSHRNB, vshrnb)
1815 DO_2SHIFT_N(VSHRNT, vshrnt)
1816 DO_2SHIFT_N(VRSHRNB, vrshrnb)
1817 DO_2SHIFT_N(VRSHRNT, vrshrnt)
1818 DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
1819 DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
1820 DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
1821 DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
1822 DO_2SHIFT_N(VQSHRUNB, vqshrunb)
1823 DO_2SHIFT_N(VQSHRUNT, vqshrunt)
1824 DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
1825 DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
1826 DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
1827 DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
1828 DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
1829 DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
1830 
1831 static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
1832 {
1833     /*
1834      * Whole Vector Left Shift with Carry. The carry is taken
1835      * from a general purpose register and written back there.
1836      * An imm of 0 means "shift by 32".
1837      */
1838     TCGv_ptr qd;
1839     TCGv_i32 rdm;
1840 
1841     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1842         return false;
1843     }
1844     if (a->rdm == 13 || a->rdm == 15) {
1845         /* CONSTRAINED UNPREDICTABLE: we UNDEF */
1846         return false;
1847     }
1848     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1849         return true;
1850     }
1851 
1852     qd = mve_qreg_ptr(a->qd);
1853     rdm = load_reg(s, a->rdm);
1854     gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
1855     store_reg(s, a->rdm, rdm);
1856     tcg_temp_free_ptr(qd);
1857     mve_update_eci(s);
1858     return true;
1859 }
1860 
1861 static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
1862 {
1863     TCGv_ptr qd;
1864     TCGv_i32 rn;
1865 
1866     /*
1867      * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
1868      * This fills the vector with elements of successively increasing
1869      * or decreasing values, starting from Rn.
1870      */
1871     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1872         return false;
1873     }
1874     if (a->size == MO_64) {
1875         /* size 0b11 is another encoding */
1876         return false;
1877     }
1878     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1879         return true;
1880     }
1881 
1882     qd = mve_qreg_ptr(a->qd);
1883     rn = load_reg(s, a->rn);
1884     fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm));
1885     store_reg(s, a->rn, rn);
1886     tcg_temp_free_ptr(qd);
1887     mve_update_eci(s);
1888     return true;
1889 }
1890 
1891 static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
1892 {
1893     TCGv_ptr qd;
1894     TCGv_i32 rn, rm;
1895 
1896     /*
1897      * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
1898      * This fills the vector with elements of successively increasing
1899      * or decreasing values, starting from Rn. Rm specifies a point where
1900      * the count wraps back around to 0. The updated offset is written back
1901      * to Rn.
1902      */
1903     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1904         return false;
1905     }
1906     if (!fn || a->rm == 13 || a->rm == 15) {
1907         /*
1908          * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
1909          * Rm == 13 is VIWDUP, VDWDUP.
1910          */
1911         return false;
1912     }
1913     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1914         return true;
1915     }
1916 
1917     qd = mve_qreg_ptr(a->qd);
1918     rn = load_reg(s, a->rn);
1919     rm = load_reg(s, a->rm);
1920     fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm));
1921     store_reg(s, a->rn, rn);
1922     tcg_temp_free_ptr(qd);
1923     tcg_temp_free_i32(rm);
1924     mve_update_eci(s);
1925     return true;
1926 }
1927 
1928 static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
1929 {
1930     static MVEGenVIDUPFn * const fns[] = {
1931         gen_helper_mve_vidupb,
1932         gen_helper_mve_viduph,
1933         gen_helper_mve_vidupw,
1934         NULL,
1935     };
1936     return do_vidup(s, a, fns[a->size]);
1937 }
1938 
1939 static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
1940 {
1941     static MVEGenVIDUPFn * const fns[] = {
1942         gen_helper_mve_vidupb,
1943         gen_helper_mve_viduph,
1944         gen_helper_mve_vidupw,
1945         NULL,
1946     };
1947     /* VDDUP is just like VIDUP but with a negative immediate */
1948     a->imm = -a->imm;
1949     return do_vidup(s, a, fns[a->size]);
1950 }
1951 
1952 static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
