xref: /qemu/target/arm/tcg/op_helper.c (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 /*
2  *  ARM helper routines
3  *
4  *  Copyright (c) 2005-2007 CodeSourcery, LLC
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "cpregs.h"
28 
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
31 
32 int exception_target_el(CPUARMState *env)
33 {
34     int target_el = MAX(1, arm_current_el(env));
35 
36     /*
37      * No such thing as secure EL1 if EL3 is aarch32,
38      * so update the target EL to EL3 in this case.
39      */
40     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
41         target_el = 3;
42     }
43 
44     return target_el;
45 }
46 
47 void raise_exception(CPUARMState *env, uint32_t excp,
48                      uint32_t syndrome, uint32_t target_el)
49 {
50     CPUState *cs = env_cpu(env);
51 
52     if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
53         /*
54          * Redirect NS EL1 exceptions to NS EL2. These are reported with
55          * their original syndrome register value, with the exception of
56          * SIMD/FP access traps, which are reported as uncategorized
57          * (see DDI0478C.a D1.10.4)
58          */
59         target_el = 2;
60         if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
61             syndrome = syn_uncategorized();
62         }
63     }
64 
65     assert(!excp_is_internal(excp));
66     cs->exception_index = excp;
67     env->exception.syndrome = syndrome;
68     env->exception.target_el = target_el;
69     cpu_loop_exit(cs);
70 }
71 
72 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
73                         uint32_t target_el, uintptr_t ra)
74 {
75     CPUState *cs = env_cpu(env);
76 
77     /*
78      * restore_state_to_opc() will set env->exception.syndrome, so
79      * we must restore CPU state here before setting the syndrome
80      * the caller passed us, and cannot use cpu_loop_exit_restore().
81      */
82     cpu_restore_state(cs, ra);
83     raise_exception(env, excp, syndrome, target_el);
84 }
85 
86 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
87                           uint64_t ireg, uint64_t def)
88 {
89     uint64_t tmp, val = 0;
90     uint32_t maxindex = ((desc & 3) + 1) * 8;
91     uint32_t base_reg = desc >> 2;
92     uint32_t shift, index, reg;
93 
94     for (shift = 0; shift < 64; shift += 8) {
95         index = (ireg >> shift) & 0xff;
96         if (index < maxindex) {
97             reg = base_reg + (index >> 3);
98             tmp = *aa32_vfp_dreg(env, reg);
99             tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
100         } else {
101             tmp = def & (0xffull << shift);
102         }
103         val |= tmp;
104     }
105     return val;
106 }
107 
108 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
109 {
110     /*
111      * Perform the v8M stack limit check for SP updates from translated code,
112      * raising an exception if the limit is breached.
113      */
114     if (newvalue < v7m_sp_limit(env)) {
115         /*
116          * Stack limit exceptions are a rare case, so rather than syncing
117          * PC/condbits before the call, we use raise_exception_ra() so
118          * that cpu_restore_state() will sort them out.
119          */
120         raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
121     }
122 }
123 
124 /* Sign/zero extend */
125 uint32_t HELPER(sxtb16)(uint32_t x)
126 {
127     uint32_t res;
128     res = (uint16_t)(int8_t)x;
129     res |= (uint32_t)(int8_t)(x >> 16) << 16;
130     return res;
131 }
132 
133 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
134 {
135     /*
136      * Take a division-by-zero exception if necessary; otherwise return
137      * to get the usual non-trapping division behaviour (result of 0)
138      */
139     if (arm_feature(env, ARM_FEATURE_M)
140         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
141         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
142     }
143 }
144 
145 uint32_t HELPER(uxtb16)(uint32_t x)
146 {
147     uint32_t res;
148     res = (uint16_t)(uint8_t)x;
149     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
150     return res;
151 }
152 
153 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
154 {
155     if (den == 0) {
156         handle_possible_div0_trap(env, GETPC());
157         return 0;
158     }
159     if (num == INT_MIN && den == -1) {
160         return INT_MIN;
161     }
162     return num / den;
163 }
164 
165 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
166 {
167     if (den == 0) {
168         handle_possible_div0_trap(env, GETPC());
169         return 0;
170     }
171     return num / den;
172 }
173 
174 uint32_t HELPER(rbit)(uint32_t x)
175 {
176     return revbit32(x);
177 }
178 
179 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
180 {
181     uint32_t res = a + b;
182     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
183         env->QF = 1;
184     return res;
185 }
186 
187 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
188 {
189     uint32_t res = a + b;
190     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
191         env->QF = 1;
192         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
193     }
194     return res;
195 }
196 
197 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
198 {
199     uint32_t res = a - b;
200     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
201         env->QF = 1;
