1 /* 2 * AArch64 translation 3 * 4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de> 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "exec/target_page.h" 21 #include "translate.h" 22 #include "translate-a64.h" 23 #include "qemu/log.h" 24 #include "arm_ldst.h" 25 #include "semihosting/semihost.h" 26 #include "cpregs.h" 27 28 static TCGv_i64 cpu_X[32]; 29 static TCGv_i64 cpu_pc; 30 31 /* Load/store exclusive handling */ 32 static TCGv_i64 cpu_exclusive_high; 33 34 static const char *regnames[] = { 35 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 36 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 37 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 38 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" 39 }; 40 41 enum a64_shift_type { 42 A64_SHIFT_TYPE_LSL = 0, 43 A64_SHIFT_TYPE_LSR = 1, 44 A64_SHIFT_TYPE_ASR = 2, 45 A64_SHIFT_TYPE_ROR = 3 46 }; 47 48 /* 49 * Helpers for extracting complex instruction fields 50 */ 51 52 /* 53 * For load/store with an unsigned 12 bit immediate scaled by the element 54 * size. The input has the immediate field in bits [14:3] and the element 55 * size in [2:0]. 56 */ 57 static int uimm_scaled(DisasContext *s, int x) 58 { 59 unsigned imm = x >> 3; 60 unsigned scale = extract32(x, 0, 3); 61 return imm << scale; 62 } 63 64 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ 65 static int scale_by_log2_tag_granule(DisasContext *s, int x) 66 { 67 return x << LOG2_TAG_GRANULE; 68 } 69 70 /* 71 * Include the generated decoders. 72 */ 73 74 #include "decode-sme-fa64.c.inc" 75 #include "decode-a64.c.inc" 76 77 /* initialize TCG globals. */ 78 void a64_translate_init(void) 79 { 80 int i; 81 82 cpu_pc = tcg_global_mem_new_i64(tcg_env, 83 offsetof(CPUARMState, pc), 84 "pc"); 85 for (i = 0; i < 32; i++) { 86 cpu_X[i] = tcg_global_mem_new_i64(tcg_env, 87 offsetof(CPUARMState, xregs[i]), 88 regnames[i]); 89 } 90 91 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, 92 offsetof(CPUARMState, exclusive_high), "exclusive_high"); 93 } 94 95 /* 96 * Return the core mmu_idx to use for A64 load/store insns which 97 * have a "unprivileged load/store" variant. Those insns access 98 * EL0 if executed from an EL which has control over EL0 (usually 99 * EL1) but behave like normal loads and stores if executed from 100 * elsewhere (eg EL3). 101 * 102 * @unpriv : true for the unprivileged encoding; false for the 103 * normal encoding (in which case we will return the same 104 * thing as get_mem_index(). 105 */ 106 static int get_a64_user_mem_index(DisasContext *s, bool unpriv) 107 { 108 /* 109 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, 110 * which is the usual mmu_idx for this cpu state. 111 */ 112 ARMMMUIdx useridx = s->mmu_idx; 113 114 if (unpriv && s->unpriv) { 115 /* 116 * We have pre-computed the condition for AccType_UNPRIV. 117 * Therefore we should never get here with a mmu_idx for 118 * which we do not know the corresponding user mmu_idx. 119 */ 120 switch (useridx) { 121 case ARMMMUIdx_E10_1: 122 case ARMMMUIdx_E10_1_PAN: 123 useridx = ARMMMUIdx_E10_0; 124 break; 125 case ARMMMUIdx_E20_2: 126 case ARMMMUIdx_E20_2_PAN: 127 useridx = ARMMMUIdx_E20_0; 128 break; 129 default: 130 g_assert_not_reached(); 131 } 132 } 133 return arm_to_core_mmu_idx(useridx); 134 } 135 136 static void set_btype_raw(int val) 137 { 138 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, 139 offsetof(CPUARMState, btype)); 140 } 141 142 static void set_btype(DisasContext *s, int val) 143 { 144 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ 145 tcg_debug_assert(val >= 1 && val <= 3); 146 set_btype_raw(val); 147 s->btype = -1; 148 } 149 150 static void reset_btype(DisasContext *s) 151 { 152 if (s->btype != 0) { 153 set_btype_raw(0); 154 s->btype = 0; 155 } 156 } 157 158 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) 159 { 160 assert(s->pc_save != -1); 161 if (tb_cflags(s->base.tb) & CF_PCREL) { 162 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); 163 } else { 164 tcg_gen_movi_i64(dest, s->pc_curr + diff); 165 } 166 } 167 168 void gen_a64_update_pc(DisasContext *s, target_long diff) 169 { 170 gen_pc_plus_diff(s, cpu_pc, diff); 171 s->pc_save = s->pc_curr + diff; 172 } 173 174 /* 175 * Handle Top Byte Ignore (TBI) bits. 176 * 177 * If address tagging is enabled via the TCR TBI bits: 178 * + for EL2 and EL3 there is only one TBI bit, and if it is set 179 * then the address is zero-extended, clearing bits [63:56] 180 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 181 * and TBI1 controls addresses with bit 55 == 1. 182 * If the appropriate TBI bit is set for the address then 183 * the address is sign-extended from bit 55 into bits [63:56] 184 * 185 * Here We have concatenated TBI{1,0} into tbi. 186 */ 187 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, 188 TCGv_i64 src, int tbi) 189 { 190 if (tbi == 0) { 191 /* Load unmodified address */ 192 tcg_gen_mov_i64(dst, src); 193 } else if (!regime_has_2_ranges(s->mmu_idx)) { 194 /* Force tag byte to all zero */ 195 tcg_gen_extract_i64(dst, src, 0, 56); 196 } else { 197 /* Sign-extend from bit 55. */ 198 tcg_gen_sextract_i64(dst, src, 0, 56); 199 200 switch (tbi) { 201 case 1: 202 /* tbi0 but !tbi1: only use the extension if positive */ 203 tcg_gen_and_i64(dst, dst, src); 204 break; 205 case 2: 206 /* !tbi0 but tbi1: only use the extension if negative */ 207 tcg_gen_or_i64(dst, dst, src); 208 break; 209 case 3: 210 /* tbi0 and tbi1: always use the extension */ 211 break; 212 default: 213 g_assert_not_reached(); 214 } 215 } 216 } 217 218 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) 219 { 220 /* 221 * If address tagging is enabled for instructions via the TCR TBI bits, 222 * then loading an address into the PC will clear out any tag. 223 */ 224 gen_top_byte_ignore(s, cpu_pc, src, s->tbii); 225 s->pc_save = -1; 226 } 227 228 /* 229 * Handle MTE and/or TBI. 230 * 231 * For TBI, ideally, we would do nothing. Proper behaviour on fault is 232 * for the tag to be present in the FAR_ELx register. But for user-only 233 * mode we do not have a TLB with which to implement this, so we must 234 * remove the top byte now. 235 * 236 * Always return a fresh temporary that we can increment independently 237 * of the write-back address. 238 */ 239 240 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) 241 { 242 TCGv_i64 clean = tcg_temp_new_i64(); 243 #ifdef CONFIG_USER_ONLY 244 gen_top_byte_ignore(s, clean, addr, s->tbid); 245 #else 246 tcg_gen_mov_i64(clean, addr); 247 #endif 248 return clean; 249 } 250 251 /* Insert a zero tag into src, with the result at dst. */ 252 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) 253 { 254 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); 255 } 256 257 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, 258 MMUAccessType acc, int log2_size) 259 { 260 gen_helper_probe_access(tcg_env, ptr, 261 tcg_constant_i32(acc), 262 tcg_constant_i32(get_mem_index(s)), 263 tcg_constant_i32(1 << log2_size)); 264 } 265 266 /* 267 * For MTE, check a single logical or atomic access. This probes a single 268 * address, the exact one specified. The size and alignment of the access 269 * is not relevant to MTE, per se, but watchpoints do require the size, 270 * and we want to recognize those before making any other changes to state. 271 */ 272 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, 273 bool is_write, bool tag_checked, 274 MemOp memop, bool is_unpriv, 275 int core_idx) 276 { 277 if (tag_checked && s->mte_active[is_unpriv]) { 278 TCGv_i64 ret; 279 int desc = 0; 280 281 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); 282 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 283 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 284 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 285 desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop)); 286 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); 287 288 ret = tcg_temp_new_i64(); 289 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 290 291 return ret; 292 } 293 return clean_data_tbi(s, addr); 294 } 295 296 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, 297 bool tag_checked, MemOp memop) 298 { 299 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, 300 false, get_mem_index(s)); 301 } 302 303 /* 304 * For MTE, check multiple logical sequential accesses. 305 */ 306 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, 307 bool tag_checked, int total_size, MemOp single_mop) 308 { 309 if (tag_checked && s->mte_active[0]) { 310 TCGv_i64 ret; 311 int desc = 0; 312 313 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 314 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 315 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 316 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); 317 desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop)); 318 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); 319 320 ret = tcg_temp_new_i64(); 321 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); 322 323 return ret; 324 } 325 return clean_data_tbi(s, addr); 326 } 327 328 /* 329 * Generate the special alignment check that applies to AccType_ATOMIC 330 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be 331 * naturally aligned, but it must not cross a 16-byte boundary. 332 * See AArch64.CheckAlignment(). 333 */ 334 static void check_lse2_align(DisasContext *s, int rn, int imm, 335 bool is_write, MemOp mop) 336 { 337 TCGv_i32 tmp; 338 TCGv_i64 addr; 339 TCGLabel *over_label; 340 MMUAccessType type; 341 int mmu_idx; 342 343 tmp = tcg_temp_new_i32(); 344 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); 345 tcg_gen_addi_i32(tmp, tmp, imm & 15); 346 tcg_gen_andi_i32(tmp, tmp, 15); 347 tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); 348 349 over_label = gen_new_label(); 350 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); 351 352 addr = tcg_temp_new_i64(); 353 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); 354 355 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, 356 mmu_idx = get_mem_index(s); 357 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), 358 tcg_constant_i32(mmu_idx)); 359 360 gen_set_label(over_label); 361 362 } 363 364 /* Handle the alignment check for AccType_ATOMIC instructions. */ 365 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) 366 { 367 MemOp size = mop & MO_SIZE; 368 369 if (size == MO_8) { 370 return mop; 371 } 372 373 /* 374 * If size == MO_128, this is a LDXP, and the operation is single-copy 375 * atomic for each doubleword, not the entire quadword; it still must 376 * be quadword aligned. 377 */ 378 if (size == MO_128) { 379 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 380 MO_ATOM_IFALIGN_PAIR); 381 } 382 if (dc_isar_feature(aa64_lse2, s)) { 383 check_lse2_align(s, rn, 0, true, mop); 384 } else { 385 mop |= MO_ALIGN; 386 } 387 return finalize_memop(s, mop); 388 } 389 390 /* Handle the alignment check for AccType_ORDERED instructions. */ 391 static MemOp check_ordered_align(DisasContext *s, int rn, int imm, 392 bool is_write, MemOp mop) 393 { 394 MemOp size = mop & MO_SIZE; 395 396 if (size == MO_8) { 397 return mop; 398 } 399 if (size == MO_128) { 400 return finalize_memop_atom(s, MO_128 | MO_ALIGN, 401 MO_ATOM_IFALIGN_PAIR); 402 } 403 if (!dc_isar_feature(aa64_lse2, s)) { 404 mop |= MO_ALIGN; 405 } else if (!s->naa) { 406 check_lse2_align(s, rn, imm, is_write, mop); 407 } 408 return finalize_memop(s, mop); 409 } 410 411 typedef struct DisasCompare64 { 412 TCGCond cond; 413 TCGv_i64 value; 414 } DisasCompare64; 415 416 static void a64_test_cc(DisasCompare64 *c64, int cc) 417 { 418 DisasCompare c32; 419 420 arm_test_cc(&c32, cc); 421 422 /* 423 * Sign-extend the 32-bit value so that the GE/LT comparisons work 424 * properly. The NE/EQ comparisons are also fine with this choice. 425 */ 426 c64->cond = c32.cond; 427 c64->value = tcg_temp_new_i64(); 428 tcg_gen_ext_i32_i64(c64->value, c32.value); 429 } 430 431 static void gen_rebuild_hflags(DisasContext *s) 432 { 433 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); 434 } 435 436 static void gen_exception_internal_insn(DisasContext *s, int excp) 437 { 438 gen_a64_update_pc(s, 0); 439 gen_exception_internal(excp); 440 s->base.is_jmp = DISAS_NORETURN; 441 } 442 443 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) 444 { 445 gen_a64_update_pc(s, 0); 446 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); 447 s->base.is_jmp = DISAS_NORETURN; 448 } 449 450 static void gen_step_complete_exception(DisasContext *s) 451 { 452 /* We just completed step of an insn. Move from Active-not-pending 453 * to Active-pending, and then also take the swstep exception. 454 * This corresponds to making the (IMPDEF) choice to prioritize 455 * swstep exceptions over asynchronous exceptions taken to an exception 456 * level where debug is disabled. This choice has the advantage that 457 * we do not need to maintain internal state corresponding to the 458 * ISV/EX syndrome bits between completion of the step and generation 459 * of the exception, and our syndrome information is always correct. 460 */ 461 gen_ss_advance(s); 462 gen_swstep_exception(s, 1, s->is_ldex); 463 s->base.is_jmp = DISAS_NORETURN; 464 } 465 466 static inline bool use_goto_tb(DisasContext *s, uint64_t dest) 467 { 468 if (s->ss_active) { 469 return false; 470 } 471 return translator_use_goto_tb(&s->base, dest); 472 } 473 474 static void gen_goto_tb(DisasContext *s, int n, int64_t diff) 475 { 476 if (use_goto_tb(s, s->pc_curr + diff)) { 477 /* 478 * For pcrel, the pc must always be up-to-date on entry to 479 * the linked TB, so that it can use simple additions for all 480 * further adjustments. For !pcrel, the linked TB is compiled 481 * to know its full virtual address, so we can delay the 482 * update to pc to the unlinked path. A long chain of links 483 * can thus avoid many updates to the PC. 484 */ 485 if (tb_cflags(s->base.tb) & CF_PCREL) { 486 gen_a64_update_pc(s, diff); 487 tcg_gen_goto_tb(n); 488 } else { 489 tcg_gen_goto_tb(n); 490 gen_a64_update_pc(s, diff); 491 } 492 tcg_gen_exit_tb(s->base.tb, n); 493 s->base.is_jmp = DISAS_NORETURN; 494 } else { 495 gen_a64_update_pc(s, diff); 496 if (s->ss_active) { 497 gen_step_complete_exception(s); 498 } else { 499 tcg_gen_lookup_and_goto_ptr(); 500 s->base.is_jmp = DISAS_NORETURN; 501 } 502 } 503 } 504 505 /* 506 * Register access functions 507 * 508 * These functions are used for directly accessing a register in where 509 * changes to the final register value are likely to be made. If you 510 * need to use a register for temporary calculation (e.g. index type 511 * operations) use the read_* form. 512 * 513 * B1.2.1 Register mappings 514 * 515 * In instruction register encoding 31 can refer to ZR (zero register) or 516 * the SP (stack pointer) depending on context. In QEMU's case we map SP 517 * to cpu_X[31] and ZR accesses to a temporary which can be discarded. 518 * This is the point of the _sp forms. 519 */ 520 TCGv_i64 cpu_reg(DisasContext *s, int reg) 521 { 522 if (reg == 31) { 523 TCGv_i64 t = tcg_temp_new_i64(); 524 tcg_gen_movi_i64(t, 0); 525 return t; 526 } else { 527 return cpu_X[reg]; 528 } 529 } 530 531 /* register access for when 31 == SP */ 532 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) 533 { 534 return cpu_X[reg]; 535 } 536 537 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 538 * representing the register contents. This TCGv is an auto-freed 539 * temporary so it need not be explicitly freed, and may be modified. 540 */ 541 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) 542 { 543 TCGv_i64 v = tcg_temp_new_i64(); 544 if (reg != 31) { 545 if (sf) { 546 tcg_gen_mov_i64(v, cpu_X[reg]); 547 } else { 548 tcg_gen_ext32u_i64(v, cpu_X[reg]); 549 } 550 } else { 551 tcg_gen_movi_i64(v, 0); 552 } 553 return v; 554 } 555 556 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) 557 { 558 TCGv_i64 v = tcg_temp_new_i64(); 559 if (sf) { 560 tcg_gen_mov_i64(v, cpu_X[reg]); 561 } else { 562 tcg_gen_ext32u_i64(v, cpu_X[reg]); 563 } 564 return v; 565 } 566 567 /* Return the offset into CPUARMState of a slice (from 568 * the least significant end) of FP register Qn (ie 569 * Dn, Sn, Hn or Bn). 570 * (Note that this is not the same mapping as for A32; see cpu.h) 571 */ 572 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) 573 { 574 return vec_reg_offset(s, regno, 0, size); 575 } 576 577 /* Offset of the high half of the 128 bit vector Qn */ 578 static inline int fp_reg_hi_offset(DisasContext *s, int regno) 579 { 580 return vec_reg_offset(s, regno, 1, MO_64); 581 } 582 583 /* Convenience accessors for reading and writing single and double 584 * FP registers. Writing clears the upper parts of the associated 585 * 128 bit vector register, as required by the architecture. 586 * Note that unlike the GP register accessors, the values returned 587 * by the read functions must be manually freed. 588 */ 589 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) 590 { 591 TCGv_i64 v = tcg_temp_new_i64(); 592 593 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); 594 return v; 595 } 596 597 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) 598 { 599 TCGv_i32 v = tcg_temp_new_i32(); 600 601 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 602 return v; 603 } 604 605 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) 606 { 607 TCGv_i32 v = tcg_temp_new_i32(); 608 609 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 610 return v; 611 } 612 613 static void clear_vec(DisasContext *s, int rd) 614 { 615 unsigned ofs = fp_reg_offset(s, rd, MO_64); 616 unsigned vsz = vec_full_reg_size(s); 617 618 tcg_gen_gvec_dup_imm(MO_64, ofs, vsz, vsz, 0); 619 } 620 621 /* 622 * Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). 623 * If SVE is not enabled, then there are only 128 bits in the vector. 624 */ 625 static void clear_vec_high(DisasContext *s, bool is_q, int rd) 626 { 627 unsigned ofs = fp_reg_offset(s, rd, MO_64); 628 unsigned vsz = vec_full_reg_size(s); 629 630 /* Nop move, with side effect of clearing the tail. */ 631 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); 632 } 633 634 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) 635 { 636 unsigned ofs = fp_reg_offset(s, reg, MO_64); 637 638 tcg_gen_st_i64(v, tcg_env, ofs); 639 clear_vec_high(s, false, reg); 640 } 641 642 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) 643 { 644 TCGv_i64 tmp = tcg_temp_new_i64(); 645 646 tcg_gen_extu_i32_i64(tmp, v); 647 write_fp_dreg(s, reg, tmp); 648 } 649 650 /* 651 * Write a double result to 128 bit vector register reg, honouring FPCR.NEP: 652 * - if FPCR.NEP == 0, clear the high elements of reg 653 * - if FPCR.NEP == 1, set the high elements of reg from mergereg 654 * (i.e. merge the result with those high elements) 655 * In either case, SVE register bits above 128 are zeroed (per R_WKYLB). 656 */ 657 static void write_fp_dreg_merging(DisasContext *s, int reg, int mergereg, 658 TCGv_i64 v) 659 { 660 if (!s->fpcr_nep) { 661 write_fp_dreg(s, reg, v); 662 return; 663 } 664 665 /* 666 * Move from mergereg to reg; this sets the high elements and 667 * clears the bits above 128 as a side effect. 668 */ 669 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg), 670 vec_full_reg_offset(s, mergereg), 671 16, vec_full_reg_size(s)); 672 tcg_gen_st_i64(v, tcg_env, vec_full_reg_offset(s, reg)); 673 } 674 675 /* 676 * Write a single-prec result, but only clear the higher elements 677 * of the destination register if FPCR.NEP is 0; otherwise preserve them. 678 */ 679 static void write_fp_sreg_merging(DisasContext *s, int reg, int mergereg, 680 TCGv_i32 v) 681 { 682 if (!s->fpcr_nep) { 683 write_fp_sreg(s, reg, v); 684 return; 685 } 686 687 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg), 688 vec_full_reg_offset(s, mergereg), 689 16, vec_full_reg_size(s)); 690 tcg_gen_st_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); 691 } 692 693 /* 694 * Write a half-prec result, but only clear the higher elements 695 * of the destination register if FPCR.NEP is 0; otherwise preserve them. 696 * The caller must ensure that the top 16 bits of v are zero. 697 */ 698 static void write_fp_hreg_merging(DisasContext *s, int reg, int mergereg, 699 TCGv_i32 v) 700 { 701 if (!s->fpcr_nep) { 702 write_fp_sreg(s, reg, v); 703 return; 704 } 705 706 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg), 707 vec_full_reg_offset(s, mergereg), 708 16, vec_full_reg_size(s)); 709 tcg_gen_st16_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); 710 } 711 712 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ 713 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, 714 GVecGen2Fn *gvec_fn, int vece) 715 { 716 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 717 is_q ? 16 : 8, vec_full_reg_size(s)); 718 } 719 720 /* Expand a 2-operand + immediate AdvSIMD vector operation using 721 * an expander function. 722 */ 723 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, 724 int64_t imm, GVecGen2iFn *gvec_fn, int vece) 725 { 726 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 727 imm, is_q ? 16 : 8, vec_full_reg_size(s)); 728 } 729 730 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ 731 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, 732 GVecGen3Fn *gvec_fn, int vece) 733 { 734 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 735 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); 736 } 737 738 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ 739 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, 740 int rx, GVecGen4Fn *gvec_fn, int vece) 741 { 742 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), 743 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), 744 is_q ? 16 : 8, vec_full_reg_size(s)); 745 } 746 747 /* Expand a 2-operand operation using an out-of-line helper. */ 748 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, 749 int rn, int data, gen_helper_gvec_2 *fn) 750 { 751 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), 752 vec_full_reg_offset(s, rn), 753 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 754 } 755 756 /* Expand a 3-operand operation using an out-of-line helper. */ 757 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, 758 int rn, int rm, int data, gen_helper_gvec_3 *fn) 759 { 760 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), 761 vec_full_reg_offset(s, rn), 762 vec_full_reg_offset(s, rm), 763 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 764 } 765 766 /* Expand a 3-operand + fpstatus pointer + simd data value operation using 767 * an out-of-line helper. 768 */ 769 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, 770 int rm, ARMFPStatusFlavour fpsttype, int data, 771 gen_helper_gvec_3_ptr *fn) 772 { 773 TCGv_ptr fpst = fpstatus_ptr(fpsttype); 774 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), 775 vec_full_reg_offset(s, rn), 776 vec_full_reg_offset(s, rm), fpst, 777 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 778 } 779 780 /* Expand a 4-operand operation using an out-of-line helper. */ 781 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, 782 int rm, int ra, int data, gen_helper_gvec_4 *fn) 783 { 784 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), 785 vec_full_reg_offset(s, rn), 786 vec_full_reg_offset(s, rm), 787 vec_full_reg_offset(s, ra), 788 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 789 } 790 791 /* 792 * Expand a 4-operand operation using an out-of-line helper that takes 793 * a pointer to the CPU env. 794 */ 795 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn, 796 int rm, int ra, int data, 797 gen_helper_gvec_4_ptr *fn) 798 { 799 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 800 vec_full_reg_offset(s, rn), 801 vec_full_reg_offset(s, rm), 802 vec_full_reg_offset(s, ra), 803 tcg_env, 804 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 805 } 806 807 /* 808 * Expand a 4-operand + fpstatus pointer + simd data value operation using 809 * an out-of-line helper. 810 */ 811 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, 812 int rm, int ra, ARMFPStatusFlavour fpsttype, 813 int data, 814 gen_helper_gvec_4_ptr *fn) 815 { 816 TCGv_ptr fpst = fpstatus_ptr(fpsttype); 817 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), 818 vec_full_reg_offset(s, rn), 819 vec_full_reg_offset(s, rm), 820 vec_full_reg_offset(s, ra), fpst, 821 is_q ? 16 : 8, vec_full_reg_size(s), data, fn); 822 } 823 824 /* 825 * When FPCR.AH == 1, NEG and ABS do not flip the sign bit of a NaN. 826 * These functions implement 827 * d = floatN_is_any_nan(s) ? s : floatN_chs(s) 828 * which for float32 is 829 * d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s ^ (1 << 31)) 830 * and similarly for the other float sizes. 831 */ 832 static void gen_vfp_ah_negh(TCGv_i32 d, TCGv_i32 s) 833 { 834 TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32(); 835 836 gen_vfp_negh(chs_s, s); 837 gen_vfp_absh(abs_s, s); 838 tcg_gen_movcond_i32(TCG_COND_GTU, d, 839 abs_s, tcg_constant_i32(0x7c00), 840 s, chs_s); 841 } 842 843 static void gen_vfp_ah_negs(TCGv_i32 d, TCGv_i32 s) 844 { 845 TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32(); 846 847 gen_vfp_negs(chs_s, s); 848 gen_vfp_abss(abs_s, s); 849 tcg_gen_movcond_i32(TCG_COND_GTU, d, 850 abs_s, tcg_constant_i32(0x7f800000UL), 851 s, chs_s); 852 } 853 854 static void gen_vfp_ah_negd(TCGv_i64 d, TCGv_i64 s) 855 { 856 TCGv_i64 abs_s = tcg_temp_new_i64(), chs_s = tcg_temp_new_i64(); 857 858 gen_vfp_negd(chs_s, s); 859 gen_vfp_absd(abs_s, s); 860 tcg_gen_movcond_i64(TCG_COND_GTU, d, 861 abs_s, tcg_constant_i64(0x7ff0000000000000ULL), 862 s, chs_s); 863 } 864 865 /* 866 * These functions implement 867 * d = floatN_is_any_nan(s) ? s : floatN_abs(s) 868 * which for float32 is 869 * d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s & ~(1 << 31)) 870 * and similarly for the other float sizes. 871 */ 872 static void gen_vfp_ah_absh(TCGv_i32 d, TCGv_i32 s) 873 { 874 TCGv_i32 abs_s = tcg_temp_new_i32(); 875 876 gen_vfp_absh(abs_s, s); 877 tcg_gen_movcond_i32(TCG_COND_GTU, d, 878 abs_s, tcg_constant_i32(0x7c00), 879 s, abs_s); 880 } 881 882 static void gen_vfp_ah_abss(TCGv_i32 d, TCGv_i32 s) 883 { 884 TCGv_i32 abs_s = tcg_temp_new_i32(); 885 886 gen_vfp_abss(abs_s, s); 887 tcg_gen_movcond_i32(TCG_COND_GTU, d, 888 abs_s, tcg_constant_i32(0x7f800000UL), 889 s, abs_s); 890 } 891 892 static void gen_vfp_ah_absd(TCGv_i64 d, TCGv_i64 s) 893 { 894 TCGv_i64 abs_s = tcg_temp_new_i64(); 895 896 gen_vfp_absd(abs_s, s); 897 tcg_gen_movcond_i64(TCG_COND_GTU, d, 898 abs_s, tcg_constant_i64(0x7ff0000000000000ULL), 899 s, abs_s); 900 } 901 902 static void gen_vfp_maybe_ah_negh(DisasContext *dc, TCGv_i32 d, TCGv_i32 s) 903 { 904 if (dc->fpcr_ah) { 905 gen_vfp_ah_negh(d, s); 906 } else { 907 gen_vfp_negh(d, s); 908 } 909 } 910 911 static void gen_vfp_maybe_ah_negs(DisasContext *dc, TCGv_i32 d, TCGv_i32 s) 912 { 913 if (dc->fpcr_ah) { 914 gen_vfp_ah_negs(d, s); 915 } else { 916 gen_vfp_negs(d, s); 917 } 918 } 919 920 static void gen_vfp_maybe_ah_negd(DisasContext *dc, TCGv_i64 d, TCGv_i64 s) 921 { 922 if (dc->fpcr_ah) { 923 gen_vfp_ah_negd(d, s); 924 } else { 925 gen_vfp_negd(d, s); 926 } 927 } 928 929 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier 930 * than the 32 bit equivalent. 931 */ 932 static inline void gen_set_NZ64(TCGv_i64 result) 933 { 934 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); 935 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); 936 } 937 938 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ 939 static inline void gen_logic_CC(int sf, TCGv_i64 result) 940 { 941 if (sf) { 942 gen_set_NZ64(result); 943 } else { 944 tcg_gen_extrl_i64_i32(cpu_ZF, result); 945 tcg_gen_mov_i32(cpu_NF, cpu_ZF); 946 } 947 tcg_gen_movi_i32(cpu_CF, 0); 948 tcg_gen_movi_i32(cpu_VF, 0); 949 } 950 951 /* dest = T0 + T1; compute C, N, V and Z flags */ 952 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 953 { 954 TCGv_i64 result, flag, tmp; 955 result = tcg_temp_new_i64(); 956 flag = tcg_temp_new_i64(); 957 tmp = tcg_temp_new_i64(); 958 959 tcg_gen_movi_i64(tmp, 0); 960 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); 961 962 tcg_gen_extrl_i64_i32(cpu_CF, flag); 963 964 gen_set_NZ64(result); 965 966 tcg_gen_xor_i64(flag, result, t0); 967 tcg_gen_xor_i64(tmp, t0, t1); 968 tcg_gen_andc_i64(flag, flag, tmp); 969 tcg_gen_extrh_i64_i32(cpu_VF, flag); 970 971 tcg_gen_mov_i64(dest, result); 972 } 973 974 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 975 { 976 TCGv_i32 t0_32 = tcg_temp_new_i32(); 977 TCGv_i32 t1_32 = tcg_temp_new_i32(); 978 TCGv_i32 tmp = tcg_temp_new_i32(); 979 980 tcg_gen_movi_i32(tmp, 0); 981 tcg_gen_extrl_i64_i32(t0_32, t0); 982 tcg_gen_extrl_i64_i32(t1_32, t1); 983 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); 984 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 985 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 986 tcg_gen_xor_i32(tmp, t0_32, t1_32); 987 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 988 tcg_gen_extu_i32_i64(dest, cpu_NF); 989 } 990 991 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 992 { 993 if (sf) { 994 gen_add64_CC(dest, t0, t1); 995 } else { 996 gen_add32_CC(dest, t0, t1); 997 } 998 } 999 1000 /* dest = T0 - T1; compute C, N, V and Z flags */ 1001 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 1002 { 1003 /* 64 bit arithmetic */ 1004 TCGv_i64 result, flag, tmp; 1005 1006 result = tcg_temp_new_i64(); 1007 flag = tcg_temp_new_i64(); 1008 tcg_gen_sub_i64(result, t0, t1); 1009 1010 gen_set_NZ64(result); 1011 1012 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); 1013 tcg_gen_extrl_i64_i32(cpu_CF, flag); 1014 1015 tcg_gen_xor_i64(flag, result, t0); 1016 tmp = tcg_temp_new_i64(); 1017 tcg_gen_xor_i64(tmp, t0, t1); 1018 tcg_gen_and_i64(flag, flag, tmp); 1019 tcg_gen_extrh_i64_i32(cpu_VF, flag); 1020 tcg_gen_mov_i64(dest, result); 1021 } 1022 1023 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 1024 { 1025 /* 32 bit arithmetic */ 1026 TCGv_i32 t0_32 = tcg_temp_new_i32(); 1027 TCGv_i32 t1_32 = tcg_temp_new_i32(); 1028 TCGv_i32 tmp; 1029 1030 tcg_gen_extrl_i64_i32(t0_32, t0); 1031 tcg_gen_extrl_i64_i32(t1_32, t1); 1032 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); 1033 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 1034 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); 1035 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 1036 tmp = tcg_temp_new_i32(); 1037 tcg_gen_xor_i32(tmp, t0_32, t1_32); 1038 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); 1039 tcg_gen_extu_i32_i64(dest, cpu_NF); 1040 } 1041 1042 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 1043 { 1044 if (sf) { 1045 gen_sub64_CC(dest, t0, t1); 1046 } else { 1047 gen_sub32_CC(dest, t0, t1); 1048 } 1049 } 1050 1051 /* dest = T0 + T1 + CF; do not compute flags. */ 1052 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 1053 { 1054 TCGv_i64 flag = tcg_temp_new_i64(); 1055 tcg_gen_extu_i32_i64(flag, cpu_CF); 1056 tcg_gen_add_i64(dest, t0, t1); 1057 tcg_gen_add_i64(dest, dest, flag); 1058 1059 if (!sf) { 1060 tcg_gen_ext32u_i64(dest, dest); 1061 } 1062 } 1063 1064 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ 1065 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) 1066 { 1067 if (sf) { 1068 TCGv_i64 result = tcg_temp_new_i64(); 1069 TCGv_i64 cf_64 = tcg_temp_new_i64(); 1070 TCGv_i64 vf_64 = tcg_temp_new_i64(); 1071 TCGv_i64 tmp = tcg_temp_new_i64(); 1072 1073 tcg_gen_extu_i32_i64(cf_64, cpu_CF); 1074 tcg_gen_addcio_i64(result, cf_64, t0, t1, cf_64); 1075 tcg_gen_extrl_i64_i32(cpu_CF, cf_64); 1076 gen_set_NZ64(result); 1077 1078 tcg_gen_xor_i64(vf_64, result, t0); 1079 tcg_gen_xor_i64(tmp, t0, t1); 1080 tcg_gen_andc_i64(vf_64, vf_64, tmp); 1081 tcg_gen_extrh_i64_i32(cpu_VF, vf_64); 1082 1083 tcg_gen_mov_i64(dest, result); 1084 } else { 1085 TCGv_i32 t0_32 = tcg_temp_new_i32(); 1086 TCGv_i32 t1_32 = tcg_temp_new_i32(); 1087 TCGv_i32 tmp = tcg_temp_new_i32(); 1088 1089 tcg_gen_extrl_i64_i32(t0_32, t0); 1090 tcg_gen_extrl_i64_i32(t1_32, t1); 1091 tcg_gen_addcio_i32(cpu_NF, cpu_CF, t0_32, t1_32, cpu_CF); 1092 1093 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 1094 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); 1095 tcg_gen_xor_i32(tmp, t0_32, t1_32); 1096 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); 1097 tcg_gen_extu_i32_i64(dest, cpu_NF); 1098 } 1099 } 1100 1101 /* 1102 * Load/Store generators 1103 */ 1104 1105 /* 1106 * Store from GPR register to memory. 1107 */ 1108 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, 1109 TCGv_i64 tcg_addr, MemOp memop, int memidx, 1110 bool iss_valid, 1111 unsigned int iss_srt, 1112 bool iss_sf, bool iss_ar) 1113 { 1114 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); 1115 1116 if (iss_valid) { 1117 uint32_t syn; 1118 1119 syn = syn_data_abort_with_iss(0, 1120 (memop & MO_SIZE), 1121 false, 1122 iss_srt, 1123 iss_sf, 1124 iss_ar, 1125 0, 0, 0, 0, 0, false); 1126 disas_set_insn_syndrome(s, syn); 1127 } 1128 } 1129 1130 static void do_gpr_st(DisasContext *s, TCGv_i64 source, 1131 TCGv_i64 tcg_addr, MemOp memop, 1132 bool iss_valid, 1133 unsigned int iss_srt, 1134 bool iss_sf, bool iss_ar) 1135 { 1136 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), 1137 iss_valid, iss_srt, iss_sf, iss_ar); 1138 } 1139 1140 /* 1141 * Load from memory to GPR register 1142 */ 1143 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1144 MemOp memop, bool extend, int memidx, 1145 bool iss_valid, unsigned int iss_srt, 1146 bool iss_sf, bool iss_ar) 1147 { 1148 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); 1149 1150 if (extend && (memop & MO_SIGN)) { 1151 g_assert((memop & MO_SIZE) <= MO_32); 1152 tcg_gen_ext32u_i64(dest, dest); 1153 } 1154 1155 if (iss_valid) { 1156 uint32_t syn; 1157 1158 syn = syn_data_abort_with_iss(0, 1159 (memop & MO_SIZE), 1160 (memop & MO_SIGN) != 0, 1161 iss_srt, 1162 iss_sf, 1163 iss_ar, 1164 0, 0, 0, 0, 0, false); 1165 disas_set_insn_syndrome(s, syn); 1166 } 1167 } 1168 1169 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, 1170 MemOp memop, bool extend, 1171 bool iss_valid, unsigned int iss_srt, 1172 bool iss_sf, bool iss_ar) 1173 { 1174 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), 1175 iss_valid, iss_srt, iss_sf, iss_ar); 1176 } 1177 1178 /* 1179 * Store from FP register to memory 1180 */ 1181 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) 1182 { 1183 /* This writes the bottom N bits of a 128 bit wide vector to memory */ 1184 TCGv_i64 tmplo = tcg_temp_new_i64(); 1185 1186 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); 1187 1188 if ((mop & MO_SIZE) < MO_128) { 1189 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1190 } else { 1191 TCGv_i64 tmphi = tcg_temp_new_i64(); 1192 TCGv_i128 t16 = tcg_temp_new_i128(); 1193 1194 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); 1195 tcg_gen_concat_i64_i128(t16, tmplo, tmphi); 1196 1197 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); 1198 } 1199 } 1200 1201 /* 1202 * Load from memory to FP register 1203 */ 1204 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) 1205 { 1206 /* This always zero-extends and writes to a full 128 bit wide vector */ 1207 TCGv_i64 tmplo = tcg_temp_new_i64(); 1208 TCGv_i64 tmphi = NULL; 1209 1210 if ((mop & MO_SIZE) < MO_128) { 1211 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); 1212 } else { 1213 TCGv_i128 t16 = tcg_temp_new_i128(); 1214 1215 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); 1216 1217 tmphi = tcg_temp_new_i64(); 1218 tcg_gen_extr_i128_i64(tmplo, tmphi, t16); 1219 } 1220 1221 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); 1222 1223 if (tmphi) { 1224 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); 1225 } 1226 clear_vec_high(s, tmphi != NULL, destidx); 1227 } 1228 1229 /* 1230 * Vector load/store helpers. 1231 * 1232 * The principal difference between this and a FP load is that we don't 1233 * zero extend as we are filling a partial chunk of the vector register. 1234 * These functions don't support 128 bit loads/stores, which would be 1235 * normal load/store operations. 1236 * 1237 * The _i32 versions are useful when operating on 32 bit quantities 1238 * (eg for floating point single or using Neon helper functions). 1239 */ 1240 1241 /* Get value of an element within a vector register */ 1242 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, 1243 int element, MemOp memop) 1244 { 1245 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1246 switch ((unsigned)memop) { 1247 case MO_8: 1248 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); 1249 break; 1250 case MO_16: 1251 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); 1252 break; 1253 case MO_32: 1254 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); 1255 break; 1256 case MO_8|MO_SIGN: 1257 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); 1258 break; 1259 case MO_16|MO_SIGN: 1260 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); 1261 break; 1262 case MO_32|MO_SIGN: 1263 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); 1264 break; 1265 case MO_64: 1266 case MO_64|MO_SIGN: 1267 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); 1268 break; 1269 default: 1270 g_assert_not_reached(); 1271 } 1272 } 1273 1274 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, 1275 int element, MemOp memop) 1276 { 1277 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); 1278 switch (memop) { 1279 case MO_8: 1280 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); 1281 break; 1282 case MO_16: 1283 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); 1284 break; 1285 case MO_8|MO_SIGN: 1286 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); 1287 break; 1288 case MO_16|MO_SIGN: 1289 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); 1290 break; 1291 case MO_32: 1292 case MO_32|MO_SIGN: 1293 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); 1294 break; 1295 default: 1296 g_assert_not_reached(); 1297 } 1298 } 1299 1300 /* Set value of an element within a vector register */ 1301 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, 1302 int element, MemOp memop) 1303 { 1304 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1305 switch (memop) { 1306 case MO_8: 1307 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); 1308 break; 1309 case MO_16: 1310 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); 1311 break; 1312 case MO_32: 1313 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); 1314 break; 1315 case MO_64: 1316 tcg_gen_st_i64(tcg_src, tcg_env, vect_off); 1317 break; 1318 default: 1319 g_assert_not_reached(); 1320 } 1321 } 1322 1323 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, 1324 int destidx, int element, MemOp memop) 1325 { 1326 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); 1327 switch (memop) { 1328 case MO_8: 1329 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); 1330 break; 1331 case MO_16: 1332 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); 1333 break; 1334 case MO_32: 1335 tcg_gen_st_i32(tcg_src, tcg_env, vect_off); 1336 break; 1337 default: 1338 g_assert_not_reached(); 1339 } 1340 } 1341 1342 /* Store from vector register to memory */ 1343 static void do_vec_st(DisasContext *s, int srcidx, int element, 1344 TCGv_i64 tcg_addr, MemOp mop) 1345 { 1346 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1347 1348 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); 1349 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1350 } 1351 1352 /* Load from memory to vector register */ 1353 static void do_vec_ld(DisasContext *s, int destidx, int element, 1354 TCGv_i64 tcg_addr, MemOp mop) 1355 { 1356 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 1357 1358 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); 1359 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); 1360 } 1361 1362 /* Check that FP/Neon access is enabled. If it is, return 1363 * true. If not, emit code to generate an appropriate exception, 1364 * and return false; the caller should not emit any code for 1365 * the instruction. Note that this check must happen after all 1366 * unallocated-encoding checks (otherwise the syndrome information 1367 * for the resulting exception will be incorrect). 