xref: /qemu/target/arm/tcg/translate-a64.c (revision a3d40b5effafdd299d1850f0c9956f60199b5b56)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "exec/exec-all.h"
21 #include "exec/target_page.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28 
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31 
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34 
35 static const char *regnames[] = {
36     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41 
42 enum a64_shift_type {
43     A64_SHIFT_TYPE_LSL = 0,
44     A64_SHIFT_TYPE_LSR = 1,
45     A64_SHIFT_TYPE_ASR = 2,
46     A64_SHIFT_TYPE_ROR = 3
47 };
48 
49 /*
50  * Helpers for extracting complex instruction fields
51  */
52 
53 /*
54  * For load/store with an unsigned 12 bit immediate scaled by the element
55  * size. The input has the immediate field in bits [14:3] and the element
56  * size in [2:0].
57  */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60     unsigned imm = x >> 3;
61     unsigned scale = extract32(x, 0, 3);
62     return imm << scale;
63 }
64 
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68     return x << LOG2_TAG_GRANULE;
69 }
70 
71 /*
72  * Include the generated decoders.
73  */
74 
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77 
78 /* initialize TCG globals.  */
79 void a64_translate_init(void)
80 {
81     int i;
82 
83     cpu_pc = tcg_global_mem_new_i64(tcg_env,
84                                     offsetof(CPUARMState, pc),
85                                     "pc");
86     for (i = 0; i < 32; i++) {
87         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
88                                           offsetof(CPUARMState, xregs[i]),
89                                           regnames[i]);
90     }
91 
92     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
93         offsetof(CPUARMState, exclusive_high), "exclusive_high");
94 }
95 
96 /*
97  * Return the core mmu_idx to use for A64 load/store insns which
98  * have a "unprivileged load/store" variant. Those insns access
99  * EL0 if executed from an EL which has control over EL0 (usually
100  * EL1) but behave like normal loads and stores if executed from
101  * elsewhere (eg EL3).
102  *
103  * @unpriv : true for the unprivileged encoding; false for the
104  *           normal encoding (in which case we will return the same
105  *           thing as get_mem_index().
106  */
107 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
108 {
109     /*
110      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
111      * which is the usual mmu_idx for this cpu state.
112      */
113     ARMMMUIdx useridx = s->mmu_idx;
114 
115     if (unpriv && s->unpriv) {
116         /*
117          * We have pre-computed the condition for AccType_UNPRIV.
118          * Therefore we should never get here with a mmu_idx for
119          * which we do not know the corresponding user mmu_idx.
120          */
121         switch (useridx) {
122         case ARMMMUIdx_E10_1:
123         case ARMMMUIdx_E10_1_PAN:
124             useridx = ARMMMUIdx_E10_0;
125             break;
126         case ARMMMUIdx_E20_2:
127         case ARMMMUIdx_E20_2_PAN:
128             useridx = ARMMMUIdx_E20_0;
129             break;
130         default:
131             g_assert_not_reached();
132         }
133     }
134     return arm_to_core_mmu_idx(useridx);
135 }
136 
137 static void set_btype_raw(int val)
138 {
139     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
140                    offsetof(CPUARMState, btype));
141 }
142 
143 static void set_btype(DisasContext *s, int val)
144 {
145     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
146     tcg_debug_assert(val >= 1 && val <= 3);
147     set_btype_raw(val);
148     s->btype = -1;
149 }
150 
151 static void reset_btype(DisasContext *s)
152 {
153     if (s->btype != 0) {
154         set_btype_raw(0);
155         s->btype = 0;
156     }
157 }
158 
159 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
160 {
161     assert(s->pc_save != -1);
162     if (tb_cflags(s->base.tb) & CF_PCREL) {
163         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
164     } else {
165         tcg_gen_movi_i64(dest, s->pc_curr + diff);
166     }
167 }
168 
169 void gen_a64_update_pc(DisasContext *s, target_long diff)
170 {
171     gen_pc_plus_diff(s, cpu_pc, diff);
172     s->pc_save = s->pc_curr + diff;
173 }
174 
175 /*
176  * Handle Top Byte Ignore (TBI) bits.
177  *
178  * If address tagging is enabled via the TCR TBI bits:
179  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
180  *    then the address is zero-extended, clearing bits [63:56]
181  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
182  *    and TBI1 controls addresses with bit 55 == 1.
183  *    If the appropriate TBI bit is set for the address then
184  *    the address is sign-extended from bit 55 into bits [63:56]
185  *
186  * Here We have concatenated TBI{1,0} into tbi.
187  */
188 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
189                                 TCGv_i64 src, int tbi)
190 {
191     if (tbi == 0) {
192         /* Load unmodified address */
193         tcg_gen_mov_i64(dst, src);
194     } else if (!regime_has_2_ranges(s->mmu_idx)) {
195         /* Force tag byte to all zero */
196         tcg_gen_extract_i64(dst, src, 0, 56);
197     } else {
198         /* Sign-extend from bit 55.  */
199         tcg_gen_sextract_i64(dst, src, 0, 56);
200 
201         switch (tbi) {
202         case 1:
203             /* tbi0 but !tbi1: only use the extension if positive */
204             tcg_gen_and_i64(dst, dst, src);
205             break;
206         case 2:
207             /* !tbi0 but tbi1: only use the extension if negative */
208             tcg_gen_or_i64(dst, dst, src);
209             break;
210         case 3:
211             /* tbi0 and tbi1: always use the extension */
212             break;
213         default:
214             g_assert_not_reached();
215         }
216     }
217 }
218 
219 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
220 {
221     /*
222      * If address tagging is enabled for instructions via the TCR TBI bits,
223      * then loading an address into the PC will clear out any tag.
224      */
225     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
226     s->pc_save = -1;
227 }
228 
229 /*
230  * Handle MTE and/or TBI.
231  *
232  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
233  * for the tag to be present in the FAR_ELx register.  But for user-only
234  * mode we do not have a TLB with which to implement this, so we must
235  * remove the top byte now.
236  *
237  * Always return a fresh temporary that we can increment independently
238  * of the write-back address.
239  */
240 
241 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
242 {
243     TCGv_i64 clean = tcg_temp_new_i64();
244 #ifdef CONFIG_USER_ONLY
245     gen_top_byte_ignore(s, clean, addr, s->tbid);
246 #else
247     tcg_gen_mov_i64(clean, addr);
248 #endif
249     return clean;
250 }
251 
252 /* Insert a zero tag into src, with the result at dst. */
253 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
254 {
255     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
256 }
257 
258 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
259                              MMUAccessType acc, int log2_size)
260 {
261     gen_helper_probe_access(tcg_env, ptr,
262                             tcg_constant_i32(acc),
263                             tcg_constant_i32(get_mem_index(s)),
264                             tcg_constant_i32(1 << log2_size));
265 }
266 
267 /*
268  * For MTE, check a single logical or atomic access.  This probes a single
269  * address, the exact one specified.  The size and alignment of the access
270  * is not relevant to MTE, per se, but watchpoints do require the size,
271  * and we want to recognize those before making any other changes to state.
272  */
273 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
274                                       bool is_write, bool tag_checked,
275                                       MemOp memop, bool is_unpriv,
276                                       int core_idx)
277 {
278     if (tag_checked && s->mte_active[is_unpriv]) {
279         TCGv_i64 ret;
280         int desc = 0;
281 
282         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
283         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
284         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
285         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
286         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop));
287         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
288 
289         ret = tcg_temp_new_i64();
290         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
291 
292         return ret;
293     }
294     return clean_data_tbi(s, addr);
295 }
296 
297 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
298                         bool tag_checked, MemOp memop)
299 {
300     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
301                                  false, get_mem_index(s));
302 }
303 
304 /*
305  * For MTE, check multiple logical sequential accesses.
306  */
307 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
308                         bool tag_checked, int total_size, MemOp single_mop)
309 {
310     if (tag_checked && s->mte_active[0]) {
311         TCGv_i64 ret;
312         int desc = 0;
313 
314         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
315         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
316         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
317         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
318         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop));
319         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
320 
321         ret = tcg_temp_new_i64();
322         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
323 
324         return ret;
325     }
326     return clean_data_tbi(s, addr);
327 }
328 
329 /*
330  * Generate the special alignment check that applies to AccType_ATOMIC
331  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
332  * naturally aligned, but it must not cross a 16-byte boundary.
333  * See AArch64.CheckAlignment().
334  */
335 static void check_lse2_align(DisasContext *s, int rn, int imm,
336                              bool is_write, MemOp mop)
337 {
338     TCGv_i32 tmp;
339     TCGv_i64 addr;
340     TCGLabel *over_label;
341     MMUAccessType type;
342     int mmu_idx;
343 
344     tmp = tcg_temp_new_i32();
345     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
346     tcg_gen_addi_i32(tmp, tmp, imm & 15);
347     tcg_gen_andi_i32(tmp, tmp, 15);
348     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
349 
350     over_label = gen_new_label();
351     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
352 
353     addr = tcg_temp_new_i64();
354     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
355 
356     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
357     mmu_idx = get_mem_index(s);
358     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
359                                 tcg_constant_i32(mmu_idx));
360 
361     gen_set_label(over_label);
362 
363 }
364 
365 /* Handle the alignment check for AccType_ATOMIC instructions. */
366 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
367 {
368     MemOp size = mop & MO_SIZE;
369 
370     if (size == MO_8) {
371         return mop;
372     }
373 
374     /*
375      * If size == MO_128, this is a LDXP, and the operation is single-copy
376      * atomic for each doubleword, not the entire quadword; it still must
377      * be quadword aligned.
378      */
379     if (size == MO_128) {
380         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
381                                    MO_ATOM_IFALIGN_PAIR);
382     }
383     if (dc_isar_feature(aa64_lse2, s)) {
384         check_lse2_align(s, rn, 0, true, mop);
385     } else {
386         mop |= MO_ALIGN;
387     }
388     return finalize_memop(s, mop);
389 }
390 
391 /* Handle the alignment check for AccType_ORDERED instructions. */
392 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
393                                  bool is_write, MemOp mop)
394 {
395     MemOp size = mop & MO_SIZE;
396 
397     if (size == MO_8) {
398         return mop;
399     }
400     if (size == MO_128) {
401         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
402                                    MO_ATOM_IFALIGN_PAIR);
403     }
404     if (!dc_isar_feature(aa64_lse2, s)) {
405         mop |= MO_ALIGN;
406     } else if (!s->naa) {
407         check_lse2_align(s, rn, imm, is_write, mop);
408     }
409     return finalize_memop(s, mop);
410 }
411 
412 typedef struct DisasCompare64 {
413     TCGCond cond;
414     TCGv_i64 value;
415 } DisasCompare64;
416 
417 static void a64_test_cc(DisasCompare64 *c64, int cc)
418 {
419     DisasCompare c32;
420 
421     arm_test_cc(&c32, cc);
422 
423     /*
424      * Sign-extend the 32-bit value so that the GE/LT comparisons work
425      * properly.  The NE/EQ comparisons are also fine with this choice.
426       */
427     c64->cond = c32.cond;
428     c64->value = tcg_temp_new_i64();
429     tcg_gen_ext_i32_i64(c64->value, c32.value);
430 }
431 
432 static void gen_rebuild_hflags(DisasContext *s)
433 {
434     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
435 }
436 
437 static void gen_exception_internal(int excp)
438 {
439     assert(excp_is_internal(excp));
440     gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
441 }
442 
443 static void gen_exception_internal_insn(DisasContext *s, int excp)
444 {
445     gen_a64_update_pc(s, 0);
446     gen_exception_internal(excp);
447     s->base.is_jmp = DISAS_NORETURN;
448 }
449 
450 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
451 {
452     gen_a64_update_pc(s, 0);
453     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
454     s->base.is_jmp = DISAS_NORETURN;
455 }
456 
457 static void gen_step_complete_exception(DisasContext *s)
458 {
459     /* We just completed step of an insn. Move from Active-not-pending
460      * to Active-pending, and then also take the swstep exception.
461      * This corresponds to making the (IMPDEF) choice to prioritize
462      * swstep exceptions over asynchronous exceptions taken to an exception
463      * level where debug is disabled. This choice has the advantage that
464      * we do not need to maintain internal state corresponding to the
465      * ISV/EX syndrome bits between completion of the step and generation
466      * of the exception, and our syndrome information is always correct.
467      */
468     gen_ss_advance(s);
469     gen_swstep_exception(s, 1, s->is_ldex);
470     s->base.is_jmp = DISAS_NORETURN;
471 }
472 
473 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
474 {
475     if (s->ss_active) {
476         return false;
477     }
478     return translator_use_goto_tb(&s->base, dest);
479 }
480 
481 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
482 {
483     if (use_goto_tb(s, s->pc_curr + diff)) {
484         /*
485          * For pcrel, the pc must always be up-to-date on entry to
486          * the linked TB, so that it can use simple additions for all
487          * further adjustments.  For !pcrel, the linked TB is compiled
488          * to know its full virtual address, so we can delay the
489          * update to pc to the unlinked path.  A long chain of links
490          * can thus avoid many updates to the PC.
491          */
492         if (tb_cflags(s->base.tb) & CF_PCREL) {
493             gen_a64_update_pc(s, diff);
494             tcg_gen_goto_tb(n);
495         } else {
496             tcg_gen_goto_tb(n);
497             gen_a64_update_pc(s, diff);
498         }
499         tcg_gen_exit_tb(s->base.tb, n);
500         s->base.is_jmp = DISAS_NORETURN;
501     } else {
502         gen_a64_update_pc(s, diff);
503         if (s->ss_active) {
504             gen_step_complete_exception(s);
505         } else {
506             tcg_gen_lookup_and_goto_ptr();
507             s->base.is_jmp = DISAS_NORETURN;
508         }
509     }
510 }
511 
512 /*
513  * Register access functions
514  *
515  * These functions are used for directly accessing a register in where
516  * changes to the final register value are likely to be made. If you
517  * need to use a register for temporary calculation (e.g. index type
518  * operations) use the read_* form.
519  *
520  * B1.2.1 Register mappings
521  *
522  * In instruction register encoding 31 can refer to ZR (zero register) or
523  * the SP (stack pointer) depending on context. In QEMU's case we map SP
524  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
525  * This is the point of the _sp forms.
526  */
527 TCGv_i64 cpu_reg(DisasContext *s, int reg)
528 {
529     if (reg == 31) {
530         TCGv_i64 t = tcg_temp_new_i64();
531         tcg_gen_movi_i64(t, 0);
532         return t;
533     } else {
534         return cpu_X[reg];
535     }
536 }
537 
538 /* register access for when 31 == SP */
539 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
540 {
541     return cpu_X[reg];
542 }
543 
544 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
545  * representing the register contents. This TCGv is an auto-freed
546  * temporary so it need not be explicitly freed, and may be modified.
547  */
548 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
549 {
550     TCGv_i64 v = tcg_temp_new_i64();
551     if (reg != 31) {
552         if (sf) {
553             tcg_gen_mov_i64(v, cpu_X[reg]);
554         } else {
555             tcg_gen_ext32u_i64(v, cpu_X[reg]);
556         }
557     } else {
558         tcg_gen_movi_i64(v, 0);
559     }
560     return v;
561 }
562 
563 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
564 {
565     TCGv_i64 v = tcg_temp_new_i64();
566     if (sf) {
567         tcg_gen_mov_i64(v, cpu_X[reg]);
568     } else {
569         tcg_gen_ext32u_i64(v, cpu_X[reg]);
570     }
571     return v;
572 }
573 
574 /* Return the offset into CPUARMState of a slice (from
575  * the least significant end) of FP register Qn (ie
576  * Dn, Sn, Hn or Bn).
577  * (Note that this is not the same mapping as for A32; see cpu.h)
578  */
579 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
580 {
581     return vec_reg_offset(s, regno, 0, size);
582 }
583 
584 /* Offset of the high half of the 128 bit vector Qn */
585 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
586 {
587     return vec_reg_offset(s, regno, 1, MO_64);
588 }
589 
590 /* Convenience accessors for reading and writing single and double
591  * FP registers. Writing clears the upper parts of the associated
592  * 128 bit vector register, as required by the architecture.
593  * Note that unlike the GP register accessors, the values returned
594  * by the read functions must be manually freed.
595  */
596 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
597 {
598     TCGv_i64 v = tcg_temp_new_i64();
599 
600     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
601     return v;
602 }
603 
604 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
605 {
606     TCGv_i32 v = tcg_temp_new_i32();
607 
608     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
609     return v;
610 }
611 
612 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
613 {
614     TCGv_i32 v = tcg_temp_new_i32();
615 
616     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
617     return v;
618 }
619 
620 static void clear_vec(DisasContext *s, int rd)
621 {
622     unsigned ofs = fp_reg_offset(s, rd, MO_64);
623     unsigned vsz = vec_full_reg_size(s);
624 
625     tcg_gen_gvec_dup_imm(MO_64, ofs, vsz, vsz, 0);
626 }
627 
628 /*
629  * Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
630  * If SVE is not enabled, then there are only 128 bits in the vector.
631  */
632 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
633 {
634     unsigned ofs = fp_reg_offset(s, rd, MO_64);
635     unsigned vsz = vec_full_reg_size(s);
636 
637     /* Nop move, with side effect of clearing the tail. */
638     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
639 }
640 
641 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
642 {
643     unsigned ofs = fp_reg_offset(s, reg, MO_64);
644 
645     tcg_gen_st_i64(v, tcg_env, ofs);
646     clear_vec_high(s, false, reg);
647 }
648 
649 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
650 {
651     TCGv_i64 tmp = tcg_temp_new_i64();
652 
653     tcg_gen_extu_i32_i64(tmp, v);
654     write_fp_dreg(s, reg, tmp);
655 }
656 
657 /*
658  * Write a double result to 128 bit vector register reg, honouring FPCR.NEP:
659  * - if FPCR.NEP == 0, clear the high elements of reg
660  * - if FPCR.NEP == 1, set the high elements of reg from mergereg
661  *   (i.e. merge the result with those high elements)
662  * In either case, SVE register bits above 128 are zeroed (per R_WKYLB).
663  */
664 static void write_fp_dreg_merging(DisasContext *s, int reg, int mergereg,
665                                   TCGv_i64 v)
666 {
667     if (!s->fpcr_nep) {
668         write_fp_dreg(s, reg, v);
669         return;
670     }
671 
672     /*
673      * Move from mergereg to reg; this sets the high elements and
674      * clears the bits above 128 as a side effect.
675      */
676     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
677                      vec_full_reg_offset(s, mergereg),
678                      16, vec_full_reg_size(s));
679     tcg_gen_st_i64(v, tcg_env, vec_full_reg_offset(s, reg));
680 }
681 
682 /*
683  * Write a single-prec result, but only clear the higher elements
684  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
685  */
686 static void write_fp_sreg_merging(DisasContext *s, int reg, int mergereg,
687                                   TCGv_i32 v)
688 {
689     if (!s->fpcr_nep) {
690         write_fp_sreg(s, reg, v);
691         return;
692     }
693 
694     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
695                      vec_full_reg_offset(s, mergereg),
696                      16, vec_full_reg_size(s));
697     tcg_gen_st_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
698 }
699 
700 /*
701  * Write a half-prec result, but only clear the higher elements
702  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
703  * The caller must ensure that the top 16 bits of v are zero.
704  */
705 static void write_fp_hreg_merging(DisasContext *s, int reg, int mergereg,
706                                   TCGv_i32 v)
707 {
708     if (!s->fpcr_nep) {
709         write_fp_sreg(s, reg, v);
710         return;
711     }
712 
713     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
714                      vec_full_reg_offset(s, mergereg),
715                      16, vec_full_reg_size(s));
716     tcg_gen_st16_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
717 }
718 
719 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
720 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
721                          GVecGen2Fn *gvec_fn, int vece)
722 {
723     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
724             is_q ? 16 : 8, vec_full_reg_size(s));
725 }
726 
727 /* Expand a 2-operand + immediate AdvSIMD vector operation using
728  * an expander function.
729  */
730 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
731                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
732 {
733     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
734             imm, is_q ? 16 : 8, vec_full_reg_size(s));
735 }
736 
737 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
738 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
739                          GVecGen3Fn *gvec_fn, int vece)
740 {
741     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
742             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
743 }
744 
745 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
746 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
747                          int rx, GVecGen4Fn *gvec_fn, int vece)
748 {
749     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
750             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
751             is_q ? 16 : 8, vec_full_reg_size(s));
752 }
753 
754 /* Expand a 2-operand operation using an out-of-line helper.  */
755 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
756                              int rn, int data, gen_helper_gvec_2 *fn)
757 {
758     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
759                        vec_full_reg_offset(s, rn),
760                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
761 }
762 
763 /* Expand a 3-operand operation using an out-of-line helper.  */
764 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
765                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
766 {
767     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
768                        vec_full_reg_offset(s, rn),
769                        vec_full_reg_offset(s, rm),
770                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
771 }
772 
773 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
774  * an out-of-line helper.
775  */
776 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
777                               int rm, ARMFPStatusFlavour fpsttype, int data,
778                               gen_helper_gvec_3_ptr *fn)
779 {
780     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
781     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
782                        vec_full_reg_offset(s, rn),
783                        vec_full_reg_offset(s, rm), fpst,
784                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
785 }
786 
787 /* Expand a 4-operand operation using an out-of-line helper.  */
788 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
789                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
790 {
791     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
792                        vec_full_reg_offset(s, rn),
793                        vec_full_reg_offset(s, rm),
794                        vec_full_reg_offset(s, ra),
795                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
796 }
797 
798 /*
799  * Expand a 4-operand operation using an out-of-line helper that takes
800  * a pointer to the CPU env.
801  */
802 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn,
803                              int rm, int ra, int data,
804                              gen_helper_gvec_4_ptr *fn)
805 {
806     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
807                        vec_full_reg_offset(s, rn),
808                        vec_full_reg_offset(s, rm),
809                        vec_full_reg_offset(s, ra),
810                        tcg_env,
811                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
812 }
813 
814 /*
815  * Expand a 4-operand + fpstatus pointer + simd data value operation using
816  * an out-of-line helper.
817  */
818 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
819                               int rm, int ra, ARMFPStatusFlavour fpsttype,
820                               int data,
821                               gen_helper_gvec_4_ptr *fn)
822 {
823     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
824     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
825                        vec_full_reg_offset(s, rn),
826                        vec_full_reg_offset(s, rm),
827                        vec_full_reg_offset(s, ra), fpst,
828                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
829 }
830 
831 /*
832  * When FPCR.AH == 1, NEG and ABS do not flip the sign bit of a NaN.
833  * These functions implement
834  *   d = floatN_is_any_nan(s) ? s : floatN_chs(s)
835  * which for float32 is
836  *   d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s ^ (1 << 31))
837  * and similarly for the other float sizes.
838  */
839 static void gen_vfp_ah_negh(TCGv_i32 d, TCGv_i32 s)
840 {
841     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
842 
843     gen_vfp_negh(chs_s, s);
844     gen_vfp_absh(abs_s, s);
845     tcg_gen_movcond_i32(TCG_COND_GTU, d,
846                         abs_s, tcg_constant_i32(0x7c00),
847                         s, chs_s);
848 }
849 
850 static void gen_vfp_ah_negs(TCGv_i32 d, TCGv_i32 s)
851 {
852     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
853 
854     gen_vfp_negs(chs_s, s);
855     gen_vfp_abss(abs_s, s);
856     tcg_gen_movcond_i32(TCG_COND_GTU, d,
857                         abs_s, tcg_constant_i32(0x7f800000UL),
858                         s, chs_s);
859 }
860 
861 static void gen_vfp_ah_negd(TCGv_i64 d, TCGv_i64 s)
862 {
863     TCGv_i64 abs_s = tcg_temp_new_i64(), chs_s = tcg_temp_new_i64();
864 
865     gen_vfp_negd(chs_s, s);
866     gen_vfp_absd(abs_s, s);
867     tcg_gen_movcond_i64(TCG_COND_GTU, d,
868                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
869                         s, chs_s);
870 }
871 
872 /*
873  * These functions implement
874  *  d = floatN_is_any_nan(s) ? s : floatN_abs(s)
875  * which for float32 is
876  *  d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s & ~(1 << 31))
877  * and similarly for the other float sizes.
878  */
879 static void gen_vfp_ah_absh(TCGv_i32 d, TCGv_i32 s)
880 {
881     TCGv_i32 abs_s = tcg_temp_new_i32();
882 
883     gen_vfp_absh(abs_s, s);
884     tcg_gen_movcond_i32(TCG_COND_GTU, d,
885                         abs_s, tcg_constant_i32(0x7c00),
886                         s, abs_s);
887 }
888 
889 static void gen_vfp_ah_abss(TCGv_i32 d, TCGv_i32 s)
890 {
891     TCGv_i32 abs_s = tcg_temp_new_i32();
892 
893     gen_vfp_abss(abs_s, s);
894     tcg_gen_movcond_i32(TCG_COND_GTU, d,
895                         abs_s, tcg_constant_i32(0x7f800000UL),
896                         s, abs_s);
897 }
898 
899 static void gen_vfp_ah_absd(TCGv_i64 d, TCGv_i64 s)
900 {
901     TCGv_i64 abs_s = tcg_temp_new_i64();
902 
903     gen_vfp_absd(abs_s, s);
904     tcg_gen_movcond_i64(TCG_COND_GTU, d,
905                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
906                         s, abs_s);
907 }
908 
909 static void gen_vfp_maybe_ah_negh(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
910 {
911     if (dc->fpcr_ah) {
912         gen_vfp_ah_negh(d, s);
913     } else {
914         gen_vfp_negh(d, s);
915     }
916 }
917 
918 static void gen_vfp_maybe_ah_negs(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
919 {
920     if (dc->fpcr_ah) {
921         gen_vfp_ah_negs(d, s);
922     } else {
923         gen_vfp_negs(d, s);
924     }
925 }
926 
927 static void gen_vfp_maybe_ah_negd(DisasContext *dc, TCGv_i64 d, TCGv_i64 s)
928 {
929     if (dc->fpcr_ah) {
930         gen_vfp_ah_negd(d, s);
931     } else {
932         gen_vfp_negd(d, s);
933     }
934 }
935 
936 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
937  * than the 32 bit equivalent.
938  */
939 static inline void gen_set_NZ64(TCGv_i64 result)
940 {
941     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
942     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
943 }
944 
945 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
946 static inline void gen_logic_CC(int sf, TCGv_i64 result)
947 {
948     if (sf) {
949         gen_set_NZ64(result);
950     } else {
951         tcg_gen_extrl_i64_i32(cpu_ZF, result);
952         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
953     }
954     tcg_gen_movi_i32(cpu_CF, 0);
955     tcg_gen_movi_i32(cpu_VF, 0);
956 }
957 
958 /* dest = T0 + T1; compute C, N, V and Z flags */
959 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
960 {
961     TCGv_i64 result, flag, tmp;
962     result = tcg_temp_new_i64();
963     flag = tcg_temp_new_i64();
964     tmp = tcg_temp_new_i64();
965 
966     tcg_gen_movi_i64(tmp, 0);
967     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
968 
969     tcg_gen_extrl_i64_i32(cpu_CF, flag);
970 
971     gen_set_NZ64(result);
972 
973     tcg_gen_xor_i64(flag, result, t0);
974     tcg_gen_xor_i64(tmp, t0, t1);
975     tcg_gen_andc_i64(flag, flag, tmp);
976     tcg_gen_extrh_i64_i32(cpu_VF, flag);
977 
978     tcg_gen_mov_i64(dest, result);
979 }
980 
981 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
982 {
983     TCGv_i32 t0_32 = tcg_temp_new_i32();
984     TCGv_i32 t1_32 = tcg_temp_new_i32();
985     TCGv_i32 tmp = tcg_temp_new_i32();
986 
987     tcg_gen_movi_i32(tmp, 0);
988     tcg_gen_extrl_i64_i32(t0_32, t0);
989     tcg_gen_extrl_i64_i32(t1_32, t1);
990     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
991     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
992     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
993     tcg_gen_xor_i32(tmp, t0_32, t1_32);
994     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
995     tcg_gen_extu_i32_i64(dest, cpu_NF);
996 }
997 
998 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
999 {
1000     if (sf) {
1001         gen_add64_CC(dest, t0, t1);
1002     } else {
1003         gen_add32_CC(dest, t0, t1);
1004     }
1005 }
1006 
1007 /* dest = T0 - T1; compute C, N, V and Z flags */
1008 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1009 {
1010     /* 64 bit arithmetic */
1011     TCGv_i64 result, flag, tmp;
1012 
1013     result = tcg_temp_new_i64();
1014     flag = tcg_temp_new_i64();
1015     tcg_gen_sub_i64(result, t0, t1);
1016 
1017     gen_set_NZ64(result);
1018 
1019     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
1020     tcg_gen_extrl_i64_i32(cpu_CF, flag);
1021 
1022     tcg_gen_xor_i64(flag, result, t0);
1023     tmp = tcg_temp_new_i64();
1024     tcg_gen_xor_i64(tmp, t0, t1);
1025     tcg_gen_and_i64(flag, flag, tmp);
1026     tcg_gen_extrh_i64_i32(cpu_VF, flag);
1027     tcg_gen_mov_i64(dest, result);
1028 }
1029 
1030 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1031 {
1032     /* 32 bit arithmetic */
1033     TCGv_i32 t0_32 = tcg_temp_new_i32();
1034     TCGv_i32 t1_32 = tcg_temp_new_i32();
1035     TCGv_i32 tmp;
1036 
1037     tcg_gen_extrl_i64_i32(t0_32, t0);
1038     tcg_gen_extrl_i64_i32(t1_32, t1);
1039     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
1040     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1041     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
1042     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1043     tmp = tcg_temp_new_i32();
1044     tcg_gen_xor_i32(tmp, t0_32, t1_32);
1045     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
1046     tcg_gen_extu_i32_i64(dest, cpu_NF);
1047 }
1048 
1049 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1050 {
1051     if (sf) {
1052         gen_sub64_CC(dest, t0, t1);
1053     } else {
1054         gen_sub32_CC(dest, t0, t1);
1055     }
1056 }
1057 
1058 /* dest = T0 + T1 + CF; do not compute flags. */
1059 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1060 {
1061     TCGv_i64 flag = tcg_temp_new_i64();
1062     tcg_gen_extu_i32_i64(flag, cpu_CF);
1063     tcg_gen_add_i64(dest, t0, t1);
1064     tcg_gen_add_i64(dest, dest, flag);
1065 
1066     if (!sf) {
1067         tcg_gen_ext32u_i64(dest, dest);
1068     }
1069 }
1070 
1071 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
1072 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1073 {
1074     if (sf) {
1075         TCGv_i64 result = tcg_temp_new_i64();
1076         TCGv_i64 cf_64 = tcg_temp_new_i64();
1077         TCGv_i64 vf_64 = tcg_temp_new_i64();
1078         TCGv_i64 tmp = tcg_temp_new_i64();
1079         TCGv_i64 zero = tcg_constant_i64(0);
1080 
1081         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
1082         tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
1083         tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
1084         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
1085         gen_set_NZ64(result);
1086 
1087         tcg_gen_xor_i64(vf_64, result, t0);
1088         tcg_gen_xor_i64(tmp, t0, t1);
1089         tcg_gen_andc_i64(vf_64, vf_64, tmp);
1090         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
1091 
1092         tcg_gen_mov_i64(dest, result);
1093     } else {
1094         TCGv_i32 t0_32 = tcg_temp_new_i32();
1095         TCGv_i32 t1_32 = tcg_temp_new_i32();
1096         TCGv_i32 tmp = tcg_temp_new_i32();
1097         TCGv_i32 zero = tcg_constant_i32(0);
1098 
1099         tcg_gen_extrl_i64_i32(t0_32, t0);
1100         tcg_gen_extrl_i64_i32(t1_32, t1);
1101         tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
1102         tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
1103 
1104         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1105         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1106         tcg_gen_xor_i32(tmp, t0_32, t1_32);
1107         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
1108         tcg_gen_extu_i32_i64(dest, cpu_NF);
1109     }
1110 }
1111 
1112 /*
1113  * Load/Store generators
1114  */
1115 
1116 /*
1117  * Store from GPR register to memory.
1118  */
1119 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
1120                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
1121                              bool iss_valid,
1122                              unsigned int iss_srt,
1123                              bool iss_sf, bool iss_ar)
1124 {
1125     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
1126 
1127     if (iss_valid) {
1128         uint32_t syn;
1129 
1130         syn = syn_data_abort_with_iss(0,
1131                                       (memop & MO_SIZE),
1132                                       false,
1133                                       iss_srt,
1134                                       iss_sf,
1135                                       iss_ar,
1136                                       0, 0, 0, 0, 0, false);
1137         disas_set_insn_syndrome(s, syn);
1138     }
1139 }
1140 
1141 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
1142                       TCGv_i64 tcg_addr, MemOp memop,
1143                       bool iss_valid,
1144                       unsigned int iss_srt,
1145                       bool iss_sf, bool iss_ar)
1146 {
1147     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
1148                      iss_valid, iss_srt, iss_sf, iss_ar);
1149 }
1150 
1151 /*
1152  * Load from memory to GPR register
1153  */
1154 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1155                              MemOp memop, bool extend, int memidx,
1156                              bool iss_valid, unsigned int iss_srt,
1157                              bool iss_sf, bool iss_ar)
1158 {
1159     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1160 
1161     if (extend && (memop & MO_SIGN)) {
1162         g_assert((memop & MO_SIZE) <= MO_32);
1163         tcg_gen_ext32u_i64(dest, dest);
1164     }
1165 
1166     if (iss_valid) {
1167         uint32_t syn;
1168 
1169         syn = syn_data_abort_with_iss(0,
1170                                       (memop & MO_SIZE),
1171                                       (memop & MO_SIGN) != 0,
1172                                       iss_srt,
1173                                       iss_sf,
1174                                       iss_ar,
1175                                       0, 0, 0, 0, 0, false);
1176         disas_set_insn_syndrome(s, syn);
1177     }
1178 }
1179 
1180 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1181                       MemOp memop, bool extend,
1182                       bool iss_valid, unsigned int iss_srt,
1183                       bool iss_sf, bool iss_ar)
1184 {
1185     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1186                      iss_valid, iss_srt, iss_sf, iss_ar);
1187 }
1188 
1189 /*
1190  * Store from FP register to memory
1191  */
1192 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1193 {
1194     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1195     TCGv_i64 tmplo = tcg_temp_new_i64();
1196 
1197     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1198 
1199     if ((mop & MO_SIZE) < MO_128) {
1200         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1201     } else {
1202         TCGv_i64 tmphi = tcg_temp_new_i64();
1203         TCGv_i128 t16 = tcg_temp_new_i128();
1204 
1205         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1206         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1207 
1208         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1209     }
1210 }
1211 
1212 /*
1213  * Load from memory to FP register
1214  */
1215 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1216 {
1217     /* This always zero-extends and writes to a full 128 bit wide vector */
1218     TCGv_i64 tmplo = tcg_temp_new_i64();
1219     TCGv_i64 tmphi = NULL;
1220 
1221     if ((mop & MO_SIZE) < MO_128) {
1222         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1223     } else {
1224         TCGv_i128 t16 = tcg_temp_new_i128();
1225 
1226         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1227 
1228         tmphi = tcg_temp_new_i64();
1229         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1230     }
1231 
1232     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1233 
1234     if (tmphi) {
1235         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1236     }
1237     clear_vec_high(s, tmphi != NULL, destidx);
1238 }
1239 
1240 /*
1241  * Vector load/store helpers.
1242  *
1243  * The principal difference between this and a FP load is that we don't
1244  * zero extend as we are filling a partial chunk of the vector register.
1245  * These functions don't support 128 bit loads/stores, which would be
1246  * normal load/store operations.
1247  *
1248  * The _i32 versions are useful when operating on 32 bit quantities
1249  * (eg for floating point single or using Neon helper functions).
1250  */
1251 
1252 /* Get value of an element within a vector register */
1253 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1254                              int element, MemOp memop)
1255 {
1256     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1257     switch ((unsigned)memop) {
1258     case MO_8:
1259         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1260         break;
1261     case MO_16:
1262         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1263         break;
1264     case MO_32:
1265         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1266         break;
1267     case MO_8|MO_SIGN:
1268         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1269         break;
1270     case MO_16|MO_SIGN:
1271         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1272         break;
1273     case MO_32|MO_SIGN:
1274         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1275         break;
1276     case MO_64:
1277     case MO_64|MO_SIGN:
1278         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1279         break;
1280     default:
1281         g_assert_not_reached();
1282     }
1283 }
1284 
1285 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1286                                  int element, MemOp memop)
1287 {
1288     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1289     switch (memop) {
1290     case MO_8:
1291         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1292         break;
1293     case MO_16:
1294         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1295         break;
1296     case MO_8|MO_SIGN:
1297         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1298         break;
1299     case MO_16|MO_SIGN:
1300         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1301         break;
1302     case MO_32:
1303     case MO_32|MO_SIGN:
1304         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1305         break;
1306     default:
1307         g_assert_not_reached();
1308     }
1309 }
1310 
1311 /* Set value of an element within a vector register */
1312 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1313                               int element, MemOp memop)
1314 {
1315     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1316     switch (memop) {
1317     case MO_8:
1318         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1319         break;
1320     case MO_16:
1321         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1322         break;
1323     case MO_32:
1324         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1325         break;
1326     case MO_64:
1327         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1328         break;
1329     default:
1330         g_assert_not_reached();
1331     }
1332 }
1333 
1334 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1335                                   int destidx, int element, MemOp memop)
1336 {
1337     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1338     switch (memop) {
1339     case MO_8:
1340         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1341         break;
1342     case MO_16:
1343         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1344         break;
1345     case MO_32:
1346         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1347         break;
1348     default:
1349         g_assert_not_reached();
1350     }
1351 }
1352 
1353 /* Store from vector register to memory */
1354 static void do_vec_st(DisasContext *s, int srcidx, int element,
1355                       TCGv_i64 tcg_addr, MemOp mop)
1356 {
1357     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1358 
1359     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1360     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1361 }
1362 
1363 /* Load from memory to vector register */
1364 static void do_vec_ld(DisasContext *s, int destidx, int element,
1365                       TCGv_i64 tcg_addr, MemOp mop)
1366 {
1367     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1368 
1369     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1370     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1371 }
1372 
1373 /* Check that FP/Neon access is enabled. If it is, return
1374  * true. If not, emit code to generate an appropriate exception,
1375  * and return false; the caller should not emit any code for
1376  * the instruction. Note that this check must happen after all
1377  * unallocated-encoding checks (otherwise the syndrome information
1378  * for the resulting exception will be incorrect).