202         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
203     }
204     return res;
205 }
206 
207 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
208 {
209     uint32_t res = a + b;
210     if (res < a) {
211         env->QF = 1;
212         res = ~0;
213     }
214     return res;
215 }
216 
217 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
218 {
219     uint32_t res = a - b;
220     if (res > a) {
221         env->QF = 1;
222         res = 0;
223     }
224     return res;
225 }
226 
227 /* Signed saturation.  */
228 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
229 {
230     int32_t top;
231     uint32_t mask;
232 
233     top = val >> shift;
234     mask = (1u << shift) - 1;
235     if (top > 0) {
236         env->QF = 1;
237         return mask;
238     } else if (top < -1) {
239         env->QF = 1;
240         return ~mask;
241     }
242     return val;
243 }
244 
245 /* Unsigned saturation.  */
246 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
247 {
248     uint32_t max;
249 
250     max = (1u << shift) - 1;
251     if (val < 0) {
252         env->QF = 1;
253         return 0;
254     } else if (val > max) {
255         env->QF = 1;
256         return max;
257     }
258     return val;
259 }
260 
261 /* Signed saturate.  */
262 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
263 {
264     return do_ssat(env, x, shift);
265 }
266 
267 /* Dual halfword signed saturate.  */
268 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
269 {
270     uint32_t res;
271 
272     res = (uint16_t)do_ssat(env, (int16_t)x, shift);
273     res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
274     return res;
275 }
276 
277 /* Unsigned saturate.  */
278 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
279 {
280     return do_usat(env, x, shift);
281 }
282 
283 /* Dual halfword unsigned saturate.  */
284 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
285 {
286     uint32_t res;
287 
288     res = (uint16_t)do_usat(env, (int16_t)x, shift);
289     res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
290     return res;
291 }
292 
293 void HELPER(setend)(CPUARMState *env)
294 {
295     env->uncached_cpsr ^= CPSR_E;
296     arm_rebuild_hflags(env);
297 }
298 
299 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
300 {
301     /*
302      * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
303      * check if HSTR.TJDBX means we need to trap to EL2.
304      */
305     if (env->cp15.hstr_el2 & HSTR_TJDBX) {
306         /*
307          * We know the condition code check passed, so take the IMPDEF
308          * choice to always report CV=1 COND 0xe
309          */
310         uint32_t syn = syn_bxjtrap(1, 0xe, rm);
311         raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
312     }
313 }
314 
315 #ifndef CONFIG_USER_ONLY
316 /*
317  * Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
318  * The function returns the target EL (1-3) if the instruction is to be trapped;
319  * otherwise it returns 0 indicating it is not trapped.
320  * For a trap, *excp is updated with the EXCP_* trap type to use.
321  */
322 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe, uint32_t *excp)
323 {
324     int cur_el = arm_current_el(env);
325     uint64_t mask;
326 
327     *excp = EXCP_UDEF;
328 
329     if (arm_feature(env, ARM_FEATURE_M)) {
330         /* M profile cores can never trap WFI/WFE. */
331         return 0;
332     }
333 
334     /* If we are currently in EL0 then we need to check if SCTLR is set up for
335      * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
336      */
337     if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
338         mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
339         if (!(arm_sctlr(env, cur_el) & mask)) {
340             return exception_target_el(env);
341         }
342     }
343 
344     /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
345      * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
346      * bits will be zero indicating no trap.
347      */
348     if (cur_el < 2) {
349         mask = is_wfe ? HCR_TWE : HCR_TWI;
350         if (arm_hcr_el2_eff(env) & mask) {
351             return 2;
352         }
353     }
354 
355     /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
356     if (arm_feature(env, ARM_FEATURE_V8) && !arm_is_el3_or_mon(env)) {
357         mask = (is_wfe) ? SCR_TWE : SCR_TWI;
358         if (env->cp15.scr_el3 & mask) {
359             if (!arm_el_is_aa64(env, 3)) {
360                 *excp = EXCP_MON_TRAP;
361             }
362             return 3;
363         }
364     }
365 
366     return 0;
367 }
368 #endif
369 
370 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
371 {
372 #ifdef CONFIG_USER_ONLY
373     /*
374      * WFI in the user-mode emulator is technically permitted but not
375      * something any real-world code would do. AArch64 Linux kernels
376      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
377      * AArch32 kernels don't trap it so it will delay a bit.
378      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
379      * would trigger an abort.
380      */
381     return;
382 #else
383     CPUState *cs = env_cpu(env);
384     uint32_t excp;
385     int target_el = check_wfx_trap(env, false, &excp);
386 
387     if (cpu_has_work(cs)) {
388         /* Don't bother to go into our "low power state" if
389          * we would just wake up immediately.
