xref: /qemu/target/arm/tcg/translate-a64.c (revision 7698afc42b5af9e55f12ab2236618e38e5a1c23f)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "arm_ldst.h"
25 #include "semihosting/semihost.h"
26 #include "cpregs.h"
27 
28 static TCGv_i64 cpu_X[32];
29 static TCGv_i64 cpu_pc;
30 
31 /* Load/store exclusive handling */
32 static TCGv_i64 cpu_exclusive_high;
33 
34 static const char *regnames[] = {
35     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
36     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
37     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
38     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
39 };
40 
41 enum a64_shift_type {
42     A64_SHIFT_TYPE_LSL = 0,
43     A64_SHIFT_TYPE_LSR = 1,
44     A64_SHIFT_TYPE_ASR = 2,
45     A64_SHIFT_TYPE_ROR = 3
46 };
47 
48 /*
49  * Helpers for extracting complex instruction fields
50  */
51 
52 /*
53  * For load/store with an unsigned 12 bit immediate scaled by the element
54  * size. The input has the immediate field in bits [14:3] and the element
55  * size in [2:0].
56  */
57 static int uimm_scaled(DisasContext *s, int x)
58 {
59     unsigned imm = x >> 3;
60     unsigned scale = extract32(x, 0, 3);
61     return imm << scale;
62 }
63 
64 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
65 static int scale_by_log2_tag_granule(DisasContext *s, int x)
66 {
67     return x << LOG2_TAG_GRANULE;
68 }
69 
70 /*
71  * Include the generated decoders.
72  */
73 
74 #include "decode-sme-fa64.c.inc"
75 #include "decode-a64.c.inc"
76 
77 /* initialize TCG globals.  */
78 void a64_translate_init(void)
79 {
80     int i;
81 
82     cpu_pc = tcg_global_mem_new_i64(tcg_env,
83                                     offsetof(CPUARMState, pc),
84                                     "pc");
85     for (i = 0; i < 32; i++) {
86         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
87                                           offsetof(CPUARMState, xregs[i]),
88                                           regnames[i]);
89     }
90 
91     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
92         offsetof(CPUARMState, exclusive_high), "exclusive_high");
93 }
94 
95 /*
96  * Return the core mmu_idx to use for A64 load/store insns which
97  * have a "unprivileged load/store" variant. Those insns access
98  * EL0 if executed from an EL which has control over EL0 (usually
99  * EL1) but behave like normal loads and stores if executed from
100  * elsewhere (eg EL3).
101  *
102  * @unpriv : true for the unprivileged encoding; false for the
103  *           normal encoding (in which case we will return the same
104  *           thing as get_mem_index().
105  */
106 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
107 {
108     /*
109      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
110      * which is the usual mmu_idx for this cpu state.
111      */
112     ARMMMUIdx useridx = s->mmu_idx;
113 
114     if (unpriv && s->unpriv) {
115         /*
116          * We have pre-computed the condition for AccType_UNPRIV.
117          * Therefore we should never get here with a mmu_idx for
118          * which we do not know the corresponding user mmu_idx.
119          */
120         switch (useridx) {
121         case ARMMMUIdx_E10_1:
122         case ARMMMUIdx_E10_1_PAN:
123             useridx = ARMMMUIdx_E10_0;
124             break;
125         case ARMMMUIdx_E20_2:
126         case ARMMMUIdx_E20_2_PAN:
127             useridx = ARMMMUIdx_E20_0;
128             break;
129         default:
130             g_assert_not_reached();
131         }
132     }
133     return arm_to_core_mmu_idx(useridx);
134 }
135 
136 static void set_btype_raw(int val)
137 {
138     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
139                    offsetof(CPUARMState, btype));
140 }
141 
142 static void set_btype(DisasContext *s, int val)
143 {
144     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
145     tcg_debug_assert(val >= 1 && val <= 3);
146     set_btype_raw(val);
147     s->btype = -1;
148 }
149 
150 static void reset_btype(DisasContext *s)
151 {
152     if (s->btype != 0) {
153         set_btype_raw(0);
154         s->btype = 0;
155     }
156 }
157 
158 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
159 {
160     assert(s->pc_save != -1);
161     if (tb_cflags(s->base.tb) & CF_PCREL) {
162         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
163     } else {
164         tcg_gen_movi_i64(dest, s->pc_curr + diff);
165     }
166 }
167 
168 void gen_a64_update_pc(DisasContext *s, target_long diff)
169 {
170     gen_pc_plus_diff(s, cpu_pc, diff);
171     s->pc_save = s->pc_curr + diff;
172 }
173 
174 /*
175  * Handle Top Byte Ignore (TBI) bits.
176  *
177  * If address tagging is enabled via the TCR TBI bits:
178  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
179  *    then the address is zero-extended, clearing bits [63:56]
180  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
181  *    and TBI1 controls addresses with bit 55 == 1.
182  *    If the appropriate TBI bit is set for the address then
183  *    the address is sign-extended from bit 55 into bits [63:56]
184  *
185  * Here We have concatenated TBI{1,0} into tbi.
186  */
187 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
188                                 TCGv_i64 src, int tbi)
189 {
190     if (tbi == 0) {
191         /* Load unmodified address */
192         tcg_gen_mov_i64(dst, src);
193     } else if (!regime_has_2_ranges(s->mmu_idx)) {
194         /* Force tag byte to all zero */
195         tcg_gen_extract_i64(dst, src, 0, 56);
196     } else {
197         /* Sign-extend from bit 55.  */
198         tcg_gen_sextract_i64(dst, src, 0, 56);
199 
200         switch (tbi) {
201         case 1:
202             /* tbi0 but !tbi1: only use the extension if positive */
203             tcg_gen_and_i64(dst, dst, src);
204             break;
205         case 2:
206             /* !tbi0 but tbi1: only use the extension if negative */
207             tcg_gen_or_i64(dst, dst, src);
208             break;
209         case 3:
210             /* tbi0 and tbi1: always use the extension */
211             break;
212         default:
213             g_assert_not_reached();
214         }
215     }
216 }
217 
218 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
219 {
220     /*
221      * If address tagging is enabled for instructions via the TCR TBI bits,
222      * then loading an address into the PC will clear out any tag.
223      */
224     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
225     s->pc_save = -1;
226 }
227 
228 /*
229  * Handle MTE and/or TBI.
230  *
231  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
232  * for the tag to be present in the FAR_ELx register.  But for user-only
233  * mode we do not have a TLB with which to implement this, so we must
234  * remove the top byte now.
235  *
236  * Always return a fresh temporary that we can increment independently
237  * of the write-back address.
238  */
239 
240 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
241 {
242     TCGv_i64 clean = tcg_temp_new_i64();
243 #ifdef CONFIG_USER_ONLY
244     gen_top_byte_ignore(s, clean, addr, s->tbid);
245 #else
246     tcg_gen_mov_i64(clean, addr);
247 #endif
248     return clean;
249 }
250 
251 /* Insert a zero tag into src, with the result at dst. */
252 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
253 {
254     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
255 }
256 
257 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
258                              MMUAccessType acc, int log2_size)
259 {
260     gen_helper_probe_access(tcg_env, ptr,
261                             tcg_constant_i32(acc),
262                             tcg_constant_i32(get_mem_index(s)),
263                             tcg_constant_i32(1 << log2_size));
264 }
265 
266 /*
267  * For MTE, check a single logical or atomic access.  This probes a single
268  * address, the exact one specified.  The size and alignment of the access
269  * is not relevant to MTE, per se, but watchpoints do require the size,
270  * and we want to recognize those before making any other changes to state.
271  */
272 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
273                                       bool is_write, bool tag_checked,
274                                       MemOp memop, bool is_unpriv,
275                                       int core_idx)
276 {
277     if (tag_checked && s->mte_active[is_unpriv]) {
278         TCGv_i64 ret;
279         int desc = 0;
280 
281         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
282         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
283         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
284         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
285         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop));
286         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
287 
288         ret = tcg_temp_new_i64();
289         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
290 
291         return ret;
292     }
293     return clean_data_tbi(s, addr);
294 }
295 
296 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
297                         bool tag_checked, MemOp memop)
298 {
299     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
300                                  false, get_mem_index(s));
301 }
302 
303 /*
304  * For MTE, check multiple logical sequential accesses.
305  */
306 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
307                         bool tag_checked, int total_size, MemOp single_mop)
308 {
309     if (tag_checked && s->mte_active[0]) {
310         TCGv_i64 ret;
311         int desc = 0;
312 
313         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
314         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
315         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
316         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
317         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop));
318         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
319 
320         ret = tcg_temp_new_i64();
321         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
322 
323         return ret;
324     }
325     return clean_data_tbi(s, addr);
326 }
327 
328 /*
329  * Generate the special alignment check that applies to AccType_ATOMIC
330  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
331  * naturally aligned, but it must not cross a 16-byte boundary.
332  * See AArch64.CheckAlignment().
333  */
334 static void check_lse2_align(DisasContext *s, int rn, int imm,
335                              bool is_write, MemOp mop)
336 {
337     TCGv_i32 tmp;
338     TCGv_i64 addr;
339     TCGLabel *over_label;
340     MMUAccessType type;
341     int mmu_idx;
342 
343     tmp = tcg_temp_new_i32();
344     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
345     tcg_gen_addi_i32(tmp, tmp, imm & 15);
346     tcg_gen_andi_i32(tmp, tmp, 15);
347     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
348 
349     over_label = gen_new_label();
350     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
351 
352     addr = tcg_temp_new_i64();
353     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
354 
355     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
356     mmu_idx = get_mem_index(s);
357     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
358                                 tcg_constant_i32(mmu_idx));
359 
360     gen_set_label(over_label);
361 
362 }
363 
364 /* Handle the alignment check for AccType_ATOMIC instructions. */
365 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
366 {
367     MemOp size = mop & MO_SIZE;
368 
369     if (size == MO_8) {
370         return mop;
371     }
372 
373     /*
374      * If size == MO_128, this is a LDXP, and the operation is single-copy
375      * atomic for each doubleword, not the entire quadword; it still must
376      * be quadword aligned.
377      */
378     if (size == MO_128) {
379         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
380                                    MO_ATOM_IFALIGN_PAIR);
381     }
382     if (dc_isar_feature(aa64_lse2, s)) {
383         check_lse2_align(s, rn, 0, true, mop);
384     } else {
385         mop |= MO_ALIGN;
386     }
387     return finalize_memop(s, mop);
388 }
389 
390 /* Handle the alignment check for AccType_ORDERED instructions. */
391 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
392                                  bool is_write, MemOp mop)
393 {
394     MemOp size = mop & MO_SIZE;
395 
396     if (size == MO_8) {
397         return mop;
398     }
399     if (size == MO_128) {
400         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
401                                    MO_ATOM_IFALIGN_PAIR);
402     }
403     if (!dc_isar_feature(aa64_lse2, s)) {
404         mop |= MO_ALIGN;
405     } else if (!s->naa) {
406         check_lse2_align(s, rn, imm, is_write, mop);
407     }
408     return finalize_memop(s, mop);
409 }
410 
411 typedef struct DisasCompare64 {
412     TCGCond cond;
413     TCGv_i64 value;
414 } DisasCompare64;
415 
416 static void a64_test_cc(DisasCompare64 *c64, int cc)
417 {
418     DisasCompare c32;
419 
420     arm_test_cc(&c32, cc);
421 
422     /*
423      * Sign-extend the 32-bit value so that the GE/LT comparisons work
424      * properly.  The NE/EQ comparisons are also fine with this choice.
425       */
426     c64->cond = c32.cond;
427     c64->value = tcg_temp_new_i64();
428     tcg_gen_ext_i32_i64(c64->value, c32.value);
429 }
430 
431 static void gen_rebuild_hflags(DisasContext *s)
432 {
433     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
434 }
435 
436 static void gen_exception_internal_insn(DisasContext *s, int excp)
437 {
438     gen_a64_update_pc(s, 0);
439     gen_exception_internal(excp);
440     s->base.is_jmp = DISAS_NORETURN;
441 }
442 
443 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
444 {
445     gen_a64_update_pc(s, 0);
446     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
447     s->base.is_jmp = DISAS_NORETURN;
448 }
449 
450 static void gen_step_complete_exception(DisasContext *s)
451 {
452     /* We just completed step of an insn. Move from Active-not-pending
453      * to Active-pending, and then also take the swstep exception.
454      * This corresponds to making the (IMPDEF) choice to prioritize
455      * swstep exceptions over asynchronous exceptions taken to an exception
456      * level where debug is disabled. This choice has the advantage that
457      * we do not need to maintain internal state corresponding to the
458      * ISV/EX syndrome bits between completion of the step and generation
459      * of the exception, and our syndrome information is always correct.
460      */
461     gen_ss_advance(s);
462     gen_swstep_exception(s, 1, s->is_ldex);
463     s->base.is_jmp = DISAS_NORETURN;
464 }
465 
466 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
467 {
468     if (s->ss_active) {
469         return false;
470     }
471     return translator_use_goto_tb(&s->base, dest);
472 }
473 
474 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
475 {
476     if (use_goto_tb(s, s->pc_curr + diff)) {
477         /*
478          * For pcrel, the pc must always be up-to-date on entry to
479          * the linked TB, so that it can use simple additions for all
480          * further adjustments.  For !pcrel, the linked TB is compiled
481          * to know its full virtual address, so we can delay the
482          * update to pc to the unlinked path.  A long chain of links
483          * can thus avoid many updates to the PC.
484          */
485         if (tb_cflags(s->base.tb) & CF_PCREL) {
486             gen_a64_update_pc(s, diff);
487             tcg_gen_goto_tb(n);
488         } else {
489             tcg_gen_goto_tb(n);
490             gen_a64_update_pc(s, diff);
491         }
492         tcg_gen_exit_tb(s->base.tb, n);
493         s->base.is_jmp = DISAS_NORETURN;
494     } else {
495         gen_a64_update_pc(s, diff);
496         if (s->ss_active) {
497             gen_step_complete_exception(s);
498         } else {
499             tcg_gen_lookup_and_goto_ptr();
500             s->base.is_jmp = DISAS_NORETURN;
501         }
502     }
503 }
504 
505 /*
506  * Register access functions
507  *
508  * These functions are used for directly accessing a register in where
509  * changes to the final register value are likely to be made. If you
510  * need to use a register for temporary calculation (e.g. index type
511  * operations) use the read_* form.
512  *
513  * B1.2.1 Register mappings
514  *
515  * In instruction register encoding 31 can refer to ZR (zero register) or
516  * the SP (stack pointer) depending on context. In QEMU's case we map SP
517  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
518  * This is the point of the _sp forms.
519  */
520 TCGv_i64 cpu_reg(DisasContext *s, int reg)
521 {
522     if (reg == 31) {
523         TCGv_i64 t = tcg_temp_new_i64();
524         tcg_gen_movi_i64(t, 0);
525         return t;
526     } else {
527         return cpu_X[reg];
528     }
529 }
530 
531 /* register access for when 31 == SP */
532 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
533 {
534     return cpu_X[reg];
535 }
536 
537 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
538  * representing the register contents. This TCGv is an auto-freed
539  * temporary so it need not be explicitly freed, and may be modified.
540  */
541 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
542 {
543     TCGv_i64 v = tcg_temp_new_i64();
544     if (reg != 31) {
545         if (sf) {
546             tcg_gen_mov_i64(v, cpu_X[reg]);
547         } else {
548             tcg_gen_ext32u_i64(v, cpu_X[reg]);
549         }
550     } else {
551         tcg_gen_movi_i64(v, 0);
552     }
553     return v;
554 }
555 
556 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
557 {
558     TCGv_i64 v = tcg_temp_new_i64();
559     if (sf) {
560         tcg_gen_mov_i64(v, cpu_X[reg]);
561     } else {
562         tcg_gen_ext32u_i64(v, cpu_X[reg]);
563     }
564     return v;
565 }
566 
567 /* Return the offset into CPUARMState of a slice (from
568  * the least significant end) of FP register Qn (ie
569  * Dn, Sn, Hn or Bn).
570  * (Note that this is not the same mapping as for A32; see cpu.h)
571  */
572 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
573 {
574     return vec_reg_offset(s, regno, 0, size);
575 }
576 
577 /* Offset of the high half of the 128 bit vector Qn */
578 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
579 {
580     return vec_reg_offset(s, regno, 1, MO_64);
581 }
582 
583 /* Convenience accessors for reading and writing single and double
584  * FP registers. Writing clears the upper parts of the associated
585  * 128 bit vector register, as required by the architecture.
586  * Note that unlike the GP register accessors, the values returned
587  * by the read functions must be manually freed.
588  */
589 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
590 {
591     TCGv_i64 v = tcg_temp_new_i64();
592 
593     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
594     return v;
595 }
596 
597 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
598 {
599     TCGv_i32 v = tcg_temp_new_i32();
600 
601     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
602     return v;
603 }
604 
605 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
606 {
607     TCGv_i32 v = tcg_temp_new_i32();
608 
609     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
610     return v;
611 }
612 
613 static void clear_vec(DisasContext *s, int rd)
614 {
615     unsigned ofs = fp_reg_offset(s, rd, MO_64);
616     unsigned vsz = vec_full_reg_size(s);
617 
618     tcg_gen_gvec_dup_imm(MO_64, ofs, vsz, vsz, 0);
619 }
620 
621 /*
622  * Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
623  * If SVE is not enabled, then there are only 128 bits in the vector.
624  */
625 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
626 {
627     unsigned ofs = fp_reg_offset(s, rd, MO_64);
628     unsigned vsz = vec_full_reg_size(s);
629 
630     /* Nop move, with side effect of clearing the tail. */
631     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
632 }
633 
634 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
635 {
636     unsigned ofs = fp_reg_offset(s, reg, MO_64);
637 
638     tcg_gen_st_i64(v, tcg_env, ofs);
639     clear_vec_high(s, false, reg);
640 }
641 
642 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
643 {
644     TCGv_i64 tmp = tcg_temp_new_i64();
645 
646     tcg_gen_extu_i32_i64(tmp, v);
647     write_fp_dreg(s, reg, tmp);
648 }
649 
650 /*
651  * Write a double result to 128 bit vector register reg, honouring FPCR.NEP:
652  * - if FPCR.NEP == 0, clear the high elements of reg
653  * - if FPCR.NEP == 1, set the high elements of reg from mergereg
654  *   (i.e. merge the result with those high elements)
655  * In either case, SVE register bits above 128 are zeroed (per R_WKYLB).
656  */
657 static void write_fp_dreg_merging(DisasContext *s, int reg, int mergereg,
658                                   TCGv_i64 v)
659 {
660     if (!s->fpcr_nep) {
661         write_fp_dreg(s, reg, v);
662         return;
663     }
664 
665     /*
666      * Move from mergereg to reg; this sets the high elements and
667      * clears the bits above 128 as a side effect.
668      */
669     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
670                      vec_full_reg_offset(s, mergereg),
671                      16, vec_full_reg_size(s));
672     tcg_gen_st_i64(v, tcg_env, vec_full_reg_offset(s, reg));
673 }
674 
675 /*
676  * Write a single-prec result, but only clear the higher elements
677  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
678  */
679 static void write_fp_sreg_merging(DisasContext *s, int reg, int mergereg,
680                                   TCGv_i32 v)
681 {
682     if (!s->fpcr_nep) {
683         write_fp_sreg(s, reg, v);
684         return;
685     }
686 
687     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
688                      vec_full_reg_offset(s, mergereg),
689                      16, vec_full_reg_size(s));
690     tcg_gen_st_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
691 }
692 
693 /*
694  * Write a half-prec result, but only clear the higher elements
695  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
696  * The caller must ensure that the top 16 bits of v are zero.
697  */
698 static void write_fp_hreg_merging(DisasContext *s, int reg, int mergereg,
699                                   TCGv_i32 v)
700 {
701     if (!s->fpcr_nep) {
702         write_fp_sreg(s, reg, v);
703         return;
704     }
705 
706     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
707                      vec_full_reg_offset(s, mergereg),
708                      16, vec_full_reg_size(s));
709     tcg_gen_st16_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
710 }
711 
712 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
713 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
714                          GVecGen2Fn *gvec_fn, int vece)
715 {
716     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
717             is_q ? 16 : 8, vec_full_reg_size(s));
718 }
719 
720 /* Expand a 2-operand + immediate AdvSIMD vector operation using
721  * an expander function.
722  */
723 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
724                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
725 {
726     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
727             imm, is_q ? 16 : 8, vec_full_reg_size(s));
728 }
729 
730 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
731 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
732                          GVecGen3Fn *gvec_fn, int vece)
733 {
734     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
735             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
736 }
737 
738 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
739 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
740                          int rx, GVecGen4Fn *gvec_fn, int vece)
741 {
742     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
743             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
744             is_q ? 16 : 8, vec_full_reg_size(s));
745 }
746 
747 /* Expand a 2-operand operation using an out-of-line helper.  */
748 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
749                              int rn, int data, gen_helper_gvec_2 *fn)
750 {
751     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
752                        vec_full_reg_offset(s, rn),
753                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
754 }
755 
756 /* Expand a 3-operand operation using an out-of-line helper.  */
757 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
758                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
759 {
760     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
764 }
765 
766 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
767  * an out-of-line helper.
768  */
769 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
770                               int rm, ARMFPStatusFlavour fpsttype, int data,
771                               gen_helper_gvec_3_ptr *fn)
772 {
773     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
774     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
775                        vec_full_reg_offset(s, rn),
776                        vec_full_reg_offset(s, rm), fpst,
777                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
778 }
779 
780 /* Expand a 4-operand operation using an out-of-line helper.  */
781 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
782                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
783 {
784     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
785                        vec_full_reg_offset(s, rn),
786                        vec_full_reg_offset(s, rm),
787                        vec_full_reg_offset(s, ra),
788                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
789 }
790 
791 /*
792  * Expand a 4-operand operation using an out-of-line helper that takes
793  * a pointer to the CPU env.
794  */
795 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn,
796                              int rm, int ra, int data,
797                              gen_helper_gvec_4_ptr *fn)
798 {
799     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
800                        vec_full_reg_offset(s, rn),
801                        vec_full_reg_offset(s, rm),
802                        vec_full_reg_offset(s, ra),
803                        tcg_env,
804                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
805 }
806 
807 /*
808  * Expand a 4-operand + fpstatus pointer + simd data value operation using
809  * an out-of-line helper.
810  */
811 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
812                               int rm, int ra, ARMFPStatusFlavour fpsttype,
813                               int data,
814                               gen_helper_gvec_4_ptr *fn)
815 {
816     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
817     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
818                        vec_full_reg_offset(s, rn),
819                        vec_full_reg_offset(s, rm),
820                        vec_full_reg_offset(s, ra), fpst,
821                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
822 }
823 
824 /*
825  * When FPCR.AH == 1, NEG and ABS do not flip the sign bit of a NaN.
826  * These functions implement
827  *   d = floatN_is_any_nan(s) ? s : floatN_chs(s)
828  * which for float32 is
829  *   d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s ^ (1 << 31))
830  * and similarly for the other float sizes.
831  */
832 static void gen_vfp_ah_negh(TCGv_i32 d, TCGv_i32 s)
833 {
834     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
835 
836     gen_vfp_negh(chs_s, s);
837     gen_vfp_absh(abs_s, s);
838     tcg_gen_movcond_i32(TCG_COND_GTU, d,
839                         abs_s, tcg_constant_i32(0x7c00),
840                         s, chs_s);
841 }
842 
843 static void gen_vfp_ah_negs(TCGv_i32 d, TCGv_i32 s)
844 {
845     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
846 
847     gen_vfp_negs(chs_s, s);
848     gen_vfp_abss(abs_s, s);
849     tcg_gen_movcond_i32(TCG_COND_GTU, d,
850                         abs_s, tcg_constant_i32(0x7f800000UL),
851                         s, chs_s);
852 }
853 
854 static void gen_vfp_ah_negd(TCGv_i64 d, TCGv_i64 s)
855 {
856     TCGv_i64 abs_s = tcg_temp_new_i64(), chs_s = tcg_temp_new_i64();
857 
858     gen_vfp_negd(chs_s, s);
859     gen_vfp_absd(abs_s, s);
860     tcg_gen_movcond_i64(TCG_COND_GTU, d,
861                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
862                         s, chs_s);
863 }
864 
865 /*
866  * These functions implement
867  *  d = floatN_is_any_nan(s) ? s : floatN_abs(s)
868  * which for float32 is
869  *  d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s & ~(1 << 31))
870  * and similarly for the other float sizes.
871  */
872 static void gen_vfp_ah_absh(TCGv_i32 d, TCGv_i32 s)
873 {
874     TCGv_i32 abs_s = tcg_temp_new_i32();
875 
876     gen_vfp_absh(abs_s, s);
877     tcg_gen_movcond_i32(TCG_COND_GTU, d,
878                         abs_s, tcg_constant_i32(0x7c00),
879                         s, abs_s);
880 }
881 
882 static void gen_vfp_ah_abss(TCGv_i32 d, TCGv_i32 s)
883 {
884     TCGv_i32 abs_s = tcg_temp_new_i32();
885 
886     gen_vfp_abss(abs_s, s);
887     tcg_gen_movcond_i32(TCG_COND_GTU, d,
888                         abs_s, tcg_constant_i32(0x7f800000UL),
889                         s, abs_s);
890 }
891 
892 static void gen_vfp_ah_absd(TCGv_i64 d, TCGv_i64 s)
893 {
894     TCGv_i64 abs_s = tcg_temp_new_i64();
895 
896     gen_vfp_absd(abs_s, s);
897     tcg_gen_movcond_i64(TCG_COND_GTU, d,
898                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
899                         s, abs_s);
900 }
901 
902 static void gen_vfp_maybe_ah_negh(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
903 {
904     if (dc->fpcr_ah) {
905         gen_vfp_ah_negh(d, s);
906     } else {
907         gen_vfp_negh(d, s);
908     }
909 }
910 
911 static void gen_vfp_maybe_ah_negs(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
912 {
913     if (dc->fpcr_ah) {
914         gen_vfp_ah_negs(d, s);
915     } else {
916         gen_vfp_negs(d, s);
917     }
918 }
919 
920 static void gen_vfp_maybe_ah_negd(DisasContext *dc, TCGv_i64 d, TCGv_i64 s)
921 {
922     if (dc->fpcr_ah) {
923         gen_vfp_ah_negd(d, s);
924     } else {
925         gen_vfp_negd(d, s);
926     }
927 }
928 
929 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
930  * than the 32 bit equivalent.
931  */
932 static inline void gen_set_NZ64(TCGv_i64 result)
933 {
934     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
935     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
936 }
937 
938 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
939 static inline void gen_logic_CC(int sf, TCGv_i64 result)
940 {
941     if (sf) {
942         gen_set_NZ64(result);
943     } else {
944         tcg_gen_extrl_i64_i32(cpu_ZF, result);
945         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
946     }
947     tcg_gen_movi_i32(cpu_CF, 0);
948     tcg_gen_movi_i32(cpu_VF, 0);
949 }
950 
951 /* dest = T0 + T1; compute C, N, V and Z flags */
952 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
953 {
954     TCGv_i64 result, flag, tmp;
955     result = tcg_temp_new_i64();
956     flag = tcg_temp_new_i64();
957     tmp = tcg_temp_new_i64();
958 
959     tcg_gen_movi_i64(tmp, 0);
960     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
961 
962     tcg_gen_extrl_i64_i32(cpu_CF, flag);
963 
964     gen_set_NZ64(result);
965 
966     tcg_gen_xor_i64(flag, result, t0);
967     tcg_gen_xor_i64(tmp, t0, t1);
968     tcg_gen_andc_i64(flag, flag, tmp);
969     tcg_gen_extrh_i64_i32(cpu_VF, flag);
970 
971     tcg_gen_mov_i64(dest, result);
972 }
973 
974 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
975 {
976     TCGv_i32 t0_32 = tcg_temp_new_i32();
977     TCGv_i32 t1_32 = tcg_temp_new_i32();
978     TCGv_i32 tmp = tcg_temp_new_i32();
979 
980     tcg_gen_movi_i32(tmp, 0);
981     tcg_gen_extrl_i64_i32(t0_32, t0);
982     tcg_gen_extrl_i64_i32(t1_32, t1);
983     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
984     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
985     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
986     tcg_gen_xor_i32(tmp, t0_32, t1_32);
987     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
988     tcg_gen_extu_i32_i64(dest, cpu_NF);
989 }
990 
991 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
992 {
993     if (sf) {
994         gen_add64_CC(dest, t0, t1);
995     } else {
996         gen_add32_CC(dest, t0, t1);
997     }
998 }
999 
1000 /* dest = T0 - T1; compute C, N, V and Z flags */
1001 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1002 {
1003     /* 64 bit arithmetic */
1004     TCGv_i64 result, flag, tmp;
1005 
1006     result = tcg_temp_new_i64();
1007     flag = tcg_temp_new_i64();
1008     tcg_gen_sub_i64(result, t0, t1);
1009 
1010     gen_set_NZ64(result);
1011 
1012     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
1013     tcg_gen_extrl_i64_i32(cpu_CF, flag);
1014 
1015     tcg_gen_xor_i64(flag, result, t0);
1016     tmp = tcg_temp_new_i64();
1017     tcg_gen_xor_i64(tmp, t0, t1);
1018     tcg_gen_and_i64(flag, flag, tmp);
1019     tcg_gen_extrh_i64_i32(cpu_VF, flag);
1020     tcg_gen_mov_i64(dest, result);
1021 }
1022 
1023 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1024 {
1025     /* 32 bit arithmetic */
1026     TCGv_i32 t0_32 = tcg_temp_new_i32();
1027     TCGv_i32 t1_32 = tcg_temp_new_i32();
1028     TCGv_i32 tmp;
1029 
1030     tcg_gen_extrl_i64_i32(t0_32, t0);
1031     tcg_gen_extrl_i64_i32(t1_32, t1);
1032     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
1033     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1034     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
1035     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1036     tmp = tcg_temp_new_i32();
1037     tcg_gen_xor_i32(tmp, t0_32, t1_32);
1038     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
1039     tcg_gen_extu_i32_i64(dest, cpu_NF);
1040 }
1041 
1042 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1043 {
1044     if (sf) {
1045         gen_sub64_CC(dest, t0, t1);
1046     } else {
1047         gen_sub32_CC(dest, t0, t1);
1048     }
1049 }
1050 
1051 /* dest = T0 + T1 + CF; do not compute flags. */
1052 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1053 {
1054     TCGv_i64 flag = tcg_temp_new_i64();
1055     tcg_gen_extu_i32_i64(flag, cpu_CF);
1056     tcg_gen_add_i64(dest, t0, t1);
1057     tcg_gen_add_i64(dest, dest, flag);
1058 
1059     if (!sf) {
1060         tcg_gen_ext32u_i64(dest, dest);
1061     }
1062 }
1063 
1064 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
1065 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1066 {
1067     if (sf) {
1068         TCGv_i64 result = tcg_temp_new_i64();
1069         TCGv_i64 cf_64 = tcg_temp_new_i64();
1070         TCGv_i64 vf_64 = tcg_temp_new_i64();
1071         TCGv_i64 tmp = tcg_temp_new_i64();
1072 
1073         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
1074         tcg_gen_addcio_i64(result, cf_64, t0, t1, cf_64);
1075         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
1076         gen_set_NZ64(result);
1077 
1078         tcg_gen_xor_i64(vf_64, result, t0);
1079         tcg_gen_xor_i64(tmp, t0, t1);
1080         tcg_gen_andc_i64(vf_64, vf_64, tmp);
1081         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
1082 
1083         tcg_gen_mov_i64(dest, result);
1084     } else {
1085         TCGv_i32 t0_32 = tcg_temp_new_i32();
1086         TCGv_i32 t1_32 = tcg_temp_new_i32();
1087         TCGv_i32 tmp = tcg_temp_new_i32();
1088 
1089         tcg_gen_extrl_i64_i32(t0_32, t0);
1090         tcg_gen_extrl_i64_i32(t1_32, t1);
1091         tcg_gen_addcio_i32(cpu_NF, cpu_CF, t0_32, t1_32, cpu_CF);
1092 
1093         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1094         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1095         tcg_gen_xor_i32(tmp, t0_32, t1_32);
1096         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
1097         tcg_gen_extu_i32_i64(dest, cpu_NF);
1098     }
1099 }
1100 
1101 /*
1102  * Load/Store generators
1103  */
1104 
1105 /*
1106  * Store from GPR register to memory.
1107  */
1108 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
1109                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
1110                              bool iss_valid,
1111                              unsigned int iss_srt,
1112                              bool iss_sf, bool iss_ar)
1113 {
1114     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
1115 
1116     if (iss_valid) {
1117         uint32_t syn;
1118 
1119         syn = syn_data_abort_with_iss(0,
1120                                       (memop & MO_SIZE),
1121                                       false,
1122                                       iss_srt,
1123                                       iss_sf,
1124                                       iss_ar,
1125                                       0, 0, 0, 0, 0, false);
1126         disas_set_insn_syndrome(s, syn);
1127     }
1128 }
1129 
1130 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
1131                       TCGv_i64 tcg_addr, MemOp memop,
1132                       bool iss_valid,
1133                       unsigned int iss_srt,
1134                       bool iss_sf, bool iss_ar)
1135 {
1136     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
1137                      iss_valid, iss_srt, iss_sf, iss_ar);
1138 }
1139 
1140 /*
1141  * Load from memory to GPR register
1142  */
1143 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1144                              MemOp memop, bool extend, int memidx,
1145                              bool iss_valid, unsigned int iss_srt,
1146                              bool iss_sf, bool iss_ar)
1147 {
1148     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1149 
1150     if (extend && (memop & MO_SIGN)) {
1151         g_assert((memop & MO_SIZE) <= MO_32);
1152         tcg_gen_ext32u_i64(dest, dest);
1153     }
1154 
1155     if (iss_valid) {
1156         uint32_t syn;
1157 
1158         syn = syn_data_abort_with_iss(0,
1159                                       (memop & MO_SIZE),
1160                                       (memop & MO_SIGN) != 0,
1161                                       iss_srt,
1162                                       iss_sf,
1163                                       iss_ar,
1164                                       0, 0, 0, 0, 0, false);
1165         disas_set_insn_syndrome(s, syn);
1166     }
1167 }
1168 
1169 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1170                       MemOp memop, bool extend,
1171                       bool iss_valid, unsigned int iss_srt,
1172                       bool iss_sf, bool iss_ar)
1173 {
1174     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1175                      iss_valid, iss_srt, iss_sf, iss_ar);
1176 }
1177 
1178 /*
1179  * Store from FP register to memory
1180  */
1181 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1182 {
1183     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1184     TCGv_i64 tmplo = tcg_temp_new_i64();
1185 
1186     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1187 
1188     if ((mop & MO_SIZE) < MO_128) {
1189         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1190     } else {
1191         TCGv_i64 tmphi = tcg_temp_new_i64();
1192         TCGv_i128 t16 = tcg_temp_new_i128();
1193 
1194         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1195         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1196 
1197         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1198     }
1199 }
1200 
1201 /*
1202  * Load from memory to FP register
1203  */
1204 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1205 {
1206     /* This always zero-extends and writes to a full 128 bit wide vector */
1207     TCGv_i64 tmplo = tcg_temp_new_i64();
1208     TCGv_i64 tmphi = NULL;
1209 
1210     if ((mop & MO_SIZE) < MO_128) {
1211         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1212     } else {
1213         TCGv_i128 t16 = tcg_temp_new_i128();
1214 
1215         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1216 
1217         tmphi = tcg_temp_new_i64();
1218         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1219     }
1220 
1221     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1222 
1223     if (tmphi) {
1224         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1225     }
1226     clear_vec_high(s, tmphi != NULL, destidx);
1227 }
1228 
1229 /*
1230  * Vector load/store helpers.
1231  *
1232  * The principal difference between this and a FP load is that we don't
1233  * zero extend as we are filling a partial chunk of the vector register.
1234  * These functions don't support 128 bit loads/stores, which would be
1235  * normal load/store operations.
1236  *
1237  * The _i32 versions are useful when operating on 32 bit quantities
1238  * (eg for floating point single or using Neon helper functions).
1239  */
1240 
1241 /* Get value of an element within a vector register */
1242 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1243                              int element, MemOp memop)
1244 {
1245     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1246     switch ((unsigned)memop) {
1247     case MO_8:
1248         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1249         break;
1250     case MO_16:
1251         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1252         break;
1253     case MO_32:
1254         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1255         break;
1256     case MO_8|MO_SIGN:
1257         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1258         break;
1259     case MO_16|MO_SIGN:
1260         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1261         break;
1262     case MO_32|MO_SIGN:
1263         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1264         break;
1265     case MO_64:
1266     case MO_64|MO_SIGN:
1267         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1268         break;
1269     default:
1270         g_assert_not_reached();
1271     }
1272 }
1273 
1274 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1275                                  int element, MemOp memop)
1276 {
1277     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1278     switch (memop) {
1279     case MO_8:
1280         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1281         break;
1282     case MO_16:
1283         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1284         break;
1285     case MO_8|MO_SIGN:
1286         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1287         break;
1288     case MO_16|MO_SIGN:
1289         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1290         break;
1291     case MO_32:
1292     case MO_32|MO_SIGN:
1293         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1294         break;
1295     default:
1296         g_assert_not_reached();
1297     }
1298 }
1299 
1300 /* Set value of an element within a vector register */
1301 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1302                               int element, MemOp memop)
1303 {
1304     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1305     switch (memop) {
1306     case MO_8:
1307         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1308         break;
1309     case MO_16:
1310         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1311         break;
1312     case MO_32:
1313         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1314         break;
1315     case MO_64:
1316         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1317         break;
1318     default:
1319         g_assert_not_reached();
1320     }
1321 }
1322 
1323 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1324                                   int destidx, int element, MemOp memop)
1325 {
1326     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1327     switch (memop) {
1328     case MO_8:
1329         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1330         break;
1331     case MO_16:
1332         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1333         break;
1334     case MO_32:
1335         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1336         break;
1337     default:
1338         g_assert_not_reached();
1339     }
1340 }
1341 
1342 /* Store from vector register to memory */
1343 static void do_vec_st(DisasContext *s, int srcidx, int element,
1344                       TCGv_i64 tcg_addr, MemOp mop)
1345 {
1346     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1347 
1348     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1349     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1350 }
1351 
1352 /* Load from memory to vector register */
1353 static void do_vec_ld(DisasContext *s, int destidx, int element,
1354                       TCGv_i64 tcg_addr, MemOp mop)
1355 {
1356     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1357 
1358     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1359     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1360 }
1361 
1362 /* Check that FP/Neon access is enabled. If it is, return
1363  * true. If not, emit code to generate an appropriate exception,
1364  * and return false; the caller should not emit any code for
1365  * the instruction. Note that this check must happen after all
1366  * unallocated-encoding checks (otherwise the syndrome information
1367  * for the resulting exception will be incorrect).