1379  */
1380 static bool fp_access_check_only(DisasContext *s)
1381 {
1382     if (s->fp_excp_el) {
1383         assert(!s->fp_access_checked);
1384         s->fp_access_checked = -1;
1385 
1386         gen_exception_insn_el(s, 0, EXCP_UDEF,
1387                               syn_fp_access_trap(1, 0xe, false, 0),
1388                               s->fp_excp_el);
1389         return false;
1390     }
1391     s->fp_access_checked = 1;
1392     return true;
1393 }
1394 
1395 static bool fp_access_check(DisasContext *s)
1396 {
1397     if (!fp_access_check_only(s)) {
1398         return false;
1399     }
1400     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1401         gen_exception_insn(s, 0, EXCP_UDEF,
1402                            syn_smetrap(SME_ET_Streaming, false));
1403         return false;
1404     }
1405     return true;
1406 }
1407 
1408 /*
1409  * Return <0 for non-supported element sizes, with MO_16 controlled by
1410  * FEAT_FP16; return 0 for fp disabled; otherwise return >0 for success.
1411  */
1412 static int fp_access_check_scalar_hsd(DisasContext *s, MemOp esz)
1413 {
1414     switch (esz) {
1415     case MO_64:
1416     case MO_32:
1417         break;
1418     case MO_16:
1419         if (!dc_isar_feature(aa64_fp16, s)) {
1420             return -1;
1421         }
1422         break;
1423     default:
1424         return -1;
1425     }
1426     return fp_access_check(s);
1427 }
1428 
1429 /* Likewise, but vector MO_64 must have two elements. */
1430 static int fp_access_check_vector_hsd(DisasContext *s, bool is_q, MemOp esz)
1431 {
1432     switch (esz) {
1433     case MO_64:
1434         if (!is_q) {
1435             return -1;
1436         }
1437         break;
1438     case MO_32:
1439         break;
1440     case MO_16:
1441         if (!dc_isar_feature(aa64_fp16, s)) {
1442             return -1;
1443         }
1444         break;
1445     default:
1446         return -1;
1447     }
1448     return fp_access_check(s);
1449 }
1450 
1451 /*
1452  * Check that SVE access is enabled.  If it is, return true.
1453  * If not, emit code to generate an appropriate exception and return false.
1454  * This function corresponds to CheckSVEEnabled().
1455  */
1456 bool sve_access_check(DisasContext *s)
1457 {
1458     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1459         bool ret;
1460 
1461         assert(dc_isar_feature(aa64_sme, s));
1462         ret = sme_sm_enabled_check(s);
1463         s->sve_access_checked = (ret ? 1 : -1);
1464         return ret;
1465     }
1466     if (s->sve_excp_el) {
1467         /* Assert that we only raise one exception per instruction. */
1468         assert(!s->sve_access_checked);
1469         gen_exception_insn_el(s, 0, EXCP_UDEF,
1470                               syn_sve_access_trap(), s->sve_excp_el);
1471         s->sve_access_checked = -1;
1472         return false;
1473     }
1474     s->sve_access_checked = 1;
1475     return fp_access_check(s);
1476 }
1477 
1478 /*
1479  * Check that SME access is enabled, raise an exception if not.
1480  * Note that this function corresponds to CheckSMEAccess and is
1481  * only used directly for cpregs.
1482  */
1483 static bool sme_access_check(DisasContext *s)
1484 {
1485     if (s->sme_excp_el) {
1486         gen_exception_insn_el(s, 0, EXCP_UDEF,
1487                               syn_smetrap(SME_ET_AccessTrap, false),
1488                               s->sme_excp_el);
1489         return false;
1490     }
1491     return true;
1492 }
1493 
1494 /* This function corresponds to CheckSMEEnabled. */
1495 bool sme_enabled_check(DisasContext *s)
1496 {
1497     /*
1498      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1499      * to be zero when fp_excp_el has priority.  This is because we need
1500      * sme_excp_el by itself for cpregs access checks.
1501      */
1502     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1503         bool ret = sme_access_check(s);
1504         s->fp_access_checked = (ret ? 1 : -1);
1505         return ret;
1506     }
1507     return fp_access_check_only(s);
1508 }
1509 
1510 /* Common subroutine for CheckSMEAnd*Enabled. */
1511 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1512 {
1513     if (!sme_enabled_check(s)) {
1514         return false;
1515     }
1516     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1517         gen_exception_insn(s, 0, EXCP_UDEF,
1518                            syn_smetrap(SME_ET_NotStreaming, false));
1519         return false;
1520     }
1521     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1522         gen_exception_insn(s, 0, EXCP_UDEF,
1523                            syn_smetrap(SME_ET_InactiveZA, false));
1524         return false;
1525     }
1526     return true;
1527 }
1528 
1529 /*
1530  * Expanders for AdvSIMD translation functions.
1531  */
1532 
1533 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1534                             gen_helper_gvec_2 *fn)
1535 {
1536     if (!a->q && a->esz == MO_64) {
1537         return false;
1538     }
1539     if (fp_access_check(s)) {
1540         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1541     }
1542     return true;
1543 }
1544 
1545 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1546                             gen_helper_gvec_3 *fn)
1547 {
1548     if (!a->q && a->esz == MO_64) {
1549         return false;
1550     }
1551     if (fp_access_check(s)) {
1552         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1553     }
1554     return true;
1555 }
1556 
1557 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1558 {
1559     if (!a->q && a->esz == MO_64) {
1560         return false;
1561     }
1562     if (fp_access_check(s)) {
1563         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1564     }
1565     return true;
1566 }
1567 
1568 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1569 {
1570     if (a->esz == MO_64) {
1571         return false;
1572     }
1573     if (fp_access_check(s)) {
1574         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1575     }
1576     return true;
1577 }
1578 
1579 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1580 {
1581     if (a->esz == MO_8) {
1582         return false;
1583     }
1584     return do_gvec_fn3_no64(s, a, fn);
1585 }
1586 
1587 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1588 {
1589     if (!a->q && a->esz == MO_64) {
1590         return false;
1591     }
1592     if (fp_access_check(s)) {
1593         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1594     }
1595     return true;
1596 }
1597 
1598 /*
1599  * This utility function is for doing register extension with an
1600  * optional shift. You will likely want to pass a temporary for the
1601  * destination register. See DecodeRegExtend() in the ARM ARM.
1602  */
1603 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1604                               int option, unsigned int shift)
1605 {
1606     int extsize = extract32(option, 0, 2);
1607     bool is_signed = extract32(option, 2, 1);
1608 
1609     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1610     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1611 }
1612 
1613 static inline void gen_check_sp_alignment(DisasContext *s)
1614 {
1615     /* The AArch64 architecture mandates that (if enabled via PSTATE
1616      * or SCTLR bits) there is a check that SP is 16-aligned on every
1617      * SP-relative load or store (with an exception generated if it is not).
1618      * In line with general QEMU practice regarding misaligned accesses,
1619      * we omit these checks for the sake of guest program performance.
1620      * This function is provided as a hook so we can more easily add these
1621      * checks in future (possibly as a "favour catching guest program bugs
1622      * over speed" user selectable option).
1623      */
1624 }
1625 
1626 /*
1627  * The instruction disassembly implemented here matches
1628  * the instruction encoding classifications in chapter C4
1629  * of the ARM Architecture Reference Manual (DDI0487B_a);
1630  * classification names and decode diagrams here should generally
1631  * match up with those in the manual.
1632  */
1633 
1634 static bool trans_B(DisasContext *s, arg_i *a)
1635 {
1636     reset_btype(s);
1637     gen_goto_tb(s, 0, a->imm);
1638     return true;
1639 }
1640 
1641 static bool trans_BL(DisasContext *s, arg_i *a)
1642 {
1643     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1644     reset_btype(s);
1645     gen_goto_tb(s, 0, a->imm);
1646     return true;
1647 }
1648 
1649 
1650 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1651 {
1652     DisasLabel match;
1653     TCGv_i64 tcg_cmp;
1654 
1655     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1656     reset_btype(s);
1657 
1658     match = gen_disas_label(s);
1659     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1660                         tcg_cmp, 0, match.label);
1661     gen_goto_tb(s, 0, 4);
1662     set_disas_label(s, match);
1663     gen_goto_tb(s, 1, a->imm);
1664     return true;
1665 }
1666 
1667 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1668 {
1669     DisasLabel match;
1670     TCGv_i64 tcg_cmp;
1671 
1672     tcg_cmp = tcg_temp_new_i64();
1673     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1674 
1675     reset_btype(s);
1676 
1677     match = gen_disas_label(s);
1678     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1679                         tcg_cmp, 0, match.label);
1680     gen_goto_tb(s, 0, 4);
1681     set_disas_label(s, match);
1682     gen_goto_tb(s, 1, a->imm);
1683     return true;
1684 }
1685 
1686 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1687 {
1688     /* BC.cond is only present with FEAT_HBC */
1689     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1690         return false;
1691     }
1692     reset_btype(s);
1693     if (a->cond < 0x0e) {
1694         /* genuinely conditional branches */
1695         DisasLabel match = gen_disas_label(s);
1696         arm_gen_test_cc(a->cond, match.label);
1697         gen_goto_tb(s, 0, 4);
1698         set_disas_label(s, match);
1699         gen_goto_tb(s, 1, a->imm);
1700     } else {
1701         /* 0xe and 0xf are both "always" conditions */
1702         gen_goto_tb(s, 0, a->imm);
1703     }
1704     return true;
1705 }
1706 
1707 static void set_btype_for_br(DisasContext *s, int rn)
1708 {
1709     if (dc_isar_feature(aa64_bti, s)) {
1710         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1711         if (rn == 16 || rn == 17) {
1712             set_btype(s, 1);
1713         } else {
1714             TCGv_i64 pc = tcg_temp_new_i64();
1715             gen_pc_plus_diff(s, pc, 0);
1716             gen_helper_guarded_page_br(tcg_env, pc);
1717             s->btype = -1;
1718         }
1719     }
1720 }
1721 
1722 static void set_btype_for_blr(DisasContext *s)
1723 {
1724     if (dc_isar_feature(aa64_bti, s)) {
1725         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1726         set_btype(s, 2);
1727     }
1728 }
1729 
1730 static bool trans_BR(DisasContext *s, arg_r *a)
1731 {
1732     set_btype_for_br(s, a->rn);
1733     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1734     s->base.is_jmp = DISAS_JUMP;
1735     return true;
1736 }
1737 
1738 static bool trans_BLR(DisasContext *s, arg_r *a)
1739 {
1740     TCGv_i64 dst = cpu_reg(s, a->rn);
1741     TCGv_i64 lr = cpu_reg(s, 30);
1742     if (dst == lr) {
1743         TCGv_i64 tmp = tcg_temp_new_i64();
1744         tcg_gen_mov_i64(tmp, dst);
1745         dst = tmp;
1746     }
1747     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1748     gen_a64_set_pc(s, dst);
1749     set_btype_for_blr(s);
1750     s->base.is_jmp = DISAS_JUMP;
1751     return true;
1752 }
1753 
1754 static bool trans_RET(DisasContext *s, arg_r *a)
1755 {
1756     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1757     s->base.is_jmp = DISAS_JUMP;
1758     return true;
1759 }
1760 
1761 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1762                                    TCGv_i64 modifier, bool use_key_a)
1763 {
1764     TCGv_i64 truedst;
1765     /*
1766      * Return the branch target for a BRAA/RETA/etc, which is either
1767      * just the destination dst, or that value with the pauth check
1768      * done and the code removed from the high bits.
1769      */
1770     if (!s->pauth_active) {
1771         return dst;
1772     }
1773 
1774     truedst = tcg_temp_new_i64();
1775     if (use_key_a) {
1776         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1777     } else {
1778         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1779     }
1780     return truedst;
1781 }
1782 
1783 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1784 {
1785     TCGv_i64 dst;
1786 
1787     if (!dc_isar_feature(aa64_pauth, s)) {
1788         return false;
1789     }
1790 
1791     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1792     set_btype_for_br(s, a->rn);
1793     gen_a64_set_pc(s, dst);
1794     s->base.is_jmp = DISAS_JUMP;
1795     return true;
1796 }
1797 
1798 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1799 {
1800     TCGv_i64 dst, lr;
1801 
1802     if (!dc_isar_feature(aa64_pauth, s)) {
1803         return false;
1804     }
1805 
1806     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1807     lr = cpu_reg(s, 30);
1808     if (dst == lr) {
1809         TCGv_i64 tmp = tcg_temp_new_i64();
1810         tcg_gen_mov_i64(tmp, dst);
1811         dst = tmp;
1812     }
1813     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1814     gen_a64_set_pc(s, dst);
1815     set_btype_for_blr(s);
1816     s->base.is_jmp = DISAS_JUMP;
1817     return true;
1818 }
1819 
1820 static bool trans_RETA(DisasContext *s, arg_reta *a)
1821 {
1822     TCGv_i64 dst;
1823 
1824     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1825     gen_a64_set_pc(s, dst);
1826     s->base.is_jmp = DISAS_JUMP;
1827     return true;
1828 }
1829 
1830 static bool trans_BRA(DisasContext *s, arg_bra *a)
1831 {
1832     TCGv_i64 dst;
1833 
1834     if (!dc_isar_feature(aa64_pauth, s)) {
1835         return false;
1836     }
1837     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1838     gen_a64_set_pc(s, dst);
1839     set_btype_for_br(s, a->rn);
1840     s->base.is_jmp = DISAS_JUMP;
1841     return true;
1842 }
1843 
1844 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1845 {
1846     TCGv_i64 dst, lr;
1847 
1848     if (!dc_isar_feature(aa64_pauth, s)) {
1849         return false;
1850     }
1851     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1852     lr = cpu_reg(s, 30);
1853     if (dst == lr) {
1854         TCGv_i64 tmp = tcg_temp_new_i64();
1855         tcg_gen_mov_i64(tmp, dst);
1856         dst = tmp;
1857     }
1858     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1859     gen_a64_set_pc(s, dst);
1860     set_btype_for_blr(s);
1861     s->base.is_jmp = DISAS_JUMP;
1862     return true;
1863 }
1864 
1865 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1866 {
1867     TCGv_i64 dst;
1868 
1869     if (s->current_el == 0) {
1870         return false;
1871     }
1872     if (s->trap_eret) {
1873         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1874         return true;
1875     }
1876     dst = tcg_temp_new_i64();
1877     tcg_gen_ld_i64(dst, tcg_env,
1878                    offsetof(CPUARMState, elr_el[s->current_el]));
1879 
1880     translator_io_start(&s->base);
1881 
1882     gen_helper_exception_return(tcg_env, dst);
1883     /* Must exit loop to check un-masked IRQs */
1884     s->base.is_jmp = DISAS_EXIT;
1885     return true;
1886 }
1887 
1888 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1889 {
1890     TCGv_i64 dst;
1891 
1892     if (!dc_isar_feature(aa64_pauth, s)) {
1893         return false;
1894     }
1895     if (s->current_el == 0) {
1896         return false;
1897     }
1898     /* The FGT trap takes precedence over an auth trap. */
1899     if (s->trap_eret) {
1900         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1901         return true;
1902     }
1903     dst = tcg_temp_new_i64();
1904     tcg_gen_ld_i64(dst, tcg_env,
1905                    offsetof(CPUARMState, elr_el[s->current_el]));
1906 
1907     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1908 
1909     translator_io_start(&s->base);
1910 
1911     gen_helper_exception_return(tcg_env, dst);
1912     /* Must exit loop to check un-masked IRQs */
1913     s->base.is_jmp = DISAS_EXIT;
1914     return true;
1915 }
1916 
1917 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1918 {
1919     return true;
1920 }
1921 
1922 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1923 {
1924     /*
1925      * When running in MTTCG we don't generate jumps to the yield and
1926      * WFE helpers as it won't affect the scheduling of other vCPUs.
1927      * If we wanted to more completely model WFE/SEV so we don't busy
1928      * spin unnecessarily we would need to do something more involved.
1929      */
1930     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1931         s->base.is_jmp = DISAS_YIELD;
1932     }
1933     return true;
1934 }
1935 
1936 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1937 {
1938     s->base.is_jmp = DISAS_WFI;
1939     return true;
1940 }
1941 
1942 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1943 {
1944     /*
1945      * When running in MTTCG we don't generate jumps to the yield and
1946      * WFE helpers as it won't affect the scheduling of other vCPUs.
1947      * If we wanted to more completely model WFE/SEV so we don't busy
1948      * spin unnecessarily we would need to do something more involved.
1949      */
1950     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1951         s->base.is_jmp = DISAS_WFE;
1952     }
1953     return true;
1954 }
1955 
1956 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1957 {
1958     if (!dc_isar_feature(aa64_wfxt, s)) {
1959         return false;
1960     }
1961 
1962     /*
1963      * Because we need to pass the register value to the helper,
1964      * it's easier to emit the code now, unlike trans_WFI which
1965      * defers it to aarch64_tr_tb_stop(). That means we need to
1966      * check ss_active so that single-stepping a WFIT doesn't halt.
1967      */
1968     if (s->ss_active) {
1969         /* Act like a NOP under architectural singlestep */
1970         return true;
1971     }
1972 
1973     gen_a64_update_pc(s, 4);
1974     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1975     /* Go back to the main loop to check for interrupts */
1976     s->base.is_jmp = DISAS_EXIT;
1977     return true;
1978 }
1979 
1980 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1981 {
1982     if (!dc_isar_feature(aa64_wfxt, s)) {
1983         return false;
1984     }
1985 
1986     /*
1987      * We rely here on our WFE implementation being a NOP, so we
1988      * don't need to do anything different to handle the WFET timeout
1989      * from what trans_WFE does.
1990      */
1991     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1992         s->base.is_jmp = DISAS_WFE;
1993     }
1994     return true;
1995 }
1996 
1997 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1998 {
1999     if (s->pauth_active) {
2000         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
2001     }
2002     return true;
2003 }
2004 
2005 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
2006 {
2007     if (s->pauth_active) {
2008         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2009     }
2010     return true;
2011 }
2012 
2013 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
2014 {
2015     if (s->pauth_active) {
2016         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2017     }
2018     return true;
2019 }
2020 
2021 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
2022 {
2023     if (s->pauth_active) {
2024         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2025     }
2026     return true;
2027 }
2028 
2029 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
2030 {
2031     if (s->pauth_active) {
2032         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2033     }
2034     return true;
2035 }
2036 
2037 static bool trans_ESB(DisasContext *s, arg_ESB *a)
2038 {
2039     /* Without RAS, we must implement this as NOP. */
2040     if (dc_isar_feature(aa64_ras, s)) {
2041         /*
2042          * QEMU does not have a source of physical SErrors,
2043          * so we are only concerned with virtual SErrors.
2044          * The pseudocode in the ARM for this case is
2045          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
2046          *      AArch64.vESBOperation();
2047          * Most of the condition can be evaluated at translation time.
2048          * Test for EL2 present, and defer test for SEL2 to runtime.
2049          */
2050         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
2051             gen_helper_vesb(tcg_env);
2052         }
2053     }
2054     return true;
2055 }
2056 
2057 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
2058 {
2059     if (s->pauth_active) {
2060         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2061     }
2062     return true;
2063 }
2064 
2065 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
2066 {
2067     if (s->pauth_active) {
2068         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2069     }
2070     return true;
2071 }
2072 
2073 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
2074 {
2075     if (s->pauth_active) {
2076         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2077     }
2078     return true;
2079 }
2080 
2081 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
2082 {
2083     if (s->pauth_active) {
2084         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2085     }
2086     return true;
2087 }
2088 
2089 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
2090 {
2091     if (s->pauth_active) {
2092         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2093     }
2094     return true;
2095 }
2096 
2097 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
2098 {
2099     if (s->pauth_active) {
2100         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2101     }
2102     return true;
2103 }
2104 
2105 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
2106 {
2107     if (s->pauth_active) {
2108         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2109     }
2110     return true;
2111 }
2112 
2113 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
2114 {
2115     if (s->pauth_active) {
2116         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2117     }
2118     return true;
2119 }
2120 
2121 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
2122 {
2123     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2124     return true;
2125 }
2126 
2127 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
2128 {
2129     /* We handle DSB and DMB the same way */
2130     TCGBar bar;
2131 
2132     switch (a->types) {
2133     case 1: /* MBReqTypes_Reads */
2134         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
2135         break;
2136     case 2: /* MBReqTypes_Writes */
2137         bar = TCG_BAR_SC | TCG_MO_ST_ST;
2138         break;
2139     default: /* MBReqTypes_All */
2140         bar = TCG_BAR_SC | TCG_MO_ALL;
2141         break;
2142     }
2143     tcg_gen_mb(bar);
2144     return true;
2145 }
2146 
2147 static bool trans_DSB_nXS(DisasContext *s, arg_DSB_nXS *a)
2148 {
2149     if (!dc_isar_feature(aa64_xs, s)) {
2150         return false;
2151     }
2152     tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
2153     return true;
2154 }
2155 
2156 static bool trans_ISB(DisasContext *s, arg_ISB *a)
2157 {
2158     /*
2159      * We need to break the TB after this insn to execute
2160      * self-modifying code correctly and also to take
2161      * any pending interrupts immediately.
2162      */
2163     reset_btype(s);
2164     gen_goto_tb(s, 0, 4);
2165     return true;
2166 }
2167 
2168 static bool trans_SB(DisasContext *s, arg_SB *a)
2169 {
2170     if (!dc_isar_feature(aa64_sb, s)) {
2171         return false;
2172     }
2173     /*
2174      * TODO: There is no speculation barrier opcode for TCG;
2175      * MB and end the TB instead.
2176      */
2177     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
2178     gen_goto_tb(s, 0, 4);
2179     return true;
2180 }
2181 
2182 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
2183 {
2184     if (!dc_isar_feature(aa64_condm_4, s)) {
2185         return false;
2186     }
2187     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
2188     return true;
2189 }
2190 
2191 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
2192 {
2193     TCGv_i32 z;
2194 
2195     if (!dc_isar_feature(aa64_condm_5, s)) {
2196         return false;
2197     }
2198 
2199     z = tcg_temp_new_i32();
2200 
2201     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
2202 
2203     /*
2204      * (!C & !Z) << 31
2205      * (!(C | Z)) << 31
2206      * ~((C | Z) << 31)
2207      * ~-(C | Z)
2208      * (C | Z) - 1
2209      */
2210     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2211     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2212 
2213     /* !(Z & C) */
2214     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2215     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2216 
2217     /* (!C & Z) << 31 -> -(Z & ~C) */
2218     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2219     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2220 
2221     /* C | Z */
2222     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2223 
2224     return true;
2225 }
2226 
2227 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2228 {
2229     if (!dc_isar_feature(aa64_condm_5, s)) {
2230         return false;
2231     }
2232 
2233     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2234     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2235 
2236     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2237     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2238 
2239     tcg_gen_movi_i32(cpu_NF, 0);
2240     tcg_gen_movi_i32(cpu_VF, 0);
2241 
2242     return true;
2243 }
2244 
2245 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2246 {
2247     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2248         return false;
2249     }
2250     if (a->imm & 1) {
2251         set_pstate_bits(PSTATE_UAO);
2252     } else {
2253         clear_pstate_bits(PSTATE_UAO);
2254     }
2255     gen_rebuild_hflags(s);
2256     s->base.is_jmp = DISAS_TOO_MANY;
2257     return true;
2258 }
2259 
2260 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2261 {
2262     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2263         return false;
2264     }
2265     if (a->imm & 1) {
2266         set_pstate_bits(PSTATE_PAN);
2267     } else {
2268         clear_pstate_bits(PSTATE_PAN);
2269     }
2270     gen_rebuild_hflags(s);
2271     s->base.is_jmp = DISAS_TOO_MANY;
2272     return true;
2273 }
2274 
2275 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2276 {
2277     if (s->current_el == 0) {
2278         return false;
2279     }
2280     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2281     s->base.is_jmp = DISAS_TOO_MANY;
2282     return true;
2283 }
2284 
2285 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2286 {
2287     if (!dc_isar_feature(aa64_ssbs, s)) {
2288         return false;
2289     }
2290     if (a->imm & 1) {
2291         set_pstate_bits(PSTATE_SSBS);
2292     } else {
2293         clear_pstate_bits(PSTATE_SSBS);
2294     }
2295     /* Don't need to rebuild hflags since SSBS is a nop */
2296     s->base.is_jmp = DISAS_TOO_MANY;
2297     return true;
2298 }
2299 
2300 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2301 {
2302     if (!dc_isar_feature(aa64_dit, s)) {
2303         return false;
2304     }
2305     if (a->imm & 1) {
2306         set_pstate_bits(PSTATE_DIT);
2307     } else {
2308         clear_pstate_bits(PSTATE_DIT);
2309     }
2310     /* There's no need to rebuild hflags because DIT is a nop */
2311     s->base.is_jmp = DISAS_TOO_MANY;
2312     return true;
2313 }
2314 
2315 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2316 {
2317     if (dc_isar_feature(aa64_mte, s)) {
2318         /* Full MTE is enabled -- set the TCO bit as directed. */
2319         if (a->imm & 1) {
2320             set_pstate_bits(PSTATE_TCO);
2321         } else {
2322             clear_pstate_bits(PSTATE_TCO);
2323         }
2324         gen_rebuild_hflags(s);
2325         /* Many factors, including TCO, go into MTE_ACTIVE. */
2326         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2327         return true;
2328     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2329         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2330         return true;
2331     } else {
2332         /* Insn not present */
2333         return false;
2334     }
2335 }
2336 
2337 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2338 {
2339     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2340     s->base.is_jmp = DISAS_TOO_MANY;
2341     return true;
2342 }
2343 
2344 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2345 {
2346     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2347     /* Exit the cpu loop to re-evaluate pending IRQs. */
2348     s->base.is_jmp = DISAS_UPDATE_EXIT;
2349     return true;
2350 }
2351 
2352 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2353 {
2354     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2355         return false;
2356     }
2357 
2358     if (a->imm == 0) {
2359         clear_pstate_bits(PSTATE_ALLINT);
2360     } else if (s->current_el > 1) {
2361         set_pstate_bits(PSTATE_ALLINT);
2362     } else {
2363         gen_helper_msr_set_allint_el1(tcg_env);
2364     }
2365 
2366     /* Exit the cpu loop to re-evaluate pending IRQs. */
2367     s->base.is_jmp = DISAS_UPDATE_EXIT;
2368     return true;
2369 }
2370 
2371 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2372 {
2373     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2374         return false;
2375     }
2376     if (sme_access_check(s)) {
2377         int old = s->pstate_sm | (s->pstate_za << 1);
2378         int new = a->imm * 3;
2379 
2380         if ((old ^ new) & a->mask) {
2381             /* At least one bit changes. */
2382             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2383                                 tcg_constant_i32(a->mask));
2384             s->base.is_jmp = DISAS_TOO_MANY;
2385         }
2386     }
2387     return true;
2388 }
2389 
2390 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2391 {
2392     TCGv_i32 tmp = tcg_temp_new_i32();
2393     TCGv_i32 nzcv = tcg_temp_new_i32();
2394 
2395     /* build bit 31, N */
2396     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2397     /* build bit 30, Z */
2398     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2399     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2400     /* build bit 29, C */
2401     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2402     /* build bit 28, V */
2403     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2404     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2405     /* generate result */
2406     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2407 }
2408 
2409 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2410 {
2411     TCGv_i32 nzcv = tcg_temp_new_i32();
2412 
2413     /* take NZCV from R[t] */
2414     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2415 
2416     /* bit 31, N */
2417     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2418     /* bit 30, Z */
2419     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2420     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2421     /* bit 29, C */
2422     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2423     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2424     /* bit 28, V */
2425     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2426     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2427 }
2428 
2429 static void gen_sysreg_undef(DisasContext *s, bool isread,
2430                              uint8_t op0, uint8_t op1, uint8_t op2,
2431                              uint8_t crn, uint8_t crm, uint8_t rt)
2432 {
2433     /*
2434      * Generate code to emit an UNDEF with correct syndrome
2435      * information for a failed system register access.
2436      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2437      * but if FEAT_IDST is implemented then read accesses to registers
2438      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2439      * syndrome.
2440      */
2441     uint32_t syndrome;
2442 
2443     if (isread && dc_isar_feature(aa64_ids, s) &&
2444         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2445         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2446     } else {
2447         syndrome = syn_uncategorized();
2448     }
2449     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2450 }
2451 
2452 /* MRS - move from system register
2453  * MSR (register) - move to system register
2454  * SYS
2455  * SYSL
2456  * These are all essentially the same insn in 'read' and 'write'
2457  * versions, with varying op0 fields.
2458  */
2459 static void handle_sys(DisasContext *s, bool isread,
2460                        unsigned int op0, unsigned int op1, unsigned int op2,
2461                        unsigned int crn, unsigned int crm, unsigned int rt)
2462 {
2463     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2464                                       crn, crm, op0, op1, op2);
2465     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2466     bool need_exit_tb = false;
2467     bool nv_trap_to_el2 = false;
2468     bool nv_redirect_reg = false;
2469     bool skip_fp_access_checks = false;
2470     bool nv2_mem_redirect = false;
2471     TCGv_ptr tcg_ri = NULL;
2472     TCGv_i64 tcg_rt;
2473     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2474 
2475     if (crn == 11 || crn == 15) {
2476         /*
2477          * Check for TIDCP trap, which must take precedence over
2478          * the UNDEF for "no such register" etc.
2479          */
2480         switch (s->current_el) {
2481         case 0:
2482             if (dc_isar_feature(aa64_tidcp1, s)) {
2483                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2484             }
2485             break;
2486         case 1:
2487             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2488             break;
2489         }
2490     }
2491 
2492     if (!ri) {
2493         /* Unknown register; this might be a guest error or a QEMU
2494          * unimplemented feature.
2495          */
2496         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2497                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2498                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2499         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2500         return;
2501     }
2502 
2503     if (s->nv2 && ri->nv2_redirect_offset) {
2504         /*
2505          * Some registers always redirect to memory; some only do so if
2506          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2507          * pairs which share an offset; see the table in R_CSRPQ).
2508          */
2509         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2510             nv2_mem_redirect = s->nv1;
2511         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2512             nv2_mem_redirect = !s->nv1;
2513         } else {
2514             nv2_mem_redirect = true;
2515         }
2516     }
2517 
2518     /* Check access permissions */
2519     if (!cp_access_ok(s->current_el, ri, isread)) {
2520         /*
2521          * FEAT_NV/NV2 handling does not do the usual FP access checks
2522          * for registers only accessible at EL2 (though it *does* do them
2523          * for registers accessible at EL1).
2524          */
2525         skip_fp_access_checks = true;
2526         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2527             /*
2528              * This is one of the few EL2 registers which should redirect
2529              * to the equivalent EL1 register. We do that after running
2530              * the EL2 register's accessfn.
2531              */
2532             nv_redirect_reg = true;
2533             assert(!nv2_mem_redirect);
2534         } else if (nv2_mem_redirect) {
2535             /*
2536              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2537              * UNDEF to EL1.
2538              */
2539         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2540             /*
2541              * This register / instruction exists and is an EL2 register, so
2542              * we must trap to EL2 if accessed in nested virtualization EL1
2543              * instead of UNDEFing. We'll do that after the usual access checks.
2544              * (This makes a difference only for a couple of registers like
2545              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2546              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2547              * an accessfn which does nothing when called from EL1, because
2548              * the trap-to-EL3 controls which would apply to that register
2549              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2550              */
2551             nv_trap_to_el2 = true;
2552         } else {
2553             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2554             return;
2555         }
2556     }
2557 
2558     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2559         /* Emit code to perform further access permissions checks at
2560          * runtime; this may result in an exception.
2561          */
2562         gen_a64_update_pc(s, 0);
2563         tcg_ri = tcg_temp_new_ptr();
2564         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2565                                        tcg_constant_i32(key),
2566                                        tcg_constant_i32(syndrome),
2567                                        tcg_constant_i32(isread));
2568     } else if (ri->type & ARM_CP_RAISES_EXC) {
2569         /*
2570          * The readfn or writefn might raise an exception;
2571          * synchronize the CPU state in case it does.
2572          */
2573         gen_a64_update_pc(s, 0);
2574     }
2575 
2576     if (!skip_fp_access_checks) {
2577         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2578             return;
2579         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2580             return;
2581         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2582             return;
2583         }
2584     }
2585 
2586     if (nv_trap_to_el2) {
2587         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2588         return;
2589     }
2590 
2591     if (nv_redirect_reg) {
2592         /*
2593          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2594          * Conveniently in all cases the encoding of the EL1 register is
2595          * identical to the EL2 register except that opc1 is 0.
2596          * Get the reginfo for the EL1 register to use for the actual access.
2597          * We don't use the EL1 register's access function, and
2598          * fine-grained-traps on EL1 also do not apply here.
2599          */
2600         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2601                                  crn, crm, op0, 0, op2);
2602         ri = get_arm_cp_reginfo(s->cp_regs, key);
2603         assert(ri);
2604         assert(cp_access_ok(s->current_el, ri, isread));
2605         /*
2606          * We might not have done an update_pc earlier, so check we don't
2607          * need it. We could support this in future if necessary.
2608          */
2609         assert(!(ri->type & ARM_CP_RAISES_EXC));
2610     }
2611 
2612     if (nv2_mem_redirect) {
2613         /*
2614          * This system register is being redirected into an EL2 memory access.
2615          * This means it is not an IO operation, doesn't change hflags,
2616          * and need not end the TB, because it has no side effects.
2617          *
2618          * The access is 64-bit single copy atomic, guaranteed aligned because
2619          * of the definition of VCNR_EL2. Its endianness depends on
2620          * SCTLR_EL2.EE, not on the data endianness of EL1.
2621          * It is done under either the EL2 translation regime or the EL2&0
2622          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2623          * PSTATE.PAN is 0.
2624          */
2625         TCGv_i64 ptr = tcg_temp_new_i64();
2626         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2627         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2628         int memidx = arm_to_core_mmu_idx(armmemidx);
2629         uint32_t syn;
2630 
2631         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2632 
2633         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2634         tcg_gen_addi_i64(ptr, ptr,
2635                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2636         tcg_rt = cpu_reg(s, rt);
2637 
2638         syn = syn_data_abort_vncr(0, !isread, 0);
2639         disas_set_insn_syndrome(s, syn);
2640         if (isread) {
2641             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2642         } else {
2643             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2644         }
2645         return;
2646     }
2647 
2648     /* Handle special cases first */
2649     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2650     case 0:
2651         break;
2652     case ARM_CP_NOP:
2653         return;
2654     case ARM_CP_NZCV:
2655         tcg_rt = cpu_reg(s, rt);
2656         if (isread) {
2657             gen_get_nzcv(tcg_rt);
2658         } else {
2659             gen_set_nzcv(tcg_rt);
2660         }
2661         return;
2662     case ARM_CP_CURRENTEL:
2663     {
2664         /*
2665          * Reads as current EL value from pstate, which is
2666          * guaranteed to be constant by the tb flags.
2667          * For nested virt we should report EL2.
2668          */
2669         int el = s->nv ? 2 : s->current_el;
2670         tcg_rt = cpu_reg(s, rt);
2671         tcg_gen_movi_i64(tcg_rt, el << 2);
2672         return;
2673     }
2674     case ARM_CP_DC_ZVA:
2675         /* Writes clear the aligned block of memory which rt points into. */
2676         if (s->mte_active[0]) {
2677             int desc = 0;
2678 
2679             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2680             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2681             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2682 
2683             tcg_rt = tcg_temp_new_i64();
2684             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2685                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2686         } else {
2687             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2688         }
2689         gen_helper_dc_zva(tcg_env, tcg_rt);
2690         return;
2691     case ARM_CP_DC_GVA:
2692         {
2693             TCGv_i64 clean_addr, tag;
2694 
2695             /*
2696              * DC_GVA, like DC_ZVA, requires that we supply the original
2697              * pointer for an invalid page.  Probe that address first.
2698              */
2699             tcg_rt = cpu_reg(s, rt);
2700             clean_addr = clean_data_tbi(s, tcg_rt);
2701             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2702 
2703             if (s->ata[0]) {
2704                 /* Extract the tag from the register to match STZGM.  */
2705                 tag = tcg_temp_new_i64();
2706                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2707                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2708             }
2709         }
2710         return;
2711     case ARM_CP_DC_GZVA:
2712         {
2713             TCGv_i64 clean_addr, tag;
2714 
2715             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2716             tcg_rt = cpu_reg(s, rt);
2717             clean_addr = clean_data_tbi(s, tcg_rt);
2718             gen_helper_dc_zva(tcg_env, clean_addr);
2719 
2720             if (s->ata[0]) {
2721                 /* Extract the tag from the register to match STZGM.  */
2722                 tag = tcg_temp_new_i64();
2723                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2724                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2725             }
2726         }
2727         return;
2728     default:
2729         g_assert_not_reached();
2730     }
2731 
2732     if (ri->type & ARM_CP_IO) {
2733         /* I/O operations must end the TB here (whether read or write) */
2734         need_exit_tb = translator_io_start(&s->base);
2735     }
2736 
2737     tcg_rt = cpu_reg(s, rt);
2738 
2739     if (isread) {
2740         if (ri->type & ARM_CP_CONST) {
2741             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2742         } else if (ri->readfn) {
2743             if (!tcg_ri) {
2744                 tcg_ri = gen_lookup_cp_reg(key);
2745             }
2746             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2747         } else {
2748             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2749         }
2750     } else {
2751         if (ri->type & ARM_CP_CONST) {
2752             /* If not forbidden by access permissions, treat as WI */
2753             return;
2754         } else if (ri->writefn) {
2755             if (!tcg_ri) {
2756                 tcg_ri = gen_lookup_cp_reg(key);
2757             }
2758             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2759         } else {
2760             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2761         }
2762     }
2763 
2764     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2765         /*
2766          * A write to any coprocessor register that ends a TB
2767          * must rebuild the hflags for the next TB.
2768          */
2769         gen_rebuild_hflags(s);
2770         /*
2771          * We default to ending the TB on a coprocessor register write,
2772          * but allow this to be suppressed by the register definition
2773          * (usually only necessary to work around guest bugs).
2774          */
2775         need_exit_tb = true;
2776     }
2777     if (need_exit_tb) {
2778         s->base.is_jmp = DISAS_UPDATE_EXIT;
2779     }
2780 }
2781 
2782 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2783 {
2784     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2785     return true;
2786 }
2787 
2788 static bool trans_SVC(DisasContext *s, arg_i *a)
2789 {
2790     /*
2791      * For SVC, HVC and SMC we advance the single-step state
2792      * machine before taking the exception. This is architecturally
2793      * mandated, to ensure that single-stepping a system call
2794      * instruction works properly.