390          */
391         return;
392     }
393 
394     if (target_el) {
395         if (env->aarch64) {
396             env->pc -= insn_len;
397         } else {
398             env->regs[15] -= insn_len;
399         }
400 
401         raise_exception(env, excp, syn_wfx(1, 0xe, 0, insn_len == 2),
402                         target_el);
403     }
404 
405     cs->exception_index = EXCP_HLT;
406     cs->halted = 1;
407     cpu_loop_exit(cs);
408 #endif
409 }
410 
411 void HELPER(wfit)(CPUARMState *env, uint64_t timeout)
412 {
413 #ifdef CONFIG_USER_ONLY
414     /*
415      * WFI in the user-mode emulator is technically permitted but not
416      * something any real-world code would do. AArch64 Linux kernels
417      * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
418      * AArch32 kernels don't trap it so it will delay a bit.
419      * For QEMU, make it NOP here, because trying to raise EXCP_HLT
420      * would trigger an abort.
421      */
422     return;
423 #else
424     ARMCPU *cpu = env_archcpu(env);
425     CPUState *cs = env_cpu(env);
426     uint32_t excp;
427     int target_el = check_wfx_trap(env, false, &excp);
428     /* The WFIT should time out when CNTVCT_EL0 >= the specified value. */
429     uint64_t cntval = gt_get_countervalue(env);
430     uint64_t offset = gt_virt_cnt_offset(env);
431     uint64_t cntvct = cntval - offset;
432     uint64_t nexttick;
433 
434     if (cpu_has_work(cs) || cntvct >= timeout) {
435         /*
436          * Don't bother to go into our "low power state" if
437          * we would just wake up immediately.
438          */
439         return;
440     }
441 
442     if (target_el) {
443         env->pc -= 4;
444         raise_exception(env, excp, syn_wfx(1, 0xe, 0, false), target_el);
445     }
446 
447     if (uadd64_overflow(timeout, offset, &nexttick)) {
448         nexttick = UINT64_MAX;
449     }
450     if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
451         /*
452          * If the timeout is too long for the signed 64-bit range
453          * of a QEMUTimer, let it expire early.
454          */
455         timer_mod_ns(cpu->wfxt_timer, INT64_MAX);
456     } else {
457         timer_mod(cpu->wfxt_timer, nexttick);
458     }
459     cs->exception_index = EXCP_HLT;
460     cs->halted = 1;
461     cpu_loop_exit(cs);
462 #endif
463 }
464 
465 void HELPER(wfe)(CPUARMState *env)
466 {
467     /* This is a hint instruction that is semantically different
468      * from YIELD even though we currently implement it identically.
469      * Don't actually halt the CPU, just yield back to top
470      * level loop. This is not going into a "low power state"
471      * (ie halting until some event occurs), so we never take
472      * a configurable trap to a different exception level.
473      */
474     HELPER(yield)(env);
475 }
476 
477 void HELPER(yield)(CPUARMState *env)
478 {
479     CPUState *cs = env_cpu(env);
480 
481     /* This is a non-trappable hint instruction that generally indicates
482      * that the guest is currently busy-looping. Yield control back to the
483      * top level loop so that a more deserving VCPU has a chance to run.
484      */
485     cs->exception_index = EXCP_YIELD;
486     cpu_loop_exit(cs);
487 }
488 
489 /* Raise an internal-to-QEMU exception. This is limited to only
490  * those EXCP values which are special cases for QEMU to interrupt
491  * execution and not to be used for exceptions which are passed to
492  * the guest (those must all have syndrome information and thus should
493  * use exception_with_syndrome*).
494  */
495 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
496 {
497     CPUState *cs = env_cpu(env);
498 
499     assert(excp_is_internal(excp));
500     cs->exception_index = excp;
501     cpu_loop_exit(cs);
502 }
503 
504 /* Raise an exception with the specified syndrome register value */
505 void HELPER(exception_with_syndrome_el)(CPUARMState *env, uint32_t excp,
506                                         uint32_t syndrome, uint32_t target_el)
507 {
508     raise_exception(env, excp, syndrome, target_el);
509 }
510 
511 /*
512  * Raise an exception with the specified syndrome register value
513  * to the default target el.
514  */
515 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
516                                      uint32_t syndrome)
517 {
518     raise_exception(env, excp, syndrome, exception_target_el(env));
519 }
520 
521 uint32_t HELPER(cpsr_read)(CPUARMState *env)
522 {
523     return cpsr_read(env) & ~CPSR_EXEC;
524 }
525 
526 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
527 {
528     cpsr_write(env, val, mask, CPSRWriteByInstr);
529     /* TODO: Not all cpsr bits are relevant to hflags.  */
530     arm_rebuild_hflags(env);
531 }
532 
533 /* Write the CPSR for a 32-bit exception return */
534 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
535 {
536     uint32_t mask;
537 
538     bql_lock();
539     arm_call_pre_el_change_hook(env_archcpu(env));
540     bql_unlock();
541 
542     mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
543     cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
544 
545     /* Generated code has already stored the new PC value, but
546      * without masking out its low bits, because which bits need
547      * masking depends on whether we're returning to Thumb or ARM
548      * state. Do the masking now.
