xref: /qemu/target/arm/tcg/translate-mve.c (revision 1e35cd916695389074b12614d254087a9f51b852)
1 /*
2  *  ARM translation: M-profile MVE instructions
3  *
4  *  Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "tcg/tcg-op.h"
22 #include "tcg/tcg-op-gvec.h"
23 #include "exec/exec-all.h"
24 #include "exec/gen-icount.h"
25 #include "translate.h"
26 #include "translate-a32.h"
27 
28 static inline int vidup_imm(DisasContext *s, int x)
29 {
30     return 1 << x;
31 }
32 
33 /* Include the generated decoder */
34 #include "decode-mve.c.inc"
35 
36 typedef void MVEGenLdStFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
37 typedef void MVEGenLdStSGFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
38 typedef void MVEGenLdStIlFn(TCGv_ptr, TCGv_i32, TCGv_i32);
39 typedef void MVEGenOneOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
40 typedef void MVEGenTwoOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_ptr);
41 typedef void MVEGenTwoOpScalarFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
42 typedef void MVEGenTwoOpShiftFn(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
43 typedef void MVEGenLongDualAccOpFn(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64);
44 typedef void MVEGenVADDVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32);
45 typedef void MVEGenOneOpImmFn(TCGv_ptr, TCGv_ptr, TCGv_i64);
46 typedef void MVEGenVIDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32);
47 typedef void MVEGenVIWDUPFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
48 typedef void MVEGenCmpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
49 typedef void MVEGenScalarCmpFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
50 typedef void MVEGenVABAVFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
51 typedef void MVEGenDualAccOpFn(TCGv_i32, TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i32);
52 
53 /* Return the offset of a Qn register (same semantics as aa32_vfp_qreg()) */
54 static inline long mve_qreg_offset(unsigned reg)
55 {
56     return offsetof(CPUARMState, vfp.zregs[reg].d[0]);
57 }
58 
59 static TCGv_ptr mve_qreg_ptr(unsigned reg)
60 {
61     TCGv_ptr ret = tcg_temp_new_ptr();
62     tcg_gen_addi_ptr(ret, cpu_env, mve_qreg_offset(reg));
63     return ret;
64 }
65 
66 static bool mve_check_qreg_bank(DisasContext *s, int qmask)
67 {
68     /*
69      * Check whether Qregs are in range. For v8.1M only Q0..Q7
70      * are supported, see VFPSmallRegisterBank().
71      */
72     return qmask < 8;
73 }
74 
75 bool mve_eci_check(DisasContext *s)
76 {
77     /*
78      * This is a beatwise insn: check that ECI is valid (not a
79      * reserved value) and note that we are handling it.
80      * Return true if OK, false if we generated an exception.
81      */
82     s->eci_handled = true;
83     switch (s->eci) {
84     case ECI_NONE:
85     case ECI_A0:
86     case ECI_A0A1:
87     case ECI_A0A1A2:
88     case ECI_A0A1A2B0:
89         return true;
90     default:
91         /* Reserved value: INVSTATE UsageFault */
92         gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
93                            default_exception_el(s));
94         return false;
95     }
96 }
97 
98 void mve_update_eci(DisasContext *s)
99 {
100     /*
101      * The helper function will always update the CPUState field,
102      * so we only need to update the DisasContext field.
103      */
104     if (s->eci) {
105         s->eci = (s->eci == ECI_A0A1A2B0) ? ECI_A0 : ECI_NONE;
106     }
107 }
108 
109 void mve_update_and_store_eci(DisasContext *s)
110 {
111     /*
112      * For insns which don't call a helper function that will call
113      * mve_advance_vpt(), this version updates s->eci and also stores
114      * it out to the CPUState field.
115      */
116     if (s->eci) {
117         mve_update_eci(s);
118         store_cpu_field(tcg_constant_i32(s->eci << 4), condexec_bits);
119     }
120 }
121 
122 static bool mve_skip_first_beat(DisasContext *s)
123 {
124     /* Return true if PSR.ECI says we must skip the first beat of this insn */
125     switch (s->eci) {
126     case ECI_NONE:
127         return false;
128     case ECI_A0:
129     case ECI_A0A1:
130     case ECI_A0A1A2:
131     case ECI_A0A1A2B0:
132         return true;
133     default:
134         g_assert_not_reached();
135     }
136 }
137 
138 static bool do_ldst(DisasContext *s, arg_VLDR_VSTR *a, MVEGenLdStFn *fn,
139                     unsigned msize)
140 {
141     TCGv_i32 addr;
142     uint32_t offset;
143     TCGv_ptr qreg;
144 
145     if (!dc_isar_feature(aa32_mve, s) ||
146         !mve_check_qreg_bank(s, a->qd) ||
147         !fn) {
148         return false;
149     }
150 
151     /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
152     if (a->rn == 15 || (a->rn == 13 && a->w)) {
153         return false;
154     }
155 
156     if (!mve_eci_check(s) || !vfp_access_check(s)) {
157         return true;
158     }
159 
160     offset = a->imm << msize;
161     if (!a->a) {
162         offset = -offset;
163     }
164     addr = load_reg(s, a->rn);
165     if (a->p) {
166         tcg_gen_addi_i32(addr, addr, offset);
167     }
168 
169     qreg = mve_qreg_ptr(a->qd);
170     fn(cpu_env, qreg, addr);
171     tcg_temp_free_ptr(qreg);
172 
173     /*
174      * Writeback always happens after the last beat of the insn,
175      * regardless of predication
176      */
177     if (a->w) {
178         if (!a->p) {
179             tcg_gen_addi_i32(addr, addr, offset);
180         }
181         store_reg(s, a->rn, addr);
182     } else {
183         tcg_temp_free_i32(addr);
184     }
185     mve_update_eci(s);
186     return true;
187 }
188 
189 static bool trans_VLDR_VSTR(DisasContext *s, arg_VLDR_VSTR *a)
190 {
191     static MVEGenLdStFn * const ldstfns[4][2] = {
192         { gen_helper_mve_vstrb, gen_helper_mve_vldrb },
193         { gen_helper_mve_vstrh, gen_helper_mve_vldrh },
194         { gen_helper_mve_vstrw, gen_helper_mve_vldrw },
195         { NULL, NULL }
196     };
197     return do_ldst(s, a, ldstfns[a->size][a->l], a->size);
198 }
199 
200 #define DO_VLDST_WIDE_NARROW(OP, SLD, ULD, ST, MSIZE)           \
201     static bool trans_##OP(DisasContext *s, arg_VLDR_VSTR *a)   \
202     {                                                           \
203         static MVEGenLdStFn * const ldstfns[2][2] = {           \
204             { gen_helper_mve_##ST, gen_helper_mve_##SLD },      \
205             { NULL, gen_helper_mve_##ULD },                     \
206         };                                                      \
207         return do_ldst(s, a, ldstfns[a->u][a->l], MSIZE);       \
208     }
209 
210 DO_VLDST_WIDE_NARROW(VLDSTB_H, vldrb_sh, vldrb_uh, vstrb_h, MO_8)
211 DO_VLDST_WIDE_NARROW(VLDSTB_W, vldrb_sw, vldrb_uw, vstrb_w, MO_8)
212 DO_VLDST_WIDE_NARROW(VLDSTH_W, vldrh_sw, vldrh_uw, vstrh_w, MO_16)
213 
214 static bool do_ldst_sg(DisasContext *s, arg_vldst_sg *a, MVEGenLdStSGFn fn)
215 {
216     TCGv_i32 addr;
217     TCGv_ptr qd, qm;
218 
219     if (!dc_isar_feature(aa32_mve, s) ||
220         !mve_check_qreg_bank(s, a->qd | a->qm) ||
221         !fn || a->rn == 15) {
222         /* Rn case is UNPREDICTABLE */
223         return false;
224     }
225 
226     if (!mve_eci_check(s) || !vfp_access_check(s)) {
227         return true;
228     }
229 
230     addr = load_reg(s, a->rn);
231 
232     qd = mve_qreg_ptr(a->qd);
233     qm = mve_qreg_ptr(a->qm);
234     fn(cpu_env, qd, qm, addr);
235     tcg_temp_free_ptr(qd);
236     tcg_temp_free_ptr(qm);
237     tcg_temp_free_i32(addr);
238     mve_update_eci(s);
239     return true;
240 }
241 
242 /*
243  * The naming scheme here is "vldrb_sg_sh == in-memory byte loads
244  * signextended to halfword elements in register". _os_ indicates that
245  * the offsets in Qm should be scaled by the element size.