1368  */
1369 static bool fp_access_check_only(DisasContext *s)
1370 {
1371     if (s->fp_excp_el) {
1372         assert(!s->fp_access_checked);
1373         s->fp_access_checked = -1;
1374 
1375         gen_exception_insn_el(s, 0, EXCP_UDEF,
1376                               syn_fp_access_trap(1, 0xe, false, 0),
1377                               s->fp_excp_el);
1378         return false;
1379     }
1380     s->fp_access_checked = 1;
1381     return true;
1382 }
1383 
1384 static bool fp_access_check(DisasContext *s)
1385 {
1386     if (!fp_access_check_only(s)) {
1387         return false;
1388     }
1389     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1390         gen_exception_insn(s, 0, EXCP_UDEF,
1391                            syn_smetrap(SME_ET_Streaming, false));
1392         return false;
1393     }
1394     return true;
1395 }
1396 
1397 /*
1398  * Return <0 for non-supported element sizes, with MO_16 controlled by
1399  * FEAT_FP16; return 0 for fp disabled; otherwise return >0 for success.
1400  */
1401 static int fp_access_check_scalar_hsd(DisasContext *s, MemOp esz)
1402 {
1403     switch (esz) {
1404     case MO_64:
1405     case MO_32:
1406         break;
1407     case MO_16:
1408         if (!dc_isar_feature(aa64_fp16, s)) {
1409             return -1;
1410         }
1411         break;
1412     default:
1413         return -1;
1414     }
1415     return fp_access_check(s);
1416 }
1417 
1418 /* Likewise, but vector MO_64 must have two elements. */
1419 static int fp_access_check_vector_hsd(DisasContext *s, bool is_q, MemOp esz)
1420 {
1421     switch (esz) {
1422     case MO_64:
1423         if (!is_q) {
1424             return -1;
1425         }
1426         break;
1427     case MO_32:
1428         break;
1429     case MO_16:
1430         if (!dc_isar_feature(aa64_fp16, s)) {
1431             return -1;
1432         }
1433         break;
1434     default:
1435         return -1;
1436     }
1437     return fp_access_check(s);
1438 }
1439 
1440 /*
1441  * Check that SVE access is enabled.  If it is, return true.
1442  * If not, emit code to generate an appropriate exception and return false.
1443  * This function corresponds to CheckSVEEnabled().
1444  */
1445 bool sve_access_check(DisasContext *s)
1446 {
1447     if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1448         bool ret;
1449 
1450         assert(dc_isar_feature(aa64_sme, s));
1451         ret = sme_sm_enabled_check(s);
1452         s->sve_access_checked = (ret ? 1 : -1);
1453         return ret;
1454     }
1455     if (s->sve_excp_el) {
1456         /* Assert that we only raise one exception per instruction. */
1457         assert(!s->sve_access_checked);
1458         gen_exception_insn_el(s, 0, EXCP_UDEF,
1459                               syn_sve_access_trap(), s->sve_excp_el);
1460         s->sve_access_checked = -1;
1461         return false;
1462     }
1463     s->sve_access_checked = 1;
1464     return fp_access_check(s);
1465 }
1466 
1467 /*
1468  * Check that SME access is enabled, raise an exception if not.
1469  * Note that this function corresponds to CheckSMEAccess and is
1470  * only used directly for cpregs.
1471  */
1472 static bool sme_access_check(DisasContext *s)
1473 {
1474     if (s->sme_excp_el) {
1475         gen_exception_insn_el(s, 0, EXCP_UDEF,
1476                               syn_smetrap(SME_ET_AccessTrap, false),
1477                               s->sme_excp_el);
1478         return false;
1479     }
1480     return true;
1481 }
1482 
1483 /* This function corresponds to CheckSMEEnabled. */
1484 bool sme_enabled_check(DisasContext *s)
1485 {
1486     /*
1487      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1488      * to be zero when fp_excp_el has priority.  This is because we need
1489      * sme_excp_el by itself for cpregs access checks.
1490      */
1491     if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1492         bool ret = sme_access_check(s);
1493         s->fp_access_checked = (ret ? 1 : -1);
1494         return ret;
1495     }
1496     return fp_access_check_only(s);
1497 }
1498 
1499 /* Common subroutine for CheckSMEAnd*Enabled. */
1500 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1501 {
1502     if (!sme_enabled_check(s)) {
1503         return false;
1504     }
1505     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1506         gen_exception_insn(s, 0, EXCP_UDEF,
1507                            syn_smetrap(SME_ET_NotStreaming, false));
1508         return false;
1509     }
1510     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1511         gen_exception_insn(s, 0, EXCP_UDEF,
1512                            syn_smetrap(SME_ET_InactiveZA, false));
1513         return false;
1514     }
1515     return true;
1516 }
1517 
1518 /*
1519  * Expanders for AdvSIMD translation functions.
1520  */
1521 
1522 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1523                             gen_helper_gvec_2 *fn)
1524 {
1525     if (!a->q && a->esz == MO_64) {
1526         return false;
1527     }
1528     if (fp_access_check(s)) {
1529         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1530     }
1531     return true;
1532 }
1533 
1534 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1535                             gen_helper_gvec_3 *fn)
1536 {
1537     if (!a->q && a->esz == MO_64) {
1538         return false;
1539     }
1540     if (fp_access_check(s)) {
1541         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1542     }
1543     return true;
1544 }
1545 
1546 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1547 {
1548     if (!a->q && a->esz == MO_64) {
1549         return false;
1550     }
1551     if (fp_access_check(s)) {
1552         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1553     }
1554     return true;
1555 }
1556 
1557 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1558 {
1559     if (a->esz == MO_64) {
1560         return false;
1561     }
1562     if (fp_access_check(s)) {
1563         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1564     }
1565     return true;
1566 }
1567 
1568 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1569 {
1570     if (a->esz == MO_8) {
1571         return false;
1572     }
1573     return do_gvec_fn3_no64(s, a, fn);
1574 }
1575 
1576 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1577 {
1578     if (!a->q && a->esz == MO_64) {
1579         return false;
1580     }
1581     if (fp_access_check(s)) {
1582         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1583     }
1584     return true;
1585 }
1586 
1587 /*
1588  * This utility function is for doing register extension with an
1589  * optional shift. You will likely want to pass a temporary for the
1590  * destination register. See DecodeRegExtend() in the ARM ARM.
1591  */
1592 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1593                               int option, unsigned int shift)
1594 {
1595     int extsize = extract32(option, 0, 2);
1596     bool is_signed = extract32(option, 2, 1);
1597 
1598     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1599     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1600 }
1601 
1602 static inline void gen_check_sp_alignment(DisasContext *s)
1603 {
1604     /* The AArch64 architecture mandates that (if enabled via PSTATE
1605      * or SCTLR bits) there is a check that SP is 16-aligned on every
1606      * SP-relative load or store (with an exception generated if it is not).
1607      * In line with general QEMU practice regarding misaligned accesses,
1608      * we omit these checks for the sake of guest program performance.
1609      * This function is provided as a hook so we can more easily add these
1610      * checks in future (possibly as a "favour catching guest program bugs
1611      * over speed" user selectable option).
1612      */
1613 }
1614 
1615 /*
1616  * The instruction disassembly implemented here matches
1617  * the instruction encoding classifications in chapter C4
1618  * of the ARM Architecture Reference Manual (DDI0487B_a);
1619  * classification names and decode diagrams here should generally
1620  * match up with those in the manual.
1621  */
1622 
1623 static bool trans_B(DisasContext *s, arg_i *a)
1624 {
1625     reset_btype(s);
1626     gen_goto_tb(s, 0, a->imm);
1627     return true;
1628 }
1629 
1630 static bool trans_BL(DisasContext *s, arg_i *a)
1631 {
1632     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1633     reset_btype(s);
1634     gen_goto_tb(s, 0, a->imm);
1635     return true;
1636 }
1637 
1638 
1639 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1640 {
1641     DisasLabel match;
1642     TCGv_i64 tcg_cmp;
1643 
1644     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1645     reset_btype(s);
1646 
1647     match = gen_disas_label(s);
1648     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1649                         tcg_cmp, 0, match.label);
1650     gen_goto_tb(s, 0, 4);
1651     set_disas_label(s, match);
1652     gen_goto_tb(s, 1, a->imm);
1653     return true;
1654 }
1655 
1656 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1657 {
1658     DisasLabel match;
1659     TCGv_i64 tcg_cmp;
1660 
1661     tcg_cmp = tcg_temp_new_i64();
1662     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1663 
1664     reset_btype(s);
1665 
1666     match = gen_disas_label(s);
1667     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1668                         tcg_cmp, 0, match.label);
1669     gen_goto_tb(s, 0, 4);
1670     set_disas_label(s, match);
1671     gen_goto_tb(s, 1, a->imm);
1672     return true;
1673 }
1674 
1675 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1676 {
1677     /* BC.cond is only present with FEAT_HBC */
1678     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1679         return false;
1680     }
1681     reset_btype(s);
1682     if (a->cond < 0x0e) {
1683         /* genuinely conditional branches */
1684         DisasLabel match = gen_disas_label(s);
1685         arm_gen_test_cc(a->cond, match.label);
1686         gen_goto_tb(s, 0, 4);
1687         set_disas_label(s, match);
1688         gen_goto_tb(s, 1, a->imm);
1689     } else {
1690         /* 0xe and 0xf are both "always" conditions */
1691         gen_goto_tb(s, 0, a->imm);
1692     }
1693     return true;
1694 }
1695 
1696 static void set_btype_for_br(DisasContext *s, int rn)
1697 {
1698     if (dc_isar_feature(aa64_bti, s)) {
1699         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1700         if (rn == 16 || rn == 17) {
1701             set_btype(s, 1);
1702         } else {
1703             TCGv_i64 pc = tcg_temp_new_i64();
1704             gen_pc_plus_diff(s, pc, 0);
1705             gen_helper_guarded_page_br(tcg_env, pc);
1706             s->btype = -1;
1707         }
1708     }
1709 }
1710 
1711 static void set_btype_for_blr(DisasContext *s)
1712 {
1713     if (dc_isar_feature(aa64_bti, s)) {
1714         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1715         set_btype(s, 2);
1716     }
1717 }
1718 
1719 static bool trans_BR(DisasContext *s, arg_r *a)
1720 {
1721     set_btype_for_br(s, a->rn);
1722     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1723     s->base.is_jmp = DISAS_JUMP;
1724     return true;
1725 }
1726 
1727 static bool trans_BLR(DisasContext *s, arg_r *a)
1728 {
1729     TCGv_i64 dst = cpu_reg(s, a->rn);
1730     TCGv_i64 lr = cpu_reg(s, 30);
1731     if (dst == lr) {
1732         TCGv_i64 tmp = tcg_temp_new_i64();
1733         tcg_gen_mov_i64(tmp, dst);
1734         dst = tmp;
1735     }
1736     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1737     gen_a64_set_pc(s, dst);
1738     set_btype_for_blr(s);
1739     s->base.is_jmp = DISAS_JUMP;
1740     return true;
1741 }
1742 
1743 static bool trans_RET(DisasContext *s, arg_r *a)
1744 {
1745     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1746     s->base.is_jmp = DISAS_JUMP;
1747     return true;
1748 }
1749 
1750 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1751                                    TCGv_i64 modifier, bool use_key_a)
1752 {
1753     TCGv_i64 truedst;
1754     /*
1755      * Return the branch target for a BRAA/RETA/etc, which is either
1756      * just the destination dst, or that value with the pauth check
1757      * done and the code removed from the high bits.
1758      */
1759     if (!s->pauth_active) {
1760         return dst;
1761     }
1762 
1763     truedst = tcg_temp_new_i64();
1764     if (use_key_a) {
1765         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1766     } else {
1767         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1768     }
1769     return truedst;
1770 }
1771 
1772 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1773 {
1774     TCGv_i64 dst;
1775 
1776     if (!dc_isar_feature(aa64_pauth, s)) {
1777         return false;
1778     }
1779 
1780     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1781     set_btype_for_br(s, a->rn);
1782     gen_a64_set_pc(s, dst);
1783     s->base.is_jmp = DISAS_JUMP;
1784     return true;
1785 }
1786 
1787 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1788 {
1789     TCGv_i64 dst, lr;
1790 
1791     if (!dc_isar_feature(aa64_pauth, s)) {
1792         return false;
1793     }
1794 
1795     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1796     lr = cpu_reg(s, 30);
1797     if (dst == lr) {
1798         TCGv_i64 tmp = tcg_temp_new_i64();
1799         tcg_gen_mov_i64(tmp, dst);
1800         dst = tmp;
1801     }
1802     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1803     gen_a64_set_pc(s, dst);
1804     set_btype_for_blr(s);
1805     s->base.is_jmp = DISAS_JUMP;
1806     return true;
1807 }
1808 
1809 static bool trans_RETA(DisasContext *s, arg_reta *a)
1810 {
1811     TCGv_i64 dst;
1812 
1813     if (!dc_isar_feature(aa64_pauth, s)) {
1814         return false;
1815     }
1816 
1817     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1818     gen_a64_set_pc(s, dst);
1819     s->base.is_jmp = DISAS_JUMP;
1820     return true;
1821 }
1822 
1823 static bool trans_BRA(DisasContext *s, arg_bra *a)
1824 {
1825     TCGv_i64 dst;
1826 
1827     if (!dc_isar_feature(aa64_pauth, s)) {
1828         return false;
1829     }
1830     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1831     gen_a64_set_pc(s, dst);
1832     set_btype_for_br(s, a->rn);
1833     s->base.is_jmp = DISAS_JUMP;
1834     return true;
1835 }
1836 
1837 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1838 {
1839     TCGv_i64 dst, lr;
1840 
1841     if (!dc_isar_feature(aa64_pauth, s)) {
1842         return false;
1843     }
1844     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1845     lr = cpu_reg(s, 30);
1846     if (dst == lr) {
1847         TCGv_i64 tmp = tcg_temp_new_i64();
1848         tcg_gen_mov_i64(tmp, dst);
1849         dst = tmp;
1850     }
1851     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1852     gen_a64_set_pc(s, dst);
1853     set_btype_for_blr(s);
1854     s->base.is_jmp = DISAS_JUMP;
1855     return true;
1856 }
1857 
1858 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1859 {
1860     TCGv_i64 dst;
1861 
1862     if (s->current_el == 0) {
1863         return false;
1864     }
1865     if (s->trap_eret) {
1866         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1867         return true;
1868     }
1869     dst = tcg_temp_new_i64();
1870     tcg_gen_ld_i64(dst, tcg_env,
1871                    offsetof(CPUARMState, elr_el[s->current_el]));
1872 
1873     translator_io_start(&s->base);
1874 
1875     gen_helper_exception_return(tcg_env, dst);
1876     /* Must exit loop to check un-masked IRQs */
1877     s->base.is_jmp = DISAS_EXIT;
1878     return true;
1879 }
1880 
1881 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1882 {
1883     TCGv_i64 dst;
1884 
1885     if (!dc_isar_feature(aa64_pauth, s)) {
1886         return false;
1887     }
1888     if (s->current_el == 0) {
1889         return false;
1890     }
1891     /* The FGT trap takes precedence over an auth trap. */
1892     if (s->trap_eret) {
1893         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1894         return true;
1895     }
1896     dst = tcg_temp_new_i64();
1897     tcg_gen_ld_i64(dst, tcg_env,
1898                    offsetof(CPUARMState, elr_el[s->current_el]));
1899 
1900     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1901 
1902     translator_io_start(&s->base);
1903 
1904     gen_helper_exception_return(tcg_env, dst);
1905     /* Must exit loop to check un-masked IRQs */
1906     s->base.is_jmp = DISAS_EXIT;
1907     return true;
1908 }
1909 
1910 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1911 {
1912     return true;
1913 }
1914 
1915 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1916 {
1917     /*
1918      * When running in MTTCG we don't generate jumps to the yield and
1919      * WFE helpers as it won't affect the scheduling of other vCPUs.
1920      * If we wanted to more completely model WFE/SEV so we don't busy
1921      * spin unnecessarily we would need to do something more involved.
1922      */
1923     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1924         s->base.is_jmp = DISAS_YIELD;
1925     }
1926     return true;
1927 }
1928 
1929 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1930 {
1931     s->base.is_jmp = DISAS_WFI;
1932     return true;
1933 }
1934 
1935 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1936 {
1937     /*
1938      * When running in MTTCG we don't generate jumps to the yield and
1939      * WFE helpers as it won't affect the scheduling of other vCPUs.
1940      * If we wanted to more completely model WFE/SEV so we don't busy
1941      * spin unnecessarily we would need to do something more involved.
1942      */
1943     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1944         s->base.is_jmp = DISAS_WFE;
1945     }
1946     return true;
1947 }
1948 
1949 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1950 {
1951     if (!dc_isar_feature(aa64_wfxt, s)) {
1952         return false;
1953     }
1954 
1955     /*
1956      * Because we need to pass the register value to the helper,
1957      * it's easier to emit the code now, unlike trans_WFI which
1958      * defers it to aarch64_tr_tb_stop(). That means we need to
1959      * check ss_active so that single-stepping a WFIT doesn't halt.
1960      */
1961     if (s->ss_active) {
1962         /* Act like a NOP under architectural singlestep */
1963         return true;
1964     }
1965 
1966     gen_a64_update_pc(s, 4);
1967     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1968     /* Go back to the main loop to check for interrupts */
1969     s->base.is_jmp = DISAS_EXIT;
1970     return true;
1971 }
1972 
1973 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1974 {
1975     if (!dc_isar_feature(aa64_wfxt, s)) {
1976         return false;
1977     }
1978 
1979     /*
1980      * We rely here on our WFE implementation being a NOP, so we
1981      * don't need to do anything different to handle the WFET timeout
1982      * from what trans_WFE does.
1983      */
1984     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1985         s->base.is_jmp = DISAS_WFE;
1986     }
1987     return true;
1988 }
1989 
1990 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1991 {
1992     if (s->pauth_active) {
1993         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1994     }
1995     return true;
1996 }
1997 
1998 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1999 {
2000     if (s->pauth_active) {
2001         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2002     }
2003     return true;
2004 }
2005 
2006 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
2007 {
2008     if (s->pauth_active) {
2009         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2010     }
2011     return true;
2012 }
2013 
2014 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
2015 {
2016     if (s->pauth_active) {
2017         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2018     }
2019     return true;
2020 }
2021 
2022 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
2023 {
2024     if (s->pauth_active) {
2025         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2026     }
2027     return true;
2028 }
2029 
2030 static bool trans_ESB(DisasContext *s, arg_ESB *a)
2031 {
2032     /* Without RAS, we must implement this as NOP. */
2033     if (dc_isar_feature(aa64_ras, s)) {
2034         /*
2035          * QEMU does not have a source of physical SErrors,
2036          * so we are only concerned with virtual SErrors.
2037          * The pseudocode in the ARM for this case is
2038          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
2039          *      AArch64.vESBOperation();
2040          * Most of the condition can be evaluated at translation time.
2041          * Test for EL2 present, and defer test for SEL2 to runtime.
2042          */
2043         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
2044             gen_helper_vesb(tcg_env);
2045         }
2046     }
2047     return true;
2048 }
2049 
2050 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
2051 {
2052     if (s->pauth_active) {
2053         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2054     }
2055     return true;
2056 }
2057 
2058 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
2059 {
2060     if (s->pauth_active) {
2061         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2062     }
2063     return true;
2064 }
2065 
2066 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
2067 {
2068     if (s->pauth_active) {
2069         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2070     }
2071     return true;
2072 }
2073 
2074 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
2075 {
2076     if (s->pauth_active) {
2077         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2078     }
2079     return true;
2080 }
2081 
2082 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
2083 {
2084     if (s->pauth_active) {
2085         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2086     }
2087     return true;
2088 }
2089 
2090 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
2091 {
2092     if (s->pauth_active) {
2093         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2094     }
2095     return true;
2096 }
2097 
2098 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
2099 {
2100     if (s->pauth_active) {
2101         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2102     }
2103     return true;
2104 }
2105 
2106 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
2107 {
2108     if (s->pauth_active) {
2109         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2110     }
2111     return true;
2112 }
2113 
2114 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
2115 {
2116     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2117     return true;
2118 }
2119 
2120 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
2121 {
2122     /* We handle DSB and DMB the same way */
2123     TCGBar bar;
2124 
2125     switch (a->types) {
2126     case 1: /* MBReqTypes_Reads */
2127         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
2128         break;
2129     case 2: /* MBReqTypes_Writes */
2130         bar = TCG_BAR_SC | TCG_MO_ST_ST;
2131         break;
2132     default: /* MBReqTypes_All */
2133         bar = TCG_BAR_SC | TCG_MO_ALL;
2134         break;
2135     }
2136     tcg_gen_mb(bar);
2137     return true;
2138 }
2139 
2140 static bool trans_DSB_nXS(DisasContext *s, arg_DSB_nXS *a)
2141 {
2142     if (!dc_isar_feature(aa64_xs, s)) {
2143         return false;
2144     }
2145     tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
2146     return true;
2147 }
2148 
2149 static bool trans_ISB(DisasContext *s, arg_ISB *a)
2150 {
2151     /*
2152      * We need to break the TB after this insn to execute
2153      * self-modifying code correctly and also to take
2154      * any pending interrupts immediately.
2155      */
2156     reset_btype(s);
2157     gen_goto_tb(s, 0, 4);
2158     return true;
2159 }
2160 
2161 static bool trans_SB(DisasContext *s, arg_SB *a)
2162 {
2163     if (!dc_isar_feature(aa64_sb, s)) {
2164         return false;
2165     }
2166     /*
2167      * TODO: There is no speculation barrier opcode for TCG;
2168      * MB and end the TB instead.
2169      */
2170     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
2171     gen_goto_tb(s, 0, 4);
2172     return true;
2173 }
2174 
2175 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
2176 {
2177     if (!dc_isar_feature(aa64_condm_4, s)) {
2178         return false;
2179     }
2180     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
2181     return true;
2182 }
2183 
2184 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
2185 {
2186     TCGv_i32 z;
2187 
2188     if (!dc_isar_feature(aa64_condm_5, s)) {
2189         return false;
2190     }
2191 
2192     z = tcg_temp_new_i32();
2193 
2194     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
2195 
2196     /*
2197      * (!C & !Z) << 31
2198      * (!(C | Z)) << 31
2199      * ~((C | Z) << 31)
2200      * ~-(C | Z)
2201      * (C | Z) - 1
2202      */
2203     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2204     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2205 
2206     /* !(Z & C) */
2207     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2208     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2209 
2210     /* (!C & Z) << 31 -> -(Z & ~C) */
2211     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2212     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2213 
2214     /* C | Z */
2215     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2216 
2217     return true;
2218 }
2219 
2220 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2221 {
2222     if (!dc_isar_feature(aa64_condm_5, s)) {
2223         return false;
2224     }
2225 
2226     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2227     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2228 
2229     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2230     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2231 
2232     tcg_gen_movi_i32(cpu_NF, 0);
2233     tcg_gen_movi_i32(cpu_VF, 0);
2234 
2235     return true;
2236 }
2237 
2238 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2239 {
2240     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2241         return false;
2242     }
2243     if (a->imm & 1) {
2244         set_pstate_bits(PSTATE_UAO);
2245     } else {
2246         clear_pstate_bits(PSTATE_UAO);
2247     }
2248     gen_rebuild_hflags(s);
2249     s->base.is_jmp = DISAS_TOO_MANY;
2250     return true;
2251 }
2252 
2253 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2254 {
2255     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2256         return false;
2257     }
2258     if (a->imm & 1) {
2259         set_pstate_bits(PSTATE_PAN);
2260     } else {
2261         clear_pstate_bits(PSTATE_PAN);
2262     }
2263     gen_rebuild_hflags(s);
2264     s->base.is_jmp = DISAS_TOO_MANY;
2265     return true;
2266 }
2267 
2268 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2269 {
2270     if (s->current_el == 0) {
2271         return false;
2272     }
2273     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2274     s->base.is_jmp = DISAS_TOO_MANY;
2275     return true;
2276 }
2277 
2278 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2279 {
2280     if (!dc_isar_feature(aa64_ssbs, s)) {
2281         return false;
2282     }
2283     if (a->imm & 1) {
2284         set_pstate_bits(PSTATE_SSBS);
2285     } else {
2286         clear_pstate_bits(PSTATE_SSBS);
2287     }
2288     /* Don't need to rebuild hflags since SSBS is a nop */
2289     s->base.is_jmp = DISAS_TOO_MANY;
2290     return true;
2291 }
2292 
2293 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2294 {
2295     if (!dc_isar_feature(aa64_dit, s)) {
2296         return false;
2297     }
2298     if (a->imm & 1) {
2299         set_pstate_bits(PSTATE_DIT);
2300     } else {
2301         clear_pstate_bits(PSTATE_DIT);
2302     }
2303     /* There's no need to rebuild hflags because DIT is a nop */
2304     s->base.is_jmp = DISAS_TOO_MANY;
2305     return true;
2306 }
2307 
2308 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2309 {
2310     if (dc_isar_feature(aa64_mte, s)) {
2311         /* Full MTE is enabled -- set the TCO bit as directed. */
2312         if (a->imm & 1) {
2313             set_pstate_bits(PSTATE_TCO);
2314         } else {
2315             clear_pstate_bits(PSTATE_TCO);
2316         }
2317         gen_rebuild_hflags(s);
2318         /* Many factors, including TCO, go into MTE_ACTIVE. */
2319         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2320         return true;
2321     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2322         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2323         return true;
2324     } else {
2325         /* Insn not present */
2326         return false;
2327     }
2328 }
2329 
2330 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2331 {
2332     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2333     s->base.is_jmp = DISAS_TOO_MANY;
2334     return true;
2335 }
2336 
2337 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2338 {
2339     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2340     /* Exit the cpu loop to re-evaluate pending IRQs. */
2341     s->base.is_jmp = DISAS_UPDATE_EXIT;
2342     return true;
2343 }
2344 
2345 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2346 {
2347     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2348         return false;
2349     }
2350 
2351     if (a->imm == 0) {
2352         clear_pstate_bits(PSTATE_ALLINT);
2353     } else if (s->current_el > 1) {
2354         set_pstate_bits(PSTATE_ALLINT);
2355     } else {
2356         gen_helper_msr_set_allint_el1(tcg_env);
2357     }
2358 
2359     /* Exit the cpu loop to re-evaluate pending IRQs. */
2360     s->base.is_jmp = DISAS_UPDATE_EXIT;
2361     return true;
2362 }
2363 
2364 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2365 {
2366     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2367         return false;
2368     }
2369     if (sme_access_check(s)) {
2370         int old = s->pstate_sm | (s->pstate_za << 1);
2371         int new = a->imm * 3;
2372 
2373         if ((old ^ new) & a->mask) {
2374             /* At least one bit changes. */
2375             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2376                                 tcg_constant_i32(a->mask));
2377             s->base.is_jmp = DISAS_TOO_MANY;
2378         }
2379     }
2380     return true;
2381 }
2382 
2383 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2384 {
2385     TCGv_i32 tmp = tcg_temp_new_i32();
2386     TCGv_i32 nzcv = tcg_temp_new_i32();
2387 
2388     /* build bit 31, N */
2389     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2390     /* build bit 30, Z */
2391     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2392     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2393     /* build bit 29, C */
2394     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2395     /* build bit 28, V */
2396     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2397     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2398     /* generate result */
2399     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2400 }
2401 
2402 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2403 {
2404     TCGv_i32 nzcv = tcg_temp_new_i32();
2405 
2406     /* take NZCV from R[t] */
2407     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2408 
2409     /* bit 31, N */
2410     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2411     /* bit 30, Z */
2412     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2413     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2414     /* bit 29, C */
2415     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2416     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2417     /* bit 28, V */
2418     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2419     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2420 }
2421 
2422 static void gen_sysreg_undef(DisasContext *s, bool isread,
2423                              uint8_t op0, uint8_t op1, uint8_t op2,
2424                              uint8_t crn, uint8_t crm, uint8_t rt)
2425 {
2426     /*
2427      * Generate code to emit an UNDEF with correct syndrome
2428      * information for a failed system register access.
2429      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2430      * but if FEAT_IDST is implemented then read accesses to registers
2431      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2432      * syndrome.
2433      */
2434     uint32_t syndrome;
2435 
2436     if (isread && dc_isar_feature(aa64_ids, s) &&
2437         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2438         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2439     } else {
2440         syndrome = syn_uncategorized();
2441     }
2442     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2443 }
2444 
2445 /* MRS - move from system register
2446  * MSR (register) - move to system register
2447  * SYS
2448  * SYSL
2449  * These are all essentially the same insn in 'read' and 'write'
2450  * versions, with varying op0 fields.
2451  */
2452 static void handle_sys(DisasContext *s, bool isread,
2453                        unsigned int op0, unsigned int op1, unsigned int op2,
2454                        unsigned int crn, unsigned int crm, unsigned int rt)
2455 {
2456     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2457                                       crn, crm, op0, op1, op2);
2458     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2459     bool need_exit_tb = false;
2460     bool nv_trap_to_el2 = false;
2461     bool nv_redirect_reg = false;
2462     bool skip_fp_access_checks = false;
2463     bool nv2_mem_redirect = false;
2464     TCGv_ptr tcg_ri = NULL;
2465     TCGv_i64 tcg_rt;
2466     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2467 
2468     if (crn == 11 || crn == 15) {
2469         /*
2470          * Check for TIDCP trap, which must take precedence over
2471          * the UNDEF for "no such register" etc.
2472          */
2473         switch (s->current_el) {
2474         case 0:
2475             if (dc_isar_feature(aa64_tidcp1, s)) {
2476                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2477             }
2478             break;
2479         case 1:
2480             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2481             break;
2482         }
2483     }
2484 
2485     if (!ri) {
2486         /* Unknown register; this might be a guest error or a QEMU
2487          * unimplemented feature.
2488          */
2489         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2490                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2491                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2492         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2493         return;
2494     }
2495 
2496     if (s->nv2 && ri->nv2_redirect_offset) {
2497         /*
2498          * Some registers always redirect to memory; some only do so if
2499          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2500          * pairs which share an offset; see the table in R_CSRPQ).
2501          */
2502         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2503             nv2_mem_redirect = s->nv1;
2504         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2505             nv2_mem_redirect = !s->nv1;
2506         } else {
2507             nv2_mem_redirect = true;
2508         }
2509     }
2510 
2511     /* Check access permissions */
2512     if (!cp_access_ok(s->current_el, ri, isread)) {
2513         /*
2514          * FEAT_NV/NV2 handling does not do the usual FP access checks
2515          * for registers only accessible at EL2 (though it *does* do them
2516          * for registers accessible at EL1).
2517          */
2518         skip_fp_access_checks = true;
2519         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2520             /*
2521              * This is one of the few EL2 registers which should redirect
2522              * to the equivalent EL1 register. We do that after running
2523              * the EL2 register's accessfn.
2524              */
2525             nv_redirect_reg = true;
2526             assert(!nv2_mem_redirect);
2527         } else if (nv2_mem_redirect) {
2528             /*
2529              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2530              * UNDEF to EL1.
2531              */
2532         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2533             /*
2534              * This register / instruction exists and is an EL2 register, so
2535              * we must trap to EL2 if accessed in nested virtualization EL1
2536              * instead of UNDEFing. We'll do that after the usual access checks.
2537              * (This makes a difference only for a couple of registers like
2538              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2539              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2540              * an accessfn which does nothing when called from EL1, because
2541              * the trap-to-EL3 controls which would apply to that register
2542              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2543              */
2544             nv_trap_to_el2 = true;
2545         } else {
2546             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2547             return;
2548         }
2549     }
2550 
2551     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2552         /* Emit code to perform further access permissions checks at
2553          * runtime; this may result in an exception.
2554          */
2555         gen_a64_update_pc(s, 0);
2556         tcg_ri = tcg_temp_new_ptr();
2557         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2558                                        tcg_constant_i32(key),
2559                                        tcg_constant_i32(syndrome),
2560                                        tcg_constant_i32(isread));
2561     } else if (ri->type & ARM_CP_RAISES_EXC) {
2562         /*
2563          * The readfn or writefn might raise an exception;
2564          * synchronize the CPU state in case it does.
2565          */
2566         gen_a64_update_pc(s, 0);
2567     }
2568 
2569     if (!skip_fp_access_checks) {
2570         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2571             return;
2572         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2573             return;
2574         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2575             return;
2576         }
2577     }
2578 
2579     if (nv_trap_to_el2) {
2580         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2581         return;
2582     }
2583 
2584     if (nv_redirect_reg) {
2585         /*
2586          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2587          * Conveniently in all cases the encoding of the EL1 register is
2588          * identical to the EL2 register except that opc1 is 0.
2589          * Get the reginfo for the EL1 register to use for the actual access.
2590          * We don't use the EL1 register's access function, and
2591          * fine-grained-traps on EL1 also do not apply here.
2592          */
2593         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2594                                  crn, crm, op0, 0, op2);
2595         ri = get_arm_cp_reginfo(s->cp_regs, key);
2596         assert(ri);
2597         assert(cp_access_ok(s->current_el, ri, isread));
2598         /*
2599          * We might not have done an update_pc earlier, so check we don't
2600          * need it. We could support this in future if necessary.
2601          */
2602         assert(!(ri->type & ARM_CP_RAISES_EXC));
2603     }
2604 
2605     if (nv2_mem_redirect) {
2606         /*
2607          * This system register is being redirected into an EL2 memory access.
2608          * This means it is not an IO operation, doesn't change hflags,
2609          * and need not end the TB, because it has no side effects.
2610          *
2611          * The access is 64-bit single copy atomic, guaranteed aligned because
2612          * of the definition of VCNR_EL2. Its endianness depends on
2613          * SCTLR_EL2.EE, not on the data endianness of EL1.
2614          * It is done under either the EL2 translation regime or the EL2&0
2615          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2616          * PSTATE.PAN is 0.
2617          */
2618         TCGv_i64 ptr = tcg_temp_new_i64();
2619         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2620         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2621         int memidx = arm_to_core_mmu_idx(armmemidx);
2622         uint32_t syn;
2623 
2624         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2625 
2626         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2627         tcg_gen_addi_i64(ptr, ptr,
2628                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2629         tcg_rt = cpu_reg(s, rt);
2630 
2631         syn = syn_data_abort_vncr(0, !isread, 0);
2632         disas_set_insn_syndrome(s, syn);
2633         if (isread) {
2634             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2635         } else {
2636             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2637         }
2638         return;
2639     }
2640 
2641     /* Handle special cases first */
2642     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2643     case 0:
2644         break;
2645     case ARM_CP_NOP:
2646         return;
2647     case ARM_CP_NZCV:
2648         tcg_rt = cpu_reg(s, rt);
2649         if (isread) {
2650             gen_get_nzcv(tcg_rt);
2651         } else {
2652             gen_set_nzcv(tcg_rt);
2653         }
2654         return;
2655     case ARM_CP_CURRENTEL:
2656     {
2657         /*
2658          * Reads as current EL value from pstate, which is
2659          * guaranteed to be constant by the tb flags.
2660          * For nested virt we should report EL2.
2661          */
2662         int el = s->nv ? 2 : s->current_el;
2663         tcg_rt = cpu_reg(s, rt);
2664         tcg_gen_movi_i64(tcg_rt, el << 2);
2665         return;
2666     }
2667     case ARM_CP_DC_ZVA:
2668         /* Writes clear the aligned block of memory which rt points into. */
2669         if (s->mte_active[0]) {
2670             int desc = 0;
2671 
2672             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2673             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2674             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2675 
2676             tcg_rt = tcg_temp_new_i64();
2677             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2678                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2679         } else {
2680             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2681         }
2682         gen_helper_dc_zva(tcg_env, tcg_rt);
2683         return;
2684     case ARM_CP_DC_GVA:
2685         {
2686             TCGv_i64 clean_addr, tag;
2687 
2688             /*
2689              * DC_GVA, like DC_ZVA, requires that we supply the original
2690              * pointer for an invalid page.  Probe that address first.
2691              */
2692             tcg_rt = cpu_reg(s, rt);
2693             clean_addr = clean_data_tbi(s, tcg_rt);
2694             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2695 
2696             if (s->ata[0]) {
2697                 /* Extract the tag from the register to match STZGM.  */
2698                 tag = tcg_temp_new_i64();
2699                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2700                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2701             }
2702         }
2703         return;
2704     case ARM_CP_DC_GZVA:
2705         {
2706             TCGv_i64 clean_addr, tag;
2707 
2708             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2709             tcg_rt = cpu_reg(s, rt);
2710             clean_addr = clean_data_tbi(s, tcg_rt);
2711             gen_helper_dc_zva(tcg_env, clean_addr);
2712 
2713             if (s->ata[0]) {
2714                 /* Extract the tag from the register to match STZGM.  */
2715                 tag = tcg_temp_new_i64();
2716                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2717                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2718             }
2719         }
2720         return;
2721     default:
2722         g_assert_not_reached();
2723     }
2724 
2725     if (ri->type & ARM_CP_IO) {
2726         /* I/O operations must end the TB here (whether read or write) */
2727         need_exit_tb = translator_io_start(&s->base);
2728     }
2729 
2730     tcg_rt = cpu_reg(s, rt);
2731 
2732     if (isread) {
2733         if (ri->type & ARM_CP_CONST) {
2734             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2735         } else if (ri->readfn) {
2736             if (!tcg_ri) {
2737                 tcg_ri = gen_lookup_cp_reg(key);
2738             }
2739             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2740         } else {
2741             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2742         }
2743     } else {
2744         if (ri->type & ARM_CP_CONST) {
2745             /* If not forbidden by access permissions, treat as WI */
2746             return;
2747         } else if (ri->writefn) {
2748             if (!tcg_ri) {
2749                 tcg_ri = gen_lookup_cp_reg(key);
2750             }
2751             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2752         } else {
2753             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2754         }
2755     }
2756 
2757     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2758         /*
2759          * A write to any coprocessor register that ends a TB
2760          * must rebuild the hflags for the next TB.
2761          */
2762         gen_rebuild_hflags(s);
2763         /*
2764          * We default to ending the TB on a coprocessor register write,
2765          * but allow this to be suppressed by the register definition
2766          * (usually only necessary to work around guest bugs).
2767          */
2768         need_exit_tb = true;
2769     }
2770     if (need_exit_tb) {
2771         s->base.is_jmp = DISAS_UPDATE_EXIT;
2772     }
2773 }
2774 
2775 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2776 {
2777     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2778     return true;
2779 }
2780 
2781 static bool trans_SVC(DisasContext *s, arg_i *a)
2782 {
2783     /*
2784      * For SVC, HVC and SMC we advance the single-step state
2785      * machine before taking the exception. This is architecturally
2786      * mandated, to ensure that single-stepping a system call
2787      * instruction works properly.