2795      */
2796     uint32_t syndrome = syn_aa64_svc(a->imm);
2797     if (s->fgt_svc) {
2798         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2799         return true;
2800     }
2801     gen_ss_advance(s);
2802     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2803     return true;
2804 }
2805 
2806 static bool trans_HVC(DisasContext *s, arg_i *a)
2807 {
2808     int target_el = s->current_el == 3 ? 3 : 2;
2809 
2810     if (s->current_el == 0) {
2811         unallocated_encoding(s);
2812         return true;
2813     }
2814     /*
2815      * The pre HVC helper handles cases when HVC gets trapped
2816      * as an undefined insn by runtime configuration.
2817      */
2818     gen_a64_update_pc(s, 0);
2819     gen_helper_pre_hvc(tcg_env);
2820     /* Architecture requires ss advance before we do the actual work */
2821     gen_ss_advance(s);
2822     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2823     return true;
2824 }
2825 
2826 static bool trans_SMC(DisasContext *s, arg_i *a)
2827 {
2828     if (s->current_el == 0) {
2829         unallocated_encoding(s);
2830         return true;
2831     }
2832     gen_a64_update_pc(s, 0);
2833     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2834     /* Architecture requires ss advance before we do the actual work */
2835     gen_ss_advance(s);
2836     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2837     return true;
2838 }
2839 
2840 static bool trans_BRK(DisasContext *s, arg_i *a)
2841 {
2842     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2843     return true;
2844 }
2845 
2846 static bool trans_HLT(DisasContext *s, arg_i *a)
2847 {
2848     /*
2849      * HLT. This has two purposes.
2850      * Architecturally, it is an external halting debug instruction.
2851      * Since QEMU doesn't implement external debug, we treat this as
2852      * it is required for halting debug disabled: it will UNDEF.
2853      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2854      */
2855     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2856         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2857     } else {
2858         unallocated_encoding(s);
2859     }
2860     return true;
2861 }
2862 
2863 /*
2864  * Load/Store exclusive instructions are implemented by remembering
2865  * the value/address loaded, and seeing if these are the same
2866  * when the store is performed. This is not actually the architecturally
2867  * mandated semantics, but it works for typical guest code sequences
2868  * and avoids having to monitor regular stores.
2869  *
2870  * The store exclusive uses the atomic cmpxchg primitives to avoid
2871  * races in multi-threaded linux-user and when MTTCG softmmu is
2872  * enabled.
2873  */
2874 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2875                                int size, bool is_pair)
2876 {
2877     int idx = get_mem_index(s);
2878     TCGv_i64 dirty_addr, clean_addr;
2879     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2880 
2881     s->is_ldex = true;
2882     dirty_addr = cpu_reg_sp(s, rn);
2883     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2884 
2885     g_assert(size <= 3);
2886     if (is_pair) {
2887         g_assert(size >= 2);
2888         if (size == 2) {
2889             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2890             if (s->be_data == MO_LE) {
2891                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2892                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2893             } else {
2894                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2895                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2896             }
2897         } else {
2898             TCGv_i128 t16 = tcg_temp_new_i128();
2899 
2900             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2901 
2902             if (s->be_data == MO_LE) {
2903                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2904                                       cpu_exclusive_high, t16);
2905             } else {
2906                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2907                                       cpu_exclusive_val, t16);
2908             }
2909             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2910             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2911         }
2912     } else {
2913         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2914         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2915     }
2916     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2917 }
2918 
2919 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2920                                 int rn, int size, int is_pair)
2921 {
2922     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2923      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2924      *     [addr] = {Rt};
2925      *     if (is_pair) {
2926      *         [addr + datasize] = {Rt2};
2927      *     }
2928      *     {Rd} = 0;
2929      * } else {
2930      *     {Rd} = 1;
2931      * }
2932      * env->exclusive_addr = -1;
2933      */
2934     TCGLabel *fail_label = gen_new_label();
2935     TCGLabel *done_label = gen_new_label();
2936     TCGv_i64 tmp, clean_addr;
2937     MemOp memop;
2938 
2939     /*
2940      * FIXME: We are out of spec here.  We have recorded only the address
2941      * from load_exclusive, not the entire range, and we assume that the
2942      * size of the access on both sides match.  The architecture allows the
2943      * store to be smaller than the load, so long as the stored bytes are
2944      * within the range recorded by the load.
2945      */
2946 
2947     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2948     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2949     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2950 
2951     /*
2952      * The write, and any associated faults, only happen if the virtual
2953      * and physical addresses pass the exclusive monitor check.  These
2954      * faults are exceedingly unlikely, because normally the guest uses
2955      * the exact same address register for the load_exclusive, and we
2956      * would have recognized these faults there.
2957      *
2958      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2959      * unaligned 4-byte write within the range of an aligned 8-byte load.
2960      * With LSE2, the store would need to cross a 16-byte boundary when the
2961      * load did not, which would mean the store is outside the range
2962      * recorded for the monitor, which would have failed a corrected monitor
2963      * check above.  For now, we assume no size change and retain the
2964      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2965      *
2966      * It is possible to trigger an MTE fault, by performing the load with
2967      * a virtual address with a valid tag and performing the store with the
2968      * same virtual address and a different invalid tag.
2969      */
2970     memop = size + is_pair;
2971     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2972         memop |= MO_ALIGN;
2973     }
2974     memop = finalize_memop(s, memop);
2975     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2976 
2977     tmp = tcg_temp_new_i64();
2978     if (is_pair) {
2979         if (size == 2) {
2980             if (s->be_data == MO_LE) {
2981                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2982             } else {
2983                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2984             }
2985             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2986                                        cpu_exclusive_val, tmp,
2987                                        get_mem_index(s), memop);
2988             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2989         } else {
2990             TCGv_i128 t16 = tcg_temp_new_i128();
2991             TCGv_i128 c16 = tcg_temp_new_i128();
2992             TCGv_i64 a, b;
2993 
2994             if (s->be_data == MO_LE) {
2995                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2996                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2997                                         cpu_exclusive_high);
2998             } else {
2999                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
3000                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
3001                                         cpu_exclusive_val);
3002             }
3003 
3004             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
3005                                         get_mem_index(s), memop);
3006 
3007             a = tcg_temp_new_i64();
3008             b = tcg_temp_new_i64();
3009             if (s->be_data == MO_LE) {
3010                 tcg_gen_extr_i128_i64(a, b, t16);
3011             } else {
3012                 tcg_gen_extr_i128_i64(b, a, t16);
3013             }
3014 
3015             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
3016             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
3017             tcg_gen_or_i64(tmp, a, b);
3018 
3019             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
3020         }
3021     } else {
3022         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
3023                                    cpu_reg(s, rt), get_mem_index(s), memop);
3024         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
3025     }
3026     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
3027     tcg_gen_br(done_label);
3028 
3029     gen_set_label(fail_label);
3030     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
3031     gen_set_label(done_label);
3032     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
3033 }
3034 
3035 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
3036                                  int rn, int size)
3037 {
3038     TCGv_i64 tcg_rs = cpu_reg(s, rs);
3039     TCGv_i64 tcg_rt = cpu_reg(s, rt);
3040     int memidx = get_mem_index(s);
3041     TCGv_i64 clean_addr;
3042     MemOp memop;
3043 
3044     if (rn == 31) {
3045         gen_check_sp_alignment(s);
3046     }
3047     memop = check_atomic_align(s, rn, size);
3048     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3049     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
3050                                memidx, memop);
3051 }
3052 
3053 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
3054                                       int rn, int size)
3055 {
3056     TCGv_i64 s1 = cpu_reg(s, rs);
3057     TCGv_i64 s2 = cpu_reg(s, rs + 1);
3058     TCGv_i64 t1 = cpu_reg(s, rt);
3059     TCGv_i64 t2 = cpu_reg(s, rt + 1);
3060     TCGv_i64 clean_addr;
3061     int memidx = get_mem_index(s);
3062     MemOp memop;
3063 
3064     if (rn == 31) {
3065         gen_check_sp_alignment(s);
3066     }
3067 
3068     /* This is a single atomic access, despite the "pair". */
3069     memop = check_atomic_align(s, rn, size + 1);
3070     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3071 
3072     if (size == 2) {
3073         TCGv_i64 cmp = tcg_temp_new_i64();
3074         TCGv_i64 val = tcg_temp_new_i64();
3075 
3076         if (s->be_data == MO_LE) {
3077             tcg_gen_concat32_i64(val, t1, t2);
3078             tcg_gen_concat32_i64(cmp, s1, s2);
3079         } else {
3080             tcg_gen_concat32_i64(val, t2, t1);
3081             tcg_gen_concat32_i64(cmp, s2, s1);
3082         }
3083 
3084         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
3085 
3086         if (s->be_data == MO_LE) {
3087             tcg_gen_extr32_i64(s1, s2, cmp);
3088         } else {
3089             tcg_gen_extr32_i64(s2, s1, cmp);
3090         }
3091     } else {
3092         TCGv_i128 cmp = tcg_temp_new_i128();
3093         TCGv_i128 val = tcg_temp_new_i128();
3094 
3095         if (s->be_data == MO_LE) {
3096             tcg_gen_concat_i64_i128(val, t1, t2);
3097             tcg_gen_concat_i64_i128(cmp, s1, s2);
3098         } else {
3099             tcg_gen_concat_i64_i128(val, t2, t1);
3100             tcg_gen_concat_i64_i128(cmp, s2, s1);
3101         }
3102 
3103         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
3104 
3105         if (s->be_data == MO_LE) {
3106             tcg_gen_extr_i128_i64(s1, s2, cmp);
3107         } else {
3108             tcg_gen_extr_i128_i64(s2, s1, cmp);
3109         }
3110     }
3111 }
3112 
3113 /*
3114  * Compute the ISS.SF bit for syndrome information if an exception
3115  * is taken on a load or store. This indicates whether the instruction
3116  * is accessing a 32-bit or 64-bit register. This logic is derived
3117  * from the ARMv8 specs for LDR (Shared decode for all encodings).
3118  */
3119 static bool ldst_iss_sf(int size, bool sign, bool ext)
3120 {
3121 
3122     if (sign) {
3123         /*
3124          * Signed loads are 64 bit results if we are not going to
3125          * do a zero-extend from 32 to 64 after the load.
3126          * (For a store, sign and ext are always false.)
3127          */
3128         return !ext;
3129     } else {
3130         /* Unsigned loads/stores work at the specified size */
3131         return size == MO_64;
3132     }
3133 }
3134 
3135 static bool trans_STXR(DisasContext *s, arg_stxr *a)
3136 {
3137     if (a->rn == 31) {
3138         gen_check_sp_alignment(s);
3139     }
3140     if (a->lasr) {
3141         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3142     }
3143     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
3144     return true;
3145 }
3146 
3147 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
3148 {
3149     if (a->rn == 31) {
3150         gen_check_sp_alignment(s);
3151     }
3152     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
3153     if (a->lasr) {
3154         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3155     }
3156     return true;
3157 }
3158 
3159 static bool trans_STLR(DisasContext *s, arg_stlr *a)
3160 {
3161     TCGv_i64 clean_addr;
3162     MemOp memop;
3163     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3164 
3165     /*
3166      * StoreLORelease is the same as Store-Release for QEMU, but
3167      * needs the feature-test.
3168      */
3169     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3170         return false;
3171     }
3172     /* Generate ISS for non-exclusive accesses including LASR.  */
3173     if (a->rn == 31) {
3174         gen_check_sp_alignment(s);
3175     }
3176     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3177     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
3178     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3179                                 true, a->rn != 31, memop);
3180     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
3181               iss_sf, a->lasr);
3182     return true;
3183 }
3184 
3185 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
3186 {
3187     TCGv_i64 clean_addr;
3188     MemOp memop;
3189     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3190 
3191     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
3192     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3193         return false;
3194     }
3195     /* Generate ISS for non-exclusive accesses including LASR.  */
3196     if (a->rn == 31) {
3197         gen_check_sp_alignment(s);
3198     }
3199     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
3200     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3201                                 false, a->rn != 31, memop);
3202     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
3203               a->rt, iss_sf, a->lasr);
3204     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3205     return true;
3206 }
3207 
3208 static bool trans_STXP(DisasContext *s, arg_stxr *a)
3209 {
3210     if (a->rn == 31) {
3211         gen_check_sp_alignment(s);
3212     }
3213     if (a->lasr) {
3214         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3215     }
3216     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3217     return true;
3218 }
3219 
3220 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3221 {
3222     if (a->rn == 31) {
3223         gen_check_sp_alignment(s);
3224     }
3225     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3226     if (a->lasr) {
3227         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3228     }
3229     return true;
3230 }
3231 
3232 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3233 {
3234     if (!dc_isar_feature(aa64_atomics, s)) {
3235         return false;
3236     }
3237     if (((a->rt | a->rs) & 1) != 0) {
3238         return false;
3239     }
3240 
3241     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3242     return true;
3243 }
3244 
3245 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3246 {
3247     if (!dc_isar_feature(aa64_atomics, s)) {
3248         return false;
3249     }
3250     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3251     return true;
3252 }
3253 
3254 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3255 {
3256     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3257     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3258     TCGv_i64 clean_addr = tcg_temp_new_i64();
3259     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3260 
3261     gen_pc_plus_diff(s, clean_addr, a->imm);
3262     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3263               false, true, a->rt, iss_sf, false);
3264     return true;
3265 }
3266 
3267 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3268 {
3269     /* Load register (literal), vector version */
3270     TCGv_i64 clean_addr;
3271     MemOp memop;
3272 
3273     if (!fp_access_check(s)) {
3274         return true;
3275     }
3276     memop = finalize_memop_asimd(s, a->sz);
3277     clean_addr = tcg_temp_new_i64();
3278     gen_pc_plus_diff(s, clean_addr, a->imm);
3279     do_fp_ld(s, a->rt, clean_addr, memop);
3280     return true;
3281 }
3282 
3283 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3284                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3285                                  uint64_t offset, bool is_store, MemOp mop)
3286 {
3287     if (a->rn == 31) {
3288         gen_check_sp_alignment(s);
3289     }
3290 
3291     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3292     if (!a->p) {
3293         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3294     }
3295 
3296     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3297                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3298 }
3299 
3300 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3301                                   TCGv_i64 dirty_addr, uint64_t offset)
3302 {
3303     if (a->w) {
3304         if (a->p) {
3305             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3306         }
3307         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3308     }
3309 }
3310 
3311 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3312 {
3313     uint64_t offset = a->imm << a->sz;
3314     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3315     MemOp mop = finalize_memop(s, a->sz);
3316 
3317     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3318     tcg_rt = cpu_reg(s, a->rt);
3319     tcg_rt2 = cpu_reg(s, a->rt2);
3320     /*
3321      * We built mop above for the single logical access -- rebuild it
3322      * now for the paired operation.
3323      *
3324      * With LSE2, non-sign-extending pairs are treated atomically if
3325      * aligned, and if unaligned one of the pair will be completely
3326      * within a 16-byte block and that element will be atomic.
3327      * Otherwise each element is separately atomic.
3328      * In all cases, issue one operation with the correct atomicity.
3329      */
3330     mop = a->sz + 1;
3331     if (s->align_mem) {
3332         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3333     }
3334     mop = finalize_memop_pair(s, mop);
3335     if (a->sz == 2) {
3336         TCGv_i64 tmp = tcg_temp_new_i64();
3337 
3338         if (s->be_data == MO_LE) {
3339             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3340         } else {
3341             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3342         }
3343         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3344     } else {
3345         TCGv_i128 tmp = tcg_temp_new_i128();
3346 
3347         if (s->be_data == MO_LE) {
3348             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3349         } else {
3350             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3351         }
3352         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3353     }
3354     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3355     return true;
3356 }
3357 
3358 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3359 {
3360     uint64_t offset = a->imm << a->sz;
3361     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3362     MemOp mop = finalize_memop(s, a->sz);
3363 
3364     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3365     tcg_rt = cpu_reg(s, a->rt);
3366     tcg_rt2 = cpu_reg(s, a->rt2);
3367 
3368     /*
3369      * We built mop above for the single logical access -- rebuild it
3370      * now for the paired operation.
3371      *
3372      * With LSE2, non-sign-extending pairs are treated atomically if
3373      * aligned, and if unaligned one of the pair will be completely
3374      * within a 16-byte block and that element will be atomic.
3375      * Otherwise each element is separately atomic.
3376      * In all cases, issue one operation with the correct atomicity.
3377      *
3378      * This treats sign-extending loads like zero-extending loads,
3379      * since that reuses the most code below.
3380      */
3381     mop = a->sz + 1;
3382     if (s->align_mem) {
3383         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3384     }
3385     mop = finalize_memop_pair(s, mop);
3386     if (a->sz == 2) {
3387         int o2 = s->be_data == MO_LE ? 32 : 0;
3388         int o1 = o2 ^ 32;
3389 
3390         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3391         if (a->sign) {
3392             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3393             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3394         } else {
3395             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3396             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3397         }
3398     } else {
3399         TCGv_i128 tmp = tcg_temp_new_i128();
3400 
3401         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3402         if (s->be_data == MO_LE) {
3403             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3404         } else {
3405             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3406         }
3407     }
3408     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3409     return true;
3410 }
3411 
3412 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3413 {
3414     uint64_t offset = a->imm << a->sz;
3415     TCGv_i64 clean_addr, dirty_addr;
3416     MemOp mop;
3417 
3418     if (!fp_access_check(s)) {
3419         return true;
3420     }
3421 
3422     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3423     mop = finalize_memop_asimd(s, a->sz);
3424     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3425     do_fp_st(s, a->rt, clean_addr, mop);
3426     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3427     do_fp_st(s, a->rt2, clean_addr, mop);
3428     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3429     return true;
3430 }
3431 
3432 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3433 {
3434     uint64_t offset = a->imm << a->sz;
3435     TCGv_i64 clean_addr, dirty_addr;
3436     MemOp mop;
3437 
3438     if (!fp_access_check(s)) {
3439         return true;
3440     }
3441 
3442     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3443     mop = finalize_memop_asimd(s, a->sz);
3444     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3445     do_fp_ld(s, a->rt, clean_addr, mop);
3446     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3447     do_fp_ld(s, a->rt2, clean_addr, mop);
3448     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3449     return true;
3450 }
3451 
3452 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3453 {
3454     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3455     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3456     MemOp mop;
3457     TCGv_i128 tmp;
3458 
3459     /* STGP only comes in one size. */
3460     tcg_debug_assert(a->sz == MO_64);
3461 
3462     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3463         return false;
3464     }
3465 
3466     if (a->rn == 31) {
3467         gen_check_sp_alignment(s);
3468     }
3469 
3470     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3471     if (!a->p) {
3472         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3473     }
3474 
3475     clean_addr = clean_data_tbi(s, dirty_addr);
3476     tcg_rt = cpu_reg(s, a->rt);
3477     tcg_rt2 = cpu_reg(s, a->rt2);
3478 
3479     /*
3480      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3481      * and one tag operation.  We implement it as one single aligned 16-byte
3482      * memory operation for convenience.  Note that the alignment ensures
3483      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3484      */
3485     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3486 
3487     tmp = tcg_temp_new_i128();
3488     if (s->be_data == MO_LE) {
3489         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3490     } else {
3491         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3492     }
3493     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3494 
3495     /* Perform the tag store, if tag access enabled. */
3496     if (s->ata[0]) {
3497         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3498             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3499         } else {
3500             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3501         }
3502     }
3503 
3504     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3505     return true;
3506 }
3507 
3508 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3509                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3510                                  uint64_t offset, bool is_store, MemOp mop)
3511 {
3512     int memidx;
3513 
3514     if (a->rn == 31) {
3515         gen_check_sp_alignment(s);
3516     }
3517 
3518     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3519     if (!a->p) {
3520         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3521     }
3522     memidx = get_a64_user_mem_index(s, a->unpriv);
3523     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3524                                         a->w || a->rn != 31,
3525                                         mop, a->unpriv, memidx);
3526 }
3527 
3528 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3529                                   TCGv_i64 dirty_addr, uint64_t offset)
3530 {
3531     if (a->w) {
3532         if (a->p) {
3533             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3534         }
3535         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3536     }
3537 }
3538 
3539 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3540 {
3541     bool iss_sf, iss_valid = !a->w;
3542     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3543     int memidx = get_a64_user_mem_index(s, a->unpriv);
3544     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3545 
3546     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3547 
3548     tcg_rt = cpu_reg(s, a->rt);
3549     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3550 
3551     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3552                      iss_valid, a->rt, iss_sf, false);
3553     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3554     return true;
3555 }
3556 
3557 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3558 {
3559     bool iss_sf, iss_valid = !a->w;
3560     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3561     int memidx = get_a64_user_mem_index(s, a->unpriv);
3562     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3563 
3564     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3565 
3566     tcg_rt = cpu_reg(s, a->rt);
3567     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3568 
3569     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3570                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3571     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3572     return true;
3573 }
3574 
3575 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3576 {
3577     TCGv_i64 clean_addr, dirty_addr;
3578     MemOp mop;
3579 
3580     if (!fp_access_check(s)) {
3581         return true;
3582     }
3583     mop = finalize_memop_asimd(s, a->sz);
3584     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3585     do_fp_st(s, a->rt, clean_addr, mop);
3586     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3587     return true;
3588 }
3589 
3590 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3591 {
3592     TCGv_i64 clean_addr, dirty_addr;
3593     MemOp mop;
3594 
3595     if (!fp_access_check(s)) {
3596         return true;
3597     }
3598     mop = finalize_memop_asimd(s, a->sz);
3599     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3600     do_fp_ld(s, a->rt, clean_addr, mop);
3601     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3602     return true;
3603 }
3604 
3605 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3606                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3607                              bool is_store, MemOp memop)
3608 {
3609     TCGv_i64 tcg_rm;
3610 
3611     if (a->rn == 31) {
3612         gen_check_sp_alignment(s);
3613     }
3614     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3615 
3616     tcg_rm = read_cpu_reg(s, a->rm, 1);
3617     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3618 
3619     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3620     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3621 }
3622 
3623 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3624 {
3625     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3626     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3627     MemOp memop;
3628 
3629     if (extract32(a->opt, 1, 1) == 0) {
3630         return false;
3631     }
3632 
3633     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3634     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3635     tcg_rt = cpu_reg(s, a->rt);
3636     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3637               a->ext, true, a->rt, iss_sf, false);
3638     return true;
3639 }
3640 
3641 static bool trans_STR(DisasContext *s, arg_ldst *a)
3642 {
3643     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3644     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3645     MemOp memop;
3646 
3647     if (extract32(a->opt, 1, 1) == 0) {
3648         return false;
3649     }
3650 
3651     memop = finalize_memop(s, a->sz);
3652     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3653     tcg_rt = cpu_reg(s, a->rt);
3654     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3655     return true;
3656 }
3657 
3658 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3659 {
3660     TCGv_i64 clean_addr, dirty_addr;
3661     MemOp memop;
3662 
3663     if (extract32(a->opt, 1, 1) == 0) {
3664         return false;
3665     }
3666 
3667     if (!fp_access_check(s)) {
3668         return true;
3669     }
3670 
3671     memop = finalize_memop_asimd(s, a->sz);
3672     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3673     do_fp_ld(s, a->rt, clean_addr, memop);
3674     return true;
3675 }
3676 
3677 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3678 {
3679     TCGv_i64 clean_addr, dirty_addr;
3680     MemOp memop;
3681 
3682     if (extract32(a->opt, 1, 1) == 0) {
3683         return false;
3684     }
3685 
3686     if (!fp_access_check(s)) {
3687         return true;
3688     }
3689 
3690     memop = finalize_memop_asimd(s, a->sz);
3691     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3692     do_fp_st(s, a->rt, clean_addr, memop);
3693     return true;
3694 }
3695 
3696 
3697 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3698                          int sign, bool invert)
3699 {
3700     MemOp mop = a->sz | sign;
3701     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3702 
3703     if (a->rn == 31) {
3704         gen_check_sp_alignment(s);
3705     }
3706     mop = check_atomic_align(s, a->rn, mop);
3707     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3708                                 a->rn != 31, mop);
3709     tcg_rs = read_cpu_reg(s, a->rs, true);
3710     tcg_rt = cpu_reg(s, a->rt);
3711     if (invert) {
3712         tcg_gen_not_i64(tcg_rs, tcg_rs);
3713     }
3714     /*
3715      * The tcg atomic primitives are all full barriers.  Therefore we
3716      * can ignore the Acquire and Release bits of this instruction.
3717      */
3718     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3719 
3720     if (mop & MO_SIGN) {
3721         switch (a->sz) {
3722         case MO_8:
3723             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3724             break;
3725         case MO_16:
3726             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3727             break;
3728         case MO_32:
3729             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3730             break;
3731         case MO_64:
3732             break;
3733         default:
3734             g_assert_not_reached();
3735         }
3736     }
3737     return true;
3738 }
3739 
3740 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3741 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3742 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3743 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3744 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3745 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3746 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3747 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3748 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3749 
3750 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3751 {
3752     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3753     TCGv_i64 clean_addr;
3754     MemOp mop;
3755 
3756     if (!dc_isar_feature(aa64_atomics, s) ||
3757         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3758         return false;
3759     }
3760     if (a->rn == 31) {
3761         gen_check_sp_alignment(s);
3762     }
3763     mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3764     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3765                                 a->rn != 31, mop);
3766     /*
3767      * LDAPR* are a special case because they are a simple load, not a
3768      * fetch-and-do-something op.
3769      * The architectural consistency requirements here are weaker than
3770      * full load-acquire (we only need "load-acquire processor consistent"),
3771      * but we choose to implement them as full LDAQ.
3772      */
3773     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3774               true, a->rt, iss_sf, true);
3775     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3776     return true;
3777 }
3778 
3779 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3780 {
3781     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3782     MemOp memop;
3783 
3784     /* Load with pointer authentication */
3785     if (!dc_isar_feature(aa64_pauth, s)) {
3786         return false;
3787     }
3788 
3789     if (a->rn == 31) {
3790         gen_check_sp_alignment(s);
3791     }
3792     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3793 
3794     if (s->pauth_active) {
3795         if (!a->m) {
3796             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3797                                       tcg_constant_i64(0));
3798         } else {
3799             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3800                                       tcg_constant_i64(0));
3801         }
3802     }
3803 
3804     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3805 
3806     memop = finalize_memop(s, MO_64);
3807 
3808     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3809     clean_addr = gen_mte_check1(s, dirty_addr, false,
3810                                 a->w || a->rn != 31, memop);
3811 
3812     tcg_rt = cpu_reg(s, a->rt);
3813     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3814               /* extend */ false, /* iss_valid */ !a->w,
3815               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3816 
3817     if (a->w) {
3818         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3819     }
3820     return true;
3821 }
3822 
3823 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3824 {
3825     TCGv_i64 clean_addr, dirty_addr;
3826     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3827     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3828 
3829     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3830         return false;
3831     }
3832 
3833     if (a->rn == 31) {
3834         gen_check_sp_alignment(s);
3835     }
3836 
3837     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3838     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3839     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3840     clean_addr = clean_data_tbi(s, dirty_addr);
3841 
3842     /*
3843      * Load-AcquirePC semantics; we implement as the slightly more
3844      * restrictive Load-Acquire.
3845      */
3846     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3847               a->rt, iss_sf, true);
3848     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3849     return true;
3850 }
3851 
3852 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3853 {
3854     TCGv_i64 clean_addr, dirty_addr;
3855     MemOp mop = a->sz;
3856     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3857 
3858     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3859         return false;
3860     }
3861 
3862     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3863 
3864     if (a->rn == 31) {
3865         gen_check_sp_alignment(s);
3866     }
3867 
3868     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3869     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3870     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3871     clean_addr = clean_data_tbi(s, dirty_addr);
3872 
3873     /* Store-Release semantics */
3874     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3875     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3876     return true;
3877 }
3878 
3879 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3880 {
3881     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3882     MemOp endian, align, mop;
3883 
3884     int total;    /* total bytes */
3885     int elements; /* elements per vector */
3886     int r;
3887     int size = a->sz;
3888 
3889     if (!a->p && a->rm != 0) {
3890         /* For non-postindexed accesses the Rm field must be 0 */
3891         return false;
3892     }
3893     if (size == 3 && !a->q && a->selem != 1) {
3894         return false;
3895     }
3896     if (!fp_access_check(s)) {
3897         return true;
3898     }
3899 
3900     if (a->rn == 31) {
3901         gen_check_sp_alignment(s);
3902     }
3903 
3904     /* For our purposes, bytes are always little-endian.  */
3905     endian = s->be_data;
3906     if (size == 0) {
3907         endian = MO_LE;
3908     }
3909 
3910     total = a->rpt * a->selem * (a->q ? 16 : 8);
3911     tcg_rn = cpu_reg_sp(s, a->rn);
3912 
3913     /*
3914      * Issue the MTE check vs the logical repeat count, before we
3915      * promote consecutive little-endian elements below.
3916      */
3917     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3918                                 finalize_memop_asimd(s, size));
3919 
3920     /*
3921      * Consecutive little-endian elements from a single register
3922      * can be promoted to a larger little-endian operation.
3923      */
3924     align = MO_ALIGN;
3925     if (a->selem == 1 && endian == MO_LE) {
3926         align = pow2_align(size);
3927         size = 3;
3928     }
3929     if (!s->align_mem) {
3930         align = 0;
3931     }
3932     mop = endian | size | align;
3933 
3934     elements = (a->q ? 16 : 8) >> size;
3935     tcg_ebytes = tcg_constant_i64(1 << size);
3936     for (r = 0; r < a->rpt; r++) {
3937         int e;
3938         for (e = 0; e < elements; e++) {
3939             int xs;
3940             for (xs = 0; xs < a->selem; xs++) {
3941                 int tt = (a->rt + r + xs) % 32;
3942                 do_vec_ld(s, tt, e, clean_addr, mop);
3943                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3944             }
3945         }
3946     }
3947 
3948     /*
3949      * For non-quad operations, setting a slice of the low 64 bits of
3950      * the register clears the high 64 bits (in the ARM ARM pseudocode
3951      * this is implicit in the fact that 'rval' is a 64 bit wide
3952      * variable).  For quad operations, we might still need to zero
3953      * the high bits of SVE.
3954      */
3955     for (r = 0; r < a->rpt * a->selem; r++) {
3956         int tt = (a->rt + r) % 32;
3957         clear_vec_high(s, a->q, tt);
3958     }
3959 
3960     if (a->p) {
3961         if (a->rm == 31) {
3962             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3963         } else {
3964             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3965         }
3966     }
3967     return true;
3968 }
3969 
3970 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3971 {
3972     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3973     MemOp endian, align, mop;
3974 
3975     int total;    /* total bytes */
3976     int elements; /* elements per vector */
3977     int r;
3978     int size = a->sz;
3979 
3980     if (!a->p && a->rm != 0) {
3981         /* For non-postindexed accesses the Rm field must be 0 */
3982         return false;
3983     }
3984     if (size == 3 && !a->q && a->selem != 1) {
3985         return false;
3986     }
3987     if (!fp_access_check(s)) {
3988         return true;
3989     }
3990 
3991     if (a->rn == 31) {
3992         gen_check_sp_alignment(s);
3993     }
3994 
3995     /* For our purposes, bytes are always little-endian.  */
3996     endian = s->be_data;
3997     if (size == 0) {
3998         endian = MO_LE;
3999     }
4000 
4001     total = a->rpt * a->selem * (a->q ? 16 : 8);
4002     tcg_rn = cpu_reg_sp(s, a->rn);
4003 
4004     /*
4005      * Issue the MTE check vs the logical repeat count, before we
4006      * promote consecutive little-endian elements below.
4007      */
4008     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
4009                                 finalize_memop_asimd(s, size));
4010 
4011     /*
4012      * Consecutive little-endian elements from a single register
4013      * can be promoted to a larger little-endian operation.
4014      */
4015     align = MO_ALIGN;
4016     if (a->selem == 1 && endian == MO_LE) {
4017         align = pow2_align(size);
4018         size = 3;
4019     }
4020     if (!s->align_mem) {
4021         align = 0;
4022     }
4023     mop = endian | size | align;
4024 
4025     elements = (a->q ? 16 : 8) >> size;
4026     tcg_ebytes = tcg_constant_i64(1 << size);
4027     for (r = 0; r < a->rpt; r++) {
4028         int e;
4029         for (e = 0; e < elements; e++) {
4030             int xs;
4031             for (xs = 0; xs < a->selem; xs++) {
4032                 int tt = (a->rt + r + xs) % 32;
4033                 do_vec_st(s, tt, e, clean_addr, mop);
4034                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4035             }
4036         }
4037     }
4038 
4039     if (a->p) {
4040         if (a->rm == 31) {
4041             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4042         } else {
4043             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4044         }
4045     }
4046     return true;
4047 }
4048 
4049 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
4050 {
4051     int xs, total, rt;
4052     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4053     MemOp mop;
4054 
4055     if (!a->p && a->rm != 0) {
4056         return false;
4057     }
4058     if (!fp_access_check(s)) {
4059         return true;
4060     }
4061 
4062     if (a->rn == 31) {
4063         gen_check_sp_alignment(s);
4064     }
4065 
4066     total = a->selem << a->scale;
4067     tcg_rn = cpu_reg_sp(s, a->rn);
4068 
4069     mop = finalize_memop_asimd(s, a->scale);
4070     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
4071                                 total, mop);
4072 
4073     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4074     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4075         do_vec_st(s, rt, a->index, clean_addr, mop);
4076         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4077     }
4078 
4079     if (a->p) {
4080         if (a->rm == 31) {
4081             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4082         } else {
4083             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4084         }
4085     }
4086     return true;
4087 }
4088 
4089 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
4090 {
4091     int xs, total, rt;
4092     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4093     MemOp mop;
4094 
4095     if (!a->p && a->rm != 0) {
4096         return false;
4097     }
4098     if (!fp_access_check(s)) {
4099         return true;
4100     }
4101 
4102     if (a->rn == 31) {
4103         gen_check_sp_alignment(s);
4104     }
4105 
4106     total = a->selem << a->scale;
4107     tcg_rn = cpu_reg_sp(s, a->rn);
4108 
4109     mop = finalize_memop_asimd(s, a->scale);
4110     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4111                                 total, mop);
4112 
4113     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4114     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4115         do_vec_ld(s, rt, a->index, clean_addr, mop);
4116         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4117     }
4118 
4119     if (a->p) {
4120         if (a->rm == 31) {
4121             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4122         } else {
4123             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4124         }
4125     }
4126     return true;
4127 }
4128 
4129 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
4130 {
4131     int xs, total, rt;
4132     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4133     MemOp mop;
4134 
4135     if (!a->p && a->rm != 0) {
4136         return false;
4137     }
4138     if (!fp_access_check(s)) {
4139         return true;
4140     }
4141 
4142     if (a->rn == 31) {
4143         gen_check_sp_alignment(s);
4144     }
4145 
4146     total = a->selem << a->scale;
4147     tcg_rn = cpu_reg_sp(s, a->rn);
4148 
4149     mop = finalize_memop_asimd(s, a->scale);
4150     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4151                                 total, mop);
4152 
4153     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4154     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4155         /* Load and replicate to all elements */
4156         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4157 
4158         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4159         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
4160                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
4161         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4162     }
4163 
4164     if (a->p) {
4165         if (a->rm == 31) {
4166             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4167         } else {
4168             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4169         }
4170     }
4171     return true;
4172 }
4173 
4174 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
4175 {
4176     TCGv_i64 addr, clean_addr, tcg_rt;
4177     int size = 4 << s->dcz_blocksize;
4178 
4179     if (!dc_isar_feature(aa64_mte, s)) {
4180         return false;
4181     }
4182     if (s->current_el == 0) {
4183         return false;
4184     }
4185 
4186     if (a->rn == 31) {
4187         gen_check_sp_alignment(s);
4188     }
4189 
4190     addr = read_cpu_reg_sp(s, a->rn, true);
4191     tcg_gen_addi_i64(addr, addr, a->imm);
4192     tcg_rt = cpu_reg(s, a->rt);
4193 
4194     if (s->ata[0]) {
4195         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
4196     }
4197     /*
4198      * The non-tags portion of STZGM is mostly like DC_ZVA,
4199      * except the alignment happens before the access.
4200      */
4201     clean_addr = clean_data_tbi(s, addr);
4202     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4203     gen_helper_dc_zva(tcg_env, clean_addr);
4204     return true;
4205 }
4206 
4207 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
4208 {
4209     TCGv_i64 addr, clean_addr, tcg_rt;
4210 
4211     if (!dc_isar_feature(aa64_mte, s)) {
4212         return false;
4213     }
4214     if (s->current_el == 0) {
4215         return false;
4216     }
4217 
4218     if (a->rn == 31) {
4219         gen_check_sp_alignment(s);
4220     }
4221 
4222     addr = read_cpu_reg_sp(s, a->rn, true);
4223     tcg_gen_addi_i64(addr, addr, a->imm);
4224     tcg_rt = cpu_reg(s, a->rt);
4225 
4226     if (s->ata[0]) {
4227         gen_helper_stgm(tcg_env, addr, tcg_rt);
4228     } else {
4229         MMUAccessType acc = MMU_DATA_STORE;
4230         int size = 4 << s->gm_blocksize;
4231 
4232         clean_addr = clean_data_tbi(s, addr);
4233         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4234         gen_probe_access(s, clean_addr, acc, size);
4235     }
4236     return true;
4237 }
4238 
4239 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4240 {
4241     TCGv_i64 addr, clean_addr, tcg_rt;
4242 
4243     if (!dc_isar_feature(aa64_mte, s)) {
4244         return false;
4245     }
4246     if (s->current_el == 0) {
4247         return false;
4248     }
4249 
4250     if (a->rn == 31) {
4251         gen_check_sp_alignment(s);
4252     }
4253 
4254     addr = read_cpu_reg_sp(s, a->rn, true);
4255     tcg_gen_addi_i64(addr, addr, a->imm);
4256     tcg_rt = cpu_reg(s, a->rt);
4257 
4258     if (s->ata[0]) {
4259         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4260     } else {
4261         MMUAccessType acc = MMU_DATA_LOAD;
4262         int size = 4 << s->gm_blocksize;
4263 
4264         clean_addr = clean_data_tbi(s, addr);
4265         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4266         gen_probe_access(s, clean_addr, acc, size);
4267         /* The result tags are zeros.  */
4268         tcg_gen_movi_i64(tcg_rt, 0);
4269     }
4270     return true;
4271 }
4272 
4273 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4274 {
4275     TCGv_i64 addr, clean_addr, tcg_rt;
4276 
4277     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4278         return false;
4279     }
4280 
4281     if (a->rn == 31) {
4282         gen_check_sp_alignment(s);
4283     }
4284 
4285     addr = read_cpu_reg_sp(s, a->rn, true);
4286     if (!a->p) {
4287         /* pre-index or signed offset */
4288         tcg_gen_addi_i64(addr, addr, a->imm);
4289     }
4290 
4291     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4292     tcg_rt = cpu_reg(s, a->rt);
4293     if (s->ata[0]) {
4294         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4295     } else {
4296         /*
4297          * Tag access disabled: we must check for aborts on the load
4298          * load from [rn+offset], and then insert a 0 tag into rt.