1368 */ 1369 static bool fp_access_check_only(DisasContext *s) 1370 { 1371 if (s->fp_excp_el) { 1372 assert(!s->fp_access_checked); 1373 s->fp_access_checked = -1; 1374 1375 gen_exception_insn_el(s, 0, EXCP_UDEF, 1376 syn_fp_access_trap(1, 0xe, false, 0), 1377 s->fp_excp_el); 1378 return false; 1379 } 1380 s->fp_access_checked = 1; 1381 return true; 1382 } 1383 1384 static bool fp_access_check(DisasContext *s) 1385 { 1386 if (!fp_access_check_only(s)) { 1387 return false; 1388 } 1389 if (s->sme_trap_nonstreaming && s->is_nonstreaming) { 1390 gen_exception_insn(s, 0, EXCP_UDEF, 1391 syn_smetrap(SME_ET_Streaming, false)); 1392 return false; 1393 } 1394 return true; 1395 } 1396 1397 /* 1398 * Return <0 for non-supported element sizes, with MO_16 controlled by 1399 * FEAT_FP16; return 0 for fp disabled; otherwise return >0 for success. 1400 */ 1401 static int fp_access_check_scalar_hsd(DisasContext *s, MemOp esz) 1402 { 1403 switch (esz) { 1404 case MO_64: 1405 case MO_32: 1406 break; 1407 case MO_16: 1408 if (!dc_isar_feature(aa64_fp16, s)) { 1409 return -1; 1410 } 1411 break; 1412 default: 1413 return -1; 1414 } 1415 return fp_access_check(s); 1416 } 1417 1418 /* Likewise, but vector MO_64 must have two elements. */ 1419 static int fp_access_check_vector_hsd(DisasContext *s, bool is_q, MemOp esz) 1420 { 1421 switch (esz) { 1422 case MO_64: 1423 if (!is_q) { 1424 return -1; 1425 } 1426 break; 1427 case MO_32: 1428 break; 1429 case MO_16: 1430 if (!dc_isar_feature(aa64_fp16, s)) { 1431 return -1; 1432 } 1433 break; 1434 default: 1435 return -1; 1436 } 1437 return fp_access_check(s); 1438 } 1439 1440 /* 1441 * Check that SVE access is enabled. If it is, return true. 1442 * If not, emit code to generate an appropriate exception and return false. 1443 * This function corresponds to CheckSVEEnabled(). 1444 */ 1445 bool sve_access_check(DisasContext *s) 1446 { 1447 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { 1448 bool ret; 1449 1450 assert(dc_isar_feature(aa64_sme, s)); 1451 ret = sme_sm_enabled_check(s); 1452 s->sve_access_checked = (ret ? 1 : -1); 1453 return ret; 1454 } 1455 if (s->sve_excp_el) { 1456 /* Assert that we only raise one exception per instruction. */ 1457 assert(!s->sve_access_checked); 1458 gen_exception_insn_el(s, 0, EXCP_UDEF, 1459 syn_sve_access_trap(), s->sve_excp_el); 1460 s->sve_access_checked = -1; 1461 return false; 1462 } 1463 s->sve_access_checked = 1; 1464 return fp_access_check(s); 1465 } 1466 1467 /* 1468 * Check that SME access is enabled, raise an exception if not. 1469 * Note that this function corresponds to CheckSMEAccess and is 1470 * only used directly for cpregs. 1471 */ 1472 static bool sme_access_check(DisasContext *s) 1473 { 1474 if (s->sme_excp_el) { 1475 gen_exception_insn_el(s, 0, EXCP_UDEF, 1476 syn_smetrap(SME_ET_AccessTrap, false), 1477 s->sme_excp_el); 1478 return false; 1479 } 1480 return true; 1481 } 1482 1483 /* This function corresponds to CheckSMEEnabled. */ 1484 bool sme_enabled_check(DisasContext *s) 1485 { 1486 /* 1487 * Note that unlike sve_excp_el, we have not constrained sme_excp_el 1488 * to be zero when fp_excp_el has priority. This is because we need 1489 * sme_excp_el by itself for cpregs access checks. 1490 */ 1491 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { 1492 bool ret = sme_access_check(s); 1493 s->fp_access_checked = (ret ? 1 : -1); 1494 return ret; 1495 } 1496 return fp_access_check_only(s); 1497 } 1498 1499 /* Common subroutine for CheckSMEAnd*Enabled. */ 1500 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) 1501 { 1502 if (!sme_enabled_check(s)) { 1503 return false; 1504 } 1505 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { 1506 gen_exception_insn(s, 0, EXCP_UDEF, 1507 syn_smetrap(SME_ET_NotStreaming, false)); 1508 return false; 1509 } 1510 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { 1511 gen_exception_insn(s, 0, EXCP_UDEF, 1512 syn_smetrap(SME_ET_InactiveZA, false)); 1513 return false; 1514 } 1515 return true; 1516 } 1517 1518 /* 1519 * Expanders for AdvSIMD translation functions. 1520 */ 1521 1522 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, 1523 gen_helper_gvec_2 *fn) 1524 { 1525 if (!a->q && a->esz == MO_64) { 1526 return false; 1527 } 1528 if (fp_access_check(s)) { 1529 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); 1530 } 1531 return true; 1532 } 1533 1534 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, 1535 gen_helper_gvec_3 *fn) 1536 { 1537 if (!a->q && a->esz == MO_64) { 1538 return false; 1539 } 1540 if (fp_access_check(s)) { 1541 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); 1542 } 1543 return true; 1544 } 1545 1546 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1547 { 1548 if (!a->q && a->esz == MO_64) { 1549 return false; 1550 } 1551 if (fp_access_check(s)) { 1552 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1553 } 1554 return true; 1555 } 1556 1557 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1558 { 1559 if (a->esz == MO_64) { 1560 return false; 1561 } 1562 if (fp_access_check(s)) { 1563 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); 1564 } 1565 return true; 1566 } 1567 1568 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) 1569 { 1570 if (a->esz == MO_8) { 1571 return false; 1572 } 1573 return do_gvec_fn3_no64(s, a, fn); 1574 } 1575 1576 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) 1577 { 1578 if (!a->q && a->esz == MO_64) { 1579 return false; 1580 } 1581 if (fp_access_check(s)) { 1582 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); 1583 } 1584 return true; 1585 } 1586 1587 /* 1588 * This utility function is for doing register extension with an 1589 * optional shift. You will likely want to pass a temporary for the 1590 * destination register. See DecodeRegExtend() in the ARM ARM. 1591 */ 1592 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, 1593 int option, unsigned int shift) 1594 { 1595 int extsize = extract32(option, 0, 2); 1596 bool is_signed = extract32(option, 2, 1); 1597 1598 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); 1599 tcg_gen_shli_i64(tcg_out, tcg_out, shift); 1600 } 1601 1602 static inline void gen_check_sp_alignment(DisasContext *s) 1603 { 1604 /* The AArch64 architecture mandates that (if enabled via PSTATE 1605 * or SCTLR bits) there is a check that SP is 16-aligned on every 1606 * SP-relative load or store (with an exception generated if it is not). 1607 * In line with general QEMU practice regarding misaligned accesses, 1608 * we omit these checks for the sake of guest program performance. 1609 * This function is provided as a hook so we can more easily add these 1610 * checks in future (possibly as a "favour catching guest program bugs 1611 * over speed" user selectable option). 1612 */ 1613 } 1614 1615 /* 1616 * The instruction disassembly implemented here matches 1617 * the instruction encoding classifications in chapter C4 1618 * of the ARM Architecture Reference Manual (DDI0487B_a); 1619 * classification names and decode diagrams here should generally 1620 * match up with those in the manual. 1621 */ 1622 1623 static bool trans_B(DisasContext *s, arg_i *a) 1624 { 1625 reset_btype(s); 1626 gen_goto_tb(s, 0, a->imm); 1627 return true; 1628 } 1629 1630 static bool trans_BL(DisasContext *s, arg_i *a) 1631 { 1632 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); 1633 reset_btype(s); 1634 gen_goto_tb(s, 0, a->imm); 1635 return true; 1636 } 1637 1638 1639 static bool trans_CBZ(DisasContext *s, arg_cbz *a) 1640 { 1641 DisasLabel match; 1642 TCGv_i64 tcg_cmp; 1643 1644 tcg_cmp = read_cpu_reg(s, a->rt, a->sf); 1645 reset_btype(s); 1646 1647 match = gen_disas_label(s); 1648 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1649 tcg_cmp, 0, match.label); 1650 gen_goto_tb(s, 0, 4); 1651 set_disas_label(s, match); 1652 gen_goto_tb(s, 1, a->imm); 1653 return true; 1654 } 1655 1656 static bool trans_TBZ(DisasContext *s, arg_tbz *a) 1657 { 1658 DisasLabel match; 1659 TCGv_i64 tcg_cmp; 1660 1661 tcg_cmp = tcg_temp_new_i64(); 1662 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); 1663 1664 reset_btype(s); 1665 1666 match = gen_disas_label(s); 1667 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, 1668 tcg_cmp, 0, match.label); 1669 gen_goto_tb(s, 0, 4); 1670 set_disas_label(s, match); 1671 gen_goto_tb(s, 1, a->imm); 1672 return true; 1673 } 1674 1675 static bool trans_B_cond(DisasContext *s, arg_B_cond *a) 1676 { 1677 /* BC.cond is only present with FEAT_HBC */ 1678 if (a->c && !dc_isar_feature(aa64_hbc, s)) { 1679 return false; 1680 } 1681 reset_btype(s); 1682 if (a->cond < 0x0e) { 1683 /* genuinely conditional branches */ 1684 DisasLabel match = gen_disas_label(s); 1685 arm_gen_test_cc(a->cond, match.label); 1686 gen_goto_tb(s, 0, 4); 1687 set_disas_label(s, match); 1688 gen_goto_tb(s, 1, a->imm); 1689 } else { 1690 /* 0xe and 0xf are both "always" conditions */ 1691 gen_goto_tb(s, 0, a->imm); 1692 } 1693 return true; 1694 } 1695 1696 static void set_btype_for_br(DisasContext *s, int rn) 1697 { 1698 if (dc_isar_feature(aa64_bti, s)) { 1699 /* BR to {x16,x17} or !guard -> 1, else 3. */ 1700 if (rn == 16 || rn == 17) { 1701 set_btype(s, 1); 1702 } else { 1703 TCGv_i64 pc = tcg_temp_new_i64(); 1704 gen_pc_plus_diff(s, pc, 0); 1705 gen_helper_guarded_page_br(tcg_env, pc); 1706 s->btype = -1; 1707 } 1708 } 1709 } 1710 1711 static void set_btype_for_blr(DisasContext *s) 1712 { 1713 if (dc_isar_feature(aa64_bti, s)) { 1714 /* BLR sets BTYPE to 2, regardless of source guarded page. */ 1715 set_btype(s, 2); 1716 } 1717 } 1718 1719 static bool trans_BR(DisasContext *s, arg_r *a) 1720 { 1721 set_btype_for_br(s, a->rn); 1722 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1723 s->base.is_jmp = DISAS_JUMP; 1724 return true; 1725 } 1726 1727 static bool trans_BLR(DisasContext *s, arg_r *a) 1728 { 1729 TCGv_i64 dst = cpu_reg(s, a->rn); 1730 TCGv_i64 lr = cpu_reg(s, 30); 1731 if (dst == lr) { 1732 TCGv_i64 tmp = tcg_temp_new_i64(); 1733 tcg_gen_mov_i64(tmp, dst); 1734 dst = tmp; 1735 } 1736 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1737 gen_a64_set_pc(s, dst); 1738 set_btype_for_blr(s); 1739 s->base.is_jmp = DISAS_JUMP; 1740 return true; 1741 } 1742 1743 static bool trans_RET(DisasContext *s, arg_r *a) 1744 { 1745 gen_a64_set_pc(s, cpu_reg(s, a->rn)); 1746 s->base.is_jmp = DISAS_JUMP; 1747 return true; 1748 } 1749 1750 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, 1751 TCGv_i64 modifier, bool use_key_a) 1752 { 1753 TCGv_i64 truedst; 1754 /* 1755 * Return the branch target for a BRAA/RETA/etc, which is either 1756 * just the destination dst, or that value with the pauth check 1757 * done and the code removed from the high bits. 1758 */ 1759 if (!s->pauth_active) { 1760 return dst; 1761 } 1762 1763 truedst = tcg_temp_new_i64(); 1764 if (use_key_a) { 1765 gen_helper_autia_combined(truedst, tcg_env, dst, modifier); 1766 } else { 1767 gen_helper_autib_combined(truedst, tcg_env, dst, modifier); 1768 } 1769 return truedst; 1770 } 1771 1772 static bool trans_BRAZ(DisasContext *s, arg_braz *a) 1773 { 1774 TCGv_i64 dst; 1775 1776 if (!dc_isar_feature(aa64_pauth, s)) { 1777 return false; 1778 } 1779 1780 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1781 set_btype_for_br(s, a->rn); 1782 gen_a64_set_pc(s, dst); 1783 s->base.is_jmp = DISAS_JUMP; 1784 return true; 1785 } 1786 1787 static bool trans_BLRAZ(DisasContext *s, arg_braz *a) 1788 { 1789 TCGv_i64 dst, lr; 1790 1791 if (!dc_isar_feature(aa64_pauth, s)) { 1792 return false; 1793 } 1794 1795 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); 1796 lr = cpu_reg(s, 30); 1797 if (dst == lr) { 1798 TCGv_i64 tmp = tcg_temp_new_i64(); 1799 tcg_gen_mov_i64(tmp, dst); 1800 dst = tmp; 1801 } 1802 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1803 gen_a64_set_pc(s, dst); 1804 set_btype_for_blr(s); 1805 s->base.is_jmp = DISAS_JUMP; 1806 return true; 1807 } 1808 1809 static bool trans_RETA(DisasContext *s, arg_reta *a) 1810 { 1811 TCGv_i64 dst; 1812 1813 if (!dc_isar_feature(aa64_pauth, s)) { 1814 return false; 1815 } 1816 1817 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); 1818 gen_a64_set_pc(s, dst); 1819 s->base.is_jmp = DISAS_JUMP; 1820 return true; 1821 } 1822 1823 static bool trans_BRA(DisasContext *s, arg_bra *a) 1824 { 1825 TCGv_i64 dst; 1826 1827 if (!dc_isar_feature(aa64_pauth, s)) { 1828 return false; 1829 } 1830 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); 1831 gen_a64_set_pc(s, dst); 1832 set_btype_for_br(s, a->rn); 1833 s->base.is_jmp = DISAS_JUMP; 1834 return true; 1835 } 1836 1837 static bool trans_BLRA(DisasContext *s, arg_bra *a) 1838 { 1839 TCGv_i64 dst, lr; 1840 1841 if (!dc_isar_feature(aa64_pauth, s)) { 1842 return false; 1843 } 1844 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); 1845 lr = cpu_reg(s, 30); 1846 if (dst == lr) { 1847 TCGv_i64 tmp = tcg_temp_new_i64(); 1848 tcg_gen_mov_i64(tmp, dst); 1849 dst = tmp; 1850 } 1851 gen_pc_plus_diff(s, lr, curr_insn_len(s)); 1852 gen_a64_set_pc(s, dst); 1853 set_btype_for_blr(s); 1854 s->base.is_jmp = DISAS_JUMP; 1855 return true; 1856 } 1857 1858 static bool trans_ERET(DisasContext *s, arg_ERET *a) 1859 { 1860 TCGv_i64 dst; 1861 1862 if (s->current_el == 0) { 1863 return false; 1864 } 1865 if (s->trap_eret) { 1866 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); 1867 return true; 1868 } 1869 dst = tcg_temp_new_i64(); 1870 tcg_gen_ld_i64(dst, tcg_env, 1871 offsetof(CPUARMState, elr_el[s->current_el])); 1872 1873 translator_io_start(&s->base); 1874 1875 gen_helper_exception_return(tcg_env, dst); 1876 /* Must exit loop to check un-masked IRQs */ 1877 s->base.is_jmp = DISAS_EXIT; 1878 return true; 1879 } 1880 1881 static bool trans_ERETA(DisasContext *s, arg_reta *a) 1882 { 1883 TCGv_i64 dst; 1884 1885 if (!dc_isar_feature(aa64_pauth, s)) { 1886 return false; 1887 } 1888 if (s->current_el == 0) { 1889 return false; 1890 } 1891 /* The FGT trap takes precedence over an auth trap. */ 1892 if (s->trap_eret) { 1893 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); 1894 return true; 1895 } 1896 dst = tcg_temp_new_i64(); 1897 tcg_gen_ld_i64(dst, tcg_env, 1898 offsetof(CPUARMState, elr_el[s->current_el])); 1899 1900 dst = auth_branch_target(s, dst, cpu_X[31], !a->m); 1901 1902 translator_io_start(&s->base); 1903 1904 gen_helper_exception_return(tcg_env, dst); 1905 /* Must exit loop to check un-masked IRQs */ 1906 s->base.is_jmp = DISAS_EXIT; 1907 return true; 1908 } 1909 1910 static bool trans_NOP(DisasContext *s, arg_NOP *a) 1911 { 1912 return true; 1913 } 1914 1915 static bool trans_YIELD(DisasContext *s, arg_YIELD *a) 1916 { 1917 /* 1918 * When running in MTTCG we don't generate jumps to the yield and 1919 * WFE helpers as it won't affect the scheduling of other vCPUs. 1920 * If we wanted to more completely model WFE/SEV so we don't busy 1921 * spin unnecessarily we would need to do something more involved. 1922 */ 1923 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1924 s->base.is_jmp = DISAS_YIELD; 1925 } 1926 return true; 1927 } 1928 1929 static bool trans_WFI(DisasContext *s, arg_WFI *a) 1930 { 1931 s->base.is_jmp = DISAS_WFI; 1932 return true; 1933 } 1934 1935 static bool trans_WFE(DisasContext *s, arg_WFI *a) 1936 { 1937 /* 1938 * When running in MTTCG we don't generate jumps to the yield and 1939 * WFE helpers as it won't affect the scheduling of other vCPUs. 1940 * If we wanted to more completely model WFE/SEV so we don't busy 1941 * spin unnecessarily we would need to do something more involved. 1942 */ 1943 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1944 s->base.is_jmp = DISAS_WFE; 1945 } 1946 return true; 1947 } 1948 1949 static bool trans_WFIT(DisasContext *s, arg_WFIT *a) 1950 { 1951 if (!dc_isar_feature(aa64_wfxt, s)) { 1952 return false; 1953 } 1954 1955 /* 1956 * Because we need to pass the register value to the helper, 1957 * it's easier to emit the code now, unlike trans_WFI which 1958 * defers it to aarch64_tr_tb_stop(). That means we need to 1959 * check ss_active so that single-stepping a WFIT doesn't halt. 1960 */ 1961 if (s->ss_active) { 1962 /* Act like a NOP under architectural singlestep */ 1963 return true; 1964 } 1965 1966 gen_a64_update_pc(s, 4); 1967 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd)); 1968 /* Go back to the main loop to check for interrupts */ 1969 s->base.is_jmp = DISAS_EXIT; 1970 return true; 1971 } 1972 1973 static bool trans_WFET(DisasContext *s, arg_WFET *a) 1974 { 1975 if (!dc_isar_feature(aa64_wfxt, s)) { 1976 return false; 1977 } 1978 1979 /* 1980 * We rely here on our WFE implementation being a NOP, so we 1981 * don't need to do anything different to handle the WFET timeout 1982 * from what trans_WFE does. 1983 */ 1984 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { 1985 s->base.is_jmp = DISAS_WFE; 1986 } 1987 return true; 1988 } 1989 1990 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) 1991 { 1992 if (s->pauth_active) { 1993 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); 1994 } 1995 return true; 1996 } 1997 1998 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) 1999 { 2000 if (s->pauth_active) { 2001 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 2002 } 2003 return true; 2004 } 2005 2006 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) 2007 { 2008 if (s->pauth_active) { 2009 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 2010 } 2011 return true; 2012 } 2013 2014 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) 2015 { 2016 if (s->pauth_active) { 2017 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 2018 } 2019 return true; 2020 } 2021 2022 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) 2023 { 2024 if (s->pauth_active) { 2025 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); 2026 } 2027 return true; 2028 } 2029 2030 static bool trans_ESB(DisasContext *s, arg_ESB *a) 2031 { 2032 /* Without RAS, we must implement this as NOP. */ 2033 if (dc_isar_feature(aa64_ras, s)) { 2034 /* 2035 * QEMU does not have a source of physical SErrors, 2036 * so we are only concerned with virtual SErrors. 2037 * The pseudocode in the ARM for this case is 2038 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then 2039 * AArch64.vESBOperation(); 2040 * Most of the condition can be evaluated at translation time. 2041 * Test for EL2 present, and defer test for SEL2 to runtime. 2042 */ 2043 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { 2044 gen_helper_vesb(tcg_env); 2045 } 2046 } 2047 return true; 2048 } 2049 2050 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) 2051 { 2052 if (s->pauth_active) { 2053 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 2054 } 2055 return true; 2056 } 2057 2058 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) 2059 { 2060 if (s->pauth_active) { 2061 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 2062 } 2063 return true; 2064 } 2065 2066 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) 2067 { 2068 if (s->pauth_active) { 2069 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 2070 } 2071 return true; 2072 } 2073 2074 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) 2075 { 2076 if (s->pauth_active) { 2077 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 2078 } 2079 return true; 2080 } 2081 2082 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) 2083 { 2084 if (s->pauth_active) { 2085 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 2086 } 2087 return true; 2088 } 2089 2090 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) 2091 { 2092 if (s->pauth_active) { 2093 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 2094 } 2095 return true; 2096 } 2097 2098 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) 2099 { 2100 if (s->pauth_active) { 2101 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); 2102 } 2103 return true; 2104 } 2105 2106 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) 2107 { 2108 if (s->pauth_active) { 2109 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); 2110 } 2111 return true; 2112 } 2113 2114 static bool trans_CLREX(DisasContext *s, arg_CLREX *a) 2115 { 2116 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 2117 return true; 2118 } 2119 2120 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) 2121 { 2122 /* We handle DSB and DMB the same way */ 2123 TCGBar bar; 2124 2125 switch (a->types) { 2126 case 1: /* MBReqTypes_Reads */ 2127 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; 2128 break; 2129 case 2: /* MBReqTypes_Writes */ 2130 bar = TCG_BAR_SC | TCG_MO_ST_ST; 2131 break; 2132 default: /* MBReqTypes_All */ 2133 bar = TCG_BAR_SC | TCG_MO_ALL; 2134 break; 2135 } 2136 tcg_gen_mb(bar); 2137 return true; 2138 } 2139 2140 static bool trans_DSB_nXS(DisasContext *s, arg_DSB_nXS *a) 2141 { 2142 if (!dc_isar_feature(aa64_xs, s)) { 2143 return false; 2144 } 2145 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL); 2146 return true; 2147 } 2148 2149 static bool trans_ISB(DisasContext *s, arg_ISB *a) 2150 { 2151 /* 2152 * We need to break the TB after this insn to execute 2153 * self-modifying code correctly and also to take 2154 * any pending interrupts immediately. 2155 */ 2156 reset_btype(s); 2157 gen_goto_tb(s, 0, 4); 2158 return true; 2159 } 2160 2161 static bool trans_SB(DisasContext *s, arg_SB *a) 2162 { 2163 if (!dc_isar_feature(aa64_sb, s)) { 2164 return false; 2165 } 2166 /* 2167 * TODO: There is no speculation barrier opcode for TCG; 2168 * MB and end the TB instead. 2169 */ 2170 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); 2171 gen_goto_tb(s, 0, 4); 2172 return true; 2173 } 2174 2175 static bool trans_CFINV(DisasContext *s, arg_CFINV *a) 2176 { 2177 if (!dc_isar_feature(aa64_condm_4, s)) { 2178 return false; 2179 } 2180 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); 2181 return true; 2182 } 2183 2184 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) 2185 { 2186 TCGv_i32 z; 2187 2188 if (!dc_isar_feature(aa64_condm_5, s)) { 2189 return false; 2190 } 2191 2192 z = tcg_temp_new_i32(); 2193 2194 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); 2195 2196 /* 2197 * (!C & !Z) << 31 2198 * (!(C | Z)) << 31 2199 * ~((C | Z) << 31) 2200 * ~-(C | Z) 2201 * (C | Z) - 1 2202 */ 2203 tcg_gen_or_i32(cpu_NF, cpu_CF, z); 2204 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); 2205 2206 /* !(Z & C) */ 2207 tcg_gen_and_i32(cpu_ZF, z, cpu_CF); 2208 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); 2209 2210 /* (!C & Z) << 31 -> -(Z & ~C) */ 2211 tcg_gen_andc_i32(cpu_VF, z, cpu_CF); 2212 tcg_gen_neg_i32(cpu_VF, cpu_VF); 2213 2214 /* C | Z */ 2215 tcg_gen_or_i32(cpu_CF, cpu_CF, z); 2216 2217 return true; 2218 } 2219 2220 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) 2221 { 2222 if (!dc_isar_feature(aa64_condm_5, s)) { 2223 return false; 2224 } 2225 2226 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ 2227 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ 2228 2229 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ 2230 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); 2231 2232 tcg_gen_movi_i32(cpu_NF, 0); 2233 tcg_gen_movi_i32(cpu_VF, 0); 2234 2235 return true; 2236 } 2237 2238 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) 2239 { 2240 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { 2241 return false; 2242 } 2243 if (a->imm & 1) { 2244 set_pstate_bits(PSTATE_UAO); 2245 } else { 2246 clear_pstate_bits(PSTATE_UAO); 2247 } 2248 gen_rebuild_hflags(s); 2249 s->base.is_jmp = DISAS_TOO_MANY; 2250 return true; 2251 } 2252 2253 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) 2254 { 2255 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { 2256 return false; 2257 } 2258 if (a->imm & 1) { 2259 set_pstate_bits(PSTATE_PAN); 2260 } else { 2261 clear_pstate_bits(PSTATE_PAN); 2262 } 2263 gen_rebuild_hflags(s); 2264 s->base.is_jmp = DISAS_TOO_MANY; 2265 return true; 2266 } 2267 2268 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) 2269 { 2270 if (s->current_el == 0) { 2271 return false; 2272 } 2273 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); 2274 s->base.is_jmp = DISAS_TOO_MANY; 2275 return true; 2276 } 2277 2278 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) 2279 { 2280 if (!dc_isar_feature(aa64_ssbs, s)) { 2281 return false; 2282 } 2283 if (a->imm & 1) { 2284 set_pstate_bits(PSTATE_SSBS); 2285 } else { 2286 clear_pstate_bits(PSTATE_SSBS); 2287 } 2288 /* Don't need to rebuild hflags since SSBS is a nop */ 2289 s->base.is_jmp = DISAS_TOO_MANY; 2290 return true; 2291 } 2292 2293 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) 2294 { 2295 if (!dc_isar_feature(aa64_dit, s)) { 2296 return false; 2297 } 2298 if (a->imm & 1) { 2299 set_pstate_bits(PSTATE_DIT); 2300 } else { 2301 clear_pstate_bits(PSTATE_DIT); 2302 } 2303 /* There's no need to rebuild hflags because DIT is a nop */ 2304 s->base.is_jmp = DISAS_TOO_MANY; 2305 return true; 2306 } 2307 2308 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) 2309 { 2310 if (dc_isar_feature(aa64_mte, s)) { 2311 /* Full MTE is enabled -- set the TCO bit as directed. */ 2312 if (a->imm & 1) { 2313 set_pstate_bits(PSTATE_TCO); 2314 } else { 2315 clear_pstate_bits(PSTATE_TCO); 2316 } 2317 gen_rebuild_hflags(s); 2318 /* Many factors, including TCO, go into MTE_ACTIVE. */ 2319 s->base.is_jmp = DISAS_UPDATE_NOCHAIN; 2320 return true; 2321 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { 2322 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ 2323 return true; 2324 } else { 2325 /* Insn not present */ 2326 return false; 2327 } 2328 } 2329 2330 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) 2331 { 2332 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); 2333 s->base.is_jmp = DISAS_TOO_MANY; 2334 return true; 2335 } 2336 2337 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) 2338 { 2339 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); 2340 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2341 s->base.is_jmp = DISAS_UPDATE_EXIT; 2342 return true; 2343 } 2344 2345 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) 2346 { 2347 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { 2348 return false; 2349 } 2350 2351 if (a->imm == 0) { 2352 clear_pstate_bits(PSTATE_ALLINT); 2353 } else if (s->current_el > 1) { 2354 set_pstate_bits(PSTATE_ALLINT); 2355 } else { 2356 gen_helper_msr_set_allint_el1(tcg_env); 2357 } 2358 2359 /* Exit the cpu loop to re-evaluate pending IRQs. */ 2360 s->base.is_jmp = DISAS_UPDATE_EXIT; 2361 return true; 2362 } 2363 2364 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) 2365 { 2366 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { 2367 return false; 2368 } 2369 if (sme_access_check(s)) { 2370 int old = s->pstate_sm | (s->pstate_za << 1); 2371 int new = a->imm * 3; 2372 2373 if ((old ^ new) & a->mask) { 2374 /* At least one bit changes. */ 2375 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), 2376 tcg_constant_i32(a->mask)); 2377 s->base.is_jmp = DISAS_TOO_MANY; 2378 } 2379 } 2380 return true; 2381 } 2382 2383 static void gen_get_nzcv(TCGv_i64 tcg_rt) 2384 { 2385 TCGv_i32 tmp = tcg_temp_new_i32(); 2386 TCGv_i32 nzcv = tcg_temp_new_i32(); 2387 2388 /* build bit 31, N */ 2389 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); 2390 /* build bit 30, Z */ 2391 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); 2392 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); 2393 /* build bit 29, C */ 2394 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); 2395 /* build bit 28, V */ 2396 tcg_gen_shri_i32(tmp, cpu_VF, 31); 2397 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); 2398 /* generate result */ 2399 tcg_gen_extu_i32_i64(tcg_rt, nzcv); 2400 } 2401 2402 static void gen_set_nzcv(TCGv_i64 tcg_rt) 2403 { 2404 TCGv_i32 nzcv = tcg_temp_new_i32(); 2405 2406 /* take NZCV from R[t] */ 2407 tcg_gen_extrl_i64_i32(nzcv, tcg_rt); 2408 2409 /* bit 31, N */ 2410 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); 2411 /* bit 30, Z */ 2412 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); 2413 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); 2414 /* bit 29, C */ 2415 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); 2416 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); 2417 /* bit 28, V */ 2418 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); 2419 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); 2420 } 2421 2422 static void gen_sysreg_undef(DisasContext *s, bool isread, 2423 uint8_t op0, uint8_t op1, uint8_t op2, 2424 uint8_t crn, uint8_t crm, uint8_t rt) 2425 { 2426 /* 2427 * Generate code to emit an UNDEF with correct syndrome 2428 * information for a failed system register access. 2429 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, 2430 * but if FEAT_IDST is implemented then read accesses to registers 2431 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP 2432 * syndrome. 2433 */ 2434 uint32_t syndrome; 2435 2436 if (isread && dc_isar_feature(aa64_ids, s) && 2437 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { 2438 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2439 } else { 2440 syndrome = syn_uncategorized(); 2441 } 2442 gen_exception_insn(s, 0, EXCP_UDEF, syndrome); 2443 } 2444 2445 /* MRS - move from system register 2446 * MSR (register) - move to system register 2447 * SYS 2448 * SYSL 2449 * These are all essentially the same insn in 'read' and 'write' 2450 * versions, with varying op0 fields. 2451 */ 2452 static void handle_sys(DisasContext *s, bool isread, 2453 unsigned int op0, unsigned int op1, unsigned int op2, 2454 unsigned int crn, unsigned int crm, unsigned int rt) 2455 { 2456 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2457 crn, crm, op0, op1, op2); 2458 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); 2459 bool need_exit_tb = false; 2460 bool nv_trap_to_el2 = false; 2461 bool nv_redirect_reg = false; 2462 bool skip_fp_access_checks = false; 2463 bool nv2_mem_redirect = false; 2464 TCGv_ptr tcg_ri = NULL; 2465 TCGv_i64 tcg_rt; 2466 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); 2467 2468 if (crn == 11 || crn == 15) { 2469 /* 2470 * Check for TIDCP trap, which must take precedence over 2471 * the UNDEF for "no such register" etc. 2472 */ 2473 switch (s->current_el) { 2474 case 0: 2475 if (dc_isar_feature(aa64_tidcp1, s)) { 2476 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); 2477 } 2478 break; 2479 case 1: 2480 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); 2481 break; 2482 } 2483 } 2484 2485 if (!ri) { 2486 /* Unknown register; this might be a guest error or a QEMU 2487 * unimplemented feature. 2488 */ 2489 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " 2490 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", 2491 isread ? "read" : "write", op0, op1, crn, crm, op2); 2492 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2493 return; 2494 } 2495 2496 if (s->nv2 && ri->nv2_redirect_offset) { 2497 /* 2498 * Some registers always redirect to memory; some only do so if 2499 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in 2500 * pairs which share an offset; see the table in R_CSRPQ). 2501 */ 2502 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { 2503 nv2_mem_redirect = s->nv1; 2504 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { 2505 nv2_mem_redirect = !s->nv1; 2506 } else { 2507 nv2_mem_redirect = true; 2508 } 2509 } 2510 2511 /* Check access permissions */ 2512 if (!cp_access_ok(s->current_el, ri, isread)) { 2513 /* 2514 * FEAT_NV/NV2 handling does not do the usual FP access checks 2515 * for registers only accessible at EL2 (though it *does* do them 2516 * for registers accessible at EL1). 2517 */ 2518 skip_fp_access_checks = true; 2519 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { 2520 /* 2521 * This is one of the few EL2 registers which should redirect 2522 * to the equivalent EL1 register. We do that after running 2523 * the EL2 register's accessfn. 2524 */ 2525 nv_redirect_reg = true; 2526 assert(!nv2_mem_redirect); 2527 } else if (nv2_mem_redirect) { 2528 /* 2529 * NV2 redirect-to-memory takes precedence over trap to EL2 or 2530 * UNDEF to EL1. 2531 */ 2532 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { 2533 /* 2534 * This register / instruction exists and is an EL2 register, so 2535 * we must trap to EL2 if accessed in nested virtualization EL1 2536 * instead of UNDEFing. We'll do that after the usual access checks. 2537 * (This makes a difference only for a couple of registers like 2538 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority 2539 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have 2540 * an accessfn which does nothing when called from EL1, because 2541 * the trap-to-EL3 controls which would apply to that register 2542 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) 2543 */ 2544 nv_trap_to_el2 = true; 2545 } else { 2546 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); 2547 return; 2548 } 2549 } 2550 2551 if (ri->accessfn || (ri->fgt && s->fgt_active)) { 2552 /* Emit code to perform further access permissions checks at 2553 * runtime; this may result in an exception. 2554 */ 2555 gen_a64_update_pc(s, 0); 2556 tcg_ri = tcg_temp_new_ptr(); 2557 gen_helper_access_check_cp_reg(tcg_ri, tcg_env, 2558 tcg_constant_i32(key), 2559 tcg_constant_i32(syndrome), 2560 tcg_constant_i32(isread)); 2561 } else if (ri->type & ARM_CP_RAISES_EXC) { 2562 /* 2563 * The readfn or writefn might raise an exception; 2564 * synchronize the CPU state in case it does. 2565 */ 2566 gen_a64_update_pc(s, 0); 2567 } 2568 2569 if (!skip_fp_access_checks) { 2570 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { 2571 return; 2572 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { 2573 return; 2574 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { 2575 return; 2576 } 2577 } 2578 2579 if (nv_trap_to_el2) { 2580 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2581 return; 2582 } 2583 2584 if (nv_redirect_reg) { 2585 /* 2586 * FEAT_NV2 redirection of an EL2 register to an EL1 register. 2587 * Conveniently in all cases the encoding of the EL1 register is 2588 * identical to the EL2 register except that opc1 is 0. 2589 * Get the reginfo for the EL1 register to use for the actual access. 2590 * We don't use the EL1 register's access function, and 2591 * fine-grained-traps on EL1 also do not apply here. 2592 */ 2593 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, 2594 crn, crm, op0, 0, op2); 2595 ri = get_arm_cp_reginfo(s->cp_regs, key); 2596 assert(ri); 2597 assert(cp_access_ok(s->current_el, ri, isread)); 2598 /* 2599 * We might not have done an update_pc earlier, so check we don't 2600 * need it. We could support this in future if necessary. 2601 */ 2602 assert(!(ri->type & ARM_CP_RAISES_EXC)); 2603 } 2604 2605 if (nv2_mem_redirect) { 2606 /* 2607 * This system register is being redirected into an EL2 memory access. 2608 * This means it is not an IO operation, doesn't change hflags, 2609 * and need not end the TB, because it has no side effects. 2610 * 2611 * The access is 64-bit single copy atomic, guaranteed aligned because 2612 * of the definition of VCNR_EL2. Its endianness depends on 2613 * SCTLR_EL2.EE, not on the data endianness of EL1. 2614 * It is done under either the EL2 translation regime or the EL2&0 2615 * translation regime, depending on HCR_EL2.E2H. It behaves as if 2616 * PSTATE.PAN is 0. 2617 */ 2618 TCGv_i64 ptr = tcg_temp_new_i64(); 2619 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; 2620 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 2621 int memidx = arm_to_core_mmu_idx(armmemidx); 2622 uint32_t syn; 2623 2624 mop |= (s->nv2_mem_be ? MO_BE : MO_LE); 2625 2626 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); 2627 tcg_gen_addi_i64(ptr, ptr, 2628 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); 2629 tcg_rt = cpu_reg(s, rt); 2630 2631 syn = syn_data_abort_vncr(0, !isread, 0); 2632 disas_set_insn_syndrome(s, syn); 2633 if (isread) { 2634 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); 2635 } else { 2636 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); 2637 } 2638 return; 2639 } 2640 2641 /* Handle special cases first */ 2642 switch (ri->type & ARM_CP_SPECIAL_MASK) { 2643 case 0: 2644 break; 2645 case ARM_CP_NOP: 2646 return; 2647 case ARM_CP_NZCV: 2648 tcg_rt = cpu_reg(s, rt); 2649 if (isread) { 2650 gen_get_nzcv(tcg_rt); 2651 } else { 2652 gen_set_nzcv(tcg_rt); 2653 } 2654 return; 2655 case ARM_CP_CURRENTEL: 2656 { 2657 /* 2658 * Reads as current EL value from pstate, which is 2659 * guaranteed to be constant by the tb flags. 2660 * For nested virt we should report EL2. 2661 */ 2662 int el = s->nv ? 2 : s->current_el; 2663 tcg_rt = cpu_reg(s, rt); 2664 tcg_gen_movi_i64(tcg_rt, el << 2); 2665 return; 2666 } 2667 case ARM_CP_DC_ZVA: 2668 /* Writes clear the aligned block of memory which rt points into. */ 2669 if (s->mte_active[0]) { 2670 int desc = 0; 2671 2672 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); 2673 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 2674 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 2675 2676 tcg_rt = tcg_temp_new_i64(); 2677 gen_helper_mte_check_zva(tcg_rt, tcg_env, 2678 tcg_constant_i32(desc), cpu_reg(s, rt)); 2679 } else { 2680 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); 2681 } 2682 gen_helper_dc_zva(tcg_env, tcg_rt); 2683 return; 2684 case ARM_CP_DC_GVA: 2685 { 2686 TCGv_i64 clean_addr, tag; 2687 2688 /* 2689 * DC_GVA, like DC_ZVA, requires that we supply the original 2690 * pointer for an invalid page. Probe that address first. 