2788      */
2789     uint32_t syndrome = syn_aa64_svc(a->imm);
2790     if (s->fgt_svc) {
2791         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2792         return true;
2793     }
2794     gen_ss_advance(s);
2795     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2796     return true;
2797 }
2798 
2799 static bool trans_HVC(DisasContext *s, arg_i *a)
2800 {
2801     int target_el = s->current_el == 3 ? 3 : 2;
2802 
2803     if (s->current_el == 0) {
2804         unallocated_encoding(s);
2805         return true;
2806     }
2807     /*
2808      * The pre HVC helper handles cases when HVC gets trapped
2809      * as an undefined insn by runtime configuration.
2810      */
2811     gen_a64_update_pc(s, 0);
2812     gen_helper_pre_hvc(tcg_env);
2813     /* Architecture requires ss advance before we do the actual work */
2814     gen_ss_advance(s);
2815     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2816     return true;
2817 }
2818 
2819 static bool trans_SMC(DisasContext *s, arg_i *a)
2820 {
2821     if (s->current_el == 0) {
2822         unallocated_encoding(s);
2823         return true;
2824     }
2825     gen_a64_update_pc(s, 0);
2826     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2827     /* Architecture requires ss advance before we do the actual work */
2828     gen_ss_advance(s);
2829     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2830     return true;
2831 }
2832 
2833 static bool trans_BRK(DisasContext *s, arg_i *a)
2834 {
2835     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2836     return true;
2837 }
2838 
2839 static bool trans_HLT(DisasContext *s, arg_i *a)
2840 {
2841     /*
2842      * HLT. This has two purposes.
2843      * Architecturally, it is an external halting debug instruction.
2844      * Since QEMU doesn't implement external debug, we treat this as
2845      * it is required for halting debug disabled: it will UNDEF.
2846      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2847      */
2848     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2849         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2850     } else {
2851         unallocated_encoding(s);
2852     }
2853     return true;
2854 }
2855 
2856 /*
2857  * Load/Store exclusive instructions are implemented by remembering
2858  * the value/address loaded, and seeing if these are the same
2859  * when the store is performed. This is not actually the architecturally
2860  * mandated semantics, but it works for typical guest code sequences
2861  * and avoids having to monitor regular stores.
2862  *
2863  * The store exclusive uses the atomic cmpxchg primitives to avoid
2864  * races in multi-threaded linux-user and when MTTCG softmmu is
2865  * enabled.
2866  */
2867 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2868                                int size, bool is_pair)
2869 {
2870     int idx = get_mem_index(s);
2871     TCGv_i64 dirty_addr, clean_addr;
2872     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2873 
2874     s->is_ldex = true;
2875     dirty_addr = cpu_reg_sp(s, rn);
2876     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2877 
2878     g_assert(size <= 3);
2879     if (is_pair) {
2880         g_assert(size >= 2);
2881         if (size == 2) {
2882             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2883             if (s->be_data == MO_LE) {
2884                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2885                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2886             } else {
2887                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2888                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2889             }
2890         } else {
2891             TCGv_i128 t16 = tcg_temp_new_i128();
2892 
2893             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2894 
2895             if (s->be_data == MO_LE) {
2896                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2897                                       cpu_exclusive_high, t16);
2898             } else {
2899                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2900                                       cpu_exclusive_val, t16);
2901             }
2902             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2903             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2904         }
2905     } else {
2906         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2907         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2908     }
2909     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2910 }
2911 
2912 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2913                                 int rn, int size, int is_pair)
2914 {
2915     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2916      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2917      *     [addr] = {Rt};
2918      *     if (is_pair) {
2919      *         [addr + datasize] = {Rt2};
2920      *     }
2921      *     {Rd} = 0;
2922      * } else {
2923      *     {Rd} = 1;
2924      * }
2925      * env->exclusive_addr = -1;
2926      */
2927     TCGLabel *fail_label = gen_new_label();
2928     TCGLabel *done_label = gen_new_label();
2929     TCGv_i64 tmp, clean_addr;
2930     MemOp memop;
2931 
2932     /*
2933      * FIXME: We are out of spec here.  We have recorded only the address
2934      * from load_exclusive, not the entire range, and we assume that the
2935      * size of the access on both sides match.  The architecture allows the
2936      * store to be smaller than the load, so long as the stored bytes are
2937      * within the range recorded by the load.
2938      */
2939 
2940     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2941     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2942     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2943 
2944     /*
2945      * The write, and any associated faults, only happen if the virtual
2946      * and physical addresses pass the exclusive monitor check.  These
2947      * faults are exceedingly unlikely, because normally the guest uses
2948      * the exact same address register for the load_exclusive, and we
2949      * would have recognized these faults there.
2950      *
2951      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2952      * unaligned 4-byte write within the range of an aligned 8-byte load.
2953      * With LSE2, the store would need to cross a 16-byte boundary when the
2954      * load did not, which would mean the store is outside the range
2955      * recorded for the monitor, which would have failed a corrected monitor
2956      * check above.  For now, we assume no size change and retain the
2957      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2958      *
2959      * It is possible to trigger an MTE fault, by performing the load with
2960      * a virtual address with a valid tag and performing the store with the
2961      * same virtual address and a different invalid tag.
2962      */
2963     memop = size + is_pair;
2964     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2965         memop |= MO_ALIGN;
2966     }
2967     memop = finalize_memop(s, memop);
2968     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2969 
2970     tmp = tcg_temp_new_i64();
2971     if (is_pair) {
2972         if (size == 2) {
2973             if (s->be_data == MO_LE) {
2974                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2975             } else {
2976                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2977             }
2978             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2979                                        cpu_exclusive_val, tmp,
2980                                        get_mem_index(s), memop);
2981             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2982         } else {
2983             TCGv_i128 t16 = tcg_temp_new_i128();
2984             TCGv_i128 c16 = tcg_temp_new_i128();
2985             TCGv_i64 a, b;
2986 
2987             if (s->be_data == MO_LE) {
2988                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2989                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2990                                         cpu_exclusive_high);
2991             } else {
2992                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2993                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2994                                         cpu_exclusive_val);
2995             }
2996 
2997             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2998                                         get_mem_index(s), memop);
2999 
3000             a = tcg_temp_new_i64();
3001             b = tcg_temp_new_i64();
3002             if (s->be_data == MO_LE) {
3003                 tcg_gen_extr_i128_i64(a, b, t16);
3004             } else {
3005                 tcg_gen_extr_i128_i64(b, a, t16);
3006             }
3007 
3008             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
3009             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
3010             tcg_gen_or_i64(tmp, a, b);
3011 
3012             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
3013         }
3014     } else {
3015         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
3016                                    cpu_reg(s, rt), get_mem_index(s), memop);
3017         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
3018     }
3019     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
3020     tcg_gen_br(done_label);
3021 
3022     gen_set_label(fail_label);
3023     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
3024     gen_set_label(done_label);
3025     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
3026 }
3027 
3028 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
3029                                  int rn, int size)
3030 {
3031     TCGv_i64 tcg_rs = cpu_reg(s, rs);
3032     TCGv_i64 tcg_rt = cpu_reg(s, rt);
3033     int memidx = get_mem_index(s);
3034     TCGv_i64 clean_addr;
3035     MemOp memop;
3036 
3037     if (rn == 31) {
3038         gen_check_sp_alignment(s);
3039     }
3040     memop = check_atomic_align(s, rn, size);
3041     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3042     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
3043                                memidx, memop);
3044 }
3045 
3046 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
3047                                       int rn, int size)
3048 {
3049     TCGv_i64 s1 = cpu_reg(s, rs);
3050     TCGv_i64 s2 = cpu_reg(s, rs + 1);
3051     TCGv_i64 t1 = cpu_reg(s, rt);
3052     TCGv_i64 t2 = cpu_reg(s, rt + 1);
3053     TCGv_i64 clean_addr;
3054     int memidx = get_mem_index(s);
3055     MemOp memop;
3056 
3057     if (rn == 31) {
3058         gen_check_sp_alignment(s);
3059     }
3060 
3061     /* This is a single atomic access, despite the "pair". */
3062     memop = check_atomic_align(s, rn, size + 1);
3063     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3064 
3065     if (size == 2) {
3066         TCGv_i64 cmp = tcg_temp_new_i64();
3067         TCGv_i64 val = tcg_temp_new_i64();
3068 
3069         if (s->be_data == MO_LE) {
3070             tcg_gen_concat32_i64(val, t1, t2);
3071             tcg_gen_concat32_i64(cmp, s1, s2);
3072         } else {
3073             tcg_gen_concat32_i64(val, t2, t1);
3074             tcg_gen_concat32_i64(cmp, s2, s1);
3075         }
3076 
3077         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
3078 
3079         if (s->be_data == MO_LE) {
3080             tcg_gen_extr32_i64(s1, s2, cmp);
3081         } else {
3082             tcg_gen_extr32_i64(s2, s1, cmp);
3083         }
3084     } else {
3085         TCGv_i128 cmp = tcg_temp_new_i128();
3086         TCGv_i128 val = tcg_temp_new_i128();
3087 
3088         if (s->be_data == MO_LE) {
3089             tcg_gen_concat_i64_i128(val, t1, t2);
3090             tcg_gen_concat_i64_i128(cmp, s1, s2);
3091         } else {
3092             tcg_gen_concat_i64_i128(val, t2, t1);
3093             tcg_gen_concat_i64_i128(cmp, s2, s1);
3094         }
3095 
3096         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
3097 
3098         if (s->be_data == MO_LE) {
3099             tcg_gen_extr_i128_i64(s1, s2, cmp);
3100         } else {
3101             tcg_gen_extr_i128_i64(s2, s1, cmp);
3102         }
3103     }
3104 }
3105 
3106 /*
3107  * Compute the ISS.SF bit for syndrome information if an exception
3108  * is taken on a load or store. This indicates whether the instruction
3109  * is accessing a 32-bit or 64-bit register. This logic is derived
3110  * from the ARMv8 specs for LDR (Shared decode for all encodings).
3111  */
3112 static bool ldst_iss_sf(int size, bool sign, bool ext)
3113 {
3114 
3115     if (sign) {
3116         /*
3117          * Signed loads are 64 bit results if we are not going to
3118          * do a zero-extend from 32 to 64 after the load.
3119          * (For a store, sign and ext are always false.)
3120          */
3121         return !ext;
3122     } else {
3123         /* Unsigned loads/stores work at the specified size */
3124         return size == MO_64;
3125     }
3126 }
3127 
3128 static bool trans_STXR(DisasContext *s, arg_stxr *a)
3129 {
3130     if (a->rn == 31) {
3131         gen_check_sp_alignment(s);
3132     }
3133     if (a->lasr) {
3134         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3135     }
3136     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
3137     return true;
3138 }
3139 
3140 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
3141 {
3142     if (a->rn == 31) {
3143         gen_check_sp_alignment(s);
3144     }
3145     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
3146     if (a->lasr) {
3147         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3148     }
3149     return true;
3150 }
3151 
3152 static bool trans_STLR(DisasContext *s, arg_stlr *a)
3153 {
3154     TCGv_i64 clean_addr;
3155     MemOp memop;
3156     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3157 
3158     /*
3159      * StoreLORelease is the same as Store-Release for QEMU, but
3160      * needs the feature-test.
3161      */
3162     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3163         return false;
3164     }
3165     /* Generate ISS for non-exclusive accesses including LASR.  */
3166     if (a->rn == 31) {
3167         gen_check_sp_alignment(s);
3168     }
3169     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3170     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
3171     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3172                                 true, a->rn != 31, memop);
3173     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
3174               iss_sf, a->lasr);
3175     return true;
3176 }
3177 
3178 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
3179 {
3180     TCGv_i64 clean_addr;
3181     MemOp memop;
3182     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3183 
3184     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
3185     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3186         return false;
3187     }
3188     /* Generate ISS for non-exclusive accesses including LASR.  */
3189     if (a->rn == 31) {
3190         gen_check_sp_alignment(s);
3191     }
3192     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
3193     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3194                                 false, a->rn != 31, memop);
3195     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
3196               a->rt, iss_sf, a->lasr);
3197     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3198     return true;
3199 }
3200 
3201 static bool trans_STXP(DisasContext *s, arg_stxr *a)
3202 {
3203     if (a->rn == 31) {
3204         gen_check_sp_alignment(s);
3205     }
3206     if (a->lasr) {
3207         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3208     }
3209     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3210     return true;
3211 }
3212 
3213 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3214 {
3215     if (a->rn == 31) {
3216         gen_check_sp_alignment(s);
3217     }
3218     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3219     if (a->lasr) {
3220         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3221     }
3222     return true;
3223 }
3224 
3225 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3226 {
3227     if (!dc_isar_feature(aa64_atomics, s)) {
3228         return false;
3229     }
3230     if (((a->rt | a->rs) & 1) != 0) {
3231         return false;
3232     }
3233 
3234     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3235     return true;
3236 }
3237 
3238 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3239 {
3240     if (!dc_isar_feature(aa64_atomics, s)) {
3241         return false;
3242     }
3243     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3244     return true;
3245 }
3246 
3247 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3248 {
3249     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3250     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3251     TCGv_i64 clean_addr = tcg_temp_new_i64();
3252     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3253 
3254     gen_pc_plus_diff(s, clean_addr, a->imm);
3255     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3256               false, true, a->rt, iss_sf, false);
3257     return true;
3258 }
3259 
3260 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3261 {
3262     /* Load register (literal), vector version */
3263     TCGv_i64 clean_addr;
3264     MemOp memop;
3265 
3266     if (!fp_access_check(s)) {
3267         return true;
3268     }
3269     memop = finalize_memop_asimd(s, a->sz);
3270     clean_addr = tcg_temp_new_i64();
3271     gen_pc_plus_diff(s, clean_addr, a->imm);
3272     do_fp_ld(s, a->rt, clean_addr, memop);
3273     return true;
3274 }
3275 
3276 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3277                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3278                                  uint64_t offset, bool is_store, MemOp mop)
3279 {
3280     if (a->rn == 31) {
3281         gen_check_sp_alignment(s);
3282     }
3283 
3284     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3285     if (!a->p) {
3286         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3287     }
3288 
3289     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3290                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3291 }
3292 
3293 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3294                                   TCGv_i64 dirty_addr, uint64_t offset)
3295 {
3296     if (a->w) {
3297         if (a->p) {
3298             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3299         }
3300         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3301     }
3302 }
3303 
3304 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3305 {
3306     uint64_t offset = a->imm << a->sz;
3307     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3308     MemOp mop = finalize_memop(s, a->sz);
3309 
3310     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3311     tcg_rt = cpu_reg(s, a->rt);
3312     tcg_rt2 = cpu_reg(s, a->rt2);
3313     /*
3314      * We built mop above for the single logical access -- rebuild it
3315      * now for the paired operation.
3316      *
3317      * With LSE2, non-sign-extending pairs are treated atomically if
3318      * aligned, and if unaligned one of the pair will be completely
3319      * within a 16-byte block and that element will be atomic.
3320      * Otherwise each element is separately atomic.
3321      * In all cases, issue one operation with the correct atomicity.
3322      */
3323     mop = a->sz + 1;
3324     if (s->align_mem) {
3325         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3326     }
3327     mop = finalize_memop_pair(s, mop);
3328     if (a->sz == 2) {
3329         TCGv_i64 tmp = tcg_temp_new_i64();
3330 
3331         if (s->be_data == MO_LE) {
3332             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3333         } else {
3334             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3335         }
3336         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3337     } else {
3338         TCGv_i128 tmp = tcg_temp_new_i128();
3339 
3340         if (s->be_data == MO_LE) {
3341             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3342         } else {
3343             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3344         }
3345         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3346     }
3347     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3348     return true;
3349 }
3350 
3351 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3352 {
3353     uint64_t offset = a->imm << a->sz;
3354     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3355     MemOp mop = finalize_memop(s, a->sz);
3356 
3357     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3358     tcg_rt = cpu_reg(s, a->rt);
3359     tcg_rt2 = cpu_reg(s, a->rt2);
3360 
3361     /*
3362      * We built mop above for the single logical access -- rebuild it
3363      * now for the paired operation.
3364      *
3365      * With LSE2, non-sign-extending pairs are treated atomically if
3366      * aligned, and if unaligned one of the pair will be completely
3367      * within a 16-byte block and that element will be atomic.
3368      * Otherwise each element is separately atomic.
3369      * In all cases, issue one operation with the correct atomicity.
3370      *
3371      * This treats sign-extending loads like zero-extending loads,
3372      * since that reuses the most code below.
3373      */
3374     mop = a->sz + 1;
3375     if (s->align_mem) {
3376         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3377     }
3378     mop = finalize_memop_pair(s, mop);
3379     if (a->sz == 2) {
3380         int o2 = s->be_data == MO_LE ? 32 : 0;
3381         int o1 = o2 ^ 32;
3382 
3383         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3384         if (a->sign) {
3385             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3386             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3387         } else {
3388             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3389             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3390         }
3391     } else {
3392         TCGv_i128 tmp = tcg_temp_new_i128();
3393 
3394         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3395         if (s->be_data == MO_LE) {
3396             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3397         } else {
3398             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3399         }
3400     }
3401     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3402     return true;
3403 }
3404 
3405 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3406 {
3407     uint64_t offset = a->imm << a->sz;
3408     TCGv_i64 clean_addr, dirty_addr;
3409     MemOp mop;
3410 
3411     if (!fp_access_check(s)) {
3412         return true;
3413     }
3414 
3415     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3416     mop = finalize_memop_asimd(s, a->sz);
3417     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3418     do_fp_st(s, a->rt, clean_addr, mop);
3419     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3420     do_fp_st(s, a->rt2, clean_addr, mop);
3421     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3422     return true;
3423 }
3424 
3425 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3426 {
3427     uint64_t offset = a->imm << a->sz;
3428     TCGv_i64 clean_addr, dirty_addr;
3429     MemOp mop;
3430 
3431     if (!fp_access_check(s)) {
3432         return true;
3433     }
3434 
3435     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3436     mop = finalize_memop_asimd(s, a->sz);
3437     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3438     do_fp_ld(s, a->rt, clean_addr, mop);
3439     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3440     do_fp_ld(s, a->rt2, clean_addr, mop);
3441     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3442     return true;
3443 }
3444 
3445 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3446 {
3447     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3448     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3449     MemOp mop;
3450     TCGv_i128 tmp;
3451 
3452     /* STGP only comes in one size. */
3453     tcg_debug_assert(a->sz == MO_64);
3454 
3455     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3456         return false;
3457     }
3458 
3459     if (a->rn == 31) {
3460         gen_check_sp_alignment(s);
3461     }
3462 
3463     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3464     if (!a->p) {
3465         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3466     }
3467 
3468     clean_addr = clean_data_tbi(s, dirty_addr);
3469     tcg_rt = cpu_reg(s, a->rt);
3470     tcg_rt2 = cpu_reg(s, a->rt2);
3471 
3472     /*
3473      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3474      * and one tag operation.  We implement it as one single aligned 16-byte
3475      * memory operation for convenience.  Note that the alignment ensures
3476      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3477      */
3478     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3479 
3480     tmp = tcg_temp_new_i128();
3481     if (s->be_data == MO_LE) {
3482         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3483     } else {
3484         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3485     }
3486     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3487 
3488     /* Perform the tag store, if tag access enabled. */
3489     if (s->ata[0]) {
3490         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3491             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3492         } else {
3493             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3494         }
3495     }
3496 
3497     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3498     return true;
3499 }
3500 
3501 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3502                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3503                                  uint64_t offset, bool is_store, MemOp mop)
3504 {
3505     int memidx;
3506 
3507     if (a->rn == 31) {
3508         gen_check_sp_alignment(s);
3509     }
3510 
3511     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3512     if (!a->p) {
3513         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3514     }
3515     memidx = get_a64_user_mem_index(s, a->unpriv);
3516     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3517                                         a->w || a->rn != 31,
3518                                         mop, a->unpriv, memidx);
3519 }
3520 
3521 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3522                                   TCGv_i64 dirty_addr, uint64_t offset)
3523 {
3524     if (a->w) {
3525         if (a->p) {
3526             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3527         }
3528         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3529     }
3530 }
3531 
3532 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3533 {
3534     bool iss_sf, iss_valid = !a->w;
3535     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3536     int memidx = get_a64_user_mem_index(s, a->unpriv);
3537     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3538 
3539     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3540 
3541     tcg_rt = cpu_reg(s, a->rt);
3542     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3543 
3544     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3545                      iss_valid, a->rt, iss_sf, false);
3546     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3547     return true;
3548 }
3549 
3550 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3551 {
3552     bool iss_sf, iss_valid = !a->w;
3553     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3554     int memidx = get_a64_user_mem_index(s, a->unpriv);
3555     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3556 
3557     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3558 
3559     tcg_rt = cpu_reg(s, a->rt);
3560     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3561 
3562     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3563                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3564     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3565     return true;
3566 }
3567 
3568 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3569 {
3570     TCGv_i64 clean_addr, dirty_addr;
3571     MemOp mop;
3572 
3573     if (!fp_access_check(s)) {
3574         return true;
3575     }
3576     mop = finalize_memop_asimd(s, a->sz);
3577     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3578     do_fp_st(s, a->rt, clean_addr, mop);
3579     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3580     return true;
3581 }
3582 
3583 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3584 {
3585     TCGv_i64 clean_addr, dirty_addr;
3586     MemOp mop;
3587 
3588     if (!fp_access_check(s)) {
3589         return true;
3590     }
3591     mop = finalize_memop_asimd(s, a->sz);
3592     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3593     do_fp_ld(s, a->rt, clean_addr, mop);
3594     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3595     return true;
3596 }
3597 
3598 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3599                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3600                              bool is_store, MemOp memop)
3601 {
3602     TCGv_i64 tcg_rm;
3603 
3604     if (a->rn == 31) {
3605         gen_check_sp_alignment(s);
3606     }
3607     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3608 
3609     tcg_rm = read_cpu_reg(s, a->rm, 1);
3610     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3611 
3612     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3613     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3614 }
3615 
3616 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3617 {
3618     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3619     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3620     MemOp memop;
3621 
3622     if (extract32(a->opt, 1, 1) == 0) {
3623         return false;
3624     }
3625 
3626     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3627     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3628     tcg_rt = cpu_reg(s, a->rt);
3629     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3630               a->ext, true, a->rt, iss_sf, false);
3631     return true;
3632 }
3633 
3634 static bool trans_STR(DisasContext *s, arg_ldst *a)
3635 {
3636     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3637     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3638     MemOp memop;
3639 
3640     if (extract32(a->opt, 1, 1) == 0) {
3641         return false;
3642     }
3643 
3644     memop = finalize_memop(s, a->sz);
3645     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3646     tcg_rt = cpu_reg(s, a->rt);
3647     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3648     return true;
3649 }
3650 
3651 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3652 {
3653     TCGv_i64 clean_addr, dirty_addr;
3654     MemOp memop;
3655 
3656     if (extract32(a->opt, 1, 1) == 0) {
3657         return false;
3658     }
3659 
3660     if (!fp_access_check(s)) {
3661         return true;
3662     }
3663 
3664     memop = finalize_memop_asimd(s, a->sz);
3665     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3666     do_fp_ld(s, a->rt, clean_addr, memop);
3667     return true;
3668 }
3669 
3670 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3671 {
3672     TCGv_i64 clean_addr, dirty_addr;
3673     MemOp memop;
3674 
3675     if (extract32(a->opt, 1, 1) == 0) {
3676         return false;
3677     }
3678 
3679     if (!fp_access_check(s)) {
3680         return true;
3681     }
3682 
3683     memop = finalize_memop_asimd(s, a->sz);
3684     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3685     do_fp_st(s, a->rt, clean_addr, memop);
3686     return true;
3687 }
3688 
3689 
3690 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3691                          int sign, bool invert)
3692 {
3693     MemOp mop = a->sz | sign;
3694     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3695 
3696     if (a->rn == 31) {
3697         gen_check_sp_alignment(s);
3698     }
3699     mop = check_atomic_align(s, a->rn, mop);
3700     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3701                                 a->rn != 31, mop);
3702     tcg_rs = read_cpu_reg(s, a->rs, true);
3703     tcg_rt = cpu_reg(s, a->rt);
3704     if (invert) {
3705         tcg_gen_not_i64(tcg_rs, tcg_rs);
3706     }
3707     /*
3708      * The tcg atomic primitives are all full barriers.  Therefore we
3709      * can ignore the Acquire and Release bits of this instruction.
3710      */
3711     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3712 
3713     if (mop & MO_SIGN) {
3714         switch (a->sz) {
3715         case MO_8:
3716             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3717             break;
3718         case MO_16:
3719             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3720             break;
3721         case MO_32:
3722             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3723             break;
3724         case MO_64:
3725             break;
3726         default:
3727             g_assert_not_reached();
3728         }
3729     }
3730     return true;
3731 }
3732 
3733 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3734 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3735 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3736 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3737 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3738 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3739 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3740 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3741 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3742 
3743 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3744 {
3745     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3746     TCGv_i64 clean_addr;
3747     MemOp mop;
3748 
3749     if (!dc_isar_feature(aa64_atomics, s) ||
3750         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3751         return false;
3752     }
3753     if (a->rn == 31) {
3754         gen_check_sp_alignment(s);
3755     }
3756     mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3757     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3758                                 a->rn != 31, mop);
3759     /*
3760      * LDAPR* are a special case because they are a simple load, not a
3761      * fetch-and-do-something op.
3762      * The architectural consistency requirements here are weaker than
3763      * full load-acquire (we only need "load-acquire processor consistent"),
3764      * but we choose to implement them as full LDAQ.
3765      */
3766     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3767               true, a->rt, iss_sf, true);
3768     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3769     return true;
3770 }
3771 
3772 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3773 {
3774     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3775     MemOp memop;
3776 
3777     /* Load with pointer authentication */
3778     if (!dc_isar_feature(aa64_pauth, s)) {
3779         return false;
3780     }
3781 
3782     if (a->rn == 31) {
3783         gen_check_sp_alignment(s);
3784     }
3785     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3786 
3787     if (s->pauth_active) {
3788         if (!a->m) {
3789             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3790                                       tcg_constant_i64(0));
3791         } else {
3792             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3793                                       tcg_constant_i64(0));
3794         }
3795     }
3796 
3797     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3798 
3799     memop = finalize_memop(s, MO_64);
3800 
3801     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3802     clean_addr = gen_mte_check1(s, dirty_addr, false,
3803                                 a->w || a->rn != 31, memop);
3804 
3805     tcg_rt = cpu_reg(s, a->rt);
3806     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3807               /* extend */ false, /* iss_valid */ !a->w,
3808               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3809 
3810     if (a->w) {
3811         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3812     }
3813     return true;
3814 }
3815 
3816 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3817 {
3818     TCGv_i64 clean_addr, dirty_addr;
3819     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3820     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3821 
3822     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3823         return false;
3824     }
3825 
3826     if (a->rn == 31) {
3827         gen_check_sp_alignment(s);
3828     }
3829 
3830     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3831     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3832     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3833     clean_addr = clean_data_tbi(s, dirty_addr);
3834 
3835     /*
3836      * Load-AcquirePC semantics; we implement as the slightly more
3837      * restrictive Load-Acquire.
3838      */
3839     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3840               a->rt, iss_sf, true);
3841     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3842     return true;
3843 }
3844 
3845 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3846 {
3847     TCGv_i64 clean_addr, dirty_addr;
3848     MemOp mop = a->sz;
3849     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3850 
3851     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3852         return false;
3853     }
3854 
3855     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3856 
3857     if (a->rn == 31) {
3858         gen_check_sp_alignment(s);
3859     }
3860 
3861     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3862     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3863     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3864     clean_addr = clean_data_tbi(s, dirty_addr);
3865 
3866     /* Store-Release semantics */
3867     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3868     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3869     return true;
3870 }
3871 
3872 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3873 {
3874     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3875     MemOp endian, align, mop;
3876 
3877     int total;    /* total bytes */
3878     int elements; /* elements per vector */
3879     int r;
3880     int size = a->sz;
3881 
3882     if (!a->p && a->rm != 0) {
3883         /* For non-postindexed accesses the Rm field must be 0 */
3884         return false;
3885     }
3886     if (size == 3 && !a->q && a->selem != 1) {
3887         return false;
3888     }
3889     if (!fp_access_check(s)) {
3890         return true;
3891     }
3892 
3893     if (a->rn == 31) {
3894         gen_check_sp_alignment(s);
3895     }
3896 
3897     /* For our purposes, bytes are always little-endian.  */
3898     endian = s->be_data;
3899     if (size == 0) {
3900         endian = MO_LE;
3901     }
3902 
3903     total = a->rpt * a->selem * (a->q ? 16 : 8);
3904     tcg_rn = cpu_reg_sp(s, a->rn);
3905 
3906     /*
3907      * Issue the MTE check vs the logical repeat count, before we
3908      * promote consecutive little-endian elements below.
3909      */
3910     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3911                                 finalize_memop_asimd(s, size));
3912 
3913     /*
3914      * Consecutive little-endian elements from a single register
3915      * can be promoted to a larger little-endian operation.
3916      */
3917     align = MO_ALIGN;
3918     if (a->selem == 1 && endian == MO_LE) {
3919         align = pow2_align(size);
3920         size = 3;
3921     }
3922     if (!s->align_mem) {
3923         align = 0;
3924     }
3925     mop = endian | size | align;
3926 
3927     elements = (a->q ? 16 : 8) >> size;
3928     tcg_ebytes = tcg_constant_i64(1 << size);
3929     for (r = 0; r < a->rpt; r++) {
3930         int e;
3931         for (e = 0; e < elements; e++) {
3932             int xs;
3933             for (xs = 0; xs < a->selem; xs++) {
3934                 int tt = (a->rt + r + xs) % 32;
3935                 do_vec_ld(s, tt, e, clean_addr, mop);
3936                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3937             }
3938         }
3939     }
3940 
3941     /*
3942      * For non-quad operations, setting a slice of the low 64 bits of
3943      * the register clears the high 64 bits (in the ARM ARM pseudocode
3944      * this is implicit in the fact that 'rval' is a 64 bit wide
3945      * variable).  For quad operations, we might still need to zero
3946      * the high bits of SVE.
3947      */
3948     for (r = 0; r < a->rpt * a->selem; r++) {
3949         int tt = (a->rt + r) % 32;
3950         clear_vec_high(s, a->q, tt);
3951     }
3952 
3953     if (a->p) {
3954         if (a->rm == 31) {
3955             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3956         } else {
3957             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3958         }
3959     }
3960     return true;
3961 }
3962 
3963 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3964 {
3965     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3966     MemOp endian, align, mop;
3967 
3968     int total;    /* total bytes */
3969     int elements; /* elements per vector */
3970     int r;
3971     int size = a->sz;
3972 
3973     if (!a->p && a->rm != 0) {
3974         /* For non-postindexed accesses the Rm field must be 0 */
3975         return false;
3976     }
3977     if (size == 3 && !a->q && a->selem != 1) {
3978         return false;
3979     }
3980     if (!fp_access_check(s)) {
3981         return true;
3982     }
3983 
3984     if (a->rn == 31) {
3985         gen_check_sp_alignment(s);
3986     }
3987 
3988     /* For our purposes, bytes are always little-endian.  */
3989     endian = s->be_data;
3990     if (size == 0) {
3991         endian = MO_LE;
3992     }
3993 
3994     total = a->rpt * a->selem * (a->q ? 16 : 8);
3995     tcg_rn = cpu_reg_sp(s, a->rn);
3996 
3997     /*
3998      * Issue the MTE check vs the logical repeat count, before we
3999      * promote consecutive little-endian elements below.
4000      */
4001     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
4002                                 finalize_memop_asimd(s, size));
4003 
4004     /*
4005      * Consecutive little-endian elements from a single register
4006      * can be promoted to a larger little-endian operation.
4007      */
4008     align = MO_ALIGN;
4009     if (a->selem == 1 && endian == MO_LE) {
4010         align = pow2_align(size);
4011         size = 3;
4012     }
4013     if (!s->align_mem) {
4014         align = 0;
4015     }
4016     mop = endian | size | align;
4017 
4018     elements = (a->q ? 16 : 8) >> size;
4019     tcg_ebytes = tcg_constant_i64(1 << size);
4020     for (r = 0; r < a->rpt; r++) {
4021         int e;
4022         for (e = 0; e < elements; e++) {
4023             int xs;
4024             for (xs = 0; xs < a->selem; xs++) {
4025                 int tt = (a->rt + r + xs) % 32;
4026                 do_vec_st(s, tt, e, clean_addr, mop);
4027                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4028             }
4029         }
4030     }
4031 
4032     if (a->p) {
4033         if (a->rm == 31) {
4034             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4035         } else {
4036             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4037         }
4038     }
4039     return true;
4040 }
4041 
4042 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
4043 {
4044     int xs, total, rt;
4045     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4046     MemOp mop;
4047 
4048     if (!a->p && a->rm != 0) {
4049         return false;
4050     }
4051     if (!fp_access_check(s)) {
4052         return true;
4053     }
4054 
4055     if (a->rn == 31) {
4056         gen_check_sp_alignment(s);
4057     }
4058 
4059     total = a->selem << a->scale;
4060     tcg_rn = cpu_reg_sp(s, a->rn);
4061 
4062     mop = finalize_memop_asimd(s, a->scale);
4063     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
4064                                 total, mop);
4065 
4066     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4067     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4068         do_vec_st(s, rt, a->index, clean_addr, mop);
4069         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4070     }
4071 
4072     if (a->p) {
4073         if (a->rm == 31) {
4074             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4075         } else {
4076             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4077         }
4078     }
4079     return true;
4080 }
4081 
4082 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
4083 {
4084     int xs, total, rt;
4085     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4086     MemOp mop;
4087 
4088     if (!a->p && a->rm != 0) {
4089         return false;
4090     }
4091     if (!fp_access_check(s)) {
4092         return true;
4093     }
4094 
4095     if (a->rn == 31) {
4096         gen_check_sp_alignment(s);
4097     }
4098 
4099     total = a->selem << a->scale;
4100     tcg_rn = cpu_reg_sp(s, a->rn);
4101 
4102     mop = finalize_memop_asimd(s, a->scale);
4103     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4104                                 total, mop);
4105 
4106     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4107     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4108         do_vec_ld(s, rt, a->index, clean_addr, mop);
4109         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4110     }
4111 
4112     if (a->p) {
4113         if (a->rm == 31) {
4114             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4115         } else {
4116             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4117         }
4118     }
4119     return true;
4120 }
4121 
4122 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
4123 {
4124     int xs, total, rt;
4125     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4126     MemOp mop;
4127 
4128     if (!a->p && a->rm != 0) {
4129         return false;
4130     }
4131     if (!fp_access_check(s)) {
4132         return true;
4133     }
4134 
4135     if (a->rn == 31) {
4136         gen_check_sp_alignment(s);
4137     }
4138 
4139     total = a->selem << a->scale;
4140     tcg_rn = cpu_reg_sp(s, a->rn);
4141 
4142     mop = finalize_memop_asimd(s, a->scale);
4143     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4144                                 total, mop);
4145 
4146     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4147     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4148         /* Load and replicate to all elements */
4149         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4150 
4151         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4152         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
4153                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
4154         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4155     }
4156 
4157     if (a->p) {
4158         if (a->rm == 31) {
4159             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4160         } else {
4161             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4162         }
4163     }
4164     return true;
4165 }
4166 
4167 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
4168 {
4169     TCGv_i64 addr, clean_addr, tcg_rt;
4170     int size = 4 << s->dcz_blocksize;
4171 
4172     if (!dc_isar_feature(aa64_mte, s)) {
4173         return false;
4174     }
4175     if (s->current_el == 0) {
4176         return false;
4177     }
4178 
4179     if (a->rn == 31) {
4180         gen_check_sp_alignment(s);
4181     }
4182 
4183     addr = read_cpu_reg_sp(s, a->rn, true);
4184     tcg_gen_addi_i64(addr, addr, a->imm);
4185     tcg_rt = cpu_reg(s, a->rt);
4186 
4187     if (s->ata[0]) {
4188         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
4189     }
4190     /*
4191      * The non-tags portion of STZGM is mostly like DC_ZVA,
4192      * except the alignment happens before the access.
4193      */
4194     clean_addr = clean_data_tbi(s, addr);
4195     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4196     gen_helper_dc_zva(tcg_env, clean_addr);
4197     return true;
4198 }
4199 
4200 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
4201 {
4202     TCGv_i64 addr, clean_addr, tcg_rt;
4203 
4204     if (!dc_isar_feature(aa64_mte, s)) {
4205         return false;
4206     }
4207     if (s->current_el == 0) {
4208         return false;
4209     }
4210 
4211     if (a->rn == 31) {
4212         gen_check_sp_alignment(s);
4213     }
4214 
4215     addr = read_cpu_reg_sp(s, a->rn, true);
4216     tcg_gen_addi_i64(addr, addr, a->imm);
4217     tcg_rt = cpu_reg(s, a->rt);
4218 
4219     if (s->ata[0]) {
4220         gen_helper_stgm(tcg_env, addr, tcg_rt);
4221     } else {
4222         MMUAccessType acc = MMU_DATA_STORE;
4223         int size = 4 << s->gm_blocksize;
4224 
4225         clean_addr = clean_data_tbi(s, addr);
4226         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4227         gen_probe_access(s, clean_addr, acc, size);
4228     }
4229     return true;
4230 }
4231 
4232 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4233 {
4234     TCGv_i64 addr, clean_addr, tcg_rt;
4235 
4236     if (!dc_isar_feature(aa64_mte, s)) {
4237         return false;
4238     }
4239     if (s->current_el == 0) {
4240         return false;
4241     }
4242 
4243     if (a->rn == 31) {
4244         gen_check_sp_alignment(s);
4245     }
4246 
4247     addr = read_cpu_reg_sp(s, a->rn, true);
4248     tcg_gen_addi_i64(addr, addr, a->imm);
4249     tcg_rt = cpu_reg(s, a->rt);
4250 
4251     if (s->ata[0]) {
4252         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4253     } else {
4254         MMUAccessType acc = MMU_DATA_LOAD;
4255         int size = 4 << s->gm_blocksize;
4256 
4257         clean_addr = clean_data_tbi(s, addr);
4258         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4259         gen_probe_access(s, clean_addr, acc, size);
4260         /* The result tags are zeros.  */
4261         tcg_gen_movi_i64(tcg_rt, 0);
4262     }
4263     return true;
4264 }
4265 
4266 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4267 {
4268     TCGv_i64 addr, clean_addr, tcg_rt;
4269 
4270     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4271         return false;
4272     }
4273 
4274     if (a->rn == 31) {
4275         gen_check_sp_alignment(s);
4276     }
4277 
4278     addr = read_cpu_reg_sp(s, a->rn, true);
4279     if (!a->p) {
4280         /* pre-index or signed offset */
4281         tcg_gen_addi_i64(addr, addr, a->imm);
4282     }
4283 
4284     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4285     tcg_rt = cpu_reg(s, a->rt);
4286     if (s->ata[0]) {
4287         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4288     } else {
4289         /*
4290          * Tag access disabled: we must check for aborts on the load
4291          * load from [rn+offset], and then insert a 0 tag into rt.