4299          */
4300         clean_addr = clean_data_tbi(s, addr);
4301         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4302         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4303     }
4304 
4305     if (a->w) {
4306         /* pre-index or post-index */
4307         if (a->p) {
4308             /* post-index */
4309             tcg_gen_addi_i64(addr, addr, a->imm);
4310         }
4311         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4312     }
4313     return true;
4314 }
4315 
4316 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4317 {
4318     TCGv_i64 addr, tcg_rt;
4319 
4320     if (a->rn == 31) {
4321         gen_check_sp_alignment(s);
4322     }
4323 
4324     addr = read_cpu_reg_sp(s, a->rn, true);
4325     if (!a->p) {
4326         /* pre-index or signed offset */
4327         tcg_gen_addi_i64(addr, addr, a->imm);
4328     }
4329     tcg_rt = cpu_reg_sp(s, a->rt);
4330     if (!s->ata[0]) {
4331         /*
4332          * For STG and ST2G, we need to check alignment and probe memory.
4333          * TODO: For STZG and STZ2G, we could rely on the stores below,
4334          * at least for system mode; user-only won't enforce alignment.
4335          */
4336         if (is_pair) {
4337             gen_helper_st2g_stub(tcg_env, addr);
4338         } else {
4339             gen_helper_stg_stub(tcg_env, addr);
4340         }
4341     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4342         if (is_pair) {
4343             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4344         } else {
4345             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4346         }
4347     } else {
4348         if (is_pair) {
4349             gen_helper_st2g(tcg_env, addr, tcg_rt);
4350         } else {
4351             gen_helper_stg(tcg_env, addr, tcg_rt);
4352         }
4353     }
4354 
4355     if (is_zero) {
4356         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4357         TCGv_i64 zero64 = tcg_constant_i64(0);
4358         TCGv_i128 zero128 = tcg_temp_new_i128();
4359         int mem_index = get_mem_index(s);
4360         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4361 
4362         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4363 
4364         /* This is 1 or 2 atomic 16-byte operations. */
4365         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4366         if (is_pair) {
4367             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4368             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4369         }
4370     }
4371 
4372     if (a->w) {
4373         /* pre-index or post-index */
4374         if (a->p) {
4375             /* post-index */
4376             tcg_gen_addi_i64(addr, addr, a->imm);
4377         }
4378         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4379     }
4380     return true;
4381 }
4382 
4383 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4384 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4385 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4386 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4387 
4388 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4389 
4390 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4391                    bool is_setg, SetFn fn)
4392 {
4393     int memidx;
4394     uint32_t syndrome, desc = 0;
4395 
4396     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4397         return false;
4398     }
4399 
4400     /*
4401      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4402      * us to pull this check before the CheckMOPSEnabled() test
4403      * (which we do in the helper function)
4404      */
4405     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4406         a->rd == 31 || a->rn == 31) {
4407         return false;
4408     }
4409 
4410     memidx = get_a64_user_mem_index(s, a->unpriv);
4411 
4412     /*
4413      * We pass option_a == true, matching our implementation;
4414      * we pass wrong_option == false: helper function may set that bit.
4415      */
4416     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4417                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4418 
4419     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4420         /* We may need to do MTE tag checking, so assemble the descriptor */
4421         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4422         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4423         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4424         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4425     }
4426     /* The helper function always needs the memidx even with MTE disabled */
4427     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4428 
4429     /*
4430      * The helper needs the register numbers, but since they're in
4431      * the syndrome anyway, we let it extract them from there rather
4432      * than passing in an extra three integer arguments.
4433      */
4434     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4435     return true;
4436 }
4437 
4438 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4439 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4440 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4441 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4442 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4443 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4444 
4445 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4446 
4447 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4448 {
4449     int rmemidx, wmemidx;
4450     uint32_t syndrome, rdesc = 0, wdesc = 0;
4451     bool wunpriv = extract32(a->options, 0, 1);
4452     bool runpriv = extract32(a->options, 1, 1);
4453 
4454     /*
4455      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4456      * us to pull this check before the CheckMOPSEnabled() test
4457      * (which we do in the helper function)
4458      */
4459     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4460         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4461         return false;
4462     }
4463 
4464     rmemidx = get_a64_user_mem_index(s, runpriv);
4465     wmemidx = get_a64_user_mem_index(s, wunpriv);
4466 
4467     /*
4468      * We pass option_a == true, matching our implementation;
4469      * we pass wrong_option == false: helper function may set that bit.
4470      */
4471     syndrome = syn_mop(false, false, a->options, is_epilogue,
4472                        false, true, a->rd, a->rs, a->rn);
4473 
4474     /* If we need to do MTE tag checking, assemble the descriptors */
4475     if (s->mte_active[runpriv]) {
4476         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4477         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4478     }
4479     if (s->mte_active[wunpriv]) {
4480         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4481         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4482         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4483     }
4484     /* The helper function needs these parts of the descriptor regardless */
4485     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4486     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4487 
4488     /*
4489      * The helper needs the register numbers, but since they're in
4490      * the syndrome anyway, we let it extract them from there rather
4491      * than passing in an extra three integer arguments.
4492      */
4493     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4494        tcg_constant_i32(rdesc));
4495     return true;
4496 }
4497 
4498 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4499 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4500 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4501 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4502 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4503 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4504 
4505 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4506 
4507 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4508                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4509 {
4510     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4511     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4512     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4513 
4514     fn(tcg_rd, tcg_rn, tcg_imm);
4515     if (!a->sf) {
4516         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4517     }
4518     return true;
4519 }
4520 
4521 /*
4522  * PC-rel. addressing
4523  */
4524 
4525 static bool trans_ADR(DisasContext *s, arg_ri *a)
4526 {
4527     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4528     return true;
4529 }
4530 
4531 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4532 {
4533     int64_t offset = (int64_t)a->imm << 12;
4534 
4535     /* The page offset is ok for CF_PCREL. */
4536     offset -= s->pc_curr & 0xfff;
4537     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4538     return true;
4539 }
4540 
4541 /*
4542  * Add/subtract (immediate)
4543  */
4544 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4545 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4546 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4547 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4548 
4549 /*
4550  * Add/subtract (immediate, with tags)
4551  */
4552 
4553 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4554                                       bool sub_op)
4555 {
4556     TCGv_i64 tcg_rn, tcg_rd;
4557     int imm;
4558 
4559     imm = a->uimm6 << LOG2_TAG_GRANULE;
4560     if (sub_op) {
4561         imm = -imm;
4562     }
4563 
4564     tcg_rn = cpu_reg_sp(s, a->rn);
4565     tcg_rd = cpu_reg_sp(s, a->rd);
4566 
4567     if (s->ata[0]) {
4568         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4569                            tcg_constant_i32(imm),
4570                            tcg_constant_i32(a->uimm4));
4571     } else {
4572         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4573         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4574     }
4575     return true;
4576 }
4577 
4578 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4579 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4580 
4581 /* The input should be a value in the bottom e bits (with higher
4582  * bits zero); returns that value replicated into every element
4583  * of size e in a 64 bit integer.
4584  */
4585 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4586 {
4587     assert(e != 0);
4588     while (e < 64) {
4589         mask |= mask << e;
4590         e *= 2;
4591     }
4592     return mask;
4593 }
4594 
4595 /*
4596  * Logical (immediate)
4597  */
4598 
4599 /*
4600  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4601  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4602  * value (ie should cause a guest UNDEF exception), and true if they are
4603  * valid, in which case the decoded bit pattern is written to result.
4604  */
4605 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4606                             unsigned int imms, unsigned int immr)
4607 {
4608     uint64_t mask;
4609     unsigned e, levels, s, r;
4610     int len;
4611 
4612     assert(immn < 2 && imms < 64 && immr < 64);
4613 
4614     /* The bit patterns we create here are 64 bit patterns which
4615      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4616      * 64 bits each. Each element contains the same value: a run
4617      * of between 1 and e-1 non-zero bits, rotated within the
4618      * element by between 0 and e-1 bits.
4619      *
4620      * The element size and run length are encoded into immn (1 bit)
4621      * and imms (6 bits) as follows:
4622      * 64 bit elements: immn = 1, imms = <length of run - 1>
4623      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4624      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4625      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4626      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4627      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4628      * Notice that immn = 0, imms = 11111x is the only combination
4629      * not covered by one of the above options; this is reserved.
4630      * Further, <length of run - 1> all-ones is a reserved pattern.
4631      *
4632      * In all cases the rotation is by immr % e (and immr is 6 bits).
4633      */
4634 
4635     /* First determine the element size */
4636     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4637     if (len < 1) {
4638         /* This is the immn == 0, imms == 0x11111x case */
4639         return false;
4640     }
4641     e = 1 << len;
4642 
4643     levels = e - 1;
4644     s = imms & levels;
4645     r = immr & levels;
4646 
4647     if (s == levels) {
4648         /* <length of run - 1> mustn't be all-ones. */
4649         return false;
4650     }
4651 
4652     /* Create the value of one element: s+1 set bits rotated
4653      * by r within the element (which is e bits wide)...
4654      */
4655     mask = MAKE_64BIT_MASK(0, s + 1);
4656     if (r) {
4657         mask = (mask >> r) | (mask << (e - r));
4658         mask &= MAKE_64BIT_MASK(0, e);
4659     }
4660     /* ...then replicate the element over the whole 64 bit value */
4661     mask = bitfield_replicate(mask, e);
4662     *result = mask;
4663     return true;
4664 }
4665 
4666 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4667                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4668 {
4669     TCGv_i64 tcg_rd, tcg_rn;
4670     uint64_t imm;
4671 
4672     /* Some immediate field values are reserved. */
4673     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4674                                 extract32(a->dbm, 0, 6),
4675                                 extract32(a->dbm, 6, 6))) {
4676         return false;
4677     }
4678     if (!a->sf) {
4679         imm &= 0xffffffffull;
4680     }
4681 
4682     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4683     tcg_rn = cpu_reg(s, a->rn);
4684 
4685     fn(tcg_rd, tcg_rn, imm);
4686     if (set_cc) {
4687         gen_logic_CC(a->sf, tcg_rd);
4688     }
4689     if (!a->sf) {
4690         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4691     }
4692     return true;
4693 }
4694 
4695 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4696 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4697 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4698 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4699 
4700 /*
4701  * Move wide (immediate)
4702  */
4703 
4704 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4705 {
4706     int pos = a->hw << 4;
4707     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4708     return true;
4709 }
4710 
4711 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4712 {
4713     int pos = a->hw << 4;
4714     uint64_t imm = a->imm;
4715 
4716     imm = ~(imm << pos);
4717     if (!a->sf) {
4718         imm = (uint32_t)imm;
4719     }
4720     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4721     return true;
4722 }
4723 
4724 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4725 {
4726     int pos = a->hw << 4;
4727     TCGv_i64 tcg_rd, tcg_im;
4728 
4729     tcg_rd = cpu_reg(s, a->rd);
4730     tcg_im = tcg_constant_i64(a->imm);
4731     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4732     if (!a->sf) {
4733         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4734     }
4735     return true;
4736 }
4737 
4738 /*
4739  * Bitfield
4740  */
4741 
4742 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4743 {
4744     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4745     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4746     unsigned int bitsize = a->sf ? 64 : 32;
4747     unsigned int ri = a->immr;
4748     unsigned int si = a->imms;
4749     unsigned int pos, len;
4750 
4751     if (si >= ri) {
4752         /* Wd<s-r:0> = Wn<s:r> */
4753         len = (si - ri) + 1;
4754         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4755         if (!a->sf) {
4756             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4757         }
4758     } else {
4759         /* Wd<32+s-r,32-r> = Wn<s:0> */
4760         len = si + 1;
4761         pos = (bitsize - ri) & (bitsize - 1);
4762 
4763         if (len < ri) {
4764             /*
4765              * Sign extend the destination field from len to fill the
4766              * balance of the word.  Let the deposit below insert all
4767              * of those sign bits.
4768              */
4769             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4770             len = ri;
4771         }
4772 
4773         /*
4774          * We start with zero, and we haven't modified any bits outside
4775          * bitsize, therefore no final zero-extension is unneeded for !sf.
4776          */
4777         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4778     }
4779     return true;
4780 }
4781 
4782 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4783 {
4784     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4785     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4786     unsigned int bitsize = a->sf ? 64 : 32;
4787     unsigned int ri = a->immr;
4788     unsigned int si = a->imms;
4789     unsigned int pos, len;
4790 
4791     tcg_rd = cpu_reg(s, a->rd);
4792     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4793 
4794     if (si >= ri) {
4795         /* Wd<s-r:0> = Wn<s:r> */
4796         len = (si - ri) + 1;
4797         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4798     } else {
4799         /* Wd<32+s-r,32-r> = Wn<s:0> */
4800         len = si + 1;
4801         pos = (bitsize - ri) & (bitsize - 1);
4802         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4803     }
4804     return true;
4805 }
4806 
4807 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4808 {
4809     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4810     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4811     unsigned int bitsize = a->sf ? 64 : 32;
4812     unsigned int ri = a->immr;
4813     unsigned int si = a->imms;
4814     unsigned int pos, len;
4815 
4816     tcg_rd = cpu_reg(s, a->rd);
4817     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4818 
4819     if (si >= ri) {
4820         /* Wd<s-r:0> = Wn<s:r> */
4821         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4822         len = (si - ri) + 1;
4823         pos = 0;
4824     } else {
4825         /* Wd<32+s-r,32-r> = Wn<s:0> */
4826         len = si + 1;
4827         pos = (bitsize - ri) & (bitsize - 1);
4828     }
4829 
4830     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4831     if (!a->sf) {
4832         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4833     }
4834     return true;
4835 }
4836 
4837 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4838 {
4839     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4840 
4841     tcg_rd = cpu_reg(s, a->rd);
4842 
4843     if (unlikely(a->imm == 0)) {
4844         /*
4845          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4846          * so an extract from bit 0 is a special case.
4847          */
4848         if (a->sf) {
4849             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4850         } else {
4851             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4852         }
4853     } else {
4854         tcg_rm = cpu_reg(s, a->rm);
4855         tcg_rn = cpu_reg(s, a->rn);
4856 
4857         if (a->sf) {
4858             /* Specialization to ROR happens in EXTRACT2.  */
4859             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4860         } else {
4861             TCGv_i32 t0 = tcg_temp_new_i32();
4862 
4863             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4864             if (a->rm == a->rn) {
4865                 tcg_gen_rotri_i32(t0, t0, a->imm);
4866             } else {
4867                 TCGv_i32 t1 = tcg_temp_new_i32();
4868                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4869                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4870             }
4871             tcg_gen_extu_i32_i64(tcg_rd, t0);
4872         }
4873     }
4874     return true;
4875 }
4876 
4877 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a)
4878 {
4879     if (fp_access_check(s)) {
4880         int len = (a->len + 1) * 16;
4881 
4882         tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
4883                            vec_full_reg_offset(s, a->rm), tcg_env,
4884                            a->q ? 16 : 8, vec_full_reg_size(s),
4885                            (len << 6) | (a->tbx << 5) | a->rn,
4886                            gen_helper_simd_tblx);
4887     }
4888     return true;
4889 }
4890 
4891 typedef int simd_permute_idx_fn(int i, int part, int elements);
4892 
4893 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a,
4894                             simd_permute_idx_fn *fn, int part)
4895 {
4896     MemOp esz = a->esz;
4897     int datasize = a->q ? 16 : 8;
4898     int elements = datasize >> esz;
4899     TCGv_i64 tcg_res[2], tcg_ele;
4900 
4901     if (esz == MO_64 && !a->q) {
4902         return false;
4903     }
4904     if (!fp_access_check(s)) {
4905         return true;
4906     }
4907 
4908     tcg_res[0] = tcg_temp_new_i64();
4909     tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL;
4910     tcg_ele = tcg_temp_new_i64();
4911 
4912     for (int i = 0; i < elements; i++) {
4913         int o, w, idx;
4914 
4915         idx = fn(i, part, elements);
4916         read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn),
4917                          idx & (elements - 1), esz);
4918 
4919         w = (i << (esz + 3)) / 64;
4920         o = (i << (esz + 3)) % 64;
4921         if (o == 0) {
4922             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
4923         } else {
4924             tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz);
4925         }
4926     }
4927 
4928     for (int i = a->q; i >= 0; --i) {
4929         write_vec_element(s, tcg_res[i], a->rd, i, MO_64);
4930     }
4931     clear_vec_high(s, a->q, a->rd);
4932     return true;
4933 }
4934 
4935 static int permute_load_uzp(int i, int part, int elements)
4936 {
4937     return 2 * i + part;
4938 }
4939 
4940 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0)
4941 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1)
4942 
4943 static int permute_load_trn(int i, int part, int elements)
4944 {
4945     return (i & 1) * elements + (i & ~1) + part;
4946 }
4947 
4948 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0)
4949 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1)
4950 
4951 static int permute_load_zip(int i, int part, int elements)
4952 {
4953     return (i & 1) * elements + ((part * elements + i) >> 1);
4954 }
4955 
4956 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0)
4957 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1)
4958 
4959 /*
4960  * Cryptographic AES, SHA, SHA512
4961  */
4962 
4963 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4964 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4965 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4966 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4967 
4968 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4969 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4970 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4971 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4972 
4973 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4974 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4975 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4976 
4977 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4978 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4979 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4980 
4981 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4982 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4983 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4984 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4985 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4986 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4987 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4988 
4989 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4990 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4991 
4992 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4993 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4994 
4995 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4996 {
4997     if (!dc_isar_feature(aa64_sm3, s)) {
4998         return false;
4999     }
5000     if (fp_access_check(s)) {
5001         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
5002         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
5003         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
5004         TCGv_i32 tcg_res = tcg_temp_new_i32();
5005 
5006         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
5007         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
5008         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
5009 
5010         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
5011         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
5012         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
5013         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
5014 
5015         /* Clear the whole register first, then store bits [127:96]. */
5016         clear_vec(s, a->rd);
5017         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
5018     }
5019     return true;
5020 }
5021 
5022 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
5023 {
5024     if (fp_access_check(s)) {
5025         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
5026     }
5027     return true;
5028 }
5029 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
5030 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
5031 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
5032 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
5033 
5034 static bool trans_XAR(DisasContext *s, arg_XAR *a)
5035 {
5036     if (!dc_isar_feature(aa64_sha3, s)) {
5037         return false;
5038     }
5039     if (fp_access_check(s)) {
5040         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
5041                      vec_full_reg_offset(s, a->rn),
5042                      vec_full_reg_offset(s, a->rm), a->imm, 16,
5043                      vec_full_reg_size(s));
5044     }
5045     return true;
5046 }
5047 
5048 /*
5049  * Advanced SIMD copy
5050  */
5051 
5052 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
5053 {
5054     unsigned esz = ctz32(imm);
5055     if (esz <= MO_64) {
5056         *pesz = esz;
5057         *pidx = imm >> (esz + 1);
5058         return true;
5059     }
5060     return false;
5061 }
5062 
5063 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
5064 {
5065     MemOp esz;
5066     unsigned idx;
5067 
5068     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5069         return false;
5070     }
5071     if (fp_access_check(s)) {
5072         /*
5073          * This instruction just extracts the specified element and
5074          * zero-extends it into the bottom of the destination register.
5075          */
5076         TCGv_i64 tmp = tcg_temp_new_i64();
5077         read_vec_element(s, tmp, a->rn, idx, esz);
5078         write_fp_dreg(s, a->rd, tmp);
5079     }
5080     return true;
5081 }
5082 
5083 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
5084 {
5085     MemOp esz;
5086     unsigned idx;
5087 
5088     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5089         return false;
5090     }
5091     if (esz == MO_64 && !a->q) {
5092         return false;
5093     }
5094     if (fp_access_check(s)) {
5095         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
5096                              vec_reg_offset(s, a->rn, idx, esz),
5097                              a->q ? 16 : 8, vec_full_reg_size(s));
5098     }
5099     return true;
5100 }
5101 
5102 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
5103 {
5104     MemOp esz;
5105     unsigned idx;
5106 
5107     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5108         return false;
5109     }
5110     if (esz == MO_64 && !a->q) {
5111         return false;
5112     }
5113     if (fp_access_check(s)) {
5114         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
5115                              a->q ? 16 : 8, vec_full_reg_size(s),
5116                              cpu_reg(s, a->rn));
5117     }
5118     return true;
5119 }
5120 
5121 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
5122 {
5123     MemOp esz;
5124     unsigned idx;
5125 
5126     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5127         return false;
5128     }
5129     if (is_signed) {
5130         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
5131             return false;
5132         }
5133     } else {
5134         if (esz == MO_64 ? !a->q : a->q) {
5135             return false;
5136         }
5137     }
5138     if (fp_access_check(s)) {
5139         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
5140         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
5141         if (is_signed && !a->q) {
5142             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5143         }
5144     }
5145     return true;
5146 }
5147 
5148 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
5149 TRANS(UMOV, do_smov_umov, a, 0)
5150 
5151 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
5152 {
5153     MemOp esz;
5154     unsigned idx;
5155 
5156     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5157         return false;
5158     }
5159     if (fp_access_check(s)) {
5160         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
5161         clear_vec_high(s, true, a->rd);
5162     }
5163     return true;
5164 }
5165 
5166 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
5167 {
5168     MemOp esz;
5169     unsigned didx, sidx;
5170 
5171     if (!decode_esz_idx(a->di, &esz, &didx)) {
5172         return false;
5173     }
5174     sidx = a->si >> esz;
5175     if (fp_access_check(s)) {
5176         TCGv_i64 tmp = tcg_temp_new_i64();
5177 
5178         read_vec_element(s, tmp, a->rn, sidx, esz);
5179         write_vec_element(s, tmp, a->rd, didx, esz);
5180 
5181         /* INS is considered a 128-bit write for SVE. */
5182         clear_vec_high(s, true, a->rd);
5183     }
5184     return true;
5185 }
5186 
5187 /*
5188  * Advanced SIMD three same
5189  */
5190 
5191 typedef struct FPScalar {
5192     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5193     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5194     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
5195 } FPScalar;
5196 
5197 static bool do_fp3_scalar_with_fpsttype(DisasContext *s, arg_rrr_e *a,
5198                                         const FPScalar *f, int mergereg,
5199                                         ARMFPStatusFlavour fpsttype)
5200 {
5201     switch (a->esz) {
5202     case MO_64:
5203         if (fp_access_check(s)) {
5204             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5205             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5206             f->gen_d(t0, t0, t1, fpstatus_ptr(fpsttype));
5207             write_fp_dreg_merging(s, a->rd, mergereg, t0);
5208         }
5209         break;
5210     case MO_32:
5211         if (fp_access_check(s)) {
5212             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5213             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
5214             f->gen_s(t0, t0, t1, fpstatus_ptr(fpsttype));
5215             write_fp_sreg_merging(s, a->rd, mergereg, t0);
5216         }
5217         break;
5218     case MO_16:
5219         if (!dc_isar_feature(aa64_fp16, s)) {
5220             return false;
5221         }
5222         if (fp_access_check(s)) {
5223             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5224             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
5225             f->gen_h(t0, t0, t1, fpstatus_ptr(fpsttype));
5226             write_fp_hreg_merging(s, a->rd, mergereg, t0);
5227         }
5228         break;
5229     default:
5230         return false;
5231     }
5232     return true;
5233 }
5234 
5235 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f,
5236                           int mergereg)
5237 {
5238     return do_fp3_scalar_with_fpsttype(s, a, f, mergereg,
5239                                        a->esz == MO_16 ?
5240                                        FPST_A64_F16 : FPST_A64);
5241 }
5242 
5243 static bool do_fp3_scalar_ah_2fn(DisasContext *s, arg_rrr_e *a,
5244                                  const FPScalar *fnormal, const FPScalar *fah,
5245                                  int mergereg)
5246 {
5247     return do_fp3_scalar_with_fpsttype(s, a, s->fpcr_ah ? fah : fnormal,
5248                                        mergereg, select_ah_fpst(s, a->esz));
5249 }
5250 
5251 /* Some insns need to call different helpers when FPCR.AH == 1 */
5252 static bool do_fp3_scalar_2fn(DisasContext *s, arg_rrr_e *a,
5253                               const FPScalar *fnormal,
5254                               const FPScalar *fah,
5255                               int mergereg)
5256 {
5257     return do_fp3_scalar(s, a, s->fpcr_ah ? fah : fnormal, mergereg);
5258 }
5259 
5260 static const FPScalar f_scalar_fadd = {
5261     gen_helper_vfp_addh,
5262     gen_helper_vfp_adds,
5263     gen_helper_vfp_addd,
5264 };
5265 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd, a->rn)
5266 
5267 static const FPScalar f_scalar_fsub = {
5268     gen_helper_vfp_subh,
5269     gen_helper_vfp_subs,
5270     gen_helper_vfp_subd,
5271 };
5272 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub, a->rn)
5273 
5274 static const FPScalar f_scalar_fdiv = {
5275     gen_helper_vfp_divh,
5276     gen_helper_vfp_divs,
5277     gen_helper_vfp_divd,
5278 };
5279 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv, a->rn)
5280 
5281 static const FPScalar f_scalar_fmul = {
5282     gen_helper_vfp_mulh,
5283     gen_helper_vfp_muls,
5284     gen_helper_vfp_muld,
5285 };
5286 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul, a->rn)
5287 
5288 static const FPScalar f_scalar_fmax = {
5289     gen_helper_vfp_maxh,
5290     gen_helper_vfp_maxs,
5291     gen_helper_vfp_maxd,
5292 };
5293 static const FPScalar f_scalar_fmax_ah = {
5294     gen_helper_vfp_ah_maxh,
5295     gen_helper_vfp_ah_maxs,
5296     gen_helper_vfp_ah_maxd,
5297 };
5298 TRANS(FMAX_s, do_fp3_scalar_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah, a->rn)
5299 
5300 static const FPScalar f_scalar_fmin = {
5301     gen_helper_vfp_minh,
5302     gen_helper_vfp_mins,
5303     gen_helper_vfp_mind,
5304 };
5305 static const FPScalar f_scalar_fmin_ah = {
5306     gen_helper_vfp_ah_minh,
5307     gen_helper_vfp_ah_mins,
5308     gen_helper_vfp_ah_mind,
5309 };
5310 TRANS(FMIN_s, do_fp3_scalar_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah, a->rn)
5311 
5312 static const FPScalar f_scalar_fmaxnm = {
5313     gen_helper_vfp_maxnumh,
5314     gen_helper_vfp_maxnums,
5315     gen_helper_vfp_maxnumd,
5316 };
5317 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm, a->rn)
5318 
5319 static const FPScalar f_scalar_fminnm = {
5320     gen_helper_vfp_minnumh,
5321     gen_helper_vfp_minnums,
5322     gen_helper_vfp_minnumd,
5323 };
5324 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm, a->rn)
5325 
5326 static const FPScalar f_scalar_fmulx = {
5327     gen_helper_advsimd_mulxh,
5328     gen_helper_vfp_mulxs,
5329     gen_helper_vfp_mulxd,
5330 };
5331 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx, a->rn)
5332 
5333 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5334 {
5335     gen_helper_vfp_mulh(d, n, m, s);
5336     gen_vfp_negh(d, d);
5337 }
5338 
5339 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5340 {
5341     gen_helper_vfp_muls(d, n, m, s);
5342     gen_vfp_negs(d, d);
5343 }
5344 
5345 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5346 {
5347     gen_helper_vfp_muld(d, n, m, s);
5348     gen_vfp_negd(d, d);
5349 }
5350 
5351 static void gen_fnmul_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5352 {
5353     gen_helper_vfp_mulh(d, n, m, s);
5354     gen_vfp_ah_negh(d, d);
5355 }
5356 
5357 static void gen_fnmul_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5358 {
5359     gen_helper_vfp_muls(d, n, m, s);
5360     gen_vfp_ah_negs(d, d);
5361 }
5362 
5363 static void gen_fnmul_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5364 {
5365     gen_helper_vfp_muld(d, n, m, s);
5366     gen_vfp_ah_negd(d, d);
5367 }
5368 
5369 static const FPScalar f_scalar_fnmul = {
5370     gen_fnmul_h,
5371     gen_fnmul_s,
5372     gen_fnmul_d,
5373 };
5374 static const FPScalar f_scalar_ah_fnmul = {
5375     gen_fnmul_ah_h,
5376     gen_fnmul_ah_s,
5377     gen_fnmul_ah_d,
5378 };
5379 TRANS(FNMUL_s, do_fp3_scalar_2fn, a, &f_scalar_fnmul, &f_scalar_ah_fnmul, a->rn)
5380 
5381 static const FPScalar f_scalar_fcmeq = {
5382     gen_helper_advsimd_ceq_f16,
5383     gen_helper_neon_ceq_f32,
5384     gen_helper_neon_ceq_f64,
5385 };
5386 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq, a->rm)
5387 
5388 static const FPScalar f_scalar_fcmge = {
5389     gen_helper_advsimd_cge_f16,
5390     gen_helper_neon_cge_f32,
5391     gen_helper_neon_cge_f64,
5392 };
5393 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge, a->rm)
5394 
5395 static const FPScalar f_scalar_fcmgt = {
5396     gen_helper_advsimd_cgt_f16,
5397     gen_helper_neon_cgt_f32,
5398     gen_helper_neon_cgt_f64,
5399 };
5400 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt, a->rm)
5401 
5402 static const FPScalar f_scalar_facge = {
5403     gen_helper_advsimd_acge_f16,
5404     gen_helper_neon_acge_f32,
5405     gen_helper_neon_acge_f64,
5406 };
5407 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge, a->rm)
5408 
5409 static const FPScalar f_scalar_facgt = {
5410     gen_helper_advsimd_acgt_f16,
5411     gen_helper_neon_acgt_f32,
5412     gen_helper_neon_acgt_f64,
5413 };
5414 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt, a->rm)
5415 
5416 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5417 {
5418     gen_helper_vfp_subh(d, n, m, s);
5419     gen_vfp_absh(d, d);
5420 }
5421 
5422 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5423 {
5424     gen_helper_vfp_subs(d, n, m, s);
5425     gen_vfp_abss(d, d);
5426 }
5427 
5428 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5429 {
5430     gen_helper_vfp_subd(d, n, m, s);
5431     gen_vfp_absd(d, d);
5432 }
5433 
5434 static void gen_fabd_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5435 {
5436     gen_helper_vfp_subh(d, n, m, s);
5437     gen_vfp_ah_absh(d, d);
5438 }
5439 
5440 static void gen_fabd_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5441 {
5442     gen_helper_vfp_subs(d, n, m, s);
5443     gen_vfp_ah_abss(d, d);
5444 }
5445 
5446 static void gen_fabd_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5447 {
5448     gen_helper_vfp_subd(d, n, m, s);
5449     gen_vfp_ah_absd(d, d);
5450 }
5451 
5452 static const FPScalar f_scalar_fabd = {
5453     gen_fabd_h,
5454     gen_fabd_s,
5455     gen_fabd_d,
5456 };
5457 static const FPScalar f_scalar_ah_fabd = {
5458     gen_fabd_ah_h,
5459     gen_fabd_ah_s,
5460     gen_fabd_ah_d,
5461 };
5462 TRANS(FABD_s, do_fp3_scalar_2fn, a, &f_scalar_fabd, &f_scalar_ah_fabd, a->rn)
5463 
5464 static const FPScalar f_scalar_frecps = {
5465     gen_helper_recpsf_f16,
5466     gen_helper_recpsf_f32,
5467     gen_helper_recpsf_f64,
5468 };
5469 static const FPScalar f_scalar_ah_frecps = {
5470     gen_helper_recpsf_ah_f16,
5471     gen_helper_recpsf_ah_f32,
5472     gen_helper_recpsf_ah_f64,
5473 };
5474 TRANS(FRECPS_s, do_fp3_scalar_ah_2fn, a,
5475       &f_scalar_frecps, &f_scalar_ah_frecps, a->rn)
5476 
5477 static const FPScalar f_scalar_frsqrts = {
5478     gen_helper_rsqrtsf_f16,
5479     gen_helper_rsqrtsf_f32,
5480     gen_helper_rsqrtsf_f64,
5481 };
5482 static const FPScalar f_scalar_ah_frsqrts = {
5483     gen_helper_rsqrtsf_ah_f16,
5484     gen_helper_rsqrtsf_ah_f32,
5485     gen_helper_rsqrtsf_ah_f64,
5486 };
5487 TRANS(FRSQRTS_s, do_fp3_scalar_ah_2fn, a,
5488       &f_scalar_frsqrts, &f_scalar_ah_frsqrts, a->rn)
5489 
5490 static bool do_fcmp0_s(DisasContext *s, arg_rr_e *a,
5491                        const FPScalar *f, bool swap)
5492 {
5493     switch (a->esz) {
5494     case MO_64:
5495         if (fp_access_check(s)) {
5496             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5497             TCGv_i64 t1 = tcg_constant_i64(0);
5498             if (swap) {
5499                 f->gen_d(t0, t1, t0, fpstatus_ptr(FPST_A64));
5500             } else {
5501                 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
5502             }
5503             write_fp_dreg(s, a->rd, t0);
5504         }
5505         break;
5506     case MO_32:
5507         if (fp_access_check(s)) {
5508             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5509             TCGv_i32 t1 = tcg_constant_i32(0);
5510             if (swap) {
5511                 f->gen_s(t0, t1, t0, fpstatus_ptr(FPST_A64));
5512             } else {
5513                 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
5514             }
5515             write_fp_sreg(s, a->rd, t0);
5516         }
5517         break;
5518     case MO_16:
5519         if (!dc_isar_feature(aa64_fp16, s)) {
5520             return false;
5521         }
5522         if (fp_access_check(s)) {
5523             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5524             TCGv_i32 t1 = tcg_constant_i32(0);
5525             if (swap) {
5526                 f->gen_h(t0, t1, t0, fpstatus_ptr(FPST_A64_F16));
5527             } else {
5528                 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
5529             }
5530             write_fp_sreg(s, a->rd, t0);
5531         }
5532         break;
5533     default:
5534         return false;
5535     }
5536     return true;
5537 }
5538 
5539 TRANS(FCMEQ0_s, do_fcmp0_s, a, &f_scalar_fcmeq, false)
5540 TRANS(FCMGT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, false)
5541 TRANS(FCMGE0_s, do_fcmp0_s, a, &f_scalar_fcmge, false)
5542 TRANS(FCMLT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, true)
5543 TRANS(FCMLE0_s, do_fcmp0_s, a, &f_scalar_fcmge, true)
5544 
5545 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5546                 MemOp sgn_n, MemOp sgn_m,
5547                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5548                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5549 {
5550     TCGv_i64 t0, t1, t2, qc;
5551     MemOp esz = a->esz;
5552 
5553     if (!fp_access_check(s)) {
5554         return true;
5555     }
5556 
5557     t0 = tcg_temp_new_i64();
5558     t1 = tcg_temp_new_i64();
5559     t2 = tcg_temp_new_i64();
5560     qc = tcg_temp_new_i64();
5561     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5562     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5563     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5564 
5565     if (esz == MO_64) {
5566         gen_d(t0, qc, t1, t2);
5567     } else {
5568         gen_bhs(t0, qc, t1, t2, esz);
5569         tcg_gen_ext_i64(t0, t0, esz);
5570     }
5571 
5572     write_fp_dreg(s, a->rd, t0);
5573     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5574     return true;
5575 }
5576 
5577 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5578 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5579 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5580 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5581 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5582 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5583 
5584 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5585                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5586 {
5587     if (fp_access_check(s)) {
5588         TCGv_i64 t0 = tcg_temp_new_i64();
5589         TCGv_i64 t1 = tcg_temp_new_i64();
5590 
5591         read_vec_element(s, t0, a->rn, 0, MO_64);
5592         read_vec_element(s, t1, a->rm, 0, MO_64);
5593         fn(t0, t0, t1);
5594         write_fp_dreg(s, a->rd, t0);
5595     }
5596     return true;
5597 }
5598 
5599 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5600 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5601 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5602 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5603 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5604 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5605 
5606 typedef struct ENVScalar2 {
5607     NeonGenTwoOpEnvFn *gen_bhs[3];
5608     NeonGenTwo64OpEnvFn *gen_d;
5609 } ENVScalar2;
5610 
5611 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5612 {
5613     if (!fp_access_check(s)) {
5614         return true;
5615     }
5616     if (a->esz == MO_64) {
5617         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5618         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5619         f->gen_d(t0, tcg_env, t0, t1);
5620         write_fp_dreg(s, a->rd, t0);
5621     } else {
5622         TCGv_i32 t0 = tcg_temp_new_i32();
5623         TCGv_i32 t1 = tcg_temp_new_i32();
5624 
5625         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5626         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5627         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5628         write_fp_sreg(s, a->rd, t0);
5629     }
5630     return true;
5631 }
5632 
5633 static const ENVScalar2 f_scalar_sqshl = {
5634     { gen_helper_neon_qshl_s8,
5635       gen_helper_neon_qshl_s16,
5636       gen_helper_neon_qshl_s32 },
5637     gen_helper_neon_qshl_s64,
5638 };
5639 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5640 
5641 static const ENVScalar2 f_scalar_uqshl = {
5642     { gen_helper_neon_qshl_u8,
5643       gen_helper_neon_qshl_u16,
5644       gen_helper_neon_qshl_u32 },
5645     gen_helper_neon_qshl_u64,
5646 };
5647 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5648 
5649 static const ENVScalar2 f_scalar_sqrshl = {
5650     { gen_helper_neon_qrshl_s8,
5651       gen_helper_neon_qrshl_s16,
5652       gen_helper_neon_qrshl_s32 },
5653     gen_helper_neon_qrshl_s64,
5654 };
5655 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5656 
5657 static const ENVScalar2 f_scalar_uqrshl = {
5658     { gen_helper_neon_qrshl_u8,
5659       gen_helper_neon_qrshl_u16,
5660       gen_helper_neon_qrshl_u32 },
5661     gen_helper_neon_qrshl_u64,
5662 };
5663 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5664 
5665 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5666                               const ENVScalar2 *f)
5667 {
5668     if (a->esz == MO_16 || a->esz == MO_32) {
5669         return do_env_scalar2(s, a, f);
5670     }
5671     return false;
5672 }
5673 
5674 static const ENVScalar2 f_scalar_sqdmulh = {
5675     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5676 };
5677 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5678 
5679 static const ENVScalar2 f_scalar_sqrdmulh = {
5680     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5681 };
5682 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5683 
5684 typedef struct ENVScalar3 {
5685     NeonGenThreeOpEnvFn *gen_hs[2];
5686 } ENVScalar3;
5687 
5688 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5689                               const ENVScalar3 *f)
5690 {
5691     TCGv_i32 t0, t1, t2;
5692 
5693     if (a->esz != MO_16 && a->esz != MO_32) {
5694         return false;
5695     }
5696     if (!fp_access_check(s)) {
5697         return true;
5698     }
5699 
5700     t0 = tcg_temp_new_i32();
5701     t1 = tcg_temp_new_i32();
5702     t2 = tcg_temp_new_i32();
5703     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5704     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5705     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5706     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5707     write_fp_sreg(s, a->rd, t0);
5708     return true;
5709 }
5710 
5711 static const ENVScalar3 f_scalar_sqrdmlah = {
5712     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5713 };
5714 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5715 
5716 static const ENVScalar3 f_scalar_sqrdmlsh = {
5717     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5718 };
5719 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5720 
5721 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5722 {
5723     if (fp_access_check(s)) {
5724         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5725         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5726         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5727         write_fp_dreg(s, a->rd, t0);
5728     }
5729     return true;
5730 }
5731 
5732 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5733 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5734 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5735 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5736 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5737 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5738 
5739 static bool do_fp3_vector_with_fpsttype(DisasContext *s, arg_qrrr_e *a,
5740                                         int data,
5741                                         gen_helper_gvec_3_ptr * const fns[3],
5742                                         ARMFPStatusFlavour fpsttype)
5743 {
5744     MemOp esz = a->esz;
5745     int check = fp_access_check_vector_hsd(s, a->q, esz);
5746 
5747     if (check <= 0) {
5748         return check == 0;
5749     }
5750 
5751     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, fpsttype,
5752                       data, fns[esz - 1]);
5753     return true;
5754 }
5755 
5756 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5757                           gen_helper_gvec_3_ptr * const fns[3])
5758 {
5759     return do_fp3_vector_with_fpsttype(s, a, data, fns,
5760                                        a->esz == MO_16 ?