2691 */ 2692 tcg_rt = cpu_reg(s, rt); 2693 clean_addr = clean_data_tbi(s, tcg_rt); 2694 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); 2695 2696 if (s->ata[0]) { 2697 /* Extract the tag from the register to match STZGM. */ 2698 tag = tcg_temp_new_i64(); 2699 tcg_gen_shri_i64(tag, tcg_rt, 56); 2700 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2701 } 2702 } 2703 return; 2704 case ARM_CP_DC_GZVA: 2705 { 2706 TCGv_i64 clean_addr, tag; 2707 2708 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ 2709 tcg_rt = cpu_reg(s, rt); 2710 clean_addr = clean_data_tbi(s, tcg_rt); 2711 gen_helper_dc_zva(tcg_env, clean_addr); 2712 2713 if (s->ata[0]) { 2714 /* Extract the tag from the register to match STZGM. */ 2715 tag = tcg_temp_new_i64(); 2716 tcg_gen_shri_i64(tag, tcg_rt, 56); 2717 gen_helper_stzgm_tags(tcg_env, clean_addr, tag); 2718 } 2719 } 2720 return; 2721 default: 2722 g_assert_not_reached(); 2723 } 2724 2725 if (ri->type & ARM_CP_IO) { 2726 /* I/O operations must end the TB here (whether read or write) */ 2727 need_exit_tb = translator_io_start(&s->base); 2728 } 2729 2730 tcg_rt = cpu_reg(s, rt); 2731 2732 if (isread) { 2733 if (ri->type & ARM_CP_CONST) { 2734 tcg_gen_movi_i64(tcg_rt, ri->resetvalue); 2735 } else if (ri->readfn) { 2736 if (!tcg_ri) { 2737 tcg_ri = gen_lookup_cp_reg(key); 2738 } 2739 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); 2740 } else { 2741 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); 2742 } 2743 } else { 2744 if (ri->type & ARM_CP_CONST) { 2745 /* If not forbidden by access permissions, treat as WI */ 2746 return; 2747 } else if (ri->writefn) { 2748 if (!tcg_ri) { 2749 tcg_ri = gen_lookup_cp_reg(key); 2750 } 2751 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); 2752 } else { 2753 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); 2754 } 2755 } 2756 2757 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { 2758 /* 2759 * A write to any coprocessor register that ends a TB 2760 * must rebuild the hflags for the next TB. 2761 */ 2762 gen_rebuild_hflags(s); 2763 /* 2764 * We default to ending the TB on a coprocessor register write, 2765 * but allow this to be suppressed by the register definition 2766 * (usually only necessary to work around guest bugs). 2767 */ 2768 need_exit_tb = true; 2769 } 2770 if (need_exit_tb) { 2771 s->base.is_jmp = DISAS_UPDATE_EXIT; 2772 } 2773 } 2774 2775 static bool trans_SYS(DisasContext *s, arg_SYS *a) 2776 { 2777 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); 2778 return true; 2779 } 2780 2781 static bool trans_SVC(DisasContext *s, arg_i *a) 2782 { 2783 /* 2784 * For SVC, HVC and SMC we advance the single-step state 2785 * machine before taking the exception. This is architecturally 2786 * mandated, to ensure that single-stepping a system call 2787 * instruction works properly. 2788 */ 2789 uint32_t syndrome = syn_aa64_svc(a->imm); 2790 if (s->fgt_svc) { 2791 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); 2792 return true; 2793 } 2794 gen_ss_advance(s); 2795 gen_exception_insn(s, 4, EXCP_SWI, syndrome); 2796 return true; 2797 } 2798 2799 static bool trans_HVC(DisasContext *s, arg_i *a) 2800 { 2801 int target_el = s->current_el == 3 ? 3 : 2; 2802 2803 if (s->current_el == 0) { 2804 unallocated_encoding(s); 2805 return true; 2806 } 2807 /* 2808 * The pre HVC helper handles cases when HVC gets trapped 2809 * as an undefined insn by runtime configuration. 2810 */ 2811 gen_a64_update_pc(s, 0); 2812 gen_helper_pre_hvc(tcg_env); 2813 /* Architecture requires ss advance before we do the actual work */ 2814 gen_ss_advance(s); 2815 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); 2816 return true; 2817 } 2818 2819 static bool trans_SMC(DisasContext *s, arg_i *a) 2820 { 2821 if (s->current_el == 0) { 2822 unallocated_encoding(s); 2823 return true; 2824 } 2825 gen_a64_update_pc(s, 0); 2826 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); 2827 /* Architecture requires ss advance before we do the actual work */ 2828 gen_ss_advance(s); 2829 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); 2830 return true; 2831 } 2832 2833 static bool trans_BRK(DisasContext *s, arg_i *a) 2834 { 2835 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); 2836 return true; 2837 } 2838 2839 static bool trans_HLT(DisasContext *s, arg_i *a) 2840 { 2841 /* 2842 * HLT. This has two purposes. 2843 * Architecturally, it is an external halting debug instruction. 2844 * Since QEMU doesn't implement external debug, we treat this as 2845 * it is required for halting debug disabled: it will UNDEF. 2846 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. 2847 */ 2848 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { 2849 gen_exception_internal_insn(s, EXCP_SEMIHOST); 2850 } else { 2851 unallocated_encoding(s); 2852 } 2853 return true; 2854 } 2855 2856 /* 2857 * Load/Store exclusive instructions are implemented by remembering 2858 * the value/address loaded, and seeing if these are the same 2859 * when the store is performed. This is not actually the architecturally 2860 * mandated semantics, but it works for typical guest code sequences 2861 * and avoids having to monitor regular stores. 2862 * 2863 * The store exclusive uses the atomic cmpxchg primitives to avoid 2864 * races in multi-threaded linux-user and when MTTCG softmmu is 2865 * enabled. 2866 */ 2867 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, 2868 int size, bool is_pair) 2869 { 2870 int idx = get_mem_index(s); 2871 TCGv_i64 dirty_addr, clean_addr; 2872 MemOp memop = check_atomic_align(s, rn, size + is_pair); 2873 2874 s->is_ldex = true; 2875 dirty_addr = cpu_reg_sp(s, rn); 2876 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); 2877 2878 g_assert(size <= 3); 2879 if (is_pair) { 2880 g_assert(size >= 2); 2881 if (size == 2) { 2882 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2883 if (s->be_data == MO_LE) { 2884 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); 2885 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); 2886 } else { 2887 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); 2888 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); 2889 } 2890 } else { 2891 TCGv_i128 t16 = tcg_temp_new_i128(); 2892 2893 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); 2894 2895 if (s->be_data == MO_LE) { 2896 tcg_gen_extr_i128_i64(cpu_exclusive_val, 2897 cpu_exclusive_high, t16); 2898 } else { 2899 tcg_gen_extr_i128_i64(cpu_exclusive_high, 2900 cpu_exclusive_val, t16); 2901 } 2902 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2903 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); 2904 } 2905 } else { 2906 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); 2907 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); 2908 } 2909 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); 2910 } 2911 2912 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, 2913 int rn, int size, int is_pair) 2914 { 2915 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] 2916 * && (!is_pair || env->exclusive_high == [addr + datasize])) { 2917 * [addr] = {Rt}; 2918 * if (is_pair) { 2919 * [addr + datasize] = {Rt2}; 2920 * } 2921 * {Rd} = 0; 2922 * } else { 2923 * {Rd} = 1; 2924 * } 2925 * env->exclusive_addr = -1; 2926 */ 2927 TCGLabel *fail_label = gen_new_label(); 2928 TCGLabel *done_label = gen_new_label(); 2929 TCGv_i64 tmp, clean_addr; 2930 MemOp memop; 2931 2932 /* 2933 * FIXME: We are out of spec here. We have recorded only the address 2934 * from load_exclusive, not the entire range, and we assume that the 2935 * size of the access on both sides match. The architecture allows the 2936 * store to be smaller than the load, so long as the stored bytes are 2937 * within the range recorded by the load. 2938 */ 2939 2940 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ 2941 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); 2942 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); 2943 2944 /* 2945 * The write, and any associated faults, only happen if the virtual 2946 * and physical addresses pass the exclusive monitor check. These 2947 * faults are exceedingly unlikely, because normally the guest uses 2948 * the exact same address register for the load_exclusive, and we 2949 * would have recognized these faults there. 2950 * 2951 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an 2952 * unaligned 4-byte write within the range of an aligned 8-byte load. 2953 * With LSE2, the store would need to cross a 16-byte boundary when the 2954 * load did not, which would mean the store is outside the range 2955 * recorded for the monitor, which would have failed a corrected monitor 2956 * check above. For now, we assume no size change and retain the 2957 * MO_ALIGN to let tcg know what we checked in the load_exclusive. 2958 * 2959 * It is possible to trigger an MTE fault, by performing the load with 2960 * a virtual address with a valid tag and performing the store with the 2961 * same virtual address and a different invalid tag. 2962 */ 2963 memop = size + is_pair; 2964 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { 2965 memop |= MO_ALIGN; 2966 } 2967 memop = finalize_memop(s, memop); 2968 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 2969 2970 tmp = tcg_temp_new_i64(); 2971 if (is_pair) { 2972 if (size == 2) { 2973 if (s->be_data == MO_LE) { 2974 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); 2975 } else { 2976 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); 2977 } 2978 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, 2979 cpu_exclusive_val, tmp, 2980 get_mem_index(s), memop); 2981 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 2982 } else { 2983 TCGv_i128 t16 = tcg_temp_new_i128(); 2984 TCGv_i128 c16 = tcg_temp_new_i128(); 2985 TCGv_i64 a, b; 2986 2987 if (s->be_data == MO_LE) { 2988 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); 2989 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, 2990 cpu_exclusive_high); 2991 } else { 2992 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); 2993 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, 2994 cpu_exclusive_val); 2995 } 2996 2997 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, 2998 get_mem_index(s), memop); 2999 3000 a = tcg_temp_new_i64(); 3001 b = tcg_temp_new_i64(); 3002 if (s->be_data == MO_LE) { 3003 tcg_gen_extr_i128_i64(a, b, t16); 3004 } else { 3005 tcg_gen_extr_i128_i64(b, a, t16); 3006 } 3007 3008 tcg_gen_xor_i64(a, a, cpu_exclusive_val); 3009 tcg_gen_xor_i64(b, b, cpu_exclusive_high); 3010 tcg_gen_or_i64(tmp, a, b); 3011 3012 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); 3013 } 3014 } else { 3015 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, 3016 cpu_reg(s, rt), get_mem_index(s), memop); 3017 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); 3018 } 3019 tcg_gen_mov_i64(cpu_reg(s, rd), tmp); 3020 tcg_gen_br(done_label); 3021 3022 gen_set_label(fail_label); 3023 tcg_gen_movi_i64(cpu_reg(s, rd), 1); 3024 gen_set_label(done_label); 3025 tcg_gen_movi_i64(cpu_exclusive_addr, -1); 3026 } 3027 3028 static void gen_compare_and_swap(DisasContext *s, int rs, int rt, 3029 int rn, int size) 3030 { 3031 TCGv_i64 tcg_rs = cpu_reg(s, rs); 3032 TCGv_i64 tcg_rt = cpu_reg(s, rt); 3033 int memidx = get_mem_index(s); 3034 TCGv_i64 clean_addr; 3035 MemOp memop; 3036 3037 if (rn == 31) { 3038 gen_check_sp_alignment(s); 3039 } 3040 memop = check_atomic_align(s, rn, size); 3041 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 3042 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, 3043 memidx, memop); 3044 } 3045 3046 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, 3047 int rn, int size) 3048 { 3049 TCGv_i64 s1 = cpu_reg(s, rs); 3050 TCGv_i64 s2 = cpu_reg(s, rs + 1); 3051 TCGv_i64 t1 = cpu_reg(s, rt); 3052 TCGv_i64 t2 = cpu_reg(s, rt + 1); 3053 TCGv_i64 clean_addr; 3054 int memidx = get_mem_index(s); 3055 MemOp memop; 3056 3057 if (rn == 31) { 3058 gen_check_sp_alignment(s); 3059 } 3060 3061 /* This is a single atomic access, despite the "pair". */ 3062 memop = check_atomic_align(s, rn, size + 1); 3063 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); 3064 3065 if (size == 2) { 3066 TCGv_i64 cmp = tcg_temp_new_i64(); 3067 TCGv_i64 val = tcg_temp_new_i64(); 3068 3069 if (s->be_data == MO_LE) { 3070 tcg_gen_concat32_i64(val, t1, t2); 3071 tcg_gen_concat32_i64(cmp, s1, s2); 3072 } else { 3073 tcg_gen_concat32_i64(val, t2, t1); 3074 tcg_gen_concat32_i64(cmp, s2, s1); 3075 } 3076 3077 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); 3078 3079 if (s->be_data == MO_LE) { 3080 tcg_gen_extr32_i64(s1, s2, cmp); 3081 } else { 3082 tcg_gen_extr32_i64(s2, s1, cmp); 3083 } 3084 } else { 3085 TCGv_i128 cmp = tcg_temp_new_i128(); 3086 TCGv_i128 val = tcg_temp_new_i128(); 3087 3088 if (s->be_data == MO_LE) { 3089 tcg_gen_concat_i64_i128(val, t1, t2); 3090 tcg_gen_concat_i64_i128(cmp, s1, s2); 3091 } else { 3092 tcg_gen_concat_i64_i128(val, t2, t1); 3093 tcg_gen_concat_i64_i128(cmp, s2, s1); 3094 } 3095 3096 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); 3097 3098 if (s->be_data == MO_LE) { 3099 tcg_gen_extr_i128_i64(s1, s2, cmp); 3100 } else { 3101 tcg_gen_extr_i128_i64(s2, s1, cmp); 3102 } 3103 } 3104 } 3105 3106 /* 3107 * Compute the ISS.SF bit for syndrome information if an exception 3108 * is taken on a load or store. This indicates whether the instruction 3109 * is accessing a 32-bit or 64-bit register. This logic is derived 3110 * from the ARMv8 specs for LDR (Shared decode for all encodings). 3111 */ 3112 static bool ldst_iss_sf(int size, bool sign, bool ext) 3113 { 3114 3115 if (sign) { 3116 /* 3117 * Signed loads are 64 bit results if we are not going to 3118 * do a zero-extend from 32 to 64 after the load. 3119 * (For a store, sign and ext are always false.) 3120 */ 3121 return !ext; 3122 } else { 3123 /* Unsigned loads/stores work at the specified size */ 3124 return size == MO_64; 3125 } 3126 } 3127 3128 static bool trans_STXR(DisasContext *s, arg_stxr *a) 3129 { 3130 if (a->rn == 31) { 3131 gen_check_sp_alignment(s); 3132 } 3133 if (a->lasr) { 3134 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3135 } 3136 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); 3137 return true; 3138 } 3139 3140 static bool trans_LDXR(DisasContext *s, arg_stxr *a) 3141 { 3142 if (a->rn == 31) { 3143 gen_check_sp_alignment(s); 3144 } 3145 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); 3146 if (a->lasr) { 3147 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3148 } 3149 return true; 3150 } 3151 3152 static bool trans_STLR(DisasContext *s, arg_stlr *a) 3153 { 3154 TCGv_i64 clean_addr; 3155 MemOp memop; 3156 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3157 3158 /* 3159 * StoreLORelease is the same as Store-Release for QEMU, but 3160 * needs the feature-test. 3161 */ 3162 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 3163 return false; 3164 } 3165 /* Generate ISS for non-exclusive accesses including LASR. */ 3166 if (a->rn == 31) { 3167 gen_check_sp_alignment(s); 3168 } 3169 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3170 memop = check_ordered_align(s, a->rn, 0, true, a->sz); 3171 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 3172 true, a->rn != 31, memop); 3173 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, 3174 iss_sf, a->lasr); 3175 return true; 3176 } 3177 3178 static bool trans_LDAR(DisasContext *s, arg_stlr *a) 3179 { 3180 TCGv_i64 clean_addr; 3181 MemOp memop; 3182 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3183 3184 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ 3185 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { 3186 return false; 3187 } 3188 /* Generate ISS for non-exclusive accesses including LASR. */ 3189 if (a->rn == 31) { 3190 gen_check_sp_alignment(s); 3191 } 3192 memop = check_ordered_align(s, a->rn, 0, false, a->sz); 3193 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), 3194 false, a->rn != 31, memop); 3195 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, 3196 a->rt, iss_sf, a->lasr); 3197 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3198 return true; 3199 } 3200 3201 static bool trans_STXP(DisasContext *s, arg_stxr *a) 3202 { 3203 if (a->rn == 31) { 3204 gen_check_sp_alignment(s); 3205 } 3206 if (a->lasr) { 3207 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3208 } 3209 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); 3210 return true; 3211 } 3212 3213 static bool trans_LDXP(DisasContext *s, arg_stxr *a) 3214 { 3215 if (a->rn == 31) { 3216 gen_check_sp_alignment(s); 3217 } 3218 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); 3219 if (a->lasr) { 3220 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3221 } 3222 return true; 3223 } 3224 3225 static bool trans_CASP(DisasContext *s, arg_CASP *a) 3226 { 3227 if (!dc_isar_feature(aa64_atomics, s)) { 3228 return false; 3229 } 3230 if (((a->rt | a->rs) & 1) != 0) { 3231 return false; 3232 } 3233 3234 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); 3235 return true; 3236 } 3237 3238 static bool trans_CAS(DisasContext *s, arg_CAS *a) 3239 { 3240 if (!dc_isar_feature(aa64_atomics, s)) { 3241 return false; 3242 } 3243 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); 3244 return true; 3245 } 3246 3247 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) 3248 { 3249 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); 3250 TCGv_i64 tcg_rt = cpu_reg(s, a->rt); 3251 TCGv_i64 clean_addr = tcg_temp_new_i64(); 3252 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3253 3254 gen_pc_plus_diff(s, clean_addr, a->imm); 3255 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3256 false, true, a->rt, iss_sf, false); 3257 return true; 3258 } 3259 3260 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) 3261 { 3262 /* Load register (literal), vector version */ 3263 TCGv_i64 clean_addr; 3264 MemOp memop; 3265 3266 if (!fp_access_check(s)) { 3267 return true; 3268 } 3269 memop = finalize_memop_asimd(s, a->sz); 3270 clean_addr = tcg_temp_new_i64(); 3271 gen_pc_plus_diff(s, clean_addr, a->imm); 3272 do_fp_ld(s, a->rt, clean_addr, memop); 3273 return true; 3274 } 3275 3276 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, 3277 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3278 uint64_t offset, bool is_store, MemOp mop) 3279 { 3280 if (a->rn == 31) { 3281 gen_check_sp_alignment(s); 3282 } 3283 3284 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3285 if (!a->p) { 3286 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3287 } 3288 3289 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, 3290 (a->w || a->rn != 31), 2 << a->sz, mop); 3291 } 3292 3293 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, 3294 TCGv_i64 dirty_addr, uint64_t offset) 3295 { 3296 if (a->w) { 3297 if (a->p) { 3298 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3299 } 3300 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3301 } 3302 } 3303 3304 static bool trans_STP(DisasContext *s, arg_ldstpair *a) 3305 { 3306 uint64_t offset = a->imm << a->sz; 3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3308 MemOp mop = finalize_memop(s, a->sz); 3309 3310 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3311 tcg_rt = cpu_reg(s, a->rt); 3312 tcg_rt2 = cpu_reg(s, a->rt2); 3313 /* 3314 * We built mop above for the single logical access -- rebuild it 3315 * now for the paired operation. 3316 * 3317 * With LSE2, non-sign-extending pairs are treated atomically if 3318 * aligned, and if unaligned one of the pair will be completely 3319 * within a 16-byte block and that element will be atomic. 3320 * Otherwise each element is separately atomic. 3321 * In all cases, issue one operation with the correct atomicity. 3322 */ 3323 mop = a->sz + 1; 3324 if (s->align_mem) { 3325 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3326 } 3327 mop = finalize_memop_pair(s, mop); 3328 if (a->sz == 2) { 3329 TCGv_i64 tmp = tcg_temp_new_i64(); 3330 3331 if (s->be_data == MO_LE) { 3332 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); 3333 } else { 3334 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); 3335 } 3336 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); 3337 } else { 3338 TCGv_i128 tmp = tcg_temp_new_i128(); 3339 3340 if (s->be_data == MO_LE) { 3341 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3342 } else { 3343 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3344 } 3345 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3346 } 3347 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3348 return true; 3349 } 3350 3351 static bool trans_LDP(DisasContext *s, arg_ldstpair *a) 3352 { 3353 uint64_t offset = a->imm << a->sz; 3354 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3355 MemOp mop = finalize_memop(s, a->sz); 3356 3357 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3358 tcg_rt = cpu_reg(s, a->rt); 3359 tcg_rt2 = cpu_reg(s, a->rt2); 3360 3361 /* 3362 * We built mop above for the single logical access -- rebuild it 3363 * now for the paired operation. 3364 * 3365 * With LSE2, non-sign-extending pairs are treated atomically if 3366 * aligned, and if unaligned one of the pair will be completely 3367 * within a 16-byte block and that element will be atomic. 3368 * Otherwise each element is separately atomic. 3369 * In all cases, issue one operation with the correct atomicity. 3370 * 3371 * This treats sign-extending loads like zero-extending loads, 3372 * since that reuses the most code below. 3373 */ 3374 mop = a->sz + 1; 3375 if (s->align_mem) { 3376 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); 3377 } 3378 mop = finalize_memop_pair(s, mop); 3379 if (a->sz == 2) { 3380 int o2 = s->be_data == MO_LE ? 32 : 0; 3381 int o1 = o2 ^ 32; 3382 3383 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); 3384 if (a->sign) { 3385 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); 3386 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); 3387 } else { 3388 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); 3389 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); 3390 } 3391 } else { 3392 TCGv_i128 tmp = tcg_temp_new_i128(); 3393 3394 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); 3395 if (s->be_data == MO_LE) { 3396 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); 3397 } else { 3398 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); 3399 } 3400 } 3401 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3402 return true; 3403 } 3404 3405 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) 3406 { 3407 uint64_t offset = a->imm << a->sz; 3408 TCGv_i64 clean_addr, dirty_addr; 3409 MemOp mop; 3410 3411 if (!fp_access_check(s)) { 3412 return true; 3413 } 3414 3415 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3416 mop = finalize_memop_asimd(s, a->sz); 3417 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); 3418 do_fp_st(s, a->rt, clean_addr, mop); 3419 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3420 do_fp_st(s, a->rt2, clean_addr, mop); 3421 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3422 return true; 3423 } 3424 3425 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) 3426 { 3427 uint64_t offset = a->imm << a->sz; 3428 TCGv_i64 clean_addr, dirty_addr; 3429 MemOp mop; 3430 3431 if (!fp_access_check(s)) { 3432 return true; 3433 } 3434 3435 /* LSE2 does not merge FP pairs; leave these as separate operations. */ 3436 mop = finalize_memop_asimd(s, a->sz); 3437 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); 3438 do_fp_ld(s, a->rt, clean_addr, mop); 3439 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); 3440 do_fp_ld(s, a->rt2, clean_addr, mop); 3441 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3442 return true; 3443 } 3444 3445 static bool trans_STGP(DisasContext *s, arg_ldstpair *a) 3446 { 3447 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; 3448 uint64_t offset = a->imm << LOG2_TAG_GRANULE; 3449 MemOp mop; 3450 TCGv_i128 tmp; 3451 3452 /* STGP only comes in one size. */ 3453 tcg_debug_assert(a->sz == MO_64); 3454 3455 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 3456 return false; 3457 } 3458 3459 if (a->rn == 31) { 3460 gen_check_sp_alignment(s); 3461 } 3462 3463 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3464 if (!a->p) { 3465 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3466 } 3467 3468 clean_addr = clean_data_tbi(s, dirty_addr); 3469 tcg_rt = cpu_reg(s, a->rt); 3470 tcg_rt2 = cpu_reg(s, a->rt2); 3471 3472 /* 3473 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, 3474 * and one tag operation. We implement it as one single aligned 16-byte 3475 * memory operation for convenience. Note that the alignment ensures 3476 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. 3477 */ 3478 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); 3479 3480 tmp = tcg_temp_new_i128(); 3481 if (s->be_data == MO_LE) { 3482 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); 3483 } else { 3484 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); 3485 } 3486 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); 3487 3488 /* Perform the tag store, if tag access enabled. */ 3489 if (s->ata[0]) { 3490 if (tb_cflags(s->base.tb) & CF_PARALLEL) { 3491 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); 3492 } else { 3493 gen_helper_stg(tcg_env, dirty_addr, dirty_addr); 3494 } 3495 } 3496 3497 op_addr_ldstpair_post(s, a, dirty_addr, offset); 3498 return true; 3499 } 3500 3501 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, 3502 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3503 uint64_t offset, bool is_store, MemOp mop) 3504 { 3505 int memidx; 3506 3507 if (a->rn == 31) { 3508 gen_check_sp_alignment(s); 3509 } 3510 3511 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3512 if (!a->p) { 3513 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); 3514 } 3515 memidx = get_a64_user_mem_index(s, a->unpriv); 3516 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, 3517 a->w || a->rn != 31, 3518 mop, a->unpriv, memidx); 3519 } 3520 3521 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, 3522 TCGv_i64 dirty_addr, uint64_t offset) 3523 { 3524 if (a->w) { 3525 if (a->p) { 3526 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); 3527 } 3528 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3529 } 3530 } 3531 3532 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) 3533 { 3534 bool iss_sf, iss_valid = !a->w; 3535 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3536 int memidx = get_a64_user_mem_index(s, a->unpriv); 3537 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3538 3539 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3540 3541 tcg_rt = cpu_reg(s, a->rt); 3542 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3543 3544 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, 3545 iss_valid, a->rt, iss_sf, false); 3546 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3547 return true; 3548 } 3549 3550 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) 3551 { 3552 bool iss_sf, iss_valid = !a->w; 3553 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3554 int memidx = get_a64_user_mem_index(s, a->unpriv); 3555 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3556 3557 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3558 3559 tcg_rt = cpu_reg(s, a->rt); 3560 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3561 3562 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, 3563 a->ext, memidx, iss_valid, a->rt, iss_sf, false); 3564 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3565 return true; 3566 } 3567 3568 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) 3569 { 3570 TCGv_i64 clean_addr, dirty_addr; 3571 MemOp mop; 3572 3573 if (!fp_access_check(s)) { 3574 return true; 3575 } 3576 mop = finalize_memop_asimd(s, a->sz); 3577 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); 3578 do_fp_st(s, a->rt, clean_addr, mop); 3579 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3580 return true; 3581 } 3582 3583 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) 3584 { 3585 TCGv_i64 clean_addr, dirty_addr; 3586 MemOp mop; 3587 3588 if (!fp_access_check(s)) { 3589 return true; 3590 } 3591 mop = finalize_memop_asimd(s, a->sz); 3592 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); 3593 do_fp_ld(s, a->rt, clean_addr, mop); 3594 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); 3595 return true; 3596 } 3597 3598 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, 3599 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, 3600 bool is_store, MemOp memop) 3601 { 3602 TCGv_i64 tcg_rm; 3603 3604 if (a->rn == 31) { 3605 gen_check_sp_alignment(s); 3606 } 3607 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3608 3609 tcg_rm = read_cpu_reg(s, a->rm, 1); 3610 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); 3611 3612 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); 3613 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); 3614 } 3615 3616 static bool trans_LDR(DisasContext *s, arg_ldst *a) 3617 { 3618 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3619 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3620 MemOp memop; 3621 3622 if (extract32(a->opt, 1, 1) == 0) { 3623 return false; 3624 } 3625 3626 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); 3627 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3628 tcg_rt = cpu_reg(s, a->rt); 3629 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3630 a->ext, true, a->rt, iss_sf, false); 3631 return true; 3632 } 3633 3634 static bool trans_STR(DisasContext *s, arg_ldst *a) 3635 { 3636 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3637 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3638 MemOp memop; 3639 3640 if (extract32(a->opt, 1, 1) == 0) { 3641 return false; 3642 } 3643 3644 memop = finalize_memop(s, a->sz); 3645 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3646 tcg_rt = cpu_reg(s, a->rt); 3647 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); 3648 return true; 3649 } 3650 3651 static bool trans_LDR_v(DisasContext *s, arg_ldst *a) 3652 { 3653 TCGv_i64 clean_addr, dirty_addr; 3654 MemOp memop; 3655 3656 if (extract32(a->opt, 1, 1) == 0) { 3657 return false; 3658 } 3659 3660 if (!fp_access_check(s)) { 3661 return true; 3662 } 3663 3664 memop = finalize_memop_asimd(s, a->sz); 3665 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); 3666 do_fp_ld(s, a->rt, clean_addr, memop); 3667 return true; 3668 } 3669 3670 static bool trans_STR_v(DisasContext *s, arg_ldst *a) 3671 { 3672 TCGv_i64 clean_addr, dirty_addr; 3673 MemOp memop; 3674 3675 if (extract32(a->opt, 1, 1) == 0) { 3676 return false; 3677 } 3678 3679 if (!fp_access_check(s)) { 3680 return true; 3681 } 3682 3683 memop = finalize_memop_asimd(s, a->sz); 3684 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); 3685 do_fp_st(s, a->rt, clean_addr, memop); 3686 return true; 3687 } 3688 3689 3690 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, 3691 int sign, bool invert) 3692 { 3693 MemOp mop = a->sz | sign; 3694 TCGv_i64 clean_addr, tcg_rs, tcg_rt; 3695 3696 if (a->rn == 31) { 3697 gen_check_sp_alignment(s); 3698 } 3699 mop = check_atomic_align(s, a->rn, mop); 3700 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3701 a->rn != 31, mop); 3702 tcg_rs = read_cpu_reg(s, a->rs, true); 3703 tcg_rt = cpu_reg(s, a->rt); 3704 if (invert) { 3705 tcg_gen_not_i64(tcg_rs, tcg_rs); 3706 } 3707 /* 3708 * The tcg atomic primitives are all full barriers. Therefore we 3709 * can ignore the Acquire and Release bits of this instruction. 3710 */ 3711 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); 3712 3713 if (mop & MO_SIGN) { 3714 switch (a->sz) { 3715 case MO_8: 3716 tcg_gen_ext8u_i64(tcg_rt, tcg_rt); 3717 break; 3718 case MO_16: 3719 tcg_gen_ext16u_i64(tcg_rt, tcg_rt); 3720 break; 3721 case MO_32: 3722 tcg_gen_ext32u_i64(tcg_rt, tcg_rt); 3723 break; 3724 case MO_64: 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 } 3730 return true; 3731 } 3732 3733 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) 3734 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) 3735 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) 3736 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) 3737 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) 3738 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) 3739 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) 3740 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) 3741 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) 3742 3743 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) 3744 { 3745 bool iss_sf = ldst_iss_sf(a->sz, false, false); 3746 TCGv_i64 clean_addr; 3747 MemOp mop; 3748 3749 if (!dc_isar_feature(aa64_atomics, s) || 3750 !dc_isar_feature(aa64_rcpc_8_3, s)) { 3751 return false; 3752 } 3753 if (a->rn == 31) { 3754 gen_check_sp_alignment(s); 3755 } 3756 mop = check_ordered_align(s, a->rn, 0, false, a->sz); 3757 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, 3758 a->rn != 31, mop); 3759 /* 3760 * LDAPR* are a special case because they are a simple load, not a 3761 * fetch-and-do-something op. 3762 * The architectural consistency requirements here are weaker than 3763 * full load-acquire (we only need "load-acquire processor consistent"), 3764 * but we choose to implement them as full LDAQ. 3765 */ 3766 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, 3767 true, a->rt, iss_sf, true); 3768 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3769 return true; 3770 } 3771 3772 static bool trans_LDRA(DisasContext *s, arg_LDRA *a) 3773 { 3774 TCGv_i64 clean_addr, dirty_addr, tcg_rt; 3775 MemOp memop; 3776 3777 /* Load with pointer authentication */ 3778 if (!dc_isar_feature(aa64_pauth, s)) { 3779 return false; 3780 } 3781 3782 if (a->rn == 31) { 3783 gen_check_sp_alignment(s); 3784 } 3785 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3786 3787 if (s->pauth_active) { 3788 if (!a->m) { 3789 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, 3790 tcg_constant_i64(0)); 3791 } else { 3792 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, 3793 tcg_constant_i64(0)); 3794 } 3795 } 3796 3797 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3798 3799 memop = finalize_memop(s, MO_64); 3800 3801 /* Note that "clean" and "dirty" here refer to TBI not PAC. */ 3802 clean_addr = gen_mte_check1(s, dirty_addr, false, 3803 a->w || a->rn != 31, memop); 3804 3805 tcg_rt = cpu_reg(s, a->rt); 3806 do_gpr_ld(s, tcg_rt, clean_addr, memop, 3807 /* extend */ false, /* iss_valid */ !a->w, 3808 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); 3809 3810 if (a->w) { 3811 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); 3812 } 3813 return true; 3814 } 3815 3816 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3817 { 3818 TCGv_i64 clean_addr, dirty_addr; 3819 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); 3820 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3821 3822 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3823 return false; 3824 } 3825 3826 if (a->rn == 31) { 3827 gen_check_sp_alignment(s); 3828 } 3829 3830 mop = check_ordered_align(s, a->rn, a->imm, false, mop); 3831 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3832 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3833 clean_addr = clean_data_tbi(s, dirty_addr); 3834 3835 /* 3836 * Load-AcquirePC semantics; we implement as the slightly more 3837 * restrictive Load-Acquire. 3838 */ 3839 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, 3840 a->rt, iss_sf, true); 3841 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); 3842 return true; 3843 } 3844 3845 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) 3846 { 3847 TCGv_i64 clean_addr, dirty_addr; 3848 MemOp mop = a->sz; 3849 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); 3850 3851 if (!dc_isar_feature(aa64_rcpc_8_4, s)) { 3852 return false; 3853 } 3854 3855 /* TODO: ARMv8.4-LSE SCTLR.nAA */ 3856 3857 if (a->rn == 31) { 3858 gen_check_sp_alignment(s); 3859 } 3860 3861 mop = check_ordered_align(s, a->rn, a->imm, true, mop); 3862 dirty_addr = read_cpu_reg_sp(s, a->rn, 1); 3863 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); 3864 clean_addr = clean_data_tbi(s, dirty_addr); 3865 3866 /* Store-Release semantics */ 3867 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); 3868 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); 3869 return true; 3870 } 3871 3872 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) 3873 { 3874 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3875 MemOp endian, align, mop; 3876 3877 int total; /* total bytes */ 3878 int elements; /* elements per vector */ 3879 int r; 3880 int size = a->sz; 3881 3882 if (!a->p && a->rm != 0) { 3883 /* For non-postindexed accesses the Rm field must be 0 */ 3884 return false; 3885 } 3886 if (size == 3 && !a->q && a->selem != 1) { 3887 return false; 3888 } 3889 if (!fp_access_check(s)) { 3890 return true; 3891 } 3892 3893 if (a->rn == 31) { 3894 gen_check_sp_alignment(s); 3895 } 3896 3897 /* For our purposes, bytes are always little-endian. */ 3898 endian = s->be_data; 3899 if (size == 0) { 3900 endian = MO_LE; 3901 } 3902 3903 total = a->rpt * a->selem * (a->q ? 16 : 8); 3904 tcg_rn = cpu_reg_sp(s, a->rn); 3905 3906 /* 3907 * Issue the MTE check vs the logical repeat count, before we 3908 * promote consecutive little-endian elements below. 3909 */ 3910 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, 3911 finalize_memop_asimd(s, size)); 3912 3913 /* 3914 * Consecutive little-endian elements from a single register 3915 * can be promoted to a larger little-endian operation. 3916 */ 3917 align = MO_ALIGN; 3918 if (a->selem == 1 && endian == MO_LE) { 3919 align = pow2_align(size); 3920 size = 3; 3921 } 3922 if (!s->align_mem) { 3923 align = 0; 3924 } 3925 mop = endian | size | align; 3926 3927 elements = (a->q ? 16 : 8) >> size; 3928 tcg_ebytes = tcg_constant_i64(1 << size); 3929 for (r = 0; r < a->rpt; r++) { 3930 int e; 3931 for (e = 0; e < elements; e++) { 3932 int xs; 3933 for (xs = 0; xs < a->selem; xs++) { 3934 int tt = (a->rt + r + xs) % 32; 3935 do_vec_ld(s, tt, e, clean_addr, mop); 3936 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 3937 } 3938 } 3939 } 3940 3941 /* 3942 * For non-quad operations, setting a slice of the low 64 bits of 3943 * the register clears the high 64 bits (in the ARM ARM pseudocode 3944 * this is implicit in the fact that 'rval' is a 64 bit wide 3945 * variable). For quad operations, we might still need to zero 3946 * the high bits of SVE. 3947 */ 3948 for (r = 0; r < a->rpt * a->selem; r++) { 3949 int tt = (a->rt + r) % 32; 3950 clear_vec_high(s, a->q, tt); 3951 } 3952 3953 if (a->p) { 3954 if (a->rm == 31) { 3955 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 3956 } else { 3957 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 3958 } 3959 } 3960 return true; 3961 } 3962 3963 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) 3964 { 3965 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 3966 MemOp endian, align, mop; 3967 3968 int total; /* total bytes */ 3969 int elements; /* elements per vector */ 3970 int r; 3971 int size = a->sz; 3972 3973 if (!a->p && a->rm != 0) { 3974 /* For non-postindexed accesses the Rm field must be 0 */ 3975 return false; 3976 } 3977 if (size == 3 && !a->q && a->selem != 1) { 3978 return false; 3979 } 3980 if (!fp_access_check(s)) { 3981 return true; 3982 } 3983 3984 if (a->rn == 31) { 3985 gen_check_sp_alignment(s); 3986 } 3987 3988 /* For our purposes, bytes are always little-endian. */ 3989 endian = s->be_data; 3990 if (size == 0) { 3991 endian = MO_LE; 3992 } 3993 3994 total = a->rpt * a->selem * (a->q ? 16 : 8); 3995 tcg_rn = cpu_reg_sp(s, a->rn); 3996 3997 /* 3998 * Issue the MTE check vs the logical repeat count, before we 3999 * promote consecutive little-endian elements below. 4000 */ 4001 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, 4002 finalize_memop_asimd(s, size)); 4003 4004 /* 4005 * Consecutive little-endian elements from a single register 4006 * can be promoted to a larger little-endian operation. 