246  */
247 /* This macro is just to make the arrays more compact in these functions */
248 #define F(N) gen_helper_mve_##N
249 
250 /* VLDRB/VSTRB (ie msize 1) with OS=1 is UNPREDICTABLE; we UNDEF */
251 static bool trans_VLDR_S_sg(DisasContext *s, arg_vldst_sg *a)
252 {
253     static MVEGenLdStSGFn * const fns[2][4][4] = { {
254             { NULL, F(vldrb_sg_sh), F(vldrb_sg_sw), NULL },
255             { NULL, NULL,           F(vldrh_sg_sw), NULL },
256             { NULL, NULL,           NULL,           NULL },
257             { NULL, NULL,           NULL,           NULL }
258         }, {
259             { NULL, NULL,              NULL,              NULL },
260             { NULL, NULL,              F(vldrh_sg_os_sw), NULL },
261             { NULL, NULL,              NULL,              NULL },
262             { NULL, NULL,              NULL,              NULL }
263         }
264     };
265     if (a->qd == a->qm) {
266         return false; /* UNPREDICTABLE */
267     }
268     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
269 }
270 
271 static bool trans_VLDR_U_sg(DisasContext *s, arg_vldst_sg *a)
272 {
273     static MVEGenLdStSGFn * const fns[2][4][4] = { {
274             { F(vldrb_sg_ub), F(vldrb_sg_uh), F(vldrb_sg_uw), NULL },
275             { NULL,           F(vldrh_sg_uh), F(vldrh_sg_uw), NULL },
276             { NULL,           NULL,           F(vldrw_sg_uw), NULL },
277             { NULL,           NULL,           NULL,           F(vldrd_sg_ud) }
278         }, {
279             { NULL, NULL,              NULL,              NULL },
280             { NULL, F(vldrh_sg_os_uh), F(vldrh_sg_os_uw), NULL },
281             { NULL, NULL,              F(vldrw_sg_os_uw), NULL },
282             { NULL, NULL,              NULL,              F(vldrd_sg_os_ud) }
283         }
284     };
285     if (a->qd == a->qm) {
286         return false; /* UNPREDICTABLE */
287     }
288     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
289 }
290 
291 static bool trans_VSTR_sg(DisasContext *s, arg_vldst_sg *a)
292 {
293     static MVEGenLdStSGFn * const fns[2][4][4] = { {
294             { F(vstrb_sg_ub), F(vstrb_sg_uh), F(vstrb_sg_uw), NULL },
295             { NULL,           F(vstrh_sg_uh), F(vstrh_sg_uw), NULL },
296             { NULL,           NULL,           F(vstrw_sg_uw), NULL },
297             { NULL,           NULL,           NULL,           F(vstrd_sg_ud) }
298         }, {
299             { NULL, NULL,              NULL,              NULL },
300             { NULL, F(vstrh_sg_os_uh), F(vstrh_sg_os_uw), NULL },
301             { NULL, NULL,              F(vstrw_sg_os_uw), NULL },
302             { NULL, NULL,              NULL,              F(vstrd_sg_os_ud) }
303         }
304     };
305     return do_ldst_sg(s, a, fns[a->os][a->msize][a->size]);
306 }
307 
308 #undef F
309 
310 static bool do_ldst_sg_imm(DisasContext *s, arg_vldst_sg_imm *a,
311                            MVEGenLdStSGFn *fn, unsigned msize)
312 {
313     uint32_t offset;
314     TCGv_ptr qd, qm;
315 
316     if (!dc_isar_feature(aa32_mve, s) ||
317         !mve_check_qreg_bank(s, a->qd | a->qm) ||
318         !fn) {
319         return false;
320     }
321 
322     if (!mve_eci_check(s) || !vfp_access_check(s)) {
323         return true;
324     }
325 
326     offset = a->imm << msize;
327     if (!a->a) {
328         offset = -offset;
329     }
330 
331     qd = mve_qreg_ptr(a->qd);
332     qm = mve_qreg_ptr(a->qm);
333     fn(cpu_env, qd, qm, tcg_constant_i32(offset));
334     tcg_temp_free_ptr(qd);
335     tcg_temp_free_ptr(qm);
336     mve_update_eci(s);
337     return true;
338 }
339 
340 static bool trans_VLDRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
341 {
342     static MVEGenLdStSGFn * const fns[] = {
343         gen_helper_mve_vldrw_sg_uw,
344         gen_helper_mve_vldrw_sg_wb_uw,
345     };
346     if (a->qd == a->qm) {
347         return false; /* UNPREDICTABLE */
348     }
349     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
350 }
351 
352 static bool trans_VLDRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
353 {
354     static MVEGenLdStSGFn * const fns[] = {
355         gen_helper_mve_vldrd_sg_ud,
356         gen_helper_mve_vldrd_sg_wb_ud,
357     };
358     if (a->qd == a->qm) {
359         return false; /* UNPREDICTABLE */
360     }
361     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
362 }
363 
364 static bool trans_VSTRW_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
365 {
366     static MVEGenLdStSGFn * const fns[] = {
367         gen_helper_mve_vstrw_sg_uw,
368         gen_helper_mve_vstrw_sg_wb_uw,
369     };
370     return do_ldst_sg_imm(s, a, fns[a->w], MO_32);
371 }
372 
373 static bool trans_VSTRD_sg_imm(DisasContext *s, arg_vldst_sg_imm *a)
374 {
375     static MVEGenLdStSGFn * const fns[] = {
376         gen_helper_mve_vstrd_sg_ud,
377         gen_helper_mve_vstrd_sg_wb_ud,
378     };
379     return do_ldst_sg_imm(s, a, fns[a->w], MO_64);
380 }
381 
382 static bool do_vldst_il(DisasContext *s, arg_vldst_il *a, MVEGenLdStIlFn *fn,
383                         int addrinc)
384 {
385     TCGv_i32 rn;
386 
387     if (!dc_isar_feature(aa32_mve, s) ||
388         !mve_check_qreg_bank(s, a->qd) ||
389         !fn || (a->rn == 13 && a->w) || a->rn == 15) {
390         /* Variously UNPREDICTABLE or UNDEF or related-encoding */
391         return false;
392     }
393     if (!mve_eci_check(s) || !vfp_access_check(s)) {
394         return true;
395     }
396 
397     rn = load_reg(s, a->rn);
398     /*
399      * We pass the index of Qd, not a pointer, because the helper must
400      * access multiple Q registers starting at Qd and working up.
401      */
402     fn(cpu_env, tcg_constant_i32(a->qd), rn);
403 
404     if (a->w) {
405         tcg_gen_addi_i32(rn, rn, addrinc);
406         store_reg(s, a->rn, rn);
407     } else {
408         tcg_temp_free_i32(rn);
409     }
410     mve_update_and_store_eci(s);
411     return true;
412 }
413 
414 /* This macro is just to make the arrays more compact in these functions */
415 #define F(N) gen_helper_mve_##N
416 
417 static bool trans_VLD2(DisasContext *s, arg_vldst_il *a)
418 {
419     static MVEGenLdStIlFn * const fns[4][4] = {
420         { F(vld20b), F(vld20h), F(vld20w), NULL, },
421         { F(vld21b), F(vld21h), F(vld21w), NULL, },
422         { NULL, NULL, NULL, NULL },
423         { NULL, NULL, NULL, NULL },
424     };
425     if (a->qd > 6) {
426         return false;
427     }
428     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
429 }
430 
431 static bool trans_VLD4(DisasContext *s, arg_vldst_il *a)
432 {
433     static MVEGenLdStIlFn * const fns[4][4] = {
434         { F(vld40b), F(vld40h), F(vld40w), NULL, },
435         { F(vld41b), F(vld41h), F(vld41w), NULL, },
436         { F(vld42b), F(vld42h), F(vld42w), NULL, },
437         { F(vld43b), F(vld43h), F(vld43w), NULL, },
438     };
439     if (a->qd > 4) {
440         return false;
441     }
442     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
443 }
444 
445 static bool trans_VST2(DisasContext *s, arg_vldst_il *a)
446 {
447     static MVEGenLdStIlFn * const fns[4][4] = {
448         { F(vst20b), F(vst20h), F(vst20w), NULL, },
449         { F(vst21b), F(vst21h), F(vst21w), NULL, },
450         { NULL, NULL, NULL, NULL },
451         { NULL, NULL, NULL, NULL },
452     };
453     if (a->qd > 6) {
454         return false;
455     }
456     return do_vldst_il(s, a, fns[a->pat][a->size], 32);
457 }
458 
459 static bool trans_VST4(DisasContext *s, arg_vldst_il *a)
460 {
461     static MVEGenLdStIlFn * const fns[4][4] = {
462         { F(vst40b), F(vst40h), F(vst40w), NULL, },
463         { F(vst41b), F(vst41h), F(vst41w), NULL, },
464         { F(vst42b), F(vst42h), F(vst42w), NULL, },
465         { F(vst43b), F(vst43h), F(vst43w), NULL, },
466     };
467     if (a->qd > 4) {
468         return false;
469     }
470     return do_vldst_il(s, a, fns[a->pat][a->size], 64);
471 }
472 
473 #undef F
474 
475 static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
476 {
477     TCGv_ptr qd;
478     TCGv_i32 rt;
479 
480     if (!dc_isar_feature(aa32_mve, s) ||