5761                                        FPST_A64_F16 : FPST_A64);
5762 }
5763 
5764 static bool do_fp3_vector_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5765                               gen_helper_gvec_3_ptr * const fnormal[3],
5766                               gen_helper_gvec_3_ptr * const fah[3])
5767 {
5768     return do_fp3_vector(s, a, data, s->fpcr_ah ? fah : fnormal);
5769 }
5770 
5771 static bool do_fp3_vector_ah_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5772                                  gen_helper_gvec_3_ptr * const fnormal[3],
5773                                  gen_helper_gvec_3_ptr * const fah[3])
5774 {
5775     return do_fp3_vector_with_fpsttype(s, a, data, s->fpcr_ah ? fah : fnormal,
5776                                        select_ah_fpst(s, a->esz));
5777 }
5778 
5779 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5780     gen_helper_gvec_fadd_h,
5781     gen_helper_gvec_fadd_s,
5782     gen_helper_gvec_fadd_d,
5783 };
5784 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5785 
5786 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5787     gen_helper_gvec_fsub_h,
5788     gen_helper_gvec_fsub_s,
5789     gen_helper_gvec_fsub_d,
5790 };
5791 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5792 
5793 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5794     gen_helper_gvec_fdiv_h,
5795     gen_helper_gvec_fdiv_s,
5796     gen_helper_gvec_fdiv_d,
5797 };
5798 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5799 
5800 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5801     gen_helper_gvec_fmul_h,
5802     gen_helper_gvec_fmul_s,
5803     gen_helper_gvec_fmul_d,
5804 };
5805 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5806 
5807 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5808     gen_helper_gvec_fmax_h,
5809     gen_helper_gvec_fmax_s,
5810     gen_helper_gvec_fmax_d,
5811 };
5812 static gen_helper_gvec_3_ptr * const f_vector_fmax_ah[3] = {
5813     gen_helper_gvec_ah_fmax_h,
5814     gen_helper_gvec_ah_fmax_s,
5815     gen_helper_gvec_ah_fmax_d,
5816 };
5817 TRANS(FMAX_v, do_fp3_vector_2fn, a, 0, f_vector_fmax, f_vector_fmax_ah)
5818 
5819 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5820     gen_helper_gvec_fmin_h,
5821     gen_helper_gvec_fmin_s,
5822     gen_helper_gvec_fmin_d,
5823 };
5824 static gen_helper_gvec_3_ptr * const f_vector_fmin_ah[3] = {
5825     gen_helper_gvec_ah_fmin_h,
5826     gen_helper_gvec_ah_fmin_s,
5827     gen_helper_gvec_ah_fmin_d,
5828 };
5829 TRANS(FMIN_v, do_fp3_vector_2fn, a, 0, f_vector_fmin, f_vector_fmin_ah)
5830 
5831 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5832     gen_helper_gvec_fmaxnum_h,
5833     gen_helper_gvec_fmaxnum_s,
5834     gen_helper_gvec_fmaxnum_d,
5835 };
5836 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5837 
5838 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5839     gen_helper_gvec_fminnum_h,
5840     gen_helper_gvec_fminnum_s,
5841     gen_helper_gvec_fminnum_d,
5842 };
5843 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5844 
5845 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5846     gen_helper_gvec_fmulx_h,
5847     gen_helper_gvec_fmulx_s,
5848     gen_helper_gvec_fmulx_d,
5849 };
5850 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5851 
5852 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5853     gen_helper_gvec_vfma_h,
5854     gen_helper_gvec_vfma_s,
5855     gen_helper_gvec_vfma_d,
5856 };
5857 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5858 
5859 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5860     gen_helper_gvec_vfms_h,
5861     gen_helper_gvec_vfms_s,
5862     gen_helper_gvec_vfms_d,
5863 };
5864 static gen_helper_gvec_3_ptr * const f_vector_fmls_ah[3] = {
5865     gen_helper_gvec_ah_vfms_h,
5866     gen_helper_gvec_ah_vfms_s,
5867     gen_helper_gvec_ah_vfms_d,
5868 };
5869 TRANS(FMLS_v, do_fp3_vector_2fn, a, 0, f_vector_fmls, f_vector_fmls_ah)
5870 
5871 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5872     gen_helper_gvec_fceq_h,
5873     gen_helper_gvec_fceq_s,
5874     gen_helper_gvec_fceq_d,
5875 };
5876 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5877 
5878 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5879     gen_helper_gvec_fcge_h,
5880     gen_helper_gvec_fcge_s,
5881     gen_helper_gvec_fcge_d,
5882 };
5883 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5884 
5885 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5886     gen_helper_gvec_fcgt_h,
5887     gen_helper_gvec_fcgt_s,
5888     gen_helper_gvec_fcgt_d,
5889 };
5890 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5891 
5892 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5893     gen_helper_gvec_facge_h,
5894     gen_helper_gvec_facge_s,
5895     gen_helper_gvec_facge_d,
5896 };
5897 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5898 
5899 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5900     gen_helper_gvec_facgt_h,
5901     gen_helper_gvec_facgt_s,
5902     gen_helper_gvec_facgt_d,
5903 };
5904 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5905 
5906 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5907     gen_helper_gvec_fabd_h,
5908     gen_helper_gvec_fabd_s,
5909     gen_helper_gvec_fabd_d,
5910 };
5911 static gen_helper_gvec_3_ptr * const f_vector_ah_fabd[3] = {
5912     gen_helper_gvec_ah_fabd_h,
5913     gen_helper_gvec_ah_fabd_s,
5914     gen_helper_gvec_ah_fabd_d,
5915 };
5916 TRANS(FABD_v, do_fp3_vector_2fn, a, 0, f_vector_fabd, f_vector_ah_fabd)
5917 
5918 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5919     gen_helper_gvec_recps_h,
5920     gen_helper_gvec_recps_s,
5921     gen_helper_gvec_recps_d,
5922 };
5923 static gen_helper_gvec_3_ptr * const f_vector_ah_frecps[3] = {
5924     gen_helper_gvec_ah_recps_h,
5925     gen_helper_gvec_ah_recps_s,
5926     gen_helper_gvec_ah_recps_d,
5927 };
5928 TRANS(FRECPS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frecps, f_vector_ah_frecps)
5929 
5930 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5931     gen_helper_gvec_rsqrts_h,
5932     gen_helper_gvec_rsqrts_s,
5933     gen_helper_gvec_rsqrts_d,
5934 };
5935 static gen_helper_gvec_3_ptr * const f_vector_ah_frsqrts[3] = {
5936     gen_helper_gvec_ah_rsqrts_h,
5937     gen_helper_gvec_ah_rsqrts_s,
5938     gen_helper_gvec_ah_rsqrts_d,
5939 };
5940 TRANS(FRSQRTS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frsqrts, f_vector_ah_frsqrts)
5941 
5942 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5943     gen_helper_gvec_faddp_h,
5944     gen_helper_gvec_faddp_s,
5945     gen_helper_gvec_faddp_d,
5946 };
5947 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5948 
5949 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5950     gen_helper_gvec_fmaxp_h,
5951     gen_helper_gvec_fmaxp_s,
5952     gen_helper_gvec_fmaxp_d,
5953 };
5954 static gen_helper_gvec_3_ptr * const f_vector_ah_fmaxp[3] = {
5955     gen_helper_gvec_ah_fmaxp_h,
5956     gen_helper_gvec_ah_fmaxp_s,
5957     gen_helper_gvec_ah_fmaxp_d,
5958 };
5959 TRANS(FMAXP_v, do_fp3_vector_2fn, a, 0, f_vector_fmaxp, f_vector_ah_fmaxp)
5960 
5961 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5962     gen_helper_gvec_fminp_h,
5963     gen_helper_gvec_fminp_s,
5964     gen_helper_gvec_fminp_d,
5965 };
5966 static gen_helper_gvec_3_ptr * const f_vector_ah_fminp[3] = {
5967     gen_helper_gvec_ah_fminp_h,
5968     gen_helper_gvec_ah_fminp_s,
5969     gen_helper_gvec_ah_fminp_d,
5970 };
5971 TRANS(FMINP_v, do_fp3_vector_2fn, a, 0, f_vector_fminp, f_vector_ah_fminp)
5972 
5973 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5974     gen_helper_gvec_fmaxnump_h,
5975     gen_helper_gvec_fmaxnump_s,
5976     gen_helper_gvec_fmaxnump_d,
5977 };
5978 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5979 
5980 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5981     gen_helper_gvec_fminnump_h,
5982     gen_helper_gvec_fminnump_s,
5983     gen_helper_gvec_fminnump_d,
5984 };
5985 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5986 
5987 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5988 {
5989     if (fp_access_check(s)) {
5990         int data = (is_2 << 1) | is_s;
5991         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5992                            vec_full_reg_offset(s, a->rn),
5993                            vec_full_reg_offset(s, a->rm), tcg_env,
5994                            a->q ? 16 : 8, vec_full_reg_size(s),
5995                            data, gen_helper_gvec_fmlal_a64);
5996     }
5997     return true;
5998 }
5999 
6000 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
6001 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
6002 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
6003 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
6004 
6005 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
6006 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
6007 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
6008 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
6009 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
6010 
6011 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
6012 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
6013 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
6014 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
6015 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
6016 
6017 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
6018 {
6019     if (fp_access_check(s)) {
6020         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
6021     }
6022     return true;
6023 }
6024 
6025 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
6026 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
6027 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
6028 
6029 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
6030 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
6031 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
6032 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
6033 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
6034 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
6035 
6036 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
6037 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
6038 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
6039 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
6040 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
6041 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
6042 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
6043 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
6044 
6045 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
6046 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
6047 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
6048 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
6049 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
6050 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
6051 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
6052 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
6053 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
6054 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
6055 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
6056 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
6057 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
6058 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
6059 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
6060 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
6061 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
6062 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
6063 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
6064 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
6065 
6066 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
6067 {
6068     if (a->esz == MO_64 && !a->q) {
6069         return false;
6070     }
6071     if (fp_access_check(s)) {
6072         tcg_gen_gvec_cmp(cond, a->esz,
6073                          vec_full_reg_offset(s, a->rd),
6074                          vec_full_reg_offset(s, a->rn),
6075                          vec_full_reg_offset(s, a->rm),
6076                          a->q ? 16 : 8, vec_full_reg_size(s));
6077     }
6078     return true;
6079 }
6080 
6081 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
6082 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
6083 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
6084 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
6085 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
6086 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
6087 
6088 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
6089 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
6090 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
6091 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
6092 
6093 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
6094                           gen_helper_gvec_4 *fn)
6095 {
6096     if (fp_access_check(s)) {
6097         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6098     }
6099     return true;
6100 }
6101 
6102 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a,
6103                               gen_helper_gvec_4_ptr *fn)
6104 {
6105     if (fp_access_check(s)) {
6106         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6107     }
6108     return true;
6109 }
6110 
6111 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
6112 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
6113 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
6114 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot)
6115 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla)
6116 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
6117 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
6118 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
6119 
6120 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
6121 {
6122     if (!dc_isar_feature(aa64_bf16, s)) {
6123         return false;
6124     }
6125     if (fp_access_check(s)) {
6126         /* Q bit selects BFMLALB vs BFMLALT. */
6127         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6128                           s->fpcr_ah ? FPST_AH : FPST_A64, a->q,
6129                           gen_helper_gvec_bfmlal);
6130     }
6131     return true;
6132 }
6133 
6134 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
6135     gen_helper_gvec_fcaddh,
6136     gen_helper_gvec_fcadds,
6137     gen_helper_gvec_fcaddd,
6138 };
6139 /*
6140  * Encode FPCR.AH into the data so the helper knows whether the
6141  * negations it does should avoid flipping the sign bit on a NaN
6142  */
6143 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0 | (s->fpcr_ah << 1),
6144            f_vector_fcadd)
6145 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1 | (s->fpcr_ah << 1),
6146            f_vector_fcadd)
6147 
6148 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
6149 {
6150     static gen_helper_gvec_4_ptr * const fn[] = {
6151         [MO_16] = gen_helper_gvec_fcmlah,
6152         [MO_32] = gen_helper_gvec_fcmlas,
6153         [MO_64] = gen_helper_gvec_fcmlad,
6154     };
6155     int check;
6156 
6157     if (!dc_isar_feature(aa64_fcma, s)) {
6158         return false;
6159     }
6160 
6161     check = fp_access_check_vector_hsd(s, a->q, a->esz);
6162     if (check <= 0) {
6163         return check == 0;
6164     }
6165 
6166     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6167                       a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6168                       a->rot | (s->fpcr_ah << 2), fn[a->esz]);
6169     return true;
6170 }
6171 
6172 /*
6173  * Widening vector x vector/indexed.
6174  *
6175  * These read from the top or bottom half of a 128-bit vector.
6176  * After widening, optionally accumulate with a 128-bit vector.
6177  * Implement these inline, as the number of elements are limited
6178  * and the related SVE and SME operations on larger vectors use
6179  * even/odd elements instead of top/bottom half.
6180  *
6181  * If idx >= 0, operand 2 is indexed, otherwise vector.
6182  * If acc, operand 0 is loaded with rd.
6183  */
6184 
6185 /* For low half, iterating up. */
6186 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
6187                             int rd, int rn, int rm, int idx,
6188                             NeonGenTwo64OpFn *fn, bool acc)
6189 {
6190     TCGv_i64 tcg_op0 = tcg_temp_new_i64();
6191     TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6192     TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6193     MemOp esz = memop & MO_SIZE;
6194     int half = 8 >> esz;
6195     int top_swap, top_half;
6196 
6197     /* There are no 64x64->128 bit operations. */
6198     if (esz >= MO_64) {
6199         return false;
6200     }
6201     if (!fp_access_check(s)) {
6202         return true;
6203     }
6204 
6205     if (idx >= 0) {
6206         read_vec_element(s, tcg_op2, rm, idx, memop);
6207     }
6208 
6209     /*
6210      * For top half inputs, iterate forward; backward for bottom half.
6211      * This means the store to the destination will not occur until
6212      * overlapping input inputs are consumed.
6213      * Use top_swap to conditionally invert the forward iteration index.
6214      */
6215     top_swap = top ? 0 : half - 1;
6216     top_half = top ? half : 0;
6217 
6218     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6219         int elt = elt_fwd ^ top_swap;
6220 
6221         read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
6222         if (idx < 0) {
6223             read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
6224         }
6225         if (acc) {
6226             read_vec_element(s, tcg_op0, rd, elt, memop + 1);
6227         }
6228         fn(tcg_op0, tcg_op1, tcg_op2);
6229         write_vec_element(s, tcg_op0, rd, elt, esz + 1);
6230     }
6231     clear_vec_high(s, 1, rd);
6232     return true;
6233 }
6234 
6235 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6236 {
6237     TCGv_i64 t = tcg_temp_new_i64();
6238     tcg_gen_mul_i64(t, n, m);
6239     tcg_gen_add_i64(d, d, t);
6240 }
6241 
6242 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6243 {
6244     TCGv_i64 t = tcg_temp_new_i64();
6245     tcg_gen_mul_i64(t, n, m);
6246     tcg_gen_sub_i64(d, d, t);
6247 }
6248 
6249 TRANS(SMULL_v, do_3op_widening,
6250       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6251       tcg_gen_mul_i64, false)
6252 TRANS(UMULL_v, do_3op_widening,
6253       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6254       tcg_gen_mul_i64, false)
6255 TRANS(SMLAL_v, do_3op_widening,
6256       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6257       gen_muladd_i64, true)
6258 TRANS(UMLAL_v, do_3op_widening,
6259       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6260       gen_muladd_i64, true)
6261 TRANS(SMLSL_v, do_3op_widening,
6262       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6263       gen_mulsub_i64, true)
6264 TRANS(UMLSL_v, do_3op_widening,
6265       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6266       gen_mulsub_i64, true)
6267 
6268 TRANS(SMULL_vi, do_3op_widening,
6269       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6270       tcg_gen_mul_i64, false)
6271 TRANS(UMULL_vi, do_3op_widening,
6272       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6273       tcg_gen_mul_i64, false)
6274 TRANS(SMLAL_vi, do_3op_widening,
6275       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6276       gen_muladd_i64, true)
6277 TRANS(UMLAL_vi, do_3op_widening,
6278       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6279       gen_muladd_i64, true)
6280 TRANS(SMLSL_vi, do_3op_widening,
6281       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6282       gen_mulsub_i64, true)
6283 TRANS(UMLSL_vi, do_3op_widening,
6284       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6285       gen_mulsub_i64, true)
6286 
6287 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6288 {
6289     TCGv_i64 t1 = tcg_temp_new_i64();
6290     TCGv_i64 t2 = tcg_temp_new_i64();
6291 
6292     tcg_gen_sub_i64(t1, n, m);
6293     tcg_gen_sub_i64(t2, m, n);
6294     tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
6295 }
6296 
6297 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6298 {
6299     TCGv_i64 t1 = tcg_temp_new_i64();
6300     TCGv_i64 t2 = tcg_temp_new_i64();
6301 
6302     tcg_gen_sub_i64(t1, n, m);
6303     tcg_gen_sub_i64(t2, m, n);
6304     tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
6305 }
6306 
6307 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6308 {
6309     TCGv_i64 t = tcg_temp_new_i64();
6310     gen_sabd_i64(t, n, m);
6311     tcg_gen_add_i64(d, d, t);
6312 }
6313 
6314 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6315 {
6316     TCGv_i64 t = tcg_temp_new_i64();
6317     gen_uabd_i64(t, n, m);
6318     tcg_gen_add_i64(d, d, t);
6319 }
6320 
6321 TRANS(SADDL_v, do_3op_widening,
6322       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6323       tcg_gen_add_i64, false)
6324 TRANS(UADDL_v, do_3op_widening,
6325       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6326       tcg_gen_add_i64, false)
6327 TRANS(SSUBL_v, do_3op_widening,
6328       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6329       tcg_gen_sub_i64, false)
6330 TRANS(USUBL_v, do_3op_widening,
6331       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6332       tcg_gen_sub_i64, false)
6333 TRANS(SABDL_v, do_3op_widening,
6334       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6335       gen_sabd_i64, false)
6336 TRANS(UABDL_v, do_3op_widening,
6337       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6338       gen_uabd_i64, false)
6339 TRANS(SABAL_v, do_3op_widening,
6340       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6341       gen_saba_i64, true)
6342 TRANS(UABAL_v, do_3op_widening,
6343       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6344       gen_uaba_i64, true)
6345 
6346 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6347 {
6348     tcg_gen_mul_i64(d, n, m);
6349     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
6350 }
6351 
6352 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6353 {
6354     tcg_gen_mul_i64(d, n, m);
6355     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
6356 }
6357 
6358 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6359 {
6360     TCGv_i64 t = tcg_temp_new_i64();
6361 
6362     tcg_gen_mul_i64(t, n, m);
6363     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6364     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6365 }
6366 
6367 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6368 {
6369     TCGv_i64 t = tcg_temp_new_i64();
6370 
6371     tcg_gen_mul_i64(t, n, m);
6372     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6373     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6374 }
6375 
6376 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6377 {
6378     TCGv_i64 t = tcg_temp_new_i64();
6379 
6380     tcg_gen_mul_i64(t, n, m);
6381     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6382     tcg_gen_neg_i64(t, t);
6383     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6384 }
6385 
6386 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6387 {
6388     TCGv_i64 t = tcg_temp_new_i64();
6389 
6390     tcg_gen_mul_i64(t, n, m);
6391     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6392     tcg_gen_neg_i64(t, t);
6393     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6394 }
6395 
6396 TRANS(SQDMULL_v, do_3op_widening,
6397       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6398       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6399 TRANS(SQDMLAL_v, do_3op_widening,
6400       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6401       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6402 TRANS(SQDMLSL_v, do_3op_widening,
6403       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6404       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6405 
6406 TRANS(SQDMULL_vi, do_3op_widening,
6407       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6408       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6409 TRANS(SQDMLAL_vi, do_3op_widening,
6410       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6411       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6412 TRANS(SQDMLSL_vi, do_3op_widening,
6413       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6414       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6415 
6416 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
6417                            MemOp sign, bool sub)
6418 {
6419     TCGv_i64 tcg_op0, tcg_op1;
6420     MemOp esz = a->esz;
6421     int half = 8 >> esz;
6422     bool top = a->q;
6423     int top_swap = top ? 0 : half - 1;
6424     int top_half = top ? half : 0;
6425 
6426     /* There are no 64x64->128 bit operations. */
6427     if (esz >= MO_64) {
6428         return false;
6429     }
6430     if (!fp_access_check(s)) {
6431         return true;
6432     }
6433     tcg_op0 = tcg_temp_new_i64();
6434     tcg_op1 = tcg_temp_new_i64();
6435 
6436     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6437         int elt = elt_fwd ^ top_swap;
6438 
6439         read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
6440         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6441         if (sub) {
6442             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6443         } else {
6444             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6445         }
6446         write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
6447     }
6448     clear_vec_high(s, 1, a->rd);
6449     return true;
6450 }
6451 
6452 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
6453 TRANS(UADDW, do_addsub_wide, a, 0, false)
6454 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
6455 TRANS(USUBW, do_addsub_wide, a, 0, true)
6456 
6457 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
6458                                  bool sub, bool round)
6459 {
6460     TCGv_i64 tcg_op0, tcg_op1;
6461     MemOp esz = a->esz;
6462     int half = 8 >> esz;
6463     bool top = a->q;
6464     int ebits = 8 << esz;
6465     uint64_t rbit = 1ull << (ebits - 1);
6466     int top_swap, top_half;
6467 
6468     /* There are no 128x128->64 bit operations. */
6469     if (esz >= MO_64) {
6470         return false;
6471     }
6472     if (!fp_access_check(s)) {
6473         return true;
6474     }
6475     tcg_op0 = tcg_temp_new_i64();
6476     tcg_op1 = tcg_temp_new_i64();
6477 
6478     /*
6479      * For top half inputs, iterate backward; forward for bottom half.
6480      * This means the store to the destination will not occur until
6481      * overlapping input inputs are consumed.
6482      */
6483     top_swap = top ? half - 1 : 0;
6484     top_half = top ? half : 0;
6485 
6486     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6487         int elt = elt_fwd ^ top_swap;
6488 
6489         read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
6490         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6491         if (sub) {
6492             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6493         } else {
6494             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6495         }
6496         if (round) {
6497             tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6498         }
6499         tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6500         write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6501     }
6502     clear_vec_high(s, top, a->rd);
6503     return true;
6504 }
6505 
6506 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6507 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6508 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6509 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6510 
6511 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6512 {
6513     if (fp_access_check(s)) {
6514         /* The Q field specifies lo/hi half input for these insns.  */
6515         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6516     }
6517     return true;
6518 }
6519 
6520 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6521 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6522 
6523 /*
6524  * Advanced SIMD scalar/vector x indexed element
6525  */
6526 
6527 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6528 {
6529     switch (a->esz) {
6530     case MO_64:
6531         if (fp_access_check(s)) {
6532             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6533             TCGv_i64 t1 = tcg_temp_new_i64();
6534 
6535             read_vec_element(s, t1, a->rm, a->idx, MO_64);
6536             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6537             write_fp_dreg_merging(s, a->rd, a->rn, t0);
6538         }
6539         break;
6540     case MO_32:
6541         if (fp_access_check(s)) {
6542             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6543             TCGv_i32 t1 = tcg_temp_new_i32();
6544 
6545             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6546             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6547             write_fp_sreg_merging(s, a->rd, a->rn, t0);
6548         }
6549         break;
6550     case MO_16:
6551         if (!dc_isar_feature(aa64_fp16, s)) {
6552             return false;
6553         }
6554         if (fp_access_check(s)) {
6555             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6556             TCGv_i32 t1 = tcg_temp_new_i32();
6557 
6558             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6559             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6560             write_fp_hreg_merging(s, a->rd, a->rn, t0);
6561         }
6562         break;
6563     default:
6564         g_assert_not_reached();
6565     }
6566     return true;
6567 }
6568 
6569 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6570 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6571 
6572 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6573 {
6574     switch (a->esz) {
6575     case MO_64:
6576         if (fp_access_check(s)) {
6577             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6578             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6579             TCGv_i64 t2 = tcg_temp_new_i64();
6580 
6581             read_vec_element(s, t2, a->rm, a->idx, MO_64);
6582             if (neg) {
6583                 gen_vfp_maybe_ah_negd(s, t1, t1);
6584             }
6585             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6586             write_fp_dreg_merging(s, a->rd, a->rd, t0);
6587         }
6588         break;
6589     case MO_32:
6590         if (fp_access_check(s)) {
6591             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6592             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6593             TCGv_i32 t2 = tcg_temp_new_i32();
6594 
6595             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6596             if (neg) {
6597                 gen_vfp_maybe_ah_negs(s, t1, t1);
6598             }
6599             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6600             write_fp_sreg_merging(s, a->rd, a->rd, t0);
6601         }
6602         break;
6603     case MO_16:
6604         if (!dc_isar_feature(aa64_fp16, s)) {
6605             return false;
6606         }
6607         if (fp_access_check(s)) {
6608             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6609             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6610             TCGv_i32 t2 = tcg_temp_new_i32();
6611 
6612             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6613             if (neg) {
6614                 gen_vfp_maybe_ah_negh(s, t1, t1);
6615             }
6616             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6617                                        fpstatus_ptr(FPST_A64_F16));
6618             write_fp_hreg_merging(s, a->rd, a->rd, t0);
6619         }
6620         break;
6621     default:
6622         g_assert_not_reached();
6623     }
6624     return true;
6625 }
6626 
6627 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6628 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6629 
6630 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6631                                   const ENVScalar2 *f)
6632 {
6633     if (a->esz < MO_16 || a->esz > MO_32) {
6634         return false;
6635     }
6636     if (fp_access_check(s)) {
6637         TCGv_i32 t0 = tcg_temp_new_i32();
6638         TCGv_i32 t1 = tcg_temp_new_i32();
6639 
6640         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6641         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6642         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6643         write_fp_sreg(s, a->rd, t0);
6644     }
6645     return true;
6646 }
6647 
6648 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6649 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6650 
6651 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6652                                   const ENVScalar3 *f)
6653 {
6654     if (a->esz < MO_16 || a->esz > MO_32) {
6655         return false;
6656     }
6657     if (fp_access_check(s)) {
6658         TCGv_i32 t0 = tcg_temp_new_i32();
6659         TCGv_i32 t1 = tcg_temp_new_i32();
6660         TCGv_i32 t2 = tcg_temp_new_i32();
6661 
6662         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6663         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6664         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6665         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6666         write_fp_sreg(s, a->rd, t0);
6667     }
6668     return true;
6669 }
6670 
6671 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6672 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6673 
6674 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6675                                           NeonGenTwo64OpFn *fn, bool acc)
6676 {
6677     if (fp_access_check(s)) {
6678         TCGv_i64 t0 = tcg_temp_new_i64();
6679         TCGv_i64 t1 = tcg_temp_new_i64();
6680         TCGv_i64 t2 = tcg_temp_new_i64();
6681 
6682         if (acc) {
6683             read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6684         }
6685         read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6686         read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6687         fn(t0, t1, t2);
6688 
6689         /* Clear the whole register first, then store scalar. */
6690         clear_vec(s, a->rd);
6691         write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6692     }
6693     return true;
6694 }
6695 
6696 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6697       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6698 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6699       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6700 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6701       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6702 
6703 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6704                               gen_helper_gvec_3_ptr * const fns[3])
6705 {
6706     MemOp esz = a->esz;
6707     int check = fp_access_check_vector_hsd(s, a->q, esz);
6708 
6709     if (check <= 0) {
6710         return check == 0;
6711     }
6712 
6713     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6714                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6715                       a->idx, fns[esz - 1]);
6716     return true;
6717 }
6718 
6719 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6720     gen_helper_gvec_fmul_idx_h,
6721     gen_helper_gvec_fmul_idx_s,
6722     gen_helper_gvec_fmul_idx_d,
6723 };
6724 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6725 
6726 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6727     gen_helper_gvec_fmulx_idx_h,
6728     gen_helper_gvec_fmulx_idx_s,
6729     gen_helper_gvec_fmulx_idx_d,
6730 };
6731 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6732 
6733 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6734 {
6735     static gen_helper_gvec_4_ptr * const fns[3][3] = {
6736         { gen_helper_gvec_fmla_idx_h,
6737           gen_helper_gvec_fmla_idx_s,
6738           gen_helper_gvec_fmla_idx_d },
6739         { gen_helper_gvec_fmls_idx_h,
6740           gen_helper_gvec_fmls_idx_s,
6741           gen_helper_gvec_fmls_idx_d },
6742         { gen_helper_gvec_ah_fmls_idx_h,
6743           gen_helper_gvec_ah_fmls_idx_s,
6744           gen_helper_gvec_ah_fmls_idx_d },
6745     };
6746     MemOp esz = a->esz;
6747     int check = fp_access_check_vector_hsd(s, a->q, esz);
6748 
6749     if (check <= 0) {
6750         return check == 0;
6751     }
6752 
6753     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6754                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6755                       a->idx, fns[neg ? 1 + s->fpcr_ah : 0][esz - 1]);
6756     return true;
6757 }
6758 
6759 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6760 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6761 
6762 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6763 {
6764     if (fp_access_check(s)) {
6765         int data = (a->idx << 2) | (is_2 << 1) | is_s;
6766         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6767                            vec_full_reg_offset(s, a->rn),
6768                            vec_full_reg_offset(s, a->rm), tcg_env,
6769                            a->q ? 16 : 8, vec_full_reg_size(s),
6770                            data, gen_helper_gvec_fmlal_idx_a64);
6771     }
6772     return true;
6773 }
6774 
6775 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6776 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6777 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6778 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6779 
6780 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6781                                gen_helper_gvec_3 * const fns[2])
6782 {
6783     assert(a->esz == MO_16 || a->esz == MO_32);
6784     if (fp_access_check(s)) {
6785         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6786     }
6787     return true;
6788 }
6789 
6790 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6791     gen_helper_gvec_mul_idx_h,
6792     gen_helper_gvec_mul_idx_s,
6793 };
6794 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6795 
6796 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6797 {
6798     static gen_helper_gvec_4 * const fns[2][2] = {
6799         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6800         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6801     };
6802 
6803     assert(a->esz == MO_16 || a->esz == MO_32);
6804     if (fp_access_check(s)) {
6805         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6806                          a->idx, fns[a->esz - 1][sub]);
6807     }
6808     return true;
6809 }
6810 
6811 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6812 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6813 
6814 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6815                                   gen_helper_gvec_4 * const fns[2])
6816 {
6817     assert(a->esz == MO_16 || a->esz == MO_32);
6818     if (fp_access_check(s)) {
6819         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6820                            vec_full_reg_offset(s, a->rn),
6821                            vec_full_reg_offset(s, a->rm),
6822                            offsetof(CPUARMState, vfp.qc),
6823                            a->q ? 16 : 8, vec_full_reg_size(s),
6824                            a->idx, fns[a->esz - 1]);
6825     }
6826     return true;
6827 }
6828 
6829 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6830     gen_helper_neon_sqdmulh_idx_h,
6831     gen_helper_neon_sqdmulh_idx_s,
6832 };
6833 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6834 
6835 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6836     gen_helper_neon_sqrdmulh_idx_h,
6837     gen_helper_neon_sqrdmulh_idx_s,
6838 };
6839 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6840 
6841 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6842     gen_helper_neon_sqrdmlah_idx_h,
6843     gen_helper_neon_sqrdmlah_idx_s,
6844 };
6845 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6846            f_vector_idx_sqrdmlah)
6847 
6848 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6849     gen_helper_neon_sqrdmlsh_idx_h,
6850     gen_helper_neon_sqrdmlsh_idx_s,
6851 };
6852 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6853            f_vector_idx_sqrdmlsh)
6854 
6855 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6856                               gen_helper_gvec_4 *fn)
6857 {
6858     if (fp_access_check(s)) {
6859         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6860     }
6861     return true;
6862 }
6863 
6864 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a,
6865                                   gen_helper_gvec_4_ptr *fn)
6866 {
6867     if (fp_access_check(s)) {
6868         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6869     }
6870     return true;
6871 }
6872 
6873 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6874 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6875 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6876            gen_helper_gvec_sudot_idx_b)
6877 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6878            gen_helper_gvec_usdot_idx_b)
6879 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a,
6880            gen_helper_gvec_bfdot_idx)
6881 
6882 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6883 {
6884     if (!dc_isar_feature(aa64_bf16, s)) {
6885         return false;
6886     }
6887     if (fp_access_check(s)) {
6888         /* Q bit selects BFMLALB vs BFMLALT. */
6889         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6890                           s->fpcr_ah ? FPST_AH : FPST_A64,
6891                           (a->idx << 1) | a->q,
6892                           gen_helper_gvec_bfmlal_idx);
6893     }
6894     return true;
6895 }
6896 
6897 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6898 {
6899     gen_helper_gvec_4_ptr *fn;
6900 
6901     if (!dc_isar_feature(aa64_fcma, s)) {
6902         return false;
6903     }
6904     switch (a->esz) {
6905     case MO_16:
6906         if (!dc_isar_feature(aa64_fp16, s)) {
6907             return false;
6908         }
6909         fn = gen_helper_gvec_fcmlah_idx;
6910         break;
6911     case MO_32:
6912         fn = gen_helper_gvec_fcmlas_idx;
6913         break;
6914     default:
6915         g_assert_not_reached();
6916     }
6917     if (fp_access_check(s)) {
6918         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6919                           a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6920                           (s->fpcr_ah << 4) | (a->idx << 2) | a->rot, fn);
6921     }
6922     return true;
6923 }
6924 
6925 /*
6926  * Advanced SIMD scalar pairwise
6927  */
6928 
6929 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6930 {
6931     switch (a->esz) {
6932     case MO_64:
6933         if (fp_access_check(s)) {
6934             TCGv_i64 t0 = tcg_temp_new_i64();
6935             TCGv_i64 t1 = tcg_temp_new_i64();
6936 
6937             read_vec_element(s, t0, a->rn, 0, MO_64);
6938             read_vec_element(s, t1, a->rn, 1, MO_64);
6939             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6940             write_fp_dreg(s, a->rd, t0);
6941         }
6942         break;
6943     case MO_32:
6944         if (fp_access_check(s)) {
6945             TCGv_i32 t0 = tcg_temp_new_i32();
6946             TCGv_i32 t1 = tcg_temp_new_i32();
6947 
6948             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6949             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6950             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6951             write_fp_sreg(s, a->rd, t0);
6952         }
6953         break;
6954     case MO_16:
6955         if (!dc_isar_feature(aa64_fp16, s)) {
6956             return false;
6957         }
6958         if (fp_access_check(s)) {
6959             TCGv_i32 t0 = tcg_temp_new_i32();
6960             TCGv_i32 t1 = tcg_temp_new_i32();
6961 
6962             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6963             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6964             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6965             write_fp_sreg(s, a->rd, t0);
6966         }
6967         break;
6968     default:
6969         g_assert_not_reached();
6970     }
6971     return true;
6972 }
6973 
6974 static bool do_fp3_scalar_pair_2fn(DisasContext *s, arg_rr_e *a,
6975                                    const FPScalar *fnormal,
6976                                    const FPScalar *fah)
6977 {
6978     return do_fp3_scalar_pair(s, a, s->fpcr_ah ? fah : fnormal);
6979 }
6980 
6981 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6982 TRANS(FMAXP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah)
6983 TRANS(FMINP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah)
6984 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6985 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6986 
6987 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6988 {
6989     if (fp_access_check(s)) {
6990         TCGv_i64 t0 = tcg_temp_new_i64();
6991         TCGv_i64 t1 = tcg_temp_new_i64();
6992 
6993         read_vec_element(s, t0, a->rn, 0, MO_64);
6994         read_vec_element(s, t1, a->rn, 1, MO_64);
6995         tcg_gen_add_i64(t0, t0, t1);
6996         write_fp_dreg(s, a->rd, t0);
6997     }
6998     return true;
6999 }
7000 
7001 /*
7002  * Floating-point conditional select
7003  */
7004 
7005 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
7006 {
7007     TCGv_i64 t_true, t_false;
7008     DisasCompare64 c;
7009     int check = fp_access_check_scalar_hsd(s, a->esz);
7010 
7011     if (check <= 0) {
7012         return check == 0;
7013     }
7014 
7015     /* Zero extend sreg & hreg inputs to 64 bits now.  */
7016     t_true = tcg_temp_new_i64();
7017     t_false = tcg_temp_new_i64();
7018     read_vec_element(s, t_true, a->rn, 0, a->esz);
7019     read_vec_element(s, t_false, a->rm, 0, a->esz);
7020 
7021     a64_test_cc(&c, a->cond);
7022     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7023                         t_true, t_false);
7024 
7025     /*
7026      * Note that sregs & hregs write back zeros to the high bits,
7027      * and we've already done the zero-extension.