4292          */
4293         clean_addr = clean_data_tbi(s, addr);
4294         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4295         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4296     }
4297 
4298     if (a->w) {
4299         /* pre-index or post-index */
4300         if (a->p) {
4301             /* post-index */
4302             tcg_gen_addi_i64(addr, addr, a->imm);
4303         }
4304         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4305     }
4306     return true;
4307 }
4308 
4309 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4310 {
4311     TCGv_i64 addr, tcg_rt;
4312 
4313     if (a->rn == 31) {
4314         gen_check_sp_alignment(s);
4315     }
4316 
4317     addr = read_cpu_reg_sp(s, a->rn, true);
4318     if (!a->p) {
4319         /* pre-index or signed offset */
4320         tcg_gen_addi_i64(addr, addr, a->imm);
4321     }
4322     tcg_rt = cpu_reg_sp(s, a->rt);
4323     if (!s->ata[0]) {
4324         /*
4325          * For STG and ST2G, we need to check alignment and probe memory.
4326          * TODO: For STZG and STZ2G, we could rely on the stores below,
4327          * at least for system mode; user-only won't enforce alignment.
4328          */
4329         if (is_pair) {
4330             gen_helper_st2g_stub(tcg_env, addr);
4331         } else {
4332             gen_helper_stg_stub(tcg_env, addr);
4333         }
4334     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4335         if (is_pair) {
4336             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4337         } else {
4338             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4339         }
4340     } else {
4341         if (is_pair) {
4342             gen_helper_st2g(tcg_env, addr, tcg_rt);
4343         } else {
4344             gen_helper_stg(tcg_env, addr, tcg_rt);
4345         }
4346     }
4347 
4348     if (is_zero) {
4349         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4350         TCGv_i64 zero64 = tcg_constant_i64(0);
4351         TCGv_i128 zero128 = tcg_temp_new_i128();
4352         int mem_index = get_mem_index(s);
4353         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4354 
4355         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4356 
4357         /* This is 1 or 2 atomic 16-byte operations. */
4358         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4359         if (is_pair) {
4360             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4361             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4362         }
4363     }
4364 
4365     if (a->w) {
4366         /* pre-index or post-index */
4367         if (a->p) {
4368             /* post-index */
4369             tcg_gen_addi_i64(addr, addr, a->imm);
4370         }
4371         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4372     }
4373     return true;
4374 }
4375 
4376 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4377 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4378 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4379 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4380 
4381 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4382 
4383 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4384                    bool is_setg, SetFn fn)
4385 {
4386     int memidx;
4387     uint32_t syndrome, desc = 0;
4388 
4389     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4390         return false;
4391     }
4392 
4393     /*
4394      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4395      * us to pull this check before the CheckMOPSEnabled() test
4396      * (which we do in the helper function)
4397      */
4398     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4399         a->rd == 31 || a->rn == 31) {
4400         return false;
4401     }
4402 
4403     memidx = get_a64_user_mem_index(s, a->unpriv);
4404 
4405     /*
4406      * We pass option_a == true, matching our implementation;
4407      * we pass wrong_option == false: helper function may set that bit.
4408      */
4409     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4410                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4411 
4412     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4413         /* We may need to do MTE tag checking, so assemble the descriptor */
4414         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4415         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4416         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4417         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4418     }
4419     /* The helper function always needs the memidx even with MTE disabled */
4420     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4421 
4422     /*
4423      * The helper needs the register numbers, but since they're in
4424      * the syndrome anyway, we let it extract them from there rather
4425      * than passing in an extra three integer arguments.
4426      */
4427     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4428     return true;
4429 }
4430 
4431 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4432 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4433 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4434 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4435 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4436 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4437 
4438 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4439 
4440 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4441 {
4442     int rmemidx, wmemidx;
4443     uint32_t syndrome, rdesc = 0, wdesc = 0;
4444     bool wunpriv = extract32(a->options, 0, 1);
4445     bool runpriv = extract32(a->options, 1, 1);
4446 
4447     /*
4448      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4449      * us to pull this check before the CheckMOPSEnabled() test
4450      * (which we do in the helper function)
4451      */
4452     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4453         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4454         return false;
4455     }
4456 
4457     rmemidx = get_a64_user_mem_index(s, runpriv);
4458     wmemidx = get_a64_user_mem_index(s, wunpriv);
4459 
4460     /*
4461      * We pass option_a == true, matching our implementation;
4462      * we pass wrong_option == false: helper function may set that bit.
4463      */
4464     syndrome = syn_mop(false, false, a->options, is_epilogue,
4465                        false, true, a->rd, a->rs, a->rn);
4466 
4467     /* If we need to do MTE tag checking, assemble the descriptors */
4468     if (s->mte_active[runpriv]) {
4469         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4470         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4471     }
4472     if (s->mte_active[wunpriv]) {
4473         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4474         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4475         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4476     }
4477     /* The helper function needs these parts of the descriptor regardless */
4478     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4479     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4480 
4481     /*
4482      * The helper needs the register numbers, but since they're in
4483      * the syndrome anyway, we let it extract them from there rather
4484      * than passing in an extra three integer arguments.
4485      */
4486     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4487        tcg_constant_i32(rdesc));
4488     return true;
4489 }
4490 
4491 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4492 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4493 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4494 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4495 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4496 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4497 
4498 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4499 
4500 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4501                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4502 {
4503     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4504     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4505     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4506 
4507     fn(tcg_rd, tcg_rn, tcg_imm);
4508     if (!a->sf) {
4509         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4510     }
4511     return true;
4512 }
4513 
4514 /*
4515  * PC-rel. addressing
4516  */
4517 
4518 static bool trans_ADR(DisasContext *s, arg_ri *a)
4519 {
4520     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4521     return true;
4522 }
4523 
4524 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4525 {
4526     int64_t offset = (int64_t)a->imm << 12;
4527 
4528     /* The page offset is ok for CF_PCREL. */
4529     offset -= s->pc_curr & 0xfff;
4530     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4531     return true;
4532 }
4533 
4534 /*
4535  * Add/subtract (immediate)
4536  */
4537 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4538 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4539 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4540 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4541 
4542 /*
4543  * Add/subtract (immediate, with tags)
4544  */
4545 
4546 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4547                                       bool sub_op)
4548 {
4549     TCGv_i64 tcg_rn, tcg_rd;
4550     int imm;
4551 
4552     imm = a->uimm6 << LOG2_TAG_GRANULE;
4553     if (sub_op) {
4554         imm = -imm;
4555     }
4556 
4557     tcg_rn = cpu_reg_sp(s, a->rn);
4558     tcg_rd = cpu_reg_sp(s, a->rd);
4559 
4560     if (s->ata[0]) {
4561         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4562                            tcg_constant_i32(imm),
4563                            tcg_constant_i32(a->uimm4));
4564     } else {
4565         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4566         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4567     }
4568     return true;
4569 }
4570 
4571 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4572 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4573 
4574 /* The input should be a value in the bottom e bits (with higher
4575  * bits zero); returns that value replicated into every element
4576  * of size e in a 64 bit integer.
4577  */
4578 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4579 {
4580     assert(e != 0);
4581     while (e < 64) {
4582         mask |= mask << e;
4583         e *= 2;
4584     }
4585     return mask;
4586 }
4587 
4588 /*
4589  * Logical (immediate)
4590  */
4591 
4592 /*
4593  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4594  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4595  * value (ie should cause a guest UNDEF exception), and true if they are
4596  * valid, in which case the decoded bit pattern is written to result.
4597  */
4598 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4599                             unsigned int imms, unsigned int immr)
4600 {
4601     uint64_t mask;
4602     unsigned e, levels, s, r;
4603     int len;
4604 
4605     assert(immn < 2 && imms < 64 && immr < 64);
4606 
4607     /* The bit patterns we create here are 64 bit patterns which
4608      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4609      * 64 bits each. Each element contains the same value: a run
4610      * of between 1 and e-1 non-zero bits, rotated within the
4611      * element by between 0 and e-1 bits.
4612      *
4613      * The element size and run length are encoded into immn (1 bit)
4614      * and imms (6 bits) as follows:
4615      * 64 bit elements: immn = 1, imms = <length of run - 1>
4616      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4617      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4618      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4619      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4620      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4621      * Notice that immn = 0, imms = 11111x is the only combination
4622      * not covered by one of the above options; this is reserved.
4623      * Further, <length of run - 1> all-ones is a reserved pattern.
4624      *
4625      * In all cases the rotation is by immr % e (and immr is 6 bits).
4626      */
4627 
4628     /* First determine the element size */
4629     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4630     if (len < 1) {
4631         /* This is the immn == 0, imms == 0x11111x case */
4632         return false;
4633     }
4634     e = 1 << len;
4635 
4636     levels = e - 1;
4637     s = imms & levels;
4638     r = immr & levels;
4639 
4640     if (s == levels) {
4641         /* <length of run - 1> mustn't be all-ones. */
4642         return false;
4643     }
4644 
4645     /* Create the value of one element: s+1 set bits rotated
4646      * by r within the element (which is e bits wide)...
4647      */
4648     mask = MAKE_64BIT_MASK(0, s + 1);
4649     if (r) {
4650         mask = (mask >> r) | (mask << (e - r));
4651         mask &= MAKE_64BIT_MASK(0, e);
4652     }
4653     /* ...then replicate the element over the whole 64 bit value */
4654     mask = bitfield_replicate(mask, e);
4655     *result = mask;
4656     return true;
4657 }
4658 
4659 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4660                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4661 {
4662     TCGv_i64 tcg_rd, tcg_rn;
4663     uint64_t imm;
4664 
4665     /* Some immediate field values are reserved. */
4666     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4667                                 extract32(a->dbm, 0, 6),
4668                                 extract32(a->dbm, 6, 6))) {
4669         return false;
4670     }
4671     if (!a->sf) {
4672         imm &= 0xffffffffull;
4673     }
4674 
4675     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4676     tcg_rn = cpu_reg(s, a->rn);
4677 
4678     fn(tcg_rd, tcg_rn, imm);
4679     if (set_cc) {
4680         gen_logic_CC(a->sf, tcg_rd);
4681     }
4682     if (!a->sf) {
4683         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4684     }
4685     return true;
4686 }
4687 
4688 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4689 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4690 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4691 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4692 
4693 /*
4694  * Move wide (immediate)
4695  */
4696 
4697 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4698 {
4699     int pos = a->hw << 4;
4700     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4701     return true;
4702 }
4703 
4704 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4705 {
4706     int pos = a->hw << 4;
4707     uint64_t imm = a->imm;
4708 
4709     imm = ~(imm << pos);
4710     if (!a->sf) {
4711         imm = (uint32_t)imm;
4712     }
4713     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4714     return true;
4715 }
4716 
4717 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4718 {
4719     int pos = a->hw << 4;
4720     TCGv_i64 tcg_rd, tcg_im;
4721 
4722     tcg_rd = cpu_reg(s, a->rd);
4723     tcg_im = tcg_constant_i64(a->imm);
4724     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4725     if (!a->sf) {
4726         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4727     }
4728     return true;
4729 }
4730 
4731 /*
4732  * Bitfield
4733  */
4734 
4735 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4736 {
4737     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4738     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4739     unsigned int bitsize = a->sf ? 64 : 32;
4740     unsigned int ri = a->immr;
4741     unsigned int si = a->imms;
4742     unsigned int pos, len;
4743 
4744     if (si >= ri) {
4745         /* Wd<s-r:0> = Wn<s:r> */
4746         len = (si - ri) + 1;
4747         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4748         if (!a->sf) {
4749             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4750         }
4751     } else {
4752         /* Wd<32+s-r,32-r> = Wn<s:0> */
4753         len = si + 1;
4754         pos = (bitsize - ri) & (bitsize - 1);
4755 
4756         if (len < ri) {
4757             /*
4758              * Sign extend the destination field from len to fill the
4759              * balance of the word.  Let the deposit below insert all
4760              * of those sign bits.
4761              */
4762             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4763             len = ri;
4764         }
4765 
4766         /*
4767          * We start with zero, and we haven't modified any bits outside
4768          * bitsize, therefore no final zero-extension is unneeded for !sf.
4769          */
4770         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4771     }
4772     return true;
4773 }
4774 
4775 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4776 {
4777     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4778     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4779     unsigned int bitsize = a->sf ? 64 : 32;
4780     unsigned int ri = a->immr;
4781     unsigned int si = a->imms;
4782     unsigned int pos, len;
4783 
4784     tcg_rd = cpu_reg(s, a->rd);
4785     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4786 
4787     if (si >= ri) {
4788         /* Wd<s-r:0> = Wn<s:r> */
4789         len = (si - ri) + 1;
4790         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4791     } else {
4792         /* Wd<32+s-r,32-r> = Wn<s:0> */
4793         len = si + 1;
4794         pos = (bitsize - ri) & (bitsize - 1);
4795         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4796     }
4797     return true;
4798 }
4799 
4800 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4801 {
4802     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4803     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4804     unsigned int bitsize = a->sf ? 64 : 32;
4805     unsigned int ri = a->immr;
4806     unsigned int si = a->imms;
4807     unsigned int pos, len;
4808 
4809     tcg_rd = cpu_reg(s, a->rd);
4810     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4811 
4812     if (si >= ri) {
4813         /* Wd<s-r:0> = Wn<s:r> */
4814         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4815         len = (si - ri) + 1;
4816         pos = 0;
4817     } else {
4818         /* Wd<32+s-r,32-r> = Wn<s:0> */
4819         len = si + 1;
4820         pos = (bitsize - ri) & (bitsize - 1);
4821     }
4822 
4823     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4824     if (!a->sf) {
4825         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4826     }
4827     return true;
4828 }
4829 
4830 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4831 {
4832     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4833 
4834     tcg_rd = cpu_reg(s, a->rd);
4835 
4836     if (unlikely(a->imm == 0)) {
4837         /*
4838          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4839          * so an extract from bit 0 is a special case.
4840          */
4841         if (a->sf) {
4842             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4843         } else {
4844             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4845         }
4846     } else {
4847         tcg_rm = cpu_reg(s, a->rm);
4848         tcg_rn = cpu_reg(s, a->rn);
4849 
4850         if (a->sf) {
4851             /* Specialization to ROR happens in EXTRACT2.  */
4852             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4853         } else {
4854             TCGv_i32 t0 = tcg_temp_new_i32();
4855 
4856             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4857             if (a->rm == a->rn) {
4858                 tcg_gen_rotri_i32(t0, t0, a->imm);
4859             } else {
4860                 TCGv_i32 t1 = tcg_temp_new_i32();
4861                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4862                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4863             }
4864             tcg_gen_extu_i32_i64(tcg_rd, t0);
4865         }
4866     }
4867     return true;
4868 }
4869 
4870 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a)
4871 {
4872     if (fp_access_check(s)) {
4873         int len = (a->len + 1) * 16;
4874 
4875         tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
4876                            vec_full_reg_offset(s, a->rm), tcg_env,
4877                            a->q ? 16 : 8, vec_full_reg_size(s),
4878                            (len << 6) | (a->tbx << 5) | a->rn,
4879                            gen_helper_simd_tblx);
4880     }
4881     return true;
4882 }
4883 
4884 typedef int simd_permute_idx_fn(int i, int part, int elements);
4885 
4886 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a,
4887                             simd_permute_idx_fn *fn, int part)
4888 {
4889     MemOp esz = a->esz;
4890     int datasize = a->q ? 16 : 8;
4891     int elements = datasize >> esz;
4892     TCGv_i64 tcg_res[2], tcg_ele;
4893 
4894     if (esz == MO_64 && !a->q) {
4895         return false;
4896     }
4897     if (!fp_access_check(s)) {
4898         return true;
4899     }
4900 
4901     tcg_res[0] = tcg_temp_new_i64();
4902     tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL;
4903     tcg_ele = tcg_temp_new_i64();
4904 
4905     for (int i = 0; i < elements; i++) {
4906         int o, w, idx;
4907 
4908         idx = fn(i, part, elements);
4909         read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn),
4910                          idx & (elements - 1), esz);
4911 
4912         w = (i << (esz + 3)) / 64;
4913         o = (i << (esz + 3)) % 64;
4914         if (o == 0) {
4915             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
4916         } else {
4917             tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz);
4918         }
4919     }
4920 
4921     for (int i = a->q; i >= 0; --i) {
4922         write_vec_element(s, tcg_res[i], a->rd, i, MO_64);
4923     }
4924     clear_vec_high(s, a->q, a->rd);
4925     return true;
4926 }
4927 
4928 static int permute_load_uzp(int i, int part, int elements)
4929 {
4930     return 2 * i + part;
4931 }
4932 
4933 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0)
4934 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1)
4935 
4936 static int permute_load_trn(int i, int part, int elements)
4937 {
4938     return (i & 1) * elements + (i & ~1) + part;
4939 }
4940 
4941 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0)
4942 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1)
4943 
4944 static int permute_load_zip(int i, int part, int elements)
4945 {
4946     return (i & 1) * elements + ((part * elements + i) >> 1);
4947 }
4948 
4949 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0)
4950 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1)
4951 
4952 /*
4953  * Cryptographic AES, SHA, SHA512
4954  */
4955 
4956 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4957 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4958 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4959 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4960 
4961 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4962 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4963 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4964 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4965 
4966 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4967 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4968 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4969 
4970 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4971 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4972 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4973 
4974 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4975 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4976 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4977 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4978 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4979 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4980 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4981 
4982 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4983 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4984 
4985 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4986 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4987 
4988 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4989 {
4990     if (!dc_isar_feature(aa64_sm3, s)) {
4991         return false;
4992     }
4993     if (fp_access_check(s)) {
4994         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4995         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4996         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4997         TCGv_i32 tcg_res = tcg_temp_new_i32();
4998 
4999         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
5000         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
5001         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
5002 
5003         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
5004         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
5005         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
5006         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
5007 
5008         /* Clear the whole register first, then store bits [127:96]. */
5009         clear_vec(s, a->rd);
5010         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
5011     }
5012     return true;
5013 }
5014 
5015 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
5016 {
5017     if (fp_access_check(s)) {
5018         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
5019     }
5020     return true;
5021 }
5022 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
5023 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
5024 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
5025 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
5026 
5027 static bool trans_XAR(DisasContext *s, arg_XAR *a)
5028 {
5029     if (!dc_isar_feature(aa64_sha3, s)) {
5030         return false;
5031     }
5032     if (fp_access_check(s)) {
5033         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
5034                      vec_full_reg_offset(s, a->rn),
5035                      vec_full_reg_offset(s, a->rm), a->imm, 16,
5036                      vec_full_reg_size(s));
5037     }
5038     return true;
5039 }
5040 
5041 /*
5042  * Advanced SIMD copy
5043  */
5044 
5045 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
5046 {
5047     unsigned esz = ctz32(imm);
5048     if (esz <= MO_64) {
5049         *pesz = esz;
5050         *pidx = imm >> (esz + 1);
5051         return true;
5052     }
5053     return false;
5054 }
5055 
5056 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
5057 {
5058     MemOp esz;
5059     unsigned idx;
5060 
5061     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5062         return false;
5063     }
5064     if (fp_access_check(s)) {
5065         /*
5066          * This instruction just extracts the specified element and
5067          * zero-extends it into the bottom of the destination register.
5068          */
5069         TCGv_i64 tmp = tcg_temp_new_i64();
5070         read_vec_element(s, tmp, a->rn, idx, esz);
5071         write_fp_dreg(s, a->rd, tmp);
5072     }
5073     return true;
5074 }
5075 
5076 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
5077 {
5078     MemOp esz;
5079     unsigned idx;
5080 
5081     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5082         return false;
5083     }
5084     if (esz == MO_64 && !a->q) {
5085         return false;
5086     }
5087     if (fp_access_check(s)) {
5088         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
5089                              vec_reg_offset(s, a->rn, idx, esz),
5090                              a->q ? 16 : 8, vec_full_reg_size(s));
5091     }
5092     return true;
5093 }
5094 
5095 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
5096 {
5097     MemOp esz;
5098     unsigned idx;
5099 
5100     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5101         return false;
5102     }
5103     if (esz == MO_64 && !a->q) {
5104         return false;
5105     }
5106     if (fp_access_check(s)) {
5107         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
5108                              a->q ? 16 : 8, vec_full_reg_size(s),
5109                              cpu_reg(s, a->rn));
5110     }
5111     return true;
5112 }
5113 
5114 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
5115 {
5116     MemOp esz;
5117     unsigned idx;
5118 
5119     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5120         return false;
5121     }
5122     if (is_signed) {
5123         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
5124             return false;
5125         }
5126     } else {
5127         if (esz == MO_64 ? !a->q : a->q) {
5128             return false;
5129         }
5130     }
5131     if (fp_access_check(s)) {
5132         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
5133         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
5134         if (is_signed && !a->q) {
5135             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5136         }
5137     }
5138     return true;
5139 }
5140 
5141 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
5142 TRANS(UMOV, do_smov_umov, a, 0)
5143 
5144 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
5145 {
5146     MemOp esz;
5147     unsigned idx;
5148 
5149     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5150         return false;
5151     }
5152     if (fp_access_check(s)) {
5153         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
5154         clear_vec_high(s, true, a->rd);
5155     }
5156     return true;
5157 }
5158 
5159 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
5160 {
5161     MemOp esz;
5162     unsigned didx, sidx;
5163 
5164     if (!decode_esz_idx(a->di, &esz, &didx)) {
5165         return false;
5166     }
5167     sidx = a->si >> esz;
5168     if (fp_access_check(s)) {
5169         TCGv_i64 tmp = tcg_temp_new_i64();
5170 
5171         read_vec_element(s, tmp, a->rn, sidx, esz);
5172         write_vec_element(s, tmp, a->rd, didx, esz);
5173 
5174         /* INS is considered a 128-bit write for SVE. */
5175         clear_vec_high(s, true, a->rd);
5176     }
5177     return true;
5178 }
5179 
5180 /*
5181  * Advanced SIMD three same
5182  */
5183 
5184 typedef struct FPScalar {
5185     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5186     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5187     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
5188 } FPScalar;
5189 
5190 static bool do_fp3_scalar_with_fpsttype(DisasContext *s, arg_rrr_e *a,
5191                                         const FPScalar *f, int mergereg,
5192                                         ARMFPStatusFlavour fpsttype)
5193 {
5194     switch (a->esz) {
5195     case MO_64:
5196         if (fp_access_check(s)) {
5197             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5198             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5199             f->gen_d(t0, t0, t1, fpstatus_ptr(fpsttype));
5200             write_fp_dreg_merging(s, a->rd, mergereg, t0);
5201         }
5202         break;
5203     case MO_32:
5204         if (fp_access_check(s)) {
5205             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5206             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
5207             f->gen_s(t0, t0, t1, fpstatus_ptr(fpsttype));
5208             write_fp_sreg_merging(s, a->rd, mergereg, t0);
5209         }
5210         break;
5211     case MO_16:
5212         if (!dc_isar_feature(aa64_fp16, s)) {
5213             return false;
5214         }
5215         if (fp_access_check(s)) {
5216             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5217             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
5218             f->gen_h(t0, t0, t1, fpstatus_ptr(fpsttype));
5219             write_fp_hreg_merging(s, a->rd, mergereg, t0);
5220         }
5221         break;
5222     default:
5223         return false;
5224     }
5225     return true;
5226 }
5227 
5228 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f,
5229                           int mergereg)
5230 {
5231     return do_fp3_scalar_with_fpsttype(s, a, f, mergereg,
5232                                        a->esz == MO_16 ?
5233                                        FPST_A64_F16 : FPST_A64);
5234 }
5235 
5236 static bool do_fp3_scalar_ah_2fn(DisasContext *s, arg_rrr_e *a,
5237                                  const FPScalar *fnormal, const FPScalar *fah,
5238                                  int mergereg)
5239 {
5240     return do_fp3_scalar_with_fpsttype(s, a, s->fpcr_ah ? fah : fnormal,
5241                                        mergereg, select_ah_fpst(s, a->esz));
5242 }
5243 
5244 /* Some insns need to call different helpers when FPCR.AH == 1 */
5245 static bool do_fp3_scalar_2fn(DisasContext *s, arg_rrr_e *a,
5246                               const FPScalar *fnormal,
5247                               const FPScalar *fah,
5248                               int mergereg)
5249 {
5250     return do_fp3_scalar(s, a, s->fpcr_ah ? fah : fnormal, mergereg);
5251 }
5252 
5253 static const FPScalar f_scalar_fadd = {
5254     gen_helper_vfp_addh,
5255     gen_helper_vfp_adds,
5256     gen_helper_vfp_addd,
5257 };
5258 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd, a->rn)
5259 
5260 static const FPScalar f_scalar_fsub = {
5261     gen_helper_vfp_subh,
5262     gen_helper_vfp_subs,
5263     gen_helper_vfp_subd,
5264 };
5265 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub, a->rn)
5266 
5267 static const FPScalar f_scalar_fdiv = {
5268     gen_helper_vfp_divh,
5269     gen_helper_vfp_divs,
5270     gen_helper_vfp_divd,
5271 };
5272 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv, a->rn)
5273 
5274 static const FPScalar f_scalar_fmul = {
5275     gen_helper_vfp_mulh,
5276     gen_helper_vfp_muls,
5277     gen_helper_vfp_muld,
5278 };
5279 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul, a->rn)
5280 
5281 static const FPScalar f_scalar_fmax = {
5282     gen_helper_vfp_maxh,
5283     gen_helper_vfp_maxs,
5284     gen_helper_vfp_maxd,
5285 };
5286 static const FPScalar f_scalar_fmax_ah = {
5287     gen_helper_vfp_ah_maxh,
5288     gen_helper_vfp_ah_maxs,
5289     gen_helper_vfp_ah_maxd,
5290 };
5291 TRANS(FMAX_s, do_fp3_scalar_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah, a->rn)
5292 
5293 static const FPScalar f_scalar_fmin = {
5294     gen_helper_vfp_minh,
5295     gen_helper_vfp_mins,
5296     gen_helper_vfp_mind,
5297 };
5298 static const FPScalar f_scalar_fmin_ah = {
5299     gen_helper_vfp_ah_minh,
5300     gen_helper_vfp_ah_mins,
5301     gen_helper_vfp_ah_mind,
5302 };
5303 TRANS(FMIN_s, do_fp3_scalar_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah, a->rn)
5304 
5305 static const FPScalar f_scalar_fmaxnm = {
5306     gen_helper_vfp_maxnumh,
5307     gen_helper_vfp_maxnums,
5308     gen_helper_vfp_maxnumd,
5309 };
5310 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm, a->rn)
5311 
5312 static const FPScalar f_scalar_fminnm = {
5313     gen_helper_vfp_minnumh,
5314     gen_helper_vfp_minnums,
5315     gen_helper_vfp_minnumd,
5316 };
5317 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm, a->rn)
5318 
5319 static const FPScalar f_scalar_fmulx = {
5320     gen_helper_advsimd_mulxh,
5321     gen_helper_vfp_mulxs,
5322     gen_helper_vfp_mulxd,
5323 };
5324 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx, a->rn)
5325 
5326 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5327 {
5328     gen_helper_vfp_mulh(d, n, m, s);
5329     gen_vfp_negh(d, d);
5330 }
5331 
5332 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5333 {
5334     gen_helper_vfp_muls(d, n, m, s);
5335     gen_vfp_negs(d, d);
5336 }
5337 
5338 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5339 {
5340     gen_helper_vfp_muld(d, n, m, s);
5341     gen_vfp_negd(d, d);
5342 }
5343 
5344 static void gen_fnmul_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5345 {
5346     gen_helper_vfp_mulh(d, n, m, s);
5347     gen_vfp_ah_negh(d, d);
5348 }
5349 
5350 static void gen_fnmul_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5351 {
5352     gen_helper_vfp_muls(d, n, m, s);
5353     gen_vfp_ah_negs(d, d);
5354 }
5355 
5356 static void gen_fnmul_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5357 {
5358     gen_helper_vfp_muld(d, n, m, s);
5359     gen_vfp_ah_negd(d, d);
5360 }
5361 
5362 static const FPScalar f_scalar_fnmul = {
5363     gen_fnmul_h,
5364     gen_fnmul_s,
5365     gen_fnmul_d,
5366 };
5367 static const FPScalar f_scalar_ah_fnmul = {
5368     gen_fnmul_ah_h,
5369     gen_fnmul_ah_s,
5370     gen_fnmul_ah_d,
5371 };
5372 TRANS(FNMUL_s, do_fp3_scalar_2fn, a, &f_scalar_fnmul, &f_scalar_ah_fnmul, a->rn)
5373 
5374 static const FPScalar f_scalar_fcmeq = {
5375     gen_helper_advsimd_ceq_f16,
5376     gen_helper_neon_ceq_f32,
5377     gen_helper_neon_ceq_f64,
5378 };
5379 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq, a->rm)
5380 
5381 static const FPScalar f_scalar_fcmge = {
5382     gen_helper_advsimd_cge_f16,
5383     gen_helper_neon_cge_f32,
5384     gen_helper_neon_cge_f64,
5385 };
5386 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge, a->rm)
5387 
5388 static const FPScalar f_scalar_fcmgt = {
5389     gen_helper_advsimd_cgt_f16,
5390     gen_helper_neon_cgt_f32,
5391     gen_helper_neon_cgt_f64,
5392 };
5393 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt, a->rm)
5394 
5395 static const FPScalar f_scalar_facge = {
5396     gen_helper_advsimd_acge_f16,
5397     gen_helper_neon_acge_f32,
5398     gen_helper_neon_acge_f64,
5399 };
5400 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge, a->rm)
5401 
5402 static const FPScalar f_scalar_facgt = {
5403     gen_helper_advsimd_acgt_f16,
5404     gen_helper_neon_acgt_f32,
5405     gen_helper_neon_acgt_f64,
5406 };
5407 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt, a->rm)
5408 
5409 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5410 {
5411     gen_helper_vfp_subh(d, n, m, s);
5412     gen_vfp_absh(d, d);
5413 }
5414 
5415 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5416 {
5417     gen_helper_vfp_subs(d, n, m, s);
5418     gen_vfp_abss(d, d);
5419 }
5420 
5421 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5422 {
5423     gen_helper_vfp_subd(d, n, m, s);
5424     gen_vfp_absd(d, d);
5425 }
5426 
5427 static void gen_fabd_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5428 {
5429     gen_helper_vfp_subh(d, n, m, s);
5430     gen_vfp_ah_absh(d, d);
5431 }
5432 
5433 static void gen_fabd_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5434 {
5435     gen_helper_vfp_subs(d, n, m, s);
5436     gen_vfp_ah_abss(d, d);
5437 }
5438 
5439 static void gen_fabd_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5440 {
5441     gen_helper_vfp_subd(d, n, m, s);
5442     gen_vfp_ah_absd(d, d);
5443 }
5444 
5445 static const FPScalar f_scalar_fabd = {
5446     gen_fabd_h,
5447     gen_fabd_s,
5448     gen_fabd_d,
5449 };
5450 static const FPScalar f_scalar_ah_fabd = {
5451     gen_fabd_ah_h,
5452     gen_fabd_ah_s,
5453     gen_fabd_ah_d,
5454 };
5455 TRANS(FABD_s, do_fp3_scalar_2fn, a, &f_scalar_fabd, &f_scalar_ah_fabd, a->rn)
5456 
5457 static const FPScalar f_scalar_frecps = {
5458     gen_helper_recpsf_f16,
5459     gen_helper_recpsf_f32,
5460     gen_helper_recpsf_f64,
5461 };
5462 static const FPScalar f_scalar_ah_frecps = {
5463     gen_helper_recpsf_ah_f16,
5464     gen_helper_recpsf_ah_f32,
5465     gen_helper_recpsf_ah_f64,
5466 };
5467 TRANS(FRECPS_s, do_fp3_scalar_ah_2fn, a,
5468       &f_scalar_frecps, &f_scalar_ah_frecps, a->rn)
5469 
5470 static const FPScalar f_scalar_frsqrts = {
5471     gen_helper_rsqrtsf_f16,
5472     gen_helper_rsqrtsf_f32,
5473     gen_helper_rsqrtsf_f64,
5474 };
5475 static const FPScalar f_scalar_ah_frsqrts = {
5476     gen_helper_rsqrtsf_ah_f16,
5477     gen_helper_rsqrtsf_ah_f32,
5478     gen_helper_rsqrtsf_ah_f64,
5479 };
5480 TRANS(FRSQRTS_s, do_fp3_scalar_ah_2fn, a,
5481       &f_scalar_frsqrts, &f_scalar_ah_frsqrts, a->rn)
5482 
5483 static bool do_fcmp0_s(DisasContext *s, arg_rr_e *a,
5484                        const FPScalar *f, bool swap)
5485 {
5486     switch (a->esz) {
5487     case MO_64:
5488         if (fp_access_check(s)) {
5489             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5490             TCGv_i64 t1 = tcg_constant_i64(0);
5491             if (swap) {
5492                 f->gen_d(t0, t1, t0, fpstatus_ptr(FPST_A64));
5493             } else {
5494                 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
5495             }
5496             write_fp_dreg(s, a->rd, t0);
5497         }
5498         break;
5499     case MO_32:
5500         if (fp_access_check(s)) {
5501             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5502             TCGv_i32 t1 = tcg_constant_i32(0);
5503             if (swap) {
5504                 f->gen_s(t0, t1, t0, fpstatus_ptr(FPST_A64));
5505             } else {
5506                 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
5507             }
5508             write_fp_sreg(s, a->rd, t0);
5509         }
5510         break;
5511     case MO_16:
5512         if (!dc_isar_feature(aa64_fp16, s)) {
5513             return false;
5514         }
5515         if (fp_access_check(s)) {
5516             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5517             TCGv_i32 t1 = tcg_constant_i32(0);
5518             if (swap) {
5519                 f->gen_h(t0, t1, t0, fpstatus_ptr(FPST_A64_F16));
5520             } else {
5521                 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
5522             }
5523             write_fp_sreg(s, a->rd, t0);
5524         }
5525         break;
5526     default:
5527         return false;
5528     }
5529     return true;
5530 }
5531 
5532 TRANS(FCMEQ0_s, do_fcmp0_s, a, &f_scalar_fcmeq, false)
5533 TRANS(FCMGT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, false)
5534 TRANS(FCMGE0_s, do_fcmp0_s, a, &f_scalar_fcmge, false)
5535 TRANS(FCMLT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, true)
5536 TRANS(FCMLE0_s, do_fcmp0_s, a, &f_scalar_fcmge, true)
5537 
5538 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5539                 MemOp sgn_n, MemOp sgn_m,
5540                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5541                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5542 {
5543     TCGv_i64 t0, t1, t2, qc;
5544     MemOp esz = a->esz;
5545 
5546     if (!fp_access_check(s)) {
5547         return true;
5548     }
5549 
5550     t0 = tcg_temp_new_i64();
5551     t1 = tcg_temp_new_i64();
5552     t2 = tcg_temp_new_i64();
5553     qc = tcg_temp_new_i64();
5554     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5555     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5556     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5557 
5558     if (esz == MO_64) {
5559         gen_d(t0, qc, t1, t2);
5560     } else {
5561         gen_bhs(t0, qc, t1, t2, esz);
5562         tcg_gen_ext_i64(t0, t0, esz);
5563     }
5564 
5565     write_fp_dreg(s, a->rd, t0);
5566     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5567     return true;
5568 }
5569 
5570 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5571 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5572 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5573 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5574 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5575 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5576 
5577 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5578                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5579 {
5580     if (fp_access_check(s)) {
5581         TCGv_i64 t0 = tcg_temp_new_i64();
5582         TCGv_i64 t1 = tcg_temp_new_i64();
5583 
5584         read_vec_element(s, t0, a->rn, 0, MO_64);
5585         read_vec_element(s, t1, a->rm, 0, MO_64);
5586         fn(t0, t0, t1);
5587         write_fp_dreg(s, a->rd, t0);
5588     }
5589     return true;
5590 }
5591 
5592 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5593 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5594 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5595 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5596 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5597 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5598 
5599 typedef struct ENVScalar2 {
5600     NeonGenTwoOpEnvFn *gen_bhs[3];
5601     NeonGenTwo64OpEnvFn *gen_d;
5602 } ENVScalar2;
5603 
5604 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5605 {
5606     if (!fp_access_check(s)) {
5607         return true;
5608     }
5609     if (a->esz == MO_64) {
5610         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5611         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5612         f->gen_d(t0, tcg_env, t0, t1);
5613         write_fp_dreg(s, a->rd, t0);
5614     } else {
5615         TCGv_i32 t0 = tcg_temp_new_i32();
5616         TCGv_i32 t1 = tcg_temp_new_i32();
5617 
5618         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5619         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5620         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5621         write_fp_sreg(s, a->rd, t0);
5622     }
5623     return true;
5624 }
5625 
5626 static const ENVScalar2 f_scalar_sqshl = {
5627     { gen_helper_neon_qshl_s8,
5628       gen_helper_neon_qshl_s16,
5629       gen_helper_neon_qshl_s32 },
5630     gen_helper_neon_qshl_s64,
5631 };
5632 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5633 
5634 static const ENVScalar2 f_scalar_uqshl = {
5635     { gen_helper_neon_qshl_u8,
5636       gen_helper_neon_qshl_u16,
5637       gen_helper_neon_qshl_u32 },
5638     gen_helper_neon_qshl_u64,
5639 };
5640 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5641 
5642 static const ENVScalar2 f_scalar_sqrshl = {
5643     { gen_helper_neon_qrshl_s8,
5644       gen_helper_neon_qrshl_s16,
5645       gen_helper_neon_qrshl_s32 },
5646     gen_helper_neon_qrshl_s64,
5647 };
5648 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5649 
5650 static const ENVScalar2 f_scalar_uqrshl = {
5651     { gen_helper_neon_qrshl_u8,
5652       gen_helper_neon_qrshl_u16,
5653       gen_helper_neon_qrshl_u32 },
5654     gen_helper_neon_qrshl_u64,
5655 };
5656 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5657 
5658 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5659                               const ENVScalar2 *f)
5660 {
5661     if (a->esz == MO_16 || a->esz == MO_32) {
5662         return do_env_scalar2(s, a, f);
5663     }
5664     return false;
5665 }
5666 
5667 static const ENVScalar2 f_scalar_sqdmulh = {
5668     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5669 };
5670 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5671 
5672 static const ENVScalar2 f_scalar_sqrdmulh = {
5673     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5674 };
5675 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5676 
5677 typedef struct ENVScalar3 {
5678     NeonGenThreeOpEnvFn *gen_hs[2];
5679 } ENVScalar3;
5680 
5681 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5682                               const ENVScalar3 *f)
5683 {
5684     TCGv_i32 t0, t1, t2;
5685 
5686     if (a->esz != MO_16 && a->esz != MO_32) {
5687         return false;
5688     }
5689     if (!fp_access_check(s)) {
5690         return true;
5691     }
5692 
5693     t0 = tcg_temp_new_i32();
5694     t1 = tcg_temp_new_i32();
5695     t2 = tcg_temp_new_i32();
5696     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5697     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5698     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5699     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5700     write_fp_sreg(s, a->rd, t0);
5701     return true;
5702 }
5703 
5704 static const ENVScalar3 f_scalar_sqrdmlah = {
5705     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5706 };
5707 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5708 
5709 static const ENVScalar3 f_scalar_sqrdmlsh = {
5710     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5711 };
5712 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5713 
5714 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5715 {
5716     if (fp_access_check(s)) {
5717         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5718         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5719         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5720         write_fp_dreg(s, a->rd, t0);
5721     }
5722     return true;
5723 }
5724 
5725 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5726 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5727 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5728 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5729 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5730 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5731 
5732 static bool do_fp3_vector_with_fpsttype(DisasContext *s, arg_qrrr_e *a,
5733                                         int data,
5734                                         gen_helper_gvec_3_ptr * const fns[3],
5735                                         ARMFPStatusFlavour fpsttype)
5736 {
5737     MemOp esz = a->esz;
5738     int check = fp_access_check_vector_hsd(s, a->q, esz);
5739 
5740     if (check <= 0) {
5741         return check == 0;
5742     }
5743 
5744     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, fpsttype,
5745                       data, fns[esz - 1]);
5746     return true;
5747 }
5748 
5749 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5750                           gen_helper_gvec_3_ptr * const fns[3])
5751 {
5752     return do_fp3_vector_with_fpsttype(s, a, data, fns,
5753                                        a->esz == MO_16 ?