549      */
550     env->regs[15] &= (env->thumb ? ~1 : ~3);
551     arm_rebuild_hflags(env);
552 
553     bql_lock();
554     arm_call_el_change_hook(env_archcpu(env));
555     bql_unlock();
556 }
557 
558 /* Access to user mode registers from privileged modes.  */
559 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
560 {
561     uint32_t val;
562 
563     if (regno == 13) {
564         val = env->banked_r13[BANK_USRSYS];
565     } else if (regno == 14) {
566         val = env->banked_r14[BANK_USRSYS];
567     } else if (regno >= 8
568                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
569         val = env->usr_regs[regno - 8];
570     } else {
571         val = env->regs[regno];
572     }
573     return val;
574 }
575 
576 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
577 {
578     if (regno == 13) {
579         env->banked_r13[BANK_USRSYS] = val;
580     } else if (regno == 14) {
581         env->banked_r14[BANK_USRSYS] = val;
582     } else if (regno >= 8
583                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
584         env->usr_regs[regno - 8] = val;
585     } else {
586         env->regs[regno] = val;
587     }
588 }
589 
590 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
591 {
592     if ((env->uncached_cpsr & CPSR_M) == mode) {
593         env->regs[13] = val;
594     } else {
595         env->banked_r13[bank_number(mode)] = val;
596     }
597 }
598 
599 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
600 {
601     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
602         /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
603          * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
604          */
605         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
606                         exception_target_el(env));
607     }
608 
609     if ((env->uncached_cpsr & CPSR_M) == mode) {
610         return env->regs[13];
611     } else {
612         return env->banked_r13[bank_number(mode)];
613     }
614 }
615 
616 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
617                                       uint32_t regno)
618 {
619     /* Raise an exception if the requested access is one of the UNPREDICTABLE
620      * cases; otherwise return. This broadly corresponds to the pseudocode
621      * BankedRegisterAccessValid() and SPSRAccessValid(),
622      * except that we have already handled some cases at translate time.
623      */
624     int curmode = env->uncached_cpsr & CPSR_M;
625 
626     if (tgtmode == ARM_CPU_MODE_HYP) {
627         /*
628          * Handle Hyp target regs first because some are special cases
629          * which don't want the usual "not accessible from tgtmode" check.
630          */
631         switch (regno) {
632         case 16 ... 17: /* ELR_Hyp, SPSR_Hyp */
633             if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
634                 goto undef;
635             }
636             break;
637         case 13:
638             if (curmode != ARM_CPU_MODE_MON) {
639                 goto undef;
640             }
641             break;
642         default:
643             g_assert_not_reached();
644         }
645         return;
646     }
647 
648     if (curmode == tgtmode) {
649         goto undef;
650     }
651 
652     if (tgtmode == ARM_CPU_MODE_USR) {
653         switch (regno) {
654         case 8 ... 12:
655             if (curmode != ARM_CPU_MODE_FIQ) {
656                 goto undef;
657             }
658             break;
659         case 13:
660             if (curmode == ARM_CPU_MODE_SYS) {
661                 goto undef;
662             }
663             break;
664         case 14:
665             if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
666                 goto undef;
667             }
668             break;
669         default:
670             break;
671         }
672     }
673 
674     return;
675 
676 undef:
677     raise_exception(env, EXCP_UDEF, syn_uncategorized(),
678                     exception_target_el(env));
679 }
680 
681 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
682                         uint32_t regno)
683 {
684     msr_mrs_banked_exc_checks(env, tgtmode, regno);
685 
686     switch (regno) {
687     case 16: /* SPSRs */
688         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
689             /* Only happens for SPSR_Hyp access in Hyp mode */
690             env->spsr = value;
691         } else {
692             env->banked_spsr[bank_number(tgtmode)] = value;
693         }
694         break;
695     case 17: /* ELR_Hyp */
696         env->elr_el[2] = value;
697         break;
698     case 13:
699         env->banked_r13[bank_number(tgtmode)] = value;
700         break;
701     case 14:
702         env->banked_r14[r14_bank_number(tgtmode)] = value;
703         break;
704     case 8 ... 12:
705         switch (tgtmode) {
706         case ARM_CPU_MODE_USR:
707             env->usr_regs[regno - 8] = value;
708             break;
709         case ARM_CPU_MODE_FIQ:
710             env->fiq_regs[regno - 8] = value;
711             break;
712         default:
713             g_assert_not_reached();
714         }
715         break;
716     default:
717         g_assert_not_reached();
718     }
719 }
720 