7028      */
7029     write_fp_dreg(s, a->rd, t_true);
7030     return true;
7031 }
7032 
7033 /*
7034  * Advanced SIMD Extract
7035  */
7036 
7037 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a)
7038 {
7039     if (fp_access_check(s)) {
7040         TCGv_i64 lo = read_fp_dreg(s, a->rn);
7041         if (a->imm != 0) {
7042             TCGv_i64 hi = read_fp_dreg(s, a->rm);
7043             tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8);
7044         }
7045         write_fp_dreg(s, a->rd, lo);
7046     }
7047     return true;
7048 }
7049 
7050 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a)
7051 {
7052     TCGv_i64 lo, hi;
7053     int pos = (a->imm & 7) * 8;
7054     int elt = a->imm >> 3;
7055 
7056     if (!fp_access_check(s)) {
7057         return true;
7058     }
7059 
7060     lo = tcg_temp_new_i64();
7061     hi = tcg_temp_new_i64();
7062 
7063     read_vec_element(s, lo, a->rn, elt, MO_64);
7064     elt++;
7065     read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64);
7066     elt++;
7067 
7068     if (pos != 0) {
7069         TCGv_i64 hh = tcg_temp_new_i64();
7070         tcg_gen_extract2_i64(lo, lo, hi, pos);
7071         read_vec_element(s, hh, a->rm, elt & 1, MO_64);
7072         tcg_gen_extract2_i64(hi, hi, hh, pos);
7073     }
7074 
7075     write_vec_element(s, lo, a->rd, 0, MO_64);
7076     write_vec_element(s, hi, a->rd, 1, MO_64);
7077     clear_vec_high(s, true, a->rd);
7078     return true;
7079 }
7080 
7081 /*
7082  * Floating-point data-processing (3 source)
7083  */
7084 
7085 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
7086 {
7087     TCGv_ptr fpst;
7088 
7089     /*
7090      * These are fused multiply-add.  Note that doing the negations here
7091      * as separate steps is correct: an input NaN should come out with
7092      * its sign bit flipped if it is a negated-input.
7093      */
7094     switch (a->esz) {
7095     case MO_64:
7096         if (fp_access_check(s)) {
7097             TCGv_i64 tn = read_fp_dreg(s, a->rn);
7098             TCGv_i64 tm = read_fp_dreg(s, a->rm);
7099             TCGv_i64 ta = read_fp_dreg(s, a->ra);
7100 
7101             if (neg_a) {
7102                 gen_vfp_maybe_ah_negd(s, ta, ta);
7103             }
7104             if (neg_n) {
7105                 gen_vfp_maybe_ah_negd(s, tn, tn);
7106             }
7107             fpst = fpstatus_ptr(FPST_A64);
7108             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
7109             write_fp_dreg_merging(s, a->rd, a->ra, ta);
7110         }
7111         break;
7112 
7113     case MO_32:
7114         if (fp_access_check(s)) {
7115             TCGv_i32 tn = read_fp_sreg(s, a->rn);
7116             TCGv_i32 tm = read_fp_sreg(s, a->rm);
7117             TCGv_i32 ta = read_fp_sreg(s, a->ra);
7118 
7119             if (neg_a) {
7120                 gen_vfp_maybe_ah_negs(s, ta, ta);
7121             }
7122             if (neg_n) {
7123                 gen_vfp_maybe_ah_negs(s, tn, tn);
7124             }
7125             fpst = fpstatus_ptr(FPST_A64);
7126             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
7127             write_fp_sreg_merging(s, a->rd, a->ra, ta);
7128         }
7129         break;
7130 
7131     case MO_16:
7132         if (!dc_isar_feature(aa64_fp16, s)) {
7133             return false;
7134         }
7135         if (fp_access_check(s)) {
7136             TCGv_i32 tn = read_fp_hreg(s, a->rn);
7137             TCGv_i32 tm = read_fp_hreg(s, a->rm);
7138             TCGv_i32 ta = read_fp_hreg(s, a->ra);
7139 
7140             if (neg_a) {
7141                 gen_vfp_maybe_ah_negh(s, ta, ta);
7142             }
7143             if (neg_n) {
7144                 gen_vfp_maybe_ah_negh(s, tn, tn);
7145             }
7146             fpst = fpstatus_ptr(FPST_A64_F16);
7147             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
7148             write_fp_hreg_merging(s, a->rd, a->ra, ta);
7149         }
7150         break;
7151 
7152     default:
7153         return false;
7154     }
7155     return true;
7156 }
7157 
7158 TRANS(FMADD, do_fmadd, a, false, false)
7159 TRANS(FNMADD, do_fmadd, a, true, true)
7160 TRANS(FMSUB, do_fmadd, a, false, true)
7161 TRANS(FNMSUB, do_fmadd, a, true, false)
7162 
7163 /*
7164  * Advanced SIMD Across Lanes
7165  */
7166 
7167 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen,
7168                              MemOp src_sign, NeonGenTwo64OpFn *fn)
7169 {
7170     TCGv_i64 tcg_res, tcg_elt;
7171     MemOp src_mop = a->esz | src_sign;
7172     int elements = (a->q ? 16 : 8) >> a->esz;
7173 
7174     /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */
7175     if (elements < 4) {
7176         return false;
7177     }
7178     if (!fp_access_check(s)) {
7179         return true;
7180     }
7181 
7182     tcg_res = tcg_temp_new_i64();
7183     tcg_elt = tcg_temp_new_i64();
7184 
7185     read_vec_element(s, tcg_res, a->rn, 0, src_mop);
7186     for (int i = 1; i < elements; i++) {
7187         read_vec_element(s, tcg_elt, a->rn, i, src_mop);
7188         fn(tcg_res, tcg_res, tcg_elt);
7189     }
7190 
7191     tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen);
7192     write_fp_dreg(s, a->rd, tcg_res);
7193     return true;
7194 }
7195 
7196 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64)
7197 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64)
7198 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64)
7199 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64)
7200 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64)
7201 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64)
7202 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64)
7203 
7204 /*
7205  * do_fp_reduction helper
7206  *
7207  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7208  * important for correct NaN propagation that we do these
7209  * operations in exactly the order specified by the pseudocode.
7210  *
7211  * This is a recursive function.
7212  */
7213 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz,
7214                                 int ebase, int ecount, TCGv_ptr fpst,
7215                                 NeonGenTwoSingleOpFn *fn)
7216 {
7217     if (ecount == 1) {
7218         TCGv_i32 tcg_elem = tcg_temp_new_i32();
7219         read_vec_element_i32(s, tcg_elem, rn, ebase, esz);
7220         return tcg_elem;
7221     } else {
7222         int half = ecount >> 1;
7223         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7224 
7225         tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn);
7226         tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn);
7227         tcg_res = tcg_temp_new_i32();
7228 
7229         fn(tcg_res, tcg_lo, tcg_hi, fpst);
7230         return tcg_res;
7231     }
7232 }
7233 
7234 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a,
7235                             NeonGenTwoSingleOpFn *fnormal,
7236                             NeonGenTwoSingleOpFn *fah)
7237 {
7238     if (fp_access_check(s)) {
7239         MemOp esz = a->esz;
7240         int elts = (a->q ? 16 : 8) >> esz;
7241         TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
7242         TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst,
7243                                        s->fpcr_ah ? fah : fnormal);
7244         write_fp_sreg(s, a->rd, res);
7245     }
7246     return true;
7247 }
7248 
7249 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a,
7250            gen_helper_vfp_maxnumh, gen_helper_vfp_maxnumh)
7251 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a,
7252            gen_helper_vfp_minnumh, gen_helper_vfp_minnumh)
7253 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a,
7254            gen_helper_vfp_maxh, gen_helper_vfp_ah_maxh)
7255 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a,
7256            gen_helper_vfp_minh, gen_helper_vfp_ah_minh)
7257 
7258 TRANS(FMAXNMV_s, do_fp_reduction, a,
7259       gen_helper_vfp_maxnums, gen_helper_vfp_maxnums)
7260 TRANS(FMINNMV_s, do_fp_reduction, a,
7261       gen_helper_vfp_minnums, gen_helper_vfp_minnums)
7262 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs, gen_helper_vfp_ah_maxs)
7263 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins, gen_helper_vfp_ah_mins)
7264 
7265 /*
7266  * Floating-point Immediate
7267  */
7268 
7269 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a)
7270 {
7271     int check = fp_access_check_scalar_hsd(s, a->esz);
7272     uint64_t imm;
7273 
7274     if (check <= 0) {
7275         return check == 0;
7276     }
7277 
7278     imm = vfp_expand_imm(a->esz, a->imm);
7279     write_fp_dreg(s, a->rd, tcg_constant_i64(imm));
7280     return true;
7281 }
7282 
7283 /*
7284  * Floating point compare, conditional compare
7285  */
7286 
7287 static void handle_fp_compare(DisasContext *s, int size,
7288                               unsigned int rn, unsigned int rm,
7289                               bool cmp_with_zero, bool signal_all_nans)
7290 {
7291     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7292     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_A64_F16 : FPST_A64);
7293 
7294     if (size == MO_64) {
7295         TCGv_i64 tcg_vn, tcg_vm;
7296 
7297         tcg_vn = read_fp_dreg(s, rn);
7298         if (cmp_with_zero) {
7299             tcg_vm = tcg_constant_i64(0);
7300         } else {
7301             tcg_vm = read_fp_dreg(s, rm);
7302         }
7303         if (signal_all_nans) {
7304             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7305         } else {
7306             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7307         }
7308     } else {
7309         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7310         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7311 
7312         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7313         if (cmp_with_zero) {
7314             tcg_gen_movi_i32(tcg_vm, 0);
7315         } else {
7316             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7317         }
7318 
7319         switch (size) {
7320         case MO_32:
7321             if (signal_all_nans) {
7322                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7323             } else {
7324                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7325             }
7326             break;
7327         case MO_16:
7328             if (signal_all_nans) {
7329                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7330             } else {
7331                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7332             }
7333             break;
7334         default:
7335             g_assert_not_reached();
7336         }
7337     }
7338 
7339     gen_set_nzcv(tcg_flags);
7340 }
7341 
7342 /* FCMP, FCMPE */
7343 static bool trans_FCMP(DisasContext *s, arg_FCMP *a)
7344 {
7345     int check = fp_access_check_scalar_hsd(s, a->esz);
7346 
7347     if (check <= 0) {
7348         return check == 0;
7349     }
7350 
7351     handle_fp_compare(s, a->esz, a->rn, a->rm, a->z, a->e);
7352     return true;
7353 }
7354 
7355 /* FCCMP, FCCMPE */
7356 static bool trans_FCCMP(DisasContext *s, arg_FCCMP *a)
7357 {
7358     TCGLabel *label_continue = NULL;
7359     int check = fp_access_check_scalar_hsd(s, a->esz);
7360 
7361     if (check <= 0) {
7362         return check == 0;
7363     }
7364 
7365     if (a->cond < 0x0e) { /* not always */
7366         TCGLabel *label_match = gen_new_label();
7367         label_continue = gen_new_label();
7368         arm_gen_test_cc(a->cond, label_match);
7369         /* nomatch: */
7370         gen_set_nzcv(tcg_constant_i64(a->nzcv << 28));
7371         tcg_gen_br(label_continue);
7372         gen_set_label(label_match);
7373     }
7374 
7375     handle_fp_compare(s, a->esz, a->rn, a->rm, false, a->e);
7376 
7377     if (label_continue) {
7378         gen_set_label(label_continue);
7379     }
7380     return true;
7381 }
7382 
7383 /*
7384  * Advanced SIMD Modified Immediate
7385  */
7386 
7387 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a)
7388 {
7389     if (!dc_isar_feature(aa64_fp16, s)) {
7390         return false;
7391     }
7392     if (fp_access_check(s)) {
7393         tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd),
7394                              a->q ? 16 : 8, vec_full_reg_size(s),
7395                              vfp_expand_imm(MO_16, a->abcdefgh));
7396     }
7397     return true;
7398 }
7399 
7400 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs,
7401                      int64_t c, uint32_t oprsz, uint32_t maxsz)
7402 {
7403     tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c);
7404 }
7405 
7406 static bool trans_Vimm(DisasContext *s, arg_Vimm *a)
7407 {
7408     GVecGen2iFn *fn;
7409 
7410     /* Handle decode of cmode/op here between ORR/BIC/MOVI */
7411     if ((a->cmode & 1) && a->cmode < 12) {
7412         /* For op=1, the imm will be inverted, so BIC becomes AND. */
7413         fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori;
7414     } else {
7415         /* There is one unallocated cmode/op combination in this space */
7416         if (a->cmode == 15 && a->op == 1 && a->q == 0) {
7417             return false;
7418         }
7419         fn = gen_movi;
7420     }
7421 
7422     if (fp_access_check(s)) {
7423         uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op);
7424         gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64);
7425     }
7426     return true;
7427 }
7428 
7429 /*
7430  * Advanced SIMD Shift by Immediate
7431  */
7432 
7433 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn)
7434 {
7435     if (fp_access_check(s)) {
7436         gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz);
7437     }
7438     return true;
7439 }
7440 
7441 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr)
7442 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr)
7443 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra)
7444 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra)
7445 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr)
7446 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr)
7447 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra)
7448 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra)
7449 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri)
7450 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli)
7451 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli);
7452 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli)
7453 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli)
7454 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui)
7455 
7456 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u)
7457 {
7458     TCGv_i64 tcg_rn, tcg_rd;
7459     int esz = a->esz;
7460     int esize;
7461 
7462     if (!fp_access_check(s)) {
7463         return true;
7464     }
7465 
7466     /*
7467      * For the LL variants the store is larger than the load,
7468      * so if rd == rn we would overwrite parts of our input.
7469      * So load everything right now and use shifts in the main loop.
7470      */
7471     tcg_rd = tcg_temp_new_i64();
7472     tcg_rn = tcg_temp_new_i64();
7473     read_vec_element(s, tcg_rn, a->rn, a->q, MO_64);
7474 
7475     esize = 8 << esz;
7476     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7477         if (is_u) {
7478             tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize);
7479         } else {
7480             tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize);
7481         }
7482         tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm);
7483         write_vec_element(s, tcg_rd, a->rd, i, esz + 1);
7484     }
7485     clear_vec_high(s, true, a->rd);
7486     return true;
7487 }
7488 
7489 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false)
7490 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true)
7491 
7492 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7493 {
7494     assert(shift >= 0 && shift <= 64);
7495     tcg_gen_sari_i64(dst, src, MIN(shift, 63));
7496 }
7497 
7498 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7499 {
7500     assert(shift >= 0 && shift <= 64);
7501     if (shift == 64) {
7502         tcg_gen_movi_i64(dst, 0);
7503     } else {
7504         tcg_gen_shri_i64(dst, src, shift);
7505     }
7506 }
7507 
7508 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7509 {
7510     gen_sshr_d(src, src, shift);
7511     tcg_gen_add_i64(dst, dst, src);
7512 }
7513 
7514 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7515 {
7516     gen_ushr_d(src, src, shift);
7517     tcg_gen_add_i64(dst, dst, src);
7518 }
7519 
7520 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7521 {
7522     assert(shift >= 0 && shift <= 32);
7523     if (shift) {
7524         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7525         tcg_gen_add_i64(dst, src, rnd);
7526         tcg_gen_sari_i64(dst, dst, shift);
7527     } else {
7528         tcg_gen_mov_i64(dst, src);
7529     }
7530 }
7531 
7532 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7533 {
7534     assert(shift >= 0 && shift <= 32);
7535     if (shift) {
7536         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7537         tcg_gen_add_i64(dst, src, rnd);
7538         tcg_gen_shri_i64(dst, dst, shift);
7539     } else {
7540         tcg_gen_mov_i64(dst, src);
7541     }
7542 }
7543 
7544 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7545 {
7546     assert(shift >= 0 && shift <= 64);
7547     if (shift == 0) {
7548         tcg_gen_mov_i64(dst, src);
7549     } else if (shift == 64) {
7550         /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */
7551         tcg_gen_movi_i64(dst, 0);
7552     } else {
7553         TCGv_i64 rnd = tcg_temp_new_i64();
7554         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7555         tcg_gen_sari_i64(dst, src, shift);
7556         tcg_gen_add_i64(dst, dst, rnd);
7557     }
7558 }
7559 
7560 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7561 {
7562     assert(shift >= 0 && shift <= 64);
7563     if (shift == 0) {
7564         tcg_gen_mov_i64(dst, src);
7565     } else if (shift == 64) {
7566         /* Rounding will propagate bit 63 into bit 64. */
7567         tcg_gen_shri_i64(dst, src, 63);
7568     } else {
7569         TCGv_i64 rnd = tcg_temp_new_i64();
7570         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7571         tcg_gen_shri_i64(dst, src, shift);
7572         tcg_gen_add_i64(dst, dst, rnd);
7573     }
7574 }
7575 
7576 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7577 {
7578     gen_srshr_d(src, src, shift);
7579     tcg_gen_add_i64(dst, dst, src);
7580 }
7581 
7582 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7583 {
7584     gen_urshr_d(src, src, shift);
7585     tcg_gen_add_i64(dst, dst, src);
7586 }
7587 
7588 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7589 {
7590     /* If shift is 64, dst is unchanged. */
7591     if (shift != 64) {
7592         tcg_gen_shri_i64(src, src, shift);
7593         tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift);
7594     }
7595 }
7596 
7597 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7598 {
7599     tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift);
7600 }
7601 
7602 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a,
7603                                     WideShiftImmFn * const fns[3], MemOp sign)
7604 {
7605     TCGv_i64 tcg_rn, tcg_rd;
7606     int esz = a->esz;
7607     int esize;
7608     WideShiftImmFn *fn;
7609 
7610     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7611 
7612     if (!fp_access_check(s)) {
7613         return true;
7614     }
7615 
7616     tcg_rn = tcg_temp_new_i64();
7617     tcg_rd = tcg_temp_new_i64();
7618     tcg_gen_movi_i64(tcg_rd, 0);
7619 
7620     fn = fns[esz];
7621     esize = 8 << esz;
7622     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7623         read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign);
7624         fn(tcg_rn, tcg_rn, a->imm);
7625         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize);
7626     }
7627 
7628     write_vec_element(s, tcg_rd, a->rd, a->q, MO_64);
7629     clear_vec_high(s, a->q, a->rd);
7630     return true;
7631 }
7632 
7633 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7634 {
7635     tcg_gen_sari_i64(d, s, i);
7636     tcg_gen_ext16u_i64(d, d);
7637     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7638 }
7639 
7640 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7641 {
7642     tcg_gen_sari_i64(d, s, i);
7643     tcg_gen_ext32u_i64(d, d);
7644     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7645 }
7646 
7647 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7648 {
7649     gen_sshr_d(d, s, i);
7650     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7651 }
7652 
7653 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7654 {
7655     tcg_gen_shri_i64(d, s, i);
7656     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7657 }
7658 
7659 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7660 {
7661     tcg_gen_shri_i64(d, s, i);
7662     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7663 }
7664 
7665 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7666 {
7667     gen_ushr_d(d, s, i);
7668     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7669 }
7670 
7671 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7672 {
7673     tcg_gen_sari_i64(d, s, i);
7674     tcg_gen_ext16u_i64(d, d);
7675     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7676 }
7677 
7678 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7679 {
7680     tcg_gen_sari_i64(d, s, i);
7681     tcg_gen_ext32u_i64(d, d);
7682     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7683 }
7684 
7685 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7686 {
7687     gen_sshr_d(d, s, i);
7688     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7689 }
7690 
7691 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7692 {
7693     gen_srshr_bhs(d, s, i);
7694     tcg_gen_ext16u_i64(d, d);
7695     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7696 }
7697 
7698 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7699 {
7700     gen_srshr_bhs(d, s, i);
7701     tcg_gen_ext32u_i64(d, d);
7702     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7703 }
7704 
7705 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7706 {
7707     gen_srshr_d(d, s, i);
7708     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7709 }
7710 
7711 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7712 {
7713     gen_urshr_bhs(d, s, i);
7714     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7715 }
7716 
7717 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7718 {
7719     gen_urshr_bhs(d, s, i);
7720     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7721 }
7722 
7723 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7724 {
7725     gen_urshr_d(d, s, i);
7726     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7727 }
7728 
7729 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7730 {
7731     gen_srshr_bhs(d, s, i);
7732     tcg_gen_ext16u_i64(d, d);
7733     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7734 }
7735 
7736 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7737 {
7738     gen_srshr_bhs(d, s, i);
7739     tcg_gen_ext32u_i64(d, d);
7740     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7741 }
7742 
7743 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7744 {
7745     gen_srshr_d(d, s, i);
7746     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7747 }
7748 
7749 static WideShiftImmFn * const shrn_fns[] = {
7750     tcg_gen_shri_i64,
7751     tcg_gen_shri_i64,
7752     gen_ushr_d,
7753 };
7754 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0)
7755 
7756 static WideShiftImmFn * const rshrn_fns[] = {
7757     gen_urshr_bhs,
7758     gen_urshr_bhs,
7759     gen_urshr_d,
7760 };
7761 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0)
7762 
7763 static WideShiftImmFn * const sqshrn_fns[] = {
7764     gen_sqshrn_b,
7765     gen_sqshrn_h,
7766     gen_sqshrn_s,
7767 };
7768 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN)
7769 
7770 static WideShiftImmFn * const uqshrn_fns[] = {
7771     gen_uqshrn_b,
7772     gen_uqshrn_h,
7773     gen_uqshrn_s,
7774 };
7775 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0)
7776 
7777 static WideShiftImmFn * const sqshrun_fns[] = {
7778     gen_sqshrun_b,
7779     gen_sqshrun_h,
7780     gen_sqshrun_s,
7781 };
7782 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN)
7783 
7784 static WideShiftImmFn * const sqrshrn_fns[] = {
7785     gen_sqrshrn_b,
7786     gen_sqrshrn_h,
7787     gen_sqrshrn_s,
7788 };
7789 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN)
7790 
7791 static WideShiftImmFn * const uqrshrn_fns[] = {
7792     gen_uqrshrn_b,
7793     gen_uqrshrn_h,
7794     gen_uqrshrn_s,
7795 };
7796 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0)
7797 
7798 static WideShiftImmFn * const sqrshrun_fns[] = {
7799     gen_sqrshrun_b,
7800     gen_sqrshrun_h,
7801     gen_sqrshrun_s,
7802 };
7803 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN)
7804 
7805 /*
7806  * Advanced SIMD Scalar Shift by Immediate
7807  */
7808 
7809 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a,
7810                                 WideShiftImmFn *fn, bool accumulate,
7811                                 MemOp sign)
7812 {
7813     if (fp_access_check(s)) {
7814         TCGv_i64 rd = tcg_temp_new_i64();
7815         TCGv_i64 rn = tcg_temp_new_i64();
7816 
7817         read_vec_element(s, rn, a->rn, 0, a->esz | sign);
7818         if (accumulate) {
7819             read_vec_element(s, rd, a->rd, 0, a->esz | sign);
7820         }
7821         fn(rd, rn, a->imm);
7822         write_fp_dreg(s, a->rd, rd);
7823     }
7824     return true;
7825 }
7826 
7827 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0)
7828 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0)
7829 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0)
7830 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0)
7831 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0)
7832 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0)
7833 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0)
7834 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0)
7835 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0)
7836 
7837 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0)
7838 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0)
7839 
7840 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i,
7841                               NeonGenTwoOpEnvFn *fn)
7842 {
7843     TCGv_i32 t = tcg_temp_new_i32();
7844     tcg_gen_extrl_i64_i32(t, s);
7845     fn(t, tcg_env, t, tcg_constant_i32(i));
7846     tcg_gen_extu_i32_i64(d, t);
7847 }
7848 
7849 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7850 {
7851     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8);
7852 }
7853 
7854 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7855 {
7856     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16);
7857 }
7858 
7859 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7860 {
7861     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32);
7862 }
7863 
7864 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7865 {
7866     gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i));
7867 }
7868 
7869 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7870 {
7871     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8);
7872 }
7873 
7874 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7875 {
7876     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16);
7877 }
7878 
7879 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7880 {
7881     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32);
7882 }
7883 
7884 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7885 {
7886     gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i));
7887 }
7888 
7889 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7890 {
7891     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8);
7892 }
7893 
7894 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7895 {
7896     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16);
7897 }
7898 
7899 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7900 {
7901     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32);
7902 }
7903 
7904 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7905 {
7906     gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i));
7907 }
7908 
7909 static WideShiftImmFn * const f_scalar_sqshli[] = {
7910     gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d
7911 };
7912 
7913 static WideShiftImmFn * const f_scalar_uqshli[] = {
7914     gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d
7915 };
7916 
7917 static WideShiftImmFn * const f_scalar_sqshlui[] = {
7918     gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d
7919 };
7920 
7921 /* Note that the helpers sign-extend their inputs, so don't do it here. */
7922 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0)
7923 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0)
7924 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0)
7925 
7926 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a,
7927                                        WideShiftImmFn * const fns[3],
7928                                        MemOp sign, bool zext)
7929 {
7930     MemOp esz = a->esz;
7931 
7932     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7933 
7934     if (fp_access_check(s)) {
7935         TCGv_i64 rd = tcg_temp_new_i64();
7936         TCGv_i64 rn = tcg_temp_new_i64();
7937 
7938         read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign);
7939         fns[esz](rd, rn, a->imm);
7940         if (zext) {
7941             tcg_gen_ext_i64(rd, rd, esz);
7942         }
7943         write_fp_dreg(s, a->rd, rd);
7944     }
7945     return true;
7946 }
7947 
7948 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true)
7949 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true)
7950 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false)
7951 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false)
7952 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false)
7953 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false)
7954 
7955 static bool do_div(DisasContext *s, arg_rrr_sf *a, bool is_signed)
7956 {
7957     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7958     tcg_rd = cpu_reg(s, a->rd);
7959 
7960     if (!a->sf && is_signed) {
7961         tcg_n = tcg_temp_new_i64();
7962         tcg_m = tcg_temp_new_i64();
7963         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, a->rn));
7964         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, a->rm));
7965     } else {
7966         tcg_n = read_cpu_reg(s, a->rn, a->sf);
7967         tcg_m = read_cpu_reg(s, a->rm, a->sf);
7968     }
7969 
7970     if (is_signed) {
7971         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7972     } else {
7973         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7974     }
7975 
7976     if (!a->sf) { /* zero extend final result */
7977         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7978     }
7979     return true;
7980 }
7981 
7982 TRANS(SDIV, do_div, a, true)
7983 TRANS(UDIV, do_div, a, false)
7984 
7985 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
7986  * Note that it is the caller's responsibility to ensure that the
7987  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
7988  * mandated semantics for out of range shifts.
7989  */
7990 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
7991                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
7992 {
7993     switch (shift_type) {
7994     case A64_SHIFT_TYPE_LSL:
7995         tcg_gen_shl_i64(dst, src, shift_amount);
7996         break;
7997     case A64_SHIFT_TYPE_LSR:
7998         tcg_gen_shr_i64(dst, src, shift_amount);
7999         break;
8000     case A64_SHIFT_TYPE_ASR:
8001         if (!sf) {
8002             tcg_gen_ext32s_i64(dst, src);
8003         }
8004         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
8005         break;
8006     case A64_SHIFT_TYPE_ROR:
8007         if (sf) {
8008             tcg_gen_rotr_i64(dst, src, shift_amount);
8009         } else {
8010             TCGv_i32 t0, t1;
8011             t0 = tcg_temp_new_i32();
8012             t1 = tcg_temp_new_i32();
8013             tcg_gen_extrl_i64_i32(t0, src);
8014             tcg_gen_extrl_i64_i32(t1, shift_amount);
8015             tcg_gen_rotr_i32(t0, t0, t1);
8016             tcg_gen_extu_i32_i64(dst, t0);
8017         }
8018         break;
8019     default:
8020         assert(FALSE); /* all shift types should be handled */
8021         break;
8022     }
8023 
8024     if (!sf) { /* zero extend final result */
8025         tcg_gen_ext32u_i64(dst, dst);
8026     }
8027 }
8028 
8029 /* Shift a TCGv src by immediate, put result in dst.
8030  * The shift amount must be in range (this should always be true as the
8031  * relevant instructions will UNDEF on bad shift immediates).
8032  */
8033 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
8034                           enum a64_shift_type shift_type, unsigned int shift_i)
8035 {
8036     assert(shift_i < (sf ? 64 : 32));
8037 
8038     if (shift_i == 0) {
8039         tcg_gen_mov_i64(dst, src);
8040     } else {
8041         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
8042     }
8043 }
8044 
8045 static bool do_shift_reg(DisasContext *s, arg_rrr_sf *a,
8046                          enum a64_shift_type shift_type)
8047 {
8048     TCGv_i64 tcg_shift = tcg_temp_new_i64();
8049     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8050     TCGv_i64 tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8051 
8052     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, a->rm), a->sf ? 63 : 31);
8053     shift_reg(tcg_rd, tcg_rn, a->sf, shift_type, tcg_shift);
8054     return true;
8055 }
8056 
8057 TRANS(LSLV, do_shift_reg, a, A64_SHIFT_TYPE_LSL)
8058 TRANS(LSRV, do_shift_reg, a, A64_SHIFT_TYPE_LSR)
8059 TRANS(ASRV, do_shift_reg, a, A64_SHIFT_TYPE_ASR)
8060 TRANS(RORV, do_shift_reg, a, A64_SHIFT_TYPE_ROR)
8061 
8062 static bool do_crc32(DisasContext *s, arg_rrr_e *a, bool crc32c)
8063 {
8064     TCGv_i64 tcg_acc, tcg_val, tcg_rd;
8065     TCGv_i32 tcg_bytes;
8066 
8067     switch (a->esz) {
8068     case MO_8:
8069     case MO_16:
8070     case MO_32:
8071         tcg_val = tcg_temp_new_i64();
8072         tcg_gen_extract_i64(tcg_val, cpu_reg(s, a->rm), 0, 8 << a->esz);
8073         break;
8074     case MO_64:
8075         tcg_val = cpu_reg(s, a->rm);
8076         break;
8077     default:
8078         g_assert_not_reached();
8079     }
8080     tcg_acc = cpu_reg(s, a->rn);
8081     tcg_bytes = tcg_constant_i32(1 << a->esz);
8082     tcg_rd = cpu_reg(s, a->rd);
8083 
8084     if (crc32c) {
8085         gen_helper_crc32c_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8086     } else {
8087         gen_helper_crc32_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8088     }
8089     return true;
8090 }
8091 
8092 TRANS_FEAT(CRC32, aa64_crc32, do_crc32, a, false)
8093 TRANS_FEAT(CRC32C, aa64_crc32, do_crc32, a, true)
8094 
8095 static bool do_subp(DisasContext *s, arg_rrr *a, bool setflag)
8096 {
8097     TCGv_i64 tcg_n = read_cpu_reg_sp(s, a->rn, true);
8098     TCGv_i64 tcg_m = read_cpu_reg_sp(s, a->rm, true);
8099     TCGv_i64 tcg_d = cpu_reg(s, a->rd);
8100 
8101     tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
8102     tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
8103 
8104     if (setflag) {
8105         gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
8106     } else {
8107         tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
8108     }
8109     return true;
8110 }
8111 
8112 TRANS_FEAT(SUBP, aa64_mte_insn_reg, do_subp, a, false)
8113 TRANS_FEAT(SUBPS, aa64_mte_insn_reg, do_subp, a, true)
8114 
8115 static bool trans_IRG(DisasContext *s, arg_rrr *a)
8116 {
8117     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8118         TCGv_i64 tcg_rd = cpu_reg_sp(s, a->rd);
8119         TCGv_i64 tcg_rn = cpu_reg_sp(s, a->rn);
8120 
8121         if (s->ata[0]) {
8122             gen_helper_irg(tcg_rd, tcg_env, tcg_rn, cpu_reg(s, a->rm));
8123         } else {
8124             gen_address_with_allocation_tag0(tcg_rd, tcg_rn);
8125         }
8126         return true;
8127     }
8128     return false;
8129 }
8130 
8131 static bool trans_GMI(DisasContext *s, arg_rrr *a)
8132 {
8133     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8134         TCGv_i64 t = tcg_temp_new_i64();
8135 
8136         tcg_gen_extract_i64(t, cpu_reg_sp(s, a->rn), 56, 4);
8137         tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
8138         tcg_gen_or_i64(cpu_reg(s, a->rd), cpu_reg(s, a->rm), t);
8139         return true;
8140     }
8141     return false;
8142 }
8143 
8144 static bool trans_PACGA(DisasContext *s, arg_rrr *a)
8145 {
8146     if (dc_isar_feature(aa64_pauth, s)) {
8147         gen_helper_pacga(cpu_reg(s, a->rd), tcg_env,
8148                          cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm));
8149         return true;
8150     }
8151     return false;
8152 }
8153 
8154 typedef void ArithOneOp(TCGv_i64, TCGv_i64);
8155 
8156 static bool gen_rr(DisasContext *s, int rd, int rn, ArithOneOp fn)
8157 {
8158     fn(cpu_reg(s, rd), cpu_reg(s, rn));
8159     return true;
8160 }
8161 
8162 static void gen_rbit32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8163 {
8164     TCGv_i32 t32 = tcg_temp_new_i32();
8165 
8166     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8167     gen_helper_rbit(t32, t32);
8168     tcg_gen_extu_i32_i64(tcg_rd, t32);
8169 }
8170 
8171 static void gen_rev16_xx(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 mask)
8172 {
8173     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8174 
8175     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
8176     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
8177     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
8178     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
8179     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
8180 }
8181 
8182 static void gen_rev16_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8183 {
8184     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff));
8185 }
8186 
8187 static void gen_rev16_64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8188 {
8189     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff00ff00ffull));
8190 }
8191 
8192 static void gen_rev_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8193 {
8194     tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
8195 }
8196 
8197 static void gen_rev32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8198 {
8199     tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
8200     tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
8201 }
8202 
8203 TRANS(RBIT, gen_rr, a->rd, a->rn, a->sf ? gen_helper_rbit64 : gen_rbit32)
8204 TRANS(REV16, gen_rr, a->rd, a->rn, a->sf ? gen_rev16_64 : gen_rev16_32)
8205 TRANS(REV32, gen_rr, a->rd, a->rn, a->sf ? gen_rev32 : gen_rev_32)
8206 TRANS(REV64, gen_rr, a->rd, a->rn, tcg_gen_bswap64_i64)
8207 
8208 static void gen_clz32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8209 {
8210     TCGv_i32 t32 = tcg_temp_new_i32();
8211 
8212     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8213     tcg_gen_clzi_i32(t32, t32, 32);
8214     tcg_gen_extu_i32_i64(tcg_rd, t32);
8215 }
8216 
8217 static void gen_clz64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8218 {
8219     tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8220 }
8221 
8222 static void gen_cls32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8223 {
8224     TCGv_i32 t32 = tcg_temp_new_i32();
8225 
8226     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8227     tcg_gen_clrsb_i32(t32, t32);
8228     tcg_gen_extu_i32_i64(tcg_rd, t32);
8229 }
8230 
8231 TRANS(CLZ, gen_rr, a->rd, a->rn, a->sf ? gen_clz64 : gen_clz32)
8232 TRANS(CLS, gen_rr, a->rd, a->rn, a->sf ? tcg_gen_clrsb_i64 : gen_cls32)
8233 
8234 static bool gen_pacaut(DisasContext *s, arg_pacaut *a, NeonGenTwo64OpEnvFn fn)
8235 {
8236     TCGv_i64 tcg_rd, tcg_rn;
8237 
8238     if (a->z) {
8239         if (a->rn != 31) {
8240             return false;
8241         }
8242         tcg_rn = tcg_constant_i64(0);
8243     } else {
8244         tcg_rn = cpu_reg_sp(s, a->rn);
8245     }
8246     if (s->pauth_active) {
8247         tcg_rd = cpu_reg(s, a->rd);
8248         fn(tcg_rd, tcg_env, tcg_rd, tcg_rn);
8249     }
8250     return true;
8251 }
8252 
8253 TRANS_FEAT(PACIA, aa64_pauth, gen_pacaut, a, gen_helper_pacia)
8254 TRANS_FEAT(PACIB, aa64_pauth, gen_pacaut, a, gen_helper_pacib)
8255 TRANS_FEAT(PACDA, aa64_pauth, gen_pacaut, a, gen_helper_pacda)
8256 TRANS_FEAT(PACDB, aa64_pauth, gen_pacaut, a, gen_helper_pacdb)
8257 
8258 TRANS_FEAT(AUTIA, aa64_pauth, gen_pacaut, a, gen_helper_autia)
8259 TRANS_FEAT(AUTIB, aa64_pauth, gen_pacaut, a, gen_helper_autib)
8260 TRANS_FEAT(AUTDA, aa64_pauth, gen_pacaut, a, gen_helper_autda)
8261 TRANS_FEAT(AUTDB, aa64_pauth, gen_pacaut, a, gen_helper_autdb)
8262 
8263 static bool do_xpac(DisasContext *s, int rd, NeonGenOne64OpEnvFn *fn)
8264 {
8265     if (s->pauth_active) {
8266         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8267         fn(tcg_rd, tcg_env, tcg_rd);
8268     }
8269     return true;
8270 }
8271 
8272 TRANS_FEAT(XPACI, aa64_pauth, do_xpac, a->rd, gen_helper_xpaci)
8273 TRANS_FEAT(XPACD, aa64_pauth, do_xpac, a->rd, gen_helper_xpacd)
8274 
8275 static bool do_logic_reg(DisasContext *s, arg_logic_shift *a,
8276                          ArithTwoOp *fn, ArithTwoOp *inv_fn, bool setflags)
8277 {
8278     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
8279 
8280     if (!a->sf && (a->sa & (1 << 5))) {
8281         return false;
8282     }
8283 
8284     tcg_rd = cpu_reg(s, a->rd);
8285     tcg_rn = cpu_reg(s, a->rn);
8286 
8287     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8288     if (a->sa) {
8289         shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8290     }
8291 
8292     (a->n ? inv_fn : fn)(tcg_rd, tcg_rn, tcg_rm);
8293     if (!a->sf) {
8294         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8295     }
8296     if (setflags) {
8297         gen_logic_CC(a->sf, tcg_rd);
8298     }
8299     return true;
8300 }
8301 
8302 static bool trans_ORR_r(DisasContext *s, arg_logic_shift *a)
8303 {
8304     /*
8305      * Unshifted ORR and ORN with WZR/XZR is the standard encoding for
8306      * register-register MOV and MVN, so it is worth special casing.