481         !mve_check_qreg_bank(s, a->qd)) {
482         return false;
483     }
484     if (a->rt == 13 || a->rt == 15) {
485         /* UNPREDICTABLE; we choose to UNDEF */
486         return false;
487     }
488     if (!mve_eci_check(s) || !vfp_access_check(s)) {
489         return true;
490     }
491 
492     qd = mve_qreg_ptr(a->qd);
493     rt = load_reg(s, a->rt);
494     tcg_gen_dup_i32(a->size, rt, rt);
495     gen_helper_mve_vdup(cpu_env, qd, rt);
496     tcg_temp_free_ptr(qd);
497     tcg_temp_free_i32(rt);
498     mve_update_eci(s);
499     return true;
500 }
501 
502 static bool do_1op(DisasContext *s, arg_1op *a, MVEGenOneOpFn fn)
503 {
504     TCGv_ptr qd, qm;
505 
506     if (!dc_isar_feature(aa32_mve, s) ||
507         !mve_check_qreg_bank(s, a->qd | a->qm) ||
508         !fn) {
509         return false;
510     }
511 
512     if (!mve_eci_check(s) || !vfp_access_check(s)) {
513         return true;
514     }
515 
516     qd = mve_qreg_ptr(a->qd);
517     qm = mve_qreg_ptr(a->qm);
518     fn(cpu_env, qd, qm);
519     tcg_temp_free_ptr(qd);
520     tcg_temp_free_ptr(qm);
521     mve_update_eci(s);
522     return true;
523 }
524 
525 #define DO_1OP(INSN, FN)                                        \
526     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
527     {                                                           \
528         static MVEGenOneOpFn * const fns[] = {                  \
529             gen_helper_mve_##FN##b,                             \
530             gen_helper_mve_##FN##h,                             \
531             gen_helper_mve_##FN##w,                             \
532             NULL,                                               \
533         };                                                      \
534         return do_1op(s, a, fns[a->size]);                      \
535     }
536 
537 DO_1OP(VCLZ, vclz)
538 DO_1OP(VCLS, vcls)
539 DO_1OP(VABS, vabs)
540 DO_1OP(VNEG, vneg)
541 DO_1OP(VQABS, vqabs)
542 DO_1OP(VQNEG, vqneg)
543 DO_1OP(VMAXA, vmaxa)
544 DO_1OP(VMINA, vmina)
545 
546 /* Narrowing moves: only size 0 and 1 are valid */
547 #define DO_VMOVN(INSN, FN) \
548     static bool trans_##INSN(DisasContext *s, arg_1op *a)       \
549     {                                                           \
550         static MVEGenOneOpFn * const fns[] = {                  \
551             gen_helper_mve_##FN##b,                             \
552             gen_helper_mve_##FN##h,                             \
553             NULL,                                               \
554             NULL,                                               \
555         };                                                      \
556         return do_1op(s, a, fns[a->size]);                      \
557     }
558 
559 DO_VMOVN(VMOVNB, vmovnb)
560 DO_VMOVN(VMOVNT, vmovnt)
561 DO_VMOVN(VQMOVUNB, vqmovunb)
562 DO_VMOVN(VQMOVUNT, vqmovunt)
563 DO_VMOVN(VQMOVN_BS, vqmovnbs)
564 DO_VMOVN(VQMOVN_TS, vqmovnts)
565 DO_VMOVN(VQMOVN_BU, vqmovnbu)
566 DO_VMOVN(VQMOVN_TU, vqmovntu)
567 
568 static bool trans_VREV16(DisasContext *s, arg_1op *a)
569 {
570     static MVEGenOneOpFn * const fns[] = {
571         gen_helper_mve_vrev16b,
572         NULL,
573         NULL,
574         NULL,
575     };
576     return do_1op(s, a, fns[a->size]);
577 }
578 
579 static bool trans_VREV32(DisasContext *s, arg_1op *a)
580 {
581     static MVEGenOneOpFn * const fns[] = {
582         gen_helper_mve_vrev32b,
583         gen_helper_mve_vrev32h,
584         NULL,
585         NULL,
586     };
587     return do_1op(s, a, fns[a->size]);
588 }
589 
590 static bool trans_VREV64(DisasContext *s, arg_1op *a)
591 {
592     static MVEGenOneOpFn * const fns[] = {
593         gen_helper_mve_vrev64b,
594         gen_helper_mve_vrev64h,
595         gen_helper_mve_vrev64w,
596         NULL,
597     };
598     return do_1op(s, a, fns[a->size]);
599 }
600 
601 static bool trans_VMVN(DisasContext *s, arg_1op *a)
602 {
603     return do_1op(s, a, gen_helper_mve_vmvn);
604 }
605 
606 static bool trans_VABS_fp(DisasContext *s, arg_1op *a)
607 {
608     static MVEGenOneOpFn * const fns[] = {
609         NULL,
610         gen_helper_mve_vfabsh,
611         gen_helper_mve_vfabss,
612         NULL,
613     };
614     if (!dc_isar_feature(aa32_mve_fp, s)) {
615         return false;
616     }
617     return do_1op(s, a, fns[a->size]);
618 }
619 
620 static bool trans_VNEG_fp(DisasContext *s, arg_1op *a)
621 {
622     static MVEGenOneOpFn * const fns[] = {
623         NULL,
624         gen_helper_mve_vfnegh,
625         gen_helper_mve_vfnegs,
626         NULL,
627     };
628     if (!dc_isar_feature(aa32_mve_fp, s)) {
629         return false;
630     }
631     return do_1op(s, a, fns[a->size]);
632 }
633 
634 static bool do_2op(DisasContext *s, arg_2op *a, MVEGenTwoOpFn fn)
635 {
636     TCGv_ptr qd, qn, qm;
637 
638     if (!dc_isar_feature(aa32_mve, s) ||
639         !mve_check_qreg_bank(s, a->qd | a->qn | a->qm) ||
640         !fn) {
641         return false;
642     }
643     if (!mve_eci_check(s) || !vfp_access_check(s)) {
644         return true;
645     }
646 
647     qd = mve_qreg_ptr(a->qd);
648     qn = mve_qreg_ptr(a->qn);
649     qm = mve_qreg_ptr(a->qm);
650     fn(cpu_env, qd, qn, qm);
651     tcg_temp_free_ptr(qd);
652     tcg_temp_free_ptr(qn);
653     tcg_temp_free_ptr(qm);
654     mve_update_eci(s);
655     return true;
656 }
657 
658 #define DO_LOGIC(INSN, HELPER)                                  \
659     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
660     {                                                           \
661         return do_2op(s, a, HELPER);                            \
662     }
663 
664 DO_LOGIC(VAND, gen_helper_mve_vand)
665 DO_LOGIC(VBIC, gen_helper_mve_vbic)
666 DO_LOGIC(VORR, gen_helper_mve_vorr)
667 DO_LOGIC(VORN, gen_helper_mve_vorn)
668 DO_LOGIC(VEOR, gen_helper_mve_veor)
669 
670 DO_LOGIC(VPSEL, gen_helper_mve_vpsel)
671 
672 #define DO_2OP(INSN, FN) \
673     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
674     {                                                           \
675         static MVEGenTwoOpFn * const fns[] = {                  \
676             gen_helper_mve_##FN##b,                             \
677             gen_helper_mve_##FN##h,                             \
678             gen_helper_mve_##FN##w,                             \
679             NULL,                                               \
680         };                                                      \
681         return do_2op(s, a, fns[a->size]);                      \
682     }
683 
684 DO_2OP(VADD, vadd)
685 DO_2OP(VSUB, vsub)
686 DO_2OP(VMUL, vmul)
687 DO_2OP(VMULH_S, vmulhs)
688 DO_2OP(VMULH_U, vmulhu)
689 DO_2OP(VRMULH_S, vrmulhs)
690 DO_2OP(VRMULH_U, vrmulhu)
691 DO_2OP(VMAX_S, vmaxs)
692 DO_2OP(VMAX_U, vmaxu)
693 DO_2OP(VMIN_S, vmins)
694 DO_2OP(VMIN_U, vminu)
695 DO_2OP(VABD_S, vabds)
696 DO_2OP(VABD_U, vabdu)
697 DO_2OP(VHADD_S, vhadds)
698 DO_2OP(VHADD_U, vhaddu)
699 DO_2OP(VHSUB_S, vhsubs)
700 DO_2OP(VHSUB_U, vhsubu)
701 DO_2OP(VMULL_BS, vmullbs)
702 DO_2OP(VMULL_BU, vmullbu)
703 DO_2OP(VMULL_TS, vmullts)
704 DO_2OP(VMULL_TU, vmulltu)
705 DO_2OP(VQDMULH, vqdmulh)
706 DO_2OP(VQRDMULH, vqrdmulh)
707 DO_2OP(VQADD_S, vqadds)
708 DO_2OP(VQADD_U, vqaddu)
709 DO_2OP(VQSUB_S, vqsubs)
710 DO_2OP(VQSUB_U, vqsubu)
711 DO_2OP(VSHL_S, vshls)
712 DO_2OP(VSHL_U, vshlu)
713 DO_2OP(VRSHL_S, vrshls)
714 DO_2OP(VRSHL_U, vrshlu)
715 DO_2OP(VQSHL_S, vqshls)
716 DO_2OP(VQSHL_U, vqshlu)
717 DO_2OP(VQRSHL_S, vqrshls)
718 DO_2OP(VQRSHL_U, vqrshlu)
719 DO_2OP(VQDMLADH, vqdmladh)
720 DO_2OP(VQDMLADHX, vqdmladhx)
721 DO_2OP(VQRDMLADH, vqrdmladh)
722 DO_2OP(VQRDMLADHX, vqrdmladhx)
723 DO_2OP(VQDMLSDH, vqdmlsdh)
724 DO_2OP(VQDMLSDHX, vqdmlsdhx)
725 DO_2OP(VQRDMLSDH, vqrdmlsdh)
726 DO_2OP(VQRDMLSDHX, vqrdmlsdhx)
727 DO_2OP(VRHADD_S, vrhadds)
728 DO_2OP(VRHADD_U, vrhaddu)
729 /*
730  * VCADD Qd == Qm at size MO_32 is UNPREDICTABLE; we choose not to diagnose
731  * so we can reuse the DO_2OP macro. (Our implementation calculates the
732  * "expected" results in this case.) Similarly for VHCADD.