4007 */ 4008 align = MO_ALIGN; 4009 if (a->selem == 1 && endian == MO_LE) { 4010 align = pow2_align(size); 4011 size = 3; 4012 } 4013 if (!s->align_mem) { 4014 align = 0; 4015 } 4016 mop = endian | size | align; 4017 4018 elements = (a->q ? 16 : 8) >> size; 4019 tcg_ebytes = tcg_constant_i64(1 << size); 4020 for (r = 0; r < a->rpt; r++) { 4021 int e; 4022 for (e = 0; e < elements; e++) { 4023 int xs; 4024 for (xs = 0; xs < a->selem; xs++) { 4025 int tt = (a->rt + r + xs) % 32; 4026 do_vec_st(s, tt, e, clean_addr, mop); 4027 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4028 } 4029 } 4030 } 4031 4032 if (a->p) { 4033 if (a->rm == 31) { 4034 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4035 } else { 4036 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 4037 } 4038 } 4039 return true; 4040 } 4041 4042 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) 4043 { 4044 int xs, total, rt; 4045 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 4046 MemOp mop; 4047 4048 if (!a->p && a->rm != 0) { 4049 return false; 4050 } 4051 if (!fp_access_check(s)) { 4052 return true; 4053 } 4054 4055 if (a->rn == 31) { 4056 gen_check_sp_alignment(s); 4057 } 4058 4059 total = a->selem << a->scale; 4060 tcg_rn = cpu_reg_sp(s, a->rn); 4061 4062 mop = finalize_memop_asimd(s, a->scale); 4063 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, 4064 total, mop); 4065 4066 tcg_ebytes = tcg_constant_i64(1 << a->scale); 4067 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 4068 do_vec_st(s, rt, a->index, clean_addr, mop); 4069 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4070 } 4071 4072 if (a->p) { 4073 if (a->rm == 31) { 4074 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4075 } else { 4076 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 4077 } 4078 } 4079 return true; 4080 } 4081 4082 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) 4083 { 4084 int xs, total, rt; 4085 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 4086 MemOp mop; 4087 4088 if (!a->p && a->rm != 0) { 4089 return false; 4090 } 4091 if (!fp_access_check(s)) { 4092 return true; 4093 } 4094 4095 if (a->rn == 31) { 4096 gen_check_sp_alignment(s); 4097 } 4098 4099 total = a->selem << a->scale; 4100 tcg_rn = cpu_reg_sp(s, a->rn); 4101 4102 mop = finalize_memop_asimd(s, a->scale); 4103 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 4104 total, mop); 4105 4106 tcg_ebytes = tcg_constant_i64(1 << a->scale); 4107 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 4108 do_vec_ld(s, rt, a->index, clean_addr, mop); 4109 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4110 } 4111 4112 if (a->p) { 4113 if (a->rm == 31) { 4114 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4115 } else { 4116 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 4117 } 4118 } 4119 return true; 4120 } 4121 4122 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) 4123 { 4124 int xs, total, rt; 4125 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; 4126 MemOp mop; 4127 4128 if (!a->p && a->rm != 0) { 4129 return false; 4130 } 4131 if (!fp_access_check(s)) { 4132 return true; 4133 } 4134 4135 if (a->rn == 31) { 4136 gen_check_sp_alignment(s); 4137 } 4138 4139 total = a->selem << a->scale; 4140 tcg_rn = cpu_reg_sp(s, a->rn); 4141 4142 mop = finalize_memop_asimd(s, a->scale); 4143 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, 4144 total, mop); 4145 4146 tcg_ebytes = tcg_constant_i64(1 << a->scale); 4147 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { 4148 /* Load and replicate to all elements */ 4149 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 4150 4151 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); 4152 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), 4153 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); 4154 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); 4155 } 4156 4157 if (a->p) { 4158 if (a->rm == 31) { 4159 tcg_gen_addi_i64(tcg_rn, tcg_rn, total); 4160 } else { 4161 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); 4162 } 4163 } 4164 return true; 4165 } 4166 4167 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) 4168 { 4169 TCGv_i64 addr, clean_addr, tcg_rt; 4170 int size = 4 << s->dcz_blocksize; 4171 4172 if (!dc_isar_feature(aa64_mte, s)) { 4173 return false; 4174 } 4175 if (s->current_el == 0) { 4176 return false; 4177 } 4178 4179 if (a->rn == 31) { 4180 gen_check_sp_alignment(s); 4181 } 4182 4183 addr = read_cpu_reg_sp(s, a->rn, true); 4184 tcg_gen_addi_i64(addr, addr, a->imm); 4185 tcg_rt = cpu_reg(s, a->rt); 4186 4187 if (s->ata[0]) { 4188 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); 4189 } 4190 /* 4191 * The non-tags portion of STZGM is mostly like DC_ZVA, 4192 * except the alignment happens before the access. 4193 */ 4194 clean_addr = clean_data_tbi(s, addr); 4195 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4196 gen_helper_dc_zva(tcg_env, clean_addr); 4197 return true; 4198 } 4199 4200 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) 4201 { 4202 TCGv_i64 addr, clean_addr, tcg_rt; 4203 4204 if (!dc_isar_feature(aa64_mte, s)) { 4205 return false; 4206 } 4207 if (s->current_el == 0) { 4208 return false; 4209 } 4210 4211 if (a->rn == 31) { 4212 gen_check_sp_alignment(s); 4213 } 4214 4215 addr = read_cpu_reg_sp(s, a->rn, true); 4216 tcg_gen_addi_i64(addr, addr, a->imm); 4217 tcg_rt = cpu_reg(s, a->rt); 4218 4219 if (s->ata[0]) { 4220 gen_helper_stgm(tcg_env, addr, tcg_rt); 4221 } else { 4222 MMUAccessType acc = MMU_DATA_STORE; 4223 int size = 4 << s->gm_blocksize; 4224 4225 clean_addr = clean_data_tbi(s, addr); 4226 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4227 gen_probe_access(s, clean_addr, acc, size); 4228 } 4229 return true; 4230 } 4231 4232 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) 4233 { 4234 TCGv_i64 addr, clean_addr, tcg_rt; 4235 4236 if (!dc_isar_feature(aa64_mte, s)) { 4237 return false; 4238 } 4239 if (s->current_el == 0) { 4240 return false; 4241 } 4242 4243 if (a->rn == 31) { 4244 gen_check_sp_alignment(s); 4245 } 4246 4247 addr = read_cpu_reg_sp(s, a->rn, true); 4248 tcg_gen_addi_i64(addr, addr, a->imm); 4249 tcg_rt = cpu_reg(s, a->rt); 4250 4251 if (s->ata[0]) { 4252 gen_helper_ldgm(tcg_rt, tcg_env, addr); 4253 } else { 4254 MMUAccessType acc = MMU_DATA_LOAD; 4255 int size = 4 << s->gm_blocksize; 4256 4257 clean_addr = clean_data_tbi(s, addr); 4258 tcg_gen_andi_i64(clean_addr, clean_addr, -size); 4259 gen_probe_access(s, clean_addr, acc, size); 4260 /* The result tags are zeros. */ 4261 tcg_gen_movi_i64(tcg_rt, 0); 4262 } 4263 return true; 4264 } 4265 4266 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) 4267 { 4268 TCGv_i64 addr, clean_addr, tcg_rt; 4269 4270 if (!dc_isar_feature(aa64_mte_insn_reg, s)) { 4271 return false; 4272 } 4273 4274 if (a->rn == 31) { 4275 gen_check_sp_alignment(s); 4276 } 4277 4278 addr = read_cpu_reg_sp(s, a->rn, true); 4279 if (!a->p) { 4280 /* pre-index or signed offset */ 4281 tcg_gen_addi_i64(addr, addr, a->imm); 4282 } 4283 4284 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); 4285 tcg_rt = cpu_reg(s, a->rt); 4286 if (s->ata[0]) { 4287 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); 4288 } else { 4289 /* 4290 * Tag access disabled: we must check for aborts on the load 4291 * load from [rn+offset], and then insert a 0 tag into rt. 4292 */ 4293 clean_addr = clean_data_tbi(s, addr); 4294 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); 4295 gen_address_with_allocation_tag0(tcg_rt, tcg_rt); 4296 } 4297 4298 if (a->w) { 4299 /* pre-index or post-index */ 4300 if (a->p) { 4301 /* post-index */ 4302 tcg_gen_addi_i64(addr, addr, a->imm); 4303 } 4304 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4305 } 4306 return true; 4307 } 4308 4309 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) 4310 { 4311 TCGv_i64 addr, tcg_rt; 4312 4313 if (a->rn == 31) { 4314 gen_check_sp_alignment(s); 4315 } 4316 4317 addr = read_cpu_reg_sp(s, a->rn, true); 4318 if (!a->p) { 4319 /* pre-index or signed offset */ 4320 tcg_gen_addi_i64(addr, addr, a->imm); 4321 } 4322 tcg_rt = cpu_reg_sp(s, a->rt); 4323 if (!s->ata[0]) { 4324 /* 4325 * For STG and ST2G, we need to check alignment and probe memory. 4326 * TODO: For STZG and STZ2G, we could rely on the stores below, 4327 * at least for system mode; user-only won't enforce alignment. 4328 */ 4329 if (is_pair) { 4330 gen_helper_st2g_stub(tcg_env, addr); 4331 } else { 4332 gen_helper_stg_stub(tcg_env, addr); 4333 } 4334 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { 4335 if (is_pair) { 4336 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); 4337 } else { 4338 gen_helper_stg_parallel(tcg_env, addr, tcg_rt); 4339 } 4340 } else { 4341 if (is_pair) { 4342 gen_helper_st2g(tcg_env, addr, tcg_rt); 4343 } else { 4344 gen_helper_stg(tcg_env, addr, tcg_rt); 4345 } 4346 } 4347 4348 if (is_zero) { 4349 TCGv_i64 clean_addr = clean_data_tbi(s, addr); 4350 TCGv_i64 zero64 = tcg_constant_i64(0); 4351 TCGv_i128 zero128 = tcg_temp_new_i128(); 4352 int mem_index = get_mem_index(s); 4353 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); 4354 4355 tcg_gen_concat_i64_i128(zero128, zero64, zero64); 4356 4357 /* This is 1 or 2 atomic 16-byte operations. */ 4358 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4359 if (is_pair) { 4360 tcg_gen_addi_i64(clean_addr, clean_addr, 16); 4361 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); 4362 } 4363 } 4364 4365 if (a->w) { 4366 /* pre-index or post-index */ 4367 if (a->p) { 4368 /* post-index */ 4369 tcg_gen_addi_i64(addr, addr, a->imm); 4370 } 4371 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); 4372 } 4373 return true; 4374 } 4375 4376 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) 4377 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) 4378 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) 4379 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) 4380 4381 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); 4382 4383 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, 4384 bool is_setg, SetFn fn) 4385 { 4386 int memidx; 4387 uint32_t syndrome, desc = 0; 4388 4389 if (is_setg && !dc_isar_feature(aa64_mte, s)) { 4390 return false; 4391 } 4392 4393 /* 4394 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4395 * us to pull this check before the CheckMOPSEnabled() test 4396 * (which we do in the helper function) 4397 */ 4398 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4399 a->rd == 31 || a->rn == 31) { 4400 return false; 4401 } 4402 4403 memidx = get_a64_user_mem_index(s, a->unpriv); 4404 4405 /* 4406 * We pass option_a == true, matching our implementation; 4407 * we pass wrong_option == false: helper function may set that bit. 4408 */ 4409 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, 4410 is_epilogue, false, true, a->rd, a->rs, a->rn); 4411 4412 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { 4413 /* We may need to do MTE tag checking, so assemble the descriptor */ 4414 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); 4415 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); 4416 desc = FIELD_DP32(desc, MTEDESC, WRITE, true); 4417 /* SIZEM1 and ALIGN we leave 0 (byte write) */ 4418 } 4419 /* The helper function always needs the memidx even with MTE disabled */ 4420 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); 4421 4422 /* 4423 * The helper needs the register numbers, but since they're in 4424 * the syndrome anyway, we let it extract them from there rather 4425 * than passing in an extra three integer arguments. 4426 */ 4427 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); 4428 return true; 4429 } 4430 4431 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) 4432 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) 4433 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) 4434 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) 4435 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) 4436 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) 4437 4438 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); 4439 4440 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) 4441 { 4442 int rmemidx, wmemidx; 4443 uint32_t syndrome, rdesc = 0, wdesc = 0; 4444 bool wunpriv = extract32(a->options, 0, 1); 4445 bool runpriv = extract32(a->options, 1, 1); 4446 4447 /* 4448 * UNPREDICTABLE cases: we choose to UNDEF, which allows 4449 * us to pull this check before the CheckMOPSEnabled() test 4450 * (which we do in the helper function) 4451 */ 4452 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || 4453 a->rd == 31 || a->rs == 31 || a->rn == 31) { 4454 return false; 4455 } 4456 4457 rmemidx = get_a64_user_mem_index(s, runpriv); 4458 wmemidx = get_a64_user_mem_index(s, wunpriv); 4459 4460 /* 4461 * We pass option_a == true, matching our implementation; 4462 * we pass wrong_option == false: helper function may set that bit. 4463 */ 4464 syndrome = syn_mop(false, false, a->options, is_epilogue, 4465 false, true, a->rd, a->rs, a->rn); 4466 4467 /* If we need to do MTE tag checking, assemble the descriptors */ 4468 if (s->mte_active[runpriv]) { 4469 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); 4470 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); 4471 } 4472 if (s->mte_active[wunpriv]) { 4473 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); 4474 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); 4475 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); 4476 } 4477 /* The helper function needs these parts of the descriptor regardless */ 4478 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); 4479 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); 4480 4481 /* 4482 * The helper needs the register numbers, but since they're in 4483 * the syndrome anyway, we let it extract them from there rather 4484 * than passing in an extra three integer arguments. 4485 */ 4486 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), 4487 tcg_constant_i32(rdesc)); 4488 return true; 4489 } 4490 4491 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) 4492 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) 4493 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) 4494 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) 4495 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) 4496 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) 4497 4498 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); 4499 4500 static bool gen_rri(DisasContext *s, arg_rri_sf *a, 4501 bool rd_sp, bool rn_sp, ArithTwoOp *fn) 4502 { 4503 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); 4504 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); 4505 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); 4506 4507 fn(tcg_rd, tcg_rn, tcg_imm); 4508 if (!a->sf) { 4509 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4510 } 4511 return true; 4512 } 4513 4514 /* 4515 * PC-rel. addressing 4516 */ 4517 4518 static bool trans_ADR(DisasContext *s, arg_ri *a) 4519 { 4520 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); 4521 return true; 4522 } 4523 4524 static bool trans_ADRP(DisasContext *s, arg_ri *a) 4525 { 4526 int64_t offset = (int64_t)a->imm << 12; 4527 4528 /* The page offset is ok for CF_PCREL. */ 4529 offset -= s->pc_curr & 0xfff; 4530 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); 4531 return true; 4532 } 4533 4534 /* 4535 * Add/subtract (immediate) 4536 */ 4537 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) 4538 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) 4539 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) 4540 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) 4541 4542 /* 4543 * Add/subtract (immediate, with tags) 4544 */ 4545 4546 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, 4547 bool sub_op) 4548 { 4549 TCGv_i64 tcg_rn, tcg_rd; 4550 int imm; 4551 4552 imm = a->uimm6 << LOG2_TAG_GRANULE; 4553 if (sub_op) { 4554 imm = -imm; 4555 } 4556 4557 tcg_rn = cpu_reg_sp(s, a->rn); 4558 tcg_rd = cpu_reg_sp(s, a->rd); 4559 4560 if (s->ata[0]) { 4561 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, 4562 tcg_constant_i32(imm), 4563 tcg_constant_i32(a->uimm4)); 4564 } else { 4565 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); 4566 gen_address_with_allocation_tag0(tcg_rd, tcg_rd); 4567 } 4568 return true; 4569 } 4570 4571 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) 4572 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) 4573 4574 /* The input should be a value in the bottom e bits (with higher 4575 * bits zero); returns that value replicated into every element 4576 * of size e in a 64 bit integer. 4577 */ 4578 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) 4579 { 4580 assert(e != 0); 4581 while (e < 64) { 4582 mask |= mask << e; 4583 e *= 2; 4584 } 4585 return mask; 4586 } 4587 4588 /* 4589 * Logical (immediate) 4590 */ 4591 4592 /* 4593 * Simplified variant of pseudocode DecodeBitMasks() for the case where we 4594 * only require the wmask. Returns false if the imms/immr/immn are a reserved 4595 * value (ie should cause a guest UNDEF exception), and true if they are 4596 * valid, in which case the decoded bit pattern is written to result. 4597 */ 4598 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, 4599 unsigned int imms, unsigned int immr) 4600 { 4601 uint64_t mask; 4602 unsigned e, levels, s, r; 4603 int len; 4604 4605 assert(immn < 2 && imms < 64 && immr < 64); 4606 4607 /* The bit patterns we create here are 64 bit patterns which 4608 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or 4609 * 64 bits each. Each element contains the same value: a run 4610 * of between 1 and e-1 non-zero bits, rotated within the 4611 * element by between 0 and e-1 bits. 4612 * 4613 * The element size and run length are encoded into immn (1 bit) 4614 * and imms (6 bits) as follows: 4615 * 64 bit elements: immn = 1, imms = <length of run - 1> 4616 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> 4617 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> 4618 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> 4619 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> 4620 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> 4621 * Notice that immn = 0, imms = 11111x is the only combination 4622 * not covered by one of the above options; this is reserved. 4623 * Further, <length of run - 1> all-ones is a reserved pattern. 4624 * 4625 * In all cases the rotation is by immr % e (and immr is 6 bits). 4626 */ 4627 4628 /* First determine the element size */ 4629 len = 31 - clz32((immn << 6) | (~imms & 0x3f)); 4630 if (len < 1) { 4631 /* This is the immn == 0, imms == 0x11111x case */ 4632 return false; 4633 } 4634 e = 1 << len; 4635 4636 levels = e - 1; 4637 s = imms & levels; 4638 r = immr & levels; 4639 4640 if (s == levels) { 4641 /* <length of run - 1> mustn't be all-ones. */ 4642 return false; 4643 } 4644 4645 /* Create the value of one element: s+1 set bits rotated 4646 * by r within the element (which is e bits wide)... 4647 */ 4648 mask = MAKE_64BIT_MASK(0, s + 1); 4649 if (r) { 4650 mask = (mask >> r) | (mask << (e - r)); 4651 mask &= MAKE_64BIT_MASK(0, e); 4652 } 4653 /* ...then replicate the element over the whole 64 bit value */ 4654 mask = bitfield_replicate(mask, e); 4655 *result = mask; 4656 return true; 4657 } 4658 4659 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, 4660 void (*fn)(TCGv_i64, TCGv_i64, int64_t)) 4661 { 4662 TCGv_i64 tcg_rd, tcg_rn; 4663 uint64_t imm; 4664 4665 /* Some immediate field values are reserved. */ 4666 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), 4667 extract32(a->dbm, 0, 6), 4668 extract32(a->dbm, 6, 6))) { 4669 return false; 4670 } 4671 if (!a->sf) { 4672 imm &= 0xffffffffull; 4673 } 4674 4675 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); 4676 tcg_rn = cpu_reg(s, a->rn); 4677 4678 fn(tcg_rd, tcg_rn, imm); 4679 if (set_cc) { 4680 gen_logic_CC(a->sf, tcg_rd); 4681 } 4682 if (!a->sf) { 4683 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4684 } 4685 return true; 4686 } 4687 4688 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) 4689 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) 4690 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) 4691 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) 4692 4693 /* 4694 * Move wide (immediate) 4695 */ 4696 4697 static bool trans_MOVZ(DisasContext *s, arg_movw *a) 4698 { 4699 int pos = a->hw << 4; 4700 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); 4701 return true; 4702 } 4703 4704 static bool trans_MOVN(DisasContext *s, arg_movw *a) 4705 { 4706 int pos = a->hw << 4; 4707 uint64_t imm = a->imm; 4708 4709 imm = ~(imm << pos); 4710 if (!a->sf) { 4711 imm = (uint32_t)imm; 4712 } 4713 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); 4714 return true; 4715 } 4716 4717 static bool trans_MOVK(DisasContext *s, arg_movw *a) 4718 { 4719 int pos = a->hw << 4; 4720 TCGv_i64 tcg_rd, tcg_im; 4721 4722 tcg_rd = cpu_reg(s, a->rd); 4723 tcg_im = tcg_constant_i64(a->imm); 4724 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); 4725 if (!a->sf) { 4726 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4727 } 4728 return true; 4729 } 4730 4731 /* 4732 * Bitfield 4733 */ 4734 4735 static bool trans_SBFM(DisasContext *s, arg_SBFM *a) 4736 { 4737 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4738 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4739 unsigned int bitsize = a->sf ? 64 : 32; 4740 unsigned int ri = a->immr; 4741 unsigned int si = a->imms; 4742 unsigned int pos, len; 4743 4744 if (si >= ri) { 4745 /* Wd<s-r:0> = Wn<s:r> */ 4746 len = (si - ri) + 1; 4747 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); 4748 if (!a->sf) { 4749 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4750 } 4751 } else { 4752 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4753 len = si + 1; 4754 pos = (bitsize - ri) & (bitsize - 1); 4755 4756 if (len < ri) { 4757 /* 4758 * Sign extend the destination field from len to fill the 4759 * balance of the word. Let the deposit below insert all 4760 * of those sign bits. 4761 */ 4762 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); 4763 len = ri; 4764 } 4765 4766 /* 4767 * We start with zero, and we haven't modified any bits outside 4768 * bitsize, therefore no final zero-extension is unneeded for !sf. 4769 */ 4770 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4771 } 4772 return true; 4773 } 4774 4775 static bool trans_UBFM(DisasContext *s, arg_UBFM *a) 4776 { 4777 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4778 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4779 unsigned int bitsize = a->sf ? 64 : 32; 4780 unsigned int ri = a->immr; 4781 unsigned int si = a->imms; 4782 unsigned int pos, len; 4783 4784 tcg_rd = cpu_reg(s, a->rd); 4785 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4786 4787 if (si >= ri) { 4788 /* Wd<s-r:0> = Wn<s:r> */ 4789 len = (si - ri) + 1; 4790 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); 4791 } else { 4792 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4793 len = si + 1; 4794 pos = (bitsize - ri) & (bitsize - 1); 4795 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); 4796 } 4797 return true; 4798 } 4799 4800 static bool trans_BFM(DisasContext *s, arg_BFM *a) 4801 { 4802 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 4803 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4804 unsigned int bitsize = a->sf ? 64 : 32; 4805 unsigned int ri = a->immr; 4806 unsigned int si = a->imms; 4807 unsigned int pos, len; 4808 4809 tcg_rd = cpu_reg(s, a->rd); 4810 tcg_tmp = read_cpu_reg(s, a->rn, 1); 4811 4812 if (si >= ri) { 4813 /* Wd<s-r:0> = Wn<s:r> */ 4814 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); 4815 len = (si - ri) + 1; 4816 pos = 0; 4817 } else { 4818 /* Wd<32+s-r,32-r> = Wn<s:0> */ 4819 len = si + 1; 4820 pos = (bitsize - ri) & (bitsize - 1); 4821 } 4822 4823 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); 4824 if (!a->sf) { 4825 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 4826 } 4827 return true; 4828 } 4829 4830 static bool trans_EXTR(DisasContext *s, arg_extract *a) 4831 { 4832 TCGv_i64 tcg_rd, tcg_rm, tcg_rn; 4833 4834 tcg_rd = cpu_reg(s, a->rd); 4835 4836 if (unlikely(a->imm == 0)) { 4837 /* 4838 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, 4839 * so an extract from bit 0 is a special case. 4840 */ 4841 if (a->sf) { 4842 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); 4843 } else { 4844 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); 4845 } 4846 } else { 4847 tcg_rm = cpu_reg(s, a->rm); 4848 tcg_rn = cpu_reg(s, a->rn); 4849 4850 if (a->sf) { 4851 /* Specialization to ROR happens in EXTRACT2. */ 4852 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); 4853 } else { 4854 TCGv_i32 t0 = tcg_temp_new_i32(); 4855 4856 tcg_gen_extrl_i64_i32(t0, tcg_rm); 4857 if (a->rm == a->rn) { 4858 tcg_gen_rotri_i32(t0, t0, a->imm); 4859 } else { 4860 TCGv_i32 t1 = tcg_temp_new_i32(); 4861 tcg_gen_extrl_i64_i32(t1, tcg_rn); 4862 tcg_gen_extract2_i32(t0, t0, t1, a->imm); 4863 } 4864 tcg_gen_extu_i32_i64(tcg_rd, t0); 4865 } 4866 } 4867 return true; 4868 } 4869 4870 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a) 4871 { 4872 if (fp_access_check(s)) { 4873 int len = (a->len + 1) * 16; 4874 4875 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd), 4876 vec_full_reg_offset(s, a->rm), tcg_env, 4877 a->q ? 16 : 8, vec_full_reg_size(s), 4878 (len << 6) | (a->tbx << 5) | a->rn, 4879 gen_helper_simd_tblx); 4880 } 4881 return true; 4882 } 4883 4884 typedef int simd_permute_idx_fn(int i, int part, int elements); 4885 4886 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a, 4887 simd_permute_idx_fn *fn, int part) 4888 { 4889 MemOp esz = a->esz; 4890 int datasize = a->q ? 16 : 8; 4891 int elements = datasize >> esz; 4892 TCGv_i64 tcg_res[2], tcg_ele; 4893 4894 if (esz == MO_64 && !a->q) { 4895 return false; 4896 } 4897 if (!fp_access_check(s)) { 4898 return true; 4899 } 4900 4901 tcg_res[0] = tcg_temp_new_i64(); 4902 tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL; 4903 tcg_ele = tcg_temp_new_i64(); 4904 4905 for (int i = 0; i < elements; i++) { 4906 int o, w, idx; 4907 4908 idx = fn(i, part, elements); 4909 read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn), 4910 idx & (elements - 1), esz); 4911 4912 w = (i << (esz + 3)) / 64; 4913 o = (i << (esz + 3)) % 64; 4914 if (o == 0) { 4915 tcg_gen_mov_i64(tcg_res[w], tcg_ele); 4916 } else { 4917 tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz); 4918 } 4919 } 4920 4921 for (int i = a->q; i >= 0; --i) { 4922 write_vec_element(s, tcg_res[i], a->rd, i, MO_64); 4923 } 4924 clear_vec_high(s, a->q, a->rd); 4925 return true; 4926 } 4927 4928 static int permute_load_uzp(int i, int part, int elements) 4929 { 4930 return 2 * i + part; 4931 } 4932 4933 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0) 4934 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1) 4935 4936 static int permute_load_trn(int i, int part, int elements) 4937 { 4938 return (i & 1) * elements + (i & ~1) + part; 4939 } 4940 4941 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0) 4942 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1) 4943 4944 static int permute_load_zip(int i, int part, int elements) 4945 { 4946 return (i & 1) * elements + ((part * elements + i) >> 1); 4947 } 4948 4949 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0) 4950 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1) 4951 4952 /* 4953 * Cryptographic AES, SHA, SHA512 4954 */ 4955 4956 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) 4957 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) 4958 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) 4959 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) 4960 4961 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) 4962 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) 4963 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) 4964 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) 4965 4966 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) 4967 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) 4968 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) 4969 4970 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) 4971 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) 4972 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) 4973 4974 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) 4975 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) 4976 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) 4977 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) 4978 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) 4979 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) 4980 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) 4981 4982 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) 4983 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) 4984 4985 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) 4986 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) 4987 4988 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) 4989 { 4990 if (!dc_isar_feature(aa64_sm3, s)) { 4991 return false; 4992 } 4993 if (fp_access_check(s)) { 4994 TCGv_i32 tcg_op1 = tcg_temp_new_i32(); 4995 TCGv_i32 tcg_op2 = tcg_temp_new_i32(); 4996 TCGv_i32 tcg_op3 = tcg_temp_new_i32(); 4997 TCGv_i32 tcg_res = tcg_temp_new_i32(); 4998 4999 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); 5000 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); 5001 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); 5002 5003 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); 5004 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); 5005 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); 5006 tcg_gen_rotri_i32(tcg_res, tcg_res, 25); 5007 5008 /* Clear the whole register first, then store bits [127:96]. */ 5009 clear_vec(s, a->rd); 5010 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); 5011 } 5012 return true; 5013 } 5014 5015 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) 5016 { 5017 if (fp_access_check(s)) { 5018 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); 5019 } 5020 return true; 5021 } 5022 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) 5023 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) 5024 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) 5025 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) 5026 5027 static bool trans_XAR(DisasContext *s, arg_XAR *a) 5028 { 5029 if (!dc_isar_feature(aa64_sha3, s)) { 5030 return false; 5031 } 5032 if (fp_access_check(s)) { 5033 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), 5034 vec_full_reg_offset(s, a->rn), 5035 vec_full_reg_offset(s, a->rm), a->imm, 16, 5036 vec_full_reg_size(s)); 5037 } 5038 return true; 5039 } 5040 5041 /* 5042 * Advanced SIMD copy 5043 */ 5044 5045 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) 5046 { 5047 unsigned esz = ctz32(imm); 5048 if (esz <= MO_64) { 5049 *pesz = esz; 5050 *pidx = imm >> (esz + 1); 5051 return true; 5052 } 5053 return false; 5054 } 5055 5056 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) 5057 { 5058 MemOp esz; 5059 unsigned idx; 5060 5061 if (!decode_esz_idx(a->imm, &esz, &idx)) { 5062 return false; 5063 } 5064 if (fp_access_check(s)) { 5065 /* 5066 * This instruction just extracts the specified element and 5067 * zero-extends it into the bottom of the destination register. 5068 */ 5069 TCGv_i64 tmp = tcg_temp_new_i64(); 5070 read_vec_element(s, tmp, a->rn, idx, esz); 5071 write_fp_dreg(s, a->rd, tmp); 5072 } 5073 return true; 5074 } 5075 5076 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) 5077 { 5078 MemOp esz; 5079 unsigned idx; 5080 5081 if (!decode_esz_idx(a->imm, &esz, &idx)) { 5082 return false; 5083 } 5084 if (esz == MO_64 && !a->q) { 5085 return false; 5086 } 5087 if (fp_access_check(s)) { 5088 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), 5089 vec_reg_offset(s, a->rn, idx, esz), 5090 a->q ? 16 : 8, vec_full_reg_size(s)); 5091 } 5092 return true; 5093 } 5094 5095 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) 5096 { 5097 MemOp esz; 5098 unsigned idx; 5099 5100 if (!decode_esz_idx(a->imm, &esz, &idx)) { 5101 return false; 5102 } 5103 if (esz == MO_64 && !a->q) { 5104 return false; 5105 } 5106 if (fp_access_check(s)) { 5107 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), 5108 a->q ? 16 : 8, vec_full_reg_size(s), 5109 cpu_reg(s, a->rn)); 5110 } 5111 return true; 5112 } 5113 5114 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) 5115 { 5116 MemOp esz; 5117 unsigned idx; 5118 5119 if (!decode_esz_idx(a->imm, &esz, &idx)) { 5120 return false; 5121 } 5122 if (is_signed) { 5123 if (esz == MO_64 || (esz == MO_32 && !a->q)) { 5124 return false; 5125 } 5126 } else { 5127 if (esz == MO_64 ? !a->q : a->q) { 5128 return false; 5129 } 5130 } 5131 if (fp_access_check(s)) { 5132 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 5133 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); 5134 if (is_signed && !a->q) { 5135 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 5136 } 5137 } 5138 return true; 5139 } 5140 5141 TRANS(SMOV, do_smov_umov, a, MO_SIGN) 5142 TRANS(UMOV, do_smov_umov, a, 0) 5143 5144 static bool trans_INS_general(DisasContext *s, arg_INS_general *a) 5145 { 5146 MemOp esz; 5147 unsigned idx; 5148 5149 if (!decode_esz_idx(a->imm, &esz, &idx)) { 5150 return false; 5151 } 5152 if (fp_access_check(s)) { 5153 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); 5154 clear_vec_high(s, true, a->rd); 5155 } 5156 return true; 5157 } 5158 5159 static bool trans_INS_element(DisasContext *s, arg_INS_element *a) 5160 { 5161 MemOp esz; 5162 unsigned didx, sidx; 5163 5164 if (!decode_esz_idx(a->di, &esz, &didx)) { 5165 return false; 5166 } 5167 sidx = a->si >> esz; 5168 if (fp_access_check(s)) { 5169 TCGv_i64 tmp = tcg_temp_new_i64(); 5170 5171 read_vec_element(s, tmp, a->rn, sidx, esz); 5172 write_vec_element(s, tmp, a->rd, didx, esz); 5173 5174 /* INS is considered a 128-bit write for SVE. */ 5175 clear_vec_high(s, true, a->rd); 5176 } 5177 return true; 5178 } 5179 5180 /* 5181 * Advanced SIMD three same 5182 */ 5183 5184 typedef struct FPScalar { 5185 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 5186 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); 5187 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); 5188 } FPScalar; 5189 5190 static bool do_fp3_scalar_with_fpsttype(DisasContext *s, arg_rrr_e *a, 5191 const FPScalar *f, int mergereg, 5192 ARMFPStatusFlavour fpsttype) 5193 { 5194 switch (a->esz) { 5195 case MO_64: 5196 if (fp_access_check(s)) { 5197 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5198 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5199 f->gen_d(t0, t0, t1, fpstatus_ptr(fpsttype)); 5200 write_fp_dreg_merging(s, a->rd, mergereg, t0); 5201 } 5202 break; 5203 case MO_32: 5204 if (fp_access_check(s)) { 5205 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5206 TCGv_i32 t1 = read_fp_sreg(s, a->rm); 5207 f->gen_s(t0, t0, t1, fpstatus_ptr(fpsttype)); 5208 write_fp_sreg_merging(s, a->rd, mergereg, t0); 5209 } 5210 break; 5211 case MO_16: 5212 if (!dc_isar_feature(aa64_fp16, s)) { 5213 return false; 5214 } 5215 if (fp_access_check(s)) { 5216 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5217 TCGv_i32 t1 = read_fp_hreg(s, a->rm); 5218 f->gen_h(t0, t0, t1, fpstatus_ptr(fpsttype)); 5219 write_fp_hreg_merging(s, a->rd, mergereg, t0); 5220 } 5221 break; 5222 default: 5223 return false; 5224 } 5225 return true; 5226 } 5227 5228 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f, 5229 int mergereg) 5230 { 5231 return do_fp3_scalar_with_fpsttype(s, a, f, mergereg, 5232 a->esz == MO_16 ? 