8307      */
8308     if (a->sa == 0 && a->st == 0 && a->rn == 31) {
8309         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8310         TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8311 
8312         if (a->n) {
8313             tcg_gen_not_i64(tcg_rd, tcg_rm);
8314             if (!a->sf) {
8315                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8316             }
8317         } else {
8318             if (a->sf) {
8319                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
8320             } else {
8321                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
8322             }
8323         }
8324         return true;
8325     }
8326 
8327     return do_logic_reg(s, a, tcg_gen_or_i64, tcg_gen_orc_i64, false);
8328 }
8329 
8330 TRANS(AND_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, false)
8331 TRANS(ANDS_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, true)
8332 TRANS(EOR_r, do_logic_reg, a, tcg_gen_xor_i64, tcg_gen_eqv_i64, false)
8333 
8334 static bool do_addsub_ext(DisasContext *s, arg_addsub_ext *a,
8335                           bool sub_op, bool setflags)
8336 {
8337     TCGv_i64 tcg_rm, tcg_rn, tcg_rd, tcg_result;
8338 
8339     if (a->sa > 4) {
8340         return false;
8341     }
8342 
8343     /* non-flag setting ops may use SP */
8344     if (!setflags) {
8345         tcg_rd = cpu_reg_sp(s, a->rd);
8346     } else {
8347         tcg_rd = cpu_reg(s, a->rd);
8348     }
8349     tcg_rn = read_cpu_reg_sp(s, a->rn, a->sf);
8350 
8351     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8352     ext_and_shift_reg(tcg_rm, tcg_rm, a->st, a->sa);
8353 
8354     tcg_result = tcg_temp_new_i64();
8355     if (!setflags) {
8356         if (sub_op) {
8357             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8358         } else {
8359             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8360         }
8361     } else {
8362         if (sub_op) {
8363             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8364         } else {
8365             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8366         }
8367     }
8368 
8369     if (a->sf) {
8370         tcg_gen_mov_i64(tcg_rd, tcg_result);
8371     } else {
8372         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8373     }
8374     return true;
8375 }
8376 
8377 TRANS(ADD_ext, do_addsub_ext, a, false, false)
8378 TRANS(SUB_ext, do_addsub_ext, a, true, false)
8379 TRANS(ADDS_ext, do_addsub_ext, a, false, true)
8380 TRANS(SUBS_ext, do_addsub_ext, a, true, true)
8381 
8382 static bool do_addsub_reg(DisasContext *s, arg_addsub_shift *a,
8383                           bool sub_op, bool setflags)
8384 {
8385     TCGv_i64 tcg_rd, tcg_rn, tcg_rm, tcg_result;
8386 
8387     if (a->st == 3 || (!a->sf && (a->sa & 32))) {
8388         return false;
8389     }
8390 
8391     tcg_rd = cpu_reg(s, a->rd);
8392     tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8393     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8394 
8395     shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8396 
8397     tcg_result = tcg_temp_new_i64();
8398     if (!setflags) {
8399         if (sub_op) {
8400             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8401         } else {
8402             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8403         }
8404     } else {
8405         if (sub_op) {
8406             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8407         } else {
8408             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8409         }
8410     }
8411 
8412     if (a->sf) {
8413         tcg_gen_mov_i64(tcg_rd, tcg_result);
8414     } else {
8415         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8416     }
8417     return true;
8418 }
8419 
8420 TRANS(ADD_r, do_addsub_reg, a, false, false)
8421 TRANS(SUB_r, do_addsub_reg, a, true, false)
8422 TRANS(ADDS_r, do_addsub_reg, a, false, true)
8423 TRANS(SUBS_r, do_addsub_reg, a, true, true)
8424 
8425 static bool do_mulh(DisasContext *s, arg_rrr *a,
8426                     void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
8427 {
8428     TCGv_i64 discard = tcg_temp_new_i64();
8429     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8430     TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
8431     TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8432 
8433     fn(discard, tcg_rd, tcg_rn, tcg_rm);
8434     return true;
8435 }
8436 
8437 TRANS(SMULH, do_mulh, a, tcg_gen_muls2_i64)
8438 TRANS(UMULH, do_mulh, a, tcg_gen_mulu2_i64)
8439 
8440 static bool do_muladd(DisasContext *s, arg_rrrr *a,
8441                       bool sf, bool is_sub, MemOp mop)
8442 {
8443     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8444     TCGv_i64 tcg_op1, tcg_op2;
8445 
8446     if (mop == MO_64) {
8447         tcg_op1 = cpu_reg(s, a->rn);
8448         tcg_op2 = cpu_reg(s, a->rm);
8449     } else {
8450         tcg_op1 = tcg_temp_new_i64();
8451         tcg_op2 = tcg_temp_new_i64();
8452         tcg_gen_ext_i64(tcg_op1, cpu_reg(s, a->rn), mop);
8453         tcg_gen_ext_i64(tcg_op2, cpu_reg(s, a->rm), mop);
8454     }
8455 
8456     if (a->ra == 31 && !is_sub) {
8457         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
8458         tcg_gen_mul_i64(tcg_rd, tcg_op1, tcg_op2);
8459     } else {
8460         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8461         TCGv_i64 tcg_ra = cpu_reg(s, a->ra);
8462 
8463         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
8464         if (is_sub) {
8465             tcg_gen_sub_i64(tcg_rd, tcg_ra, tcg_tmp);
8466         } else {
8467             tcg_gen_add_i64(tcg_rd, tcg_ra, tcg_tmp);
8468         }
8469     }
8470 
8471     if (!sf) {
8472         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8473     }
8474     return true;
8475 }
8476 
8477 TRANS(MADD_w, do_muladd, a, false, false, MO_64)
8478 TRANS(MSUB_w, do_muladd, a, false, true, MO_64)
8479 TRANS(MADD_x, do_muladd, a, true, false, MO_64)
8480 TRANS(MSUB_x, do_muladd, a, true, true, MO_64)
8481 
8482 TRANS(SMADDL, do_muladd, a, true, false, MO_SL)
8483 TRANS(SMSUBL, do_muladd, a, true, true, MO_SL)
8484 TRANS(UMADDL, do_muladd, a, true, false, MO_UL)
8485 TRANS(UMSUBL, do_muladd, a, true, true, MO_UL)
8486 
8487 static bool do_adc_sbc(DisasContext *s, arg_rrr_sf *a,
8488                        bool is_sub, bool setflags)
8489 {
8490     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
8491 
8492     tcg_rd = cpu_reg(s, a->rd);
8493     tcg_rn = cpu_reg(s, a->rn);
8494 
8495     if (is_sub) {
8496         tcg_y = tcg_temp_new_i64();
8497         tcg_gen_not_i64(tcg_y, cpu_reg(s, a->rm));
8498     } else {
8499         tcg_y = cpu_reg(s, a->rm);
8500     }
8501 
8502     if (setflags) {
8503         gen_adc_CC(a->sf, tcg_rd, tcg_rn, tcg_y);
8504     } else {
8505         gen_adc(a->sf, tcg_rd, tcg_rn, tcg_y);
8506     }
8507     return true;
8508 }
8509 
8510 TRANS(ADC, do_adc_sbc, a, false, false)
8511 TRANS(SBC, do_adc_sbc, a, true, false)
8512 TRANS(ADCS, do_adc_sbc, a, false, true)
8513 TRANS(SBCS, do_adc_sbc, a, true, true)
8514 
8515 static bool trans_RMIF(DisasContext *s, arg_RMIF *a)
8516 {
8517     int mask = a->mask;
8518     TCGv_i64 tcg_rn;
8519     TCGv_i32 nzcv;
8520 
8521     if (!dc_isar_feature(aa64_condm_4, s)) {
8522         return false;
8523     }
8524 
8525     tcg_rn = read_cpu_reg(s, a->rn, 1);
8526     tcg_gen_rotri_i64(tcg_rn, tcg_rn, a->imm);
8527 
8528     nzcv = tcg_temp_new_i32();
8529     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
8530 
8531     if (mask & 8) { /* N */
8532         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
8533     }
8534     if (mask & 4) { /* Z */
8535         tcg_gen_not_i32(cpu_ZF, nzcv);
8536         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
8537     }
8538     if (mask & 2) { /* C */
8539         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
8540     }
8541     if (mask & 1) { /* V */
8542         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
8543     }
8544     return true;
8545 }
8546 
8547 static bool do_setf(DisasContext *s, int rn, int shift)
8548 {
8549     TCGv_i32 tmp = tcg_temp_new_i32();
8550 
8551     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
8552     tcg_gen_shli_i32(cpu_NF, tmp, shift);
8553     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
8554     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
8555     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
8556     return true;
8557 }
8558 
8559 TRANS_FEAT(SETF8, aa64_condm_4, do_setf, a->rn, 24)
8560 TRANS_FEAT(SETF16, aa64_condm_4, do_setf, a->rn, 16)
8561 
8562 /* CCMP, CCMN */
8563 static bool trans_CCMP(DisasContext *s, arg_CCMP *a)
8564 {
8565     TCGv_i32 tcg_t0 = tcg_temp_new_i32();
8566     TCGv_i32 tcg_t1 = tcg_temp_new_i32();
8567     TCGv_i32 tcg_t2 = tcg_temp_new_i32();
8568     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8569     TCGv_i64 tcg_rn, tcg_y;
8570     DisasCompare c;
8571     unsigned nzcv;
8572     bool has_andc;
8573 
8574     /* Set T0 = !COND.  */
8575     arm_test_cc(&c, a->cond);
8576     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
8577 
8578     /* Load the arguments for the new comparison.  */
8579     if (a->imm) {
8580         tcg_y = tcg_constant_i64(a->y);
8581     } else {
8582         tcg_y = cpu_reg(s, a->y);
8583     }
8584     tcg_rn = cpu_reg(s, a->rn);
8585 
8586     /* Set the flags for the new comparison.  */
8587     if (a->op) {
8588         gen_sub_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8589     } else {
8590         gen_add_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8591     }
8592 
8593     /*
8594      * If COND was false, force the flags to #nzcv.  Compute two masks
8595      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
8596      * For tcg hosts that support ANDC, we can make do with just T1.
8597      * In either case, allow the tcg optimizer to delete any unused mask.
8598      */
8599     tcg_gen_neg_i32(tcg_t1, tcg_t0);
8600     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
8601 
8602     nzcv = a->nzcv;
8603     has_andc = tcg_op_supported(INDEX_op_andc_i32, TCG_TYPE_I32, 0);
8604     if (nzcv & 8) { /* N */
8605         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
8606     } else {
8607         if (has_andc) {
8608             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
8609         } else {
8610             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
8611         }
8612     }
8613     if (nzcv & 4) { /* Z */
8614         if (has_andc) {
8615             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
8616         } else {
8617             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
8618         }
8619     } else {
8620         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
8621     }
8622     if (nzcv & 2) { /* C */
8623         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
8624     } else {
8625         if (has_andc) {
8626             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
8627         } else {
8628             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
8629         }
8630     }
8631     if (nzcv & 1) { /* V */
8632         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
8633     } else {
8634         if (has_andc) {
8635             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
8636         } else {
8637             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
8638         }
8639     }
8640     return true;
8641 }
8642 
8643 static bool trans_CSEL(DisasContext *s, arg_CSEL *a)
8644 {
8645     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8646     TCGv_i64 zero = tcg_constant_i64(0);
8647     DisasCompare64 c;
8648 
8649     a64_test_cc(&c, a->cond);
8650 
8651     if (a->rn == 31 && a->rm == 31 && (a->else_inc ^ a->else_inv)) {
8652         /* CSET & CSETM.  */
8653         if (a->else_inv) {
8654             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
8655                                    tcg_rd, c.value, zero);
8656         } else {
8657             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
8658                                 tcg_rd, c.value, zero);
8659         }
8660     } else {
8661         TCGv_i64 t_true = cpu_reg(s, a->rn);
8662         TCGv_i64 t_false = read_cpu_reg(s, a->rm, 1);
8663 
8664         if (a->else_inv && a->else_inc) {
8665             tcg_gen_neg_i64(t_false, t_false);
8666         } else if (a->else_inv) {
8667             tcg_gen_not_i64(t_false, t_false);
8668         } else if (a->else_inc) {
8669             tcg_gen_addi_i64(t_false, t_false, 1);
8670         }
8671         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
8672     }
8673 
8674     if (!a->sf) {
8675         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8676     }
8677     return true;
8678 }
8679 
8680 typedef struct FPScalar1Int {
8681     void (*gen_h)(TCGv_i32, TCGv_i32);
8682     void (*gen_s)(TCGv_i32, TCGv_i32);
8683     void (*gen_d)(TCGv_i64, TCGv_i64);
8684 } FPScalar1Int;
8685 
8686 static bool do_fp1_scalar_int(DisasContext *s, arg_rr_e *a,
8687                               const FPScalar1Int *f,
8688                               bool merging)
8689 {
8690     switch (a->esz) {
8691     case MO_64:
8692         if (fp_access_check(s)) {
8693             TCGv_i64 t = read_fp_dreg(s, a->rn);
8694             f->gen_d(t, t);
8695             if (merging) {
8696                 write_fp_dreg_merging(s, a->rd, a->rd, t);
8697             } else {
8698                 write_fp_dreg(s, a->rd, t);
8699             }
8700         }
8701         break;
8702     case MO_32:
8703         if (fp_access_check(s)) {
8704             TCGv_i32 t = read_fp_sreg(s, a->rn);
8705             f->gen_s(t, t);
8706             if (merging) {
8707                 write_fp_sreg_merging(s, a->rd, a->rd, t);
8708             } else {
8709                 write_fp_sreg(s, a->rd, t);
8710             }
8711         }
8712         break;
8713     case MO_16:
8714         if (!dc_isar_feature(aa64_fp16, s)) {
8715             return false;
8716         }
8717         if (fp_access_check(s)) {
8718             TCGv_i32 t = read_fp_hreg(s, a->rn);
8719             f->gen_h(t, t);
8720             if (merging) {
8721                 write_fp_hreg_merging(s, a->rd, a->rd, t);
8722             } else {
8723                 write_fp_sreg(s, a->rd, t);
8724             }
8725         }
8726         break;
8727     default:
8728         return false;
8729     }
8730     return true;
8731 }
8732 
8733 static bool do_fp1_scalar_int_2fn(DisasContext *s, arg_rr_e *a,
8734                                   const FPScalar1Int *fnormal,
8735                                   const FPScalar1Int *fah)
8736 {
8737     return do_fp1_scalar_int(s, a, s->fpcr_ah ? fah : fnormal, true);
8738 }
8739 
8740 static const FPScalar1Int f_scalar_fmov = {
8741     tcg_gen_mov_i32,
8742     tcg_gen_mov_i32,
8743     tcg_gen_mov_i64,
8744 };
8745 TRANS(FMOV_s, do_fp1_scalar_int, a, &f_scalar_fmov, false)
8746 
8747 static const FPScalar1Int f_scalar_fabs = {
8748     gen_vfp_absh,
8749     gen_vfp_abss,
8750     gen_vfp_absd,
8751 };
8752 static const FPScalar1Int f_scalar_ah_fabs = {
8753     gen_vfp_ah_absh,
8754     gen_vfp_ah_abss,
8755     gen_vfp_ah_absd,
8756 };
8757 TRANS(FABS_s, do_fp1_scalar_int_2fn, a, &f_scalar_fabs, &f_scalar_ah_fabs)
8758 
8759 static const FPScalar1Int f_scalar_fneg = {
8760     gen_vfp_negh,
8761     gen_vfp_negs,
8762     gen_vfp_negd,
8763 };
8764 static const FPScalar1Int f_scalar_ah_fneg = {
8765     gen_vfp_ah_negh,
8766     gen_vfp_ah_negs,
8767     gen_vfp_ah_negd,
8768 };
8769 TRANS(FNEG_s, do_fp1_scalar_int_2fn, a, &f_scalar_fneg, &f_scalar_ah_fneg)
8770 
8771 typedef struct FPScalar1 {
8772     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_ptr);
8773     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_ptr);
8774     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_ptr);
8775 } FPScalar1;
8776 
8777 static bool do_fp1_scalar_with_fpsttype(DisasContext *s, arg_rr_e *a,
8778                                         const FPScalar1 *f, int rmode,
8779                                         ARMFPStatusFlavour fpsttype)
8780 {
8781     TCGv_i32 tcg_rmode = NULL;
8782     TCGv_ptr fpst;
8783     TCGv_i64 t64;
8784     TCGv_i32 t32;
8785     int check = fp_access_check_scalar_hsd(s, a->esz);
8786 
8787     if (check <= 0) {
8788         return check == 0;
8789     }
8790 
8791     fpst = fpstatus_ptr(fpsttype);
8792     if (rmode >= 0) {
8793         tcg_rmode = gen_set_rmode(rmode, fpst);
8794     }
8795 
8796     switch (a->esz) {
8797     case MO_64:
8798         t64 = read_fp_dreg(s, a->rn);
8799         f->gen_d(t64, t64, fpst);
8800         write_fp_dreg_merging(s, a->rd, a->rd, t64);
8801         break;
8802     case MO_32:
8803         t32 = read_fp_sreg(s, a->rn);
8804         f->gen_s(t32, t32, fpst);
8805         write_fp_sreg_merging(s, a->rd, a->rd, t32);
8806         break;
8807     case MO_16:
8808         t32 = read_fp_hreg(s, a->rn);
8809         f->gen_h(t32, t32, fpst);
8810         write_fp_hreg_merging(s, a->rd, a->rd, t32);
8811         break;
8812     default:
8813         g_assert_not_reached();
8814     }
8815 
8816     if (rmode >= 0) {
8817         gen_restore_rmode(tcg_rmode, fpst);
8818     }
8819     return true;
8820 }
8821 
8822 static bool do_fp1_scalar(DisasContext *s, arg_rr_e *a,
8823                           const FPScalar1 *f, int rmode)
8824 {
8825     return do_fp1_scalar_with_fpsttype(s, a, f, rmode,
8826                                        a->esz == MO_16 ?
8827                                        FPST_A64_F16 : FPST_A64);
8828 }
8829 
8830 static bool do_fp1_scalar_ah(DisasContext *s, arg_rr_e *a,
8831                              const FPScalar1 *f, int rmode)
8832 {
8833     return do_fp1_scalar_with_fpsttype(s, a, f, rmode, select_ah_fpst(s, a->esz));
8834 }
8835 
8836 static const FPScalar1 f_scalar_fsqrt = {
8837     gen_helper_vfp_sqrth,
8838     gen_helper_vfp_sqrts,
8839     gen_helper_vfp_sqrtd,
8840 };
8841 TRANS(FSQRT_s, do_fp1_scalar, a, &f_scalar_fsqrt, -1)
8842 
8843 static const FPScalar1 f_scalar_frint = {
8844     gen_helper_advsimd_rinth,
8845     gen_helper_rints,
8846     gen_helper_rintd,
8847 };
8848 TRANS(FRINTN_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
8849 TRANS(FRINTP_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_POSINF)
8850 TRANS(FRINTM_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_NEGINF)
8851 TRANS(FRINTZ_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_ZERO)
8852 TRANS(FRINTA_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
8853 TRANS(FRINTI_s, do_fp1_scalar, a, &f_scalar_frint, -1)
8854 
8855 static const FPScalar1 f_scalar_frintx = {
8856     gen_helper_advsimd_rinth_exact,
8857     gen_helper_rints_exact,
8858     gen_helper_rintd_exact,
8859 };
8860 TRANS(FRINTX_s, do_fp1_scalar, a, &f_scalar_frintx, -1)
8861 
8862 static bool trans_BFCVT_s(DisasContext *s, arg_rr_e *a)
8863 {
8864     ARMFPStatusFlavour fpsttype = s->fpcr_ah ? FPST_AH : FPST_A64;
8865     TCGv_i32 t32;
8866     int check;
8867 
8868     if (!dc_isar_feature(aa64_bf16, s)) {
8869         return false;
8870     }
8871 
8872     check = fp_access_check_scalar_hsd(s, a->esz);
8873 
8874     if (check <= 0) {
8875         return check == 0;
8876     }
8877 
8878     t32 = read_fp_sreg(s, a->rn);
8879     gen_helper_bfcvt(t32, t32, fpstatus_ptr(fpsttype));
8880     write_fp_hreg_merging(s, a->rd, a->rd, t32);
8881     return true;
8882 }
8883 
8884 static const FPScalar1 f_scalar_frint32 = {
8885     NULL,
8886     gen_helper_frint32_s,
8887     gen_helper_frint32_d,
8888 };
8889 TRANS_FEAT(FRINT32Z_s, aa64_frint, do_fp1_scalar, a,
8890            &f_scalar_frint32, FPROUNDING_ZERO)
8891 TRANS_FEAT(FRINT32X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint32, -1)
8892 
8893 static const FPScalar1 f_scalar_frint64 = {
8894     NULL,
8895     gen_helper_frint64_s,
8896     gen_helper_frint64_d,
8897 };
8898 TRANS_FEAT(FRINT64Z_s, aa64_frint, do_fp1_scalar, a,
8899            &f_scalar_frint64, FPROUNDING_ZERO)
8900 TRANS_FEAT(FRINT64X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint64, -1)
8901 
8902 static const FPScalar1 f_scalar_frecpe = {
8903     gen_helper_recpe_f16,
8904     gen_helper_recpe_f32,
8905     gen_helper_recpe_f64,
8906 };
8907 static const FPScalar1 f_scalar_frecpe_rpres = {
8908     gen_helper_recpe_f16,
8909     gen_helper_recpe_rpres_f32,
8910     gen_helper_recpe_f64,
8911 };
8912 TRANS(FRECPE_s, do_fp1_scalar_ah, a,
8913       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8914       &f_scalar_frecpe_rpres : &f_scalar_frecpe, -1)
8915 
8916 static const FPScalar1 f_scalar_frecpx = {
8917     gen_helper_frecpx_f16,
8918     gen_helper_frecpx_f32,
8919     gen_helper_frecpx_f64,
8920 };
8921 TRANS(FRECPX_s, do_fp1_scalar_ah, a, &f_scalar_frecpx, -1)
8922 
8923 static const FPScalar1 f_scalar_frsqrte = {
8924     gen_helper_rsqrte_f16,
8925     gen_helper_rsqrte_f32,
8926     gen_helper_rsqrte_f64,
8927 };
8928 static const FPScalar1 f_scalar_frsqrte_rpres = {
8929     gen_helper_rsqrte_f16,
8930     gen_helper_rsqrte_rpres_f32,
8931     gen_helper_rsqrte_f64,
8932 };
8933 TRANS(FRSQRTE_s, do_fp1_scalar_ah, a,
8934       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8935       &f_scalar_frsqrte_rpres : &f_scalar_frsqrte, -1)
8936 
8937 static bool trans_FCVT_s_ds(DisasContext *s, arg_rr *a)
8938 {
8939     if (fp_access_check(s)) {
8940         TCGv_i32 tcg_rn = read_fp_sreg(s, a->rn);
8941         TCGv_i64 tcg_rd = tcg_temp_new_i64();
8942         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8943 
8944         gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, fpst);
8945         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
8946     }
8947     return true;
8948 }
8949 
8950 static bool trans_FCVT_s_hs(DisasContext *s, arg_rr *a)
8951 {
8952     if (fp_access_check(s)) {
8953         TCGv_i32 tmp = read_fp_sreg(s, a->rn);
8954         TCGv_i32 ahp = get_ahp_flag();
8955         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8956 
8957         gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
8958         /* write_fp_hreg_merging is OK here because top half of result is zero */
8959         write_fp_hreg_merging(s, a->rd, a->rd, tmp);
8960     }
8961     return true;
8962 }
8963 
8964 static bool trans_FCVT_s_sd(DisasContext *s, arg_rr *a)
8965 {
8966     if (fp_access_check(s)) {
8967         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8968         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8969         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8970 
8971         gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, fpst);
8972         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
8973     }
8974     return true;
8975 }
8976 
8977 static bool trans_FCVT_s_hd(DisasContext *s, arg_rr *a)
8978 {
8979     if (fp_access_check(s)) {
8980         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8981         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8982         TCGv_i32 ahp = get_ahp_flag();
8983         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8984 
8985         gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8986         /* write_fp_hreg_merging is OK here because top half of tcg_rd is zero */
8987         write_fp_hreg_merging(s, a->rd, a->rd, tcg_rd);
8988     }
8989     return true;
8990 }
8991 
8992 static bool trans_FCVT_s_sh(DisasContext *s, arg_rr *a)
8993 {
8994     if (fp_access_check(s)) {
8995         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
8996         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8997         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
8998         TCGv_i32 tcg_ahp = get_ahp_flag();
8999 
9000         gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9001         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
9002     }
9003     return true;
9004 }
9005 
9006 static bool trans_FCVT_s_dh(DisasContext *s, arg_rr *a)
9007 {
9008     if (fp_access_check(s)) {
9009         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9010         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9011         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9012         TCGv_i32 tcg_ahp = get_ahp_flag();
9013 
9014         gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9015         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
9016     }
9017     return true;
9018 }
9019 
9020 static bool do_cvtf_scalar(DisasContext *s, MemOp esz, int rd, int shift,
9021                            TCGv_i64 tcg_int, bool is_signed)
9022 {
9023     TCGv_ptr tcg_fpstatus;
9024     TCGv_i32 tcg_shift, tcg_single;
9025     TCGv_i64 tcg_double;
9026 
9027     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9028     tcg_shift = tcg_constant_i32(shift);
9029 
9030     switch (esz) {
9031     case MO_64:
9032         tcg_double = tcg_temp_new_i64();
9033         if (is_signed) {
9034             gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9035         } else {
9036             gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9037         }
9038         write_fp_dreg_merging(s, rd, rd, tcg_double);
9039         break;
9040 
9041     case MO_32:
9042         tcg_single = tcg_temp_new_i32();
9043         if (is_signed) {
9044             gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9045         } else {
9046             gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9047         }
9048         write_fp_sreg_merging(s, rd, rd, tcg_single);
9049         break;
9050 
9051     case MO_16:
9052         tcg_single = tcg_temp_new_i32();
9053         if (is_signed) {
9054             gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9055         } else {
9056             gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9057         }
9058         write_fp_hreg_merging(s, rd, rd, tcg_single);
9059         break;
9060 
9061     default:
9062         g_assert_not_reached();
9063     }
9064     return true;
9065 }
9066 
9067 static bool do_cvtf_g(DisasContext *s, arg_fcvt *a, bool is_signed)
9068 {
9069     TCGv_i64 tcg_int;
9070     int check = fp_access_check_scalar_hsd(s, a->esz);
9071 
9072     if (check <= 0) {
9073         return check == 0;
9074     }
9075 
9076     if (a->sf) {
9077         tcg_int = cpu_reg(s, a->rn);
9078     } else {
9079         tcg_int = read_cpu_reg(s, a->rn, true);
9080         if (is_signed) {
9081             tcg_gen_ext32s_i64(tcg_int, tcg_int);
9082         } else {
9083             tcg_gen_ext32u_i64(tcg_int, tcg_int);
9084         }
9085     }
9086     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9087 }
9088 
9089 TRANS(SCVTF_g, do_cvtf_g, a, true)
9090 TRANS(UCVTF_g, do_cvtf_g, a, false)
9091 
9092 /*
9093  * [US]CVTF (vector), scalar version.
9094  * Which sounds weird, but really just means input from fp register
9095  * instead of input from general register.  Input and output element
9096  * size are always equal.
9097  */
9098 static bool do_cvtf_f(DisasContext *s, arg_fcvt *a, bool is_signed)
9099 {
9100     TCGv_i64 tcg_int;
9101     int check = fp_access_check_scalar_hsd(s, a->esz);
9102 
9103     if (check <= 0) {
9104         return check == 0;
9105     }
9106 
9107     tcg_int = tcg_temp_new_i64();
9108     read_vec_element(s, tcg_int, a->rn, 0, a->esz | (is_signed ? MO_SIGN : 0));
9109     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9110 }
9111 
9112 TRANS(SCVTF_f, do_cvtf_f, a, true)
9113 TRANS(UCVTF_f, do_cvtf_f, a, false)
9114 
9115 static void do_fcvt_scalar(DisasContext *s, MemOp out, MemOp esz,
9116                            TCGv_i64 tcg_out, int shift, int rn,
9117                            ARMFPRounding rmode)
9118 {
9119     TCGv_ptr tcg_fpstatus;
9120     TCGv_i32 tcg_shift, tcg_rmode, tcg_single;
9121 
9122     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9123     tcg_shift = tcg_constant_i32(shift);
9124     tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9125 
9126     switch (esz) {
9127     case MO_64:
9128         read_vec_element(s, tcg_out, rn, 0, MO_64);
9129         switch (out) {
9130         case MO_64 | MO_SIGN:
9131             gen_helper_vfp_tosqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9132             break;
9133         case MO_64:
9134             gen_helper_vfp_touqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9135             break;
9136         case MO_32 | MO_SIGN:
9137             gen_helper_vfp_tosld(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9138             break;
9139         case MO_32:
9140             gen_helper_vfp_tould(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9141             break;
9142         default:
9143             g_assert_not_reached();
9144         }
9145         break;
9146 
9147     case MO_32:
9148         tcg_single = read_fp_sreg(s, rn);
9149         switch (out) {
9150         case MO_64 | MO_SIGN:
9151             gen_helper_vfp_tosqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9152             break;
9153         case MO_64:
9154             gen_helper_vfp_touqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9155             break;
9156         case MO_32 | MO_SIGN:
9157             gen_helper_vfp_tosls(tcg_single, tcg_single,
9158                                  tcg_shift, tcg_fpstatus);
9159             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9160             break;
9161         case MO_32:
9162             gen_helper_vfp_touls(tcg_single, tcg_single,
9163                                  tcg_shift, tcg_fpstatus);
9164             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9165             break;
9166         default:
9167             g_assert_not_reached();
9168         }
9169         break;
9170 
9171     case MO_16:
9172         tcg_single = read_fp_hreg(s, rn);
9173         switch (out) {
9174         case MO_64 | MO_SIGN:
9175             gen_helper_vfp_tosqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9176             break;
9177         case MO_64:
9178             gen_helper_vfp_touqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9179             break;
9180         case MO_32 | MO_SIGN:
9181             gen_helper_vfp_toslh(tcg_single, tcg_single,
9182                                  tcg_shift, tcg_fpstatus);
9183             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9184             break;
9185         case MO_32:
9186             gen_helper_vfp_toulh(tcg_single, tcg_single,
9187                                  tcg_shift, tcg_fpstatus);
9188             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9189             break;
9190         case MO_16 | MO_SIGN:
9191             gen_helper_vfp_toshh(tcg_single, tcg_single,
9192                                  tcg_shift, tcg_fpstatus);
9193             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9194             break;
9195         case MO_16:
9196             gen_helper_vfp_touhh(tcg_single, tcg_single,
9197                                  tcg_shift, tcg_fpstatus);
9198             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9199             break;
9200         default:
9201             g_assert_not_reached();
9202         }
9203         break;
9204 
9205     default:
9206         g_assert_not_reached();
9207     }
9208 
9209     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9210 }
9211 
9212 static bool do_fcvt_g(DisasContext *s, arg_fcvt *a,
9213                       ARMFPRounding rmode, bool is_signed)
9214 {
9215     TCGv_i64 tcg_int;
9216     int check = fp_access_check_scalar_hsd(s, a->esz);
9217 
9218     if (check <= 0) {
9219         return check == 0;
9220     }
9221 
9222     tcg_int = cpu_reg(s, a->rd);
9223     do_fcvt_scalar(s, (a->sf ? MO_64 : MO_32) | (is_signed ? MO_SIGN : 0),
9224                    a->esz, tcg_int, a->shift, a->rn, rmode);
9225 
9226     if (!a->sf) {
9227         tcg_gen_ext32u_i64(tcg_int, tcg_int);
9228     }
9229     return true;
9230 }
9231 
9232 TRANS(FCVTNS_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, true)
9233 TRANS(FCVTNU_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, false)
9234 TRANS(FCVTPS_g, do_fcvt_g, a, FPROUNDING_POSINF, true)
9235 TRANS(FCVTPU_g, do_fcvt_g, a, FPROUNDING_POSINF, false)
9236 TRANS(FCVTMS_g, do_fcvt_g, a, FPROUNDING_NEGINF, true)
9237 TRANS(FCVTMU_g, do_fcvt_g, a, FPROUNDING_NEGINF, false)
9238 TRANS(FCVTZS_g, do_fcvt_g, a, FPROUNDING_ZERO, true)
9239 TRANS(FCVTZU_g, do_fcvt_g, a, FPROUNDING_ZERO, false)
9240 TRANS(FCVTAS_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, true)
9241 TRANS(FCVTAU_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, false)
9242 
9243 /*
9244  * FCVT* (vector), scalar version.
9245  * Which sounds weird, but really just means output to fp register
9246  * instead of output to general register.  Input and output element
9247  * size are always equal.