733  */
734 DO_2OP(VCADD90, vcadd90)
735 DO_2OP(VCADD270, vcadd270)
736 DO_2OP(VHCADD90, vhcadd90)
737 DO_2OP(VHCADD270, vhcadd270)
738 
739 static bool trans_VQDMULLB(DisasContext *s, arg_2op *a)
740 {
741     static MVEGenTwoOpFn * const fns[] = {
742         NULL,
743         gen_helper_mve_vqdmullbh,
744         gen_helper_mve_vqdmullbw,
745         NULL,
746     };
747     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
748         /* UNPREDICTABLE; we choose to undef */
749         return false;
750     }
751     return do_2op(s, a, fns[a->size]);
752 }
753 
754 static bool trans_VQDMULLT(DisasContext *s, arg_2op *a)
755 {
756     static MVEGenTwoOpFn * const fns[] = {
757         NULL,
758         gen_helper_mve_vqdmullth,
759         gen_helper_mve_vqdmulltw,
760         NULL,
761     };
762     if (a->size == MO_32 && (a->qd == a->qm || a->qd == a->qn)) {
763         /* UNPREDICTABLE; we choose to undef */
764         return false;
765     }
766     return do_2op(s, a, fns[a->size]);
767 }
768 
769 static bool trans_VMULLP_B(DisasContext *s, arg_2op *a)
770 {
771     /*
772      * Note that a->size indicates the output size, ie VMULL.P8
773      * is the 8x8->16 operation and a->size is MO_16; VMULL.P16
774      * is the 16x16->32 operation and a->size is MO_32.
775      */
776     static MVEGenTwoOpFn * const fns[] = {
777         NULL,
778         gen_helper_mve_vmullpbh,
779         gen_helper_mve_vmullpbw,
780         NULL,
781     };
782     return do_2op(s, a, fns[a->size]);
783 }
784 
785 static bool trans_VMULLP_T(DisasContext *s, arg_2op *a)
786 {
787     /* a->size is as for trans_VMULLP_B */
788     static MVEGenTwoOpFn * const fns[] = {
789         NULL,
790         gen_helper_mve_vmullpth,
791         gen_helper_mve_vmullptw,
792         NULL,
793     };
794     return do_2op(s, a, fns[a->size]);
795 }
796 
797 /*
798  * VADC and VSBC: these perform an add-with-carry or subtract-with-carry
799  * of the 32-bit elements in each lane of the input vectors, where the
800  * carry-out of each add is the carry-in of the next.  The initial carry
801  * input is either fixed (0 for VADCI, 1 for VSBCI) or is from FPSCR.C
802  * (for VADC and VSBC); the carry out at the end is written back to FPSCR.C.
803  * These insns are subject to beat-wise execution.  Partial execution
804  * of an I=1 (initial carry input fixed) insn which does not
805  * execute the first beat must start with the current FPSCR.NZCV
806  * value, not the fixed constant input.
807  */
808 static bool trans_VADC(DisasContext *s, arg_2op *a)
809 {
810     return do_2op(s, a, gen_helper_mve_vadc);
811 }
812 
813 static bool trans_VADCI(DisasContext *s, arg_2op *a)
814 {
815     if (mve_skip_first_beat(s)) {
816         return trans_VADC(s, a);
817     }
818     return do_2op(s, a, gen_helper_mve_vadci);
819 }
820 
821 static bool trans_VSBC(DisasContext *s, arg_2op *a)
822 {
823     return do_2op(s, a, gen_helper_mve_vsbc);
824 }
825 
826 static bool trans_VSBCI(DisasContext *s, arg_2op *a)
827 {
828     if (mve_skip_first_beat(s)) {
829         return trans_VSBC(s, a);
830     }
831     return do_2op(s, a, gen_helper_mve_vsbci);
832 }
833 
834 #define DO_2OP_FP(INSN, FN)                                     \
835     static bool trans_##INSN(DisasContext *s, arg_2op *a)       \
836     {                                                           \
837         static MVEGenTwoOpFn * const fns[] = {                  \
838             NULL,                                               \
839             gen_helper_mve_##FN##h,                             \
840             gen_helper_mve_##FN##s,                             \
841             NULL,                                               \
842         };                                                      \
843         if (!dc_isar_feature(aa32_mve_fp, s)) {                 \
844             return false;                                       \
845         }                                                       \
846         return do_2op(s, a, fns[a->size]);                      \
847     }
848 
849 DO_2OP_FP(VADD_fp, vfadd)
850 
851 static bool do_2op_scalar(DisasContext *s, arg_2scalar *a,
852                           MVEGenTwoOpScalarFn fn)
853 {
854     TCGv_ptr qd, qn;
855     TCGv_i32 rm;
856 
857     if (!dc_isar_feature(aa32_mve, s) ||
858         !mve_check_qreg_bank(s, a->qd | a->qn) ||
859         !fn) {
860         return false;
861     }
862     if (a->rm == 13 || a->rm == 15) {
863         /* UNPREDICTABLE */
864         return false;
865     }
866     if (!mve_eci_check(s) || !vfp_access_check(s)) {
867         return true;
868     }
869 
870     qd = mve_qreg_ptr(a->qd);
871     qn = mve_qreg_ptr(a->qn);
872     rm = load_reg(s, a->rm);
873     fn(cpu_env, qd, qn, rm);
874     tcg_temp_free_i32(rm);
875     tcg_temp_free_ptr(qd);
876     tcg_temp_free_ptr(qn);
877     mve_update_eci(s);
878     return true;
879 }
880 
881 #define DO_2OP_SCALAR(INSN, FN) \
882     static bool trans_##INSN(DisasContext *s, arg_2scalar *a)   \
883     {                                                           \
884         static MVEGenTwoOpScalarFn * const fns[] = {            \
885             gen_helper_mve_##FN##b,                             \
886             gen_helper_mve_##FN##h,                             \
887             gen_helper_mve_##FN##w,                             \
888             NULL,                                               \
889         };                                                      \
890         return do_2op_scalar(s, a, fns[a->size]);               \
891     }
892 
893 DO_2OP_SCALAR(VADD_scalar, vadd_scalar)
894 DO_2OP_SCALAR(VSUB_scalar, vsub_scalar)
895 DO_2OP_SCALAR(VMUL_scalar, vmul_scalar)
896 DO_2OP_SCALAR(VHADD_S_scalar, vhadds_scalar)
897 DO_2OP_SCALAR(VHADD_U_scalar, vhaddu_scalar)
898 DO_2OP_SCALAR(VHSUB_S_scalar, vhsubs_scalar)
899 DO_2OP_SCALAR(VHSUB_U_scalar, vhsubu_scalar)
900 DO_2OP_SCALAR(VQADD_S_scalar, vqadds_scalar)
901 DO_2OP_SCALAR(VQADD_U_scalar, vqaddu_scalar)
902 DO_2OP_SCALAR(VQSUB_S_scalar, vqsubs_scalar)
903 DO_2OP_SCALAR(VQSUB_U_scalar, vqsubu_scalar)
904 DO_2OP_SCALAR(VQDMULH_scalar, vqdmulh_scalar)
905 DO_2OP_SCALAR(VQRDMULH_scalar, vqrdmulh_scalar)
906 DO_2OP_SCALAR(VBRSR, vbrsr)
907 DO_2OP_SCALAR(VMLA, vmla)
908 DO_2OP_SCALAR(VMLAS, vmlas)
909 DO_2OP_SCALAR(VQDMLAH, vqdmlah)
910 DO_2OP_SCALAR(VQRDMLAH, vqrdmlah)
911 DO_2OP_SCALAR(VQDMLASH, vqdmlash)
912 DO_2OP_SCALAR(VQRDMLASH, vqrdmlash)
913 
914 static bool trans_VQDMULLB_scalar(DisasContext *s, arg_2scalar *a)
915 {
916     static MVEGenTwoOpScalarFn * const fns[] = {
917         NULL,
918         gen_helper_mve_vqdmullb_scalarh,
919         gen_helper_mve_vqdmullb_scalarw,
920         NULL,
921     };
922     if (a->qd == a->qn && a->size == MO_32) {
923         /* UNPREDICTABLE; we choose to undef */
924         return false;
925     }
926     return do_2op_scalar(s, a, fns[a->size]);
927 }
928 
929 static bool trans_VQDMULLT_scalar(DisasContext *s, arg_2scalar *a)
930 {
931     static MVEGenTwoOpScalarFn * const fns[] = {
932         NULL,
933         gen_helper_mve_vqdmullt_scalarh,
934         gen_helper_mve_vqdmullt_scalarw,
935         NULL,
936     };
937     if (a->qd == a->qn && a->size == MO_32) {
938         /* UNPREDICTABLE; we choose to undef */
939         return false;
940     }
941     return do_2op_scalar(s, a, fns[a->size]);
942 }
943 
944 static bool do_long_dual_acc(DisasContext *s, arg_vmlaldav *a,
945                              MVEGenLongDualAccOpFn *fn)
946 {
947     TCGv_ptr qn, qm;
948     TCGv_i64 rda;
949     TCGv_i32 rdalo, rdahi;
950 
951     if (!dc_isar_feature(aa32_mve, s) ||
952         !mve_check_qreg_bank(s, a->qn | a->qm) ||
953         !fn) {
954         return false;
955     }
956     /*
957      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
958      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
959      */
960     if (a->rdahi == 13 || a->rdahi == 15) {
961         return false;
962     }
963     if (!mve_eci_check(s) || !vfp_access_check(s)) {
964         return true;
965     }
966 
967     qn = mve_qreg_ptr(a->qn);
968     qm = mve_qreg_ptr(a->qm);
969 
970     /*
971      * This insn is subject to beat-wise execution. Partial execution
972      * of an A=0 (no-accumulate) insn which does not execute the first
973      * beat must start with the current rda value, not 0.