5233 FPST_A64_F16 : FPST_A64); 5234 } 5235 5236 static bool do_fp3_scalar_ah_2fn(DisasContext *s, arg_rrr_e *a, 5237 const FPScalar *fnormal, const FPScalar *fah, 5238 int mergereg) 5239 { 5240 return do_fp3_scalar_with_fpsttype(s, a, s->fpcr_ah ? fah : fnormal, 5241 mergereg, select_ah_fpst(s, a->esz)); 5242 } 5243 5244 /* Some insns need to call different helpers when FPCR.AH == 1 */ 5245 static bool do_fp3_scalar_2fn(DisasContext *s, arg_rrr_e *a, 5246 const FPScalar *fnormal, 5247 const FPScalar *fah, 5248 int mergereg) 5249 { 5250 return do_fp3_scalar(s, a, s->fpcr_ah ? fah : fnormal, mergereg); 5251 } 5252 5253 static const FPScalar f_scalar_fadd = { 5254 gen_helper_vfp_addh, 5255 gen_helper_vfp_adds, 5256 gen_helper_vfp_addd, 5257 }; 5258 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd, a->rn) 5259 5260 static const FPScalar f_scalar_fsub = { 5261 gen_helper_vfp_subh, 5262 gen_helper_vfp_subs, 5263 gen_helper_vfp_subd, 5264 }; 5265 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub, a->rn) 5266 5267 static const FPScalar f_scalar_fdiv = { 5268 gen_helper_vfp_divh, 5269 gen_helper_vfp_divs, 5270 gen_helper_vfp_divd, 5271 }; 5272 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv, a->rn) 5273 5274 static const FPScalar f_scalar_fmul = { 5275 gen_helper_vfp_mulh, 5276 gen_helper_vfp_muls, 5277 gen_helper_vfp_muld, 5278 }; 5279 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul, a->rn) 5280 5281 static const FPScalar f_scalar_fmax = { 5282 gen_helper_vfp_maxh, 5283 gen_helper_vfp_maxs, 5284 gen_helper_vfp_maxd, 5285 }; 5286 static const FPScalar f_scalar_fmax_ah = { 5287 gen_helper_vfp_ah_maxh, 5288 gen_helper_vfp_ah_maxs, 5289 gen_helper_vfp_ah_maxd, 5290 }; 5291 TRANS(FMAX_s, do_fp3_scalar_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah, a->rn) 5292 5293 static const FPScalar f_scalar_fmin = { 5294 gen_helper_vfp_minh, 5295 gen_helper_vfp_mins, 5296 gen_helper_vfp_mind, 5297 }; 5298 static const FPScalar f_scalar_fmin_ah = { 5299 gen_helper_vfp_ah_minh, 5300 gen_helper_vfp_ah_mins, 5301 gen_helper_vfp_ah_mind, 5302 }; 5303 TRANS(FMIN_s, do_fp3_scalar_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah, a->rn) 5304 5305 static const FPScalar f_scalar_fmaxnm = { 5306 gen_helper_vfp_maxnumh, 5307 gen_helper_vfp_maxnums, 5308 gen_helper_vfp_maxnumd, 5309 }; 5310 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm, a->rn) 5311 5312 static const FPScalar f_scalar_fminnm = { 5313 gen_helper_vfp_minnumh, 5314 gen_helper_vfp_minnums, 5315 gen_helper_vfp_minnumd, 5316 }; 5317 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm, a->rn) 5318 5319 static const FPScalar f_scalar_fmulx = { 5320 gen_helper_advsimd_mulxh, 5321 gen_helper_vfp_mulxs, 5322 gen_helper_vfp_mulxd, 5323 }; 5324 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx, a->rn) 5325 5326 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5327 { 5328 gen_helper_vfp_mulh(d, n, m, s); 5329 gen_vfp_negh(d, d); 5330 } 5331 5332 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5333 { 5334 gen_helper_vfp_muls(d, n, m, s); 5335 gen_vfp_negs(d, d); 5336 } 5337 5338 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5339 { 5340 gen_helper_vfp_muld(d, n, m, s); 5341 gen_vfp_negd(d, d); 5342 } 5343 5344 static void gen_fnmul_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5345 { 5346 gen_helper_vfp_mulh(d, n, m, s); 5347 gen_vfp_ah_negh(d, d); 5348 } 5349 5350 static void gen_fnmul_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5351 { 5352 gen_helper_vfp_muls(d, n, m, s); 5353 gen_vfp_ah_negs(d, d); 5354 } 5355 5356 static void gen_fnmul_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5357 { 5358 gen_helper_vfp_muld(d, n, m, s); 5359 gen_vfp_ah_negd(d, d); 5360 } 5361 5362 static const FPScalar f_scalar_fnmul = { 5363 gen_fnmul_h, 5364 gen_fnmul_s, 5365 gen_fnmul_d, 5366 }; 5367 static const FPScalar f_scalar_ah_fnmul = { 5368 gen_fnmul_ah_h, 5369 gen_fnmul_ah_s, 5370 gen_fnmul_ah_d, 5371 }; 5372 TRANS(FNMUL_s, do_fp3_scalar_2fn, a, &f_scalar_fnmul, &f_scalar_ah_fnmul, a->rn) 5373 5374 static const FPScalar f_scalar_fcmeq = { 5375 gen_helper_advsimd_ceq_f16, 5376 gen_helper_neon_ceq_f32, 5377 gen_helper_neon_ceq_f64, 5378 }; 5379 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq, a->rm) 5380 5381 static const FPScalar f_scalar_fcmge = { 5382 gen_helper_advsimd_cge_f16, 5383 gen_helper_neon_cge_f32, 5384 gen_helper_neon_cge_f64, 5385 }; 5386 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge, a->rm) 5387 5388 static const FPScalar f_scalar_fcmgt = { 5389 gen_helper_advsimd_cgt_f16, 5390 gen_helper_neon_cgt_f32, 5391 gen_helper_neon_cgt_f64, 5392 }; 5393 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt, a->rm) 5394 5395 static const FPScalar f_scalar_facge = { 5396 gen_helper_advsimd_acge_f16, 5397 gen_helper_neon_acge_f32, 5398 gen_helper_neon_acge_f64, 5399 }; 5400 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge, a->rm) 5401 5402 static const FPScalar f_scalar_facgt = { 5403 gen_helper_advsimd_acgt_f16, 5404 gen_helper_neon_acgt_f32, 5405 gen_helper_neon_acgt_f64, 5406 }; 5407 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt, a->rm) 5408 5409 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5410 { 5411 gen_helper_vfp_subh(d, n, m, s); 5412 gen_vfp_absh(d, d); 5413 } 5414 5415 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5416 { 5417 gen_helper_vfp_subs(d, n, m, s); 5418 gen_vfp_abss(d, d); 5419 } 5420 5421 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5422 { 5423 gen_helper_vfp_subd(d, n, m, s); 5424 gen_vfp_absd(d, d); 5425 } 5426 5427 static void gen_fabd_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5428 { 5429 gen_helper_vfp_subh(d, n, m, s); 5430 gen_vfp_ah_absh(d, d); 5431 } 5432 5433 static void gen_fabd_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) 5434 { 5435 gen_helper_vfp_subs(d, n, m, s); 5436 gen_vfp_ah_abss(d, d); 5437 } 5438 5439 static void gen_fabd_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) 5440 { 5441 gen_helper_vfp_subd(d, n, m, s); 5442 gen_vfp_ah_absd(d, d); 5443 } 5444 5445 static const FPScalar f_scalar_fabd = { 5446 gen_fabd_h, 5447 gen_fabd_s, 5448 gen_fabd_d, 5449 }; 5450 static const FPScalar f_scalar_ah_fabd = { 5451 gen_fabd_ah_h, 5452 gen_fabd_ah_s, 5453 gen_fabd_ah_d, 5454 }; 5455 TRANS(FABD_s, do_fp3_scalar_2fn, a, &f_scalar_fabd, &f_scalar_ah_fabd, a->rn) 5456 5457 static const FPScalar f_scalar_frecps = { 5458 gen_helper_recpsf_f16, 5459 gen_helper_recpsf_f32, 5460 gen_helper_recpsf_f64, 5461 }; 5462 static const FPScalar f_scalar_ah_frecps = { 5463 gen_helper_recpsf_ah_f16, 5464 gen_helper_recpsf_ah_f32, 5465 gen_helper_recpsf_ah_f64, 5466 }; 5467 TRANS(FRECPS_s, do_fp3_scalar_ah_2fn, a, 5468 &f_scalar_frecps, &f_scalar_ah_frecps, a->rn) 5469 5470 static const FPScalar f_scalar_frsqrts = { 5471 gen_helper_rsqrtsf_f16, 5472 gen_helper_rsqrtsf_f32, 5473 gen_helper_rsqrtsf_f64, 5474 }; 5475 static const FPScalar f_scalar_ah_frsqrts = { 5476 gen_helper_rsqrtsf_ah_f16, 5477 gen_helper_rsqrtsf_ah_f32, 5478 gen_helper_rsqrtsf_ah_f64, 5479 }; 5480 TRANS(FRSQRTS_s, do_fp3_scalar_ah_2fn, a, 5481 &f_scalar_frsqrts, &f_scalar_ah_frsqrts, a->rn) 5482 5483 static bool do_fcmp0_s(DisasContext *s, arg_rr_e *a, 5484 const FPScalar *f, bool swap) 5485 { 5486 switch (a->esz) { 5487 case MO_64: 5488 if (fp_access_check(s)) { 5489 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5490 TCGv_i64 t1 = tcg_constant_i64(0); 5491 if (swap) { 5492 f->gen_d(t0, t1, t0, fpstatus_ptr(FPST_A64)); 5493 } else { 5494 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64)); 5495 } 5496 write_fp_dreg(s, a->rd, t0); 5497 } 5498 break; 5499 case MO_32: 5500 if (fp_access_check(s)) { 5501 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 5502 TCGv_i32 t1 = tcg_constant_i32(0); 5503 if (swap) { 5504 f->gen_s(t0, t1, t0, fpstatus_ptr(FPST_A64)); 5505 } else { 5506 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64)); 5507 } 5508 write_fp_sreg(s, a->rd, t0); 5509 } 5510 break; 5511 case MO_16: 5512 if (!dc_isar_feature(aa64_fp16, s)) { 5513 return false; 5514 } 5515 if (fp_access_check(s)) { 5516 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 5517 TCGv_i32 t1 = tcg_constant_i32(0); 5518 if (swap) { 5519 f->gen_h(t0, t1, t0, fpstatus_ptr(FPST_A64_F16)); 5520 } else { 5521 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16)); 5522 } 5523 write_fp_sreg(s, a->rd, t0); 5524 } 5525 break; 5526 default: 5527 return false; 5528 } 5529 return true; 5530 } 5531 5532 TRANS(FCMEQ0_s, do_fcmp0_s, a, &f_scalar_fcmeq, false) 5533 TRANS(FCMGT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, false) 5534 TRANS(FCMGE0_s, do_fcmp0_s, a, &f_scalar_fcmge, false) 5535 TRANS(FCMLT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, true) 5536 TRANS(FCMLE0_s, do_fcmp0_s, a, &f_scalar_fcmge, true) 5537 5538 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, 5539 MemOp sgn_n, MemOp sgn_m, 5540 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), 5541 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 5542 { 5543 TCGv_i64 t0, t1, t2, qc; 5544 MemOp esz = a->esz; 5545 5546 if (!fp_access_check(s)) { 5547 return true; 5548 } 5549 5550 t0 = tcg_temp_new_i64(); 5551 t1 = tcg_temp_new_i64(); 5552 t2 = tcg_temp_new_i64(); 5553 qc = tcg_temp_new_i64(); 5554 read_vec_element(s, t1, a->rn, 0, esz | sgn_n); 5555 read_vec_element(s, t2, a->rm, 0, esz | sgn_m); 5556 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5557 5558 if (esz == MO_64) { 5559 gen_d(t0, qc, t1, t2); 5560 } else { 5561 gen_bhs(t0, qc, t1, t2, esz); 5562 tcg_gen_ext_i64(t0, t0, esz); 5563 } 5564 5565 write_fp_dreg(s, a->rd, t0); 5566 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); 5567 return true; 5568 } 5569 5570 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) 5571 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) 5572 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) 5573 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) 5574 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) 5575 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) 5576 5577 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, 5578 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) 5579 { 5580 if (fp_access_check(s)) { 5581 TCGv_i64 t0 = tcg_temp_new_i64(); 5582 TCGv_i64 t1 = tcg_temp_new_i64(); 5583 5584 read_vec_element(s, t0, a->rn, 0, MO_64); 5585 read_vec_element(s, t1, a->rm, 0, MO_64); 5586 fn(t0, t0, t1); 5587 write_fp_dreg(s, a->rd, t0); 5588 } 5589 return true; 5590 } 5591 5592 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) 5593 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) 5594 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) 5595 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) 5596 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) 5597 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) 5598 5599 typedef struct ENVScalar2 { 5600 NeonGenTwoOpEnvFn *gen_bhs[3]; 5601 NeonGenTwo64OpEnvFn *gen_d; 5602 } ENVScalar2; 5603 5604 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) 5605 { 5606 if (!fp_access_check(s)) { 5607 return true; 5608 } 5609 if (a->esz == MO_64) { 5610 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5611 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5612 f->gen_d(t0, tcg_env, t0, t1); 5613 write_fp_dreg(s, a->rd, t0); 5614 } else { 5615 TCGv_i32 t0 = tcg_temp_new_i32(); 5616 TCGv_i32 t1 = tcg_temp_new_i32(); 5617 5618 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5619 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5620 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 5621 write_fp_sreg(s, a->rd, t0); 5622 } 5623 return true; 5624 } 5625 5626 static const ENVScalar2 f_scalar_sqshl = { 5627 { gen_helper_neon_qshl_s8, 5628 gen_helper_neon_qshl_s16, 5629 gen_helper_neon_qshl_s32 }, 5630 gen_helper_neon_qshl_s64, 5631 }; 5632 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) 5633 5634 static const ENVScalar2 f_scalar_uqshl = { 5635 { gen_helper_neon_qshl_u8, 5636 gen_helper_neon_qshl_u16, 5637 gen_helper_neon_qshl_u32 }, 5638 gen_helper_neon_qshl_u64, 5639 }; 5640 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) 5641 5642 static const ENVScalar2 f_scalar_sqrshl = { 5643 { gen_helper_neon_qrshl_s8, 5644 gen_helper_neon_qrshl_s16, 5645 gen_helper_neon_qrshl_s32 }, 5646 gen_helper_neon_qrshl_s64, 5647 }; 5648 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) 5649 5650 static const ENVScalar2 f_scalar_uqrshl = { 5651 { gen_helper_neon_qrshl_u8, 5652 gen_helper_neon_qrshl_u16, 5653 gen_helper_neon_qrshl_u32 }, 5654 gen_helper_neon_qrshl_u64, 5655 }; 5656 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) 5657 5658 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, 5659 const ENVScalar2 *f) 5660 { 5661 if (a->esz == MO_16 || a->esz == MO_32) { 5662 return do_env_scalar2(s, a, f); 5663 } 5664 return false; 5665 } 5666 5667 static const ENVScalar2 f_scalar_sqdmulh = { 5668 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } 5669 }; 5670 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) 5671 5672 static const ENVScalar2 f_scalar_sqrdmulh = { 5673 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } 5674 }; 5675 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) 5676 5677 typedef struct ENVScalar3 { 5678 NeonGenThreeOpEnvFn *gen_hs[2]; 5679 } ENVScalar3; 5680 5681 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a, 5682 const ENVScalar3 *f) 5683 { 5684 TCGv_i32 t0, t1, t2; 5685 5686 if (a->esz != MO_16 && a->esz != MO_32) { 5687 return false; 5688 } 5689 if (!fp_access_check(s)) { 5690 return true; 5691 } 5692 5693 t0 = tcg_temp_new_i32(); 5694 t1 = tcg_temp_new_i32(); 5695 t2 = tcg_temp_new_i32(); 5696 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 5697 read_vec_element_i32(s, t1, a->rm, 0, a->esz); 5698 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 5699 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 5700 write_fp_sreg(s, a->rd, t0); 5701 return true; 5702 } 5703 5704 static const ENVScalar3 f_scalar_sqrdmlah = { 5705 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 } 5706 }; 5707 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah) 5708 5709 static const ENVScalar3 f_scalar_sqrdmlsh = { 5710 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 } 5711 }; 5712 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh) 5713 5714 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) 5715 { 5716 if (fp_access_check(s)) { 5717 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 5718 TCGv_i64 t1 = read_fp_dreg(s, a->rm); 5719 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 5720 write_fp_dreg(s, a->rd, t0); 5721 } 5722 return true; 5723 } 5724 5725 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) 5726 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) 5727 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) 5728 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) 5729 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) 5730 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) 5731 5732 static bool do_fp3_vector_with_fpsttype(DisasContext *s, arg_qrrr_e *a, 5733 int data, 5734 gen_helper_gvec_3_ptr * const fns[3], 5735 ARMFPStatusFlavour fpsttype) 5736 { 5737 MemOp esz = a->esz; 5738 int check = fp_access_check_vector_hsd(s, a->q, esz); 5739 5740 if (check <= 0) { 5741 return check == 0; 5742 } 5743 5744 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, fpsttype, 5745 data, fns[esz - 1]); 5746 return true; 5747 } 5748 5749 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data, 5750 gen_helper_gvec_3_ptr * const fns[3]) 5751 { 5752 return do_fp3_vector_with_fpsttype(s, a, data, fns, 5753 a->esz == MO_16 ? 5754 FPST_A64_F16 : FPST_A64); 5755 } 5756 5757 static bool do_fp3_vector_2fn(DisasContext *s, arg_qrrr_e *a, int data, 5758 gen_helper_gvec_3_ptr * const fnormal[3], 5759 gen_helper_gvec_3_ptr * const fah[3]) 5760 { 5761 return do_fp3_vector(s, a, data, s->fpcr_ah ? fah : fnormal); 5762 } 5763 5764 static bool do_fp3_vector_ah_2fn(DisasContext *s, arg_qrrr_e *a, int data, 5765 gen_helper_gvec_3_ptr * const fnormal[3], 5766 gen_helper_gvec_3_ptr * const fah[3]) 5767 { 5768 return do_fp3_vector_with_fpsttype(s, a, data, s->fpcr_ah ? fah : fnormal, 5769 select_ah_fpst(s, a->esz)); 5770 } 5771 5772 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { 5773 gen_helper_gvec_fadd_h, 5774 gen_helper_gvec_fadd_s, 5775 gen_helper_gvec_fadd_d, 5776 }; 5777 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd) 5778 5779 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { 5780 gen_helper_gvec_fsub_h, 5781 gen_helper_gvec_fsub_s, 5782 gen_helper_gvec_fsub_d, 5783 }; 5784 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub) 5785 5786 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { 5787 gen_helper_gvec_fdiv_h, 5788 gen_helper_gvec_fdiv_s, 5789 gen_helper_gvec_fdiv_d, 5790 }; 5791 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv) 5792 5793 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { 5794 gen_helper_gvec_fmul_h, 5795 gen_helper_gvec_fmul_s, 5796 gen_helper_gvec_fmul_d, 5797 }; 5798 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul) 5799 5800 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { 5801 gen_helper_gvec_fmax_h, 5802 gen_helper_gvec_fmax_s, 5803 gen_helper_gvec_fmax_d, 5804 }; 5805 static gen_helper_gvec_3_ptr * const f_vector_fmax_ah[3] = { 5806 gen_helper_gvec_ah_fmax_h, 5807 gen_helper_gvec_ah_fmax_s, 5808 gen_helper_gvec_ah_fmax_d, 5809 }; 5810 TRANS(FMAX_v, do_fp3_vector_2fn, a, 0, f_vector_fmax, f_vector_fmax_ah) 5811 5812 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { 5813 gen_helper_gvec_fmin_h, 5814 gen_helper_gvec_fmin_s, 5815 gen_helper_gvec_fmin_d, 5816 }; 5817 static gen_helper_gvec_3_ptr * const f_vector_fmin_ah[3] = { 5818 gen_helper_gvec_ah_fmin_h, 5819 gen_helper_gvec_ah_fmin_s, 5820 gen_helper_gvec_ah_fmin_d, 5821 }; 5822 TRANS(FMIN_v, do_fp3_vector_2fn, a, 0, f_vector_fmin, f_vector_fmin_ah) 5823 5824 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { 5825 gen_helper_gvec_fmaxnum_h, 5826 gen_helper_gvec_fmaxnum_s, 5827 gen_helper_gvec_fmaxnum_d, 5828 }; 5829 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm) 5830 5831 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { 5832 gen_helper_gvec_fminnum_h, 5833 gen_helper_gvec_fminnum_s, 5834 gen_helper_gvec_fminnum_d, 5835 }; 5836 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm) 5837 5838 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { 5839 gen_helper_gvec_fmulx_h, 5840 gen_helper_gvec_fmulx_s, 5841 gen_helper_gvec_fmulx_d, 5842 }; 5843 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx) 5844 5845 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { 5846 gen_helper_gvec_vfma_h, 5847 gen_helper_gvec_vfma_s, 5848 gen_helper_gvec_vfma_d, 5849 }; 5850 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla) 5851 5852 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { 5853 gen_helper_gvec_vfms_h, 5854 gen_helper_gvec_vfms_s, 5855 gen_helper_gvec_vfms_d, 5856 }; 5857 static gen_helper_gvec_3_ptr * const f_vector_fmls_ah[3] = { 5858 gen_helper_gvec_ah_vfms_h, 5859 gen_helper_gvec_ah_vfms_s, 5860 gen_helper_gvec_ah_vfms_d, 5861 }; 5862 TRANS(FMLS_v, do_fp3_vector_2fn, a, 0, f_vector_fmls, f_vector_fmls_ah) 5863 5864 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { 5865 gen_helper_gvec_fceq_h, 5866 gen_helper_gvec_fceq_s, 5867 gen_helper_gvec_fceq_d, 5868 }; 5869 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq) 5870 5871 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { 5872 gen_helper_gvec_fcge_h, 5873 gen_helper_gvec_fcge_s, 5874 gen_helper_gvec_fcge_d, 5875 }; 5876 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge) 5877 5878 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { 5879 gen_helper_gvec_fcgt_h, 5880 gen_helper_gvec_fcgt_s, 5881 gen_helper_gvec_fcgt_d, 5882 }; 5883 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt) 5884 5885 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { 5886 gen_helper_gvec_facge_h, 5887 gen_helper_gvec_facge_s, 5888 gen_helper_gvec_facge_d, 5889 }; 5890 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge) 5891 5892 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { 5893 gen_helper_gvec_facgt_h, 5894 gen_helper_gvec_facgt_s, 5895 gen_helper_gvec_facgt_d, 5896 }; 5897 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt) 5898 5899 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { 5900 gen_helper_gvec_fabd_h, 5901 gen_helper_gvec_fabd_s, 5902 gen_helper_gvec_fabd_d, 5903 }; 5904 static gen_helper_gvec_3_ptr * const f_vector_ah_fabd[3] = { 5905 gen_helper_gvec_ah_fabd_h, 5906 gen_helper_gvec_ah_fabd_s, 5907 gen_helper_gvec_ah_fabd_d, 5908 }; 5909 TRANS(FABD_v, do_fp3_vector_2fn, a, 0, f_vector_fabd, f_vector_ah_fabd) 5910 5911 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { 5912 gen_helper_gvec_recps_h, 5913 gen_helper_gvec_recps_s, 5914 gen_helper_gvec_recps_d, 5915 }; 5916 static gen_helper_gvec_3_ptr * const f_vector_ah_frecps[3] = { 5917 gen_helper_gvec_ah_recps_h, 5918 gen_helper_gvec_ah_recps_s, 5919 gen_helper_gvec_ah_recps_d, 5920 }; 5921 TRANS(FRECPS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frecps, f_vector_ah_frecps) 5922 5923 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { 5924 gen_helper_gvec_rsqrts_h, 5925 gen_helper_gvec_rsqrts_s, 5926 gen_helper_gvec_rsqrts_d, 5927 }; 5928 static gen_helper_gvec_3_ptr * const f_vector_ah_frsqrts[3] = { 5929 gen_helper_gvec_ah_rsqrts_h, 5930 gen_helper_gvec_ah_rsqrts_s, 5931 gen_helper_gvec_ah_rsqrts_d, 5932 }; 5933 TRANS(FRSQRTS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frsqrts, f_vector_ah_frsqrts) 5934 5935 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { 5936 gen_helper_gvec_faddp_h, 5937 gen_helper_gvec_faddp_s, 5938 gen_helper_gvec_faddp_d, 5939 }; 5940 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp) 5941 5942 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { 5943 gen_helper_gvec_fmaxp_h, 5944 gen_helper_gvec_fmaxp_s, 5945 gen_helper_gvec_fmaxp_d, 5946 }; 5947 static gen_helper_gvec_3_ptr * const f_vector_ah_fmaxp[3] = { 5948 gen_helper_gvec_ah_fmaxp_h, 5949 gen_helper_gvec_ah_fmaxp_s, 5950 gen_helper_gvec_ah_fmaxp_d, 5951 }; 5952 TRANS(FMAXP_v, do_fp3_vector_2fn, a, 0, f_vector_fmaxp, f_vector_ah_fmaxp) 5953 5954 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { 5955 gen_helper_gvec_fminp_h, 5956 gen_helper_gvec_fminp_s, 5957 gen_helper_gvec_fminp_d, 5958 }; 5959 static gen_helper_gvec_3_ptr * const f_vector_ah_fminp[3] = { 5960 gen_helper_gvec_ah_fminp_h, 5961 gen_helper_gvec_ah_fminp_s, 5962 gen_helper_gvec_ah_fminp_d, 5963 }; 5964 TRANS(FMINP_v, do_fp3_vector_2fn, a, 0, f_vector_fminp, f_vector_ah_fminp) 5965 5966 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { 5967 gen_helper_gvec_fmaxnump_h, 5968 gen_helper_gvec_fmaxnump_s, 5969 gen_helper_gvec_fmaxnump_d, 5970 }; 5971 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp) 5972 5973 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { 5974 gen_helper_gvec_fminnump_h, 5975 gen_helper_gvec_fminnump_s, 5976 gen_helper_gvec_fminnump_d, 5977 }; 5978 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp) 5979 5980 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) 5981 { 5982 if (fp_access_check(s)) { 5983 int data = (is_2 << 1) | is_s; 5984 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 5985 vec_full_reg_offset(s, a->rn), 5986 vec_full_reg_offset(s, a->rm), tcg_env, 5987 a->q ? 16 : 8, vec_full_reg_size(s), 5988 data, gen_helper_gvec_fmlal_a64); 5989 } 5990 return true; 5991 } 5992 5993 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) 5994 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) 5995 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) 5996 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) 5997 5998 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) 5999 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) 6000 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) 6001 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) 6002 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) 6003 6004 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) 6005 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) 6006 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) 6007 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) 6008 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) 6009 6010 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) 6011 { 6012 if (fp_access_check(s)) { 6013 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); 6014 } 6015 return true; 6016 } 6017 6018 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) 6019 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) 6020 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) 6021 6022 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) 6023 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) 6024 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) 6025 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) 6026 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) 6027 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) 6028 6029 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) 6030 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) 6031 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) 6032 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) 6033 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) 6034 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) 6035 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) 6036 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) 6037 6038 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) 6039 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) 6040 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) 6041 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) 6042 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) 6043 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) 6044 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) 6045 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) 6046 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) 6047 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) 6048 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) 6049 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) 6050 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) 6051 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) 6052 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) 6053 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) 6054 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) 6055 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) 6056 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) 6057 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) 6058 6059 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) 6060 { 6061 if (a->esz == MO_64 && !a->q) { 6062 return false; 6063 } 6064 if (fp_access_check(s)) { 6065 tcg_gen_gvec_cmp(cond, a->esz, 6066 vec_full_reg_offset(s, a->rd), 6067 vec_full_reg_offset(s, a->rn), 6068 vec_full_reg_offset(s, a->rm), 6069 a->q ? 16 : 8, vec_full_reg_size(s)); 6070 } 6071 return true; 6072 } 6073 6074 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) 6075 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) 6076 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) 6077 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) 6078 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) 6079 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) 6080 6081 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) 6082 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) 6083 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc) 6084 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc) 6085 6086 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a, 6087 gen_helper_gvec_4 *fn) 6088 { 6089 if (fp_access_check(s)) { 6090 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 6091 } 6092 return true; 6093 } 6094 6095 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a, 6096 gen_helper_gvec_4_ptr *fn) 6097 { 6098 if (fp_access_check(s)) { 6099 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn); 6100 } 6101 return true; 6102 } 6103 6104 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b) 6105 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b) 6106 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b) 6107 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot) 6108 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla) 6109 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b) 6110 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b) 6111 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b) 6112 6113 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a) 6114 { 6115 if (!dc_isar_feature(aa64_bf16, s)) { 6116 return false; 6117 } 6118 if (fp_access_check(s)) { 6119 /* Q bit selects BFMLALB vs BFMLALT. */ 6120 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 6121 s->fpcr_ah ? FPST_AH : FPST_A64, a->q, 6122 gen_helper_gvec_bfmlal); 6123 } 6124 return true; 6125 } 6126 6127 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = { 6128 gen_helper_gvec_fcaddh, 6129 gen_helper_gvec_fcadds, 6130 gen_helper_gvec_fcaddd, 6131 }; 6132 /* 6133 * Encode FPCR.AH into the data so the helper knows whether the 6134 * negations it does should avoid flipping the sign bit on a NaN 6135 */ 6136 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0 | (s->fpcr_ah << 1), 6137 f_vector_fcadd) 6138 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1 | (s->fpcr_ah << 1), 6139 f_vector_fcadd) 6140 6141 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a) 6142 { 6143 static gen_helper_gvec_4_ptr * const fn[] = { 6144 [MO_16] = gen_helper_gvec_fcmlah, 6145 [MO_32] = gen_helper_gvec_fcmlas, 6146 [MO_64] = gen_helper_gvec_fcmlad, 6147 }; 6148 int check; 6149 6150 if (!dc_isar_feature(aa64_fcma, s)) { 6151 return false; 6152 } 6153 6154 check = fp_access_check_vector_hsd(s, a->q, a->esz); 6155 if (check <= 0) { 6156 return check == 0; 6157 } 6158 6159 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6160 a->esz == MO_16 ? FPST_A64_F16 : FPST_A64, 6161 a->rot | (s->fpcr_ah << 2), fn[a->esz]); 6162 return true; 6163 } 6164 6165 /* 6166 * Widening vector x vector/indexed. 6167 * 6168 * These read from the top or bottom half of a 128-bit vector. 6169 * After widening, optionally accumulate with a 128-bit vector. 6170 * Implement these inline, as the number of elements are limited 6171 * and the related SVE and SME operations on larger vectors use 6172 * even/odd elements instead of top/bottom half. 6173 * 6174 * If idx >= 0, operand 2 is indexed, otherwise vector. 6175 * If acc, operand 0 is loaded with rd. 6176 */ 6177 6178 /* For low half, iterating up. */ 6179 static bool do_3op_widening(DisasContext *s, MemOp memop, int top, 6180 int rd, int rn, int rm, int idx, 6181 NeonGenTwo64OpFn *fn, bool acc) 6182 { 6183 TCGv_i64 tcg_op0 = tcg_temp_new_i64(); 6184 TCGv_i64 tcg_op1 = tcg_temp_new_i64(); 6185 TCGv_i64 tcg_op2 = tcg_temp_new_i64(); 6186 MemOp esz = memop & MO_SIZE; 6187 int half = 8 >> esz; 6188 int top_swap, top_half; 6189 6190 /* There are no 64x64->128 bit operations. */ 6191 if (esz >= MO_64) { 6192 return false; 6193 } 6194 if (!fp_access_check(s)) { 6195 return true; 6196 } 6197 6198 if (idx >= 0) { 6199 read_vec_element(s, tcg_op2, rm, idx, memop); 6200 } 6201 6202 /* 6203 * For top half inputs, iterate forward; backward for bottom half. 6204 * This means the store to the destination will not occur until 6205 * overlapping input inputs are consumed. 6206 * Use top_swap to conditionally invert the forward iteration index. 6207 */ 6208 top_swap = top ? 0 : half - 1; 6209 top_half = top ? half : 0; 6210 6211 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 6212 int elt = elt_fwd ^ top_swap; 6213 6214 read_vec_element(s, tcg_op1, rn, elt + top_half, memop); 6215 if (idx < 0) { 6216 read_vec_element(s, tcg_op2, rm, elt + top_half, memop); 6217 } 6218 if (acc) { 6219 read_vec_element(s, tcg_op0, rd, elt, memop + 1); 6220 } 6221 fn(tcg_op0, tcg_op1, tcg_op2); 6222 write_vec_element(s, tcg_op0, rd, elt, esz + 1); 6223 } 6224 clear_vec_high(s, 1, rd); 6225 return true; 6226 } 6227 6228 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6229 { 6230 TCGv_i64 t = tcg_temp_new_i64(); 6231 tcg_gen_mul_i64(t, n, m); 6232 tcg_gen_add_i64(d, d, t); 6233 } 6234 6235 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6236 { 6237 TCGv_i64 t = tcg_temp_new_i64(); 6238 tcg_gen_mul_i64(t, n, m); 6239 tcg_gen_sub_i64(d, d, t); 6240 } 6241 6242 TRANS(SMULL_v, do_3op_widening, 6243 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6244 tcg_gen_mul_i64, false) 6245 TRANS(UMULL_v, do_3op_widening, 6246 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6247 tcg_gen_mul_i64, false) 6248 TRANS(SMLAL_v, do_3op_widening, 6249 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6250 gen_muladd_i64, true) 6251 TRANS(UMLAL_v, do_3op_widening, 6252 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6253 gen_muladd_i64, true) 6254 TRANS(SMLSL_v, do_3op_widening, 6255 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6256 gen_mulsub_i64, true) 6257 TRANS(UMLSL_v, do_3op_widening, 6258 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6259 gen_mulsub_i64, true) 6260 6261 TRANS(SMULL_vi, do_3op_widening, 6262 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6263 tcg_gen_mul_i64, false) 6264 TRANS(UMULL_vi, do_3op_widening, 6265 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 6266 tcg_gen_mul_i64, false) 6267 TRANS(SMLAL_vi, do_3op_widening, 6268 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6269 gen_muladd_i64, true) 6270 TRANS(UMLAL_vi, do_3op_widening, 6271 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 6272 gen_muladd_i64, true) 6273 TRANS(SMLSL_vi, do_3op_widening, 6274 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6275 gen_mulsub_i64, true) 6276 TRANS(UMLSL_vi, do_3op_widening, 6277 a->esz, a->q, a->rd, a->rn, a->rm, a->idx, 6278 gen_mulsub_i64, true) 6279 6280 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6281 { 6282 TCGv_i64 t1 = tcg_temp_new_i64(); 6283 TCGv_i64 t2 = tcg_temp_new_i64(); 6284 6285 tcg_gen_sub_i64(t1, n, m); 6286 tcg_gen_sub_i64(t2, m, n); 6287 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2); 6288 } 6289 6290 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6291 { 6292 TCGv_i64 t1 = tcg_temp_new_i64(); 6293 TCGv_i64 t2 = tcg_temp_new_i64(); 6294 6295 tcg_gen_sub_i64(t1, n, m); 6296 tcg_gen_sub_i64(t2, m, n); 6297 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2); 6298 } 6299 6300 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6301 { 6302 TCGv_i64 t = tcg_temp_new_i64(); 6303 gen_sabd_i64(t, n, m); 6304 tcg_gen_add_i64(d, d, t); 6305 } 6306 6307 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6308 { 6309 TCGv_i64 t = tcg_temp_new_i64(); 6310 gen_uabd_i64(t, n, m); 6311 tcg_gen_add_i64(d, d, t); 6312 } 6313 6314 TRANS(SADDL_v, do_3op_widening, 6315 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6316 tcg_gen_add_i64, false) 6317 TRANS(UADDL_v, do_3op_widening, 6318 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6319 tcg_gen_add_i64, false) 6320 TRANS(SSUBL_v, do_3op_widening, 6321 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6322 tcg_gen_sub_i64, false) 6323 TRANS(USUBL_v, do_3op_widening, 6324 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6325 tcg_gen_sub_i64, false) 6326 TRANS(SABDL_v, do_3op_widening, 6327 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6328 gen_sabd_i64, false) 6329 TRANS(UABDL_v, do_3op_widening, 6330 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6331 gen_uabd_i64, false) 6332 TRANS(SABAL_v, do_3op_widening, 6333 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6334 gen_saba_i64, true) 6335 TRANS(UABAL_v, do_3op_widening, 6336 a->esz, a->q, a->rd, a->rn, a->rm, -1, 6337 gen_uaba_i64, true) 6338 6339 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6340 { 6341 tcg_gen_mul_i64(d, n, m); 6342 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d); 6343 } 6344 6345 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6346 { 6347 tcg_gen_mul_i64(d, n, m); 6348 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d); 6349 } 6350 6351 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6352 { 6353 TCGv_i64 t = tcg_temp_new_i64(); 6354 6355 tcg_gen_mul_i64(t, n, m); 6356 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 6357 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 6358 } 6359 6360 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6361 { 6362 TCGv_i64 t = tcg_temp_new_i64(); 6363 6364 tcg_gen_mul_i64(t, n, m); 6365 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 6366 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 6367 } 6368 6369 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6370 { 6371 TCGv_i64 t = tcg_temp_new_i64(); 6372 6373 tcg_gen_mul_i64(t, n, m); 6374 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t); 6375 tcg_gen_neg_i64(t, t); 6376 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t); 6377 } 6378 6379 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m) 6380 { 6381 TCGv_i64 t = tcg_temp_new_i64(); 6382 6383 tcg_gen_mul_i64(t, n, m); 6384 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t); 6385 tcg_gen_neg_i64(t, t); 6386 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t); 6387 } 6388 6389 TRANS(SQDMULL_v, do_3op_widening, 6390 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6391 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 6392 TRANS(SQDMLAL_v, do_3op_widening, 6393 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6394 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 6395 TRANS(SQDMLSL_v, do_3op_widening, 6396 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1, 6397 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 6398 6399 TRANS(SQDMULL_vi, do_3op_widening, 6400 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6401 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 6402 TRANS(SQDMLAL_vi, do_3op_widening, 6403 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6404 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 6405 TRANS(SQDMLSL_vi, do_3op_widening, 6406 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx, 6407 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 6408 6409 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a, 6410 MemOp sign, bool sub) 6411 { 6412 TCGv_i64 tcg_op0, tcg_op1; 6413 MemOp esz = a->esz; 6414 int half = 8 >> esz; 6415 bool top = a->q; 6416 int top_swap = top ? 0 : half - 1; 6417 int top_half = top ? half : 0; 6418 6419 /* There are no 64x64->128 bit operations. */ 6420 if (esz >= MO_64) { 6421 return false; 6422 } 6423 if (!fp_access_check(s)) { 6424 return true; 6425 } 6426 tcg_op0 = tcg_temp_new_i64(); 6427 tcg_op1 = tcg_temp_new_i64(); 6428 6429 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 6430 int elt = elt_fwd ^ top_swap; 6431 6432 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign); 6433 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 6434 if (sub) { 6435 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 6436 } else { 6437 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 6438 } 6439 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1); 6440 } 6441 clear_vec_high(s, 1, a->rd); 6442 return true; 6443 } 6444 6445 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false) 6446 TRANS(UADDW, do_addsub_wide, a, 0, false) 6447 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true) 6448 TRANS(USUBW, do_addsub_wide, a, 0, true) 6449 6450 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a, 6451 bool sub, bool round) 6452 { 6453 TCGv_i64 tcg_op0, tcg_op1; 6454 MemOp esz = a->esz; 6455 int half = 8 >> esz; 6456 bool top = a->q; 6457 int ebits = 8 << esz; 6458 uint64_t rbit = 1ull << (ebits - 1); 6459 int top_swap, top_half; 6460 6461 /* There are no 128x128->64 bit operations. */ 6462 if (esz >= MO_64) { 6463 return false; 6464 } 6465 if (!fp_access_check(s)) { 6466 return true; 6467 } 6468 tcg_op0 = tcg_temp_new_i64(); 6469 tcg_op1 = tcg_temp_new_i64(); 6470 6471 /* 6472 * For top half inputs, iterate backward; forward for bottom half. 6473 * This means the store to the destination will not occur until 6474 * overlapping input inputs are consumed. 