721 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
722 {
723     msr_mrs_banked_exc_checks(env, tgtmode, regno);
724 
725     switch (regno) {
726     case 16: /* SPSRs */
727         if (tgtmode == (env->uncached_cpsr & CPSR_M)) {
728             /* Only happens for SPSR_Hyp access in Hyp mode */
729             return env->spsr;
730         } else {
731             return env->banked_spsr[bank_number(tgtmode)];
732         }
733     case 17: /* ELR_Hyp */
734         return env->elr_el[2];
735     case 13:
736         return env->banked_r13[bank_number(tgtmode)];
737     case 14:
738         return env->banked_r14[r14_bank_number(tgtmode)];
739     case 8 ... 12:
740         switch (tgtmode) {
741         case ARM_CPU_MODE_USR:
742             return env->usr_regs[regno - 8];
743         case ARM_CPU_MODE_FIQ:
744             return env->fiq_regs[regno - 8];
745         default:
746             g_assert_not_reached();
747         }
748     default:
749         g_assert_not_reached();
750     }
751 }
752 
753 const void *HELPER(access_check_cp_reg)(CPUARMState *env, uint32_t key,
754                                         uint32_t syndrome, uint32_t isread)
755 {
756     ARMCPU *cpu = env_archcpu(env);
757     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
758     CPAccessResult res = CP_ACCESS_OK;
759     int target_el;
760     uint32_t excp;
761 
762     assert(ri != NULL);
763 
764     if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
765         && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
766         res = CP_ACCESS_UNDEFINED;
767         goto fail;
768     }
769 
770     if (ri->accessfn) {
771         res = ri->accessfn(env, ri, isread);
772     }
773 
774     /*
775      * If the access function indicates a trap from EL0 to EL1 then
776      * that always takes priority over the HSTR_EL2 trap. (If it indicates
777      * a trap to EL3, then the HSTR_EL2 trap takes priority; if it indicates
778      * a trap to EL2, then the syndrome is the same either way so we don't
779      * care whether technically the architecture says that HSTR_EL2 trap or
780      * the other trap takes priority. So we take the "check HSTR_EL2" path
781      * for all of those cases.)
782      */
783     if (res != CP_ACCESS_OK && ((res & CP_ACCESS_EL_MASK) < 2) &&
784         arm_current_el(env) == 0) {
785         goto fail;
786     }
787 
788     /*
789      * HSTR_EL2 traps from EL1 are checked earlier, in generated code;
790      * we only need to check here for traps from EL0.
791      */
792     if (!is_a64(env) && arm_current_el(env) == 0 && ri->cp == 15 &&
793         arm_is_el2_enabled(env) &&
794         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
795         uint32_t mask = 1 << ri->crn;
796 
797         if (ri->type & ARM_CP_64BIT) {
798             mask = 1 << ri->crm;
799         }
800 
801         /* T4 and T14 are RES0 */
802         mask &= ~((1 << 4) | (1 << 14));
803 
804         if (env->cp15.hstr_el2 & mask) {
805             res = CP_ACCESS_TRAP_EL2;
806             goto fail;
807         }
808     }
809 
810     /*
811      * Fine-grained traps also are lower priority than undef-to-EL1,
812      * higher priority than trap-to-EL3, and we don't care about priority
813      * order with other EL2 traps because the syndrome value is the same.
814      */
815     if (arm_fgt_active(env, arm_current_el(env))) {
816         uint64_t trapword = 0;
817         unsigned int idx = FIELD_EX32(ri->fgt, FGT, IDX);
818         unsigned int bitpos = FIELD_EX32(ri->fgt, FGT, BITPOS);
819         bool rev = FIELD_EX32(ri->fgt, FGT, REV);
820         bool nxs = FIELD_EX32(ri->fgt, FGT, NXS);
821         bool trapbit;
822 
823         if (ri->fgt & FGT_EXEC) {
824             assert(idx < ARRAY_SIZE(env->cp15.fgt_exec));
825             trapword = env->cp15.fgt_exec[idx];
826         } else if (isread && (ri->fgt & FGT_R)) {
827             assert(idx < ARRAY_SIZE(env->cp15.fgt_read));
828             trapword = env->cp15.fgt_read[idx];
829         } else if (!isread && (ri->fgt & FGT_W)) {
830             assert(idx < ARRAY_SIZE(env->cp15.fgt_write));
831             trapword = env->cp15.fgt_write[idx];
832         }
833 
834         if (nxs && (arm_hcrx_el2_eff(env) & HCRX_FGTNXS)) {
835             /*
836              * If HCRX_EL2.FGTnXS is 1 then the fine-grained trap for
837              * TLBI maintenance insns does *not* apply to the nXS variant.
838              */
839             trapbit = 0;
840         } else {
841             trapbit = extract64(trapword, bitpos, 1);
842         }
843         if (trapbit != rev) {
844             res = CP_ACCESS_TRAP_EL2;
845             goto fail;
846         }
847     }
848 
849     if (likely(res == CP_ACCESS_OK)) {
850         return ri;
851     }
852 
853  fail:
854     excp = EXCP_UDEF;
855     switch (res) {
856         /* CP_ACCESS_TRAP* traps are always direct to a specified EL */
857     case CP_ACCESS_TRAP_EL3:
858         /*
859          * If EL3 is AArch32 then there's no syndrome register; the cases
860          * where we would raise a SystemAccessTrap to AArch64 EL3 all become
861          * raising a Monitor trap exception. (Because there's no visible
862          * syndrome it doesn't matter what we pass to raise_exception().)