974      */
975     if (a->a || mve_skip_first_beat(s)) {
976         rda = tcg_temp_new_i64();
977         rdalo = load_reg(s, a->rdalo);
978         rdahi = load_reg(s, a->rdahi);
979         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
980         tcg_temp_free_i32(rdalo);
981         tcg_temp_free_i32(rdahi);
982     } else {
983         rda = tcg_const_i64(0);
984     }
985 
986     fn(rda, cpu_env, qn, qm, rda);
987     tcg_temp_free_ptr(qn);
988     tcg_temp_free_ptr(qm);
989 
990     rdalo = tcg_temp_new_i32();
991     rdahi = tcg_temp_new_i32();
992     tcg_gen_extrl_i64_i32(rdalo, rda);
993     tcg_gen_extrh_i64_i32(rdahi, rda);
994     store_reg(s, a->rdalo, rdalo);
995     store_reg(s, a->rdahi, rdahi);
996     tcg_temp_free_i64(rda);
997     mve_update_eci(s);
998     return true;
999 }
1000 
1001 static bool trans_VMLALDAV_S(DisasContext *s, arg_vmlaldav *a)
1002 {
1003     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1004         { NULL, NULL },
1005         { gen_helper_mve_vmlaldavsh, gen_helper_mve_vmlaldavxsh },
1006         { gen_helper_mve_vmlaldavsw, gen_helper_mve_vmlaldavxsw },
1007         { NULL, NULL },
1008     };
1009     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1010 }
1011 
1012 static bool trans_VMLALDAV_U(DisasContext *s, arg_vmlaldav *a)
1013 {
1014     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1015         { NULL, NULL },
1016         { gen_helper_mve_vmlaldavuh, NULL },
1017         { gen_helper_mve_vmlaldavuw, NULL },
1018         { NULL, NULL },
1019     };
1020     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1021 }
1022 
1023 static bool trans_VMLSLDAV(DisasContext *s, arg_vmlaldav *a)
1024 {
1025     static MVEGenLongDualAccOpFn * const fns[4][2] = {
1026         { NULL, NULL },
1027         { gen_helper_mve_vmlsldavsh, gen_helper_mve_vmlsldavxsh },
1028         { gen_helper_mve_vmlsldavsw, gen_helper_mve_vmlsldavxsw },
1029         { NULL, NULL },
1030     };
1031     return do_long_dual_acc(s, a, fns[a->size][a->x]);
1032 }
1033 
1034 static bool trans_VRMLALDAVH_S(DisasContext *s, arg_vmlaldav *a)
1035 {
1036     static MVEGenLongDualAccOpFn * const fns[] = {
1037         gen_helper_mve_vrmlaldavhsw, gen_helper_mve_vrmlaldavhxsw,
1038     };
1039     return do_long_dual_acc(s, a, fns[a->x]);
1040 }
1041 
1042 static bool trans_VRMLALDAVH_U(DisasContext *s, arg_vmlaldav *a)
1043 {
1044     static MVEGenLongDualAccOpFn * const fns[] = {
1045         gen_helper_mve_vrmlaldavhuw, NULL,
1046     };
1047     return do_long_dual_acc(s, a, fns[a->x]);
1048 }
1049 
1050 static bool trans_VRMLSLDAVH(DisasContext *s, arg_vmlaldav *a)
1051 {
1052     static MVEGenLongDualAccOpFn * const fns[] = {
1053         gen_helper_mve_vrmlsldavhsw, gen_helper_mve_vrmlsldavhxsw,
1054     };
1055     return do_long_dual_acc(s, a, fns[a->x]);
1056 }
1057 
1058 static bool do_dual_acc(DisasContext *s, arg_vmladav *a, MVEGenDualAccOpFn *fn)
1059 {
1060     TCGv_ptr qn, qm;
1061     TCGv_i32 rda;
1062 
1063     if (!dc_isar_feature(aa32_mve, s) ||
1064         !mve_check_qreg_bank(s, a->qn) ||
1065         !fn) {
1066         return false;
1067     }
1068     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1069         return true;
1070     }
1071 
1072     qn = mve_qreg_ptr(a->qn);
1073     qm = mve_qreg_ptr(a->qm);
1074 
1075     /*
1076      * This insn is subject to beat-wise execution. Partial execution
1077      * of an A=0 (no-accumulate) insn which does not execute the first
1078      * beat must start with the current rda value, not 0.
1079      */
1080     if (a->a || mve_skip_first_beat(s)) {
1081         rda = load_reg(s, a->rda);
1082     } else {
1083         rda = tcg_const_i32(0);
1084     }
1085 
1086     fn(rda, cpu_env, qn, qm, rda);
1087     store_reg(s, a->rda, rda);
1088     tcg_temp_free_ptr(qn);
1089     tcg_temp_free_ptr(qm);
1090 
1091     mve_update_eci(s);
1092     return true;
1093 }
1094 
1095 #define DO_DUAL_ACC(INSN, FN)                                           \
1096     static bool trans_##INSN(DisasContext *s, arg_vmladav *a)           \
1097     {                                                                   \
1098         static MVEGenDualAccOpFn * const fns[4][2] = {                  \
1099             { gen_helper_mve_##FN##b, gen_helper_mve_##FN##xb },        \
1100             { gen_helper_mve_##FN##h, gen_helper_mve_##FN##xh },        \
1101             { gen_helper_mve_##FN##w, gen_helper_mve_##FN##xw },        \
1102             { NULL, NULL },                                             \
1103         };                                                              \
1104         return do_dual_acc(s, a, fns[a->size][a->x]);                   \
1105     }
1106 
1107 DO_DUAL_ACC(VMLADAV_S, vmladavs)
1108 DO_DUAL_ACC(VMLSDAV, vmlsdav)
1109 
1110 static bool trans_VMLADAV_U(DisasContext *s, arg_vmladav *a)
1111 {
1112     static MVEGenDualAccOpFn * const fns[4][2] = {
1113         { gen_helper_mve_vmladavub, NULL },
1114         { gen_helper_mve_vmladavuh, NULL },
1115         { gen_helper_mve_vmladavuw, NULL },
1116         { NULL, NULL },
1117     };
1118     return do_dual_acc(s, a, fns[a->size][a->x]);
1119 }
1120 
1121 static void gen_vpst(DisasContext *s, uint32_t mask)
1122 {
1123     /*
1124      * Set the VPR mask fields. We take advantage of MASK01 and MASK23
1125      * being adjacent fields in the register.
1126      *
1127      * Updating the masks is not predicated, but it is subject to beat-wise
1128      * execution, and the mask is updated on the odd-numbered beats.
1129      * So if PSR.ECI says we should skip beat 1, we mustn't update the
1130      * 01 mask field.
1131      */
1132     TCGv_i32 vpr = load_cpu_field(v7m.vpr);
1133     switch (s->eci) {
1134     case ECI_NONE:
1135     case ECI_A0:
1136         /* Update both 01 and 23 fields */
1137         tcg_gen_deposit_i32(vpr, vpr,
1138                             tcg_constant_i32(mask | (mask << 4)),
1139                             R_V7M_VPR_MASK01_SHIFT,
1140                             R_V7M_VPR_MASK01_LENGTH + R_V7M_VPR_MASK23_LENGTH);
1141         break;
1142     case ECI_A0A1:
1143     case ECI_A0A1A2:
1144     case ECI_A0A1A2B0:
1145         /* Update only the 23 mask field */
1146         tcg_gen_deposit_i32(vpr, vpr,
1147                             tcg_constant_i32(mask),
1148                             R_V7M_VPR_MASK23_SHIFT, R_V7M_VPR_MASK23_LENGTH);
1149         break;
1150     default:
1151         g_assert_not_reached();
1152     }
1153     store_cpu_field(vpr, v7m.vpr);
1154 }
1155 
1156 static bool trans_VPST(DisasContext *s, arg_VPST *a)
1157 {
1158     /* mask == 0 is a "related encoding" */
1159     if (!dc_isar_feature(aa32_mve, s) || !a->mask) {
1160         return false;
1161     }
1162     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1163         return true;
1164     }
1165     gen_vpst(s, a->mask);
1166     mve_update_and_store_eci(s);
1167     return true;
1168 }
1169 
1170 static bool trans_VPNOT(DisasContext *s, arg_VPNOT *a)
1171 {
1172     /*
1173      * Invert the predicate in VPR.P0. We have call out to
1174      * a helper because this insn itself is beatwise and can
1175      * be predicated.
1176      */
1177     if (!dc_isar_feature(aa32_mve, s)) {
1178         return false;
1179     }
1180     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1181         return true;
1182     }
1183 
1184     gen_helper_mve_vpnot(cpu_env);
1185     mve_update_eci(s);
1186     return true;
1187 }
1188 
1189 static bool trans_VADDV(DisasContext *s, arg_VADDV *a)
1190 {
1191     /* VADDV: vector add across vector */
1192     static MVEGenVADDVFn * const fns[4][2] = {
1193         { gen_helper_mve_vaddvsb, gen_helper_mve_vaddvub },
1194         { gen_helper_mve_vaddvsh, gen_helper_mve_vaddvuh },
1195         { gen_helper_mve_vaddvsw, gen_helper_mve_vaddvuw },
1196         { NULL, NULL }
1197     };
1198     TCGv_ptr qm;
1199     TCGv_i32 rda;
1200 
1201     if (!dc_isar_feature(aa32_mve, s) ||
1202         a->size == 3) {
1203         return false;
1204     }
1205     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1206         return true;
1207     }
1208 
1209     /*
1210      * This insn is subject to beat-wise execution. Partial execution
1211      * of an A=0 (no-accumulate) insn which does not execute the first
1212      * beat must start with the current value of Rda, not zero.