6475 */ 6476 top_swap = top ? half - 1 : 0; 6477 top_half = top ? half : 0; 6478 6479 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) { 6480 int elt = elt_fwd ^ top_swap; 6481 6482 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1); 6483 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1); 6484 if (sub) { 6485 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1); 6486 } else { 6487 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1); 6488 } 6489 if (round) { 6490 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit); 6491 } 6492 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits); 6493 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz); 6494 } 6495 clear_vec_high(s, top, a->rd); 6496 return true; 6497 } 6498 6499 TRANS(ADDHN, do_addsub_highnarrow, a, false, false) 6500 TRANS(SUBHN, do_addsub_highnarrow, a, true, false) 6501 TRANS(RADDHN, do_addsub_highnarrow, a, false, true) 6502 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true) 6503 6504 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn) 6505 { 6506 if (fp_access_check(s)) { 6507 /* The Q field specifies lo/hi half input for these insns. */ 6508 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn); 6509 } 6510 return true; 6511 } 6512 6513 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h) 6514 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q) 6515 6516 /* 6517 * Advanced SIMD scalar/vector x indexed element 6518 */ 6519 6520 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) 6521 { 6522 switch (a->esz) { 6523 case MO_64: 6524 if (fp_access_check(s)) { 6525 TCGv_i64 t0 = read_fp_dreg(s, a->rn); 6526 TCGv_i64 t1 = tcg_temp_new_i64(); 6527 6528 read_vec_element(s, t1, a->rm, a->idx, MO_64); 6529 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64)); 6530 write_fp_dreg_merging(s, a->rd, a->rn, t0); 6531 } 6532 break; 6533 case MO_32: 6534 if (fp_access_check(s)) { 6535 TCGv_i32 t0 = read_fp_sreg(s, a->rn); 6536 TCGv_i32 t1 = tcg_temp_new_i32(); 6537 6538 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); 6539 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64)); 6540 write_fp_sreg_merging(s, a->rd, a->rn, t0); 6541 } 6542 break; 6543 case MO_16: 6544 if (!dc_isar_feature(aa64_fp16, s)) { 6545 return false; 6546 } 6547 if (fp_access_check(s)) { 6548 TCGv_i32 t0 = read_fp_hreg(s, a->rn); 6549 TCGv_i32 t1 = tcg_temp_new_i32(); 6550 6551 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); 6552 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16)); 6553 write_fp_hreg_merging(s, a->rd, a->rn, t0); 6554 } 6555 break; 6556 default: 6557 g_assert_not_reached(); 6558 } 6559 return true; 6560 } 6561 6562 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) 6563 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) 6564 6565 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) 6566 { 6567 switch (a->esz) { 6568 case MO_64: 6569 if (fp_access_check(s)) { 6570 TCGv_i64 t0 = read_fp_dreg(s, a->rd); 6571 TCGv_i64 t1 = read_fp_dreg(s, a->rn); 6572 TCGv_i64 t2 = tcg_temp_new_i64(); 6573 6574 read_vec_element(s, t2, a->rm, a->idx, MO_64); 6575 if (neg) { 6576 gen_vfp_maybe_ah_negd(s, t1, t1); 6577 } 6578 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_A64)); 6579 write_fp_dreg_merging(s, a->rd, a->rd, t0); 6580 } 6581 break; 6582 case MO_32: 6583 if (fp_access_check(s)) { 6584 TCGv_i32 t0 = read_fp_sreg(s, a->rd); 6585 TCGv_i32 t1 = read_fp_sreg(s, a->rn); 6586 TCGv_i32 t2 = tcg_temp_new_i32(); 6587 6588 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); 6589 if (neg) { 6590 gen_vfp_maybe_ah_negs(s, t1, t1); 6591 } 6592 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_A64)); 6593 write_fp_sreg_merging(s, a->rd, a->rd, t0); 6594 } 6595 break; 6596 case MO_16: 6597 if (!dc_isar_feature(aa64_fp16, s)) { 6598 return false; 6599 } 6600 if (fp_access_check(s)) { 6601 TCGv_i32 t0 = read_fp_hreg(s, a->rd); 6602 TCGv_i32 t1 = read_fp_hreg(s, a->rn); 6603 TCGv_i32 t2 = tcg_temp_new_i32(); 6604 6605 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); 6606 if (neg) { 6607 gen_vfp_maybe_ah_negh(s, t1, t1); 6608 } 6609 gen_helper_advsimd_muladdh(t0, t1, t2, t0, 6610 fpstatus_ptr(FPST_A64_F16)); 6611 write_fp_hreg_merging(s, a->rd, a->rd, t0); 6612 } 6613 break; 6614 default: 6615 g_assert_not_reached(); 6616 } 6617 return true; 6618 } 6619 6620 TRANS(FMLA_si, do_fmla_scalar_idx, a, false) 6621 TRANS(FMLS_si, do_fmla_scalar_idx, a, true) 6622 6623 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, 6624 const ENVScalar2 *f) 6625 { 6626 if (a->esz < MO_16 || a->esz > MO_32) { 6627 return false; 6628 } 6629 if (fp_access_check(s)) { 6630 TCGv_i32 t0 = tcg_temp_new_i32(); 6631 TCGv_i32 t1 = tcg_temp_new_i32(); 6632 6633 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6634 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6635 f->gen_bhs[a->esz](t0, tcg_env, t0, t1); 6636 write_fp_sreg(s, a->rd, t0); 6637 } 6638 return true; 6639 } 6640 6641 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) 6642 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) 6643 6644 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a, 6645 const ENVScalar3 *f) 6646 { 6647 if (a->esz < MO_16 || a->esz > MO_32) { 6648 return false; 6649 } 6650 if (fp_access_check(s)) { 6651 TCGv_i32 t0 = tcg_temp_new_i32(); 6652 TCGv_i32 t1 = tcg_temp_new_i32(); 6653 TCGv_i32 t2 = tcg_temp_new_i32(); 6654 6655 read_vec_element_i32(s, t0, a->rn, 0, a->esz); 6656 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); 6657 read_vec_element_i32(s, t2, a->rd, 0, a->esz); 6658 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2); 6659 write_fp_sreg(s, a->rd, t0); 6660 } 6661 return true; 6662 } 6663 6664 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah) 6665 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh) 6666 6667 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a, 6668 NeonGenTwo64OpFn *fn, bool acc) 6669 { 6670 if (fp_access_check(s)) { 6671 TCGv_i64 t0 = tcg_temp_new_i64(); 6672 TCGv_i64 t1 = tcg_temp_new_i64(); 6673 TCGv_i64 t2 = tcg_temp_new_i64(); 6674 6675 if (acc) { 6676 read_vec_element(s, t0, a->rd, 0, a->esz + 1); 6677 } 6678 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN); 6679 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN); 6680 fn(t0, t1, t2); 6681 6682 /* Clear the whole register first, then store scalar. */ 6683 clear_vec(s, a->rd); 6684 write_vec_element(s, t0, a->rd, 0, a->esz + 1); 6685 } 6686 return true; 6687 } 6688 6689 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a, 6690 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false) 6691 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a, 6692 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true) 6693 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a, 6694 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true) 6695 6696 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6697 gen_helper_gvec_3_ptr * const fns[3]) 6698 { 6699 MemOp esz = a->esz; 6700 int check = fp_access_check_vector_hsd(s, a->q, esz); 6701 6702 if (check <= 0) { 6703 return check == 0; 6704 } 6705 6706 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, 6707 esz == MO_16 ? FPST_A64_F16 : FPST_A64, 6708 a->idx, fns[esz - 1]); 6709 return true; 6710 } 6711 6712 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { 6713 gen_helper_gvec_fmul_idx_h, 6714 gen_helper_gvec_fmul_idx_s, 6715 gen_helper_gvec_fmul_idx_d, 6716 }; 6717 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) 6718 6719 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { 6720 gen_helper_gvec_fmulx_idx_h, 6721 gen_helper_gvec_fmulx_idx_s, 6722 gen_helper_gvec_fmulx_idx_d, 6723 }; 6724 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) 6725 6726 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) 6727 { 6728 static gen_helper_gvec_4_ptr * const fns[3][3] = { 6729 { gen_helper_gvec_fmla_idx_h, 6730 gen_helper_gvec_fmla_idx_s, 6731 gen_helper_gvec_fmla_idx_d }, 6732 { gen_helper_gvec_fmls_idx_h, 6733 gen_helper_gvec_fmls_idx_s, 6734 gen_helper_gvec_fmls_idx_d }, 6735 { gen_helper_gvec_ah_fmls_idx_h, 6736 gen_helper_gvec_ah_fmls_idx_s, 6737 gen_helper_gvec_ah_fmls_idx_d }, 6738 }; 6739 MemOp esz = a->esz; 6740 int check = fp_access_check_vector_hsd(s, a->q, esz); 6741 6742 if (check <= 0) { 6743 return check == 0; 6744 } 6745 6746 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6747 esz == MO_16 ? FPST_A64_F16 : FPST_A64, 6748 a->idx, fns[neg ? 1 + s->fpcr_ah : 0][esz - 1]); 6749 return true; 6750 } 6751 6752 TRANS(FMLA_vi, do_fmla_vector_idx, a, false) 6753 TRANS(FMLS_vi, do_fmla_vector_idx, a, true) 6754 6755 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) 6756 { 6757 if (fp_access_check(s)) { 6758 int data = (a->idx << 2) | (is_2 << 1) | is_s; 6759 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), 6760 vec_full_reg_offset(s, a->rn), 6761 vec_full_reg_offset(s, a->rm), tcg_env, 6762 a->q ? 16 : 8, vec_full_reg_size(s), 6763 data, gen_helper_gvec_fmlal_idx_a64); 6764 } 6765 return true; 6766 } 6767 6768 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) 6769 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) 6770 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) 6771 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) 6772 6773 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, 6774 gen_helper_gvec_3 * const fns[2]) 6775 { 6776 assert(a->esz == MO_16 || a->esz == MO_32); 6777 if (fp_access_check(s)) { 6778 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); 6779 } 6780 return true; 6781 } 6782 6783 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { 6784 gen_helper_gvec_mul_idx_h, 6785 gen_helper_gvec_mul_idx_s, 6786 }; 6787 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) 6788 6789 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) 6790 { 6791 static gen_helper_gvec_4 * const fns[2][2] = { 6792 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, 6793 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, 6794 }; 6795 6796 assert(a->esz == MO_16 || a->esz == MO_32); 6797 if (fp_access_check(s)) { 6798 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 6799 a->idx, fns[a->esz - 1][sub]); 6800 } 6801 return true; 6802 } 6803 6804 TRANS(MLA_vi, do_mla_vector_idx, a, false) 6805 TRANS(MLS_vi, do_mla_vector_idx, a, true) 6806 6807 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, 6808 gen_helper_gvec_4 * const fns[2]) 6809 { 6810 assert(a->esz == MO_16 || a->esz == MO_32); 6811 if (fp_access_check(s)) { 6812 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), 6813 vec_full_reg_offset(s, a->rn), 6814 vec_full_reg_offset(s, a->rm), 6815 offsetof(CPUARMState, vfp.qc), 6816 a->q ? 16 : 8, vec_full_reg_size(s), 6817 a->idx, fns[a->esz - 1]); 6818 } 6819 return true; 6820 } 6821 6822 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { 6823 gen_helper_neon_sqdmulh_idx_h, 6824 gen_helper_neon_sqdmulh_idx_s, 6825 }; 6826 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) 6827 6828 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { 6829 gen_helper_neon_sqrdmulh_idx_h, 6830 gen_helper_neon_sqrdmulh_idx_s, 6831 }; 6832 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) 6833 6834 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = { 6835 gen_helper_neon_sqrdmlah_idx_h, 6836 gen_helper_neon_sqrdmlah_idx_s, 6837 }; 6838 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6839 f_vector_idx_sqrdmlah) 6840 6841 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = { 6842 gen_helper_neon_sqrdmlsh_idx_h, 6843 gen_helper_neon_sqrdmlsh_idx_s, 6844 }; 6845 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a, 6846 f_vector_idx_sqrdmlsh) 6847 6848 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a, 6849 gen_helper_gvec_4 *fn) 6850 { 6851 if (fp_access_check(s)) { 6852 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 6853 } 6854 return true; 6855 } 6856 6857 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a, 6858 gen_helper_gvec_4_ptr *fn) 6859 { 6860 if (fp_access_check(s)) { 6861 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn); 6862 } 6863 return true; 6864 } 6865 6866 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b) 6867 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b) 6868 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6869 gen_helper_gvec_sudot_idx_b) 6870 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a, 6871 gen_helper_gvec_usdot_idx_b) 6872 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a, 6873 gen_helper_gvec_bfdot_idx) 6874 6875 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a) 6876 { 6877 if (!dc_isar_feature(aa64_bf16, s)) { 6878 return false; 6879 } 6880 if (fp_access_check(s)) { 6881 /* Q bit selects BFMLALB vs BFMLALT. */ 6882 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 6883 s->fpcr_ah ? FPST_AH : FPST_A64, 6884 (a->idx << 1) | a->q, 6885 gen_helper_gvec_bfmlal_idx); 6886 } 6887 return true; 6888 } 6889 6890 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a) 6891 { 6892 gen_helper_gvec_4_ptr *fn; 6893 6894 if (!dc_isar_feature(aa64_fcma, s)) { 6895 return false; 6896 } 6897 switch (a->esz) { 6898 case MO_16: 6899 if (!dc_isar_feature(aa64_fp16, s)) { 6900 return false; 6901 } 6902 fn = gen_helper_gvec_fcmlah_idx; 6903 break; 6904 case MO_32: 6905 fn = gen_helper_gvec_fcmlas_idx; 6906 break; 6907 default: 6908 g_assert_not_reached(); 6909 } 6910 if (fp_access_check(s)) { 6911 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, 6912 a->esz == MO_16 ? FPST_A64_F16 : FPST_A64, 6913 (s->fpcr_ah << 4) | (a->idx << 2) | a->rot, fn); 6914 } 6915 return true; 6916 } 6917 6918 /* 6919 * Advanced SIMD scalar pairwise 6920 */ 6921 6922 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) 6923 { 6924 switch (a->esz) { 6925 case MO_64: 6926 if (fp_access_check(s)) { 6927 TCGv_i64 t0 = tcg_temp_new_i64(); 6928 TCGv_i64 t1 = tcg_temp_new_i64(); 6929 6930 read_vec_element(s, t0, a->rn, 0, MO_64); 6931 read_vec_element(s, t1, a->rn, 1, MO_64); 6932 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64)); 6933 write_fp_dreg(s, a->rd, t0); 6934 } 6935 break; 6936 case MO_32: 6937 if (fp_access_check(s)) { 6938 TCGv_i32 t0 = tcg_temp_new_i32(); 6939 TCGv_i32 t1 = tcg_temp_new_i32(); 6940 6941 read_vec_element_i32(s, t0, a->rn, 0, MO_32); 6942 read_vec_element_i32(s, t1, a->rn, 1, MO_32); 6943 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64)); 6944 write_fp_sreg(s, a->rd, t0); 6945 } 6946 break; 6947 case MO_16: 6948 if (!dc_isar_feature(aa64_fp16, s)) { 6949 return false; 6950 } 6951 if (fp_access_check(s)) { 6952 TCGv_i32 t0 = tcg_temp_new_i32(); 6953 TCGv_i32 t1 = tcg_temp_new_i32(); 6954 6955 read_vec_element_i32(s, t0, a->rn, 0, MO_16); 6956 read_vec_element_i32(s, t1, a->rn, 1, MO_16); 6957 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16)); 6958 write_fp_sreg(s, a->rd, t0); 6959 } 6960 break; 6961 default: 6962 g_assert_not_reached(); 6963 } 6964 return true; 6965 } 6966 6967 static bool do_fp3_scalar_pair_2fn(DisasContext *s, arg_rr_e *a, 6968 const FPScalar *fnormal, 6969 const FPScalar *fah) 6970 { 6971 return do_fp3_scalar_pair(s, a, s->fpcr_ah ? fah : fnormal); 6972 } 6973 6974 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) 6975 TRANS(FMAXP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah) 6976 TRANS(FMINP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah) 6977 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) 6978 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) 6979 6980 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) 6981 { 6982 if (fp_access_check(s)) { 6983 TCGv_i64 t0 = tcg_temp_new_i64(); 6984 TCGv_i64 t1 = tcg_temp_new_i64(); 6985 6986 read_vec_element(s, t0, a->rn, 0, MO_64); 6987 read_vec_element(s, t1, a->rn, 1, MO_64); 6988 tcg_gen_add_i64(t0, t0, t1); 6989 write_fp_dreg(s, a->rd, t0); 6990 } 6991 return true; 6992 } 6993 6994 /* 6995 * Floating-point conditional select 6996 */ 6997 6998 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a) 6999 { 7000 TCGv_i64 t_true, t_false; 7001 DisasCompare64 c; 7002 int check = fp_access_check_scalar_hsd(s, a->esz); 7003 7004 if (check <= 0) { 7005 return check == 0; 7006 } 7007 7008 /* Zero extend sreg & hreg inputs to 64 bits now. */ 7009 t_true = tcg_temp_new_i64(); 7010 t_false = tcg_temp_new_i64(); 7011 read_vec_element(s, t_true, a->rn, 0, a->esz); 7012 read_vec_element(s, t_false, a->rm, 0, a->esz); 7013 7014 a64_test_cc(&c, a->cond); 7015 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), 7016 t_true, t_false); 7017 7018 /* 7019 * Note that sregs & hregs write back zeros to the high bits, 7020 * and we've already done the zero-extension. 7021 */ 7022 write_fp_dreg(s, a->rd, t_true); 7023 return true; 7024 } 7025 7026 /* 7027 * Advanced SIMD Extract 7028 */ 7029 7030 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a) 7031 { 7032 if (fp_access_check(s)) { 7033 TCGv_i64 lo = read_fp_dreg(s, a->rn); 7034 if (a->imm != 0) { 7035 TCGv_i64 hi = read_fp_dreg(s, a->rm); 7036 tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8); 7037 } 7038 write_fp_dreg(s, a->rd, lo); 7039 } 7040 return true; 7041 } 7042 7043 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a) 7044 { 7045 TCGv_i64 lo, hi; 7046 int pos = (a->imm & 7) * 8; 7047 int elt = a->imm >> 3; 7048 7049 if (!fp_access_check(s)) { 7050 return true; 7051 } 7052 7053 lo = tcg_temp_new_i64(); 7054 hi = tcg_temp_new_i64(); 7055 7056 read_vec_element(s, lo, a->rn, elt, MO_64); 7057 elt++; 7058 read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64); 7059 elt++; 7060 7061 if (pos != 0) { 7062 TCGv_i64 hh = tcg_temp_new_i64(); 7063 tcg_gen_extract2_i64(lo, lo, hi, pos); 7064 read_vec_element(s, hh, a->rm, elt & 1, MO_64); 7065 tcg_gen_extract2_i64(hi, hi, hh, pos); 7066 } 7067 7068 write_vec_element(s, lo, a->rd, 0, MO_64); 7069 write_vec_element(s, hi, a->rd, 1, MO_64); 7070 clear_vec_high(s, true, a->rd); 7071 return true; 7072 } 7073 7074 /* 7075 * Floating-point data-processing (3 source) 7076 */ 7077 7078 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) 7079 { 7080 TCGv_ptr fpst; 7081 7082 /* 7083 * These are fused multiply-add. Note that doing the negations here 7084 * as separate steps is correct: an input NaN should come out with 7085 * its sign bit flipped if it is a negated-input. 7086 */ 7087 switch (a->esz) { 7088 case MO_64: 7089 if (fp_access_check(s)) { 7090 TCGv_i64 tn = read_fp_dreg(s, a->rn); 7091 TCGv_i64 tm = read_fp_dreg(s, a->rm); 7092 TCGv_i64 ta = read_fp_dreg(s, a->ra); 7093 7094 if (neg_a) { 7095 gen_vfp_maybe_ah_negd(s, ta, ta); 7096 } 7097 if (neg_n) { 7098 gen_vfp_maybe_ah_negd(s, tn, tn); 7099 } 7100 fpst = fpstatus_ptr(FPST_A64); 7101 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); 7102 write_fp_dreg_merging(s, a->rd, a->ra, ta); 7103 } 7104 break; 7105 7106 case MO_32: 7107 if (fp_access_check(s)) { 7108 TCGv_i32 tn = read_fp_sreg(s, a->rn); 7109 TCGv_i32 tm = read_fp_sreg(s, a->rm); 7110 TCGv_i32 ta = read_fp_sreg(s, a->ra); 7111 7112 if (neg_a) { 7113 gen_vfp_maybe_ah_negs(s, ta, ta); 7114 } 7115 if (neg_n) { 7116 gen_vfp_maybe_ah_negs(s, tn, tn); 7117 } 7118 fpst = fpstatus_ptr(FPST_A64); 7119 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); 7120 write_fp_sreg_merging(s, a->rd, a->ra, ta); 7121 } 7122 break; 7123 7124 case MO_16: 7125 if (!dc_isar_feature(aa64_fp16, s)) { 7126 return false; 7127 } 7128 if (fp_access_check(s)) { 7129 TCGv_i32 tn = read_fp_hreg(s, a->rn); 7130 TCGv_i32 tm = read_fp_hreg(s, a->rm); 7131 TCGv_i32 ta = read_fp_hreg(s, a->ra); 7132 7133 if (neg_a) { 7134 gen_vfp_maybe_ah_negh(s, ta, ta); 7135 } 7136 if (neg_n) { 7137 gen_vfp_maybe_ah_negh(s, tn, tn); 7138 } 7139 fpst = fpstatus_ptr(FPST_A64_F16); 7140 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); 7141 write_fp_hreg_merging(s, a->rd, a->ra, ta); 7142 } 7143 break; 7144 7145 default: 7146 return false; 7147 } 7148 return true; 7149 } 7150 7151 TRANS(FMADD, do_fmadd, a, false, false) 7152 TRANS(FNMADD, do_fmadd, a, true, true) 7153 TRANS(FMSUB, do_fmadd, a, false, true) 7154 TRANS(FNMSUB, do_fmadd, a, true, false) 7155 7156 /* 7157 * Advanced SIMD Across Lanes 7158 */ 7159 7160 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen, 7161 MemOp src_sign, NeonGenTwo64OpFn *fn) 7162 { 7163 TCGv_i64 tcg_res, tcg_elt; 7164 MemOp src_mop = a->esz | src_sign; 7165 int elements = (a->q ? 16 : 8) >> a->esz; 7166 7167 /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */ 7168 if (elements < 4) { 7169 return false; 7170 } 7171 if (!fp_access_check(s)) { 7172 return true; 7173 } 7174 7175 tcg_res = tcg_temp_new_i64(); 7176 tcg_elt = tcg_temp_new_i64(); 7177 7178 read_vec_element(s, tcg_res, a->rn, 0, src_mop); 7179 for (int i = 1; i < elements; i++) { 7180 read_vec_element(s, tcg_elt, a->rn, i, src_mop); 7181 fn(tcg_res, tcg_res, tcg_elt); 7182 } 7183 7184 tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen); 7185 write_fp_dreg(s, a->rd, tcg_res); 7186 return true; 7187 } 7188 7189 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64) 7190 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64) 7191 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64) 7192 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64) 7193 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64) 7194 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64) 7195 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64) 7196 7197 /* 7198 * do_fp_reduction helper 7199 * 7200 * This mirrors the Reduce() pseudocode in the ARM ARM. It is 7201 * important for correct NaN propagation that we do these 7202 * operations in exactly the order specified by the pseudocode. 7203 * 7204 * This is a recursive function. 7205 */ 7206 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz, 7207 int ebase, int ecount, TCGv_ptr fpst, 7208 NeonGenTwoSingleOpFn *fn) 7209 { 7210 if (ecount == 1) { 7211 TCGv_i32 tcg_elem = tcg_temp_new_i32(); 7212 read_vec_element_i32(s, tcg_elem, rn, ebase, esz); 7213 return tcg_elem; 7214 } else { 7215 int half = ecount >> 1; 7216 TCGv_i32 tcg_hi, tcg_lo, tcg_res; 7217 7218 tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn); 7219 tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn); 7220 tcg_res = tcg_temp_new_i32(); 7221 7222 fn(tcg_res, tcg_lo, tcg_hi, fpst); 7223 return tcg_res; 7224 } 7225 } 7226 7227 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a, 7228 NeonGenTwoSingleOpFn *fnormal, 7229 NeonGenTwoSingleOpFn *fah) 7230 { 7231 if (fp_access_check(s)) { 7232 MemOp esz = a->esz; 7233 int elts = (a->q ? 16 : 8) >> esz; 7234 TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64); 7235 TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst, 7236 s->fpcr_ah ? fah : fnormal); 7237 write_fp_sreg(s, a->rd, res); 7238 } 7239 return true; 7240 } 7241 7242 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a, 7243 gen_helper_vfp_maxnumh, gen_helper_vfp_maxnumh) 7244 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a, 7245 gen_helper_vfp_minnumh, gen_helper_vfp_minnumh) 7246 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a, 7247 gen_helper_vfp_maxh, gen_helper_vfp_ah_maxh) 7248 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a, 7249 gen_helper_vfp_minh, gen_helper_vfp_ah_minh) 7250 7251 TRANS(FMAXNMV_s, do_fp_reduction, a, 7252 gen_helper_vfp_maxnums, gen_helper_vfp_maxnums) 7253 TRANS(FMINNMV_s, do_fp_reduction, a, 7254 gen_helper_vfp_minnums, gen_helper_vfp_minnums) 7255 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs, gen_helper_vfp_ah_maxs) 7256 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins, gen_helper_vfp_ah_mins) 7257 7258 /* 7259 * Floating-point Immediate 7260 */ 7261 7262 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a) 7263 { 7264 int check = fp_access_check_scalar_hsd(s, a->esz); 7265 uint64_t imm; 7266 7267 if (check <= 0) { 7268 return check == 0; 7269 } 7270 7271 imm = vfp_expand_imm(a->esz, a->imm); 7272 write_fp_dreg(s, a->rd, tcg_constant_i64(imm)); 7273 return true; 7274 } 7275 7276 /* 7277 * Floating point compare, conditional compare 7278 */ 7279 7280 static void handle_fp_compare(DisasContext *s, int size, 7281 unsigned int rn, unsigned int rm, 7282 bool cmp_with_zero, bool signal_all_nans) 7283 { 7284 TCGv_i64 tcg_flags = tcg_temp_new_i64(); 7285 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_A64_F16 : FPST_A64); 7286 7287 if (size == MO_64) { 7288 TCGv_i64 tcg_vn, tcg_vm; 7289 7290 tcg_vn = read_fp_dreg(s, rn); 7291 if (cmp_with_zero) { 7292 tcg_vm = tcg_constant_i64(0); 7293 } else { 7294 tcg_vm = read_fp_dreg(s, rm); 7295 } 7296 if (signal_all_nans) { 7297 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7298 } else { 7299 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7300 } 7301 } else { 7302 TCGv_i32 tcg_vn = tcg_temp_new_i32(); 7303 TCGv_i32 tcg_vm = tcg_temp_new_i32(); 7304 7305 read_vec_element_i32(s, tcg_vn, rn, 0, size); 7306 if (cmp_with_zero) { 7307 tcg_gen_movi_i32(tcg_vm, 0); 7308 } else { 7309 read_vec_element_i32(s, tcg_vm, rm, 0, size); 7310 } 7311 7312 switch (size) { 7313 case MO_32: 7314 if (signal_all_nans) { 7315 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7316 } else { 7317 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7318 } 7319 break; 7320 case MO_16: 7321 if (signal_all_nans) { 7322 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7323 } else { 7324 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); 7325 } 7326 break; 7327 default: 7328 g_assert_not_reached(); 7329 } 7330 } 7331 7332 gen_set_nzcv(tcg_flags); 7333 } 7334 7335 /* FCMP, FCMPE */ 7336 static bool trans_FCMP(DisasContext *s, arg_FCMP *a) 7337 { 7338 int check = fp_access_check_scalar_hsd(s, a->esz); 7339 7340 if (check <= 0) { 7341 return check == 0; 7342 } 7343 7344 handle_fp_compare(s, a->esz, a->rn, a->rm, a->z, a->e); 7345 return true; 7346 } 7347 7348 /* FCCMP, FCCMPE */ 7349 static bool trans_FCCMP(DisasContext *s, arg_FCCMP *a) 7350 { 7351 TCGLabel *label_continue = NULL; 7352 int check = fp_access_check_scalar_hsd(s, a->esz); 7353 7354 if (check <= 0) { 7355 return check == 0; 7356 } 7357 7358 if (a->cond < 0x0e) { /* not always */ 7359 TCGLabel *label_match = gen_new_label(); 7360 label_continue = gen_new_label(); 7361 arm_gen_test_cc(a->cond, label_match); 7362 /* nomatch: */ 7363 gen_set_nzcv(tcg_constant_i64(a->nzcv << 28)); 7364 tcg_gen_br(label_continue); 7365 gen_set_label(label_match); 7366 } 7367 7368 handle_fp_compare(s, a->esz, a->rn, a->rm, false, a->e); 7369 7370 if (label_continue) { 7371 gen_set_label(label_continue); 7372 } 7373 return true; 7374 } 7375 7376 /* 7377 * Advanced SIMD Modified Immediate 7378 */ 7379 7380 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a) 7381 { 7382 if (!dc_isar_feature(aa64_fp16, s)) { 7383 return false; 7384 } 7385 if (fp_access_check(s)) { 7386 tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd), 7387 a->q ? 16 : 8, vec_full_reg_size(s), 7388 vfp_expand_imm(MO_16, a->abcdefgh)); 7389 } 7390 return true; 7391 } 7392 7393 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs, 7394 int64_t c, uint32_t oprsz, uint32_t maxsz) 7395 { 7396 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c); 7397 } 7398 7399 static bool trans_Vimm(DisasContext *s, arg_Vimm *a) 7400 { 7401 GVecGen2iFn *fn; 7402 7403 /* Handle decode of cmode/op here between ORR/BIC/MOVI */ 7404 if ((a->cmode & 1) && a->cmode < 12) { 7405 /* For op=1, the imm will be inverted, so BIC becomes AND. */ 7406 fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori; 7407 } else { 7408 /* There is one unallocated cmode/op combination in this space */ 7409 if (a->cmode == 15 && a->op == 1 && a->q == 0) { 7410 return false; 7411 } 7412 fn = gen_movi; 7413 } 7414 7415 if (fp_access_check(s)) { 7416 uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op); 7417 gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64); 7418 } 7419 return true; 7420 } 7421 7422 /* 7423 * Advanced SIMD Shift by Immediate 7424 */ 7425 7426 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn) 7427 { 7428 if (fp_access_check(s)) { 7429 gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz); 7430 } 7431 return true; 7432 } 7433 7434 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr) 7435 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr) 7436 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra) 7437 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra) 7438 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr) 7439 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr) 7440 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra) 7441 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra) 7442 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri) 7443 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli) 7444 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli); 7445 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli) 7446 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli) 7447 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui) 7448 7449 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u) 7450 { 7451 TCGv_i64 tcg_rn, tcg_rd; 7452 int esz = a->esz; 7453 int esize; 7454 7455 if (!fp_access_check(s)) { 7456 return true; 7457 } 7458 7459 /* 7460 * For the LL variants the store is larger than the load, 7461 * so if rd == rn we would overwrite parts of our input. 7462 * So load everything right now and use shifts in the main loop. 7463 */ 7464 tcg_rd = tcg_temp_new_i64(); 7465 tcg_rn = tcg_temp_new_i64(); 7466 read_vec_element(s, tcg_rn, a->rn, a->q, MO_64); 7467 7468 esize = 8 << esz; 7469 for (int i = 0, elements = 8 >> esz; i < elements; i++) { 7470 if (is_u) { 7471 tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize); 7472 } else { 7473 tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize); 7474 } 7475 tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm); 7476 write_vec_element(s, tcg_rd, a->rd, i, esz + 1); 7477 } 7478 clear_vec_high(s, true, a->rd); 7479 return true; 7480 } 7481 7482 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false) 7483 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true) 7484 7485 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7486 { 7487 assert(shift >= 0 && shift <= 64); 7488 tcg_gen_sari_i64(dst, src, MIN(shift, 63)); 7489 } 7490 7491 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7492 { 7493 assert(shift >= 0 && shift <= 64); 7494 if (shift == 64) { 7495 tcg_gen_movi_i64(dst, 0); 7496 } else { 7497 tcg_gen_shri_i64(dst, src, shift); 7498 } 7499 } 7500 7501 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7502 { 7503 gen_sshr_d(src, src, shift); 7504 tcg_gen_add_i64(dst, dst, src); 7505 } 7506 7507 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7508 { 7509 gen_ushr_d(src, src, shift); 7510 tcg_gen_add_i64(dst, dst, src); 7511 } 7512 7513 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7514 { 7515 assert(shift >= 0 && shift <= 32); 7516 if (shift) { 7517 TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1)); 7518 tcg_gen_add_i64(dst, src, rnd); 7519 tcg_gen_sari_i64(dst, dst, shift); 7520 } else { 7521 tcg_gen_mov_i64(dst, src); 7522 } 7523 } 7524 7525 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7526 { 7527 assert(shift >= 0 && shift <= 32); 7528 if (shift) { 7529 TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1)); 7530 tcg_gen_add_i64(dst, src, rnd); 7531 tcg_gen_shri_i64(dst, dst, shift); 7532 } else { 7533 tcg_gen_mov_i64(dst, src); 7534 } 7535 } 7536 7537 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7538 { 7539 assert(shift >= 0 && shift <= 64); 7540 if (shift == 0) { 7541 tcg_gen_mov_i64(dst, src); 7542 } else if (shift == 64) { 7543 /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */ 7544 tcg_gen_movi_i64(dst, 0); 7545 } else { 7546 TCGv_i64 rnd = tcg_temp_new_i64(); 7547 tcg_gen_extract_i64(rnd, src, shift - 1, 1); 7548 tcg_gen_sari_i64(dst, src, shift); 7549 tcg_gen_add_i64(dst, dst, rnd); 7550 } 7551 } 7552 7553 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7554 { 7555 assert(shift >= 0 && shift <= 64); 7556 if (shift == 0) { 7557 tcg_gen_mov_i64(dst, src); 7558 } else if (shift == 64) { 7559 /* Rounding will propagate bit 63 into bit 64. */ 7560 tcg_gen_shri_i64(dst, src, 63); 7561 } else { 7562 TCGv_i64 rnd = tcg_temp_new_i64(); 7563 tcg_gen_extract_i64(rnd, src, shift - 1, 1); 7564 tcg_gen_shri_i64(dst, src, shift); 7565 tcg_gen_add_i64(dst, dst, rnd); 7566 } 7567 } 7568 7569 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7570 { 7571 gen_srshr_d(src, src, shift); 7572 tcg_gen_add_i64(dst, dst, src); 7573 } 7574 7575 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7576 { 7577 gen_urshr_d(src, src, shift); 7578 tcg_gen_add_i64(dst, dst, src); 7579 } 7580 7581 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7582 { 7583 /* If shift is 64, dst is unchanged. */ 7584 if (shift != 64) { 7585 tcg_gen_shri_i64(src, src, shift); 7586 tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift); 7587 } 7588 } 7589 7590 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift) 7591 { 7592 tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift); 7593 } 7594 7595 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a, 7596 WideShiftImmFn * const fns[3], MemOp sign) 7597 { 7598 TCGv_i64 tcg_rn, tcg_rd; 7599 int esz = a->esz; 7600 int esize; 7601 WideShiftImmFn *fn; 7602 7603 tcg_debug_assert(esz >= MO_8 && esz <= MO_32); 7604 7605 if (!fp_access_check(s)) { 7606 return true; 7607 } 7608 7609 tcg_rn = tcg_temp_new_i64(); 7610 tcg_rd = tcg_temp_new_i64(); 7611 tcg_gen_movi_i64(tcg_rd, 0); 7612 7613 fn = fns[esz]; 7614 esize = 8 << esz; 7615 for (int i = 0, elements = 8 >> esz; i < elements; i++) { 7616 read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign); 7617 fn(tcg_rn, tcg_rn, a->imm); 7618 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize); 7619 } 7620 7621 write_vec_element(s, tcg_rd, a->rd, a->q, MO_64); 7622 clear_vec_high(s, a->q, a->rd); 7623 return true; 7624 } 7625 7626 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7627 { 7628 tcg_gen_sari_i64(d, s, i); 7629 tcg_gen_ext16u_i64(d, d); 7630 gen_helper_neon_narrow_sat_s8(d, tcg_env, d); 7631 } 7632 7633 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7634 { 7635 tcg_gen_sari_i64(d, s, i); 7636 tcg_gen_ext32u_i64(d, d); 7637 gen_helper_neon_narrow_sat_s16(d, tcg_env, d); 7638 } 7639 7640 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7641 { 7642 gen_sshr_d(d, s, i); 7643 gen_helper_neon_narrow_sat_s32(d, tcg_env, d); 7644 } 7645 7646 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7647 { 7648 tcg_gen_shri_i64(d, s, i); 7649 gen_helper_neon_narrow_sat_u8(d, tcg_env, d); 7650 } 7651 7652 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7653 { 7654 tcg_gen_shri_i64(d, s, i); 7655 gen_helper_neon_narrow_sat_u16(d, tcg_env, d); 7656 } 7657 7658 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7659 { 7660 gen_ushr_d(d, s, i); 7661 gen_helper_neon_narrow_sat_u32(d, tcg_env, d); 7662 } 7663 7664 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7665 { 7666 tcg_gen_sari_i64(d, s, i); 7667 tcg_gen_ext16u_i64(d, d); 7668 gen_helper_neon_unarrow_sat8(d, tcg_env, d); 7669 } 7670 7671 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7672 { 7673 tcg_gen_sari_i64(d, s, i); 7674 tcg_gen_ext32u_i64(d, d); 7675 gen_helper_neon_unarrow_sat16(d, tcg_env, d); 7676 } 7677 7678 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7679 { 7680 gen_sshr_d(d, s, i); 7681 gen_helper_neon_unarrow_sat32(d, tcg_env, d); 7682 } 7683 7684 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7685 { 7686 gen_srshr_bhs(d, s, i); 7687 tcg_gen_ext16u_i64(d, d); 7688 gen_helper_neon_narrow_sat_s8(d, tcg_env, d); 7689 } 7690 7691 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7692 { 7693 gen_srshr_bhs(d, s, i); 7694 tcg_gen_ext32u_i64(d, d); 7695 gen_helper_neon_narrow_sat_s16(d, tcg_env, d); 7696 } 7697 7698 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7699 { 7700 gen_srshr_d(d, s, i); 7701 gen_helper_neon_narrow_sat_s32(d, tcg_env, d); 7702 } 7703 7704 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7705 { 7706 gen_urshr_bhs(d, s, i); 7707 gen_helper_neon_narrow_sat_u8(d, tcg_env, d); 7708 } 7709 7710 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7711 { 7712 gen_urshr_bhs(d, s, i); 7713 gen_helper_neon_narrow_sat_u16(d, tcg_env, d); 7714 } 7715 7716 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7717 { 7718 gen_urshr_d(d, s, i); 7719 gen_helper_neon_narrow_sat_u32(d, tcg_env, d); 7720 } 7721 7722 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7723 { 7724 gen_srshr_bhs(d, s, i); 7725 tcg_gen_ext16u_i64(d, d); 7726 gen_helper_neon_unarrow_sat8(d, tcg_env, d); 7727 } 7728 7729 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7730 { 7731 gen_srshr_bhs(d, s, i); 7732 tcg_gen_ext32u_i64(d, d); 7733 gen_helper_neon_unarrow_sat16(d, tcg_env, d); 7734 } 7735 7736 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7737 { 7738 gen_srshr_d(d, s, i); 7739 gen_helper_neon_unarrow_sat32(d, tcg_env, d); 7740 } 7741 7742 static WideShiftImmFn * const shrn_fns[] = { 7743 tcg_gen_shri_i64, 7744 tcg_gen_shri_i64, 7745 gen_ushr_d, 7746 }; 7747 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0) 7748 7749 static WideShiftImmFn * const rshrn_fns[] = { 7750 gen_urshr_bhs, 7751 gen_urshr_bhs, 7752 gen_urshr_d, 7753 }; 7754 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0) 7755 7756 static WideShiftImmFn * const sqshrn_fns[] = { 7757 gen_sqshrn_b, 7758 gen_sqshrn_h, 7759 gen_sqshrn_s, 7760 }; 7761 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN) 7762 7763 static WideShiftImmFn * const uqshrn_fns[] = { 7764 gen_uqshrn_b, 7765 gen_uqshrn_h, 7766 gen_uqshrn_s, 7767 }; 7768 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0) 7769 7770 static WideShiftImmFn * const sqshrun_fns[] = { 7771 gen_sqshrun_b, 7772 gen_sqshrun_h, 7773 gen_sqshrun_s, 7774 }; 7775 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN) 7776 7777 static WideShiftImmFn * const sqrshrn_fns[] = { 7778 gen_sqrshrn_b, 7779 gen_sqrshrn_h, 7780 gen_sqrshrn_s, 7781 }; 7782 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN) 7783 7784 static WideShiftImmFn * const uqrshrn_fns[] = { 7785 gen_uqrshrn_b, 7786 gen_uqrshrn_h, 7787 gen_uqrshrn_s, 7788 }; 7789 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0) 7790 7791 static WideShiftImmFn * const sqrshrun_fns[] = { 7792 gen_sqrshrun_b, 7793 gen_sqrshrun_h, 7794 gen_sqrshrun_s, 7795 }; 7796 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN) 7797 7798 /* 7799 * Advanced SIMD Scalar Shift by Immediate 7800 */ 7801 7802 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a, 7803 WideShiftImmFn *fn, bool accumulate, 7804 MemOp sign) 7805 { 7806 if (fp_access_check(s)) { 7807 TCGv_i64 rd = tcg_temp_new_i64(); 7808 TCGv_i64 rn = tcg_temp_new_i64(); 7809 7810 read_vec_element(s, rn, a->rn, 0, a->esz | sign); 7811 if (accumulate) { 7812 read_vec_element(s, rd, a->rd, 0, a->esz | sign); 7813 } 7814 fn(rd, rn, a->imm); 7815 write_fp_dreg(s, a->rd, rd); 7816 } 7817 return true; 7818 } 7819 7820 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0) 7821 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0) 7822 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0) 7823 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0) 7824 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0) 7825 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0) 7826 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0) 7827 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0) 7828 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0) 7829 7830 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0) 7831 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0) 7832 7833 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i, 7834 NeonGenTwoOpEnvFn *fn) 7835 { 7836 TCGv_i32 t = tcg_temp_new_i32(); 7837 tcg_gen_extrl_i64_i32(t, s); 7838 fn(t, tcg_env, t, tcg_constant_i32(i)); 7839 tcg_gen_extu_i32_i64(d, t); 7840 } 7841 7842 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7843 { 7844 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8); 7845 } 7846 7847 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7848 { 7849 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16); 7850 } 7851 7852 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7853 { 7854 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32); 7855 } 7856 7857 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i) 7858 { 7859 gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i)); 7860 } 7861 7862 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7863 { 7864 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8); 7865 } 7866 7867 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7868 { 7869 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16); 7870 } 7871 7872 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7873 { 7874 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32); 7875 } 7876 7877 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i) 7878 { 7879 gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i)); 7880 } 7881 7882 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i) 7883 { 7884 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8); 7885 } 7886 7887 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i) 7888 { 7889 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16); 7890 } 7891 7892 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i) 7893 { 7894 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32); 7895 } 7896 7897 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i) 7898 { 7899 gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i)); 7900 } 7901 7902 static WideShiftImmFn * const f_scalar_sqshli[] = { 7903 gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d 7904 }; 7905 7906 static WideShiftImmFn * const f_scalar_uqshli[] = { 7907 gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d 7908 }; 7909 7910 static WideShiftImmFn * const f_scalar_sqshlui[] = { 7911 gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d 7912 }; 7913 7914 /* Note that the helpers sign-extend their inputs, so don't do it here. */ 7915 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0) 7916 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0) 7917 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0) 7918 7919 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a, 7920 WideShiftImmFn * const fns[3], 7921 MemOp sign, bool zext) 7922 { 7923 MemOp esz = a->esz; 7924 7925 tcg_debug_assert(esz >= MO_8 && esz <= MO_32); 7926 7927 if (fp_access_check(s)) { 7928 TCGv_i64 rd = tcg_temp_new_i64(); 7929 TCGv_i64 rn = tcg_temp_new_i64(); 7930 7931 read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign); 7932 fns[esz](rd, rn, a->imm); 7933 if (zext) { 7934 tcg_gen_ext_i64(rd, rd, esz); 7935 } 7936 write_fp_dreg(s, a->rd, rd); 7937 } 7938 return true; 7939 } 7940 7941 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true) 7942 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true) 7943 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false) 7944 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false) 7945 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false) 7946 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false) 7947 7948 static bool do_div(DisasContext *s, arg_rrr_sf *a, bool is_signed) 7949 { 7950 TCGv_i64 tcg_n, tcg_m, tcg_rd; 7951 tcg_rd = cpu_reg(s, a->rd); 7952 7953 if (!a->sf && is_signed) { 7954 tcg_n = tcg_temp_new_i64(); 7955 tcg_m = tcg_temp_new_i64(); 7956 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, a->rn)); 7957 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, a->rm)); 7958 } else { 7959 tcg_n = read_cpu_reg(s, a->rn, a->sf); 7960 tcg_m = read_cpu_reg(s, a->rm, a->sf); 7961 } 7962 7963 if (is_signed) { 7964 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); 7965 } else { 7966 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); 7967 } 7968 7969 if (!a->sf) { /* zero extend final result */ 7970 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 7971 } 7972 return true; 7973 } 7974 7975 TRANS(SDIV, do_div, a, true) 7976 TRANS(UDIV, do_div, a, false) 7977 7978 /* Shift a TCGv src by TCGv shift_amount, put result in dst. 7979 * Note that it is the caller's responsibility to ensure that the 7980 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM 7981 * mandated semantics for out of range shifts. 