863          */
864         if (!arm_el_is_aa64(env, 3)) {
865             excp = EXCP_MON_TRAP;
866         }
867         break;
868     case CP_ACCESS_TRAP_EL2:
869     case CP_ACCESS_TRAP_EL1:
870         break;
871     case CP_ACCESS_UNDEFINED:
872         /* CP_ACCESS_UNDEFINED is never direct to a specified EL */
873         if (cpu_isar_feature(aa64_ids, cpu) && isread &&
874             arm_cpreg_in_idspace(ri)) {
875             /*
876              * FEAT_IDST says this should be reported as EC_SYSTEMREGISTERTRAP,
877              * not EC_UNCATEGORIZED
878              */
879             break;
880         }
881         syndrome = syn_uncategorized();
882         break;
883     default:
884         g_assert_not_reached();
885     }
886 
887     target_el = res & CP_ACCESS_EL_MASK;
888     switch (target_el) {
889     case 0:
890         target_el = exception_target_el(env);
891         break;
892     case 1:
893         assert(arm_current_el(env) < 2);
894         break;
895     case 2:
896         assert(arm_current_el(env) != 3);
897         assert(arm_is_el2_enabled(env));
898         break;
899     case 3:
900         assert(arm_feature(env, ARM_FEATURE_EL3));
901         break;
902     default:
903         g_assert_not_reached();
904     }
905 
906     raise_exception(env, excp, syndrome, target_el);
907 }
908 
909 const void *HELPER(lookup_cp_reg)(CPUARMState *env, uint32_t key)
910 {
911     ARMCPU *cpu = env_archcpu(env);
912     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, key);
913 
914     assert(ri != NULL);
915     return ri;
916 }
917 
918 /*
919  * Test for HCR_EL2.TIDCP at EL1.
920  * Since implementation defined registers are rare, and within QEMU
921  * most of them are no-op, do not waste HFLAGS space for this and
922  * always use a helper.
923  */
924 void HELPER(tidcp_el1)(CPUARMState *env, uint32_t syndrome)
925 {
926     if (arm_hcr_el2_eff(env) & HCR_TIDCP) {
927         raise_exception_ra(env, EXCP_UDEF, syndrome, 2, GETPC());
928     }
929 }
930 
931 /*
932  * Similarly, for FEAT_TIDCP1 at EL0.
933  * We have already checked for the presence of the feature.
934  */
935 void HELPER(tidcp_el0)(CPUARMState *env, uint32_t syndrome)
936 {
937     /* See arm_sctlr(), but we also need the sctlr el. */
938     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
939     int target_el;
940 
941     switch (mmu_idx) {
942     case ARMMMUIdx_E20_0:
943         target_el = 2;
944         break;
945     case ARMMMUIdx_E30_0:
946         target_el = 3;
947         break;
948     default:
949         target_el = 1;
950         break;
951     }
952 
953     /*
954      * The bit is not valid unless the target el is aa64, but since the
955      * bit test is simpler perform that first and check validity after.
956      */
957     if ((env->cp15.sctlr_el[target_el] & SCTLR_TIDCP)
958         && arm_el_is_aa64(env, target_el)) {
959         raise_exception_ra(env, EXCP_UDEF, syndrome, target_el, GETPC());
960     }
961 }
962 
963 void HELPER(set_cp_reg)(CPUARMState *env, const void *rip, uint32_t value)
964 {
965     const ARMCPRegInfo *ri = rip;
966 
967     if (ri->type & ARM_CP_IO) {
968         bql_lock();
969         ri->writefn(env, ri, value);
970         bql_unlock();
971     } else {
972         ri->writefn(env, ri, value);
973     }
974 }
975 
976 uint32_t HELPER(get_cp_reg)(CPUARMState *env, const void *rip)
977 {
978     const ARMCPRegInfo *ri = rip;
979     uint32_t res;
980 
981     if (ri->type & ARM_CP_IO) {
982         bql_lock();
983         res = ri->readfn(env, ri);
984         bql_unlock();
985     } else {
986         res = ri->readfn(env, ri);
987     }
988 
989     return res;
990 }
991 
992 void HELPER(set_cp_reg64)(CPUARMState *env, const void *rip, uint64_t value)
993 {
994     const ARMCPRegInfo *ri = rip;
995 
996     if (ri->type & ARM_CP_IO) {
997         bql_lock();
998         ri->writefn(env, ri, value);
999         bql_unlock();
1000     } else {
1001         ri->writefn(env, ri, value);
1002     }
1003 }
1004 
1005 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, const void *rip)
1006 {
1007     const ARMCPRegInfo *ri = rip;
1008     uint64_t res;
1009 
1010     if (ri->type & ARM_CP_IO) {
1011         bql_lock();
1012         res = ri->readfn(env, ri);
1013         bql_unlock();
1014     } else {
1015         res = ri->readfn(env, ri);
1016     }
1017 
1018     return res;
1019 }
1020 
1021 void HELPER(pre_hvc)(CPUARMState *env)
1022 {
1023     ARMCPU *cpu = env_archcpu(env);
1024     int cur_el = arm_current_el(env);
1025     /* FIXME: Use actual secure state.  */
1026     bool secure = false;
1027     bool undef;
1028 
1029     if (arm_is_psci_call(cpu, EXCP_HVC)) {
1030         /* If PSCI is enabled and this looks like a valid PSCI call then
1031          * that overrides the architecturally mandated HVC behaviour.