5754                                        FPST_A64_F16 : FPST_A64);
5755 }
5756 
5757 static bool do_fp3_vector_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5758                               gen_helper_gvec_3_ptr * const fnormal[3],
5759                               gen_helper_gvec_3_ptr * const fah[3])
5760 {
5761     return do_fp3_vector(s, a, data, s->fpcr_ah ? fah : fnormal);
5762 }
5763 
5764 static bool do_fp3_vector_ah_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5765                                  gen_helper_gvec_3_ptr * const fnormal[3],
5766                                  gen_helper_gvec_3_ptr * const fah[3])
5767 {
5768     return do_fp3_vector_with_fpsttype(s, a, data, s->fpcr_ah ? fah : fnormal,
5769                                        select_ah_fpst(s, a->esz));
5770 }
5771 
5772 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5773     gen_helper_gvec_fadd_h,
5774     gen_helper_gvec_fadd_s,
5775     gen_helper_gvec_fadd_d,
5776 };
5777 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5778 
5779 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5780     gen_helper_gvec_fsub_h,
5781     gen_helper_gvec_fsub_s,
5782     gen_helper_gvec_fsub_d,
5783 };
5784 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5785 
5786 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5787     gen_helper_gvec_fdiv_h,
5788     gen_helper_gvec_fdiv_s,
5789     gen_helper_gvec_fdiv_d,
5790 };
5791 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5792 
5793 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5794     gen_helper_gvec_fmul_h,
5795     gen_helper_gvec_fmul_s,
5796     gen_helper_gvec_fmul_d,
5797 };
5798 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5799 
5800 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5801     gen_helper_gvec_fmax_h,
5802     gen_helper_gvec_fmax_s,
5803     gen_helper_gvec_fmax_d,
5804 };
5805 static gen_helper_gvec_3_ptr * const f_vector_fmax_ah[3] = {
5806     gen_helper_gvec_ah_fmax_h,
5807     gen_helper_gvec_ah_fmax_s,
5808     gen_helper_gvec_ah_fmax_d,
5809 };
5810 TRANS(FMAX_v, do_fp3_vector_2fn, a, 0, f_vector_fmax, f_vector_fmax_ah)
5811 
5812 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5813     gen_helper_gvec_fmin_h,
5814     gen_helper_gvec_fmin_s,
5815     gen_helper_gvec_fmin_d,
5816 };
5817 static gen_helper_gvec_3_ptr * const f_vector_fmin_ah[3] = {
5818     gen_helper_gvec_ah_fmin_h,
5819     gen_helper_gvec_ah_fmin_s,
5820     gen_helper_gvec_ah_fmin_d,
5821 };
5822 TRANS(FMIN_v, do_fp3_vector_2fn, a, 0, f_vector_fmin, f_vector_fmin_ah)
5823 
5824 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5825     gen_helper_gvec_fmaxnum_h,
5826     gen_helper_gvec_fmaxnum_s,
5827     gen_helper_gvec_fmaxnum_d,
5828 };
5829 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5830 
5831 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5832     gen_helper_gvec_fminnum_h,
5833     gen_helper_gvec_fminnum_s,
5834     gen_helper_gvec_fminnum_d,
5835 };
5836 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5837 
5838 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5839     gen_helper_gvec_fmulx_h,
5840     gen_helper_gvec_fmulx_s,
5841     gen_helper_gvec_fmulx_d,
5842 };
5843 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5844 
5845 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5846     gen_helper_gvec_vfma_h,
5847     gen_helper_gvec_vfma_s,
5848     gen_helper_gvec_vfma_d,
5849 };
5850 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5851 
5852 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5853     gen_helper_gvec_vfms_h,
5854     gen_helper_gvec_vfms_s,
5855     gen_helper_gvec_vfms_d,
5856 };
5857 static gen_helper_gvec_3_ptr * const f_vector_fmls_ah[3] = {
5858     gen_helper_gvec_ah_vfms_h,
5859     gen_helper_gvec_ah_vfms_s,
5860     gen_helper_gvec_ah_vfms_d,
5861 };
5862 TRANS(FMLS_v, do_fp3_vector_2fn, a, 0, f_vector_fmls, f_vector_fmls_ah)
5863 
5864 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5865     gen_helper_gvec_fceq_h,
5866     gen_helper_gvec_fceq_s,
5867     gen_helper_gvec_fceq_d,
5868 };
5869 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5870 
5871 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5872     gen_helper_gvec_fcge_h,
5873     gen_helper_gvec_fcge_s,
5874     gen_helper_gvec_fcge_d,
5875 };
5876 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5877 
5878 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5879     gen_helper_gvec_fcgt_h,
5880     gen_helper_gvec_fcgt_s,
5881     gen_helper_gvec_fcgt_d,
5882 };
5883 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5884 
5885 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5886     gen_helper_gvec_facge_h,
5887     gen_helper_gvec_facge_s,
5888     gen_helper_gvec_facge_d,
5889 };
5890 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5891 
5892 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5893     gen_helper_gvec_facgt_h,
5894     gen_helper_gvec_facgt_s,
5895     gen_helper_gvec_facgt_d,
5896 };
5897 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5898 
5899 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5900     gen_helper_gvec_fabd_h,
5901     gen_helper_gvec_fabd_s,
5902     gen_helper_gvec_fabd_d,
5903 };
5904 static gen_helper_gvec_3_ptr * const f_vector_ah_fabd[3] = {
5905     gen_helper_gvec_ah_fabd_h,
5906     gen_helper_gvec_ah_fabd_s,
5907     gen_helper_gvec_ah_fabd_d,
5908 };
5909 TRANS(FABD_v, do_fp3_vector_2fn, a, 0, f_vector_fabd, f_vector_ah_fabd)
5910 
5911 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5912     gen_helper_gvec_recps_h,
5913     gen_helper_gvec_recps_s,
5914     gen_helper_gvec_recps_d,
5915 };
5916 static gen_helper_gvec_3_ptr * const f_vector_ah_frecps[3] = {
5917     gen_helper_gvec_ah_recps_h,
5918     gen_helper_gvec_ah_recps_s,
5919     gen_helper_gvec_ah_recps_d,
5920 };
5921 TRANS(FRECPS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frecps, f_vector_ah_frecps)
5922 
5923 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5924     gen_helper_gvec_rsqrts_h,
5925     gen_helper_gvec_rsqrts_s,
5926     gen_helper_gvec_rsqrts_d,
5927 };
5928 static gen_helper_gvec_3_ptr * const f_vector_ah_frsqrts[3] = {
5929     gen_helper_gvec_ah_rsqrts_h,
5930     gen_helper_gvec_ah_rsqrts_s,
5931     gen_helper_gvec_ah_rsqrts_d,
5932 };
5933 TRANS(FRSQRTS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frsqrts, f_vector_ah_frsqrts)
5934 
5935 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5936     gen_helper_gvec_faddp_h,
5937     gen_helper_gvec_faddp_s,
5938     gen_helper_gvec_faddp_d,
5939 };
5940 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5941 
5942 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5943     gen_helper_gvec_fmaxp_h,
5944     gen_helper_gvec_fmaxp_s,
5945     gen_helper_gvec_fmaxp_d,
5946 };
5947 static gen_helper_gvec_3_ptr * const f_vector_ah_fmaxp[3] = {
5948     gen_helper_gvec_ah_fmaxp_h,
5949     gen_helper_gvec_ah_fmaxp_s,
5950     gen_helper_gvec_ah_fmaxp_d,
5951 };
5952 TRANS(FMAXP_v, do_fp3_vector_2fn, a, 0, f_vector_fmaxp, f_vector_ah_fmaxp)
5953 
5954 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5955     gen_helper_gvec_fminp_h,
5956     gen_helper_gvec_fminp_s,
5957     gen_helper_gvec_fminp_d,
5958 };
5959 static gen_helper_gvec_3_ptr * const f_vector_ah_fminp[3] = {
5960     gen_helper_gvec_ah_fminp_h,
5961     gen_helper_gvec_ah_fminp_s,
5962     gen_helper_gvec_ah_fminp_d,
5963 };
5964 TRANS(FMINP_v, do_fp3_vector_2fn, a, 0, f_vector_fminp, f_vector_ah_fminp)
5965 
5966 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5967     gen_helper_gvec_fmaxnump_h,
5968     gen_helper_gvec_fmaxnump_s,
5969     gen_helper_gvec_fmaxnump_d,
5970 };
5971 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5972 
5973 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5974     gen_helper_gvec_fminnump_h,
5975     gen_helper_gvec_fminnump_s,
5976     gen_helper_gvec_fminnump_d,
5977 };
5978 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5979 
5980 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5981 {
5982     if (fp_access_check(s)) {
5983         int data = (is_2 << 1) | is_s;
5984         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5985                            vec_full_reg_offset(s, a->rn),
5986                            vec_full_reg_offset(s, a->rm), tcg_env,
5987                            a->q ? 16 : 8, vec_full_reg_size(s),
5988                            data, gen_helper_gvec_fmlal_a64);
5989     }
5990     return true;
5991 }
5992 
5993 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5994 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5995 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5996 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5997 
5998 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5999 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
6000 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
6001 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
6002 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
6003 
6004 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
6005 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
6006 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
6007 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
6008 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
6009 
6010 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
6011 {
6012     if (fp_access_check(s)) {
6013         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
6014     }
6015     return true;
6016 }
6017 
6018 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
6019 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
6020 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
6021 
6022 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
6023 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
6024 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
6025 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
6026 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
6027 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
6028 
6029 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
6030 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
6031 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
6032 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
6033 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
6034 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
6035 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
6036 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
6037 
6038 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
6039 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
6040 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
6041 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
6042 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
6043 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
6044 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
6045 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
6046 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
6047 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
6048 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
6049 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
6050 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
6051 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
6052 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
6053 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
6054 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
6055 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
6056 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
6057 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
6058 
6059 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
6060 {
6061     if (a->esz == MO_64 && !a->q) {
6062         return false;
6063     }
6064     if (fp_access_check(s)) {
6065         tcg_gen_gvec_cmp(cond, a->esz,
6066                          vec_full_reg_offset(s, a->rd),
6067                          vec_full_reg_offset(s, a->rn),
6068                          vec_full_reg_offset(s, a->rm),
6069                          a->q ? 16 : 8, vec_full_reg_size(s));
6070     }
6071     return true;
6072 }
6073 
6074 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
6075 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
6076 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
6077 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
6078 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
6079 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
6080 
6081 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
6082 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
6083 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
6084 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
6085 
6086 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
6087                           gen_helper_gvec_4 *fn)
6088 {
6089     if (fp_access_check(s)) {
6090         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6091     }
6092     return true;
6093 }
6094 
6095 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a,
6096                               gen_helper_gvec_4_ptr *fn)
6097 {
6098     if (fp_access_check(s)) {
6099         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6100     }
6101     return true;
6102 }
6103 
6104 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
6105 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
6106 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
6107 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot)
6108 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla)
6109 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
6110 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
6111 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
6112 
6113 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
6114 {
6115     if (!dc_isar_feature(aa64_bf16, s)) {
6116         return false;
6117     }
6118     if (fp_access_check(s)) {
6119         /* Q bit selects BFMLALB vs BFMLALT. */
6120         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6121                           s->fpcr_ah ? FPST_AH : FPST_A64, a->q,
6122                           gen_helper_gvec_bfmlal);
6123     }
6124     return true;
6125 }
6126 
6127 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
6128     gen_helper_gvec_fcaddh,
6129     gen_helper_gvec_fcadds,
6130     gen_helper_gvec_fcaddd,
6131 };
6132 /*
6133  * Encode FPCR.AH into the data so the helper knows whether the
6134  * negations it does should avoid flipping the sign bit on a NaN
6135  */
6136 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0 | (s->fpcr_ah << 1),
6137            f_vector_fcadd)
6138 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1 | (s->fpcr_ah << 1),
6139            f_vector_fcadd)
6140 
6141 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
6142 {
6143     static gen_helper_gvec_4_ptr * const fn[] = {
6144         [MO_16] = gen_helper_gvec_fcmlah,
6145         [MO_32] = gen_helper_gvec_fcmlas,
6146         [MO_64] = gen_helper_gvec_fcmlad,
6147     };
6148     int check;
6149 
6150     if (!dc_isar_feature(aa64_fcma, s)) {
6151         return false;
6152     }
6153 
6154     check = fp_access_check_vector_hsd(s, a->q, a->esz);
6155     if (check <= 0) {
6156         return check == 0;
6157     }
6158 
6159     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6160                       a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6161                       a->rot | (s->fpcr_ah << 2), fn[a->esz]);
6162     return true;
6163 }
6164 
6165 /*
6166  * Widening vector x vector/indexed.
6167  *
6168  * These read from the top or bottom half of a 128-bit vector.
6169  * After widening, optionally accumulate with a 128-bit vector.
6170  * Implement these inline, as the number of elements are limited
6171  * and the related SVE and SME operations on larger vectors use
6172  * even/odd elements instead of top/bottom half.
6173  *
6174  * If idx >= 0, operand 2 is indexed, otherwise vector.
6175  * If acc, operand 0 is loaded with rd.
6176  */
6177 
6178 /* For low half, iterating up. */
6179 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
6180                             int rd, int rn, int rm, int idx,
6181                             NeonGenTwo64OpFn *fn, bool acc)
6182 {
6183     TCGv_i64 tcg_op0 = tcg_temp_new_i64();
6184     TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6185     TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6186     MemOp esz = memop & MO_SIZE;
6187     int half = 8 >> esz;
6188     int top_swap, top_half;
6189 
6190     /* There are no 64x64->128 bit operations. */
6191     if (esz >= MO_64) {
6192         return false;
6193     }
6194     if (!fp_access_check(s)) {
6195         return true;
6196     }
6197 
6198     if (idx >= 0) {
6199         read_vec_element(s, tcg_op2, rm, idx, memop);
6200     }
6201 
6202     /*
6203      * For top half inputs, iterate forward; backward for bottom half.
6204      * This means the store to the destination will not occur until
6205      * overlapping input inputs are consumed.
6206      * Use top_swap to conditionally invert the forward iteration index.
6207      */
6208     top_swap = top ? 0 : half - 1;
6209     top_half = top ? half : 0;
6210 
6211     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6212         int elt = elt_fwd ^ top_swap;
6213 
6214         read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
6215         if (idx < 0) {
6216             read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
6217         }
6218         if (acc) {
6219             read_vec_element(s, tcg_op0, rd, elt, memop + 1);
6220         }
6221         fn(tcg_op0, tcg_op1, tcg_op2);
6222         write_vec_element(s, tcg_op0, rd, elt, esz + 1);
6223     }
6224     clear_vec_high(s, 1, rd);
6225     return true;
6226 }
6227 
6228 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6229 {
6230     TCGv_i64 t = tcg_temp_new_i64();
6231     tcg_gen_mul_i64(t, n, m);
6232     tcg_gen_add_i64(d, d, t);
6233 }
6234 
6235 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6236 {
6237     TCGv_i64 t = tcg_temp_new_i64();
6238     tcg_gen_mul_i64(t, n, m);
6239     tcg_gen_sub_i64(d, d, t);
6240 }
6241 
6242 TRANS(SMULL_v, do_3op_widening,
6243       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6244       tcg_gen_mul_i64, false)
6245 TRANS(UMULL_v, do_3op_widening,
6246       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6247       tcg_gen_mul_i64, false)
6248 TRANS(SMLAL_v, do_3op_widening,
6249       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6250       gen_muladd_i64, true)
6251 TRANS(UMLAL_v, do_3op_widening,
6252       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6253       gen_muladd_i64, true)
6254 TRANS(SMLSL_v, do_3op_widening,
6255       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6256       gen_mulsub_i64, true)
6257 TRANS(UMLSL_v, do_3op_widening,
6258       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6259       gen_mulsub_i64, true)
6260 
6261 TRANS(SMULL_vi, do_3op_widening,
6262       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6263       tcg_gen_mul_i64, false)
6264 TRANS(UMULL_vi, do_3op_widening,
6265       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6266       tcg_gen_mul_i64, false)
6267 TRANS(SMLAL_vi, do_3op_widening,
6268       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6269       gen_muladd_i64, true)
6270 TRANS(UMLAL_vi, do_3op_widening,
6271       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6272       gen_muladd_i64, true)
6273 TRANS(SMLSL_vi, do_3op_widening,
6274       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6275       gen_mulsub_i64, true)
6276 TRANS(UMLSL_vi, do_3op_widening,
6277       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6278       gen_mulsub_i64, true)
6279 
6280 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6281 {
6282     TCGv_i64 t1 = tcg_temp_new_i64();
6283     TCGv_i64 t2 = tcg_temp_new_i64();
6284 
6285     tcg_gen_sub_i64(t1, n, m);
6286     tcg_gen_sub_i64(t2, m, n);
6287     tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
6288 }
6289 
6290 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6291 {
6292     TCGv_i64 t1 = tcg_temp_new_i64();
6293     TCGv_i64 t2 = tcg_temp_new_i64();
6294 
6295     tcg_gen_sub_i64(t1, n, m);
6296     tcg_gen_sub_i64(t2, m, n);
6297     tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
6298 }
6299 
6300 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6301 {
6302     TCGv_i64 t = tcg_temp_new_i64();
6303     gen_sabd_i64(t, n, m);
6304     tcg_gen_add_i64(d, d, t);
6305 }
6306 
6307 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6308 {
6309     TCGv_i64 t = tcg_temp_new_i64();
6310     gen_uabd_i64(t, n, m);
6311     tcg_gen_add_i64(d, d, t);
6312 }
6313 
6314 TRANS(SADDL_v, do_3op_widening,
6315       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6316       tcg_gen_add_i64, false)
6317 TRANS(UADDL_v, do_3op_widening,
6318       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6319       tcg_gen_add_i64, false)
6320 TRANS(SSUBL_v, do_3op_widening,
6321       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6322       tcg_gen_sub_i64, false)
6323 TRANS(USUBL_v, do_3op_widening,
6324       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6325       tcg_gen_sub_i64, false)
6326 TRANS(SABDL_v, do_3op_widening,
6327       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6328       gen_sabd_i64, false)
6329 TRANS(UABDL_v, do_3op_widening,
6330       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6331       gen_uabd_i64, false)
6332 TRANS(SABAL_v, do_3op_widening,
6333       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6334       gen_saba_i64, true)
6335 TRANS(UABAL_v, do_3op_widening,
6336       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6337       gen_uaba_i64, true)
6338 
6339 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6340 {
6341     tcg_gen_mul_i64(d, n, m);
6342     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
6343 }
6344 
6345 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6346 {
6347     tcg_gen_mul_i64(d, n, m);
6348     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
6349 }
6350 
6351 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6352 {
6353     TCGv_i64 t = tcg_temp_new_i64();
6354 
6355     tcg_gen_mul_i64(t, n, m);
6356     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6357     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6358 }
6359 
6360 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6361 {
6362     TCGv_i64 t = tcg_temp_new_i64();
6363 
6364     tcg_gen_mul_i64(t, n, m);
6365     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6366     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6367 }
6368 
6369 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6370 {
6371     TCGv_i64 t = tcg_temp_new_i64();
6372 
6373     tcg_gen_mul_i64(t, n, m);
6374     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6375     tcg_gen_neg_i64(t, t);
6376     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6377 }
6378 
6379 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6380 {
6381     TCGv_i64 t = tcg_temp_new_i64();
6382 
6383     tcg_gen_mul_i64(t, n, m);
6384     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6385     tcg_gen_neg_i64(t, t);
6386     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6387 }
6388 
6389 TRANS(SQDMULL_v, do_3op_widening,
6390       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6391       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6392 TRANS(SQDMLAL_v, do_3op_widening,
6393       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6394       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6395 TRANS(SQDMLSL_v, do_3op_widening,
6396       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6397       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6398 
6399 TRANS(SQDMULL_vi, do_3op_widening,
6400       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6401       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6402 TRANS(SQDMLAL_vi, do_3op_widening,
6403       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6404       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6405 TRANS(SQDMLSL_vi, do_3op_widening,
6406       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6407       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6408 
6409 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
6410                            MemOp sign, bool sub)
6411 {
6412     TCGv_i64 tcg_op0, tcg_op1;
6413     MemOp esz = a->esz;
6414     int half = 8 >> esz;
6415     bool top = a->q;
6416     int top_swap = top ? 0 : half - 1;
6417     int top_half = top ? half : 0;
6418 
6419     /* There are no 64x64->128 bit operations. */
6420     if (esz >= MO_64) {
6421         return false;
6422     }
6423     if (!fp_access_check(s)) {
6424         return true;
6425     }
6426     tcg_op0 = tcg_temp_new_i64();
6427     tcg_op1 = tcg_temp_new_i64();
6428 
6429     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6430         int elt = elt_fwd ^ top_swap;
6431 
6432         read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
6433         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6434         if (sub) {
6435             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6436         } else {
6437             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6438         }
6439         write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
6440     }
6441     clear_vec_high(s, 1, a->rd);
6442     return true;
6443 }
6444 
6445 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
6446 TRANS(UADDW, do_addsub_wide, a, 0, false)
6447 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
6448 TRANS(USUBW, do_addsub_wide, a, 0, true)
6449 
6450 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
6451                                  bool sub, bool round)
6452 {
6453     TCGv_i64 tcg_op0, tcg_op1;
6454     MemOp esz = a->esz;
6455     int half = 8 >> esz;
6456     bool top = a->q;
6457     int ebits = 8 << esz;
6458     uint64_t rbit = 1ull << (ebits - 1);
6459     int top_swap, top_half;
6460 
6461     /* There are no 128x128->64 bit operations. */
6462     if (esz >= MO_64) {
6463         return false;
6464     }
6465     if (!fp_access_check(s)) {
6466         return true;
6467     }
6468     tcg_op0 = tcg_temp_new_i64();
6469     tcg_op1 = tcg_temp_new_i64();
6470 
6471     /*
6472      * For top half inputs, iterate backward; forward for bottom half.
6473      * This means the store to the destination will not occur until
6474      * overlapping input inputs are consumed.
6475      */
6476     top_swap = top ? half - 1 : 0;
6477     top_half = top ? half : 0;
6478 
6479     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6480         int elt = elt_fwd ^ top_swap;
6481 
6482         read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
6483         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6484         if (sub) {
6485             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6486         } else {
6487             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6488         }
6489         if (round) {
6490             tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6491         }
6492         tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6493         write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6494     }
6495     clear_vec_high(s, top, a->rd);
6496     return true;
6497 }
6498 
6499 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6500 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6501 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6502 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6503 
6504 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6505 {
6506     if (fp_access_check(s)) {
6507         /* The Q field specifies lo/hi half input for these insns.  */
6508         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6509     }
6510     return true;
6511 }
6512 
6513 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6514 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6515 
6516 /*
6517  * Advanced SIMD scalar/vector x indexed element
6518  */
6519 
6520 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6521 {
6522     switch (a->esz) {
6523     case MO_64:
6524         if (fp_access_check(s)) {
6525             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6526             TCGv_i64 t1 = tcg_temp_new_i64();
6527 
6528             read_vec_element(s, t1, a->rm, a->idx, MO_64);
6529             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6530             write_fp_dreg_merging(s, a->rd, a->rn, t0);
6531         }
6532         break;
6533     case MO_32:
6534         if (fp_access_check(s)) {
6535             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6536             TCGv_i32 t1 = tcg_temp_new_i32();
6537 
6538             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6539             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6540             write_fp_sreg_merging(s, a->rd, a->rn, t0);
6541         }
6542         break;
6543     case MO_16:
6544         if (!dc_isar_feature(aa64_fp16, s)) {
6545             return false;
6546         }
6547         if (fp_access_check(s)) {
6548             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6549             TCGv_i32 t1 = tcg_temp_new_i32();
6550 
6551             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6552             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6553             write_fp_hreg_merging(s, a->rd, a->rn, t0);
6554         }
6555         break;
6556     default:
6557         g_assert_not_reached();
6558     }
6559     return true;
6560 }
6561 
6562 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6563 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6564 
6565 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6566 {
6567     switch (a->esz) {
6568     case MO_64:
6569         if (fp_access_check(s)) {
6570             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6571             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6572             TCGv_i64 t2 = tcg_temp_new_i64();
6573 
6574             read_vec_element(s, t2, a->rm, a->idx, MO_64);
6575             if (neg) {
6576                 gen_vfp_maybe_ah_negd(s, t1, t1);
6577             }
6578             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6579             write_fp_dreg_merging(s, a->rd, a->rd, t0);
6580         }
6581         break;
6582     case MO_32:
6583         if (fp_access_check(s)) {
6584             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6585             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6586             TCGv_i32 t2 = tcg_temp_new_i32();
6587 
6588             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6589             if (neg) {
6590                 gen_vfp_maybe_ah_negs(s, t1, t1);
6591             }
6592             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6593             write_fp_sreg_merging(s, a->rd, a->rd, t0);
6594         }
6595         break;
6596     case MO_16:
6597         if (!dc_isar_feature(aa64_fp16, s)) {
6598             return false;
6599         }
6600         if (fp_access_check(s)) {
6601             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6602             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6603             TCGv_i32 t2 = tcg_temp_new_i32();
6604 
6605             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6606             if (neg) {
6607                 gen_vfp_maybe_ah_negh(s, t1, t1);
6608             }
6609             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6610                                        fpstatus_ptr(FPST_A64_F16));
6611             write_fp_hreg_merging(s, a->rd, a->rd, t0);
6612         }
6613         break;
6614     default:
6615         g_assert_not_reached();
6616     }
6617     return true;
6618 }
6619 
6620 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6621 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6622 
6623 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6624                                   const ENVScalar2 *f)
6625 {
6626     if (a->esz < MO_16 || a->esz > MO_32) {
6627         return false;
6628     }
6629     if (fp_access_check(s)) {
6630         TCGv_i32 t0 = tcg_temp_new_i32();
6631         TCGv_i32 t1 = tcg_temp_new_i32();
6632 
6633         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6634         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6635         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6636         write_fp_sreg(s, a->rd, t0);
6637     }
6638     return true;
6639 }
6640 
6641 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6642 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6643 
6644 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6645                                   const ENVScalar3 *f)
6646 {
6647     if (a->esz < MO_16 || a->esz > MO_32) {
6648         return false;
6649     }
6650     if (fp_access_check(s)) {
6651         TCGv_i32 t0 = tcg_temp_new_i32();
6652         TCGv_i32 t1 = tcg_temp_new_i32();
6653         TCGv_i32 t2 = tcg_temp_new_i32();
6654 
6655         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6656         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6657         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6658         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6659         write_fp_sreg(s, a->rd, t0);
6660     }
6661     return true;
6662 }
6663 
6664 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6665 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6666 
6667 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6668                                           NeonGenTwo64OpFn *fn, bool acc)
6669 {
6670     if (fp_access_check(s)) {
6671         TCGv_i64 t0 = tcg_temp_new_i64();
6672         TCGv_i64 t1 = tcg_temp_new_i64();
6673         TCGv_i64 t2 = tcg_temp_new_i64();
6674 
6675         if (acc) {
6676             read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6677         }
6678         read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6679         read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6680         fn(t0, t1, t2);
6681 
6682         /* Clear the whole register first, then store scalar. */
6683         clear_vec(s, a->rd);
6684         write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6685     }
6686     return true;
6687 }
6688 
6689 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6690       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6691 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6692       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6693 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6694       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6695 
6696 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6697                               gen_helper_gvec_3_ptr * const fns[3])
6698 {
6699     MemOp esz = a->esz;
6700     int check = fp_access_check_vector_hsd(s, a->q, esz);
6701 
6702     if (check <= 0) {
6703         return check == 0;
6704     }
6705 
6706     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6707                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6708                       a->idx, fns[esz - 1]);
6709     return true;
6710 }
6711 
6712 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6713     gen_helper_gvec_fmul_idx_h,
6714     gen_helper_gvec_fmul_idx_s,
6715     gen_helper_gvec_fmul_idx_d,
6716 };
6717 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6718 
6719 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6720     gen_helper_gvec_fmulx_idx_h,
6721     gen_helper_gvec_fmulx_idx_s,
6722     gen_helper_gvec_fmulx_idx_d,
6723 };
6724 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6725 
6726 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6727 {
6728     static gen_helper_gvec_4_ptr * const fns[3][3] = {
6729         { gen_helper_gvec_fmla_idx_h,
6730           gen_helper_gvec_fmla_idx_s,
6731           gen_helper_gvec_fmla_idx_d },
6732         { gen_helper_gvec_fmls_idx_h,
6733           gen_helper_gvec_fmls_idx_s,
6734           gen_helper_gvec_fmls_idx_d },
6735         { gen_helper_gvec_ah_fmls_idx_h,
6736           gen_helper_gvec_ah_fmls_idx_s,
6737           gen_helper_gvec_ah_fmls_idx_d },
6738     };
6739     MemOp esz = a->esz;
6740     int check = fp_access_check_vector_hsd(s, a->q, esz);
6741 
6742     if (check <= 0) {
6743         return check == 0;
6744     }
6745 
6746     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6747                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6748                       a->idx, fns[neg ? 1 + s->fpcr_ah : 0][esz - 1]);
6749     return true;
6750 }
6751 
6752 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6753 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6754 
6755 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6756 {
6757     if (fp_access_check(s)) {
6758         int data = (a->idx << 2) | (is_2 << 1) | is_s;
6759         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6760                            vec_full_reg_offset(s, a->rn),
6761                            vec_full_reg_offset(s, a->rm), tcg_env,
6762                            a->q ? 16 : 8, vec_full_reg_size(s),
6763                            data, gen_helper_gvec_fmlal_idx_a64);
6764     }
6765     return true;
6766 }
6767 
6768 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6769 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6770 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6771 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6772 
6773 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6774                                gen_helper_gvec_3 * const fns[2])
6775 {
6776     assert(a->esz == MO_16 || a->esz == MO_32);
6777     if (fp_access_check(s)) {
6778         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6779     }
6780     return true;
6781 }
6782 
6783 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6784     gen_helper_gvec_mul_idx_h,
6785     gen_helper_gvec_mul_idx_s,
6786 };
6787 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6788 
6789 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6790 {
6791     static gen_helper_gvec_4 * const fns[2][2] = {
6792         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6793         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6794     };
6795 
6796     assert(a->esz == MO_16 || a->esz == MO_32);
6797     if (fp_access_check(s)) {
6798         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6799                          a->idx, fns[a->esz - 1][sub]);
6800     }
6801     return true;
6802 }
6803 
6804 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6805 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6806 
6807 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6808                                   gen_helper_gvec_4 * const fns[2])
6809 {
6810     assert(a->esz == MO_16 || a->esz == MO_32);
6811     if (fp_access_check(s)) {
6812         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6813                            vec_full_reg_offset(s, a->rn),
6814                            vec_full_reg_offset(s, a->rm),
6815                            offsetof(CPUARMState, vfp.qc),
6816                            a->q ? 16 : 8, vec_full_reg_size(s),
6817                            a->idx, fns[a->esz - 1]);
6818     }
6819     return true;
6820 }
6821 
6822 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6823     gen_helper_neon_sqdmulh_idx_h,
6824     gen_helper_neon_sqdmulh_idx_s,
6825 };
6826 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6827 
6828 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6829     gen_helper_neon_sqrdmulh_idx_h,
6830     gen_helper_neon_sqrdmulh_idx_s,
6831 };
6832 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6833 
6834 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6835     gen_helper_neon_sqrdmlah_idx_h,
6836     gen_helper_neon_sqrdmlah_idx_s,
6837 };
6838 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6839            f_vector_idx_sqrdmlah)
6840 
6841 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6842     gen_helper_neon_sqrdmlsh_idx_h,
6843     gen_helper_neon_sqrdmlsh_idx_s,
6844 };
6845 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6846            f_vector_idx_sqrdmlsh)
6847 
6848 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6849                               gen_helper_gvec_4 *fn)
6850 {
6851     if (fp_access_check(s)) {
6852         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6853     }
6854     return true;
6855 }
6856 
6857 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a,
6858                                   gen_helper_gvec_4_ptr *fn)
6859 {
6860     if (fp_access_check(s)) {
6861         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6862     }
6863     return true;
6864 }
6865 
6866 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6867 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6868 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6869            gen_helper_gvec_sudot_idx_b)
6870 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6871            gen_helper_gvec_usdot_idx_b)
6872 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a,
6873            gen_helper_gvec_bfdot_idx)
6874 
6875 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6876 {
6877     if (!dc_isar_feature(aa64_bf16, s)) {
6878         return false;
6879     }
6880     if (fp_access_check(s)) {
6881         /* Q bit selects BFMLALB vs BFMLALT. */
6882         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6883                           s->fpcr_ah ? FPST_AH : FPST_A64,
6884                           (a->idx << 1) | a->q,
6885                           gen_helper_gvec_bfmlal_idx);
6886     }
6887     return true;
6888 }
6889 
6890 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6891 {
6892     gen_helper_gvec_4_ptr *fn;
6893 
6894     if (!dc_isar_feature(aa64_fcma, s)) {
6895         return false;
6896     }
6897     switch (a->esz) {
6898     case MO_16:
6899         if (!dc_isar_feature(aa64_fp16, s)) {
6900             return false;
6901         }
6902         fn = gen_helper_gvec_fcmlah_idx;
6903         break;
6904     case MO_32:
6905         fn = gen_helper_gvec_fcmlas_idx;
6906         break;
6907     default:
6908         g_assert_not_reached();
6909     }
6910     if (fp_access_check(s)) {
6911         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6912                           a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6913                           (s->fpcr_ah << 4) | (a->idx << 2) | a->rot, fn);
6914     }
6915     return true;
6916 }
6917 
6918 /*
6919  * Advanced SIMD scalar pairwise
6920  */
6921 
6922 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6923 {
6924     switch (a->esz) {
6925     case MO_64:
6926         if (fp_access_check(s)) {
6927             TCGv_i64 t0 = tcg_temp_new_i64();
6928             TCGv_i64 t1 = tcg_temp_new_i64();
6929 
6930             read_vec_element(s, t0, a->rn, 0, MO_64);
6931             read_vec_element(s, t1, a->rn, 1, MO_64);
6932             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6933             write_fp_dreg(s, a->rd, t0);
6934         }
6935         break;
6936     case MO_32:
6937         if (fp_access_check(s)) {
6938             TCGv_i32 t0 = tcg_temp_new_i32();
6939             TCGv_i32 t1 = tcg_temp_new_i32();
6940 
6941             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6942             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6943             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6944             write_fp_sreg(s, a->rd, t0);
6945         }
6946         break;
6947     case MO_16:
6948         if (!dc_isar_feature(aa64_fp16, s)) {
6949             return false;
6950         }
6951         if (fp_access_check(s)) {
6952             TCGv_i32 t0 = tcg_temp_new_i32();
6953             TCGv_i32 t1 = tcg_temp_new_i32();
6954 
6955             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6956             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6957             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6958             write_fp_sreg(s, a->rd, t0);
6959         }
6960         break;
6961     default:
6962         g_assert_not_reached();
6963     }
6964     return true;
6965 }
6966 
6967 static bool do_fp3_scalar_pair_2fn(DisasContext *s, arg_rr_e *a,
6968                                    const FPScalar *fnormal,
6969                                    const FPScalar *fah)
6970 {
6971     return do_fp3_scalar_pair(s, a, s->fpcr_ah ? fah : fnormal);
6972 }
6973 
6974 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6975 TRANS(FMAXP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah)
6976 TRANS(FMINP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah)
6977 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6978 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6979 
6980 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6981 {
6982     if (fp_access_check(s)) {
6983         TCGv_i64 t0 = tcg_temp_new_i64();
6984         TCGv_i64 t1 = tcg_temp_new_i64();
6985 
6986         read_vec_element(s, t0, a->rn, 0, MO_64);
6987         read_vec_element(s, t1, a->rn, 1, MO_64);
6988         tcg_gen_add_i64(t0, t0, t1);
6989         write_fp_dreg(s, a->rd, t0);
6990     }
6991     return true;
6992 }
6993 
6994 /*
6995  * Floating-point conditional select
6996  */
6997 
6998 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6999 {
7000     TCGv_i64 t_true, t_false;
7001     DisasCompare64 c;
7002     int check = fp_access_check_scalar_hsd(s, a->esz);
7003 
7004     if (check <= 0) {
7005         return check == 0;
7006     }
7007 
7008     /* Zero extend sreg & hreg inputs to 64 bits now.  */
7009     t_true = tcg_temp_new_i64();
7010     t_false = tcg_temp_new_i64();
7011     read_vec_element(s, t_true, a->rn, 0, a->esz);
7012     read_vec_element(s, t_false, a->rm, 0, a->esz);
7013 
7014     a64_test_cc(&c, a->cond);
7015     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7016                         t_true, t_false);
7017 
7018     /*
7019      * Note that sregs & hregs write back zeros to the high bits,
7020      * and we've already done the zero-extension.