7982 */ 7983 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, 7984 enum a64_shift_type shift_type, TCGv_i64 shift_amount) 7985 { 7986 switch (shift_type) { 7987 case A64_SHIFT_TYPE_LSL: 7988 tcg_gen_shl_i64(dst, src, shift_amount); 7989 break; 7990 case A64_SHIFT_TYPE_LSR: 7991 tcg_gen_shr_i64(dst, src, shift_amount); 7992 break; 7993 case A64_SHIFT_TYPE_ASR: 7994 if (!sf) { 7995 tcg_gen_ext32s_i64(dst, src); 7996 } 7997 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); 7998 break; 7999 case A64_SHIFT_TYPE_ROR: 8000 if (sf) { 8001 tcg_gen_rotr_i64(dst, src, shift_amount); 8002 } else { 8003 TCGv_i32 t0, t1; 8004 t0 = tcg_temp_new_i32(); 8005 t1 = tcg_temp_new_i32(); 8006 tcg_gen_extrl_i64_i32(t0, src); 8007 tcg_gen_extrl_i64_i32(t1, shift_amount); 8008 tcg_gen_rotr_i32(t0, t0, t1); 8009 tcg_gen_extu_i32_i64(dst, t0); 8010 } 8011 break; 8012 default: 8013 assert(FALSE); /* all shift types should be handled */ 8014 break; 8015 } 8016 8017 if (!sf) { /* zero extend final result */ 8018 tcg_gen_ext32u_i64(dst, dst); 8019 } 8020 } 8021 8022 /* Shift a TCGv src by immediate, put result in dst. 8023 * The shift amount must be in range (this should always be true as the 8024 * relevant instructions will UNDEF on bad shift immediates). 8025 */ 8026 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, 8027 enum a64_shift_type shift_type, unsigned int shift_i) 8028 { 8029 assert(shift_i < (sf ? 64 : 32)); 8030 8031 if (shift_i == 0) { 8032 tcg_gen_mov_i64(dst, src); 8033 } else { 8034 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); 8035 } 8036 } 8037 8038 static bool do_shift_reg(DisasContext *s, arg_rrr_sf *a, 8039 enum a64_shift_type shift_type) 8040 { 8041 TCGv_i64 tcg_shift = tcg_temp_new_i64(); 8042 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 8043 TCGv_i64 tcg_rn = read_cpu_reg(s, a->rn, a->sf); 8044 8045 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, a->rm), a->sf ? 63 : 31); 8046 shift_reg(tcg_rd, tcg_rn, a->sf, shift_type, tcg_shift); 8047 return true; 8048 } 8049 8050 TRANS(LSLV, do_shift_reg, a, A64_SHIFT_TYPE_LSL) 8051 TRANS(LSRV, do_shift_reg, a, A64_SHIFT_TYPE_LSR) 8052 TRANS(ASRV, do_shift_reg, a, A64_SHIFT_TYPE_ASR) 8053 TRANS(RORV, do_shift_reg, a, A64_SHIFT_TYPE_ROR) 8054 8055 static bool do_crc32(DisasContext *s, arg_rrr_e *a, bool crc32c) 8056 { 8057 TCGv_i64 tcg_acc, tcg_val, tcg_rd; 8058 TCGv_i32 tcg_bytes; 8059 8060 switch (a->esz) { 8061 case MO_8: 8062 case MO_16: 8063 case MO_32: 8064 tcg_val = tcg_temp_new_i64(); 8065 tcg_gen_extract_i64(tcg_val, cpu_reg(s, a->rm), 0, 8 << a->esz); 8066 break; 8067 case MO_64: 8068 tcg_val = cpu_reg(s, a->rm); 8069 break; 8070 default: 8071 g_assert_not_reached(); 8072 } 8073 tcg_acc = cpu_reg(s, a->rn); 8074 tcg_bytes = tcg_constant_i32(1 << a->esz); 8075 tcg_rd = cpu_reg(s, a->rd); 8076 8077 if (crc32c) { 8078 gen_helper_crc32c_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes); 8079 } else { 8080 gen_helper_crc32_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes); 8081 } 8082 return true; 8083 } 8084 8085 TRANS_FEAT(CRC32, aa64_crc32, do_crc32, a, false) 8086 TRANS_FEAT(CRC32C, aa64_crc32, do_crc32, a, true) 8087 8088 static bool do_subp(DisasContext *s, arg_rrr *a, bool setflag) 8089 { 8090 TCGv_i64 tcg_n = read_cpu_reg_sp(s, a->rn, true); 8091 TCGv_i64 tcg_m = read_cpu_reg_sp(s, a->rm, true); 8092 TCGv_i64 tcg_d = cpu_reg(s, a->rd); 8093 8094 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); 8095 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); 8096 8097 if (setflag) { 8098 gen_sub_CC(true, tcg_d, tcg_n, tcg_m); 8099 } else { 8100 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); 8101 } 8102 return true; 8103 } 8104 8105 TRANS_FEAT(SUBP, aa64_mte_insn_reg, do_subp, a, false) 8106 TRANS_FEAT(SUBPS, aa64_mte_insn_reg, do_subp, a, true) 8107 8108 static bool trans_IRG(DisasContext *s, arg_rrr *a) 8109 { 8110 if (dc_isar_feature(aa64_mte_insn_reg, s)) { 8111 TCGv_i64 tcg_rd = cpu_reg_sp(s, a->rd); 8112 TCGv_i64 tcg_rn = cpu_reg_sp(s, a->rn); 8113 8114 if (s->ata[0]) { 8115 gen_helper_irg(tcg_rd, tcg_env, tcg_rn, cpu_reg(s, a->rm)); 8116 } else { 8117 gen_address_with_allocation_tag0(tcg_rd, tcg_rn); 8118 } 8119 return true; 8120 } 8121 return false; 8122 } 8123 8124 static bool trans_GMI(DisasContext *s, arg_rrr *a) 8125 { 8126 if (dc_isar_feature(aa64_mte_insn_reg, s)) { 8127 TCGv_i64 t = tcg_temp_new_i64(); 8128 8129 tcg_gen_extract_i64(t, cpu_reg_sp(s, a->rn), 56, 4); 8130 tcg_gen_shl_i64(t, tcg_constant_i64(1), t); 8131 tcg_gen_or_i64(cpu_reg(s, a->rd), cpu_reg(s, a->rm), t); 8132 return true; 8133 } 8134 return false; 8135 } 8136 8137 static bool trans_PACGA(DisasContext *s, arg_rrr *a) 8138 { 8139 if (dc_isar_feature(aa64_pauth, s)) { 8140 gen_helper_pacga(cpu_reg(s, a->rd), tcg_env, 8141 cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm)); 8142 return true; 8143 } 8144 return false; 8145 } 8146 8147 typedef void ArithOneOp(TCGv_i64, TCGv_i64); 8148 8149 static bool gen_rr(DisasContext *s, int rd, int rn, ArithOneOp fn) 8150 { 8151 fn(cpu_reg(s, rd), cpu_reg(s, rn)); 8152 return true; 8153 } 8154 8155 static void gen_rbit32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8156 { 8157 TCGv_i32 t32 = tcg_temp_new_i32(); 8158 8159 tcg_gen_extrl_i64_i32(t32, tcg_rn); 8160 gen_helper_rbit(t32, t32); 8161 tcg_gen_extu_i32_i64(tcg_rd, t32); 8162 } 8163 8164 static void gen_rev16_xx(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 mask) 8165 { 8166 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8167 8168 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); 8169 tcg_gen_and_i64(tcg_rd, tcg_rn, mask); 8170 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); 8171 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); 8172 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); 8173 } 8174 8175 static void gen_rev16_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8176 { 8177 gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff)); 8178 } 8179 8180 static void gen_rev16_64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8181 { 8182 gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff00ff00ffull)); 8183 } 8184 8185 static void gen_rev_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8186 { 8187 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); 8188 } 8189 8190 static void gen_rev32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8191 { 8192 tcg_gen_bswap64_i64(tcg_rd, tcg_rn); 8193 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); 8194 } 8195 8196 TRANS(RBIT, gen_rr, a->rd, a->rn, a->sf ? gen_helper_rbit64 : gen_rbit32) 8197 TRANS(REV16, gen_rr, a->rd, a->rn, a->sf ? gen_rev16_64 : gen_rev16_32) 8198 TRANS(REV32, gen_rr, a->rd, a->rn, a->sf ? gen_rev32 : gen_rev_32) 8199 TRANS(REV64, gen_rr, a->rd, a->rn, tcg_gen_bswap64_i64) 8200 8201 static void gen_clz32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8202 { 8203 TCGv_i32 t32 = tcg_temp_new_i32(); 8204 8205 tcg_gen_extrl_i64_i32(t32, tcg_rn); 8206 tcg_gen_clzi_i32(t32, t32, 32); 8207 tcg_gen_extu_i32_i64(tcg_rd, t32); 8208 } 8209 8210 static void gen_clz64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8211 { 8212 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); 8213 } 8214 8215 static void gen_cls32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) 8216 { 8217 TCGv_i32 t32 = tcg_temp_new_i32(); 8218 8219 tcg_gen_extrl_i64_i32(t32, tcg_rn); 8220 tcg_gen_clrsb_i32(t32, t32); 8221 tcg_gen_extu_i32_i64(tcg_rd, t32); 8222 } 8223 8224 TRANS(CLZ, gen_rr, a->rd, a->rn, a->sf ? gen_clz64 : gen_clz32) 8225 TRANS(CLS, gen_rr, a->rd, a->rn, a->sf ? tcg_gen_clrsb_i64 : gen_cls32) 8226 8227 static bool gen_pacaut(DisasContext *s, arg_pacaut *a, NeonGenTwo64OpEnvFn fn) 8228 { 8229 TCGv_i64 tcg_rd, tcg_rn; 8230 8231 if (a->z) { 8232 if (a->rn != 31) { 8233 return false; 8234 } 8235 tcg_rn = tcg_constant_i64(0); 8236 } else { 8237 tcg_rn = cpu_reg_sp(s, a->rn); 8238 } 8239 if (s->pauth_active) { 8240 tcg_rd = cpu_reg(s, a->rd); 8241 fn(tcg_rd, tcg_env, tcg_rd, tcg_rn); 8242 } 8243 return true; 8244 } 8245 8246 TRANS_FEAT(PACIA, aa64_pauth, gen_pacaut, a, gen_helper_pacia) 8247 TRANS_FEAT(PACIB, aa64_pauth, gen_pacaut, a, gen_helper_pacib) 8248 TRANS_FEAT(PACDA, aa64_pauth, gen_pacaut, a, gen_helper_pacda) 8249 TRANS_FEAT(PACDB, aa64_pauth, gen_pacaut, a, gen_helper_pacdb) 8250 8251 TRANS_FEAT(AUTIA, aa64_pauth, gen_pacaut, a, gen_helper_autia) 8252 TRANS_FEAT(AUTIB, aa64_pauth, gen_pacaut, a, gen_helper_autib) 8253 TRANS_FEAT(AUTDA, aa64_pauth, gen_pacaut, a, gen_helper_autda) 8254 TRANS_FEAT(AUTDB, aa64_pauth, gen_pacaut, a, gen_helper_autdb) 8255 8256 static bool do_xpac(DisasContext *s, int rd, NeonGenOne64OpEnvFn *fn) 8257 { 8258 if (s->pauth_active) { 8259 TCGv_i64 tcg_rd = cpu_reg(s, rd); 8260 fn(tcg_rd, tcg_env, tcg_rd); 8261 } 8262 return true; 8263 } 8264 8265 TRANS_FEAT(XPACI, aa64_pauth, do_xpac, a->rd, gen_helper_xpaci) 8266 TRANS_FEAT(XPACD, aa64_pauth, do_xpac, a->rd, gen_helper_xpacd) 8267 8268 static bool do_logic_reg(DisasContext *s, arg_logic_shift *a, 8269 ArithTwoOp *fn, ArithTwoOp *inv_fn, bool setflags) 8270 { 8271 TCGv_i64 tcg_rd, tcg_rn, tcg_rm; 8272 8273 if (!a->sf && (a->sa & (1 << 5))) { 8274 return false; 8275 } 8276 8277 tcg_rd = cpu_reg(s, a->rd); 8278 tcg_rn = cpu_reg(s, a->rn); 8279 8280 tcg_rm = read_cpu_reg(s, a->rm, a->sf); 8281 if (a->sa) { 8282 shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa); 8283 } 8284 8285 (a->n ? inv_fn : fn)(tcg_rd, tcg_rn, tcg_rm); 8286 if (!a->sf) { 8287 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 8288 } 8289 if (setflags) { 8290 gen_logic_CC(a->sf, tcg_rd); 8291 } 8292 return true; 8293 } 8294 8295 static bool trans_ORR_r(DisasContext *s, arg_logic_shift *a) 8296 { 8297 /* 8298 * Unshifted ORR and ORN with WZR/XZR is the standard encoding for 8299 * register-register MOV and MVN, so it is worth special casing. 8300 */ 8301 if (a->sa == 0 && a->st == 0 && a->rn == 31) { 8302 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 8303 TCGv_i64 tcg_rm = cpu_reg(s, a->rm); 8304 8305 if (a->n) { 8306 tcg_gen_not_i64(tcg_rd, tcg_rm); 8307 if (!a->sf) { 8308 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 8309 } 8310 } else { 8311 if (a->sf) { 8312 tcg_gen_mov_i64(tcg_rd, tcg_rm); 8313 } else { 8314 tcg_gen_ext32u_i64(tcg_rd, tcg_rm); 8315 } 8316 } 8317 return true; 8318 } 8319 8320 return do_logic_reg(s, a, tcg_gen_or_i64, tcg_gen_orc_i64, false); 8321 } 8322 8323 TRANS(AND_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, false) 8324 TRANS(ANDS_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, true) 8325 TRANS(EOR_r, do_logic_reg, a, tcg_gen_xor_i64, tcg_gen_eqv_i64, false) 8326 8327 static bool do_addsub_ext(DisasContext *s, arg_addsub_ext *a, 8328 bool sub_op, bool setflags) 8329 { 8330 TCGv_i64 tcg_rm, tcg_rn, tcg_rd, tcg_result; 8331 8332 if (a->sa > 4) { 8333 return false; 8334 } 8335 8336 /* non-flag setting ops may use SP */ 8337 if (!setflags) { 8338 tcg_rd = cpu_reg_sp(s, a->rd); 8339 } else { 8340 tcg_rd = cpu_reg(s, a->rd); 8341 } 8342 tcg_rn = read_cpu_reg_sp(s, a->rn, a->sf); 8343 8344 tcg_rm = read_cpu_reg(s, a->rm, a->sf); 8345 ext_and_shift_reg(tcg_rm, tcg_rm, a->st, a->sa); 8346 8347 tcg_result = tcg_temp_new_i64(); 8348 if (!setflags) { 8349 if (sub_op) { 8350 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 8351 } else { 8352 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 8353 } 8354 } else { 8355 if (sub_op) { 8356 gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm); 8357 } else { 8358 gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm); 8359 } 8360 } 8361 8362 if (a->sf) { 8363 tcg_gen_mov_i64(tcg_rd, tcg_result); 8364 } else { 8365 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 8366 } 8367 return true; 8368 } 8369 8370 TRANS(ADD_ext, do_addsub_ext, a, false, false) 8371 TRANS(SUB_ext, do_addsub_ext, a, true, false) 8372 TRANS(ADDS_ext, do_addsub_ext, a, false, true) 8373 TRANS(SUBS_ext, do_addsub_ext, a, true, true) 8374 8375 static bool do_addsub_reg(DisasContext *s, arg_addsub_shift *a, 8376 bool sub_op, bool setflags) 8377 { 8378 TCGv_i64 tcg_rd, tcg_rn, tcg_rm, tcg_result; 8379 8380 if (a->st == 3 || (!a->sf && (a->sa & 32))) { 8381 return false; 8382 } 8383 8384 tcg_rd = cpu_reg(s, a->rd); 8385 tcg_rn = read_cpu_reg(s, a->rn, a->sf); 8386 tcg_rm = read_cpu_reg(s, a->rm, a->sf); 8387 8388 shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa); 8389 8390 tcg_result = tcg_temp_new_i64(); 8391 if (!setflags) { 8392 if (sub_op) { 8393 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); 8394 } else { 8395 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); 8396 } 8397 } else { 8398 if (sub_op) { 8399 gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm); 8400 } else { 8401 gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm); 8402 } 8403 } 8404 8405 if (a->sf) { 8406 tcg_gen_mov_i64(tcg_rd, tcg_result); 8407 } else { 8408 tcg_gen_ext32u_i64(tcg_rd, tcg_result); 8409 } 8410 return true; 8411 } 8412 8413 TRANS(ADD_r, do_addsub_reg, a, false, false) 8414 TRANS(SUB_r, do_addsub_reg, a, true, false) 8415 TRANS(ADDS_r, do_addsub_reg, a, false, true) 8416 TRANS(SUBS_r, do_addsub_reg, a, true, true) 8417 8418 static bool do_mulh(DisasContext *s, arg_rrr *a, 8419 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 8420 { 8421 TCGv_i64 discard = tcg_temp_new_i64(); 8422 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 8423 TCGv_i64 tcg_rn = cpu_reg(s, a->rn); 8424 TCGv_i64 tcg_rm = cpu_reg(s, a->rm); 8425 8426 fn(discard, tcg_rd, tcg_rn, tcg_rm); 8427 return true; 8428 } 8429 8430 TRANS(SMULH, do_mulh, a, tcg_gen_muls2_i64) 8431 TRANS(UMULH, do_mulh, a, tcg_gen_mulu2_i64) 8432 8433 static bool do_muladd(DisasContext *s, arg_rrrr *a, 8434 bool sf, bool is_sub, MemOp mop) 8435 { 8436 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 8437 TCGv_i64 tcg_op1, tcg_op2; 8438 8439 if (mop == MO_64) { 8440 tcg_op1 = cpu_reg(s, a->rn); 8441 tcg_op2 = cpu_reg(s, a->rm); 8442 } else { 8443 tcg_op1 = tcg_temp_new_i64(); 8444 tcg_op2 = tcg_temp_new_i64(); 8445 tcg_gen_ext_i64(tcg_op1, cpu_reg(s, a->rn), mop); 8446 tcg_gen_ext_i64(tcg_op2, cpu_reg(s, a->rm), mop); 8447 } 8448 8449 if (a->ra == 31 && !is_sub) { 8450 /* Special-case MADD with rA == XZR; it is the standard MUL alias */ 8451 tcg_gen_mul_i64(tcg_rd, tcg_op1, tcg_op2); 8452 } else { 8453 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8454 TCGv_i64 tcg_ra = cpu_reg(s, a->ra); 8455 8456 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); 8457 if (is_sub) { 8458 tcg_gen_sub_i64(tcg_rd, tcg_ra, tcg_tmp); 8459 } else { 8460 tcg_gen_add_i64(tcg_rd, tcg_ra, tcg_tmp); 8461 } 8462 } 8463 8464 if (!sf) { 8465 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 8466 } 8467 return true; 8468 } 8469 8470 TRANS(MADD_w, do_muladd, a, false, false, MO_64) 8471 TRANS(MSUB_w, do_muladd, a, false, true, MO_64) 8472 TRANS(MADD_x, do_muladd, a, true, false, MO_64) 8473 TRANS(MSUB_x, do_muladd, a, true, true, MO_64) 8474 8475 TRANS(SMADDL, do_muladd, a, true, false, MO_SL) 8476 TRANS(SMSUBL, do_muladd, a, true, true, MO_SL) 8477 TRANS(UMADDL, do_muladd, a, true, false, MO_UL) 8478 TRANS(UMSUBL, do_muladd, a, true, true, MO_UL) 8479 8480 static bool do_adc_sbc(DisasContext *s, arg_rrr_sf *a, 8481 bool is_sub, bool setflags) 8482 { 8483 TCGv_i64 tcg_y, tcg_rn, tcg_rd; 8484 8485 tcg_rd = cpu_reg(s, a->rd); 8486 tcg_rn = cpu_reg(s, a->rn); 8487 8488 if (is_sub) { 8489 tcg_y = tcg_temp_new_i64(); 8490 tcg_gen_not_i64(tcg_y, cpu_reg(s, a->rm)); 8491 } else { 8492 tcg_y = cpu_reg(s, a->rm); 8493 } 8494 8495 if (setflags) { 8496 gen_adc_CC(a->sf, tcg_rd, tcg_rn, tcg_y); 8497 } else { 8498 gen_adc(a->sf, tcg_rd, tcg_rn, tcg_y); 8499 } 8500 return true; 8501 } 8502 8503 TRANS(ADC, do_adc_sbc, a, false, false) 8504 TRANS(SBC, do_adc_sbc, a, true, false) 8505 TRANS(ADCS, do_adc_sbc, a, false, true) 8506 TRANS(SBCS, do_adc_sbc, a, true, true) 8507 8508 static bool trans_RMIF(DisasContext *s, arg_RMIF *a) 8509 { 8510 int mask = a->mask; 8511 TCGv_i64 tcg_rn; 8512 TCGv_i32 nzcv; 8513 8514 if (!dc_isar_feature(aa64_condm_4, s)) { 8515 return false; 8516 } 8517 8518 tcg_rn = read_cpu_reg(s, a->rn, 1); 8519 tcg_gen_rotri_i64(tcg_rn, tcg_rn, a->imm); 8520 8521 nzcv = tcg_temp_new_i32(); 8522 tcg_gen_extrl_i64_i32(nzcv, tcg_rn); 8523 8524 if (mask & 8) { /* N */ 8525 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); 8526 } 8527 if (mask & 4) { /* Z */ 8528 tcg_gen_not_i32(cpu_ZF, nzcv); 8529 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); 8530 } 8531 if (mask & 2) { /* C */ 8532 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); 8533 } 8534 if (mask & 1) { /* V */ 8535 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); 8536 } 8537 return true; 8538 } 8539 8540 static bool do_setf(DisasContext *s, int rn, int shift) 8541 { 8542 TCGv_i32 tmp = tcg_temp_new_i32(); 8543 8544 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); 8545 tcg_gen_shli_i32(cpu_NF, tmp, shift); 8546 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); 8547 tcg_gen_mov_i32(cpu_ZF, cpu_NF); 8548 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); 8549 return true; 8550 } 8551 8552 TRANS_FEAT(SETF8, aa64_condm_4, do_setf, a->rn, 24) 8553 TRANS_FEAT(SETF16, aa64_condm_4, do_setf, a->rn, 16) 8554 8555 /* CCMP, CCMN */ 8556 static bool trans_CCMP(DisasContext *s, arg_CCMP *a) 8557 { 8558 TCGv_i32 tcg_t0 = tcg_temp_new_i32(); 8559 TCGv_i32 tcg_t1 = tcg_temp_new_i32(); 8560 TCGv_i32 tcg_t2 = tcg_temp_new_i32(); 8561 TCGv_i64 tcg_tmp = tcg_temp_new_i64(); 8562 TCGv_i64 tcg_rn, tcg_y; 8563 DisasCompare c; 8564 unsigned nzcv; 8565 bool has_andc; 8566 8567 /* Set T0 = !COND. */ 8568 arm_test_cc(&c, a->cond); 8569 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); 8570 8571 /* Load the arguments for the new comparison. */ 8572 if (a->imm) { 8573 tcg_y = tcg_constant_i64(a->y); 8574 } else { 8575 tcg_y = cpu_reg(s, a->y); 8576 } 8577 tcg_rn = cpu_reg(s, a->rn); 8578 8579 /* Set the flags for the new comparison. */ 8580 if (a->op) { 8581 gen_sub_CC(a->sf, tcg_tmp, tcg_rn, tcg_y); 8582 } else { 8583 gen_add_CC(a->sf, tcg_tmp, tcg_rn, tcg_y); 8584 } 8585 8586 /* 8587 * If COND was false, force the flags to #nzcv. Compute two masks 8588 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). 8589 * For tcg hosts that support ANDC, we can make do with just T1. 8590 * In either case, allow the tcg optimizer to delete any unused mask. 8591 */ 8592 tcg_gen_neg_i32(tcg_t1, tcg_t0); 8593 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); 8594 8595 nzcv = a->nzcv; 8596 has_andc = tcg_op_supported(INDEX_op_andc, TCG_TYPE_I32, 0); 8597 if (nzcv & 8) { /* N */ 8598 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); 8599 } else { 8600 if (has_andc) { 8601 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); 8602 } else { 8603 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); 8604 } 8605 } 8606 if (nzcv & 4) { /* Z */ 8607 if (has_andc) { 8608 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); 8609 } else { 8610 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); 8611 } 8612 } else { 8613 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); 8614 } 8615 if (nzcv & 2) { /* C */ 8616 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); 8617 } else { 8618 if (has_andc) { 8619 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); 8620 } else { 8621 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); 8622 } 8623 } 8624 if (nzcv & 1) { /* V */ 8625 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); 8626 } else { 8627 if (has_andc) { 8628 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); 8629 } else { 8630 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); 8631 } 8632 } 8633 return true; 8634 } 8635 8636 static bool trans_CSEL(DisasContext *s, arg_CSEL *a) 8637 { 8638 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 8639 TCGv_i64 zero = tcg_constant_i64(0); 8640 DisasCompare64 c; 8641 8642 a64_test_cc(&c, a->cond); 8643 8644 if (a->rn == 31 && a->rm == 31 && (a->else_inc ^ a->else_inv)) { 8645 /* CSET & CSETM. */ 8646 if (a->else_inv) { 8647 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), 8648 tcg_rd, c.value, zero); 8649 } else { 8650 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), 8651 tcg_rd, c.value, zero); 8652 } 8653 } else { 8654 TCGv_i64 t_true = cpu_reg(s, a->rn); 8655 TCGv_i64 t_false = read_cpu_reg(s, a->rm, 1); 8656 8657 if (a->else_inv && a->else_inc) { 8658 tcg_gen_neg_i64(t_false, t_false); 8659 } else if (a->else_inv) { 8660 tcg_gen_not_i64(t_false, t_false); 8661 } else if (a->else_inc) { 8662 tcg_gen_addi_i64(t_false, t_false, 1); 8663 } 8664 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); 8665 } 8666 8667 if (!a->sf) { 8668 tcg_gen_ext32u_i64(tcg_rd, tcg_rd); 8669 } 8670 return true; 8671 } 8672 8673 typedef struct FPScalar1Int { 8674 void (*gen_h)(TCGv_i32, TCGv_i32); 8675 void (*gen_s)(TCGv_i32, TCGv_i32); 8676 void (*gen_d)(TCGv_i64, TCGv_i64); 8677 } FPScalar1Int; 8678 8679 static bool do_fp1_scalar_int(DisasContext *s, arg_rr_e *a, 8680 const FPScalar1Int *f, 8681 bool merging) 8682 { 8683 switch (a->esz) { 8684 case MO_64: 8685 if (fp_access_check(s)) { 8686 TCGv_i64 t = read_fp_dreg(s, a->rn); 8687 f->gen_d(t, t); 8688 if (merging) { 8689 write_fp_dreg_merging(s, a->rd, a->rd, t); 8690 } else { 8691 write_fp_dreg(s, a->rd, t); 8692 } 8693 } 8694 break; 8695 case MO_32: 8696 if (fp_access_check(s)) { 8697 TCGv_i32 t = read_fp_sreg(s, a->rn); 8698 f->gen_s(t, t); 8699 if (merging) { 8700 write_fp_sreg_merging(s, a->rd, a->rd, t); 8701 } else { 8702 write_fp_sreg(s, a->rd, t); 8703 } 8704 } 8705 break; 8706 case MO_16: 8707 if (!dc_isar_feature(aa64_fp16, s)) { 8708 return false; 8709 } 8710 if (fp_access_check(s)) { 8711 TCGv_i32 t = read_fp_hreg(s, a->rn); 8712 f->gen_h(t, t); 8713 if (merging) { 8714 write_fp_hreg_merging(s, a->rd, a->rd, t); 8715 } else { 8716 write_fp_sreg(s, a->rd, t); 8717 } 8718 } 8719 break; 8720 default: 8721 return false; 8722 } 8723 return true; 8724 } 8725 8726 static bool do_fp1_scalar_int_2fn(DisasContext *s, arg_rr_e *a, 8727 const FPScalar1Int *fnormal, 8728 const FPScalar1Int *fah) 8729 { 8730 return do_fp1_scalar_int(s, a, s->fpcr_ah ? fah : fnormal, true); 8731 } 8732 8733 static const FPScalar1Int f_scalar_fmov = { 8734 tcg_gen_mov_i32, 8735 tcg_gen_mov_i32, 8736 tcg_gen_mov_i64, 8737 }; 8738 TRANS(FMOV_s, do_fp1_scalar_int, a, &f_scalar_fmov, false) 8739 8740 static const FPScalar1Int f_scalar_fabs = { 8741 gen_vfp_absh, 8742 gen_vfp_abss, 8743 gen_vfp_absd, 8744 }; 8745 static const FPScalar1Int f_scalar_ah_fabs = { 8746 gen_vfp_ah_absh, 8747 gen_vfp_ah_abss, 8748 gen_vfp_ah_absd, 8749 }; 8750 TRANS(FABS_s, do_fp1_scalar_int_2fn, a, &f_scalar_fabs, &f_scalar_ah_fabs) 8751 8752 static const FPScalar1Int f_scalar_fneg = { 8753 gen_vfp_negh, 8754 gen_vfp_negs, 8755 gen_vfp_negd, 8756 }; 8757 static const FPScalar1Int f_scalar_ah_fneg = { 8758 gen_vfp_ah_negh, 8759 gen_vfp_ah_negs, 8760 gen_vfp_ah_negd, 8761 }; 8762 TRANS(FNEG_s, do_fp1_scalar_int_2fn, a, &f_scalar_fneg, &f_scalar_ah_fneg) 8763 8764 typedef struct FPScalar1 { 8765 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_ptr); 8766 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_ptr); 8767 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_ptr); 8768 } FPScalar1; 8769 8770 static bool do_fp1_scalar_with_fpsttype(DisasContext *s, arg_rr_e *a, 8771 const FPScalar1 *f, int rmode, 8772 ARMFPStatusFlavour fpsttype) 8773 { 8774 TCGv_i32 tcg_rmode = NULL; 8775 TCGv_ptr fpst; 8776 TCGv_i64 t64; 8777 TCGv_i32 t32; 8778 int check = fp_access_check_scalar_hsd(s, a->esz); 8779 8780 if (check <= 0) { 8781 return check == 0; 8782 } 8783 8784 fpst = fpstatus_ptr(fpsttype); 8785 if (rmode >= 0) { 8786 tcg_rmode = gen_set_rmode(rmode, fpst); 8787 } 8788 8789 switch (a->esz) { 8790 case MO_64: 8791 t64 = read_fp_dreg(s, a->rn); 8792 f->gen_d(t64, t64, fpst); 8793 write_fp_dreg_merging(s, a->rd, a->rd, t64); 8794 break; 8795 case MO_32: 8796 t32 = read_fp_sreg(s, a->rn); 8797 f->gen_s(t32, t32, fpst); 8798 write_fp_sreg_merging(s, a->rd, a->rd, t32); 8799 break; 8800 case MO_16: 8801 t32 = read_fp_hreg(s, a->rn); 8802 f->gen_h(t32, t32, fpst); 8803 write_fp_hreg_merging(s, a->rd, a->rd, t32); 8804 break; 8805 default: 8806 g_assert_not_reached(); 8807 } 8808 8809 if (rmode >= 0) { 8810 gen_restore_rmode(tcg_rmode, fpst); 8811 } 8812 return true; 8813 } 8814 8815 static bool do_fp1_scalar(DisasContext *s, arg_rr_e *a, 8816 const FPScalar1 *f, int rmode) 8817 { 8818 return do_fp1_scalar_with_fpsttype(s, a, f, rmode, 8819 a->esz == MO_16 ? 8820 FPST_A64_F16 : FPST_A64); 8821 } 8822 8823 static bool do_fp1_scalar_ah(DisasContext *s, arg_rr_e *a, 8824 const FPScalar1 *f, int rmode) 8825 { 8826 return do_fp1_scalar_with_fpsttype(s, a, f, rmode, select_ah_fpst(s, a->esz)); 8827 } 8828 8829 static const FPScalar1 f_scalar_fsqrt = { 8830 gen_helper_vfp_sqrth, 8831 gen_helper_vfp_sqrts, 8832 gen_helper_vfp_sqrtd, 8833 }; 8834 TRANS(FSQRT_s, do_fp1_scalar, a, &f_scalar_fsqrt, -1) 8835 8836 static const FPScalar1 f_scalar_frint = { 8837 gen_helper_advsimd_rinth, 8838 gen_helper_rints, 8839 gen_helper_rintd, 8840 }; 8841 TRANS(FRINTN_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEEVEN) 8842 TRANS(FRINTP_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_POSINF) 8843 TRANS(FRINTM_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_NEGINF) 8844 TRANS(FRINTZ_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_ZERO) 8845 TRANS(FRINTA_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEAWAY) 8846 TRANS(FRINTI_s, do_fp1_scalar, a, &f_scalar_frint, -1) 8847 8848 static const FPScalar1 f_scalar_frintx = { 8849 gen_helper_advsimd_rinth_exact, 8850 gen_helper_rints_exact, 8851 gen_helper_rintd_exact, 8852 }; 8853 TRANS(FRINTX_s, do_fp1_scalar, a, &f_scalar_frintx, -1) 8854 8855 static bool trans_BFCVT_s(DisasContext *s, arg_rr_e *a) 8856 { 8857 ARMFPStatusFlavour fpsttype = s->fpcr_ah ? FPST_AH : FPST_A64; 8858 TCGv_i32 t32; 8859 int check; 8860 8861 if (!dc_isar_feature(aa64_bf16, s)) { 8862 return false; 8863 } 8864 8865 check = fp_access_check_scalar_hsd(s, a->esz); 8866 8867 if (check <= 0) { 8868 return check == 0; 8869 } 8870 8871 t32 = read_fp_sreg(s, a->rn); 8872 gen_helper_bfcvt(t32, t32, fpstatus_ptr(fpsttype)); 8873 write_fp_hreg_merging(s, a->rd, a->rd, t32); 8874 return true; 8875 } 8876 8877 static const FPScalar1 f_scalar_frint32 = { 8878 NULL, 8879 gen_helper_frint32_s, 8880 gen_helper_frint32_d, 8881 }; 8882 TRANS_FEAT(FRINT32Z_s, aa64_frint, do_fp1_scalar, a, 8883 &f_scalar_frint32, FPROUNDING_ZERO) 8884 TRANS_FEAT(FRINT32X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint32, -1) 8885 8886 static const FPScalar1 f_scalar_frint64 = { 8887 NULL, 8888 gen_helper_frint64_s, 8889 gen_helper_frint64_d, 8890 }; 8891 TRANS_FEAT(FRINT64Z_s, aa64_frint, do_fp1_scalar, a, 8892 &f_scalar_frint64, FPROUNDING_ZERO) 8893 TRANS_FEAT(FRINT64X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint64, -1) 8894 8895 static const FPScalar1 f_scalar_frecpe = { 8896 gen_helper_recpe_f16, 8897 gen_helper_recpe_f32, 8898 gen_helper_recpe_f64, 8899 }; 8900 static const FPScalar1 f_scalar_frecpe_rpres = { 8901 gen_helper_recpe_f16, 8902 gen_helper_recpe_rpres_f32, 8903 gen_helper_recpe_f64, 8904 }; 8905 TRANS(FRECPE_s, do_fp1_scalar_ah, a, 8906 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? 8907 &f_scalar_frecpe_rpres : &f_scalar_frecpe, -1) 8908 8909 static const FPScalar1 f_scalar_frecpx = { 8910 gen_helper_frecpx_f16, 8911 gen_helper_frecpx_f32, 8912 gen_helper_frecpx_f64, 8913 }; 8914 TRANS(FRECPX_s, do_fp1_scalar_ah, a, &f_scalar_frecpx, -1) 8915 8916 static const FPScalar1 f_scalar_frsqrte = { 8917 gen_helper_rsqrte_f16, 8918 gen_helper_rsqrte_f32, 8919 gen_helper_rsqrte_f64, 8920 }; 8921 static const FPScalar1 f_scalar_frsqrte_rpres = { 8922 gen_helper_rsqrte_f16, 8923 gen_helper_rsqrte_rpres_f32, 8924 gen_helper_rsqrte_f64, 8925 }; 8926 TRANS(FRSQRTE_s, do_fp1_scalar_ah, a, 8927 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? 8928 &f_scalar_frsqrte_rpres : &f_scalar_frsqrte, -1) 8929 8930 static bool trans_FCVT_s_ds(DisasContext *s, arg_rr *a) 8931 { 8932 if (fp_access_check(s)) { 8933 TCGv_i32 tcg_rn = read_fp_sreg(s, a->rn); 8934 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 8935 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 8936 8937 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, fpst); 8938 write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd); 8939 } 8940 return true; 8941 } 8942 8943 static bool trans_FCVT_s_hs(DisasContext *s, arg_rr *a) 8944 { 8945 if (fp_access_check(s)) { 8946 TCGv_i32 tmp = read_fp_sreg(s, a->rn); 8947 TCGv_i32 ahp = get_ahp_flag(); 8948 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 8949 8950 gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp); 8951 /* write_fp_hreg_merging is OK here because top half of result is zero */ 8952 write_fp_hreg_merging(s, a->rd, a->rd, tmp); 8953 } 8954 return true; 8955 } 8956 8957 static bool trans_FCVT_s_sd(DisasContext *s, arg_rr *a) 8958 { 8959 if (fp_access_check(s)) { 8960 TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn); 8961 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8962 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 8963 8964 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, fpst); 8965 write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd); 8966 } 8967 return true; 8968 } 8969 8970 static bool trans_FCVT_s_hd(DisasContext *s, arg_rr *a) 8971 { 8972 if (fp_access_check(s)) { 8973 TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn); 8974 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8975 TCGv_i32 ahp = get_ahp_flag(); 8976 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 8977 8978 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); 8979 /* write_fp_hreg_merging is OK here because top half of tcg_rd is zero */ 8980 write_fp_hreg_merging(s, a->rd, a->rd, tcg_rd); 8981 } 8982 return true; 8983 } 8984 8985 static bool trans_FCVT_s_sh(DisasContext *s, arg_rr *a) 8986 { 8987 if (fp_access_check(s)) { 8988 TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn); 8989 TCGv_i32 tcg_rd = tcg_temp_new_i32(); 8990 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16); 8991 TCGv_i32 tcg_ahp = get_ahp_flag(); 8992 8993 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 8994 write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd); 8995 } 8996 return true; 8997 } 8998 8999 static bool trans_FCVT_s_dh(DisasContext *s, arg_rr *a) 9000 { 9001 if (fp_access_check(s)) { 9002 TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn); 9003 TCGv_i64 tcg_rd = tcg_temp_new_i64(); 9004 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16); 9005 TCGv_i32 tcg_ahp = get_ahp_flag(); 9006 9007 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); 9008 write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd); 9009 } 9010 return true; 9011 } 9012 9013 static bool do_cvtf_scalar(DisasContext *s, MemOp esz, int rd, int shift, 9014 TCGv_i64 tcg_int, bool is_signed) 9015 { 9016 TCGv_ptr tcg_fpstatus; 9017 TCGv_i32 tcg_shift, tcg_single; 9018 TCGv_i64 tcg_double; 9019 9020 tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64); 9021 tcg_shift = tcg_constant_i32(shift); 9022 9023 switch (esz) { 9024 case MO_64: 9025 tcg_double = tcg_temp_new_i64(); 9026 if (is_signed) { 9027 gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus); 9028 } else { 9029 gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus); 9030 } 9031 write_fp_dreg_merging(s, rd, rd, tcg_double); 9032 break; 9033 9034 case MO_32: 9035 tcg_single = tcg_temp_new_i32(); 9036 if (is_signed) { 9037 gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); 9038 } else { 9039 gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); 9040 } 9041 write_fp_sreg_merging(s, rd, rd, tcg_single); 9042 break; 9043 9044 case MO_16: 9045 tcg_single = tcg_temp_new_i32(); 9046 if (is_signed) { 9047 gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); 9048 } else { 9049 gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); 9050 } 9051 write_fp_hreg_merging(s, rd, rd, tcg_single); 9052 break; 9053 9054 default: 9055 g_assert_not_reached(); 9056 } 9057 return true; 9058 } 9059 9060 static bool do_cvtf_g(DisasContext *s, arg_fcvt *a, bool is_signed) 9061 { 9062 TCGv_i64 tcg_int; 9063 int check = fp_access_check_scalar_hsd(s, a->esz); 9064 9065 if (check <= 0) { 9066 return check == 0; 9067 } 9068 9069 if (a->sf) { 9070 tcg_int = cpu_reg(s, a->rn); 9071 } else { 9072 tcg_int = read_cpu_reg(s, a->rn, true); 9073 if (is_signed) { 9074 tcg_gen_ext32s_i64(tcg_int, tcg_int); 9075 } else { 9076 tcg_gen_ext32u_i64(tcg_int, tcg_int); 9077 } 9078 } 9079 return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed); 9080 } 9081 9082 TRANS(SCVTF_g, do_cvtf_g, a, true) 9083 TRANS(UCVTF_g, do_cvtf_g, a, false) 9084 9085 /* 9086 * [US]CVTF (vector), scalar version. 9087 * Which sounds weird, but really just means input from fp register 9088 * instead of input from general register. Input and output element 9089 * size are always equal. 9090 */ 9091 static bool do_cvtf_f(DisasContext *s, arg_fcvt *a, bool is_signed) 9092 { 9093 TCGv_i64 tcg_int; 9094 int check = fp_access_check_scalar_hsd(s, a->esz); 9095 9096 if (check <= 0) { 9097 return check == 0; 9098 } 9099 9100 tcg_int = tcg_temp_new_i64(); 9101 read_vec_element(s, tcg_int, a->rn, 0, a->esz | (is_signed ? MO_SIGN : 0)); 9102 return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed); 9103 } 9104 9105 TRANS(SCVTF_f, do_cvtf_f, a, true) 9106 TRANS(UCVTF_f, do_cvtf_f, a, false) 9107 9108 static void do_fcvt_scalar(DisasContext *s, MemOp out, MemOp esz, 9109 TCGv_i64 tcg_out, int shift, int rn, 9110 ARMFPRounding rmode) 9111 { 9112 TCGv_ptr tcg_fpstatus; 9113 TCGv_i32 tcg_shift, tcg_rmode, tcg_single; 9114 9115 tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64); 9116 tcg_shift = tcg_constant_i32(shift); 9117 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); 9118 9119 switch (esz) { 9120 case MO_64: 9121 read_vec_element(s, tcg_out, rn, 0, MO_64); 9122 switch (out) { 9123 case MO_64 | MO_SIGN: 9124 gen_helper_vfp_tosqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus); 9125 break; 9126 case MO_64: 9127 gen_helper_vfp_touqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus); 9128 break; 9129 case MO_32 | MO_SIGN: 9130 gen_helper_vfp_tosld(tcg_out, tcg_out, tcg_shift, tcg_fpstatus); 9131 break; 9132 case MO_32: 9133 gen_helper_vfp_tould(tcg_out, tcg_out, tcg_shift, tcg_fpstatus); 9134 break; 9135 default: 9136 g_assert_not_reached(); 9137 } 9138 break; 9139 9140 case MO_32: 9141 tcg_single = read_fp_sreg(s, rn); 9142 switch (out) { 9143 case MO_64 | MO_SIGN: 9144 gen_helper_vfp_tosqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus); 9145 break; 9146 case MO_64: 9147 gen_helper_vfp_touqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus); 9148 break; 9149 case MO_32 | MO_SIGN: 9150 gen_helper_vfp_tosls(tcg_single, tcg_single, 9151 tcg_shift, tcg_fpstatus); 9152 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9153 break; 9154 case MO_32: 9155 gen_helper_vfp_touls(tcg_single, tcg_single, 9156 tcg_shift, tcg_fpstatus); 9157 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9158 break; 9159 default: 9160 g_assert_not_reached(); 9161 } 9162 break; 9163 9164 case MO_16: 9165 tcg_single = read_fp_hreg(s, rn); 9166 switch (out) { 9167 case MO_64 | MO_SIGN: 9168 gen_helper_vfp_tosqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus); 9169 break; 9170 case MO_64: 9171 gen_helper_vfp_touqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus); 9172 break; 9173 case MO_32 | MO_SIGN: 9174 gen_helper_vfp_toslh(tcg_single, tcg_single, 9175 tcg_shift, tcg_fpstatus); 9176 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9177 break; 9178 case MO_32: 9179 gen_helper_vfp_toulh(tcg_single, tcg_single, 9180 tcg_shift, tcg_fpstatus); 9181 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9182 break; 9183 case MO_16 | MO_SIGN: 9184 gen_helper_vfp_toshh(tcg_single, tcg_single, 9185 tcg_shift, tcg_fpstatus); 9186 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9187 break; 9188 case MO_16: 9189 gen_helper_vfp_touhh(tcg_single, tcg_single, 9190 tcg_shift, tcg_fpstatus); 9191 tcg_gen_extu_i32_i64(tcg_out, tcg_single); 9192 break; 9193 default: 9194 g_assert_not_reached(); 9195 } 9196 break; 9197 9198 default: 9199 g_assert_not_reached(); 9200 } 9201 9202 gen_restore_rmode(tcg_rmode, tcg_fpstatus); 9203 } 9204 9205 static bool do_fcvt_g(DisasContext *s, arg_fcvt *a, 9206 ARMFPRounding rmode, bool is_signed) 9207 { 9208 TCGv_i64 tcg_int; 9209 int check = fp_access_check_scalar_hsd(s, a->esz); 9210 9211 if (check <= 0) { 9212 return check == 0; 9213 } 9214 9215 tcg_int = cpu_reg(s, a->rd); 9216 do_fcvt_scalar(s, (a->sf ? MO_64 : MO_32) | (is_signed ? MO_SIGN : 0), 9217 a->esz, tcg_int, a->shift, a->rn, rmode); 9218 9219 if (!a->sf) { 9220 tcg_gen_ext32u_i64(tcg_int, tcg_int); 9221 } 9222 return true; 9223 } 9224 9225 TRANS(FCVTNS_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, true) 9226 TRANS(FCVTNU_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, false) 9227 TRANS(FCVTPS_g, do_fcvt_g, a, FPROUNDING_POSINF, true) 9228 TRANS(FCVTPU_g, do_fcvt_g, a, FPROUNDING_POSINF, false) 9229 TRANS(FCVTMS_g, do_fcvt_g, a, FPROUNDING_NEGINF, true) 9230 TRANS(FCVTMU_g, do_fcvt_g, a, FPROUNDING_NEGINF, false) 9231 TRANS(FCVTZS_g, do_fcvt_g, a, FPROUNDING_ZERO, true) 9232 TRANS(FCVTZU_g, do_fcvt_g, a, FPROUNDING_ZERO, false) 9233 TRANS(FCVTAS_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, true) 9234 TRANS(FCVTAU_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, false) 9235 9236 /* 9237 * FCVT* (vector), scalar version. 