1032          */
1033         return;
1034     }
1035 
1036     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1037         /* If EL2 doesn't exist, HVC always UNDEFs */
1038         undef = true;
1039     } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1040         /* EL3.HCE has priority over EL2.HCD. */
1041         undef = !(env->cp15.scr_el3 & SCR_HCE);
1042     } else {
1043         undef = env->cp15.hcr_el2 & HCR_HCD;
1044     }
1045 
1046     /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
1047      * For ARMv8/AArch64, HVC is allowed in EL3.
1048      * Note that we've already trapped HVC from EL0 at translation
1049      * time.
1050      */
1051     if (secure && (!is_a64(env) || cur_el == 1)) {
1052         undef = true;
1053     }
1054 
1055     if (undef) {
1056         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1057                         exception_target_el(env));
1058     }
1059 }
1060 
1061 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
1062 {
1063     ARMCPU *cpu = env_archcpu(env);
1064     int cur_el = arm_current_el(env);
1065     bool secure = arm_is_secure(env);
1066     bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
1067 
1068     /*
1069      * SMC behaviour is summarized in the following table.
1070      * This helper handles the "Trap to EL2" and "Undef insn" cases.
1071      * The "Trap to EL3" and "PSCI call" cases are handled in the exception
1072      * helper.
1073      *
1074      *  -> ARM_FEATURE_EL3 and !SMD
1075      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1076      *
1077      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1078      *  Conduit SMC, inval call  Trap to EL2         Trap to EL3
1079      *  Conduit not SMC          Trap to EL2         Trap to EL3
1080      *
1081      *
1082      *  -> ARM_FEATURE_EL3 and SMD
1083      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1084      *
1085      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1086      *  Conduit SMC, inval call  Trap to EL2         Undef insn
1087      *  Conduit not SMC          Trap to EL2         Undef insn
1088      *
1089      *
1090      *  -> !ARM_FEATURE_EL3
1091      *                           HCR_TSC && NS EL1   !HCR_TSC || !NS EL1
1092      *
1093      *  Conduit SMC, valid call  Trap to EL2         PSCI Call
1094      *  Conduit SMC, inval call  Trap to EL2         Undef insn
1095      *  Conduit not SMC          Undef or trap[1]    Undef insn
1096      *
1097      * [1] In this case:
1098      *  - if HCR_EL2.NV == 1 we must trap to EL2
1099      *  - if HCR_EL2.NV == 0 then newer architecture revisions permit
1100      *    AArch64 (but not AArch32) to trap to EL2 as an IMPDEF choice
1101      *  - otherwise we must UNDEF
1102      * We take the IMPDEF choice to always UNDEF if HCR_EL2.NV == 0.
1103      */
1104 
1105     /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
1106      * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
1107      *  extensions, SMD only applies to NS state.
1108      * On ARMv7 without the Virtualization extensions, the SMD bit
1109      * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
1110      * so we need not special case this here.
1111      */
1112     bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
1113                                                      : smd_flag && !secure;
1114 
1115     if (!arm_feature(env, ARM_FEATURE_EL3) &&
1116         !(arm_hcr_el2_eff(env) & HCR_NV) &&
1117         cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
1118         /*
1119          * If we have no EL3 then traditionally SMC always UNDEFs and can't be
1120          * trapped to EL2. For nested virtualization, SMC can be trapped to
1121          * the outer hypervisor. PSCI-via-SMC is a sort of ersatz EL3
1122          * firmware within QEMU, and we want an EL2 guest to be able
1123          * to forbid its EL1 from making PSCI calls into QEMU's
1124          * "firmware" via HCR.TSC, so for these purposes treat
1125          * PSCI-via-SMC as implying an EL3.
1126          * This handles the very last line of the previous table.
1127          */
1128         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1129                         exception_target_el(env));
1130     }
1131 
1132     if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
1133         /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
1134          * We also want an EL2 guest to be able to forbid its EL1 from
1135          * making PSCI calls into QEMU's "firmware" via HCR.TSC.