9248  */
9249 static bool do_fcvt_f(DisasContext *s, arg_fcvt *a,
9250                       ARMFPRounding rmode, bool is_signed)
9251 {
9252     TCGv_i64 tcg_int;
9253     int check = fp_access_check_scalar_hsd(s, a->esz);
9254 
9255     if (check <= 0) {
9256         return check == 0;
9257     }
9258 
9259     tcg_int = tcg_temp_new_i64();
9260     do_fcvt_scalar(s, a->esz | (is_signed ? MO_SIGN : 0),
9261                    a->esz, tcg_int, a->shift, a->rn, rmode);
9262 
9263     if (!s->fpcr_nep) {
9264         clear_vec(s, a->rd);
9265     }
9266     write_vec_element(s, tcg_int, a->rd, 0, a->esz);
9267     return true;
9268 }
9269 
9270 TRANS(FCVTNS_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, true)
9271 TRANS(FCVTNU_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, false)
9272 TRANS(FCVTPS_f, do_fcvt_f, a, FPROUNDING_POSINF, true)
9273 TRANS(FCVTPU_f, do_fcvt_f, a, FPROUNDING_POSINF, false)
9274 TRANS(FCVTMS_f, do_fcvt_f, a, FPROUNDING_NEGINF, true)
9275 TRANS(FCVTMU_f, do_fcvt_f, a, FPROUNDING_NEGINF, false)
9276 TRANS(FCVTZS_f, do_fcvt_f, a, FPROUNDING_ZERO, true)
9277 TRANS(FCVTZU_f, do_fcvt_f, a, FPROUNDING_ZERO, false)
9278 TRANS(FCVTAS_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, true)
9279 TRANS(FCVTAU_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, false)
9280 
9281 static bool trans_FJCVTZS(DisasContext *s, arg_FJCVTZS *a)
9282 {
9283     if (!dc_isar_feature(aa64_jscvt, s)) {
9284         return false;
9285     }
9286     if (fp_access_check(s)) {
9287         TCGv_i64 t = read_fp_dreg(s, a->rn);
9288         TCGv_ptr fpstatus = fpstatus_ptr(FPST_A64);
9289 
9290         gen_helper_fjcvtzs(t, t, fpstatus);
9291 
9292         tcg_gen_ext32u_i64(cpu_reg(s, a->rd), t);
9293         tcg_gen_extrh_i64_i32(cpu_ZF, t);
9294         tcg_gen_movi_i32(cpu_CF, 0);
9295         tcg_gen_movi_i32(cpu_NF, 0);
9296         tcg_gen_movi_i32(cpu_VF, 0);
9297     }
9298     return true;
9299 }
9300 
9301 static bool trans_FMOV_hx(DisasContext *s, arg_rr *a)
9302 {
9303     if (!dc_isar_feature(aa64_fp16, s)) {
9304         return false;
9305     }
9306     if (fp_access_check(s)) {
9307         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9308         TCGv_i64 tmp = tcg_temp_new_i64();
9309         tcg_gen_ext16u_i64(tmp, tcg_rn);
9310         write_fp_dreg(s, a->rd, tmp);
9311     }
9312     return true;
9313 }
9314 
9315 static bool trans_FMOV_sw(DisasContext *s, arg_rr *a)
9316 {
9317     if (fp_access_check(s)) {
9318         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9319         TCGv_i64 tmp = tcg_temp_new_i64();
9320         tcg_gen_ext32u_i64(tmp, tcg_rn);
9321         write_fp_dreg(s, a->rd, tmp);
9322     }
9323     return true;
9324 }
9325 
9326 static bool trans_FMOV_dx(DisasContext *s, arg_rr *a)
9327 {
9328     if (fp_access_check(s)) {
9329         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9330         write_fp_dreg(s, a->rd, tcg_rn);
9331     }
9332     return true;
9333 }
9334 
9335 static bool trans_FMOV_ux(DisasContext *s, arg_rr *a)
9336 {
9337     if (fp_access_check(s)) {
9338         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9339         tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, a->rd));
9340         clear_vec_high(s, true, a->rd);
9341     }
9342     return true;
9343 }
9344 
9345 static bool trans_FMOV_xh(DisasContext *s, arg_rr *a)
9346 {
9347     if (!dc_isar_feature(aa64_fp16, s)) {
9348         return false;
9349     }
9350     if (fp_access_check(s)) {
9351         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9352         tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_16));
9353     }
9354     return true;
9355 }
9356 
9357 static bool trans_FMOV_ws(DisasContext *s, arg_rr *a)
9358 {
9359     if (fp_access_check(s)) {
9360         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9361         tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_32));
9362     }
9363     return true;
9364 }
9365 
9366 static bool trans_FMOV_xd(DisasContext *s, arg_rr *a)
9367 {
9368     if (fp_access_check(s)) {
9369         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9370         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_64));
9371     }
9372     return true;
9373 }
9374 
9375 static bool trans_FMOV_xu(DisasContext *s, arg_rr *a)
9376 {
9377     if (fp_access_check(s)) {
9378         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9379         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, a->rn));
9380     }
9381     return true;
9382 }
9383 
9384 typedef struct ENVScalar1 {
9385     NeonGenOneOpEnvFn *gen_bhs[3];
9386     NeonGenOne64OpEnvFn *gen_d;
9387 } ENVScalar1;
9388 
9389 static bool do_env_scalar1(DisasContext *s, arg_rr_e *a, const ENVScalar1 *f)
9390 {
9391     if (!fp_access_check(s)) {
9392         return true;
9393     }
9394     if (a->esz == MO_64) {
9395         TCGv_i64 t = read_fp_dreg(s, a->rn);
9396         f->gen_d(t, tcg_env, t);
9397         write_fp_dreg(s, a->rd, t);
9398     } else {
9399         TCGv_i32 t = tcg_temp_new_i32();
9400 
9401         read_vec_element_i32(s, t, a->rn, 0, a->esz);
9402         f->gen_bhs[a->esz](t, tcg_env, t);
9403         write_fp_sreg(s, a->rd, t);
9404     }
9405     return true;
9406 }
9407 
9408 static bool do_env_vector1(DisasContext *s, arg_qrr_e *a, const ENVScalar1 *f)
9409 {
9410     if (a->esz == MO_64 && !a->q) {
9411         return false;
9412     }
9413     if (!fp_access_check(s)) {
9414         return true;
9415     }
9416     if (a->esz == MO_64) {
9417         TCGv_i64 t = tcg_temp_new_i64();
9418 
9419         for (int i = 0; i < 2; ++i) {
9420             read_vec_element(s, t, a->rn, i, MO_64);
9421             f->gen_d(t, tcg_env, t);
9422             write_vec_element(s, t, a->rd, i, MO_64);
9423         }
9424     } else {
9425         TCGv_i32 t = tcg_temp_new_i32();
9426         int n = (a->q ? 16 : 8) >> a->esz;
9427 
9428         for (int i = 0; i < n; ++i) {
9429             read_vec_element_i32(s, t, a->rn, i, a->esz);
9430             f->gen_bhs[a->esz](t, tcg_env, t);
9431             write_vec_element_i32(s, t, a->rd, i, a->esz);
9432         }
9433     }
9434     clear_vec_high(s, a->q, a->rd);
9435     return true;
9436 }
9437 
9438 static const ENVScalar1 f_scalar_sqabs = {
9439     { gen_helper_neon_qabs_s8,
9440       gen_helper_neon_qabs_s16,
9441       gen_helper_neon_qabs_s32 },
9442     gen_helper_neon_qabs_s64,
9443 };
9444 TRANS(SQABS_s, do_env_scalar1, a, &f_scalar_sqabs)
9445 TRANS(SQABS_v, do_env_vector1, a, &f_scalar_sqabs)
9446 
9447 static const ENVScalar1 f_scalar_sqneg = {
9448     { gen_helper_neon_qneg_s8,
9449       gen_helper_neon_qneg_s16,
9450       gen_helper_neon_qneg_s32 },
9451     gen_helper_neon_qneg_s64,
9452 };
9453 TRANS(SQNEG_s, do_env_scalar1, a, &f_scalar_sqneg)
9454 TRANS(SQNEG_v, do_env_vector1, a, &f_scalar_sqneg)
9455 
9456 static bool do_scalar1_d(DisasContext *s, arg_rr *a, ArithOneOp *f)
9457 {
9458     if (fp_access_check(s)) {
9459         TCGv_i64 t = read_fp_dreg(s, a->rn);
9460         f(t, t);
9461         write_fp_dreg(s, a->rd, t);
9462     }
9463     return true;
9464 }
9465 
9466 TRANS(ABS_s, do_scalar1_d, a, tcg_gen_abs_i64)
9467 TRANS(NEG_s, do_scalar1_d, a, tcg_gen_neg_i64)
9468 
9469 static bool do_cmop0_d(DisasContext *s, arg_rr *a, TCGCond cond)
9470 {
9471     if (fp_access_check(s)) {
9472         TCGv_i64 t = read_fp_dreg(s, a->rn);
9473         tcg_gen_negsetcond_i64(cond, t, t, tcg_constant_i64(0));
9474         write_fp_dreg(s, a->rd, t);
9475     }
9476     return true;
9477 }
9478 
9479 TRANS(CMGT0_s, do_cmop0_d, a, TCG_COND_GT)
9480 TRANS(CMGE0_s, do_cmop0_d, a, TCG_COND_GE)
9481 TRANS(CMLE0_s, do_cmop0_d, a, TCG_COND_LE)
9482 TRANS(CMLT0_s, do_cmop0_d, a, TCG_COND_LT)
9483 TRANS(CMEQ0_s, do_cmop0_d, a, TCG_COND_EQ)
9484 
9485 static bool do_2misc_narrow_scalar(DisasContext *s, arg_rr_e *a,
9486                                    ArithOneOp * const fn[3])
9487 {
9488     if (a->esz == MO_64) {
9489         return false;
9490     }
9491     if (fp_access_check(s)) {
9492         TCGv_i64 t = tcg_temp_new_i64();
9493 
9494         read_vec_element(s, t, a->rn, 0, a->esz + 1);
9495         fn[a->esz](t, t);
9496         clear_vec(s, a->rd);
9497         write_vec_element(s, t, a->rd, 0, a->esz);
9498     }
9499     return true;
9500 }
9501 
9502 #define WRAP_ENV(NAME) \
9503     static void gen_##NAME(TCGv_i64 d, TCGv_i64 n) \
9504     { gen_helper_##NAME(d, tcg_env, n); }
9505 
9506 WRAP_ENV(neon_unarrow_sat8)
9507 WRAP_ENV(neon_unarrow_sat16)
9508 WRAP_ENV(neon_unarrow_sat32)
9509 
9510 static ArithOneOp * const f_scalar_sqxtun[] = {
9511     gen_neon_unarrow_sat8,
9512     gen_neon_unarrow_sat16,
9513     gen_neon_unarrow_sat32,
9514 };
9515 TRANS(SQXTUN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtun)
9516 
9517 WRAP_ENV(neon_narrow_sat_s8)
9518 WRAP_ENV(neon_narrow_sat_s16)
9519 WRAP_ENV(neon_narrow_sat_s32)
9520 
9521 static ArithOneOp * const f_scalar_sqxtn[] = {
9522     gen_neon_narrow_sat_s8,
9523     gen_neon_narrow_sat_s16,
9524     gen_neon_narrow_sat_s32,
9525 };
9526 TRANS(SQXTN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtn)
9527 
9528 WRAP_ENV(neon_narrow_sat_u8)
9529 WRAP_ENV(neon_narrow_sat_u16)
9530 WRAP_ENV(neon_narrow_sat_u32)
9531 
9532 static ArithOneOp * const f_scalar_uqxtn[] = {
9533     gen_neon_narrow_sat_u8,
9534     gen_neon_narrow_sat_u16,
9535     gen_neon_narrow_sat_u32,
9536 };
9537 TRANS(UQXTN_s, do_2misc_narrow_scalar, a, f_scalar_uqxtn)
9538 
9539 static bool trans_FCVTXN_s(DisasContext *s, arg_rr_e *a)
9540 {
9541     if (fp_access_check(s)) {
9542         /*
9543          * 64 bit to 32 bit float conversion
9544          * with von Neumann rounding (round to odd)
9545          */
9546         TCGv_i64 src = read_fp_dreg(s, a->rn);
9547         TCGv_i32 dst = tcg_temp_new_i32();
9548         gen_helper_fcvtx_f64_to_f32(dst, src, fpstatus_ptr(FPST_A64));
9549         write_fp_sreg_merging(s, a->rd, a->rd, dst);
9550     }
9551     return true;
9552 }
9553 
9554 #undef WRAP_ENV
9555 
9556 static bool do_gvec_fn2(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9557 {
9558     if (!a->q && a->esz == MO_64) {
9559         return false;
9560     }
9561     if (fp_access_check(s)) {
9562         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9563     }
9564     return true;
9565 }
9566 
9567 TRANS(ABS_v, do_gvec_fn2, a, tcg_gen_gvec_abs)
9568 TRANS(NEG_v, do_gvec_fn2, a, tcg_gen_gvec_neg)
9569 TRANS(NOT_v, do_gvec_fn2, a, tcg_gen_gvec_not)
9570 TRANS(CNT_v, do_gvec_fn2, a, gen_gvec_cnt)
9571 TRANS(RBIT_v, do_gvec_fn2, a, gen_gvec_rbit)
9572 TRANS(CMGT0_v, do_gvec_fn2, a, gen_gvec_cgt0)
9573 TRANS(CMGE0_v, do_gvec_fn2, a, gen_gvec_cge0)
9574 TRANS(CMLT0_v, do_gvec_fn2, a, gen_gvec_clt0)
9575 TRANS(CMLE0_v, do_gvec_fn2, a, gen_gvec_cle0)
9576 TRANS(CMEQ0_v, do_gvec_fn2, a, gen_gvec_ceq0)
9577 TRANS(REV16_v, do_gvec_fn2, a, gen_gvec_rev16)
9578 TRANS(REV32_v, do_gvec_fn2, a, gen_gvec_rev32)
9579 TRANS(URECPE_v, do_gvec_fn2, a, gen_gvec_urecpe)
9580 TRANS(URSQRTE_v, do_gvec_fn2, a, gen_gvec_ursqrte)
9581 
9582 static bool do_gvec_fn2_bhs(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9583 {
9584     if (a->esz == MO_64) {
9585         return false;
9586     }
9587     if (fp_access_check(s)) {
9588         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9589     }
9590     return true;
9591 }
9592 
9593 TRANS(CLS_v, do_gvec_fn2_bhs, a, gen_gvec_cls)
9594 TRANS(CLZ_v, do_gvec_fn2_bhs, a, gen_gvec_clz)
9595 TRANS(REV64_v, do_gvec_fn2_bhs, a, gen_gvec_rev64)
9596 TRANS(SADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_saddlp)
9597 TRANS(UADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_uaddlp)
9598 TRANS(SADALP_v, do_gvec_fn2_bhs, a, gen_gvec_sadalp)
9599 TRANS(UADALP_v, do_gvec_fn2_bhs, a, gen_gvec_uadalp)
9600 
9601 static bool do_2misc_narrow_vector(DisasContext *s, arg_qrr_e *a,
9602                                    ArithOneOp * const fn[3])
9603 {
9604     if (a->esz == MO_64) {
9605         return false;
9606     }
9607     if (fp_access_check(s)) {
9608         TCGv_i64 t0 = tcg_temp_new_i64();
9609         TCGv_i64 t1 = tcg_temp_new_i64();
9610 
9611         read_vec_element(s, t0, a->rn, 0, MO_64);
9612         read_vec_element(s, t1, a->rn, 1, MO_64);
9613         fn[a->esz](t0, t0);
9614         fn[a->esz](t1, t1);
9615         write_vec_element(s, t0, a->rd, a->q ? 2 : 0, MO_32);
9616         write_vec_element(s, t1, a->rd, a->q ? 3 : 1, MO_32);
9617         clear_vec_high(s, a->q, a->rd);
9618     }
9619     return true;
9620 }
9621 
9622 static ArithOneOp * const f_scalar_xtn[] = {
9623     gen_helper_neon_narrow_u8,
9624     gen_helper_neon_narrow_u16,
9625     tcg_gen_ext32u_i64,
9626 };
9627 TRANS(XTN, do_2misc_narrow_vector, a, f_scalar_xtn)
9628 TRANS(SQXTUN_v, do_2misc_narrow_vector, a, f_scalar_sqxtun)
9629 TRANS(SQXTN_v, do_2misc_narrow_vector, a, f_scalar_sqxtn)
9630 TRANS(UQXTN_v, do_2misc_narrow_vector, a, f_scalar_uqxtn)
9631 
9632 static void gen_fcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9633 {
9634     TCGv_i32 tcg_lo = tcg_temp_new_i32();
9635     TCGv_i32 tcg_hi = tcg_temp_new_i32();
9636     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9637     TCGv_i32 ahp = get_ahp_flag();
9638 
9639     tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, n);
9640     gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9641     gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9642     tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16);
9643     tcg_gen_extu_i32_i64(d, tcg_lo);
9644 }
9645 
9646 static void gen_fcvtn_sd(TCGv_i64 d, TCGv_i64 n)
9647 {
9648     TCGv_i32 tmp = tcg_temp_new_i32();
9649     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9650 
9651     gen_helper_vfp_fcvtsd(tmp, n, fpst);
9652     tcg_gen_extu_i32_i64(d, tmp);
9653 }
9654 
9655 static void gen_fcvtxn_sd(TCGv_i64 d, TCGv_i64 n)
9656 {
9657     /*
9658      * 64 bit to 32 bit float conversion
9659      * with von Neumann rounding (round to odd)
9660      */
9661     TCGv_i32 tmp = tcg_temp_new_i32();
9662     gen_helper_fcvtx_f64_to_f32(tmp, n, fpstatus_ptr(FPST_A64));
9663     tcg_gen_extu_i32_i64(d, tmp);
9664 }
9665 
9666 static ArithOneOp * const f_vector_fcvtn[] = {
9667     NULL,
9668     gen_fcvtn_hs,
9669     gen_fcvtn_sd,
9670 };
9671 static ArithOneOp * const f_scalar_fcvtxn[] = {
9672     NULL,
9673     NULL,
9674     gen_fcvtxn_sd,
9675 };
9676 TRANS(FCVTN_v, do_2misc_narrow_vector, a, f_vector_fcvtn)
9677 TRANS(FCVTXN_v, do_2misc_narrow_vector, a, f_scalar_fcvtxn)
9678 
9679 static void gen_bfcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9680 {
9681     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9682     TCGv_i32 tmp = tcg_temp_new_i32();
9683     gen_helper_bfcvt_pair(tmp, n, fpst);
9684     tcg_gen_extu_i32_i64(d, tmp);
9685 }
9686 
9687 static void gen_bfcvtn_ah_hs(TCGv_i64 d, TCGv_i64 n)
9688 {
9689     TCGv_ptr fpst = fpstatus_ptr(FPST_AH);
9690     TCGv_i32 tmp = tcg_temp_new_i32();
9691     gen_helper_bfcvt_pair(tmp, n, fpst);
9692     tcg_gen_extu_i32_i64(d, tmp);
9693 }
9694 
9695 static ArithOneOp * const f_vector_bfcvtn[2][3] = {
9696     {
9697         NULL,
9698         gen_bfcvtn_hs,
9699         NULL,
9700     }, {
9701         NULL,
9702         gen_bfcvtn_ah_hs,
9703         NULL,
9704     }
9705 };
9706 TRANS_FEAT(BFCVTN_v, aa64_bf16, do_2misc_narrow_vector, a,
9707            f_vector_bfcvtn[s->fpcr_ah])
9708 
9709 static bool trans_SHLL_v(DisasContext *s, arg_qrr_e *a)
9710 {
9711     static NeonGenWidenFn * const widenfns[3] = {
9712         gen_helper_neon_widen_u8,
9713         gen_helper_neon_widen_u16,
9714         tcg_gen_extu_i32_i64,
9715     };
9716     NeonGenWidenFn *widenfn;
9717     TCGv_i64 tcg_res[2];
9718     TCGv_i32 tcg_op;
9719     int part, pass;
9720 
9721     if (a->esz == MO_64) {
9722         return false;
9723     }
9724     if (!fp_access_check(s)) {
9725         return true;
9726     }
9727 
9728     tcg_op = tcg_temp_new_i32();
9729     widenfn = widenfns[a->esz];
9730     part = a->q ? 2 : 0;
9731 
9732     for (pass = 0; pass < 2; pass++) {
9733         read_vec_element_i32(s, tcg_op, a->rn, part + pass, MO_32);
9734         tcg_res[pass] = tcg_temp_new_i64();
9735         widenfn(tcg_res[pass], tcg_op);
9736         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << a->esz);
9737     }
9738 
9739     for (pass = 0; pass < 2; pass++) {
9740         write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
9741     }
9742     return true;
9743 }
9744 
9745 static bool do_fabs_fneg_v(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9746 {
9747     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9748 
9749     if (check <= 0) {
9750         return check == 0;
9751     }
9752 
9753     gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9754     return true;
9755 }
9756 
9757 TRANS(FABS_v, do_fabs_fneg_v, a, gen_gvec_fabs)
9758 TRANS(FNEG_v, do_fabs_fneg_v, a, gen_gvec_fneg)
9759 
9760 static bool do_fp1_vector(DisasContext *s, arg_qrr_e *a,
9761                           const FPScalar1 *f, int rmode)
9762 {
9763     TCGv_i32 tcg_rmode = NULL;
9764     TCGv_ptr fpst;
9765     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9766 
9767     if (check <= 0) {
9768         return check == 0;
9769     }
9770 
9771     fpst = fpstatus_ptr(a->esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9772     if (rmode >= 0) {
9773         tcg_rmode = gen_set_rmode(rmode, fpst);
9774     }
9775 
9776     if (a->esz == MO_64) {
9777         TCGv_i64 t64 = tcg_temp_new_i64();
9778 
9779         for (int pass = 0; pass < 2; ++pass) {
9780             read_vec_element(s, t64, a->rn, pass, MO_64);
9781             f->gen_d(t64, t64, fpst);
9782             write_vec_element(s, t64, a->rd, pass, MO_64);
9783         }
9784     } else {
9785         TCGv_i32 t32 = tcg_temp_new_i32();
9786         void (*gen)(TCGv_i32, TCGv_i32, TCGv_ptr)
9787             = (a->esz == MO_16 ? f->gen_h : f->gen_s);
9788 
9789         for (int pass = 0, n = (a->q ? 16 : 8) >> a->esz; pass < n; ++pass) {
9790             read_vec_element_i32(s, t32, a->rn, pass, a->esz);
9791             gen(t32, t32, fpst);
9792             write_vec_element_i32(s, t32, a->rd, pass, a->esz);
9793         }
9794     }
9795     clear_vec_high(s, a->q, a->rd);
9796 
9797     if (rmode >= 0) {
9798         gen_restore_rmode(tcg_rmode, fpst);
9799     }
9800     return true;
9801 }
9802 
9803 TRANS(FSQRT_v, do_fp1_vector, a, &f_scalar_fsqrt, -1)
9804 
9805 TRANS(FRINTN_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
9806 TRANS(FRINTP_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_POSINF)
9807 TRANS(FRINTM_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_NEGINF)
9808 TRANS(FRINTZ_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_ZERO)
9809 TRANS(FRINTA_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
9810 TRANS(FRINTI_v, do_fp1_vector, a, &f_scalar_frint, -1)
9811 TRANS(FRINTX_v, do_fp1_vector, a, &f_scalar_frintx, -1)
9812 
9813 TRANS_FEAT(FRINT32Z_v, aa64_frint, do_fp1_vector, a,
9814            &f_scalar_frint32, FPROUNDING_ZERO)
9815 TRANS_FEAT(FRINT32X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint32, -1)
9816 TRANS_FEAT(FRINT64Z_v, aa64_frint, do_fp1_vector, a,
9817            &f_scalar_frint64, FPROUNDING_ZERO)
9818 TRANS_FEAT(FRINT64X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint64, -1)
9819 
9820 static bool do_gvec_op2_fpst_with_fpsttype(DisasContext *s, MemOp esz,
9821                                            bool is_q, int rd, int rn, int data,
9822                                            gen_helper_gvec_2_ptr * const fns[3],
9823                                            ARMFPStatusFlavour fpsttype)
9824 {
9825     int check = fp_access_check_vector_hsd(s, is_q, esz);
9826     TCGv_ptr fpst;
9827 
9828     if (check <= 0) {
9829         return check == 0;
9830     }
9831 
9832     fpst = fpstatus_ptr(fpsttype);
9833     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
9834                        vec_full_reg_offset(s, rn), fpst,
9835                        is_q ? 16 : 8, vec_full_reg_size(s),
9836                        data, fns[esz - 1]);
9837     return true;
9838 }
9839 
9840 static bool do_gvec_op2_fpst(DisasContext *s, MemOp esz, bool is_q,
9841                              int rd, int rn, int data,
9842                              gen_helper_gvec_2_ptr * const fns[3])
9843 {
9844     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, fns,
9845                                           esz == MO_16 ? FPST_A64_F16 :
9846                                           FPST_A64);
9847 }
9848 
9849 static bool do_gvec_op2_ah_fpst(DisasContext *s, MemOp esz, bool is_q,
9850                                 int rd, int rn, int data,
9851                                 gen_helper_gvec_2_ptr * const fns[3])
9852 {
9853     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data,
9854                                           fns, select_ah_fpst(s, esz));
9855 }
9856 
9857 static gen_helper_gvec_2_ptr * const f_scvtf_v[] = {
9858     gen_helper_gvec_vcvt_sh,
9859     gen_helper_gvec_vcvt_sf,
9860     gen_helper_gvec_vcvt_sd,
9861 };
9862 TRANS(SCVTF_vi, do_gvec_op2_fpst,
9863       a->esz, a->q, a->rd, a->rn, 0, f_scvtf_v)
9864 TRANS(SCVTF_vf, do_gvec_op2_fpst,
9865       a->esz, a->q, a->rd, a->rn, a->shift, f_scvtf_v)
9866 
9867 static gen_helper_gvec_2_ptr * const f_ucvtf_v[] = {
9868     gen_helper_gvec_vcvt_uh,
9869     gen_helper_gvec_vcvt_uf,
9870     gen_helper_gvec_vcvt_ud,
9871 };
9872 TRANS(UCVTF_vi, do_gvec_op2_fpst,
9873       a->esz, a->q, a->rd, a->rn, 0, f_ucvtf_v)
9874 TRANS(UCVTF_vf, do_gvec_op2_fpst,
9875       a->esz, a->q, a->rd, a->rn, a->shift, f_ucvtf_v)
9876 
9877 static gen_helper_gvec_2_ptr * const f_fcvtzs_vf[] = {
9878     gen_helper_gvec_vcvt_rz_hs,
9879     gen_helper_gvec_vcvt_rz_fs,
9880     gen_helper_gvec_vcvt_rz_ds,
9881 };
9882 TRANS(FCVTZS_vf, do_gvec_op2_fpst,
9883       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzs_vf)
9884 
9885 static gen_helper_gvec_2_ptr * const f_fcvtzu_vf[] = {
9886     gen_helper_gvec_vcvt_rz_hu,
9887     gen_helper_gvec_vcvt_rz_fu,
9888     gen_helper_gvec_vcvt_rz_du,
9889 };
9890 TRANS(FCVTZU_vf, do_gvec_op2_fpst,
9891       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzu_vf)
9892 
9893 static gen_helper_gvec_2_ptr * const f_fcvt_s_vi[] = {
9894     gen_helper_gvec_vcvt_rm_sh,
9895     gen_helper_gvec_vcvt_rm_ss,
9896     gen_helper_gvec_vcvt_rm_sd,
9897 };
9898 
9899 static gen_helper_gvec_2_ptr * const f_fcvt_u_vi[] = {
9900     gen_helper_gvec_vcvt_rm_uh,
9901     gen_helper_gvec_vcvt_rm_us,
9902     gen_helper_gvec_vcvt_rm_ud,
9903 };
9904 
9905 TRANS(FCVTNS_vi, do_gvec_op2_fpst,
9906       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_s_vi)
9907 TRANS(FCVTNU_vi, do_gvec_op2_fpst,
9908       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_u_vi)
9909 TRANS(FCVTPS_vi, do_gvec_op2_fpst,
9910       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_s_vi)
9911 TRANS(FCVTPU_vi, do_gvec_op2_fpst,
9912       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_u_vi)
9913 TRANS(FCVTMS_vi, do_gvec_op2_fpst,
9914       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_s_vi)
9915 TRANS(FCVTMU_vi, do_gvec_op2_fpst,
9916       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_u_vi)
9917 TRANS(FCVTZS_vi, do_gvec_op2_fpst,
9918       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_s_vi)
9919 TRANS(FCVTZU_vi, do_gvec_op2_fpst,
9920       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_u_vi)
9921 TRANS(FCVTAS_vi, do_gvec_op2_fpst,
9922       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_s_vi)
9923 TRANS(FCVTAU_vi, do_gvec_op2_fpst,
9924       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_u_vi)
9925 
9926 static gen_helper_gvec_2_ptr * const f_fceq0[] = {
9927     gen_helper_gvec_fceq0_h,
9928     gen_helper_gvec_fceq0_s,
9929     gen_helper_gvec_fceq0_d,
9930 };
9931 TRANS(FCMEQ0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fceq0)
9932 
9933 static gen_helper_gvec_2_ptr * const f_fcgt0[] = {
9934     gen_helper_gvec_fcgt0_h,
9935     gen_helper_gvec_fcgt0_s,
9936     gen_helper_gvec_fcgt0_d,
9937 };
9938 TRANS(FCMGT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcgt0)
9939 
9940 static gen_helper_gvec_2_ptr * const f_fcge0[] = {
9941     gen_helper_gvec_fcge0_h,
9942     gen_helper_gvec_fcge0_s,
9943     gen_helper_gvec_fcge0_d,
9944 };
9945 TRANS(FCMGE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcge0)
9946 
9947 static gen_helper_gvec_2_ptr * const f_fclt0[] = {
9948     gen_helper_gvec_fclt0_h,
9949     gen_helper_gvec_fclt0_s,
9950     gen_helper_gvec_fclt0_d,
9951 };
9952 TRANS(FCMLT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fclt0)
9953 
9954 static gen_helper_gvec_2_ptr * const f_fcle0[] = {
9955     gen_helper_gvec_fcle0_h,
9956     gen_helper_gvec_fcle0_s,
9957     gen_helper_gvec_fcle0_d,
9958 };
9959 TRANS(FCMLE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcle0)
9960 
9961 static gen_helper_gvec_2_ptr * const f_frecpe[] = {
9962     gen_helper_gvec_frecpe_h,
9963     gen_helper_gvec_frecpe_s,
9964     gen_helper_gvec_frecpe_d,
9965 };
9966 static gen_helper_gvec_2_ptr * const f_frecpe_rpres[] = {
9967     gen_helper_gvec_frecpe_h,
9968     gen_helper_gvec_frecpe_rpres_s,
9969     gen_helper_gvec_frecpe_d,
9970 };
9971 TRANS(FRECPE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9972       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frecpe_rpres : f_frecpe)
9973 
9974 static gen_helper_gvec_2_ptr * const f_frsqrte[] = {
9975     gen_helper_gvec_frsqrte_h,
9976     gen_helper_gvec_frsqrte_s,
9977     gen_helper_gvec_frsqrte_d,
9978 };
9979 static gen_helper_gvec_2_ptr * const f_frsqrte_rpres[] = {
9980     gen_helper_gvec_frsqrte_h,
9981     gen_helper_gvec_frsqrte_rpres_s,
9982     gen_helper_gvec_frsqrte_d,
9983 };
9984 TRANS(FRSQRTE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9985       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frsqrte_rpres : f_frsqrte)
9986 
9987 static bool trans_FCVTL_v(DisasContext *s, arg_qrr_e *a)
9988 {
9989     /* Handle 2-reg-misc ops which are widening (so each size element
9990      * in the source becomes a 2*size element in the destination.
9991      * The only instruction like this is FCVTL.
9992      */
9993     int pass;
9994     TCGv_ptr fpst;
9995 
9996     if (!fp_access_check(s)) {
9997         return true;
9998     }
9999 
10000     if (a->esz == MO_64) {
10001         /* 32 -> 64 bit fp conversion */
10002         TCGv_i64 tcg_res[2];
10003         TCGv_i32 tcg_op = tcg_temp_new_i32();
10004         int srcelt = a->q ? 2 : 0;
10005 
10006         fpst = fpstatus_ptr(FPST_A64);
10007 
10008         for (pass = 0; pass < 2; pass++) {
10009             tcg_res[pass] = tcg_temp_new_i64();
10010             read_vec_element_i32(s, tcg_op, a->rn, srcelt + pass, MO_32);
10011             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, fpst);
10012         }
10013         for (pass = 0; pass < 2; pass++) {
10014             write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
10015         }
10016     } else {
10017         /* 16 -> 32 bit fp conversion */
10018         int srcelt = a->q ? 4 : 0;
10019         TCGv_i32 tcg_res[4];
10020         TCGv_i32 ahp = get_ahp_flag();
10021 
10022         fpst = fpstatus_ptr(FPST_A64_F16);
10023 
10024         for (pass = 0; pass < 4; pass++) {
10025             tcg_res[pass] = tcg_temp_new_i32();
10026             read_vec_element_i32(s, tcg_res[pass], a->rn, srcelt + pass, MO_16);
10027             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10028                                            fpst, ahp);
10029         }
10030         for (pass = 0; pass < 4; pass++) {
10031             write_vec_element_i32(s, tcg_res[pass], a->rd, pass, MO_32);
10032         }
10033     }
10034     clear_vec_high(s, true, a->rd);
10035     return true;
10036 }
10037 
10038 static bool trans_OK(DisasContext *s, arg_OK *a)
10039 {
10040     return true;
10041 }
10042 
10043 static bool trans_FAIL(DisasContext *s, arg_OK *a)
10044 {
10045     s->is_nonstreaming = true;
10046     return true;
10047 }
10048 
10049 /**
10050  * btype_destination_ok:
10051  * @insn: The instruction at the branch destination
10052  * @bt: SCTLR_ELx.BT
10053  * @btype: PSTATE.BTYPE, and is non-zero
10054  *
10055  * On a guarded page, there are a limited number of insns
10056  * that may be present at the branch target:
10057  *   - branch target identifiers,
10058  *   - paciasp, pacibsp,
10059  *   - BRK insn
10060  *   - HLT insn
10061  * Anything else causes a Branch Target Exception.
10062  *
10063  * Return true if the branch is compatible, false to raise BTITRAP.
10064  */
10065 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
10066 {
10067     if ((insn & 0xfffff01fu) == 0xd503201fu) {
10068         /* HINT space */
10069         switch (extract32(insn, 5, 7)) {
10070         case 0b011001: /* PACIASP */
10071         case 0b011011: /* PACIBSP */
10072             /*
10073              * If SCTLR_ELx.BT, then PACI*SP are not compatible
10074              * with btype == 3.  Otherwise all btype are ok.
10075              */
10076             return !bt || btype != 3;
10077         case 0b100000: /* BTI */
10078             /* Not compatible with any btype.  */
10079             return false;
10080         case 0b100010: /* BTI c */
10081             /* Not compatible with btype == 3 */
10082             return btype != 3;
10083         case 0b100100: /* BTI j */
10084             /* Not compatible with btype == 2 */
10085             return btype != 2;
10086         case 0b100110: /* BTI jc */
10087             /* Compatible with any btype.  */
10088             return true;
10089         }
10090     } else {
10091         switch (insn & 0xffe0001fu) {
10092         case 0xd4200000u: /* BRK */
10093         case 0xd4400000u: /* HLT */
10094             /* Give priority to the breakpoint exception.  */
10095             return true;
10096         }
10097     }
10098     return false;
10099 }
10100 
10101 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
10102                                           CPUState *cpu)
10103 {
10104     DisasContext *dc = container_of(dcbase, DisasContext, base);
10105     CPUARMState *env = cpu_env(cpu);
10106     ARMCPU *arm_cpu = env_archcpu(env);
10107     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
10108     int bound, core_mmu_idx;
10109 
10110     dc->isar = &arm_cpu->isar;
10111     dc->condjmp = 0;
10112     dc->pc_save = dc->base.pc_first;
10113     dc->aarch64 = true;
10114     dc->thumb = false;
10115     dc->sctlr_b = 0;
10116     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
10117     dc->condexec_mask = 0;
10118     dc->condexec_cond = 0;
10119     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
10120     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
10121     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
10122     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
10123     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
10124     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
10125 #if !defined(CONFIG_USER_ONLY)
10126     dc->user = (dc->current_el == 0);
10127 #endif
10128     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
10129     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
10130     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
10131     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
10132     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
10133     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
10134     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
10135     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
10136     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
10137     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
10138     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
10139     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
10140     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
10141     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
10142     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
10143     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
10144     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
10145     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
10146     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
10147     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
10148     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
10149     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
10150     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
10151     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
10152     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
10153     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
10154     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
10155     dc->fpcr_ah = EX_TBFLAG_A64(tb_flags, AH);
10156     dc->fpcr_nep = EX_TBFLAG_A64(tb_flags, NEP);
10157     dc->vec_len = 0;
10158     dc->vec_stride = 0;
10159     dc->cp_regs = arm_cpu->cp_regs;
10160     dc->features = env->features;
10161     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
10162     dc->gm_blocksize = arm_cpu->gm_blocksize;
10163 
10164 #ifdef CONFIG_USER_ONLY
10165     /* In sve_probe_page, we assume TBI is enabled. */
10166     tcg_debug_assert(dc->tbid & 1);
10167 #endif
10168 
10169     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
10170 
10171     /* Single step state. The code-generation logic here is:
10172      *  SS_ACTIVE == 0:
10173      *   generate code with no special handling for single-stepping (except
10174      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
10175      *   this happens anyway because those changes are all system register or
10176      *   PSTATE writes).
10177      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
10178      *   emit code for one insn
10179      *   emit code to clear PSTATE.SS
10180      *   emit code to generate software step exception for completed step
10181      *   end TB (as usual for having generated an exception)
10182      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
10183      *   emit code to generate a software step exception
10184      *   end the TB
10185      */
10186     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
10187     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
10188     dc->is_ldex = false;
10189 
10190     /* Bound the number of insns to execute to those left on the page.  */
10191     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
10192 
10193     /* If architectural single step active, limit to 1.  */
10194     if (dc->ss_active) {
10195         bound = 1;
10196     }
10197     dc->base.max_insns = MIN(dc->base.max_insns, bound);
10198 }
10199 
10200 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
10201 {
10202 }
10203 
10204 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
10205 {
10206     DisasContext *dc = container_of(dcbase, DisasContext, base);
10207     target_ulong pc_arg = dc->base.pc_next;
10208 
10209     if (tb_cflags(dcbase->tb) & CF_PCREL) {
10210         pc_arg &= ~TARGET_PAGE_MASK;
10211     }
10212     tcg_gen_insn_start(pc_arg, 0, 0);
10213     dc->insn_start_updated = false;
10214 }
10215 
10216 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
10217 {
10218     DisasContext *s = container_of(dcbase, DisasContext, base);
10219     CPUARMState *env = cpu_env(cpu);
10220     uint64_t pc = s->base.pc_next;
10221     uint32_t insn;
10222 
10223     /* Singlestep exceptions have the highest priority. */
10224     if (s->ss_active && !s->pstate_ss) {
10225         /* Singlestep state is Active-pending.
10226          * If we're in this state at the start of a TB then either
10227          *  a) we just took an exception to an EL which is being debugged
10228          *     and this is the first insn in the exception handler
10229          *  b) debug exceptions were masked and we just unmasked them
10230          *     without changing EL (eg by clearing PSTATE.D)
10231          * In either case we're going to take a swstep exception in the
10232          * "did not step an insn" case, and so the syndrome ISV and EX
10233          * bits should be zero.
10234          */
10235         assert(s->base.num_insns == 1);
10236         gen_swstep_exception(s, 0, 0);
10237         s->base.is_jmp = DISAS_NORETURN;
10238         s->base.pc_next = pc + 4;
10239         return;
10240     }
10241 
10242     if (pc & 3) {
10243         /*
10244          * PC alignment fault.  This has priority over the instruction abort
10245          * that we would receive from a translation fault via arm_ldl_code.
10246          * This should only be possible after an indirect branch, at the
10247          * start of the TB.
10248          */
10249         assert(s->base.num_insns == 1);
10250         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
10251         s->base.is_jmp = DISAS_NORETURN;
10252         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
10253         return;
10254     }
10255 
10256     s->pc_curr = pc;
10257     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
10258     s->insn = insn;
10259     s->base.pc_next = pc + 4;
10260 
10261     s->fp_access_checked = 0;
10262     s->sve_access_checked = 0;
10263 
10264     if (s->pstate_il) {
10265         /*
10266          * Illegal execution state. This has priority over BTI
10267          * exceptions, but comes after instruction abort exceptions.
10268          */
10269         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
10270         return;
10271     }
10272 
10273     if (dc_isar_feature(aa64_bti, s)) {
10274         if (s->base.num_insns == 1) {
10275             /* First insn can have btype set to non-zero.  */
10276             tcg_debug_assert(s->btype >= 0);
10277 
10278             /*
10279              * Note that the Branch Target Exception has fairly high
10280              * priority -- below debugging exceptions but above most
10281              * everything else.  This allows us to handle this now
10282              * instead of waiting until the insn is otherwise decoded.
10283              *
10284              * We can check all but the guarded page check here;
10285              * defer the latter to a helper.
10286              */
10287             if (s->btype != 0
10288                 && !btype_destination_ok(insn, s->bt, s->btype)) {
10289                 gen_helper_guarded_page_check(tcg_env);
10290             }
10291         } else {
10292             /* Not the first insn: btype must be 0.  */
10293             tcg_debug_assert(s->btype == 0);
10294         }
10295     }
10296 
10297     s->is_nonstreaming = false;
10298     if (s->sme_trap_nonstreaming) {
10299         disas_sme_fa64(s, insn);
10300     }
10301 
10302     if (!disas_a64(s, insn) &&
10303         !disas_sme(s, insn) &&
10304         !disas_sve(s, insn)) {
10305         unallocated_encoding(s);
10306     }
10307 
10308     /*
10309      * After execution of most insns, btype is reset to 0.
10310      * Note that we set btype == -1 when the insn sets btype.
10311      */
10312     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
10313         reset_btype(s);
10314     }
10315 }
10316 
10317 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
10318 {
10319     DisasContext *dc = container_of(dcbase, DisasContext, base);
10320 
10321     if (unlikely(dc->ss_active)) {
10322         /* Note that this means single stepping WFI doesn't halt the CPU.
10323          * For conditional branch insns this is harmless unreachable code as
10324          * gen_goto_tb() has already handled emitting the debug exception
10325          * (and thus a tb-jump is not possible when singlestepping).
10326          */
10327         switch (dc->base.is_jmp) {
10328         default:
10329             gen_a64_update_pc(dc, 4);
10330             /* fall through */
10331         case DISAS_EXIT:
10332         case DISAS_JUMP:
10333             gen_step_complete_exception(dc);
10334             break;
10335         case DISAS_NORETURN:
10336             break;
10337         }
10338     } else {
10339         switch (dc->base.is_jmp) {
10340         case DISAS_NEXT:
10341         case DISAS_TOO_MANY:
10342             gen_goto_tb(dc, 1, 4);
10343             break;
10344         default:
10345         case DISAS_UPDATE_EXIT:
10346             gen_a64_update_pc(dc, 4);
10347             /* fall through */
10348         case DISAS_EXIT:
10349             tcg_gen_exit_tb(NULL, 0);
10350             break;
10351         case DISAS_UPDATE_NOCHAIN:
10352             gen_a64_update_pc(dc, 4);
10353             /* fall through */
10354         case DISAS_JUMP:
10355             tcg_gen_lookup_and_goto_ptr();
10356             break;
10357         case DISAS_NORETURN:
10358         case DISAS_SWI:
10359             break;
10360         case DISAS_WFE:
10361             gen_a64_update_pc(dc, 4);
10362             gen_helper_wfe(tcg_env);
10363             break;
10364         case DISAS_YIELD:
10365             gen_a64_update_pc(dc, 4);
10366             gen_helper_yield(tcg_env);
10367             break;
10368         case DISAS_WFI:
10369             /*
10370              * This is a special case because we don't want to just halt
10371              * the CPU if trying to debug across a WFI.
10372              */
10373             gen_a64_update_pc(dc, 4);
10374             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
10375             /*
10376              * The helper doesn't necessarily throw an exception, but we
10377              * must go back to the main loop to check for interrupts anyway.
10378              */
10379             tcg_gen_exit_tb(NULL, 0);
10380             break;
10381         }
10382     }
10383 }
10384 
10385 const TranslatorOps aarch64_translator_ops = {
10386     .init_disas_context = aarch64_tr_init_disas_context,
10387     .tb_start           = aarch64_tr_tb_start,
10388     .insn_start         = aarch64_tr_insn_start,
10389     .translate_insn     = aarch64_tr_translate_insn,
10390     .tb_stop            = aarch64_tr_tb_stop,
10391 };
10392