9238 * Which sounds weird, but really just means output to fp register 9239 * instead of output to general register. Input and output element 9240 * size are always equal. 9241 */ 9242 static bool do_fcvt_f(DisasContext *s, arg_fcvt *a, 9243 ARMFPRounding rmode, bool is_signed) 9244 { 9245 TCGv_i64 tcg_int; 9246 int check = fp_access_check_scalar_hsd(s, a->esz); 9247 9248 if (check <= 0) { 9249 return check == 0; 9250 } 9251 9252 tcg_int = tcg_temp_new_i64(); 9253 do_fcvt_scalar(s, a->esz | (is_signed ? MO_SIGN : 0), 9254 a->esz, tcg_int, a->shift, a->rn, rmode); 9255 9256 if (!s->fpcr_nep) { 9257 clear_vec(s, a->rd); 9258 } 9259 write_vec_element(s, tcg_int, a->rd, 0, a->esz); 9260 return true; 9261 } 9262 9263 TRANS(FCVTNS_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, true) 9264 TRANS(FCVTNU_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, false) 9265 TRANS(FCVTPS_f, do_fcvt_f, a, FPROUNDING_POSINF, true) 9266 TRANS(FCVTPU_f, do_fcvt_f, a, FPROUNDING_POSINF, false) 9267 TRANS(FCVTMS_f, do_fcvt_f, a, FPROUNDING_NEGINF, true) 9268 TRANS(FCVTMU_f, do_fcvt_f, a, FPROUNDING_NEGINF, false) 9269 TRANS(FCVTZS_f, do_fcvt_f, a, FPROUNDING_ZERO, true) 9270 TRANS(FCVTZU_f, do_fcvt_f, a, FPROUNDING_ZERO, false) 9271 TRANS(FCVTAS_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, true) 9272 TRANS(FCVTAU_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, false) 9273 9274 static bool trans_FJCVTZS(DisasContext *s, arg_FJCVTZS *a) 9275 { 9276 if (!dc_isar_feature(aa64_jscvt, s)) { 9277 return false; 9278 } 9279 if (fp_access_check(s)) { 9280 TCGv_i64 t = read_fp_dreg(s, a->rn); 9281 TCGv_ptr fpstatus = fpstatus_ptr(FPST_A64); 9282 9283 gen_helper_fjcvtzs(t, t, fpstatus); 9284 9285 tcg_gen_ext32u_i64(cpu_reg(s, a->rd), t); 9286 tcg_gen_extrh_i64_i32(cpu_ZF, t); 9287 tcg_gen_movi_i32(cpu_CF, 0); 9288 tcg_gen_movi_i32(cpu_NF, 0); 9289 tcg_gen_movi_i32(cpu_VF, 0); 9290 } 9291 return true; 9292 } 9293 9294 static bool trans_FMOV_hx(DisasContext *s, arg_rr *a) 9295 { 9296 if (!dc_isar_feature(aa64_fp16, s)) { 9297 return false; 9298 } 9299 if (fp_access_check(s)) { 9300 TCGv_i64 tcg_rn = cpu_reg(s, a->rn); 9301 TCGv_i64 tmp = tcg_temp_new_i64(); 9302 tcg_gen_ext16u_i64(tmp, tcg_rn); 9303 write_fp_dreg(s, a->rd, tmp); 9304 } 9305 return true; 9306 } 9307 9308 static bool trans_FMOV_sw(DisasContext *s, arg_rr *a) 9309 { 9310 if (fp_access_check(s)) { 9311 TCGv_i64 tcg_rn = cpu_reg(s, a->rn); 9312 TCGv_i64 tmp = tcg_temp_new_i64(); 9313 tcg_gen_ext32u_i64(tmp, tcg_rn); 9314 write_fp_dreg(s, a->rd, tmp); 9315 } 9316 return true; 9317 } 9318 9319 static bool trans_FMOV_dx(DisasContext *s, arg_rr *a) 9320 { 9321 if (fp_access_check(s)) { 9322 TCGv_i64 tcg_rn = cpu_reg(s, a->rn); 9323 write_fp_dreg(s, a->rd, tcg_rn); 9324 } 9325 return true; 9326 } 9327 9328 static bool trans_FMOV_ux(DisasContext *s, arg_rr *a) 9329 { 9330 if (fp_access_check(s)) { 9331 TCGv_i64 tcg_rn = cpu_reg(s, a->rn); 9332 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, a->rd)); 9333 clear_vec_high(s, true, a->rd); 9334 } 9335 return true; 9336 } 9337 9338 static bool trans_FMOV_xh(DisasContext *s, arg_rr *a) 9339 { 9340 if (!dc_isar_feature(aa64_fp16, s)) { 9341 return false; 9342 } 9343 if (fp_access_check(s)) { 9344 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 9345 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_16)); 9346 } 9347 return true; 9348 } 9349 9350 static bool trans_FMOV_ws(DisasContext *s, arg_rr *a) 9351 { 9352 if (fp_access_check(s)) { 9353 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 9354 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_32)); 9355 } 9356 return true; 9357 } 9358 9359 static bool trans_FMOV_xd(DisasContext *s, arg_rr *a) 9360 { 9361 if (fp_access_check(s)) { 9362 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 9363 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_64)); 9364 } 9365 return true; 9366 } 9367 9368 static bool trans_FMOV_xu(DisasContext *s, arg_rr *a) 9369 { 9370 if (fp_access_check(s)) { 9371 TCGv_i64 tcg_rd = cpu_reg(s, a->rd); 9372 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, a->rn)); 9373 } 9374 return true; 9375 } 9376 9377 typedef struct ENVScalar1 { 9378 NeonGenOneOpEnvFn *gen_bhs[3]; 9379 NeonGenOne64OpEnvFn *gen_d; 9380 } ENVScalar1; 9381 9382 static bool do_env_scalar1(DisasContext *s, arg_rr_e *a, const ENVScalar1 *f) 9383 { 9384 if (!fp_access_check(s)) { 9385 return true; 9386 } 9387 if (a->esz == MO_64) { 9388 TCGv_i64 t = read_fp_dreg(s, a->rn); 9389 f->gen_d(t, tcg_env, t); 9390 write_fp_dreg(s, a->rd, t); 9391 } else { 9392 TCGv_i32 t = tcg_temp_new_i32(); 9393 9394 read_vec_element_i32(s, t, a->rn, 0, a->esz); 9395 f->gen_bhs[a->esz](t, tcg_env, t); 9396 write_fp_sreg(s, a->rd, t); 9397 } 9398 return true; 9399 } 9400 9401 static bool do_env_vector1(DisasContext *s, arg_qrr_e *a, const ENVScalar1 *f) 9402 { 9403 if (a->esz == MO_64 && !a->q) { 9404 return false; 9405 } 9406 if (!fp_access_check(s)) { 9407 return true; 9408 } 9409 if (a->esz == MO_64) { 9410 TCGv_i64 t = tcg_temp_new_i64(); 9411 9412 for (int i = 0; i < 2; ++i) { 9413 read_vec_element(s, t, a->rn, i, MO_64); 9414 f->gen_d(t, tcg_env, t); 9415 write_vec_element(s, t, a->rd, i, MO_64); 9416 } 9417 } else { 9418 TCGv_i32 t = tcg_temp_new_i32(); 9419 int n = (a->q ? 16 : 8) >> a->esz; 9420 9421 for (int i = 0; i < n; ++i) { 9422 read_vec_element_i32(s, t, a->rn, i, a->esz); 9423 f->gen_bhs[a->esz](t, tcg_env, t); 9424 write_vec_element_i32(s, t, a->rd, i, a->esz); 9425 } 9426 } 9427 clear_vec_high(s, a->q, a->rd); 9428 return true; 9429 } 9430 9431 static const ENVScalar1 f_scalar_sqabs = { 9432 { gen_helper_neon_qabs_s8, 9433 gen_helper_neon_qabs_s16, 9434 gen_helper_neon_qabs_s32 }, 9435 gen_helper_neon_qabs_s64, 9436 }; 9437 TRANS(SQABS_s, do_env_scalar1, a, &f_scalar_sqabs) 9438 TRANS(SQABS_v, do_env_vector1, a, &f_scalar_sqabs) 9439 9440 static const ENVScalar1 f_scalar_sqneg = { 9441 { gen_helper_neon_qneg_s8, 9442 gen_helper_neon_qneg_s16, 9443 gen_helper_neon_qneg_s32 }, 9444 gen_helper_neon_qneg_s64, 9445 }; 9446 TRANS(SQNEG_s, do_env_scalar1, a, &f_scalar_sqneg) 9447 TRANS(SQNEG_v, do_env_vector1, a, &f_scalar_sqneg) 9448 9449 static bool do_scalar1_d(DisasContext *s, arg_rr *a, ArithOneOp *f) 9450 { 9451 if (fp_access_check(s)) { 9452 TCGv_i64 t = read_fp_dreg(s, a->rn); 9453 f(t, t); 9454 write_fp_dreg(s, a->rd, t); 9455 } 9456 return true; 9457 } 9458 9459 TRANS(ABS_s, do_scalar1_d, a, tcg_gen_abs_i64) 9460 TRANS(NEG_s, do_scalar1_d, a, tcg_gen_neg_i64) 9461 9462 static bool do_cmop0_d(DisasContext *s, arg_rr *a, TCGCond cond) 9463 { 9464 if (fp_access_check(s)) { 9465 TCGv_i64 t = read_fp_dreg(s, a->rn); 9466 tcg_gen_negsetcond_i64(cond, t, t, tcg_constant_i64(0)); 9467 write_fp_dreg(s, a->rd, t); 9468 } 9469 return true; 9470 } 9471 9472 TRANS(CMGT0_s, do_cmop0_d, a, TCG_COND_GT) 9473 TRANS(CMGE0_s, do_cmop0_d, a, TCG_COND_GE) 9474 TRANS(CMLE0_s, do_cmop0_d, a, TCG_COND_LE) 9475 TRANS(CMLT0_s, do_cmop0_d, a, TCG_COND_LT) 9476 TRANS(CMEQ0_s, do_cmop0_d, a, TCG_COND_EQ) 9477 9478 static bool do_2misc_narrow_scalar(DisasContext *s, arg_rr_e *a, 9479 ArithOneOp * const fn[3]) 9480 { 9481 if (a->esz == MO_64) { 9482 return false; 9483 } 9484 if (fp_access_check(s)) { 9485 TCGv_i64 t = tcg_temp_new_i64(); 9486 9487 read_vec_element(s, t, a->rn, 0, a->esz + 1); 9488 fn[a->esz](t, t); 9489 clear_vec(s, a->rd); 9490 write_vec_element(s, t, a->rd, 0, a->esz); 9491 } 9492 return true; 9493 } 9494 9495 #define WRAP_ENV(NAME) \ 9496 static void gen_##NAME(TCGv_i64 d, TCGv_i64 n) \ 9497 { gen_helper_##NAME(d, tcg_env, n); } 9498 9499 WRAP_ENV(neon_unarrow_sat8) 9500 WRAP_ENV(neon_unarrow_sat16) 9501 WRAP_ENV(neon_unarrow_sat32) 9502 9503 static ArithOneOp * const f_scalar_sqxtun[] = { 9504 gen_neon_unarrow_sat8, 9505 gen_neon_unarrow_sat16, 9506 gen_neon_unarrow_sat32, 9507 }; 9508 TRANS(SQXTUN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtun) 9509 9510 WRAP_ENV(neon_narrow_sat_s8) 9511 WRAP_ENV(neon_narrow_sat_s16) 9512 WRAP_ENV(neon_narrow_sat_s32) 9513 9514 static ArithOneOp * const f_scalar_sqxtn[] = { 9515 gen_neon_narrow_sat_s8, 9516 gen_neon_narrow_sat_s16, 9517 gen_neon_narrow_sat_s32, 9518 }; 9519 TRANS(SQXTN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtn) 9520 9521 WRAP_ENV(neon_narrow_sat_u8) 9522 WRAP_ENV(neon_narrow_sat_u16) 9523 WRAP_ENV(neon_narrow_sat_u32) 9524 9525 static ArithOneOp * const f_scalar_uqxtn[] = { 9526 gen_neon_narrow_sat_u8, 9527 gen_neon_narrow_sat_u16, 9528 gen_neon_narrow_sat_u32, 9529 }; 9530 TRANS(UQXTN_s, do_2misc_narrow_scalar, a, f_scalar_uqxtn) 9531 9532 static bool trans_FCVTXN_s(DisasContext *s, arg_rr_e *a) 9533 { 9534 if (fp_access_check(s)) { 9535 /* 9536 * 64 bit to 32 bit float conversion 9537 * with von Neumann rounding (round to odd) 9538 */ 9539 TCGv_i64 src = read_fp_dreg(s, a->rn); 9540 TCGv_i32 dst = tcg_temp_new_i32(); 9541 gen_helper_fcvtx_f64_to_f32(dst, src, fpstatus_ptr(FPST_A64)); 9542 write_fp_sreg_merging(s, a->rd, a->rd, dst); 9543 } 9544 return true; 9545 } 9546 9547 #undef WRAP_ENV 9548 9549 static bool do_gvec_fn2(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn) 9550 { 9551 if (!a->q && a->esz == MO_64) { 9552 return false; 9553 } 9554 if (fp_access_check(s)) { 9555 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz); 9556 } 9557 return true; 9558 } 9559 9560 TRANS(ABS_v, do_gvec_fn2, a, tcg_gen_gvec_abs) 9561 TRANS(NEG_v, do_gvec_fn2, a, tcg_gen_gvec_neg) 9562 TRANS(NOT_v, do_gvec_fn2, a, tcg_gen_gvec_not) 9563 TRANS(CNT_v, do_gvec_fn2, a, gen_gvec_cnt) 9564 TRANS(RBIT_v, do_gvec_fn2, a, gen_gvec_rbit) 9565 TRANS(CMGT0_v, do_gvec_fn2, a, gen_gvec_cgt0) 9566 TRANS(CMGE0_v, do_gvec_fn2, a, gen_gvec_cge0) 9567 TRANS(CMLT0_v, do_gvec_fn2, a, gen_gvec_clt0) 9568 TRANS(CMLE0_v, do_gvec_fn2, a, gen_gvec_cle0) 9569 TRANS(CMEQ0_v, do_gvec_fn2, a, gen_gvec_ceq0) 9570 TRANS(REV16_v, do_gvec_fn2, a, gen_gvec_rev16) 9571 TRANS(REV32_v, do_gvec_fn2, a, gen_gvec_rev32) 9572 TRANS(URECPE_v, do_gvec_fn2, a, gen_gvec_urecpe) 9573 TRANS(URSQRTE_v, do_gvec_fn2, a, gen_gvec_ursqrte) 9574 9575 static bool do_gvec_fn2_bhs(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn) 9576 { 9577 if (a->esz == MO_64) { 9578 return false; 9579 } 9580 if (fp_access_check(s)) { 9581 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz); 9582 } 9583 return true; 9584 } 9585 9586 TRANS(CLS_v, do_gvec_fn2_bhs, a, gen_gvec_cls) 9587 TRANS(CLZ_v, do_gvec_fn2_bhs, a, gen_gvec_clz) 9588 TRANS(REV64_v, do_gvec_fn2_bhs, a, gen_gvec_rev64) 9589 TRANS(SADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_saddlp) 9590 TRANS(UADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_uaddlp) 9591 TRANS(SADALP_v, do_gvec_fn2_bhs, a, gen_gvec_sadalp) 9592 TRANS(UADALP_v, do_gvec_fn2_bhs, a, gen_gvec_uadalp) 9593 9594 static bool do_2misc_narrow_vector(DisasContext *s, arg_qrr_e *a, 9595 ArithOneOp * const fn[3]) 9596 { 9597 if (a->esz == MO_64) { 9598 return false; 9599 } 9600 if (fp_access_check(s)) { 9601 TCGv_i64 t0 = tcg_temp_new_i64(); 9602 TCGv_i64 t1 = tcg_temp_new_i64(); 9603 9604 read_vec_element(s, t0, a->rn, 0, MO_64); 9605 read_vec_element(s, t1, a->rn, 1, MO_64); 9606 fn[a->esz](t0, t0); 9607 fn[a->esz](t1, t1); 9608 write_vec_element(s, t0, a->rd, a->q ? 2 : 0, MO_32); 9609 write_vec_element(s, t1, a->rd, a->q ? 3 : 1, MO_32); 9610 clear_vec_high(s, a->q, a->rd); 9611 } 9612 return true; 9613 } 9614 9615 static ArithOneOp * const f_scalar_xtn[] = { 9616 gen_helper_neon_narrow_u8, 9617 gen_helper_neon_narrow_u16, 9618 tcg_gen_ext32u_i64, 9619 }; 9620 TRANS(XTN, do_2misc_narrow_vector, a, f_scalar_xtn) 9621 TRANS(SQXTUN_v, do_2misc_narrow_vector, a, f_scalar_sqxtun) 9622 TRANS(SQXTN_v, do_2misc_narrow_vector, a, f_scalar_sqxtn) 9623 TRANS(UQXTN_v, do_2misc_narrow_vector, a, f_scalar_uqxtn) 9624 9625 static void gen_fcvtn_hs(TCGv_i64 d, TCGv_i64 n) 9626 { 9627 TCGv_i32 tcg_lo = tcg_temp_new_i32(); 9628 TCGv_i32 tcg_hi = tcg_temp_new_i32(); 9629 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 9630 TCGv_i32 ahp = get_ahp_flag(); 9631 9632 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, n); 9633 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); 9634 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); 9635 tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16); 9636 tcg_gen_extu_i32_i64(d, tcg_lo); 9637 } 9638 9639 static void gen_fcvtn_sd(TCGv_i64 d, TCGv_i64 n) 9640 { 9641 TCGv_i32 tmp = tcg_temp_new_i32(); 9642 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 9643 9644 gen_helper_vfp_fcvtsd(tmp, n, fpst); 9645 tcg_gen_extu_i32_i64(d, tmp); 9646 } 9647 9648 static void gen_fcvtxn_sd(TCGv_i64 d, TCGv_i64 n) 9649 { 9650 /* 9651 * 64 bit to 32 bit float conversion 9652 * with von Neumann rounding (round to odd) 9653 */ 9654 TCGv_i32 tmp = tcg_temp_new_i32(); 9655 gen_helper_fcvtx_f64_to_f32(tmp, n, fpstatus_ptr(FPST_A64)); 9656 tcg_gen_extu_i32_i64(d, tmp); 9657 } 9658 9659 static ArithOneOp * const f_vector_fcvtn[] = { 9660 NULL, 9661 gen_fcvtn_hs, 9662 gen_fcvtn_sd, 9663 }; 9664 static ArithOneOp * const f_scalar_fcvtxn[] = { 9665 NULL, 9666 NULL, 9667 gen_fcvtxn_sd, 9668 }; 9669 TRANS(FCVTN_v, do_2misc_narrow_vector, a, f_vector_fcvtn) 9670 TRANS(FCVTXN_v, do_2misc_narrow_vector, a, f_scalar_fcvtxn) 9671 9672 static void gen_bfcvtn_hs(TCGv_i64 d, TCGv_i64 n) 9673 { 9674 TCGv_ptr fpst = fpstatus_ptr(FPST_A64); 9675 TCGv_i32 tmp = tcg_temp_new_i32(); 9676 gen_helper_bfcvt_pair(tmp, n, fpst); 9677 tcg_gen_extu_i32_i64(d, tmp); 9678 } 9679 9680 static void gen_bfcvtn_ah_hs(TCGv_i64 d, TCGv_i64 n) 9681 { 9682 TCGv_ptr fpst = fpstatus_ptr(FPST_AH); 9683 TCGv_i32 tmp = tcg_temp_new_i32(); 9684 gen_helper_bfcvt_pair(tmp, n, fpst); 9685 tcg_gen_extu_i32_i64(d, tmp); 9686 } 9687 9688 static ArithOneOp * const f_vector_bfcvtn[2][3] = { 9689 { 9690 NULL, 9691 gen_bfcvtn_hs, 9692 NULL, 9693 }, { 9694 NULL, 9695 gen_bfcvtn_ah_hs, 9696 NULL, 9697 } 9698 }; 9699 TRANS_FEAT(BFCVTN_v, aa64_bf16, do_2misc_narrow_vector, a, 9700 f_vector_bfcvtn[s->fpcr_ah]) 9701 9702 static bool trans_SHLL_v(DisasContext *s, arg_qrr_e *a) 9703 { 9704 static NeonGenWidenFn * const widenfns[3] = { 9705 gen_helper_neon_widen_u8, 9706 gen_helper_neon_widen_u16, 9707 tcg_gen_extu_i32_i64, 9708 }; 9709 NeonGenWidenFn *widenfn; 9710 TCGv_i64 tcg_res[2]; 9711 TCGv_i32 tcg_op; 9712 int part, pass; 9713 9714 if (a->esz == MO_64) { 9715 return false; 9716 } 9717 if (!fp_access_check(s)) { 9718 return true; 9719 } 9720 9721 tcg_op = tcg_temp_new_i32(); 9722 widenfn = widenfns[a->esz]; 9723 part = a->q ? 2 : 0; 9724 9725 for (pass = 0; pass < 2; pass++) { 9726 read_vec_element_i32(s, tcg_op, a->rn, part + pass, MO_32); 9727 tcg_res[pass] = tcg_temp_new_i64(); 9728 widenfn(tcg_res[pass], tcg_op); 9729 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << a->esz); 9730 } 9731 9732 for (pass = 0; pass < 2; pass++) { 9733 write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64); 9734 } 9735 return true; 9736 } 9737 9738 static bool do_fabs_fneg_v(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn) 9739 { 9740 int check = fp_access_check_vector_hsd(s, a->q, a->esz); 9741 9742 if (check <= 0) { 9743 return check == 0; 9744 } 9745 9746 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz); 9747 return true; 9748 } 9749 9750 TRANS(FABS_v, do_fabs_fneg_v, a, gen_gvec_fabs) 9751 TRANS(FNEG_v, do_fabs_fneg_v, a, gen_gvec_fneg) 9752 9753 static bool do_fp1_vector(DisasContext *s, arg_qrr_e *a, 9754 const FPScalar1 *f, int rmode) 9755 { 9756 TCGv_i32 tcg_rmode = NULL; 9757 TCGv_ptr fpst; 9758 int check = fp_access_check_vector_hsd(s, a->q, a->esz); 9759 9760 if (check <= 0) { 9761 return check == 0; 9762 } 9763 9764 fpst = fpstatus_ptr(a->esz == MO_16 ? FPST_A64_F16 : FPST_A64); 9765 if (rmode >= 0) { 9766 tcg_rmode = gen_set_rmode(rmode, fpst); 9767 } 9768 9769 if (a->esz == MO_64) { 9770 TCGv_i64 t64 = tcg_temp_new_i64(); 9771 9772 for (int pass = 0; pass < 2; ++pass) { 9773 read_vec_element(s, t64, a->rn, pass, MO_64); 9774 f->gen_d(t64, t64, fpst); 9775 write_vec_element(s, t64, a->rd, pass, MO_64); 9776 } 9777 } else { 9778 TCGv_i32 t32 = tcg_temp_new_i32(); 9779 void (*gen)(TCGv_i32, TCGv_i32, TCGv_ptr) 9780 = (a->esz == MO_16 ? f->gen_h : f->gen_s); 9781 9782 for (int pass = 0, n = (a->q ? 16 : 8) >> a->esz; pass < n; ++pass) { 9783 read_vec_element_i32(s, t32, a->rn, pass, a->esz); 9784 gen(t32, t32, fpst); 9785 write_vec_element_i32(s, t32, a->rd, pass, a->esz); 9786 } 9787 } 9788 clear_vec_high(s, a->q, a->rd); 9789 9790 if (rmode >= 0) { 9791 gen_restore_rmode(tcg_rmode, fpst); 9792 } 9793 return true; 9794 } 9795 9796 TRANS(FSQRT_v, do_fp1_vector, a, &f_scalar_fsqrt, -1) 9797 9798 TRANS(FRINTN_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEEVEN) 9799 TRANS(FRINTP_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_POSINF) 9800 TRANS(FRINTM_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_NEGINF) 9801 TRANS(FRINTZ_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_ZERO) 9802 TRANS(FRINTA_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEAWAY) 9803 TRANS(FRINTI_v, do_fp1_vector, a, &f_scalar_frint, -1) 9804 TRANS(FRINTX_v, do_fp1_vector, a, &f_scalar_frintx, -1) 9805 9806 TRANS_FEAT(FRINT32Z_v, aa64_frint, do_fp1_vector, a, 9807 &f_scalar_frint32, FPROUNDING_ZERO) 9808 TRANS_FEAT(FRINT32X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint32, -1) 9809 TRANS_FEAT(FRINT64Z_v, aa64_frint, do_fp1_vector, a, 9810 &f_scalar_frint64, FPROUNDING_ZERO) 9811 TRANS_FEAT(FRINT64X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint64, -1) 9812 9813 static bool do_gvec_op2_fpst_with_fpsttype(DisasContext *s, MemOp esz, 9814 bool is_q, int rd, int rn, int data, 9815 gen_helper_gvec_2_ptr * const fns[3], 9816 ARMFPStatusFlavour fpsttype) 9817 { 9818 int check = fp_access_check_vector_hsd(s, is_q, esz); 9819 TCGv_ptr fpst; 9820 9821 if (check <= 0) { 9822 return check == 0; 9823 } 9824 9825 fpst = fpstatus_ptr(fpsttype); 9826 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), 9827 vec_full_reg_offset(s, rn), fpst, 9828 is_q ? 16 : 8, vec_full_reg_size(s), 9829 data, fns[esz - 1]); 9830 return true; 9831 } 9832 9833 static bool do_gvec_op2_fpst(DisasContext *s, MemOp esz, bool is_q, 9834 int rd, int rn, int data, 9835 gen_helper_gvec_2_ptr * const fns[3]) 9836 { 9837 return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, fns, 9838 esz == MO_16 ? FPST_A64_F16 : 9839 FPST_A64); 9840 } 9841 9842 static bool do_gvec_op2_ah_fpst(DisasContext *s, MemOp esz, bool is_q, 9843 int rd, int rn, int data, 9844 gen_helper_gvec_2_ptr * const fns[3]) 9845 { 9846 return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, 9847 fns, select_ah_fpst(s, esz)); 9848 } 9849 9850 static gen_helper_gvec_2_ptr * const f_scvtf_v[] = { 9851 gen_helper_gvec_vcvt_sh, 9852 gen_helper_gvec_vcvt_sf, 9853 gen_helper_gvec_vcvt_sd, 9854 }; 9855 TRANS(SCVTF_vi, do_gvec_op2_fpst, 9856 a->esz, a->q, a->rd, a->rn, 0, f_scvtf_v) 9857 TRANS(SCVTF_vf, do_gvec_op2_fpst, 9858 a->esz, a->q, a->rd, a->rn, a->shift, f_scvtf_v) 9859 9860 static gen_helper_gvec_2_ptr * const f_ucvtf_v[] = { 9861 gen_helper_gvec_vcvt_uh, 9862 gen_helper_gvec_vcvt_uf, 9863 gen_helper_gvec_vcvt_ud, 9864 }; 9865 TRANS(UCVTF_vi, do_gvec_op2_fpst, 9866 a->esz, a->q, a->rd, a->rn, 0, f_ucvtf_v) 9867 TRANS(UCVTF_vf, do_gvec_op2_fpst, 9868 a->esz, a->q, a->rd, a->rn, a->shift, f_ucvtf_v) 9869 9870 static gen_helper_gvec_2_ptr * const f_fcvtzs_vf[] = { 9871 gen_helper_gvec_vcvt_rz_hs, 9872 gen_helper_gvec_vcvt_rz_fs, 9873 gen_helper_gvec_vcvt_rz_ds, 9874 }; 9875 TRANS(FCVTZS_vf, do_gvec_op2_fpst, 9876 a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzs_vf) 9877 9878 static gen_helper_gvec_2_ptr * const f_fcvtzu_vf[] = { 9879 gen_helper_gvec_vcvt_rz_hu, 9880 gen_helper_gvec_vcvt_rz_fu, 9881 gen_helper_gvec_vcvt_rz_du, 9882 }; 9883 TRANS(FCVTZU_vf, do_gvec_op2_fpst, 9884 a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzu_vf) 9885 9886 static gen_helper_gvec_2_ptr * const f_fcvt_s_vi[] = { 9887 gen_helper_gvec_vcvt_rm_sh, 9888 gen_helper_gvec_vcvt_rm_ss, 9889 gen_helper_gvec_vcvt_rm_sd, 9890 }; 9891 9892 static gen_helper_gvec_2_ptr * const f_fcvt_u_vi[] = { 9893 gen_helper_gvec_vcvt_rm_uh, 9894 gen_helper_gvec_vcvt_rm_us, 9895 gen_helper_gvec_vcvt_rm_ud, 9896 }; 9897 9898 TRANS(FCVTNS_vi, do_gvec_op2_fpst, 9899 a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_s_vi) 9900 TRANS(FCVTNU_vi, do_gvec_op2_fpst, 9901 a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_u_vi) 9902 TRANS(FCVTPS_vi, do_gvec_op2_fpst, 9903 a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_s_vi) 9904 TRANS(FCVTPU_vi, do_gvec_op2_fpst, 9905 a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_u_vi) 9906 TRANS(FCVTMS_vi, do_gvec_op2_fpst, 9907 a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_s_vi) 9908 TRANS(FCVTMU_vi, do_gvec_op2_fpst, 9909 a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_u_vi) 9910 TRANS(FCVTZS_vi, do_gvec_op2_fpst, 9911 a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_s_vi) 9912 TRANS(FCVTZU_vi, do_gvec_op2_fpst, 9913 a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_u_vi) 9914 TRANS(FCVTAS_vi, do_gvec_op2_fpst, 9915 a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_s_vi) 9916 TRANS(FCVTAU_vi, do_gvec_op2_fpst, 9917 a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_u_vi) 9918 9919 static gen_helper_gvec_2_ptr * const f_fceq0[] = { 9920 gen_helper_gvec_fceq0_h, 9921 gen_helper_gvec_fceq0_s, 9922 gen_helper_gvec_fceq0_d, 9923 }; 9924 TRANS(FCMEQ0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fceq0) 9925 9926 static gen_helper_gvec_2_ptr * const f_fcgt0[] = { 9927 gen_helper_gvec_fcgt0_h, 9928 gen_helper_gvec_fcgt0_s, 9929 gen_helper_gvec_fcgt0_d, 9930 }; 9931 TRANS(FCMGT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcgt0) 9932 9933 static gen_helper_gvec_2_ptr * const f_fcge0[] = { 9934 gen_helper_gvec_fcge0_h, 9935 gen_helper_gvec_fcge0_s, 9936 gen_helper_gvec_fcge0_d, 9937 }; 9938 TRANS(FCMGE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcge0) 9939 9940 static gen_helper_gvec_2_ptr * const f_fclt0[] = { 9941 gen_helper_gvec_fclt0_h, 9942 gen_helper_gvec_fclt0_s, 9943 gen_helper_gvec_fclt0_d, 9944 }; 9945 TRANS(FCMLT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fclt0) 9946 9947 static gen_helper_gvec_2_ptr * const f_fcle0[] = { 9948 gen_helper_gvec_fcle0_h, 9949 gen_helper_gvec_fcle0_s, 9950 gen_helper_gvec_fcle0_d, 9951 }; 9952 TRANS(FCMLE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcle0) 9953 9954 static gen_helper_gvec_2_ptr * const f_frecpe[] = { 9955 gen_helper_gvec_frecpe_h, 9956 gen_helper_gvec_frecpe_s, 9957 gen_helper_gvec_frecpe_d, 9958 }; 9959 static gen_helper_gvec_2_ptr * const f_frecpe_rpres[] = { 9960 gen_helper_gvec_frecpe_h, 9961 gen_helper_gvec_frecpe_rpres_s, 9962 gen_helper_gvec_frecpe_d, 9963 }; 9964 TRANS(FRECPE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0, 9965 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frecpe_rpres : f_frecpe) 9966 9967 static gen_helper_gvec_2_ptr * const f_frsqrte[] = { 9968 gen_helper_gvec_frsqrte_h, 9969 gen_helper_gvec_frsqrte_s, 9970 gen_helper_gvec_frsqrte_d, 9971 }; 9972 static gen_helper_gvec_2_ptr * const f_frsqrte_rpres[] = { 9973 gen_helper_gvec_frsqrte_h, 9974 gen_helper_gvec_frsqrte_rpres_s, 9975 gen_helper_gvec_frsqrte_d, 9976 }; 9977 TRANS(FRSQRTE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0, 9978 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frsqrte_rpres : f_frsqrte) 9979 9980 static bool trans_FCVTL_v(DisasContext *s, arg_qrr_e *a) 9981 { 9982 /* Handle 2-reg-misc ops which are widening (so each size element 9983 * in the source becomes a 2*size element in the destination. 9984 * The only instruction like this is FCVTL. 9985 */ 9986 int pass; 9987 TCGv_ptr fpst; 9988 9989 if (!fp_access_check(s)) { 9990 return true; 9991 } 9992 9993 if (a->esz == MO_64) { 9994 /* 32 -> 64 bit fp conversion */ 9995 TCGv_i64 tcg_res[2]; 9996 TCGv_i32 tcg_op = tcg_temp_new_i32(); 9997 int srcelt = a->q ? 2 : 0; 9998 9999 fpst = fpstatus_ptr(FPST_A64); 10000 10001 for (pass = 0; pass < 2; pass++) { 10002 tcg_res[pass] = tcg_temp_new_i64(); 10003 read_vec_element_i32(s, tcg_op, a->rn, srcelt + pass, MO_32); 10004 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, fpst); 10005 } 10006 for (pass = 0; pass < 2; pass++) { 10007 write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64); 10008 } 10009 } else { 10010 /* 16 -> 32 bit fp conversion */ 10011 int srcelt = a->q ? 4 : 0; 10012 TCGv_i32 tcg_res[4]; 10013 TCGv_i32 ahp = get_ahp_flag(); 10014 10015 fpst = fpstatus_ptr(FPST_A64_F16); 10016 10017 for (pass = 0; pass < 4; pass++) { 10018 tcg_res[pass] = tcg_temp_new_i32(); 10019 read_vec_element_i32(s, tcg_res[pass], a->rn, srcelt + pass, MO_16); 10020 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], 10021 fpst, ahp); 10022 } 10023 for (pass = 0; pass < 4; pass++) { 10024 write_vec_element_i32(s, tcg_res[pass], a->rd, pass, MO_32); 10025 } 10026 } 10027 clear_vec_high(s, true, a->rd); 10028 return true; 10029 } 10030 10031 static bool trans_OK(DisasContext *s, arg_OK *a) 10032 { 10033 return true; 10034 } 10035 10036 static bool trans_FAIL(DisasContext *s, arg_OK *a) 10037 { 10038 s->is_nonstreaming = true; 10039 return true; 10040 } 10041 10042 /** 10043 * btype_destination_ok: 10044 * @insn: The instruction at the branch destination 10045 * @bt: SCTLR_ELx.BT 10046 * @btype: PSTATE.BTYPE, and is non-zero 10047 * 10048 * On a guarded page, there are a limited number of insns 10049 * that may be present at the branch target: 10050 * - branch target identifiers, 10051 * - paciasp, pacibsp, 10052 * - BRK insn 10053 * - HLT insn 10054 * Anything else causes a Branch Target Exception. 10055 * 10056 * Return true if the branch is compatible, false to raise BTITRAP. 10057 */ 10058 static bool btype_destination_ok(uint32_t insn, bool bt, int btype) 10059 { 10060 if ((insn & 0xfffff01fu) == 0xd503201fu) { 10061 /* HINT space */ 10062 switch (extract32(insn, 5, 7)) { 10063 case 0b011001: /* PACIASP */ 10064 case 0b011011: /* PACIBSP */ 10065 /* 10066 * If SCTLR_ELx.BT, then PACI*SP are not compatible 10067 * with btype == 3. Otherwise all btype are ok. 10068 */ 10069 return !bt || btype != 3; 10070 case 0b100000: /* BTI */ 10071 /* Not compatible with any btype. */ 10072 return false; 10073 case 0b100010: /* BTI c */ 10074 /* Not compatible with btype == 3 */ 10075 return btype != 3; 10076 case 0b100100: /* BTI j */ 10077 /* Not compatible with btype == 2 */ 10078 return btype != 2; 10079 case 0b100110: /* BTI jc */ 10080 /* Compatible with any btype. */ 10081 return true; 10082 } 10083 } else { 10084 switch (insn & 0xffe0001fu) { 10085 case 0xd4200000u: /* BRK */ 10086 case 0xd4400000u: /* HLT */ 10087 /* Give priority to the breakpoint exception. */ 10088 return true; 10089 } 10090 } 10091 return false; 10092 } 10093 10094 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, 10095 CPUState *cpu) 10096 { 10097 DisasContext *dc = container_of(dcbase, DisasContext, base); 10098 CPUARMState *env = cpu_env(cpu); 10099 ARMCPU *arm_cpu = env_archcpu(env); 10100 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); 10101 int bound, core_mmu_idx; 10102 10103 dc->isar = &arm_cpu->isar; 10104 dc->condjmp = 0; 10105 dc->pc_save = dc->base.pc_first; 10106 dc->aarch64 = true; 10107 dc->thumb = false; 10108 dc->sctlr_b = 0; 10109 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; 10110 dc->condexec_mask = 0; 10111 dc->condexec_cond = 0; 10112 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); 10113 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); 10114 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); 10115 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); 10116 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); 10117 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); 10118 #if !defined(CONFIG_USER_ONLY) 10119 dc->user = (dc->current_el == 0); 10120 #endif 10121 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); 10122 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); 10123 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); 10124 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); 10125 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); 10126 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); 10127 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); 10128 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); 10129 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; 10130 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; 10131 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); 10132 dc->bt = EX_TBFLAG_A64(tb_flags, BT); 10133 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); 10134 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); 10135 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); 10136 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); 10137 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); 10138 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); 10139 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); 10140 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); 10141 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); 10142 dc->naa = EX_TBFLAG_A64(tb_flags, NAA); 10143 dc->nv = EX_TBFLAG_A64(tb_flags, NV); 10144 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); 10145 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); 10146 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); 10147 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); 10148 dc->fpcr_ah = EX_TBFLAG_A64(tb_flags, AH); 10149 dc->fpcr_nep = EX_TBFLAG_A64(tb_flags, NEP); 10150 dc->vec_len = 0; 10151 dc->vec_stride = 0; 10152 dc->cp_regs = arm_cpu->cp_regs; 10153 dc->features = env->features; 10154 dc->dcz_blocksize = arm_cpu->dcz_blocksize; 10155 dc->gm_blocksize = arm_cpu->gm_blocksize; 10156 10157 #ifdef CONFIG_USER_ONLY 10158 /* In sve_probe_page, we assume TBI is enabled. */ 10159 tcg_debug_assert(dc->tbid & 1); 10160 #endif 10161 10162 dc->lse2 = dc_isar_feature(aa64_lse2, dc); 10163 10164 /* Single step state. The code-generation logic here is: 10165 * SS_ACTIVE == 0: 10166 * generate code with no special handling for single-stepping (except 10167 * that anything that can make us go to SS_ACTIVE == 1 must end the TB; 10168 * this happens anyway because those changes are all system register or 10169 * PSTATE writes). 10170 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) 10171 * emit code for one insn 10172 * emit code to clear PSTATE.SS 10173 * emit code to generate software step exception for completed step 10174 * end TB (as usual for having generated an exception) 10175 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) 10176 * emit code to generate a software step exception 10177 * end the TB 10178 */ 10179 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); 10180 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); 10181 dc->is_ldex = false; 10182 10183 /* Bound the number of insns to execute to those left on the page. */ 10184 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; 10185 10186 /* If architectural single step active, limit to 1. */ 10187 if (dc->ss_active) { 10188 bound = 1; 10189 } 10190 dc->base.max_insns = MIN(dc->base.max_insns, bound); 10191 } 10192 10193 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) 10194 { 10195 } 10196 10197 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 10198 { 10199 DisasContext *dc = container_of(dcbase, DisasContext, base); 10200 target_ulong pc_arg = dc->base.pc_next; 10201 10202 if (tb_cflags(dcbase->tb) & CF_PCREL) { 10203 pc_arg &= ~TARGET_PAGE_MASK; 10204 } 10205 tcg_gen_insn_start(pc_arg, 0, 0); 10206 dc->insn_start_updated = false; 10207 } 10208 10209 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 10210 { 10211 DisasContext *s = container_of(dcbase, DisasContext, base); 10212 CPUARMState *env = cpu_env(cpu); 10213 uint64_t pc = s->base.pc_next; 10214 uint32_t insn; 10215 10216 /* Singlestep exceptions have the highest priority. */ 10217 if (s->ss_active && !s->pstate_ss) { 10218 /* Singlestep state is Active-pending. 10219 * If we're in this state at the start of a TB then either 10220 * a) we just took an exception to an EL which is being debugged 10221 * and this is the first insn in the exception handler 10222 * b) debug exceptions were masked and we just unmasked them 10223 * without changing EL (eg by clearing PSTATE.D) 10224 * In either case we're going to take a swstep exception in the 10225 * "did not step an insn" case, and so the syndrome ISV and EX 10226 * bits should be zero. 10227 */ 10228 assert(s->base.num_insns == 1); 10229 gen_swstep_exception(s, 0, 0); 10230 s->base.is_jmp = DISAS_NORETURN; 10231 s->base.pc_next = pc + 4; 10232 return; 10233 } 10234 10235 if (pc & 3) { 10236 /* 10237 * PC alignment fault. This has priority over the instruction abort 10238 * that we would receive from a translation fault via arm_ldl_code. 10239 * This should only be possible after an indirect branch, at the 10240 * start of the TB. 10241 */ 10242 assert(s->base.num_insns == 1); 10243 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_vaddr(pc)); 10244 s->base.is_jmp = DISAS_NORETURN; 10245 s->base.pc_next = QEMU_ALIGN_UP(pc, 4); 10246 return; 10247 } 10248 10249 s->pc_curr = pc; 10250 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); 10251 s->insn = insn; 10252 s->base.pc_next = pc + 4; 10253 10254 s->fp_access_checked = 0; 10255 s->sve_access_checked = 0; 10256 10257 if (s->pstate_il) { 10258 /* 10259 * Illegal execution state. This has priority over BTI 10260 * exceptions, but comes after instruction abort exceptions. 10261 */ 10262 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); 10263 return; 10264 } 10265 10266 if (dc_isar_feature(aa64_bti, s)) { 10267 if (s->base.num_insns == 1) { 10268 /* First insn can have btype set to non-zero. */ 10269 tcg_debug_assert(s->btype >= 0); 10270 10271 /* 10272 * Note that the Branch Target Exception has fairly high 10273 * priority -- below debugging exceptions but above most 10274 * everything else. This allows us to handle this now 10275 * instead of waiting until the insn is otherwise decoded. 10276 * 10277 * We can check all but the guarded page check here; 10278 * defer the latter to a helper. 10279 */ 10280 if (s->btype != 0 10281 && !btype_destination_ok(insn, s->bt, s->btype)) { 10282 gen_helper_guarded_page_check(tcg_env); 10283 } 10284 } else { 10285 /* Not the first insn: btype must be 0. */ 10286 tcg_debug_assert(s->btype == 0); 10287 } 10288 } 10289 10290 s->is_nonstreaming = false; 10291 if (s->sme_trap_nonstreaming) { 10292 disas_sme_fa64(s, insn); 10293 } 10294 10295 if (!disas_a64(s, insn) && 10296 !disas_sme(s, insn) && 10297 !disas_sve(s, insn)) { 10298 unallocated_encoding(s); 10299 } 10300 10301 /* 10302 * After execution of most insns, btype is reset to 0. 10303 * Note that we set btype == -1 when the insn sets btype. 10304 */ 10305 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { 10306 reset_btype(s); 10307 } 10308 } 10309 10310 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 10311 { 10312 DisasContext *dc = container_of(dcbase, DisasContext, base); 10313 10314 if (unlikely(dc->ss_active)) { 10315 /* Note that this means single stepping WFI doesn't halt the CPU. 10316 * For conditional branch insns this is harmless unreachable code as 10317 * gen_goto_tb() has already handled emitting the debug exception 10318 * (and thus a tb-jump is not possible when singlestepping). 10319 */ 10320 switch (dc->base.is_jmp) { 10321 default: 10322 gen_a64_update_pc(dc, 4); 10323 /* fall through */ 10324 case DISAS_EXIT: 10325 case DISAS_JUMP: 10326 gen_step_complete_exception(dc); 10327 break; 10328 case DISAS_NORETURN: 10329 break; 10330 } 10331 } else { 10332 switch (dc->base.is_jmp) { 10333 case DISAS_NEXT: 10334 case DISAS_TOO_MANY: 10335 gen_goto_tb(dc, 1, 4); 10336 break; 10337 default: 10338 case DISAS_UPDATE_EXIT: 10339 gen_a64_update_pc(dc, 4); 10340 /* fall through */ 10341 case DISAS_EXIT: 10342 tcg_gen_exit_tb(NULL, 0); 10343 break; 10344 case DISAS_UPDATE_NOCHAIN: 10345 gen_a64_update_pc(dc, 4); 10346 /* fall through */ 10347 case DISAS_JUMP: 10348 tcg_gen_lookup_and_goto_ptr(); 10349 break; 10350 case DISAS_NORETURN: 10351 case DISAS_SWI: 10352 break; 10353 case DISAS_WFE: 10354 gen_a64_update_pc(dc, 4); 10355 gen_helper_wfe(tcg_env); 10356 break; 10357 case DISAS_YIELD: 10358 gen_a64_update_pc(dc, 4); 10359 gen_helper_yield(tcg_env); 10360 break; 10361 case DISAS_WFI: 10362 /* 10363 * This is a special case because we don't want to just halt 10364 * the CPU if trying to debug across a WFI. 10365 */ 10366 gen_a64_update_pc(dc, 4); 10367 gen_helper_wfi(tcg_env, tcg_constant_i32(4)); 10368 /* 10369 * The helper doesn't necessarily throw an exception, but we 10370 * must go back to the main loop to check for interrupts anyway. 10371 */ 10372 tcg_gen_exit_tb(NULL, 0); 10373 break; 10374 } 10375 } 10376 } 10377 10378 const TranslatorOps aarch64_translator_ops = { 10379 .init_disas_context = aarch64_tr_init_disas_context, 10380 .tb_start = aarch64_tr_tb_start, 10381 .insn_start = aarch64_tr_insn_start, 10382 .translate_insn = aarch64_tr_translate_insn, 10383 .tb_stop = aarch64_tr_tb_stop, 10384 }; 10385