1136          * This handles all the "Trap to EL2" cases of the previous table.
1137          */
1138         raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1139     }
1140 
1141     /* Catch the two remaining "Undef insn" cases of the previous table:
1142      *    - PSCI conduit is SMC but we don't have a valid PCSI call,
1143      *    - We don't have EL3 or SMD is set.
1144      */
1145     if (!arm_is_psci_call(cpu, EXCP_SMC) &&
1146         (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
1147         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
1148                         exception_target_el(env));
1149     }
1150 }
1151 
1152 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1153    The only way to do that in TCG is a conditional branch, which clobbers
1154    all our temporaries.  For now implement these as helper functions.  */
1155 
1156 /* Similarly for variable shift instructions.  */
1157 
1158 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1159 {
1160     int shift = i & 0xff;
1161     if (shift >= 32) {
1162         if (shift == 32)
1163             env->CF = x & 1;
1164         else
1165             env->CF = 0;
1166         return 0;
1167     } else if (shift != 0) {
1168         env->CF = (x >> (32 - shift)) & 1;
1169         return x << shift;
1170     }
1171     return x;
1172 }
1173 
1174 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1175 {
1176     int shift = i & 0xff;
1177     if (shift >= 32) {
1178         if (shift == 32)
1179             env->CF = (x >> 31) & 1;
1180         else
1181             env->CF = 0;
1182         return 0;
1183     } else if (shift != 0) {
1184         env->CF = (x >> (shift - 1)) & 1;
1185         return x >> shift;
1186     }
1187     return x;
1188 }
1189 
1190 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1191 {
1192     int shift = i & 0xff;
1193     if (shift >= 32) {
1194         env->CF = (x >> 31) & 1;
1195         return (int32_t)x >> 31;
1196     } else if (shift != 0) {
1197         env->CF = (x >> (shift - 1)) & 1;
1198         return (int32_t)x >> shift;
1199     }
1200     return x;
1201 }
1202 
1203 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1204 {
1205     int shift1, shift;
1206     shift1 = i & 0xff;
1207     shift = shift1 & 0x1f;
1208     if (shift == 0) {
1209         if (shift1 != 0)
1210             env->CF = (x >> 31) & 1;
1211         return x;
1212     } else {
1213         env->CF = (x >> (shift - 1)) & 1;
1214         return ((uint32_t)x >> shift) | (x << (32 - shift));
1215     }
1216 }
1217 
1218 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
1219                           uint32_t access_type, uint32_t mmu_idx,
1220                           uint32_t size)
1221 {
1222     uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
1223     uintptr_t ra = GETPC();
1224 
1225     if (likely(size <= in_page)) {
1226         probe_access(env, ptr, size, access_type, mmu_idx, ra);
1227     } else {
1228         probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
1229         probe_access(env, ptr + in_page, size - in_page,
1230                      access_type, mmu_idx, ra);
1231     }
1232 }
1233 
1234 /*
1235  * This function corresponds to AArch64.vESBOperation().
1236  * Note that the AArch32 version is not functionally different.
1237  */
1238 void HELPER(vesb)(CPUARMState *env)
1239 {
1240     /*
1241      * The EL2Enabled() check is done inside arm_hcr_el2_eff,
1242      * and will return HCR_EL2.VSE == 0, so nothing happens.
1243      */
1244     uint64_t hcr = arm_hcr_el2_eff(env);
1245     bool enabled = !(hcr & HCR_TGE) && (hcr & HCR_AMO);
1246     bool pending = enabled && (hcr & HCR_VSE);
1247     bool masked  = (env->daif & PSTATE_A);
1248 
1249     /* If VSE pending and masked, defer the exception.  */
1250     if (pending && masked) {
1251         uint32_t syndrome;
1252 
1253         if (arm_el_is_aa64(env, 1)) {
1254             /* Copy across IDS and ISS from VSESR. */
1255             syndrome = env->cp15.vsesr_el2 & 0x1ffffff;
1256         } else {
1257             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal };
1258 
1259             if (extended_addresses_enabled(env)) {
1260                 syndrome = arm_fi_to_lfsc(&fi);
1261             } else {
1262                 syndrome = arm_fi_to_sfsc(&fi);
1263             }
1264             /* Copy across AET and ExT from VSESR. */
1265             syndrome |= env->cp15.vsesr_el2 & 0xd000;
1266         }
1267 
1268         /* Set VDISR_EL2.A along with the syndrome. */
1269         env->cp15.vdisr_el2 = syndrome | (1u << 31);
1270 
1271         /* Clear pending virtual SError */
1272         env->cp15.hcr_el2 &= ~HCR_VSE;
1273         cpu_reset_interrupt(env_cpu(env), CPU_INTERRUPT_VSERR);
1274     }
1275 }
1276