1213      */
1214     if (a->a || mve_skip_first_beat(s)) {
1215         /* Accumulate input from Rda */
1216         rda = load_reg(s, a->rda);
1217     } else {
1218         /* Accumulate starting at zero */
1219         rda = tcg_const_i32(0);
1220     }
1221 
1222     qm = mve_qreg_ptr(a->qm);
1223     fns[a->size][a->u](rda, cpu_env, qm, rda);
1224     store_reg(s, a->rda, rda);
1225     tcg_temp_free_ptr(qm);
1226 
1227     mve_update_eci(s);
1228     return true;
1229 }
1230 
1231 static bool trans_VADDLV(DisasContext *s, arg_VADDLV *a)
1232 {
1233     /*
1234      * Vector Add Long Across Vector: accumulate the 32-bit
1235      * elements of the vector into a 64-bit result stored in
1236      * a pair of general-purpose registers.
1237      * No need to check Qm's bank: it is only 3 bits in decode.
1238      */
1239     TCGv_ptr qm;
1240     TCGv_i64 rda;
1241     TCGv_i32 rdalo, rdahi;
1242 
1243     if (!dc_isar_feature(aa32_mve, s)) {
1244         return false;
1245     }
1246     /*
1247      * rdahi == 13 is UNPREDICTABLE; rdahi == 15 is a related
1248      * encoding; rdalo always has bit 0 clear so cannot be 13 or 15.
1249      */
1250     if (a->rdahi == 13 || a->rdahi == 15) {
1251         return false;
1252     }
1253     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1254         return true;
1255     }
1256 
1257     /*
1258      * This insn is subject to beat-wise execution. Partial execution
1259      * of an A=0 (no-accumulate) insn which does not execute the first
1260      * beat must start with the current value of RdaHi:RdaLo, not zero.
1261      */
1262     if (a->a || mve_skip_first_beat(s)) {
1263         /* Accumulate input from RdaHi:RdaLo */
1264         rda = tcg_temp_new_i64();
1265         rdalo = load_reg(s, a->rdalo);
1266         rdahi = load_reg(s, a->rdahi);
1267         tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
1268         tcg_temp_free_i32(rdalo);
1269         tcg_temp_free_i32(rdahi);
1270     } else {
1271         /* Accumulate starting at zero */
1272         rda = tcg_const_i64(0);
1273     }
1274 
1275     qm = mve_qreg_ptr(a->qm);
1276     if (a->u) {
1277         gen_helper_mve_vaddlv_u(rda, cpu_env, qm, rda);
1278     } else {
1279         gen_helper_mve_vaddlv_s(rda, cpu_env, qm, rda);
1280     }
1281     tcg_temp_free_ptr(qm);
1282 
1283     rdalo = tcg_temp_new_i32();
1284     rdahi = tcg_temp_new_i32();
1285     tcg_gen_extrl_i64_i32(rdalo, rda);
1286     tcg_gen_extrh_i64_i32(rdahi, rda);
1287     store_reg(s, a->rdalo, rdalo);
1288     store_reg(s, a->rdahi, rdahi);
1289     tcg_temp_free_i64(rda);
1290     mve_update_eci(s);
1291     return true;
1292 }
1293 
1294 static bool do_1imm(DisasContext *s, arg_1imm *a, MVEGenOneOpImmFn *fn)
1295 {
1296     TCGv_ptr qd;
1297     uint64_t imm;
1298 
1299     if (!dc_isar_feature(aa32_mve, s) ||
1300         !mve_check_qreg_bank(s, a->qd) ||
1301         !fn) {
1302         return false;
1303     }
1304     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1305         return true;
1306     }
1307 
1308     imm = asimd_imm_const(a->imm, a->cmode, a->op);
1309 
1310     qd = mve_qreg_ptr(a->qd);
1311     fn(cpu_env, qd, tcg_constant_i64(imm));
1312     tcg_temp_free_ptr(qd);
1313     mve_update_eci(s);
1314     return true;
1315 }
1316 
1317 static bool trans_Vimm_1r(DisasContext *s, arg_1imm *a)
1318 {
1319     /* Handle decode of cmode/op here between VORR/VBIC/VMOV */
1320     MVEGenOneOpImmFn *fn;
1321 
1322     if ((a->cmode & 1) && a->cmode < 12) {
1323         if (a->op) {
1324             /*
1325              * For op=1, the immediate will be inverted by asimd_imm_const(),
1326              * so the VBIC becomes a logical AND operation.
1327              */
1328             fn = gen_helper_mve_vandi;
1329         } else {
1330             fn = gen_helper_mve_vorri;
1331         }
1332     } else {
1333         /* There is one unallocated cmode/op combination in this space */
1334         if (a->cmode == 15 && a->op == 1) {
1335             return false;
1336         }
1337         /* asimd_imm_const() sorts out VMVNI vs VMOVI for us */
1338         fn = gen_helper_mve_vmovi;
1339     }
1340     return do_1imm(s, a, fn);
1341 }
1342 
1343 static bool do_2shift(DisasContext *s, arg_2shift *a, MVEGenTwoOpShiftFn fn,
1344                       bool negateshift)
1345 {
1346     TCGv_ptr qd, qm;
1347     int shift = a->shift;
1348 
1349     if (!dc_isar_feature(aa32_mve, s) ||
1350         !mve_check_qreg_bank(s, a->qd | a->qm) ||
1351         !fn) {
1352         return false;
1353     }
1354     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1355         return true;
1356     }
1357 
1358     /*
1359      * When we handle a right shift insn using a left-shift helper
1360      * which permits a negative shift count to indicate a right-shift,
1361      * we must negate the shift count.
1362      */
1363     if (negateshift) {
1364         shift = -shift;
1365     }
1366 
1367     qd = mve_qreg_ptr(a->qd);
1368     qm = mve_qreg_ptr(a->qm);
1369     fn(cpu_env, qd, qm, tcg_constant_i32(shift));
1370     tcg_temp_free_ptr(qd);
1371     tcg_temp_free_ptr(qm);
1372     mve_update_eci(s);
1373     return true;
1374 }
1375 
1376 #define DO_2SHIFT(INSN, FN, NEGATESHIFT)                         \
1377     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1378     {                                                           \
1379         static MVEGenTwoOpShiftFn * const fns[] = {             \
1380             gen_helper_mve_##FN##b,                             \
1381             gen_helper_mve_##FN##h,                             \
1382             gen_helper_mve_##FN##w,                             \
1383             NULL,                                               \
1384         };                                                      \
1385         return do_2shift(s, a, fns[a->size], NEGATESHIFT);      \
1386     }
1387 
1388 DO_2SHIFT(VSHLI, vshli_u, false)
1389 DO_2SHIFT(VQSHLI_S, vqshli_s, false)
1390 DO_2SHIFT(VQSHLI_U, vqshli_u, false)
1391 DO_2SHIFT(VQSHLUI, vqshlui_s, false)
1392 /* These right shifts use a left-shift helper with negated shift count */
1393 DO_2SHIFT(VSHRI_S, vshli_s, true)
1394 DO_2SHIFT(VSHRI_U, vshli_u, true)
1395 DO_2SHIFT(VRSHRI_S, vrshli_s, true)
1396 DO_2SHIFT(VRSHRI_U, vrshli_u, true)
1397 
1398 DO_2SHIFT(VSRI, vsri, false)
1399 DO_2SHIFT(VSLI, vsli, false)
1400 
1401 static bool do_2shift_scalar(DisasContext *s, arg_shl_scalar *a,
1402                              MVEGenTwoOpShiftFn *fn)
1403 {
1404     TCGv_ptr qda;
1405     TCGv_i32 rm;
1406 
1407     if (!dc_isar_feature(aa32_mve, s) ||
1408         !mve_check_qreg_bank(s, a->qda) ||
1409         a->rm == 13 || a->rm == 15 || !fn) {
1410         /* Rm cases are UNPREDICTABLE */
1411         return false;
1412     }
1413     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1414         return true;
1415     }
1416 
1417     qda = mve_qreg_ptr(a->qda);
1418     rm = load_reg(s, a->rm);
1419     fn(cpu_env, qda, qda, rm);
1420     tcg_temp_free_ptr(qda);
1421     tcg_temp_free_i32(rm);
1422     mve_update_eci(s);
1423     return true;
1424 }
1425 
1426 #define DO_2SHIFT_SCALAR(INSN, FN)                                      \
1427     static bool trans_##INSN(DisasContext *s, arg_shl_scalar *a)        \
1428     {                                                                   \
1429         static MVEGenTwoOpShiftFn * const fns[] = {                     \
1430             gen_helper_mve_##FN##b,                                     \
1431             gen_helper_mve_##FN##h,                                     \
1432             gen_helper_mve_##FN##w,                                     \
1433             NULL,                                                       \
1434         };                                                              \
1435         return do_2shift_scalar(s, a, fns[a->size]);                    \
1436     }
1437 
1438 DO_2SHIFT_SCALAR(VSHL_S_scalar, vshli_s)
1439 DO_2SHIFT_SCALAR(VSHL_U_scalar, vshli_u)
1440 DO_2SHIFT_SCALAR(VRSHL_S_scalar, vrshli_s)
1441 DO_2SHIFT_SCALAR(VRSHL_U_scalar, vrshli_u)
1442 DO_2SHIFT_SCALAR(VQSHL_S_scalar, vqshli_s)
1443 DO_2SHIFT_SCALAR(VQSHL_U_scalar, vqshli_u)
1444 DO_2SHIFT_SCALAR(VQRSHL_S_scalar, vqrshli_s)
1445 DO_2SHIFT_SCALAR(VQRSHL_U_scalar, vqrshli_u)
1446 
1447 #define DO_VSHLL(INSN, FN)                                      \
1448     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1449     {                                                           \
1450         static MVEGenTwoOpShiftFn * const fns[] = {             \
1451             gen_helper_mve_##FN##b,                             \
1452             gen_helper_mve_##FN##h,                             \
1453         };                                                      \
1454         return do_2shift(s, a, fns[a->size], false);            \
1455     }
1456 
1457 DO_VSHLL(VSHLL_BS, vshllbs)
1458 DO_VSHLL(VSHLL_BU, vshllbu)
1459 DO_VSHLL(VSHLL_TS, vshllts)
1460 DO_VSHLL(VSHLL_TU, vshlltu)
1461 
1462 #define DO_2SHIFT_N(INSN, FN)                                   \
1463     static bool trans_##INSN(DisasContext *s, arg_2shift *a)    \