7021      */
7022     write_fp_dreg(s, a->rd, t_true);
7023     return true;
7024 }
7025 
7026 /*
7027  * Advanced SIMD Extract
7028  */
7029 
7030 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a)
7031 {
7032     if (fp_access_check(s)) {
7033         TCGv_i64 lo = read_fp_dreg(s, a->rn);
7034         if (a->imm != 0) {
7035             TCGv_i64 hi = read_fp_dreg(s, a->rm);
7036             tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8);
7037         }
7038         write_fp_dreg(s, a->rd, lo);
7039     }
7040     return true;
7041 }
7042 
7043 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a)
7044 {
7045     TCGv_i64 lo, hi;
7046     int pos = (a->imm & 7) * 8;
7047     int elt = a->imm >> 3;
7048 
7049     if (!fp_access_check(s)) {
7050         return true;
7051     }
7052 
7053     lo = tcg_temp_new_i64();
7054     hi = tcg_temp_new_i64();
7055 
7056     read_vec_element(s, lo, a->rn, elt, MO_64);
7057     elt++;
7058     read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64);
7059     elt++;
7060 
7061     if (pos != 0) {
7062         TCGv_i64 hh = tcg_temp_new_i64();
7063         tcg_gen_extract2_i64(lo, lo, hi, pos);
7064         read_vec_element(s, hh, a->rm, elt & 1, MO_64);
7065         tcg_gen_extract2_i64(hi, hi, hh, pos);
7066     }
7067 
7068     write_vec_element(s, lo, a->rd, 0, MO_64);
7069     write_vec_element(s, hi, a->rd, 1, MO_64);
7070     clear_vec_high(s, true, a->rd);
7071     return true;
7072 }
7073 
7074 /*
7075  * Floating-point data-processing (3 source)
7076  */
7077 
7078 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
7079 {
7080     TCGv_ptr fpst;
7081 
7082     /*
7083      * These are fused multiply-add.  Note that doing the negations here
7084      * as separate steps is correct: an input NaN should come out with
7085      * its sign bit flipped if it is a negated-input.
7086      */
7087     switch (a->esz) {
7088     case MO_64:
7089         if (fp_access_check(s)) {
7090             TCGv_i64 tn = read_fp_dreg(s, a->rn);
7091             TCGv_i64 tm = read_fp_dreg(s, a->rm);
7092             TCGv_i64 ta = read_fp_dreg(s, a->ra);
7093 
7094             if (neg_a) {
7095                 gen_vfp_maybe_ah_negd(s, ta, ta);
7096             }
7097             if (neg_n) {
7098                 gen_vfp_maybe_ah_negd(s, tn, tn);
7099             }
7100             fpst = fpstatus_ptr(FPST_A64);
7101             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
7102             write_fp_dreg_merging(s, a->rd, a->ra, ta);
7103         }
7104         break;
7105 
7106     case MO_32:
7107         if (fp_access_check(s)) {
7108             TCGv_i32 tn = read_fp_sreg(s, a->rn);
7109             TCGv_i32 tm = read_fp_sreg(s, a->rm);
7110             TCGv_i32 ta = read_fp_sreg(s, a->ra);
7111 
7112             if (neg_a) {
7113                 gen_vfp_maybe_ah_negs(s, ta, ta);
7114             }
7115             if (neg_n) {
7116                 gen_vfp_maybe_ah_negs(s, tn, tn);
7117             }
7118             fpst = fpstatus_ptr(FPST_A64);
7119             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
7120             write_fp_sreg_merging(s, a->rd, a->ra, ta);
7121         }
7122         break;
7123 
7124     case MO_16:
7125         if (!dc_isar_feature(aa64_fp16, s)) {
7126             return false;
7127         }
7128         if (fp_access_check(s)) {
7129             TCGv_i32 tn = read_fp_hreg(s, a->rn);
7130             TCGv_i32 tm = read_fp_hreg(s, a->rm);
7131             TCGv_i32 ta = read_fp_hreg(s, a->ra);
7132 
7133             if (neg_a) {
7134                 gen_vfp_maybe_ah_negh(s, ta, ta);
7135             }
7136             if (neg_n) {
7137                 gen_vfp_maybe_ah_negh(s, tn, tn);
7138             }
7139             fpst = fpstatus_ptr(FPST_A64_F16);
7140             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
7141             write_fp_hreg_merging(s, a->rd, a->ra, ta);
7142         }
7143         break;
7144 
7145     default:
7146         return false;
7147     }
7148     return true;
7149 }
7150 
7151 TRANS(FMADD, do_fmadd, a, false, false)
7152 TRANS(FNMADD, do_fmadd, a, true, true)
7153 TRANS(FMSUB, do_fmadd, a, false, true)
7154 TRANS(FNMSUB, do_fmadd, a, true, false)
7155 
7156 /*
7157  * Advanced SIMD Across Lanes
7158  */
7159 
7160 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen,
7161                              MemOp src_sign, NeonGenTwo64OpFn *fn)
7162 {
7163     TCGv_i64 tcg_res, tcg_elt;
7164     MemOp src_mop = a->esz | src_sign;
7165     int elements = (a->q ? 16 : 8) >> a->esz;
7166 
7167     /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */
7168     if (elements < 4) {
7169         return false;
7170     }
7171     if (!fp_access_check(s)) {
7172         return true;
7173     }
7174 
7175     tcg_res = tcg_temp_new_i64();
7176     tcg_elt = tcg_temp_new_i64();
7177 
7178     read_vec_element(s, tcg_res, a->rn, 0, src_mop);
7179     for (int i = 1; i < elements; i++) {
7180         read_vec_element(s, tcg_elt, a->rn, i, src_mop);
7181         fn(tcg_res, tcg_res, tcg_elt);
7182     }
7183 
7184     tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen);
7185     write_fp_dreg(s, a->rd, tcg_res);
7186     return true;
7187 }
7188 
7189 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64)
7190 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64)
7191 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64)
7192 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64)
7193 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64)
7194 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64)
7195 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64)
7196 
7197 /*
7198  * do_fp_reduction helper
7199  *
7200  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7201  * important for correct NaN propagation that we do these
7202  * operations in exactly the order specified by the pseudocode.
7203  *
7204  * This is a recursive function.
7205  */
7206 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz,
7207                                 int ebase, int ecount, TCGv_ptr fpst,
7208                                 NeonGenTwoSingleOpFn *fn)
7209 {
7210     if (ecount == 1) {
7211         TCGv_i32 tcg_elem = tcg_temp_new_i32();
7212         read_vec_element_i32(s, tcg_elem, rn, ebase, esz);
7213         return tcg_elem;
7214     } else {
7215         int half = ecount >> 1;
7216         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7217 
7218         tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn);
7219         tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn);
7220         tcg_res = tcg_temp_new_i32();
7221 
7222         fn(tcg_res, tcg_lo, tcg_hi, fpst);
7223         return tcg_res;
7224     }
7225 }
7226 
7227 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a,
7228                             NeonGenTwoSingleOpFn *fnormal,
7229                             NeonGenTwoSingleOpFn *fah)
7230 {
7231     if (fp_access_check(s)) {
7232         MemOp esz = a->esz;
7233         int elts = (a->q ? 16 : 8) >> esz;
7234         TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
7235         TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst,
7236                                        s->fpcr_ah ? fah : fnormal);
7237         write_fp_sreg(s, a->rd, res);
7238     }
7239     return true;
7240 }
7241 
7242 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a,
7243            gen_helper_vfp_maxnumh, gen_helper_vfp_maxnumh)
7244 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a,
7245            gen_helper_vfp_minnumh, gen_helper_vfp_minnumh)
7246 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a,
7247            gen_helper_vfp_maxh, gen_helper_vfp_ah_maxh)
7248 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a,
7249            gen_helper_vfp_minh, gen_helper_vfp_ah_minh)
7250 
7251 TRANS(FMAXNMV_s, do_fp_reduction, a,
7252       gen_helper_vfp_maxnums, gen_helper_vfp_maxnums)
7253 TRANS(FMINNMV_s, do_fp_reduction, a,
7254       gen_helper_vfp_minnums, gen_helper_vfp_minnums)
7255 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs, gen_helper_vfp_ah_maxs)
7256 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins, gen_helper_vfp_ah_mins)
7257 
7258 /*
7259  * Floating-point Immediate
7260  */
7261 
7262 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a)
7263 {
7264     int check = fp_access_check_scalar_hsd(s, a->esz);
7265     uint64_t imm;
7266 
7267     if (check <= 0) {
7268         return check == 0;
7269     }
7270 
7271     imm = vfp_expand_imm(a->esz, a->imm);
7272     write_fp_dreg(s, a->rd, tcg_constant_i64(imm));
7273     return true;
7274 }
7275 
7276 /*
7277  * Floating point compare, conditional compare
7278  */
7279 
7280 static void handle_fp_compare(DisasContext *s, int size,
7281                               unsigned int rn, unsigned int rm,
7282                               bool cmp_with_zero, bool signal_all_nans)
7283 {
7284     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7285     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_A64_F16 : FPST_A64);
7286 
7287     if (size == MO_64) {
7288         TCGv_i64 tcg_vn, tcg_vm;
7289 
7290         tcg_vn = read_fp_dreg(s, rn);
7291         if (cmp_with_zero) {
7292             tcg_vm = tcg_constant_i64(0);
7293         } else {
7294             tcg_vm = read_fp_dreg(s, rm);
7295         }
7296         if (signal_all_nans) {
7297             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7298         } else {
7299             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7300         }
7301     } else {
7302         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7303         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7304 
7305         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7306         if (cmp_with_zero) {
7307             tcg_gen_movi_i32(tcg_vm, 0);
7308         } else {
7309             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7310         }
7311 
7312         switch (size) {
7313         case MO_32:
7314             if (signal_all_nans) {
7315                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7316             } else {
7317                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7318             }
7319             break;
7320         case MO_16:
7321             if (signal_all_nans) {
7322                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7323             } else {
7324                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7325             }
7326             break;
7327         default:
7328             g_assert_not_reached();
7329         }
7330     }
7331 
7332     gen_set_nzcv(tcg_flags);
7333 }
7334 
7335 /* FCMP, FCMPE */
7336 static bool trans_FCMP(DisasContext *s, arg_FCMP *a)
7337 {
7338     int check = fp_access_check_scalar_hsd(s, a->esz);
7339 
7340     if (check <= 0) {
7341         return check == 0;
7342     }
7343 
7344     handle_fp_compare(s, a->esz, a->rn, a->rm, a->z, a->e);
7345     return true;
7346 }
7347 
7348 /* FCCMP, FCCMPE */
7349 static bool trans_FCCMP(DisasContext *s, arg_FCCMP *a)
7350 {
7351     TCGLabel *label_continue = NULL;
7352     int check = fp_access_check_scalar_hsd(s, a->esz);
7353 
7354     if (check <= 0) {
7355         return check == 0;
7356     }
7357 
7358     if (a->cond < 0x0e) { /* not always */
7359         TCGLabel *label_match = gen_new_label();
7360         label_continue = gen_new_label();
7361         arm_gen_test_cc(a->cond, label_match);
7362         /* nomatch: */
7363         gen_set_nzcv(tcg_constant_i64(a->nzcv << 28));
7364         tcg_gen_br(label_continue);
7365         gen_set_label(label_match);
7366     }
7367 
7368     handle_fp_compare(s, a->esz, a->rn, a->rm, false, a->e);
7369 
7370     if (label_continue) {
7371         gen_set_label(label_continue);
7372     }
7373     return true;
7374 }
7375 
7376 /*
7377  * Advanced SIMD Modified Immediate
7378  */
7379 
7380 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a)
7381 {
7382     if (!dc_isar_feature(aa64_fp16, s)) {
7383         return false;
7384     }
7385     if (fp_access_check(s)) {
7386         tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd),
7387                              a->q ? 16 : 8, vec_full_reg_size(s),
7388                              vfp_expand_imm(MO_16, a->abcdefgh));
7389     }
7390     return true;
7391 }
7392 
7393 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs,
7394                      int64_t c, uint32_t oprsz, uint32_t maxsz)
7395 {
7396     tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c);
7397 }
7398 
7399 static bool trans_Vimm(DisasContext *s, arg_Vimm *a)
7400 {
7401     GVecGen2iFn *fn;
7402 
7403     /* Handle decode of cmode/op here between ORR/BIC/MOVI */
7404     if ((a->cmode & 1) && a->cmode < 12) {
7405         /* For op=1, the imm will be inverted, so BIC becomes AND. */
7406         fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori;
7407     } else {
7408         /* There is one unallocated cmode/op combination in this space */
7409         if (a->cmode == 15 && a->op == 1 && a->q == 0) {
7410             return false;
7411         }
7412         fn = gen_movi;
7413     }
7414 
7415     if (fp_access_check(s)) {
7416         uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op);
7417         gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64);
7418     }
7419     return true;
7420 }
7421 
7422 /*
7423  * Advanced SIMD Shift by Immediate
7424  */
7425 
7426 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn)
7427 {
7428     if (fp_access_check(s)) {
7429         gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz);
7430     }
7431     return true;
7432 }
7433 
7434 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr)
7435 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr)
7436 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra)
7437 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra)
7438 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr)
7439 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr)
7440 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra)
7441 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra)
7442 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri)
7443 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli)
7444 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli);
7445 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli)
7446 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli)
7447 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui)
7448 
7449 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u)
7450 {
7451     TCGv_i64 tcg_rn, tcg_rd;
7452     int esz = a->esz;
7453     int esize;
7454 
7455     if (!fp_access_check(s)) {
7456         return true;
7457     }
7458 
7459     /*
7460      * For the LL variants the store is larger than the load,
7461      * so if rd == rn we would overwrite parts of our input.
7462      * So load everything right now and use shifts in the main loop.
7463      */
7464     tcg_rd = tcg_temp_new_i64();
7465     tcg_rn = tcg_temp_new_i64();
7466     read_vec_element(s, tcg_rn, a->rn, a->q, MO_64);
7467 
7468     esize = 8 << esz;
7469     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7470         if (is_u) {
7471             tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize);
7472         } else {
7473             tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize);
7474         }
7475         tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm);
7476         write_vec_element(s, tcg_rd, a->rd, i, esz + 1);
7477     }
7478     clear_vec_high(s, true, a->rd);
7479     return true;
7480 }
7481 
7482 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false)
7483 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true)
7484 
7485 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7486 {
7487     assert(shift >= 0 && shift <= 64);
7488     tcg_gen_sari_i64(dst, src, MIN(shift, 63));
7489 }
7490 
7491 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7492 {
7493     assert(shift >= 0 && shift <= 64);
7494     if (shift == 64) {
7495         tcg_gen_movi_i64(dst, 0);
7496     } else {
7497         tcg_gen_shri_i64(dst, src, shift);
7498     }
7499 }
7500 
7501 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7502 {
7503     gen_sshr_d(src, src, shift);
7504     tcg_gen_add_i64(dst, dst, src);
7505 }
7506 
7507 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7508 {
7509     gen_ushr_d(src, src, shift);
7510     tcg_gen_add_i64(dst, dst, src);
7511 }
7512 
7513 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7514 {
7515     assert(shift >= 0 && shift <= 32);
7516     if (shift) {
7517         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7518         tcg_gen_add_i64(dst, src, rnd);
7519         tcg_gen_sari_i64(dst, dst, shift);
7520     } else {
7521         tcg_gen_mov_i64(dst, src);
7522     }
7523 }
7524 
7525 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7526 {
7527     assert(shift >= 0 && shift <= 32);
7528     if (shift) {
7529         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7530         tcg_gen_add_i64(dst, src, rnd);
7531         tcg_gen_shri_i64(dst, dst, shift);
7532     } else {
7533         tcg_gen_mov_i64(dst, src);
7534     }
7535 }
7536 
7537 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7538 {
7539     assert(shift >= 0 && shift <= 64);
7540     if (shift == 0) {
7541         tcg_gen_mov_i64(dst, src);
7542     } else if (shift == 64) {
7543         /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */
7544         tcg_gen_movi_i64(dst, 0);
7545     } else {
7546         TCGv_i64 rnd = tcg_temp_new_i64();
7547         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7548         tcg_gen_sari_i64(dst, src, shift);
7549         tcg_gen_add_i64(dst, dst, rnd);
7550     }
7551 }
7552 
7553 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7554 {
7555     assert(shift >= 0 && shift <= 64);
7556     if (shift == 0) {
7557         tcg_gen_mov_i64(dst, src);
7558     } else if (shift == 64) {
7559         /* Rounding will propagate bit 63 into bit 64. */
7560         tcg_gen_shri_i64(dst, src, 63);
7561     } else {
7562         TCGv_i64 rnd = tcg_temp_new_i64();
7563         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7564         tcg_gen_shri_i64(dst, src, shift);
7565         tcg_gen_add_i64(dst, dst, rnd);
7566     }
7567 }
7568 
7569 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7570 {
7571     gen_srshr_d(src, src, shift);
7572     tcg_gen_add_i64(dst, dst, src);
7573 }
7574 
7575 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7576 {
7577     gen_urshr_d(src, src, shift);
7578     tcg_gen_add_i64(dst, dst, src);
7579 }
7580 
7581 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7582 {
7583     /* If shift is 64, dst is unchanged. */
7584     if (shift != 64) {
7585         tcg_gen_shri_i64(src, src, shift);
7586         tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift);
7587     }
7588 }
7589 
7590 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7591 {
7592     tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift);
7593 }
7594 
7595 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a,
7596                                     WideShiftImmFn * const fns[3], MemOp sign)
7597 {
7598     TCGv_i64 tcg_rn, tcg_rd;
7599     int esz = a->esz;
7600     int esize;
7601     WideShiftImmFn *fn;
7602 
7603     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7604 
7605     if (!fp_access_check(s)) {
7606         return true;
7607     }
7608 
7609     tcg_rn = tcg_temp_new_i64();
7610     tcg_rd = tcg_temp_new_i64();
7611     tcg_gen_movi_i64(tcg_rd, 0);
7612 
7613     fn = fns[esz];
7614     esize = 8 << esz;
7615     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7616         read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign);
7617         fn(tcg_rn, tcg_rn, a->imm);
7618         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize);
7619     }
7620 
7621     write_vec_element(s, tcg_rd, a->rd, a->q, MO_64);
7622     clear_vec_high(s, a->q, a->rd);
7623     return true;
7624 }
7625 
7626 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7627 {
7628     tcg_gen_sari_i64(d, s, i);
7629     tcg_gen_ext16u_i64(d, d);
7630     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7631 }
7632 
7633 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7634 {
7635     tcg_gen_sari_i64(d, s, i);
7636     tcg_gen_ext32u_i64(d, d);
7637     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7638 }
7639 
7640 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7641 {
7642     gen_sshr_d(d, s, i);
7643     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7644 }
7645 
7646 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7647 {
7648     tcg_gen_shri_i64(d, s, i);
7649     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7650 }
7651 
7652 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7653 {
7654     tcg_gen_shri_i64(d, s, i);
7655     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7656 }
7657 
7658 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7659 {
7660     gen_ushr_d(d, s, i);
7661     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7662 }
7663 
7664 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7665 {
7666     tcg_gen_sari_i64(d, s, i);
7667     tcg_gen_ext16u_i64(d, d);
7668     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7669 }
7670 
7671 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7672 {
7673     tcg_gen_sari_i64(d, s, i);
7674     tcg_gen_ext32u_i64(d, d);
7675     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7676 }
7677 
7678 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7679 {
7680     gen_sshr_d(d, s, i);
7681     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7682 }
7683 
7684 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7685 {
7686     gen_srshr_bhs(d, s, i);
7687     tcg_gen_ext16u_i64(d, d);
7688     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7689 }
7690 
7691 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7692 {
7693     gen_srshr_bhs(d, s, i);
7694     tcg_gen_ext32u_i64(d, d);
7695     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7696 }
7697 
7698 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7699 {
7700     gen_srshr_d(d, s, i);
7701     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7702 }
7703 
7704 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7705 {
7706     gen_urshr_bhs(d, s, i);
7707     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7708 }
7709 
7710 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7711 {
7712     gen_urshr_bhs(d, s, i);
7713     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7714 }
7715 
7716 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7717 {
7718     gen_urshr_d(d, s, i);
7719     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7720 }
7721 
7722 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7723 {
7724     gen_srshr_bhs(d, s, i);
7725     tcg_gen_ext16u_i64(d, d);
7726     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7727 }
7728 
7729 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7730 {
7731     gen_srshr_bhs(d, s, i);
7732     tcg_gen_ext32u_i64(d, d);
7733     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7734 }
7735 
7736 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7737 {
7738     gen_srshr_d(d, s, i);
7739     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7740 }
7741 
7742 static WideShiftImmFn * const shrn_fns[] = {
7743     tcg_gen_shri_i64,
7744     tcg_gen_shri_i64,
7745     gen_ushr_d,
7746 };
7747 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0)
7748 
7749 static WideShiftImmFn * const rshrn_fns[] = {
7750     gen_urshr_bhs,
7751     gen_urshr_bhs,
7752     gen_urshr_d,
7753 };
7754 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0)
7755 
7756 static WideShiftImmFn * const sqshrn_fns[] = {
7757     gen_sqshrn_b,
7758     gen_sqshrn_h,
7759     gen_sqshrn_s,
7760 };
7761 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN)
7762 
7763 static WideShiftImmFn * const uqshrn_fns[] = {
7764     gen_uqshrn_b,
7765     gen_uqshrn_h,
7766     gen_uqshrn_s,
7767 };
7768 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0)
7769 
7770 static WideShiftImmFn * const sqshrun_fns[] = {
7771     gen_sqshrun_b,
7772     gen_sqshrun_h,
7773     gen_sqshrun_s,
7774 };
7775 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN)
7776 
7777 static WideShiftImmFn * const sqrshrn_fns[] = {
7778     gen_sqrshrn_b,
7779     gen_sqrshrn_h,
7780     gen_sqrshrn_s,
7781 };
7782 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN)
7783 
7784 static WideShiftImmFn * const uqrshrn_fns[] = {
7785     gen_uqrshrn_b,
7786     gen_uqrshrn_h,
7787     gen_uqrshrn_s,
7788 };
7789 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0)
7790 
7791 static WideShiftImmFn * const sqrshrun_fns[] = {
7792     gen_sqrshrun_b,
7793     gen_sqrshrun_h,
7794     gen_sqrshrun_s,
7795 };
7796 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN)
7797 
7798 /*
7799  * Advanced SIMD Scalar Shift by Immediate
7800  */
7801 
7802 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a,
7803                                 WideShiftImmFn *fn, bool accumulate,
7804                                 MemOp sign)
7805 {
7806     if (fp_access_check(s)) {
7807         TCGv_i64 rd = tcg_temp_new_i64();
7808         TCGv_i64 rn = tcg_temp_new_i64();
7809 
7810         read_vec_element(s, rn, a->rn, 0, a->esz | sign);
7811         if (accumulate) {
7812             read_vec_element(s, rd, a->rd, 0, a->esz | sign);
7813         }
7814         fn(rd, rn, a->imm);
7815         write_fp_dreg(s, a->rd, rd);
7816     }
7817     return true;
7818 }
7819 
7820 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0)
7821 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0)
7822 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0)
7823 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0)
7824 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0)
7825 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0)
7826 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0)
7827 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0)
7828 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0)
7829 
7830 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0)
7831 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0)
7832 
7833 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i,
7834                               NeonGenTwoOpEnvFn *fn)
7835 {
7836     TCGv_i32 t = tcg_temp_new_i32();
7837     tcg_gen_extrl_i64_i32(t, s);
7838     fn(t, tcg_env, t, tcg_constant_i32(i));
7839     tcg_gen_extu_i32_i64(d, t);
7840 }
7841 
7842 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7843 {
7844     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8);
7845 }
7846 
7847 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7848 {
7849     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16);
7850 }
7851 
7852 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7853 {
7854     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32);
7855 }
7856 
7857 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7858 {
7859     gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i));
7860 }
7861 
7862 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7863 {
7864     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8);
7865 }
7866 
7867 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7868 {
7869     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16);
7870 }
7871 
7872 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7873 {
7874     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32);
7875 }
7876 
7877 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7878 {
7879     gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i));
7880 }
7881 
7882 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7883 {
7884     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8);
7885 }
7886 
7887 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7888 {
7889     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16);
7890 }
7891 
7892 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7893 {
7894     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32);
7895 }
7896 
7897 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7898 {
7899     gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i));
7900 }
7901 
7902 static WideShiftImmFn * const f_scalar_sqshli[] = {
7903     gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d
7904 };
7905 
7906 static WideShiftImmFn * const f_scalar_uqshli[] = {
7907     gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d
7908 };
7909 
7910 static WideShiftImmFn * const f_scalar_sqshlui[] = {
7911     gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d
7912 };
7913 
7914 /* Note that the helpers sign-extend their inputs, so don't do it here. */
7915 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0)
7916 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0)
7917 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0)
7918 
7919 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a,
7920                                        WideShiftImmFn * const fns[3],
7921                                        MemOp sign, bool zext)
7922 {
7923     MemOp esz = a->esz;
7924 
7925     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7926 
7927     if (fp_access_check(s)) {
7928         TCGv_i64 rd = tcg_temp_new_i64();
7929         TCGv_i64 rn = tcg_temp_new_i64();
7930 
7931         read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign);
7932         fns[esz](rd, rn, a->imm);
7933         if (zext) {
7934             tcg_gen_ext_i64(rd, rd, esz);
7935         }
7936         write_fp_dreg(s, a->rd, rd);
7937     }
7938     return true;
7939 }
7940 
7941 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true)
7942 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true)
7943 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false)
7944 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false)
7945 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false)
7946 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false)
7947 
7948 static bool do_div(DisasContext *s, arg_rrr_sf *a, bool is_signed)
7949 {
7950     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7951     tcg_rd = cpu_reg(s, a->rd);
7952 
7953     if (!a->sf && is_signed) {
7954         tcg_n = tcg_temp_new_i64();
7955         tcg_m = tcg_temp_new_i64();
7956         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, a->rn));
7957         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, a->rm));
7958     } else {
7959         tcg_n = read_cpu_reg(s, a->rn, a->sf);
7960         tcg_m = read_cpu_reg(s, a->rm, a->sf);
7961     }
7962 
7963     if (is_signed) {
7964         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7965     } else {
7966         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7967     }
7968 
7969     if (!a->sf) { /* zero extend final result */
7970         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7971     }
7972     return true;
7973 }
7974 
7975 TRANS(SDIV, do_div, a, true)
7976 TRANS(UDIV, do_div, a, false)
7977 
7978 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
7979  * Note that it is the caller's responsibility to ensure that the
7980  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
7981  * mandated semantics for out of range shifts.
7982  */
7983 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
7984                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
7985 {
7986     switch (shift_type) {
7987     case A64_SHIFT_TYPE_LSL:
7988         tcg_gen_shl_i64(dst, src, shift_amount);
7989         break;
7990     case A64_SHIFT_TYPE_LSR:
7991         tcg_gen_shr_i64(dst, src, shift_amount);
7992         break;
7993     case A64_SHIFT_TYPE_ASR:
7994         if (!sf) {
7995             tcg_gen_ext32s_i64(dst, src);
7996         }
7997         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
7998         break;
7999     case A64_SHIFT_TYPE_ROR:
8000         if (sf) {
8001             tcg_gen_rotr_i64(dst, src, shift_amount);
8002         } else {
8003             TCGv_i32 t0, t1;
8004             t0 = tcg_temp_new_i32();
8005             t1 = tcg_temp_new_i32();
8006             tcg_gen_extrl_i64_i32(t0, src);
8007             tcg_gen_extrl_i64_i32(t1, shift_amount);
8008             tcg_gen_rotr_i32(t0, t0, t1);
8009             tcg_gen_extu_i32_i64(dst, t0);
8010         }
8011         break;
8012     default:
8013         assert(FALSE); /* all shift types should be handled */
8014         break;
8015     }
8016 
8017     if (!sf) { /* zero extend final result */
8018         tcg_gen_ext32u_i64(dst, dst);
8019     }
8020 }
8021 
8022 /* Shift a TCGv src by immediate, put result in dst.
8023  * The shift amount must be in range (this should always be true as the
8024  * relevant instructions will UNDEF on bad shift immediates).
8025  */
8026 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
8027                           enum a64_shift_type shift_type, unsigned int shift_i)
8028 {
8029     assert(shift_i < (sf ? 64 : 32));
8030 
8031     if (shift_i == 0) {
8032         tcg_gen_mov_i64(dst, src);
8033     } else {
8034         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
8035     }
8036 }
8037 
8038 static bool do_shift_reg(DisasContext *s, arg_rrr_sf *a,
8039                          enum a64_shift_type shift_type)
8040 {
8041     TCGv_i64 tcg_shift = tcg_temp_new_i64();
8042     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8043     TCGv_i64 tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8044 
8045     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, a->rm), a->sf ? 63 : 31);
8046     shift_reg(tcg_rd, tcg_rn, a->sf, shift_type, tcg_shift);
8047     return true;
8048 }
8049 
8050 TRANS(LSLV, do_shift_reg, a, A64_SHIFT_TYPE_LSL)
8051 TRANS(LSRV, do_shift_reg, a, A64_SHIFT_TYPE_LSR)
8052 TRANS(ASRV, do_shift_reg, a, A64_SHIFT_TYPE_ASR)
8053 TRANS(RORV, do_shift_reg, a, A64_SHIFT_TYPE_ROR)
8054 
8055 static bool do_crc32(DisasContext *s, arg_rrr_e *a, bool crc32c)
8056 {
8057     TCGv_i64 tcg_acc, tcg_val, tcg_rd;
8058     TCGv_i32 tcg_bytes;
8059 
8060     switch (a->esz) {
8061     case MO_8:
8062     case MO_16:
8063     case MO_32:
8064         tcg_val = tcg_temp_new_i64();
8065         tcg_gen_extract_i64(tcg_val, cpu_reg(s, a->rm), 0, 8 << a->esz);
8066         break;
8067     case MO_64:
8068         tcg_val = cpu_reg(s, a->rm);
8069         break;
8070     default:
8071         g_assert_not_reached();
8072     }
8073     tcg_acc = cpu_reg(s, a->rn);
8074     tcg_bytes = tcg_constant_i32(1 << a->esz);
8075     tcg_rd = cpu_reg(s, a->rd);
8076 
8077     if (crc32c) {
8078         gen_helper_crc32c_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8079     } else {
8080         gen_helper_crc32_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8081     }
8082     return true;
8083 }
8084 
8085 TRANS_FEAT(CRC32, aa64_crc32, do_crc32, a, false)
8086 TRANS_FEAT(CRC32C, aa64_crc32, do_crc32, a, true)
8087 
8088 static bool do_subp(DisasContext *s, arg_rrr *a, bool setflag)
8089 {
8090     TCGv_i64 tcg_n = read_cpu_reg_sp(s, a->rn, true);
8091     TCGv_i64 tcg_m = read_cpu_reg_sp(s, a->rm, true);
8092     TCGv_i64 tcg_d = cpu_reg(s, a->rd);
8093 
8094     tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
8095     tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
8096 
8097     if (setflag) {
8098         gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
8099     } else {
8100         tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
8101     }
8102     return true;
8103 }
8104 
8105 TRANS_FEAT(SUBP, aa64_mte_insn_reg, do_subp, a, false)
8106 TRANS_FEAT(SUBPS, aa64_mte_insn_reg, do_subp, a, true)
8107 
8108 static bool trans_IRG(DisasContext *s, arg_rrr *a)
8109 {
8110     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8111         TCGv_i64 tcg_rd = cpu_reg_sp(s, a->rd);
8112         TCGv_i64 tcg_rn = cpu_reg_sp(s, a->rn);
8113 
8114         if (s->ata[0]) {
8115             gen_helper_irg(tcg_rd, tcg_env, tcg_rn, cpu_reg(s, a->rm));
8116         } else {
8117             gen_address_with_allocation_tag0(tcg_rd, tcg_rn);
8118         }
8119         return true;
8120     }
8121     return false;
8122 }
8123 
8124 static bool trans_GMI(DisasContext *s, arg_rrr *a)
8125 {
8126     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8127         TCGv_i64 t = tcg_temp_new_i64();
8128 
8129         tcg_gen_extract_i64(t, cpu_reg_sp(s, a->rn), 56, 4);
8130         tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
8131         tcg_gen_or_i64(cpu_reg(s, a->rd), cpu_reg(s, a->rm), t);
8132         return true;
8133     }
8134     return false;
8135 }
8136 
8137 static bool trans_PACGA(DisasContext *s, arg_rrr *a)
8138 {
8139     if (dc_isar_feature(aa64_pauth, s)) {
8140         gen_helper_pacga(cpu_reg(s, a->rd), tcg_env,
8141                          cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm));
8142         return true;
8143     }
8144     return false;
8145 }
8146 
8147 typedef void ArithOneOp(TCGv_i64, TCGv_i64);
8148 
8149 static bool gen_rr(DisasContext *s, int rd, int rn, ArithOneOp fn)
8150 {
8151     fn(cpu_reg(s, rd), cpu_reg(s, rn));
8152     return true;
8153 }
8154 
8155 static void gen_rbit32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8156 {
8157     TCGv_i32 t32 = tcg_temp_new_i32();
8158 
8159     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8160     gen_helper_rbit(t32, t32);
8161     tcg_gen_extu_i32_i64(tcg_rd, t32);
8162 }
8163 
8164 static void gen_rev16_xx(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 mask)
8165 {
8166     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8167 
8168     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
8169     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
8170     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
8171     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
8172     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
8173 }
8174 
8175 static void gen_rev16_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8176 {
8177     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff));
8178 }
8179 
8180 static void gen_rev16_64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8181 {
8182     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff00ff00ffull));
8183 }
8184 
8185 static void gen_rev_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8186 {
8187     tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
8188 }
8189 
8190 static void gen_rev32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8191 {
8192     tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
8193     tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
8194 }
8195 
8196 TRANS(RBIT, gen_rr, a->rd, a->rn, a->sf ? gen_helper_rbit64 : gen_rbit32)
8197 TRANS(REV16, gen_rr, a->rd, a->rn, a->sf ? gen_rev16_64 : gen_rev16_32)
8198 TRANS(REV32, gen_rr, a->rd, a->rn, a->sf ? gen_rev32 : gen_rev_32)
8199 TRANS(REV64, gen_rr, a->rd, a->rn, tcg_gen_bswap64_i64)
8200 
8201 static void gen_clz32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8202 {
8203     TCGv_i32 t32 = tcg_temp_new_i32();
8204 
8205     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8206     tcg_gen_clzi_i32(t32, t32, 32);
8207     tcg_gen_extu_i32_i64(tcg_rd, t32);
8208 }
8209 
8210 static void gen_clz64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8211 {
8212     tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8213 }
8214 
8215 static void gen_cls32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8216 {
8217     TCGv_i32 t32 = tcg_temp_new_i32();
8218 
8219     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8220     tcg_gen_clrsb_i32(t32, t32);
8221     tcg_gen_extu_i32_i64(tcg_rd, t32);
8222 }
8223 
8224 TRANS(CLZ, gen_rr, a->rd, a->rn, a->sf ? gen_clz64 : gen_clz32)
8225 TRANS(CLS, gen_rr, a->rd, a->rn, a->sf ? tcg_gen_clrsb_i64 : gen_cls32)
8226 
8227 static bool gen_pacaut(DisasContext *s, arg_pacaut *a, NeonGenTwo64OpEnvFn fn)
8228 {
8229     TCGv_i64 tcg_rd, tcg_rn;
8230 
8231     if (a->z) {
8232         if (a->rn != 31) {
8233             return false;
8234         }
8235         tcg_rn = tcg_constant_i64(0);
8236     } else {
8237         tcg_rn = cpu_reg_sp(s, a->rn);
8238     }
8239     if (s->pauth_active) {
8240         tcg_rd = cpu_reg(s, a->rd);
8241         fn(tcg_rd, tcg_env, tcg_rd, tcg_rn);
8242     }
8243     return true;
8244 }
8245 
8246 TRANS_FEAT(PACIA, aa64_pauth, gen_pacaut, a, gen_helper_pacia)
8247 TRANS_FEAT(PACIB, aa64_pauth, gen_pacaut, a, gen_helper_pacib)
8248 TRANS_FEAT(PACDA, aa64_pauth, gen_pacaut, a, gen_helper_pacda)
8249 TRANS_FEAT(PACDB, aa64_pauth, gen_pacaut, a, gen_helper_pacdb)
8250 
8251 TRANS_FEAT(AUTIA, aa64_pauth, gen_pacaut, a, gen_helper_autia)
8252 TRANS_FEAT(AUTIB, aa64_pauth, gen_pacaut, a, gen_helper_autib)
8253 TRANS_FEAT(AUTDA, aa64_pauth, gen_pacaut, a, gen_helper_autda)
8254 TRANS_FEAT(AUTDB, aa64_pauth, gen_pacaut, a, gen_helper_autdb)
8255 
8256 static bool do_xpac(DisasContext *s, int rd, NeonGenOne64OpEnvFn *fn)
8257 {
8258     if (s->pauth_active) {
8259         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8260         fn(tcg_rd, tcg_env, tcg_rd);
8261     }
8262     return true;
8263 }
8264 
8265 TRANS_FEAT(XPACI, aa64_pauth, do_xpac, a->rd, gen_helper_xpaci)
8266 TRANS_FEAT(XPACD, aa64_pauth, do_xpac, a->rd, gen_helper_xpacd)
8267 
8268 static bool do_logic_reg(DisasContext *s, arg_logic_shift *a,
8269                          ArithTwoOp *fn, ArithTwoOp *inv_fn, bool setflags)
8270 {
8271     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
8272 
8273     if (!a->sf && (a->sa & (1 << 5))) {
8274         return false;
8275     }
8276 
8277     tcg_rd = cpu_reg(s, a->rd);
8278     tcg_rn = cpu_reg(s, a->rn);
8279 
8280     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8281     if (a->sa) {
8282         shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8283     }
8284 
8285     (a->n ? inv_fn : fn)(tcg_rd, tcg_rn, tcg_rm);
8286     if (!a->sf) {
8287         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8288     }
8289     if (setflags) {
8290         gen_logic_CC(a->sf, tcg_rd);
8291     }
8292     return true;
8293 }
8294 
8295 static bool trans_ORR_r(DisasContext *s, arg_logic_shift *a)
8296 {
8297     /*
8298      * Unshifted ORR and ORN with WZR/XZR is the standard encoding for
8299      * register-register MOV and MVN, so it is worth special casing.