1953 {
1954     static MVEGenVIWDUPFn * const fns[] = {
1955         gen_helper_mve_viwdupb,
1956         gen_helper_mve_viwduph,
1957         gen_helper_mve_viwdupw,
1958         NULL,
1959     };
1960     return do_viwdup(s, a, fns[a->size]);
1961 }
1962 
1963 static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
1964 {
1965     static MVEGenVIWDUPFn * const fns[] = {
1966         gen_helper_mve_vdwdupb,
1967         gen_helper_mve_vdwduph,
1968         gen_helper_mve_vdwdupw,
1969         NULL,
1970     };
1971     return do_viwdup(s, a, fns[a->size]);
1972 }
1973 
1974 static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn)
1975 {
1976     TCGv_ptr qn, qm;
1977 
1978     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1979         !fn) {
1980         return false;
1981     }
1982     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1983         return true;
1984     }
1985 
1986     qn = mve_qreg_ptr(a->qn);
1987     qm = mve_qreg_ptr(a->qm);
1988     fn(cpu_env, qn, qm);
1989     tcg_temp_free_ptr(qn);
1990     tcg_temp_free_ptr(qm);
1991     if (a->mask) {
1992         /* VPT */
1993         gen_vpst(s, a->mask);
1994     }
1995     /* This insn updates predication bits */
1996     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1997     mve_update_eci(s);
1998     return true;
1999 }
2000 
2001 static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a,
2002                            MVEGenScalarCmpFn *fn)
2003 {
2004     TCGv_ptr qn;
2005     TCGv_i32 rm;
2006 
2007     if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) {
2008         return false;
2009     }
2010     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2011         return true;
2012     }
2013 
2014     qn = mve_qreg_ptr(a->qn);
2015     if (a->rm == 15) {
2016         /* Encoding Rm=0b1111 means "constant zero" */
2017         rm = tcg_constant_i32(0);
2018     } else {
2019         rm = load_reg(s, a->rm);
2020     }
2021     fn(cpu_env, qn, rm);
2022     tcg_temp_free_ptr(qn);
2023     tcg_temp_free_i32(rm);
2024     if (a->mask) {
2025         /* VPT */
2026         gen_vpst(s, a->mask);
2027     }
2028     /* This insn updates predication bits */
2029     s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2030     mve_update_eci(s);
2031     return true;
2032 }
2033 
2034 #define DO_VCMP(INSN, FN)                                       \
2035     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2036     {                                                           \
2037         static MVEGenCmpFn * const fns[] = {                    \
2038             gen_helper_mve_##FN##b,                             \
2039             gen_helper_mve_##FN##h,                             \
2040             gen_helper_mve_##FN##w,                             \
2041             NULL,                                               \
2042         };                                                      \
2043         return do_vcmp(s, a, fns[a->size]);                     \
2044     }                                                           \
2045     static bool trans_##INSN##_scalar(DisasContext *s,          \
2046                                       arg_vcmp_scalar *a)       \
2047     {                                                           \
2048         static MVEGenScalarCmpFn * const fns[] = {              \
2049             gen_helper_mve_##FN##_scalarb,                      \
2050             gen_helper_mve_##FN##_scalarh,                      \
2051             gen_helper_mve_##FN##_scalarw,                      \
2052             NULL,                                               \
2053         };                                                      \
2054         return do_vcmp_scalar(s, a, fns[a->size]);              \
2055     }
2056 
2057 DO_VCMP(VCMPEQ, vcmpeq)
2058 DO_VCMP(VCMPNE, vcmpne)
2059 DO_VCMP(VCMPCS, vcmpcs)
2060 DO_VCMP(VCMPHI, vcmphi)
2061 DO_VCMP(VCMPGE, vcmpge)
2062 DO_VCMP(VCMPLT, vcmplt)
2063 DO_VCMP(VCMPGT, vcmpgt)
2064 DO_VCMP(VCMPLE, vcmple)
2065 
2066 #define DO_VCMP_FP(INSN, FN)                                    \
2067     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
2068     {                                                           \
2069         static MVEGenCmpFn * const fns[] = {                    \
2070             NULL,                                               \
2071             gen_helper_mve_##FN##h,                             \
2072             gen_helper_mve_##FN##s,                             \
2073             NULL,                                               \
2074         };                                                      \