1464     {                                                           \
1465         static MVEGenTwoOpShiftFn * const fns[] = {             \
1466             gen_helper_mve_##FN##b,                             \
1467             gen_helper_mve_##FN##h,                             \
1468         };                                                      \
1469         return do_2shift(s, a, fns[a->size], false);            \
1470     }
1471 
1472 DO_2SHIFT_N(VSHRNB, vshrnb)
1473 DO_2SHIFT_N(VSHRNT, vshrnt)
1474 DO_2SHIFT_N(VRSHRNB, vrshrnb)
1475 DO_2SHIFT_N(VRSHRNT, vrshrnt)
1476 DO_2SHIFT_N(VQSHRNB_S, vqshrnb_s)
1477 DO_2SHIFT_N(VQSHRNT_S, vqshrnt_s)
1478 DO_2SHIFT_N(VQSHRNB_U, vqshrnb_u)
1479 DO_2SHIFT_N(VQSHRNT_U, vqshrnt_u)
1480 DO_2SHIFT_N(VQSHRUNB, vqshrunb)
1481 DO_2SHIFT_N(VQSHRUNT, vqshrunt)
1482 DO_2SHIFT_N(VQRSHRNB_S, vqrshrnb_s)
1483 DO_2SHIFT_N(VQRSHRNT_S, vqrshrnt_s)
1484 DO_2SHIFT_N(VQRSHRNB_U, vqrshrnb_u)
1485 DO_2SHIFT_N(VQRSHRNT_U, vqrshrnt_u)
1486 DO_2SHIFT_N(VQRSHRUNB, vqrshrunb)
1487 DO_2SHIFT_N(VQRSHRUNT, vqrshrunt)
1488 
1489 static bool trans_VSHLC(DisasContext *s, arg_VSHLC *a)
1490 {
1491     /*
1492      * Whole Vector Left Shift with Carry. The carry is taken
1493      * from a general purpose register and written back there.
1494      * An imm of 0 means "shift by 32".
1495      */
1496     TCGv_ptr qd;
1497     TCGv_i32 rdm;
1498 
1499     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1500         return false;
1501     }
1502     if (a->rdm == 13 || a->rdm == 15) {
1503         /* CONSTRAINED UNPREDICTABLE: we UNDEF */
1504         return false;
1505     }
1506     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1507         return true;
1508     }
1509 
1510     qd = mve_qreg_ptr(a->qd);
1511     rdm = load_reg(s, a->rdm);
1512     gen_helper_mve_vshlc(rdm, cpu_env, qd, rdm, tcg_constant_i32(a->imm));
1513     store_reg(s, a->rdm, rdm);
1514     tcg_temp_free_ptr(qd);
1515     mve_update_eci(s);
1516     return true;
1517 }
1518 
1519 static bool do_vidup(DisasContext *s, arg_vidup *a, MVEGenVIDUPFn *fn)
1520 {
1521     TCGv_ptr qd;
1522     TCGv_i32 rn;
1523 
1524     /*
1525      * Vector increment/decrement with wrap and duplicate (VIDUP, VDDUP).
1526      * This fills the vector with elements of successively increasing
1527      * or decreasing values, starting from Rn.
1528      */
1529     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1530         return false;
1531     }
1532     if (a->size == MO_64) {
1533         /* size 0b11 is another encoding */
1534         return false;
1535     }
1536     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1537         return true;
1538     }
1539 
1540     qd = mve_qreg_ptr(a->qd);
1541     rn = load_reg(s, a->rn);
1542     fn(rn, cpu_env, qd, rn, tcg_constant_i32(a->imm));
1543     store_reg(s, a->rn, rn);
1544     tcg_temp_free_ptr(qd);
1545     mve_update_eci(s);
1546     return true;
1547 }
1548 
1549 static bool do_viwdup(DisasContext *s, arg_viwdup *a, MVEGenVIWDUPFn *fn)
1550 {
1551     TCGv_ptr qd;
1552     TCGv_i32 rn, rm;
1553 
1554     /*
1555      * Vector increment/decrement with wrap and duplicate (VIWDUp, VDWDUP)
1556      * This fills the vector with elements of successively increasing
1557      * or decreasing values, starting from Rn. Rm specifies a point where
1558      * the count wraps back around to 0. The updated offset is written back
1559      * to Rn.
1560      */
1561     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd)) {
1562         return false;
1563     }
1564     if (!fn || a->rm == 13 || a->rm == 15) {
1565         /*
1566          * size 0b11 is another encoding; Rm == 13 is UNPREDICTABLE;
1567          * Rm == 13 is VIWDUP, VDWDUP.
1568          */
1569         return false;
1570     }
1571     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1572         return true;
1573     }
1574 
1575     qd = mve_qreg_ptr(a->qd);
1576     rn = load_reg(s, a->rn);
1577     rm = load_reg(s, a->rm);
1578     fn(rn, cpu_env, qd, rn, rm, tcg_constant_i32(a->imm));
1579     store_reg(s, a->rn, rn);
1580     tcg_temp_free_ptr(qd);
1581     tcg_temp_free_i32(rm);
1582     mve_update_eci(s);
1583     return true;
1584 }
1585 
1586 static bool trans_VIDUP(DisasContext *s, arg_vidup *a)
1587 {
1588     static MVEGenVIDUPFn * const fns[] = {
1589         gen_helper_mve_vidupb,
1590         gen_helper_mve_viduph,
1591         gen_helper_mve_vidupw,
1592         NULL,
1593     };
1594     return do_vidup(s, a, fns[a->size]);
1595 }
1596 
1597 static bool trans_VDDUP(DisasContext *s, arg_vidup *a)
1598 {
1599     static MVEGenVIDUPFn * const fns[] = {
1600         gen_helper_mve_vidupb,
1601         gen_helper_mve_viduph,
1602         gen_helper_mve_vidupw,
1603         NULL,
1604     };
1605     /* VDDUP is just like VIDUP but with a negative immediate */
1606     a->imm = -a->imm;
1607     return do_vidup(s, a, fns[a->size]);
1608 }
1609 
1610 static bool trans_VIWDUP(DisasContext *s, arg_viwdup *a)
1611 {
1612     static MVEGenVIWDUPFn * const fns[] = {
1613         gen_helper_mve_viwdupb,
1614         gen_helper_mve_viwduph,
1615         gen_helper_mve_viwdupw,
1616         NULL,
1617     };
1618     return do_viwdup(s, a, fns[a->size]);
1619 }
1620 
1621 static bool trans_VDWDUP(DisasContext *s, arg_viwdup *a)
1622 {
1623     static MVEGenVIWDUPFn * const fns[] = {
1624         gen_helper_mve_vdwdupb,
1625         gen_helper_mve_vdwduph,
1626         gen_helper_mve_vdwdupw,
1627         NULL,
1628     };
1629     return do_viwdup(s, a, fns[a->size]);
1630 }
1631 
1632 static bool do_vcmp(DisasContext *s, arg_vcmp *a, MVEGenCmpFn *fn)
1633 {
1634     TCGv_ptr qn, qm;
1635 
1636     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1637         !fn) {
1638         return false;
1639     }
1640     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1641         return true;
1642     }
1643 
1644     qn = mve_qreg_ptr(a->qn);
1645     qm = mve_qreg_ptr(a->qm);
1646     fn(cpu_env, qn, qm);
1647     tcg_temp_free_ptr(qn);
1648     tcg_temp_free_ptr(qm);
1649     if (a->mask) {
1650         /* VPT */
1651         gen_vpst(s, a->mask);
1652     }
1653     mve_update_eci(s);
1654     return true;
1655 }
1656 
1657 static bool do_vcmp_scalar(DisasContext *s, arg_vcmp_scalar *a,
1658                            MVEGenScalarCmpFn *fn)
1659 {
1660     TCGv_ptr qn;
1661     TCGv_i32 rm;
1662 
1663     if (!dc_isar_feature(aa32_mve, s) || !fn || a->rm == 13) {
1664         return false;
1665     }
1666     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1667         return true;
1668     }
1669 
1670     qn = mve_qreg_ptr(a->qn);
1671     if (a->rm == 15) {
1672         /* Encoding Rm=0b1111 means "constant zero" */
1673         rm = tcg_constant_i32(0);
1674     } else {
1675         rm = load_reg(s, a->rm);
1676     }
1677     fn(cpu_env, qn, rm);
1678     tcg_temp_free_ptr(qn);
1679     tcg_temp_free_i32(rm);
1680     if (a->mask) {
1681         /* VPT */
1682         gen_vpst(s, a->mask);
1683     }
1684     mve_update_eci(s);
1685     return true;
1686 }
1687 
1688 #define DO_VCMP(INSN, FN)                                       \
1689     static bool trans_##INSN(DisasContext *s, arg_vcmp *a)      \
1690     {                                                           \
1691         static MVEGenCmpFn * const fns[] = {                    \
1692             gen_helper_mve_##FN##b,                             \
1693             gen_helper_mve_##FN##h,                             \
1694             gen_helper_mve_##FN##w,                             \
1695             NULL,                                               \
1696         };                                                      \
1697         return do_vcmp(s, a, fns[a->size]);                     \
1698     }                                                           \
1699     static bool trans_##INSN##_scalar(DisasContext *s,          \
1700                                       arg_vcmp_scalar *a)       \
1701     {                                                           \
1702         static MVEGenScalarCmpFn * const fns[] = {              \
1703             gen_helper_mve_##FN##_scalarb,                      \
1704             gen_helper_mve_##FN##_scalarh,                      \
1705             gen_helper_mve_##FN##_scalarw,                      \
1706             NULL,                                               \
1707         };                                                      \
1708         return do_vcmp_scalar(s, a, fns[a->size]);              \
1709     }
1710 
1711 DO_VCMP(VCMPEQ, vcmpeq)
1712 DO_VCMP(VCMPNE, vcmpne)
1713 DO_VCMP(VCMPCS, vcmpcs)
1714 DO_VCMP(VCMPHI, vcmphi)
1715 DO_VCMP(VCMPGE, vcmpge)
1716 DO_VCMP(VCMPLT, vcmplt)
1717 DO_VCMP(VCMPGT, vcmpgt)
1718 DO_VCMP(VCMPLE, vcmple)
1719 
1720 static bool do_vmaxv(DisasContext *s, arg_vmaxv *a, MVEGenVADDVFn fn)
1721 {
1722     /*
1723      * MIN/MAX operations across a vector: compute the min or
1724      * max of the initial value in a general purpose register
1725      * and all the elements in the vector, and store it back
1726      * into the general purpose register.