8300      */
8301     if (a->sa == 0 && a->st == 0 && a->rn == 31) {
8302         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8303         TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8304 
8305         if (a->n) {
8306             tcg_gen_not_i64(tcg_rd, tcg_rm);
8307             if (!a->sf) {
8308                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8309             }
8310         } else {
8311             if (a->sf) {
8312                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
8313             } else {
8314                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
8315             }
8316         }
8317         return true;
8318     }
8319 
8320     return do_logic_reg(s, a, tcg_gen_or_i64, tcg_gen_orc_i64, false);
8321 }
8322 
8323 TRANS(AND_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, false)
8324 TRANS(ANDS_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, true)
8325 TRANS(EOR_r, do_logic_reg, a, tcg_gen_xor_i64, tcg_gen_eqv_i64, false)
8326 
8327 static bool do_addsub_ext(DisasContext *s, arg_addsub_ext *a,
8328                           bool sub_op, bool setflags)
8329 {
8330     TCGv_i64 tcg_rm, tcg_rn, tcg_rd, tcg_result;
8331 
8332     if (a->sa > 4) {
8333         return false;
8334     }
8335 
8336     /* non-flag setting ops may use SP */
8337     if (!setflags) {
8338         tcg_rd = cpu_reg_sp(s, a->rd);
8339     } else {
8340         tcg_rd = cpu_reg(s, a->rd);
8341     }
8342     tcg_rn = read_cpu_reg_sp(s, a->rn, a->sf);
8343 
8344     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8345     ext_and_shift_reg(tcg_rm, tcg_rm, a->st, a->sa);
8346 
8347     tcg_result = tcg_temp_new_i64();
8348     if (!setflags) {
8349         if (sub_op) {
8350             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8351         } else {
8352             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8353         }
8354     } else {
8355         if (sub_op) {
8356             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8357         } else {
8358             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8359         }
8360     }
8361 
8362     if (a->sf) {
8363         tcg_gen_mov_i64(tcg_rd, tcg_result);
8364     } else {
8365         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8366     }
8367     return true;
8368 }
8369 
8370 TRANS(ADD_ext, do_addsub_ext, a, false, false)
8371 TRANS(SUB_ext, do_addsub_ext, a, true, false)
8372 TRANS(ADDS_ext, do_addsub_ext, a, false, true)
8373 TRANS(SUBS_ext, do_addsub_ext, a, true, true)
8374 
8375 static bool do_addsub_reg(DisasContext *s, arg_addsub_shift *a,
8376                           bool sub_op, bool setflags)
8377 {
8378     TCGv_i64 tcg_rd, tcg_rn, tcg_rm, tcg_result;
8379 
8380     if (a->st == 3 || (!a->sf && (a->sa & 32))) {
8381         return false;
8382     }
8383 
8384     tcg_rd = cpu_reg(s, a->rd);
8385     tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8386     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8387 
8388     shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8389 
8390     tcg_result = tcg_temp_new_i64();
8391     if (!setflags) {
8392         if (sub_op) {
8393             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8394         } else {
8395             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8396         }
8397     } else {
8398         if (sub_op) {
8399             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8400         } else {
8401             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8402         }
8403     }
8404 
8405     if (a->sf) {
8406         tcg_gen_mov_i64(tcg_rd, tcg_result);
8407     } else {
8408         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8409     }
8410     return true;
8411 }
8412 
8413 TRANS(ADD_r, do_addsub_reg, a, false, false)
8414 TRANS(SUB_r, do_addsub_reg, a, true, false)
8415 TRANS(ADDS_r, do_addsub_reg, a, false, true)
8416 TRANS(SUBS_r, do_addsub_reg, a, true, true)
8417 
8418 static bool do_mulh(DisasContext *s, arg_rrr *a,
8419                     void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
8420 {
8421     TCGv_i64 discard = tcg_temp_new_i64();
8422     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8423     TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
8424     TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8425 
8426     fn(discard, tcg_rd, tcg_rn, tcg_rm);
8427     return true;
8428 }
8429 
8430 TRANS(SMULH, do_mulh, a, tcg_gen_muls2_i64)
8431 TRANS(UMULH, do_mulh, a, tcg_gen_mulu2_i64)
8432 
8433 static bool do_muladd(DisasContext *s, arg_rrrr *a,
8434                       bool sf, bool is_sub, MemOp mop)
8435 {
8436     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8437     TCGv_i64 tcg_op1, tcg_op2;
8438 
8439     if (mop == MO_64) {
8440         tcg_op1 = cpu_reg(s, a->rn);
8441         tcg_op2 = cpu_reg(s, a->rm);
8442     } else {
8443         tcg_op1 = tcg_temp_new_i64();
8444         tcg_op2 = tcg_temp_new_i64();
8445         tcg_gen_ext_i64(tcg_op1, cpu_reg(s, a->rn), mop);
8446         tcg_gen_ext_i64(tcg_op2, cpu_reg(s, a->rm), mop);
8447     }
8448 
8449     if (a->ra == 31 && !is_sub) {
8450         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
8451         tcg_gen_mul_i64(tcg_rd, tcg_op1, tcg_op2);
8452     } else {
8453         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8454         TCGv_i64 tcg_ra = cpu_reg(s, a->ra);
8455 
8456         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
8457         if (is_sub) {
8458             tcg_gen_sub_i64(tcg_rd, tcg_ra, tcg_tmp);
8459         } else {
8460             tcg_gen_add_i64(tcg_rd, tcg_ra, tcg_tmp);
8461         }
8462     }
8463 
8464     if (!sf) {
8465         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8466     }
8467     return true;
8468 }
8469 
8470 TRANS(MADD_w, do_muladd, a, false, false, MO_64)
8471 TRANS(MSUB_w, do_muladd, a, false, true, MO_64)
8472 TRANS(MADD_x, do_muladd, a, true, false, MO_64)
8473 TRANS(MSUB_x, do_muladd, a, true, true, MO_64)
8474 
8475 TRANS(SMADDL, do_muladd, a, true, false, MO_SL)
8476 TRANS(SMSUBL, do_muladd, a, true, true, MO_SL)
8477 TRANS(UMADDL, do_muladd, a, true, false, MO_UL)
8478 TRANS(UMSUBL, do_muladd, a, true, true, MO_UL)
8479 
8480 static bool do_adc_sbc(DisasContext *s, arg_rrr_sf *a,
8481                        bool is_sub, bool setflags)
8482 {
8483     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
8484 
8485     tcg_rd = cpu_reg(s, a->rd);
8486     tcg_rn = cpu_reg(s, a->rn);
8487 
8488     if (is_sub) {
8489         tcg_y = tcg_temp_new_i64();
8490         tcg_gen_not_i64(tcg_y, cpu_reg(s, a->rm));
8491     } else {
8492         tcg_y = cpu_reg(s, a->rm);
8493     }
8494 
8495     if (setflags) {
8496         gen_adc_CC(a->sf, tcg_rd, tcg_rn, tcg_y);
8497     } else {
8498         gen_adc(a->sf, tcg_rd, tcg_rn, tcg_y);
8499     }
8500     return true;
8501 }
8502 
8503 TRANS(ADC, do_adc_sbc, a, false, false)
8504 TRANS(SBC, do_adc_sbc, a, true, false)
8505 TRANS(ADCS, do_adc_sbc, a, false, true)
8506 TRANS(SBCS, do_adc_sbc, a, true, true)
8507 
8508 static bool trans_RMIF(DisasContext *s, arg_RMIF *a)
8509 {
8510     int mask = a->mask;
8511     TCGv_i64 tcg_rn;
8512     TCGv_i32 nzcv;
8513 
8514     if (!dc_isar_feature(aa64_condm_4, s)) {
8515         return false;
8516     }
8517 
8518     tcg_rn = read_cpu_reg(s, a->rn, 1);
8519     tcg_gen_rotri_i64(tcg_rn, tcg_rn, a->imm);
8520 
8521     nzcv = tcg_temp_new_i32();
8522     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
8523 
8524     if (mask & 8) { /* N */
8525         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
8526     }
8527     if (mask & 4) { /* Z */
8528         tcg_gen_not_i32(cpu_ZF, nzcv);
8529         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
8530     }
8531     if (mask & 2) { /* C */
8532         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
8533     }
8534     if (mask & 1) { /* V */
8535         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
8536     }
8537     return true;
8538 }
8539 
8540 static bool do_setf(DisasContext *s, int rn, int shift)
8541 {
8542     TCGv_i32 tmp = tcg_temp_new_i32();
8543 
8544     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
8545     tcg_gen_shli_i32(cpu_NF, tmp, shift);
8546     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
8547     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
8548     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
8549     return true;
8550 }
8551 
8552 TRANS_FEAT(SETF8, aa64_condm_4, do_setf, a->rn, 24)
8553 TRANS_FEAT(SETF16, aa64_condm_4, do_setf, a->rn, 16)
8554 
8555 /* CCMP, CCMN */
8556 static bool trans_CCMP(DisasContext *s, arg_CCMP *a)
8557 {
8558     TCGv_i32 tcg_t0 = tcg_temp_new_i32();
8559     TCGv_i32 tcg_t1 = tcg_temp_new_i32();
8560     TCGv_i32 tcg_t2 = tcg_temp_new_i32();
8561     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8562     TCGv_i64 tcg_rn, tcg_y;
8563     DisasCompare c;
8564     unsigned nzcv;
8565     bool has_andc;
8566 
8567     /* Set T0 = !COND.  */
8568     arm_test_cc(&c, a->cond);
8569     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
8570 
8571     /* Load the arguments for the new comparison.  */
8572     if (a->imm) {
8573         tcg_y = tcg_constant_i64(a->y);
8574     } else {
8575         tcg_y = cpu_reg(s, a->y);
8576     }
8577     tcg_rn = cpu_reg(s, a->rn);
8578 
8579     /* Set the flags for the new comparison.  */
8580     if (a->op) {
8581         gen_sub_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8582     } else {
8583         gen_add_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8584     }
8585 
8586     /*
8587      * If COND was false, force the flags to #nzcv.  Compute two masks
8588      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
8589      * For tcg hosts that support ANDC, we can make do with just T1.
8590      * In either case, allow the tcg optimizer to delete any unused mask.
8591      */
8592     tcg_gen_neg_i32(tcg_t1, tcg_t0);
8593     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
8594 
8595     nzcv = a->nzcv;
8596     has_andc = tcg_op_supported(INDEX_op_andc, TCG_TYPE_I32, 0);
8597     if (nzcv & 8) { /* N */
8598         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
8599     } else {
8600         if (has_andc) {
8601             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
8602         } else {
8603             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
8604         }
8605     }
8606     if (nzcv & 4) { /* Z */
8607         if (has_andc) {
8608             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
8609         } else {
8610             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
8611         }
8612     } else {
8613         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
8614     }
8615     if (nzcv & 2) { /* C */
8616         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
8617     } else {
8618         if (has_andc) {
8619             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
8620         } else {
8621             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
8622         }
8623     }
8624     if (nzcv & 1) { /* V */
8625         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
8626     } else {
8627         if (has_andc) {
8628             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
8629         } else {
8630             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
8631         }
8632     }
8633     return true;
8634 }
8635 
8636 static bool trans_CSEL(DisasContext *s, arg_CSEL *a)
8637 {
8638     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8639     TCGv_i64 zero = tcg_constant_i64(0);
8640     DisasCompare64 c;
8641 
8642     a64_test_cc(&c, a->cond);
8643 
8644     if (a->rn == 31 && a->rm == 31 && (a->else_inc ^ a->else_inv)) {
8645         /* CSET & CSETM.  */
8646         if (a->else_inv) {
8647             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
8648                                    tcg_rd, c.value, zero);
8649         } else {
8650             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
8651                                 tcg_rd, c.value, zero);
8652         }
8653     } else {
8654         TCGv_i64 t_true = cpu_reg(s, a->rn);
8655         TCGv_i64 t_false = read_cpu_reg(s, a->rm, 1);
8656 
8657         if (a->else_inv && a->else_inc) {
8658             tcg_gen_neg_i64(t_false, t_false);
8659         } else if (a->else_inv) {
8660             tcg_gen_not_i64(t_false, t_false);
8661         } else if (a->else_inc) {
8662             tcg_gen_addi_i64(t_false, t_false, 1);
8663         }
8664         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
8665     }
8666 
8667     if (!a->sf) {
8668         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8669     }
8670     return true;
8671 }
8672 
8673 typedef struct FPScalar1Int {
8674     void (*gen_h)(TCGv_i32, TCGv_i32);
8675     void (*gen_s)(TCGv_i32, TCGv_i32);
8676     void (*gen_d)(TCGv_i64, TCGv_i64);
8677 } FPScalar1Int;
8678 
8679 static bool do_fp1_scalar_int(DisasContext *s, arg_rr_e *a,
8680                               const FPScalar1Int *f,
8681                               bool merging)
8682 {
8683     switch (a->esz) {
8684     case MO_64:
8685         if (fp_access_check(s)) {
8686             TCGv_i64 t = read_fp_dreg(s, a->rn);
8687             f->gen_d(t, t);
8688             if (merging) {
8689                 write_fp_dreg_merging(s, a->rd, a->rd, t);
8690             } else {
8691                 write_fp_dreg(s, a->rd, t);
8692             }
8693         }
8694         break;
8695     case MO_32:
8696         if (fp_access_check(s)) {
8697             TCGv_i32 t = read_fp_sreg(s, a->rn);
8698             f->gen_s(t, t);
8699             if (merging) {
8700                 write_fp_sreg_merging(s, a->rd, a->rd, t);
8701             } else {
8702                 write_fp_sreg(s, a->rd, t);
8703             }
8704         }
8705         break;
8706     case MO_16:
8707         if (!dc_isar_feature(aa64_fp16, s)) {
8708             return false;
8709         }
8710         if (fp_access_check(s)) {
8711             TCGv_i32 t = read_fp_hreg(s, a->rn);
8712             f->gen_h(t, t);
8713             if (merging) {
8714                 write_fp_hreg_merging(s, a->rd, a->rd, t);
8715             } else {
8716                 write_fp_sreg(s, a->rd, t);
8717             }
8718         }
8719         break;
8720     default:
8721         return false;
8722     }
8723     return true;
8724 }
8725 
8726 static bool do_fp1_scalar_int_2fn(DisasContext *s, arg_rr_e *a,
8727                                   const FPScalar1Int *fnormal,
8728                                   const FPScalar1Int *fah)
8729 {
8730     return do_fp1_scalar_int(s, a, s->fpcr_ah ? fah : fnormal, true);
8731 }
8732 
8733 static const FPScalar1Int f_scalar_fmov = {
8734     tcg_gen_mov_i32,
8735     tcg_gen_mov_i32,
8736     tcg_gen_mov_i64,
8737 };
8738 TRANS(FMOV_s, do_fp1_scalar_int, a, &f_scalar_fmov, false)
8739 
8740 static const FPScalar1Int f_scalar_fabs = {
8741     gen_vfp_absh,
8742     gen_vfp_abss,
8743     gen_vfp_absd,
8744 };
8745 static const FPScalar1Int f_scalar_ah_fabs = {
8746     gen_vfp_ah_absh,
8747     gen_vfp_ah_abss,
8748     gen_vfp_ah_absd,
8749 };
8750 TRANS(FABS_s, do_fp1_scalar_int_2fn, a, &f_scalar_fabs, &f_scalar_ah_fabs)
8751 
8752 static const FPScalar1Int f_scalar_fneg = {
8753     gen_vfp_negh,
8754     gen_vfp_negs,
8755     gen_vfp_negd,
8756 };
8757 static const FPScalar1Int f_scalar_ah_fneg = {
8758     gen_vfp_ah_negh,
8759     gen_vfp_ah_negs,
8760     gen_vfp_ah_negd,
8761 };
8762 TRANS(FNEG_s, do_fp1_scalar_int_2fn, a, &f_scalar_fneg, &f_scalar_ah_fneg)
8763 
8764 typedef struct FPScalar1 {
8765     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_ptr);
8766     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_ptr);
8767     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_ptr);
8768 } FPScalar1;
8769 
8770 static bool do_fp1_scalar_with_fpsttype(DisasContext *s, arg_rr_e *a,
8771                                         const FPScalar1 *f, int rmode,
8772                                         ARMFPStatusFlavour fpsttype)
8773 {
8774     TCGv_i32 tcg_rmode = NULL;
8775     TCGv_ptr fpst;
8776     TCGv_i64 t64;
8777     TCGv_i32 t32;
8778     int check = fp_access_check_scalar_hsd(s, a->esz);
8779 
8780     if (check <= 0) {
8781         return check == 0;
8782     }
8783 
8784     fpst = fpstatus_ptr(fpsttype);
8785     if (rmode >= 0) {
8786         tcg_rmode = gen_set_rmode(rmode, fpst);
8787     }
8788 
8789     switch (a->esz) {
8790     case MO_64:
8791         t64 = read_fp_dreg(s, a->rn);
8792         f->gen_d(t64, t64, fpst);
8793         write_fp_dreg_merging(s, a->rd, a->rd, t64);
8794         break;
8795     case MO_32:
8796         t32 = read_fp_sreg(s, a->rn);
8797         f->gen_s(t32, t32, fpst);
8798         write_fp_sreg_merging(s, a->rd, a->rd, t32);
8799         break;
8800     case MO_16:
8801         t32 = read_fp_hreg(s, a->rn);
8802         f->gen_h(t32, t32, fpst);
8803         write_fp_hreg_merging(s, a->rd, a->rd, t32);
8804         break;
8805     default:
8806         g_assert_not_reached();
8807     }
8808 
8809     if (rmode >= 0) {
8810         gen_restore_rmode(tcg_rmode, fpst);
8811     }
8812     return true;
8813 }
8814 
8815 static bool do_fp1_scalar(DisasContext *s, arg_rr_e *a,
8816                           const FPScalar1 *f, int rmode)
8817 {
8818     return do_fp1_scalar_with_fpsttype(s, a, f, rmode,
8819                                        a->esz == MO_16 ?
8820                                        FPST_A64_F16 : FPST_A64);
8821 }
8822 
8823 static bool do_fp1_scalar_ah(DisasContext *s, arg_rr_e *a,
8824                              const FPScalar1 *f, int rmode)
8825 {
8826     return do_fp1_scalar_with_fpsttype(s, a, f, rmode, select_ah_fpst(s, a->esz));
8827 }
8828 
8829 static const FPScalar1 f_scalar_fsqrt = {
8830     gen_helper_vfp_sqrth,
8831     gen_helper_vfp_sqrts,
8832     gen_helper_vfp_sqrtd,
8833 };
8834 TRANS(FSQRT_s, do_fp1_scalar, a, &f_scalar_fsqrt, -1)
8835 
8836 static const FPScalar1 f_scalar_frint = {
8837     gen_helper_advsimd_rinth,
8838     gen_helper_rints,
8839     gen_helper_rintd,
8840 };
8841 TRANS(FRINTN_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
8842 TRANS(FRINTP_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_POSINF)
8843 TRANS(FRINTM_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_NEGINF)
8844 TRANS(FRINTZ_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_ZERO)
8845 TRANS(FRINTA_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
8846 TRANS(FRINTI_s, do_fp1_scalar, a, &f_scalar_frint, -1)
8847 
8848 static const FPScalar1 f_scalar_frintx = {
8849     gen_helper_advsimd_rinth_exact,
8850     gen_helper_rints_exact,
8851     gen_helper_rintd_exact,
8852 };
8853 TRANS(FRINTX_s, do_fp1_scalar, a, &f_scalar_frintx, -1)
8854 
8855 static bool trans_BFCVT_s(DisasContext *s, arg_rr_e *a)
8856 {
8857     ARMFPStatusFlavour fpsttype = s->fpcr_ah ? FPST_AH : FPST_A64;
8858     TCGv_i32 t32;
8859     int check;
8860 
8861     if (!dc_isar_feature(aa64_bf16, s)) {
8862         return false;
8863     }
8864 
8865     check = fp_access_check_scalar_hsd(s, a->esz);
8866 
8867     if (check <= 0) {
8868         return check == 0;
8869     }
8870 
8871     t32 = read_fp_sreg(s, a->rn);
8872     gen_helper_bfcvt(t32, t32, fpstatus_ptr(fpsttype));
8873     write_fp_hreg_merging(s, a->rd, a->rd, t32);
8874     return true;
8875 }
8876 
8877 static const FPScalar1 f_scalar_frint32 = {
8878     NULL,
8879     gen_helper_frint32_s,
8880     gen_helper_frint32_d,
8881 };
8882 TRANS_FEAT(FRINT32Z_s, aa64_frint, do_fp1_scalar, a,
8883            &f_scalar_frint32, FPROUNDING_ZERO)
8884 TRANS_FEAT(FRINT32X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint32, -1)
8885 
8886 static const FPScalar1 f_scalar_frint64 = {
8887     NULL,
8888     gen_helper_frint64_s,
8889     gen_helper_frint64_d,
8890 };
8891 TRANS_FEAT(FRINT64Z_s, aa64_frint, do_fp1_scalar, a,
8892            &f_scalar_frint64, FPROUNDING_ZERO)
8893 TRANS_FEAT(FRINT64X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint64, -1)
8894 
8895 static const FPScalar1 f_scalar_frecpe = {
8896     gen_helper_recpe_f16,
8897     gen_helper_recpe_f32,
8898     gen_helper_recpe_f64,
8899 };
8900 static const FPScalar1 f_scalar_frecpe_rpres = {
8901     gen_helper_recpe_f16,
8902     gen_helper_recpe_rpres_f32,
8903     gen_helper_recpe_f64,
8904 };
8905 TRANS(FRECPE_s, do_fp1_scalar_ah, a,
8906       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8907       &f_scalar_frecpe_rpres : &f_scalar_frecpe, -1)
8908 
8909 static const FPScalar1 f_scalar_frecpx = {
8910     gen_helper_frecpx_f16,
8911     gen_helper_frecpx_f32,
8912     gen_helper_frecpx_f64,
8913 };
8914 TRANS(FRECPX_s, do_fp1_scalar_ah, a, &f_scalar_frecpx, -1)
8915 
8916 static const FPScalar1 f_scalar_frsqrte = {
8917     gen_helper_rsqrte_f16,
8918     gen_helper_rsqrte_f32,
8919     gen_helper_rsqrte_f64,
8920 };
8921 static const FPScalar1 f_scalar_frsqrte_rpres = {
8922     gen_helper_rsqrte_f16,
8923     gen_helper_rsqrte_rpres_f32,
8924     gen_helper_rsqrte_f64,
8925 };
8926 TRANS(FRSQRTE_s, do_fp1_scalar_ah, a,
8927       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8928       &f_scalar_frsqrte_rpres : &f_scalar_frsqrte, -1)
8929 
8930 static bool trans_FCVT_s_ds(DisasContext *s, arg_rr *a)
8931 {
8932     if (fp_access_check(s)) {
8933         TCGv_i32 tcg_rn = read_fp_sreg(s, a->rn);
8934         TCGv_i64 tcg_rd = tcg_temp_new_i64();
8935         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8936 
8937         gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, fpst);
8938         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
8939     }
8940     return true;
8941 }
8942 
8943 static bool trans_FCVT_s_hs(DisasContext *s, arg_rr *a)
8944 {
8945     if (fp_access_check(s)) {
8946         TCGv_i32 tmp = read_fp_sreg(s, a->rn);
8947         TCGv_i32 ahp = get_ahp_flag();
8948         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8949 
8950         gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
8951         /* write_fp_hreg_merging is OK here because top half of result is zero */
8952         write_fp_hreg_merging(s, a->rd, a->rd, tmp);
8953     }
8954     return true;
8955 }
8956 
8957 static bool trans_FCVT_s_sd(DisasContext *s, arg_rr *a)
8958 {
8959     if (fp_access_check(s)) {
8960         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8961         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8962         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8963 
8964         gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, fpst);
8965         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
8966     }
8967     return true;
8968 }
8969 
8970 static bool trans_FCVT_s_hd(DisasContext *s, arg_rr *a)
8971 {
8972     if (fp_access_check(s)) {
8973         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8974         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8975         TCGv_i32 ahp = get_ahp_flag();
8976         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8977 
8978         gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8979         /* write_fp_hreg_merging is OK here because top half of tcg_rd is zero */
8980         write_fp_hreg_merging(s, a->rd, a->rd, tcg_rd);
8981     }
8982     return true;
8983 }
8984 
8985 static bool trans_FCVT_s_sh(DisasContext *s, arg_rr *a)
8986 {
8987     if (fp_access_check(s)) {
8988         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
8989         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8990         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
8991         TCGv_i32 tcg_ahp = get_ahp_flag();
8992 
8993         gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8994         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
8995     }
8996     return true;
8997 }
8998 
8999 static bool trans_FCVT_s_dh(DisasContext *s, arg_rr *a)
9000 {
9001     if (fp_access_check(s)) {
9002         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9003         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9004         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9005         TCGv_i32 tcg_ahp = get_ahp_flag();
9006 
9007         gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9008         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
9009     }
9010     return true;
9011 }
9012 
9013 static bool do_cvtf_scalar(DisasContext *s, MemOp esz, int rd, int shift,
9014                            TCGv_i64 tcg_int, bool is_signed)
9015 {
9016     TCGv_ptr tcg_fpstatus;
9017     TCGv_i32 tcg_shift, tcg_single;
9018     TCGv_i64 tcg_double;
9019 
9020     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9021     tcg_shift = tcg_constant_i32(shift);
9022 
9023     switch (esz) {
9024     case MO_64:
9025         tcg_double = tcg_temp_new_i64();
9026         if (is_signed) {
9027             gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9028         } else {
9029             gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9030         }
9031         write_fp_dreg_merging(s, rd, rd, tcg_double);
9032         break;
9033 
9034     case MO_32:
9035         tcg_single = tcg_temp_new_i32();
9036         if (is_signed) {
9037             gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9038         } else {
9039             gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9040         }
9041         write_fp_sreg_merging(s, rd, rd, tcg_single);
9042         break;
9043 
9044     case MO_16:
9045         tcg_single = tcg_temp_new_i32();
9046         if (is_signed) {
9047             gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9048         } else {
9049             gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9050         }
9051         write_fp_hreg_merging(s, rd, rd, tcg_single);
9052         break;
9053 
9054     default:
9055         g_assert_not_reached();
9056     }
9057     return true;
9058 }
9059 
9060 static bool do_cvtf_g(DisasContext *s, arg_fcvt *a, bool is_signed)
9061 {
9062     TCGv_i64 tcg_int;
9063     int check = fp_access_check_scalar_hsd(s, a->esz);
9064 
9065     if (check <= 0) {
9066         return check == 0;
9067     }
9068 
9069     if (a->sf) {
9070         tcg_int = cpu_reg(s, a->rn);
9071     } else {
9072         tcg_int = read_cpu_reg(s, a->rn, true);
9073         if (is_signed) {
9074             tcg_gen_ext32s_i64(tcg_int, tcg_int);
9075         } else {
9076             tcg_gen_ext32u_i64(tcg_int, tcg_int);
9077         }
9078     }
9079     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9080 }
9081 
9082 TRANS(SCVTF_g, do_cvtf_g, a, true)
9083 TRANS(UCVTF_g, do_cvtf_g, a, false)
9084 
9085 /*
9086  * [US]CVTF (vector), scalar version.
9087  * Which sounds weird, but really just means input from fp register
9088  * instead of input from general register.  Input and output element
9089  * size are always equal.
9090  */
9091 static bool do_cvtf_f(DisasContext *s, arg_fcvt *a, bool is_signed)
9092 {
9093     TCGv_i64 tcg_int;
9094     int check = fp_access_check_scalar_hsd(s, a->esz);
9095 
9096     if (check <= 0) {
9097         return check == 0;
9098     }
9099 
9100     tcg_int = tcg_temp_new_i64();
9101     read_vec_element(s, tcg_int, a->rn, 0, a->esz | (is_signed ? MO_SIGN : 0));
9102     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9103 }
9104 
9105 TRANS(SCVTF_f, do_cvtf_f, a, true)
9106 TRANS(UCVTF_f, do_cvtf_f, a, false)
9107 
9108 static void do_fcvt_scalar(DisasContext *s, MemOp out, MemOp esz,
9109                            TCGv_i64 tcg_out, int shift, int rn,
9110                            ARMFPRounding rmode)
9111 {
9112     TCGv_ptr tcg_fpstatus;
9113     TCGv_i32 tcg_shift, tcg_rmode, tcg_single;
9114 
9115     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9116     tcg_shift = tcg_constant_i32(shift);
9117     tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9118 
9119     switch (esz) {
9120     case MO_64:
9121         read_vec_element(s, tcg_out, rn, 0, MO_64);
9122         switch (out) {
9123         case MO_64 | MO_SIGN:
9124             gen_helper_vfp_tosqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9125             break;
9126         case MO_64:
9127             gen_helper_vfp_touqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9128             break;
9129         case MO_32 | MO_SIGN:
9130             gen_helper_vfp_tosld(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9131             break;
9132         case MO_32:
9133             gen_helper_vfp_tould(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9134             break;
9135         default:
9136             g_assert_not_reached();
9137         }
9138         break;
9139 
9140     case MO_32:
9141         tcg_single = read_fp_sreg(s, rn);
9142         switch (out) {
9143         case MO_64 | MO_SIGN:
9144             gen_helper_vfp_tosqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9145             break;
9146         case MO_64:
9147             gen_helper_vfp_touqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9148             break;
9149         case MO_32 | MO_SIGN:
9150             gen_helper_vfp_tosls(tcg_single, tcg_single,
9151                                  tcg_shift, tcg_fpstatus);
9152             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9153             break;
9154         case MO_32:
9155             gen_helper_vfp_touls(tcg_single, tcg_single,
9156                                  tcg_shift, tcg_fpstatus);
9157             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9158             break;
9159         default:
9160             g_assert_not_reached();
9161         }
9162         break;
9163 
9164     case MO_16:
9165         tcg_single = read_fp_hreg(s, rn);
9166         switch (out) {
9167         case MO_64 | MO_SIGN:
9168             gen_helper_vfp_tosqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9169             break;
9170         case MO_64:
9171             gen_helper_vfp_touqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9172             break;
9173         case MO_32 | MO_SIGN:
9174             gen_helper_vfp_toslh(tcg_single, tcg_single,
9175                                  tcg_shift, tcg_fpstatus);
9176             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9177             break;
9178         case MO_32:
9179             gen_helper_vfp_toulh(tcg_single, tcg_single,
9180                                  tcg_shift, tcg_fpstatus);
9181             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9182             break;
9183         case MO_16 | MO_SIGN:
9184             gen_helper_vfp_toshh(tcg_single, tcg_single,
9185                                  tcg_shift, tcg_fpstatus);
9186             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9187             break;
9188         case MO_16:
9189             gen_helper_vfp_touhh(tcg_single, tcg_single,
9190                                  tcg_shift, tcg_fpstatus);
9191             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9192             break;
9193         default:
9194             g_assert_not_reached();
9195         }
9196         break;
9197 
9198     default:
9199         g_assert_not_reached();
9200     }
9201 
9202     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9203 }
9204 
9205 static bool do_fcvt_g(DisasContext *s, arg_fcvt *a,
9206                       ARMFPRounding rmode, bool is_signed)
9207 {
9208     TCGv_i64 tcg_int;
9209     int check = fp_access_check_scalar_hsd(s, a->esz);
9210 
9211     if (check <= 0) {
9212         return check == 0;
9213     }
9214 
9215     tcg_int = cpu_reg(s, a->rd);
9216     do_fcvt_scalar(s, (a->sf ? MO_64 : MO_32) | (is_signed ? MO_SIGN : 0),
9217                    a->esz, tcg_int, a->shift, a->rn, rmode);
9218 
9219     if (!a->sf) {
9220         tcg_gen_ext32u_i64(tcg_int, tcg_int);
9221     }
9222     return true;
9223 }
9224 
9225 TRANS(FCVTNS_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, true)
9226 TRANS(FCVTNU_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, false)
9227 TRANS(FCVTPS_g, do_fcvt_g, a, FPROUNDING_POSINF, true)
9228 TRANS(FCVTPU_g, do_fcvt_g, a, FPROUNDING_POSINF, false)
9229 TRANS(FCVTMS_g, do_fcvt_g, a, FPROUNDING_NEGINF, true)
9230 TRANS(FCVTMU_g, do_fcvt_g, a, FPROUNDING_NEGINF, false)
9231 TRANS(FCVTZS_g, do_fcvt_g, a, FPROUNDING_ZERO, true)
9232 TRANS(FCVTZU_g, do_fcvt_g, a, FPROUNDING_ZERO, false)
9233 TRANS(FCVTAS_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, true)
9234 TRANS(FCVTAU_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, false)
9235 
9236 /*
9237  * FCVT* (vector), scalar version.
9238  * Which sounds weird, but really just means output to fp register
9239  * instead of output to general register.  Input and output element
9240  * size are always equal.