2075         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2076             return false;                                       \
2077         }                                                       \
2078         return do_vcmp(s, a, fns[a->size]);                     \
2079     }                                                           \
2080     static bool trans_##INSN##_scalar(DisasContext *s,          \
2081                                       arg_vcmp_scalar *a)       \
2082     {                                                           \
2083         static MVEGenScalarCmpFn * const fns[] = {              \
2084             NULL,                                               \
2085             gen_helper_mve_##FN##_scalarh,                      \
2086             gen_helper_mve_##FN##_scalars,                      \
2087             NULL,                                               \
2088         };                                                      \
2089         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2090             return false;                                       \
2091         }                                                       \
2092         return do_vcmp_scalar(s, a, fns[a->size]);              \
2093     }
2094 
2095 DO_VCMP_FP(VCMPEQ_fp, vfcmpeq)
2096 DO_VCMP_FP(VCMPNE_fp, vfcmpne)
2097 DO_VCMP_FP(VCMPGE_fp, vfcmpge)
2098 DO_VCMP_FP(VCMPLT_fp, vfcmplt)
2099 DO_VCMP_FP(VCMPGT_fp, vfcmpgt)
2100 DO_VCMP_FP(VCMPLE_fp, vfcmple)
2101 
2102 static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
2103 {
2104     /*
2105      * MIN/MAX operations across a vector: compute the min or
2106      * max of the initial value in a general purpose register
2107      * and all the elements in the vector, and store it back
2108      * into the general purpose register.
2109      */
2110     TCGv_ptr qm;
2111     TCGv_i32 rda;
2112 
2113     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
2114         !fn || a->rda == 13 || a->rda == 15) {
2115         /* Rda cases are UNPREDICTABLE */
2116         return false;
2117     }
2118     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2119         return true;
2120     }
2121 
2122     qm = mve_qreg_ptr(a->qm);
2123     rda = load_reg(s, a->rda);
2124     fn(rda, cpu_env, qm, rda);
2125     store_reg(s, a->rda, rda);
2126     tcg_temp_free_ptr(qm);
2127     mve_update_eci(s);
2128     return true;
2129 }
2130 
2131 #define DO_VMAXV(INSN, FN)                                      \
2132     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2133     {                                                           \
2134         static MVEGenVADDVFn * const fns[] = {                  \
2135             gen_helper_mve_##FN##b,                             \
2136             gen_helper_mve_##FN##h,                             \
2137             gen_helper_mve_##FN##w,                             \
2138             NULL,                                               \
2139         };                                                      \
2140         return do_vmaxv(s, a, fns[a->size]);                    \
2141     }
2142 
2143 DO_VMAXV(VMAXV_S, vmaxvs)
2144 DO_VMAXV(VMAXV_U, vmaxvu)
2145 DO_VMAXV(VMAXAV, vmaxav)
2146 DO_VMAXV(VMINV_S, vminvs)
2147 DO_VMAXV(VMINV_U, vminvu)
2148 DO_VMAXV(VMINAV, vminav)
2149 
2150 #define DO_VMAXV_FP(INSN, FN)                                   \
2151     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
2152     {                                                           \
2153         static MVEGenVADDVFn * const fns[] = {                  \
2154             NULL,                                               \
2155             gen_helper_mve_##FN##h,                             \
2156             gen_helper_mve_##FN##s,                             \
2157             NULL,                                               \
2158         };                                                      \
2159         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
2160             return false;                                       \
2161         }                                                       \
2162         return do_vmaxv(s, a, fns[a->size]);                    \
2163     }
2164 
2165 DO_VMAXV_FP(VMAXNMV, vmaxnmv)
2166 DO_VMAXV_FP(VMINNMV, vminnmv)
2167 DO_VMAXV_FP(VMAXNMAV, vmaxnmav)
2168 DO_VMAXV_FP(VMINNMAV, vminnmav)
2169 
2170 static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
2171 {
2172     /* Absolute difference accumulated across vector */
2173     TCGv_ptr qn, qm;
2174     TCGv_i32 rda;
2175 
2176     if (!dc_isar_feature(aa32_mve, s) ||