1727      */
1728     TCGv_ptr qm;
1729     TCGv_i32 rda;
1730 
1731     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qm) ||
1732         !fn || a->rda == 13 || a->rda == 15) {
1733         /* Rda cases are UNPREDICTABLE */
1734         return false;
1735     }
1736     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1737         return true;
1738     }
1739 
1740     qm = mve_qreg_ptr(a->qm);
1741     rda = load_reg(s, a->rda);
1742     fn(rda, cpu_env, qm, rda);
1743     store_reg(s, a->rda, rda);
1744     tcg_temp_free_ptr(qm);
1745     mve_update_eci(s);
1746     return true;
1747 }
1748 
1749 #define DO_VMAXV(INSN, FN)                                      \
1750     static bool trans_##INSN(DisasContext *s, arg_vmaxv *a)     \
1751     {                                                           \
1752         static MVEGenVADDVFn * const fns[] = {                  \
1753             gen_helper_mve_##FN##b,                             \
1754             gen_helper_mve_##FN##h,                             \
1755             gen_helper_mve_##FN##w,                             \
1756             NULL,                                               \
1757         };                                                      \
1758         return do_vmaxv(s, a, fns[a->size]);                    \
1759     }
1760 
1761 DO_VMAXV(VMAXV_S, vmaxvs)
1762 DO_VMAXV(VMAXV_U, vmaxvu)
1763 DO_VMAXV(VMAXAV, vmaxav)
1764 DO_VMAXV(VMINV_S, vminvs)
1765 DO_VMAXV(VMINV_U, vminvu)
1766 DO_VMAXV(VMINAV, vminav)
1767 
1768 static bool do_vabav(DisasContext *s, arg_vabav *a, MVEGenVABAVFn *fn)
1769 {
1770     /* Absolute difference accumulated across vector */
1771     TCGv_ptr qn, qm;
1772     TCGv_i32 rda;
1773 
1774     if (!dc_isar_feature(aa32_mve, s) ||
1775         !mve_check_qreg_bank(s, a->qm | a->qn) ||
1776         !fn || a->rda == 13 || a->rda == 15) {
1777         /* Rda cases are UNPREDICTABLE */
1778         return false;
1779     }
1780     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1781         return true;
1782     }
1783 
1784     qm = mve_qreg_ptr(a->qm);
1785     qn = mve_qreg_ptr(a->qn);
1786     rda = load_reg(s, a->rda);
1787     fn(rda, cpu_env, qn, qm, rda);
1788     store_reg(s, a->rda, rda);
1789     tcg_temp_free_ptr(qm);
1790     tcg_temp_free_ptr(qn);
1791     mve_update_eci(s);
1792     return true;
1793 }
1794 
1795 #define DO_VABAV(INSN, FN)                                      \
1796     static bool trans_##INSN(DisasContext *s, arg_vabav *a)     \
1797     {                                                           \
1798         static MVEGenVABAVFn * const fns[] = {                  \
1799             gen_helper_mve_##FN##b,                             \
1800             gen_helper_mve_##FN##h,                             \
1801             gen_helper_mve_##FN##w,                             \
1802             NULL,                                               \
1803         };                                                      \
1804         return do_vabav(s, a, fns[a->size]);                    \
1805     }
1806 
1807 DO_VABAV(VABAV_S, vabavs)
1808 DO_VABAV(VABAV_U, vabavu)
1809 
1810 static bool trans_VMOV_to_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
1811 {
1812     /*
1813      * VMOV two 32-bit vector lanes to two general-purpose registers.
1814      * This insn is not predicated but it is subject to beat-wise
1815      * execution if it is not in an IT block. For us this means
1816      * only that if PSR.ECI says we should not be executing the beat
1817      * corresponding to the lane of the vector register being accessed
1818      * then we should skip perfoming the move, and that we need to do
1819      * the usual check for bad ECI state and advance of ECI state.
1820      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
1821      */
1822     TCGv_i32 tmp;
1823     int vd;
1824 
1825     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
1826         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15 ||
1827         a->rt == a->rt2) {
1828         /* Rt/Rt2 cases are UNPREDICTABLE */
1829         return false;
1830     }
1831     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1832         return true;
1833     }
1834 
1835     /* Convert Qreg index to Dreg for read_neon_element32() etc */
1836     vd = a->qd * 2;
1837 
1838     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
1839         tmp = tcg_temp_new_i32();
1840         read_neon_element32(tmp, vd, a->idx, MO_32);
1841         store_reg(s, a->rt, tmp);
1842     }
1843     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
1844         tmp = tcg_temp_new_i32();
1845         read_neon_element32(tmp, vd + 1, a->idx, MO_32);
1846         store_reg(s, a->rt2, tmp);
1847     }
1848 
1849     mve_update_and_store_eci(s);
1850     return true;
1851 }
1852 
1853 static bool trans_VMOV_from_2gp(DisasContext *s, arg_VMOV_to_2gp *a)
1854 {
1855     /*
1856      * VMOV two general-purpose registers to two 32-bit vector lanes.
1857      * This insn is not predicated but it is subject to beat-wise
1858      * execution if it is not in an IT block. For us this means
1859      * only that if PSR.ECI says we should not be executing the beat
1860      * corresponding to the lane of the vector register being accessed
1861      * then we should skip perfoming the move, and that we need to do
1862      * the usual check for bad ECI state and advance of ECI state.
1863      * (If PSR.ECI is non-zero then we cannot be in an IT block.)
1864      */
1865     TCGv_i32 tmp;
1866     int vd;
1867 
1868     if (!dc_isar_feature(aa32_mve, s) || !mve_check_qreg_bank(s, a->qd) ||
1869         a->rt == 13 || a->rt == 15 || a->rt2 == 13 || a->rt2 == 15) {
1870         /* Rt/Rt2 cases are UNPREDICTABLE */
1871         return false;
1872     }
1873     if (!mve_eci_check(s) || !vfp_access_check(s)) {
1874         return true;
1875     }
1876 
1877     /* Convert Qreg idx to Dreg for read_neon_element32() etc */
1878     vd = a->qd * 2;
1879 
1880     if (!mve_skip_vmov(s, vd, a->idx, MO_32)) {
1881         tmp = load_reg(s, a->rt);
1882         write_neon_element32(tmp, vd, a->idx, MO_32);
1883         tcg_temp_free_i32(tmp);
1884     }
1885     if (!mve_skip_vmov(s, vd + 1, a->idx, MO_32)) {
1886         tmp = load_reg(s, a->rt2);
1887         write_neon_element32(tmp, vd + 1, a->idx, MO_32);
1888         tcg_temp_free_i32(tmp);
1889     }
1890 
1891     mve_update_and_store_eci(s);
1892     return true;
1893 }
1894