9241  */
9242 static bool do_fcvt_f(DisasContext *s, arg_fcvt *a,
9243                       ARMFPRounding rmode, bool is_signed)
9244 {
9245     TCGv_i64 tcg_int;
9246     int check = fp_access_check_scalar_hsd(s, a->esz);
9247 
9248     if (check <= 0) {
9249         return check == 0;
9250     }
9251 
9252     tcg_int = tcg_temp_new_i64();
9253     do_fcvt_scalar(s, a->esz | (is_signed ? MO_SIGN : 0),
9254                    a->esz, tcg_int, a->shift, a->rn, rmode);
9255 
9256     if (!s->fpcr_nep) {
9257         clear_vec(s, a->rd);
9258     }
9259     write_vec_element(s, tcg_int, a->rd, 0, a->esz);
9260     return true;
9261 }
9262 
9263 TRANS(FCVTNS_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, true)
9264 TRANS(FCVTNU_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, false)
9265 TRANS(FCVTPS_f, do_fcvt_f, a, FPROUNDING_POSINF, true)
9266 TRANS(FCVTPU_f, do_fcvt_f, a, FPROUNDING_POSINF, false)
9267 TRANS(FCVTMS_f, do_fcvt_f, a, FPROUNDING_NEGINF, true)
9268 TRANS(FCVTMU_f, do_fcvt_f, a, FPROUNDING_NEGINF, false)
9269 TRANS(FCVTZS_f, do_fcvt_f, a, FPROUNDING_ZERO, true)
9270 TRANS(FCVTZU_f, do_fcvt_f, a, FPROUNDING_ZERO, false)
9271 TRANS(FCVTAS_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, true)
9272 TRANS(FCVTAU_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, false)
9273 
9274 static bool trans_FJCVTZS(DisasContext *s, arg_FJCVTZS *a)
9275 {
9276     if (!dc_isar_feature(aa64_jscvt, s)) {
9277         return false;
9278     }
9279     if (fp_access_check(s)) {
9280         TCGv_i64 t = read_fp_dreg(s, a->rn);
9281         TCGv_ptr fpstatus = fpstatus_ptr(FPST_A64);
9282 
9283         gen_helper_fjcvtzs(t, t, fpstatus);
9284 
9285         tcg_gen_ext32u_i64(cpu_reg(s, a->rd), t);
9286         tcg_gen_extrh_i64_i32(cpu_ZF, t);
9287         tcg_gen_movi_i32(cpu_CF, 0);
9288         tcg_gen_movi_i32(cpu_NF, 0);
9289         tcg_gen_movi_i32(cpu_VF, 0);
9290     }
9291     return true;
9292 }
9293 
9294 static bool trans_FMOV_hx(DisasContext *s, arg_rr *a)
9295 {
9296     if (!dc_isar_feature(aa64_fp16, s)) {
9297         return false;
9298     }
9299     if (fp_access_check(s)) {
9300         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9301         TCGv_i64 tmp = tcg_temp_new_i64();
9302         tcg_gen_ext16u_i64(tmp, tcg_rn);
9303         write_fp_dreg(s, a->rd, tmp);
9304     }
9305     return true;
9306 }
9307 
9308 static bool trans_FMOV_sw(DisasContext *s, arg_rr *a)
9309 {
9310     if (fp_access_check(s)) {
9311         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9312         TCGv_i64 tmp = tcg_temp_new_i64();
9313         tcg_gen_ext32u_i64(tmp, tcg_rn);
9314         write_fp_dreg(s, a->rd, tmp);
9315     }
9316     return true;
9317 }
9318 
9319 static bool trans_FMOV_dx(DisasContext *s, arg_rr *a)
9320 {
9321     if (fp_access_check(s)) {
9322         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9323         write_fp_dreg(s, a->rd, tcg_rn);
9324     }
9325     return true;
9326 }
9327 
9328 static bool trans_FMOV_ux(DisasContext *s, arg_rr *a)
9329 {
9330     if (fp_access_check(s)) {
9331         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9332         tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, a->rd));
9333         clear_vec_high(s, true, a->rd);
9334     }
9335     return true;
9336 }
9337 
9338 static bool trans_FMOV_xh(DisasContext *s, arg_rr *a)
9339 {
9340     if (!dc_isar_feature(aa64_fp16, s)) {
9341         return false;
9342     }
9343     if (fp_access_check(s)) {
9344         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9345         tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_16));
9346     }
9347     return true;
9348 }
9349 
9350 static bool trans_FMOV_ws(DisasContext *s, arg_rr *a)
9351 {
9352     if (fp_access_check(s)) {
9353         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9354         tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_32));
9355     }
9356     return true;
9357 }
9358 
9359 static bool trans_FMOV_xd(DisasContext *s, arg_rr *a)
9360 {
9361     if (fp_access_check(s)) {
9362         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9363         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_64));
9364     }
9365     return true;
9366 }
9367 
9368 static bool trans_FMOV_xu(DisasContext *s, arg_rr *a)
9369 {
9370     if (fp_access_check(s)) {
9371         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9372         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, a->rn));
9373     }
9374     return true;
9375 }
9376 
9377 typedef struct ENVScalar1 {
9378     NeonGenOneOpEnvFn *gen_bhs[3];
9379     NeonGenOne64OpEnvFn *gen_d;
9380 } ENVScalar1;
9381 
9382 static bool do_env_scalar1(DisasContext *s, arg_rr_e *a, const ENVScalar1 *f)
9383 {
9384     if (!fp_access_check(s)) {
9385         return true;
9386     }
9387     if (a->esz == MO_64) {
9388         TCGv_i64 t = read_fp_dreg(s, a->rn);
9389         f->gen_d(t, tcg_env, t);
9390         write_fp_dreg(s, a->rd, t);
9391     } else {
9392         TCGv_i32 t = tcg_temp_new_i32();
9393 
9394         read_vec_element_i32(s, t, a->rn, 0, a->esz);
9395         f->gen_bhs[a->esz](t, tcg_env, t);
9396         write_fp_sreg(s, a->rd, t);
9397     }
9398     return true;
9399 }
9400 
9401 static bool do_env_vector1(DisasContext *s, arg_qrr_e *a, const ENVScalar1 *f)
9402 {
9403     if (a->esz == MO_64 && !a->q) {
9404         return false;
9405     }
9406     if (!fp_access_check(s)) {
9407         return true;
9408     }
9409     if (a->esz == MO_64) {
9410         TCGv_i64 t = tcg_temp_new_i64();
9411 
9412         for (int i = 0; i < 2; ++i) {
9413             read_vec_element(s, t, a->rn, i, MO_64);
9414             f->gen_d(t, tcg_env, t);
9415             write_vec_element(s, t, a->rd, i, MO_64);
9416         }
9417     } else {
9418         TCGv_i32 t = tcg_temp_new_i32();
9419         int n = (a->q ? 16 : 8) >> a->esz;
9420 
9421         for (int i = 0; i < n; ++i) {
9422             read_vec_element_i32(s, t, a->rn, i, a->esz);
9423             f->gen_bhs[a->esz](t, tcg_env, t);
9424             write_vec_element_i32(s, t, a->rd, i, a->esz);
9425         }
9426     }
9427     clear_vec_high(s, a->q, a->rd);
9428     return true;
9429 }
9430 
9431 static const ENVScalar1 f_scalar_sqabs = {
9432     { gen_helper_neon_qabs_s8,
9433       gen_helper_neon_qabs_s16,
9434       gen_helper_neon_qabs_s32 },
9435     gen_helper_neon_qabs_s64,
9436 };
9437 TRANS(SQABS_s, do_env_scalar1, a, &f_scalar_sqabs)
9438 TRANS(SQABS_v, do_env_vector1, a, &f_scalar_sqabs)
9439 
9440 static const ENVScalar1 f_scalar_sqneg = {
9441     { gen_helper_neon_qneg_s8,
9442       gen_helper_neon_qneg_s16,
9443       gen_helper_neon_qneg_s32 },
9444     gen_helper_neon_qneg_s64,
9445 };
9446 TRANS(SQNEG_s, do_env_scalar1, a, &f_scalar_sqneg)
9447 TRANS(SQNEG_v, do_env_vector1, a, &f_scalar_sqneg)
9448 
9449 static bool do_scalar1_d(DisasContext *s, arg_rr *a, ArithOneOp *f)
9450 {
9451     if (fp_access_check(s)) {
9452         TCGv_i64 t = read_fp_dreg(s, a->rn);
9453         f(t, t);
9454         write_fp_dreg(s, a->rd, t);
9455     }
9456     return true;
9457 }
9458 
9459 TRANS(ABS_s, do_scalar1_d, a, tcg_gen_abs_i64)
9460 TRANS(NEG_s, do_scalar1_d, a, tcg_gen_neg_i64)
9461 
9462 static bool do_cmop0_d(DisasContext *s, arg_rr *a, TCGCond cond)
9463 {
9464     if (fp_access_check(s)) {
9465         TCGv_i64 t = read_fp_dreg(s, a->rn);
9466         tcg_gen_negsetcond_i64(cond, t, t, tcg_constant_i64(0));
9467         write_fp_dreg(s, a->rd, t);
9468     }
9469     return true;
9470 }
9471 
9472 TRANS(CMGT0_s, do_cmop0_d, a, TCG_COND_GT)
9473 TRANS(CMGE0_s, do_cmop0_d, a, TCG_COND_GE)
9474 TRANS(CMLE0_s, do_cmop0_d, a, TCG_COND_LE)
9475 TRANS(CMLT0_s, do_cmop0_d, a, TCG_COND_LT)
9476 TRANS(CMEQ0_s, do_cmop0_d, a, TCG_COND_EQ)
9477 
9478 static bool do_2misc_narrow_scalar(DisasContext *s, arg_rr_e *a,
9479                                    ArithOneOp * const fn[3])
9480 {
9481     if (a->esz == MO_64) {
9482         return false;
9483     }
9484     if (fp_access_check(s)) {
9485         TCGv_i64 t = tcg_temp_new_i64();
9486 
9487         read_vec_element(s, t, a->rn, 0, a->esz + 1);
9488         fn[a->esz](t, t);
9489         clear_vec(s, a->rd);
9490         write_vec_element(s, t, a->rd, 0, a->esz);
9491     }
9492     return true;
9493 }
9494 
9495 #define WRAP_ENV(NAME) \
9496     static void gen_##NAME(TCGv_i64 d, TCGv_i64 n) \
9497     { gen_helper_##NAME(d, tcg_env, n); }
9498 
9499 WRAP_ENV(neon_unarrow_sat8)
9500 WRAP_ENV(neon_unarrow_sat16)
9501 WRAP_ENV(neon_unarrow_sat32)
9502 
9503 static ArithOneOp * const f_scalar_sqxtun[] = {
9504     gen_neon_unarrow_sat8,
9505     gen_neon_unarrow_sat16,
9506     gen_neon_unarrow_sat32,
9507 };
9508 TRANS(SQXTUN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtun)
9509 
9510 WRAP_ENV(neon_narrow_sat_s8)
9511 WRAP_ENV(neon_narrow_sat_s16)
9512 WRAP_ENV(neon_narrow_sat_s32)
9513 
9514 static ArithOneOp * const f_scalar_sqxtn[] = {
9515     gen_neon_narrow_sat_s8,
9516     gen_neon_narrow_sat_s16,
9517     gen_neon_narrow_sat_s32,
9518 };
9519 TRANS(SQXTN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtn)
9520 
9521 WRAP_ENV(neon_narrow_sat_u8)
9522 WRAP_ENV(neon_narrow_sat_u16)
9523 WRAP_ENV(neon_narrow_sat_u32)
9524 
9525 static ArithOneOp * const f_scalar_uqxtn[] = {
9526     gen_neon_narrow_sat_u8,
9527     gen_neon_narrow_sat_u16,
9528     gen_neon_narrow_sat_u32,
9529 };
9530 TRANS(UQXTN_s, do_2misc_narrow_scalar, a, f_scalar_uqxtn)
9531 
9532 static bool trans_FCVTXN_s(DisasContext *s, arg_rr_e *a)
9533 {
9534     if (fp_access_check(s)) {
9535         /*
9536          * 64 bit to 32 bit float conversion
9537          * with von Neumann rounding (round to odd)
9538          */
9539         TCGv_i64 src = read_fp_dreg(s, a->rn);
9540         TCGv_i32 dst = tcg_temp_new_i32();
9541         gen_helper_fcvtx_f64_to_f32(dst, src, fpstatus_ptr(FPST_A64));
9542         write_fp_sreg_merging(s, a->rd, a->rd, dst);
9543     }
9544     return true;
9545 }
9546 
9547 #undef WRAP_ENV
9548 
9549 static bool do_gvec_fn2(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9550 {
9551     if (!a->q && a->esz == MO_64) {
9552         return false;
9553     }
9554     if (fp_access_check(s)) {
9555         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9556     }
9557     return true;
9558 }
9559 
9560 TRANS(ABS_v, do_gvec_fn2, a, tcg_gen_gvec_abs)
9561 TRANS(NEG_v, do_gvec_fn2, a, tcg_gen_gvec_neg)
9562 TRANS(NOT_v, do_gvec_fn2, a, tcg_gen_gvec_not)
9563 TRANS(CNT_v, do_gvec_fn2, a, gen_gvec_cnt)
9564 TRANS(RBIT_v, do_gvec_fn2, a, gen_gvec_rbit)
9565 TRANS(CMGT0_v, do_gvec_fn2, a, gen_gvec_cgt0)
9566 TRANS(CMGE0_v, do_gvec_fn2, a, gen_gvec_cge0)
9567 TRANS(CMLT0_v, do_gvec_fn2, a, gen_gvec_clt0)
9568 TRANS(CMLE0_v, do_gvec_fn2, a, gen_gvec_cle0)
9569 TRANS(CMEQ0_v, do_gvec_fn2, a, gen_gvec_ceq0)
9570 TRANS(REV16_v, do_gvec_fn2, a, gen_gvec_rev16)
9571 TRANS(REV32_v, do_gvec_fn2, a, gen_gvec_rev32)
9572 TRANS(URECPE_v, do_gvec_fn2, a, gen_gvec_urecpe)
9573 TRANS(URSQRTE_v, do_gvec_fn2, a, gen_gvec_ursqrte)
9574 
9575 static bool do_gvec_fn2_bhs(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9576 {
9577     if (a->esz == MO_64) {
9578         return false;
9579     }
9580     if (fp_access_check(s)) {
9581         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9582     }
9583     return true;
9584 }
9585 
9586 TRANS(CLS_v, do_gvec_fn2_bhs, a, gen_gvec_cls)
9587 TRANS(CLZ_v, do_gvec_fn2_bhs, a, gen_gvec_clz)
9588 TRANS(REV64_v, do_gvec_fn2_bhs, a, gen_gvec_rev64)
9589 TRANS(SADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_saddlp)
9590 TRANS(UADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_uaddlp)
9591 TRANS(SADALP_v, do_gvec_fn2_bhs, a, gen_gvec_sadalp)
9592 TRANS(UADALP_v, do_gvec_fn2_bhs, a, gen_gvec_uadalp)
9593 
9594 static bool do_2misc_narrow_vector(DisasContext *s, arg_qrr_e *a,
9595                                    ArithOneOp * const fn[3])
9596 {
9597     if (a->esz == MO_64) {
9598         return false;
9599     }
9600     if (fp_access_check(s)) {
9601         TCGv_i64 t0 = tcg_temp_new_i64();
9602         TCGv_i64 t1 = tcg_temp_new_i64();
9603 
9604         read_vec_element(s, t0, a->rn, 0, MO_64);
9605         read_vec_element(s, t1, a->rn, 1, MO_64);
9606         fn[a->esz](t0, t0);
9607         fn[a->esz](t1, t1);
9608         write_vec_element(s, t0, a->rd, a->q ? 2 : 0, MO_32);
9609         write_vec_element(s, t1, a->rd, a->q ? 3 : 1, MO_32);
9610         clear_vec_high(s, a->q, a->rd);
9611     }
9612     return true;
9613 }
9614 
9615 static ArithOneOp * const f_scalar_xtn[] = {
9616     gen_helper_neon_narrow_u8,
9617     gen_helper_neon_narrow_u16,
9618     tcg_gen_ext32u_i64,
9619 };
9620 TRANS(XTN, do_2misc_narrow_vector, a, f_scalar_xtn)
9621 TRANS(SQXTUN_v, do_2misc_narrow_vector, a, f_scalar_sqxtun)
9622 TRANS(SQXTN_v, do_2misc_narrow_vector, a, f_scalar_sqxtn)
9623 TRANS(UQXTN_v, do_2misc_narrow_vector, a, f_scalar_uqxtn)
9624 
9625 static void gen_fcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9626 {
9627     TCGv_i32 tcg_lo = tcg_temp_new_i32();
9628     TCGv_i32 tcg_hi = tcg_temp_new_i32();
9629     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9630     TCGv_i32 ahp = get_ahp_flag();
9631 
9632     tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, n);
9633     gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9634     gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9635     tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16);
9636     tcg_gen_extu_i32_i64(d, tcg_lo);
9637 }
9638 
9639 static void gen_fcvtn_sd(TCGv_i64 d, TCGv_i64 n)
9640 {
9641     TCGv_i32 tmp = tcg_temp_new_i32();
9642     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9643 
9644     gen_helper_vfp_fcvtsd(tmp, n, fpst);
9645     tcg_gen_extu_i32_i64(d, tmp);
9646 }
9647 
9648 static void gen_fcvtxn_sd(TCGv_i64 d, TCGv_i64 n)
9649 {
9650     /*
9651      * 64 bit to 32 bit float conversion
9652      * with von Neumann rounding (round to odd)
9653      */
9654     TCGv_i32 tmp = tcg_temp_new_i32();
9655     gen_helper_fcvtx_f64_to_f32(tmp, n, fpstatus_ptr(FPST_A64));
9656     tcg_gen_extu_i32_i64(d, tmp);
9657 }
9658 
9659 static ArithOneOp * const f_vector_fcvtn[] = {
9660     NULL,
9661     gen_fcvtn_hs,
9662     gen_fcvtn_sd,
9663 };
9664 static ArithOneOp * const f_scalar_fcvtxn[] = {
9665     NULL,
9666     NULL,
9667     gen_fcvtxn_sd,
9668 };
9669 TRANS(FCVTN_v, do_2misc_narrow_vector, a, f_vector_fcvtn)
9670 TRANS(FCVTXN_v, do_2misc_narrow_vector, a, f_scalar_fcvtxn)
9671 
9672 static void gen_bfcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9673 {
9674     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9675     TCGv_i32 tmp = tcg_temp_new_i32();
9676     gen_helper_bfcvt_pair(tmp, n, fpst);
9677     tcg_gen_extu_i32_i64(d, tmp);
9678 }
9679 
9680 static void gen_bfcvtn_ah_hs(TCGv_i64 d, TCGv_i64 n)
9681 {
9682     TCGv_ptr fpst = fpstatus_ptr(FPST_AH);
9683     TCGv_i32 tmp = tcg_temp_new_i32();
9684     gen_helper_bfcvt_pair(tmp, n, fpst);
9685     tcg_gen_extu_i32_i64(d, tmp);
9686 }
9687 
9688 static ArithOneOp * const f_vector_bfcvtn[2][3] = {
9689     {
9690         NULL,
9691         gen_bfcvtn_hs,
9692         NULL,
9693     }, {
9694         NULL,
9695         gen_bfcvtn_ah_hs,
9696         NULL,
9697     }
9698 };
9699 TRANS_FEAT(BFCVTN_v, aa64_bf16, do_2misc_narrow_vector, a,
9700            f_vector_bfcvtn[s->fpcr_ah])
9701 
9702 static bool trans_SHLL_v(DisasContext *s, arg_qrr_e *a)
9703 {
9704     static NeonGenWidenFn * const widenfns[3] = {
9705         gen_helper_neon_widen_u8,
9706         gen_helper_neon_widen_u16,
9707         tcg_gen_extu_i32_i64,
9708     };
9709     NeonGenWidenFn *widenfn;
9710     TCGv_i64 tcg_res[2];
9711     TCGv_i32 tcg_op;
9712     int part, pass;
9713 
9714     if (a->esz == MO_64) {
9715         return false;
9716     }
9717     if (!fp_access_check(s)) {
9718         return true;
9719     }
9720 
9721     tcg_op = tcg_temp_new_i32();
9722     widenfn = widenfns[a->esz];
9723     part = a->q ? 2 : 0;
9724 
9725     for (pass = 0; pass < 2; pass++) {
9726         read_vec_element_i32(s, tcg_op, a->rn, part + pass, MO_32);
9727         tcg_res[pass] = tcg_temp_new_i64();
9728         widenfn(tcg_res[pass], tcg_op);
9729         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << a->esz);
9730     }
9731 
9732     for (pass = 0; pass < 2; pass++) {
9733         write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
9734     }
9735     return true;
9736 }
9737 
9738 static bool do_fabs_fneg_v(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9739 {
9740     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9741 
9742     if (check <= 0) {
9743         return check == 0;
9744     }
9745 
9746     gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9747     return true;
9748 }
9749 
9750 TRANS(FABS_v, do_fabs_fneg_v, a, gen_gvec_fabs)
9751 TRANS(FNEG_v, do_fabs_fneg_v, a, gen_gvec_fneg)
9752 
9753 static bool do_fp1_vector(DisasContext *s, arg_qrr_e *a,
9754                           const FPScalar1 *f, int rmode)
9755 {
9756     TCGv_i32 tcg_rmode = NULL;
9757     TCGv_ptr fpst;
9758     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9759 
9760     if (check <= 0) {
9761         return check == 0;
9762     }
9763 
9764     fpst = fpstatus_ptr(a->esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9765     if (rmode >= 0) {
9766         tcg_rmode = gen_set_rmode(rmode, fpst);
9767     }
9768 
9769     if (a->esz == MO_64) {
9770         TCGv_i64 t64 = tcg_temp_new_i64();
9771 
9772         for (int pass = 0; pass < 2; ++pass) {
9773             read_vec_element(s, t64, a->rn, pass, MO_64);
9774             f->gen_d(t64, t64, fpst);
9775             write_vec_element(s, t64, a->rd, pass, MO_64);
9776         }
9777     } else {
9778         TCGv_i32 t32 = tcg_temp_new_i32();
9779         void (*gen)(TCGv_i32, TCGv_i32, TCGv_ptr)
9780             = (a->esz == MO_16 ? f->gen_h : f->gen_s);
9781 
9782         for (int pass = 0, n = (a->q ? 16 : 8) >> a->esz; pass < n; ++pass) {
9783             read_vec_element_i32(s, t32, a->rn, pass, a->esz);
9784             gen(t32, t32, fpst);
9785             write_vec_element_i32(s, t32, a->rd, pass, a->esz);
9786         }
9787     }
9788     clear_vec_high(s, a->q, a->rd);
9789 
9790     if (rmode >= 0) {
9791         gen_restore_rmode(tcg_rmode, fpst);
9792     }
9793     return true;
9794 }
9795 
9796 TRANS(FSQRT_v, do_fp1_vector, a, &f_scalar_fsqrt, -1)
9797 
9798 TRANS(FRINTN_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
9799 TRANS(FRINTP_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_POSINF)
9800 TRANS(FRINTM_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_NEGINF)
9801 TRANS(FRINTZ_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_ZERO)
9802 TRANS(FRINTA_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
9803 TRANS(FRINTI_v, do_fp1_vector, a, &f_scalar_frint, -1)
9804 TRANS(FRINTX_v, do_fp1_vector, a, &f_scalar_frintx, -1)
9805 
9806 TRANS_FEAT(FRINT32Z_v, aa64_frint, do_fp1_vector, a,
9807            &f_scalar_frint32, FPROUNDING_ZERO)
9808 TRANS_FEAT(FRINT32X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint32, -1)
9809 TRANS_FEAT(FRINT64Z_v, aa64_frint, do_fp1_vector, a,
9810            &f_scalar_frint64, FPROUNDING_ZERO)
9811 TRANS_FEAT(FRINT64X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint64, -1)
9812 
9813 static bool do_gvec_op2_fpst_with_fpsttype(DisasContext *s, MemOp esz,
9814                                            bool is_q, int rd, int rn, int data,
9815                                            gen_helper_gvec_2_ptr * const fns[3],
9816                                            ARMFPStatusFlavour fpsttype)
9817 {
9818     int check = fp_access_check_vector_hsd(s, is_q, esz);
9819     TCGv_ptr fpst;
9820 
9821     if (check <= 0) {
9822         return check == 0;
9823     }
9824 
9825     fpst = fpstatus_ptr(fpsttype);
9826     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
9827                        vec_full_reg_offset(s, rn), fpst,
9828                        is_q ? 16 : 8, vec_full_reg_size(s),
9829                        data, fns[esz - 1]);
9830     return true;
9831 }
9832 
9833 static bool do_gvec_op2_fpst(DisasContext *s, MemOp esz, bool is_q,
9834                              int rd, int rn, int data,
9835                              gen_helper_gvec_2_ptr * const fns[3])
9836 {
9837     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, fns,
9838                                           esz == MO_16 ? FPST_A64_F16 :
9839                                           FPST_A64);
9840 }
9841 
9842 static bool do_gvec_op2_ah_fpst(DisasContext *s, MemOp esz, bool is_q,
9843                                 int rd, int rn, int data,
9844                                 gen_helper_gvec_2_ptr * const fns[3])
9845 {
9846     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data,
9847                                           fns, select_ah_fpst(s, esz));
9848 }
9849 
9850 static gen_helper_gvec_2_ptr * const f_scvtf_v[] = {
9851     gen_helper_gvec_vcvt_sh,
9852     gen_helper_gvec_vcvt_sf,
9853     gen_helper_gvec_vcvt_sd,
9854 };
9855 TRANS(SCVTF_vi, do_gvec_op2_fpst,
9856       a->esz, a->q, a->rd, a->rn, 0, f_scvtf_v)
9857 TRANS(SCVTF_vf, do_gvec_op2_fpst,
9858       a->esz, a->q, a->rd, a->rn, a->shift, f_scvtf_v)
9859 
9860 static gen_helper_gvec_2_ptr * const f_ucvtf_v[] = {
9861     gen_helper_gvec_vcvt_uh,
9862     gen_helper_gvec_vcvt_uf,
9863     gen_helper_gvec_vcvt_ud,
9864 };
9865 TRANS(UCVTF_vi, do_gvec_op2_fpst,
9866       a->esz, a->q, a->rd, a->rn, 0, f_ucvtf_v)
9867 TRANS(UCVTF_vf, do_gvec_op2_fpst,
9868       a->esz, a->q, a->rd, a->rn, a->shift, f_ucvtf_v)
9869 
9870 static gen_helper_gvec_2_ptr * const f_fcvtzs_vf[] = {
9871     gen_helper_gvec_vcvt_rz_hs,
9872     gen_helper_gvec_vcvt_rz_fs,
9873     gen_helper_gvec_vcvt_rz_ds,
9874 };
9875 TRANS(FCVTZS_vf, do_gvec_op2_fpst,
9876       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzs_vf)
9877 
9878 static gen_helper_gvec_2_ptr * const f_fcvtzu_vf[] = {
9879     gen_helper_gvec_vcvt_rz_hu,
9880     gen_helper_gvec_vcvt_rz_fu,
9881     gen_helper_gvec_vcvt_rz_du,
9882 };
9883 TRANS(FCVTZU_vf, do_gvec_op2_fpst,
9884       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzu_vf)
9885 
9886 static gen_helper_gvec_2_ptr * const f_fcvt_s_vi[] = {
9887     gen_helper_gvec_vcvt_rm_sh,
9888     gen_helper_gvec_vcvt_rm_ss,
9889     gen_helper_gvec_vcvt_rm_sd,
9890 };
9891 
9892 static gen_helper_gvec_2_ptr * const f_fcvt_u_vi[] = {
9893     gen_helper_gvec_vcvt_rm_uh,
9894     gen_helper_gvec_vcvt_rm_us,
9895     gen_helper_gvec_vcvt_rm_ud,
9896 };
9897 
9898 TRANS(FCVTNS_vi, do_gvec_op2_fpst,
9899       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_s_vi)
9900 TRANS(FCVTNU_vi, do_gvec_op2_fpst,
9901       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_u_vi)
9902 TRANS(FCVTPS_vi, do_gvec_op2_fpst,
9903       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_s_vi)
9904 TRANS(FCVTPU_vi, do_gvec_op2_fpst,
9905       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_u_vi)
9906 TRANS(FCVTMS_vi, do_gvec_op2_fpst,
9907       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_s_vi)
9908 TRANS(FCVTMU_vi, do_gvec_op2_fpst,
9909       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_u_vi)
9910 TRANS(FCVTZS_vi, do_gvec_op2_fpst,
9911       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_s_vi)
9912 TRANS(FCVTZU_vi, do_gvec_op2_fpst,
9913       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_u_vi)
9914 TRANS(FCVTAS_vi, do_gvec_op2_fpst,
9915       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_s_vi)
9916 TRANS(FCVTAU_vi, do_gvec_op2_fpst,
9917       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_u_vi)
9918 
9919 static gen_helper_gvec_2_ptr * const f_fceq0[] = {
9920     gen_helper_gvec_fceq0_h,
9921     gen_helper_gvec_fceq0_s,
9922     gen_helper_gvec_fceq0_d,
9923 };
9924 TRANS(FCMEQ0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fceq0)
9925 
9926 static gen_helper_gvec_2_ptr * const f_fcgt0[] = {
9927     gen_helper_gvec_fcgt0_h,
9928     gen_helper_gvec_fcgt0_s,
9929     gen_helper_gvec_fcgt0_d,
9930 };
9931 TRANS(FCMGT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcgt0)
9932 
9933 static gen_helper_gvec_2_ptr * const f_fcge0[] = {
9934     gen_helper_gvec_fcge0_h,
9935     gen_helper_gvec_fcge0_s,
9936     gen_helper_gvec_fcge0_d,
9937 };
9938 TRANS(FCMGE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcge0)
9939 
9940 static gen_helper_gvec_2_ptr * const f_fclt0[] = {
9941     gen_helper_gvec_fclt0_h,
9942     gen_helper_gvec_fclt0_s,
9943     gen_helper_gvec_fclt0_d,
9944 };
9945 TRANS(FCMLT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fclt0)
9946 
9947 static gen_helper_gvec_2_ptr * const f_fcle0[] = {
9948     gen_helper_gvec_fcle0_h,
9949     gen_helper_gvec_fcle0_s,
9950     gen_helper_gvec_fcle0_d,
9951 };
9952 TRANS(FCMLE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcle0)
9953 
9954 static gen_helper_gvec_2_ptr * const f_frecpe[] = {
9955     gen_helper_gvec_frecpe_h,
9956     gen_helper_gvec_frecpe_s,
9957     gen_helper_gvec_frecpe_d,
9958 };
9959 static gen_helper_gvec_2_ptr * const f_frecpe_rpres[] = {
9960     gen_helper_gvec_frecpe_h,
9961     gen_helper_gvec_frecpe_rpres_s,
9962     gen_helper_gvec_frecpe_d,
9963 };
9964 TRANS(FRECPE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9965       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frecpe_rpres : f_frecpe)
9966 
9967 static gen_helper_gvec_2_ptr * const f_frsqrte[] = {
9968     gen_helper_gvec_frsqrte_h,
9969     gen_helper_gvec_frsqrte_s,
9970     gen_helper_gvec_frsqrte_d,
9971 };
9972 static gen_helper_gvec_2_ptr * const f_frsqrte_rpres[] = {
9973     gen_helper_gvec_frsqrte_h,
9974     gen_helper_gvec_frsqrte_rpres_s,
9975     gen_helper_gvec_frsqrte_d,
9976 };
9977 TRANS(FRSQRTE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9978       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frsqrte_rpres : f_frsqrte)
9979 
9980 static bool trans_FCVTL_v(DisasContext *s, arg_qrr_e *a)
9981 {
9982     /* Handle 2-reg-misc ops which are widening (so each size element
9983      * in the source becomes a 2*size element in the destination.
9984      * The only instruction like this is FCVTL.
9985      */
9986     int pass;
9987     TCGv_ptr fpst;
9988 
9989     if (!fp_access_check(s)) {
9990         return true;
9991     }
9992 
9993     if (a->esz == MO_64) {
9994         /* 32 -> 64 bit fp conversion */
9995         TCGv_i64 tcg_res[2];
9996         TCGv_i32 tcg_op = tcg_temp_new_i32();
9997         int srcelt = a->q ? 2 : 0;
9998 
9999         fpst = fpstatus_ptr(FPST_A64);
10000 
10001         for (pass = 0; pass < 2; pass++) {
10002             tcg_res[pass] = tcg_temp_new_i64();
10003             read_vec_element_i32(s, tcg_op, a->rn, srcelt + pass, MO_32);
10004             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, fpst);
10005         }
10006         for (pass = 0; pass < 2; pass++) {
10007             write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
10008         }
10009     } else {
10010         /* 16 -> 32 bit fp conversion */
10011         int srcelt = a->q ? 4 : 0;
10012         TCGv_i32 tcg_res[4];
10013         TCGv_i32 ahp = get_ahp_flag();
10014 
10015         fpst = fpstatus_ptr(FPST_A64_F16);
10016 
10017         for (pass = 0; pass < 4; pass++) {
10018             tcg_res[pass] = tcg_temp_new_i32();
10019             read_vec_element_i32(s, tcg_res[pass], a->rn, srcelt + pass, MO_16);
10020             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10021                                            fpst, ahp);
10022         }
10023         for (pass = 0; pass < 4; pass++) {
10024             write_vec_element_i32(s, tcg_res[pass], a->rd, pass, MO_32);
10025         }
10026     }
10027     clear_vec_high(s, true, a->rd);
10028     return true;
10029 }
10030 
10031 static bool trans_OK(DisasContext *s, arg_OK *a)
10032 {
10033     return true;
10034 }
10035 
10036 static bool trans_FAIL(DisasContext *s, arg_OK *a)
10037 {
10038     s->is_nonstreaming = true;
10039     return true;
10040 }
10041 
10042 /**
10043  * btype_destination_ok:
10044  * @insn: The instruction at the branch destination
10045  * @bt: SCTLR_ELx.BT
10046  * @btype: PSTATE.BTYPE, and is non-zero
10047  *
10048  * On a guarded page, there are a limited number of insns
10049  * that may be present at the branch target:
10050  *   - branch target identifiers,
10051  *   - paciasp, pacibsp,
10052  *   - BRK insn
10053  *   - HLT insn
10054  * Anything else causes a Branch Target Exception.
10055  *
10056  * Return true if the branch is compatible, false to raise BTITRAP.
10057  */
10058 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
10059 {
10060     if ((insn & 0xfffff01fu) == 0xd503201fu) {
10061         /* HINT space */
10062         switch (extract32(insn, 5, 7)) {
10063         case 0b011001: /* PACIASP */
10064         case 0b011011: /* PACIBSP */
10065             /*
10066              * If SCTLR_ELx.BT, then PACI*SP are not compatible
10067              * with btype == 3.  Otherwise all btype are ok.
10068              */
10069             return !bt || btype != 3;
10070         case 0b100000: /* BTI */
10071             /* Not compatible with any btype.  */
10072             return false;
10073         case 0b100010: /* BTI c */
10074             /* Not compatible with btype == 3 */
10075             return btype != 3;
10076         case 0b100100: /* BTI j */
10077             /* Not compatible with btype == 2 */
10078             return btype != 2;
10079         case 0b100110: /* BTI jc */
10080             /* Compatible with any btype.  */
10081             return true;
10082         }
10083     } else {
10084         switch (insn & 0xffe0001fu) {
10085         case 0xd4200000u: /* BRK */
10086         case 0xd4400000u: /* HLT */
10087             /* Give priority to the breakpoint exception.  */
10088             return true;
10089         }
10090     }
10091     return false;
10092 }
10093 
10094 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
10095                                           CPUState *cpu)
10096 {
10097     DisasContext *dc = container_of(dcbase, DisasContext, base);
10098     CPUARMState *env = cpu_env(cpu);
10099     ARMCPU *arm_cpu = env_archcpu(env);
10100     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
10101     int bound, core_mmu_idx;
10102 
10103     dc->isar = &arm_cpu->isar;
10104     dc->condjmp = 0;
10105     dc->pc_save = dc->base.pc_first;
10106     dc->aarch64 = true;
10107     dc->thumb = false;
10108     dc->sctlr_b = 0;
10109     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
10110     dc->condexec_mask = 0;
10111     dc->condexec_cond = 0;
10112     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
10113     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
10114     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
10115     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
10116     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
10117     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
10118 #if !defined(CONFIG_USER_ONLY)
10119     dc->user = (dc->current_el == 0);
10120 #endif
10121     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
10122     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
10123     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
10124     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
10125     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
10126     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
10127     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
10128     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
10129     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
10130     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
10131     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
10132     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
10133     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
10134     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
10135     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
10136     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
10137     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
10138     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
10139     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
10140     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
10141     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
10142     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
10143     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
10144     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
10145     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
10146     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
10147     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
10148     dc->fpcr_ah = EX_TBFLAG_A64(tb_flags, AH);
10149     dc->fpcr_nep = EX_TBFLAG_A64(tb_flags, NEP);
10150     dc->vec_len = 0;
10151     dc->vec_stride = 0;
10152     dc->cp_regs = arm_cpu->cp_regs;
10153     dc->features = env->features;
10154     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
10155     dc->gm_blocksize = arm_cpu->gm_blocksize;
10156 
10157 #ifdef CONFIG_USER_ONLY
10158     /* In sve_probe_page, we assume TBI is enabled. */
10159     tcg_debug_assert(dc->tbid & 1);
10160 #endif
10161 
10162     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
10163 
10164     /* Single step state. The code-generation logic here is:
10165      *  SS_ACTIVE == 0:
10166      *   generate code with no special handling for single-stepping (except
10167      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
10168      *   this happens anyway because those changes are all system register or
10169      *   PSTATE writes).
10170      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
10171      *   emit code for one insn
10172      *   emit code to clear PSTATE.SS
10173      *   emit code to generate software step exception for completed step
10174      *   end TB (as usual for having generated an exception)
10175      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
10176      *   emit code to generate a software step exception
10177      *   end the TB
10178      */
10179     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
10180     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
10181     dc->is_ldex = false;
10182 
10183     /* Bound the number of insns to execute to those left on the page.  */
10184     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
10185 
10186     /* If architectural single step active, limit to 1.  */
10187     if (dc->ss_active) {
10188         bound = 1;
10189     }
10190     dc->base.max_insns = MIN(dc->base.max_insns, bound);
10191 }
10192 
10193 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
10194 {
10195 }
10196 
10197 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
10198 {
10199     DisasContext *dc = container_of(dcbase, DisasContext, base);
10200     target_ulong pc_arg = dc->base.pc_next;
10201 
10202     if (tb_cflags(dcbase->tb) & CF_PCREL) {
10203         pc_arg &= ~TARGET_PAGE_MASK;
10204     }
10205     tcg_gen_insn_start(pc_arg, 0, 0);
10206     dc->insn_start_updated = false;
10207 }
10208 
10209 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
10210 {
10211     DisasContext *s = container_of(dcbase, DisasContext, base);
10212     CPUARMState *env = cpu_env(cpu);
10213     uint64_t pc = s->base.pc_next;
10214     uint32_t insn;
10215 
10216     /* Singlestep exceptions have the highest priority. */
10217     if (s->ss_active && !s->pstate_ss) {
10218         /* Singlestep state is Active-pending.
10219          * If we're in this state at the start of a TB then either
10220          *  a) we just took an exception to an EL which is being debugged
10221          *     and this is the first insn in the exception handler
10222          *  b) debug exceptions were masked and we just unmasked them
10223          *     without changing EL (eg by clearing PSTATE.D)
10224          * In either case we're going to take a swstep exception in the
10225          * "did not step an insn" case, and so the syndrome ISV and EX
10226          * bits should be zero.
10227          */
10228         assert(s->base.num_insns == 1);
10229         gen_swstep_exception(s, 0, 0);
10230         s->base.is_jmp = DISAS_NORETURN;
10231         s->base.pc_next = pc + 4;
10232         return;
10233     }
10234 
10235     if (pc & 3) {
10236         /*
10237          * PC alignment fault.  This has priority over the instruction abort
10238          * that we would receive from a translation fault via arm_ldl_code.
10239          * This should only be possible after an indirect branch, at the
10240          * start of the TB.
10241          */
10242         assert(s->base.num_insns == 1);
10243         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_vaddr(pc));
10244         s->base.is_jmp = DISAS_NORETURN;
10245         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
10246         return;
10247     }
10248 
10249     s->pc_curr = pc;
10250     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
10251     s->insn = insn;
10252     s->base.pc_next = pc + 4;
10253 
10254     s->fp_access_checked = 0;
10255     s->sve_access_checked = 0;
10256 
10257     if (s->pstate_il) {
10258         /*
10259          * Illegal execution state. This has priority over BTI
10260          * exceptions, but comes after instruction abort exceptions.
10261          */
10262         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
10263         return;
10264     }
10265 
10266     if (dc_isar_feature(aa64_bti, s)) {
10267         if (s->base.num_insns == 1) {
10268             /* First insn can have btype set to non-zero.  */
10269             tcg_debug_assert(s->btype >= 0);
10270 
10271             /*
10272              * Note that the Branch Target Exception has fairly high
10273              * priority -- below debugging exceptions but above most
10274              * everything else.  This allows us to handle this now
10275              * instead of waiting until the insn is otherwise decoded.
10276              *
10277              * We can check all but the guarded page check here;
10278              * defer the latter to a helper.
10279              */
10280             if (s->btype != 0
10281                 && !btype_destination_ok(insn, s->bt, s->btype)) {
10282                 gen_helper_guarded_page_check(tcg_env);
10283             }
10284         } else {
10285             /* Not the first insn: btype must be 0.  */
10286             tcg_debug_assert(s->btype == 0);
10287         }
10288     }
10289 
10290     s->is_nonstreaming = false;
10291     if (s->sme_trap_nonstreaming) {
10292         disas_sme_fa64(s, insn);
10293     }
10294 
10295     if (!disas_a64(s, insn) &&
10296         !disas_sme(s, insn) &&
10297         !disas_sve(s, insn)) {
10298         unallocated_encoding(s);
10299     }
10300 
10301     /*
10302      * After execution of most insns, btype is reset to 0.
10303      * Note that we set btype == -1 when the insn sets btype.
10304      */
10305     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
10306         reset_btype(s);
10307     }
10308 }
10309 
10310 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
10311 {
10312     DisasContext *dc = container_of(dcbase, DisasContext, base);
10313 
10314     if (unlikely(dc->ss_active)) {
10315         /* Note that this means single stepping WFI doesn't halt the CPU.
10316          * For conditional branch insns this is harmless unreachable code as
10317          * gen_goto_tb() has already handled emitting the debug exception
10318          * (and thus a tb-jump is not possible when singlestepping).
10319          */
10320         switch (dc->base.is_jmp) {
10321         default:
10322             gen_a64_update_pc(dc, 4);
10323             /* fall through */
10324         case DISAS_EXIT:
10325         case DISAS_JUMP:
10326             gen_step_complete_exception(dc);
10327             break;
10328         case DISAS_NORETURN:
10329             break;
10330         }
10331     } else {
10332         switch (dc->base.is_jmp) {
10333         case DISAS_NEXT:
10334         case DISAS_TOO_MANY:
10335             gen_goto_tb(dc, 1, 4);
10336             break;
10337         default:
10338         case DISAS_UPDATE_EXIT:
10339             gen_a64_update_pc(dc, 4);
10340             /* fall through */
10341         case DISAS_EXIT:
10342             tcg_gen_exit_tb(NULL, 0);
10343             break;
10344         case DISAS_UPDATE_NOCHAIN:
10345             gen_a64_update_pc(dc, 4);
10346             /* fall through */
10347         case DISAS_JUMP:
10348             tcg_gen_lookup_and_goto_ptr();
10349             break;
10350         case DISAS_NORETURN:
10351         case DISAS_SWI:
10352             break;
10353         case DISAS_WFE:
10354             gen_a64_update_pc(dc, 4);
10355             gen_helper_wfe(tcg_env);
10356             break;
10357         case DISAS_YIELD:
10358             gen_a64_update_pc(dc, 4);
10359             gen_helper_yield(tcg_env);
10360             break;
10361         case DISAS_WFI:
10362             /*
10363              * This is a special case because we don't want to just halt
10364              * the CPU if trying to debug across a WFI.
10365              */
10366             gen_a64_update_pc(dc, 4);
10367             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
10368             /*
10369              * The helper doesn't necessarily throw an exception, but we
10370              * must go back to the main loop to check for interrupts anyway.
10371              */
10372             tcg_gen_exit_tb(NULL, 0);
10373             break;
10374         }
10375     }
10376 }
10377 
10378 const TranslatorOps aarch64_translator_ops = {
10379     .init_disas_context = aarch64_tr_init_disas_context,
10380     .tb_start           = aarch64_tr_tb_start,
10381     .insn_start         = aarch64_tr_insn_start,
10382     .translate_insn     = aarch64_tr_translate_insn,
10383     .tb_stop            = aarch64_tr_tb_stop,
10384 };
10385