2177         !mve_check_qreg_bank(s, a->qm | a->qn) ||
2178         !fn || a->rda == 13 || a->rda == 15) {
2179         /* Rda cases are UNPREDICTABLE */
2180         return false;
2181     }
2182     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2183         return true;
2184     }
2185 
2186     qm = mve_qreg_ptr(a->qm);
2187     qn = mve_qreg_ptr(a->qn);
2188     rda = load_reg(s, a->rda);
2189     fn(rda, cpu_env, qn, qm, rda);
2190     store_reg(s, a->rda, rda);
2191     tcg_temp_free_ptr(qm);
2192     tcg_temp_free_ptr(qn);
2193     mve_update_eci(s);
2194     return true;
2195 }
2196 
2197 #define DO_VABAV(INSN, FN)                                      \
2198     static bool trans_##INSN(DisasContext *s, arg_vabav *a)     \
2199     {                                                           \
2200         static MVEGenVABAVFn * const fns[] = {                  \
2201             gen_helper_mve_##FN##b,                             \
2202             gen_helper_mve_##FN##h,                             \
2203             gen_helper_mve_##FN##w,                             \
2204             NULL,                                               \
2205         };                                                      \
2206         return do_vabav(s, a, fns[a->size]);                    \
2207     }
2208 
2209 DO_VABAV(VABAV_S, vabavs)
2210 DO_VABAV(VABAV_U, vabavu)
2211 
2212 static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2213 {
2214     /*
2215      * VMOV two 32-bit vector lanes to two general-purpose registers.
2216      * This insn is not predicated but it is subject to beat-wise
2217      * execution if it is not in an IT block. For us this means
2218      * only that if PSR.ECI says we should not be executing the beat
2219      * corresponding to the lane of the vector register being accessed
2220      * then we should skip perfoming the move, and that we need to do
2221      * the usual check for bad ECI state and advance of ECI state.
2222      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2223      */
2224     TCGv_i32 tmp;
2225     int vd;
2226 
2227     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2228         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 ||
2229         a->rt == a->rt2) {
2230         /* Rt/Rt2 cases are UNPREDICTABLE */
2231         return false;
2232     }
2233     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2234         return true;
2235     }
2236 
2237     /* Convert Qreg index to Dreg for read_neon_element32() etc */
2238     vd = a->qd * 2;
2239 
2240     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2241         tmp = tcg_temp_new_i32();
2242         read_neon_element32(tmp, vd, a->idx, MO_32);
2243         store_reg(s, a->rt, tmp);
2244     }
2245     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2246         tmp = tcg_temp_new_i32();
2247         read_neon_element32(tmp, vd + 1, a->idx, MO_32);
2248         store_reg(s, a->rt2, tmp);
2249     }
2250 
2251     mve_update_and_store_eci(s);
2252     return true;
2253 }
2254 
2255 static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
2256 {
2257     /*
2258      * VMOV two general-purpose registers to two 32-bit vector lanes.
2259      * This insn is not predicated but it is subject to beat-wise
2260      * execution if it is not in an IT block. For us this means
2261      * only that if PSR.ECI says we should not be executing the beat
2262      * corresponding to the lane of the vector register being accessed
2263      * then we should skip perfoming the move, and that we need to do
2264      * the usual check for bad ECI state and advance of ECI state.
2265      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
2266      */
2267     TCGv_i32 tmp;
2268     int vd;
2269 
2270     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
2271         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) {
2272         /* Rt/Rt2 cases are UNPREDICTABLE */
2273         return false;
2274     }
2275     if (!mve_eci_check(s) || !vfp_access_check(s)) {
2276         return true;
2277     }
2278 
2279     /* Convert Qreg idx to Dreg for read_neon_element32() etc */
2280     vd = a->qd * 2;
2281 
2282     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
2283         tmp = load_reg(s, a->rt);
2284         write_neon_element32(tmp, vd, a->idx, MO_32);
2285         tcg_temp_free_i32(tmp);
2286     }
2287     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
2288         tmp = load_reg(s, a->rt2);
2289         write_neon_element32(tmp, vd + 1, a->idx, MO_32);
2290         tcg_temp_free_i32(tmp);
2291     }
2292 
2293     mve_update_and_store_eci(s);
2294     return true;
2295 }
2296