xref: /qemu/target/arm/tcg/mve_helper.c (revision fac80f0856cc465b21e2e59a64146b3540e055db)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_eci_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector correspond
33      * to beats being executed. The mask has 1 bits for executed lanes
34      * and 0 bits where ECI says this beat was already executed.
35      */
36     int eci;
37 
38     if ((env->condexec_bits & 0xf) != 0) {
39         return 0xffff;
40     }
41 
42     eci = env->condexec_bits >> 4;
43     switch (eci) {
44     case ECI_NONE:
45         return 0xffff;
46     case ECI_A0:
47         return 0xfff0;
48     case ECI_A0A1:
49         return 0xff00;
50     case ECI_A0A1A2:
51     case ECI_A0A1A2B0:
52         return 0xf000;
53     default:
54         g_assert_not_reached();
55     }
56 }
57 
58 static uint16_t mve_element_mask(CPUARMState *env)
59 {
60     /*
61      * Return the mask of which elements in the MVE vector should be
62      * updated. This is a combination of multiple things:
63      *  (1) by default, we update every lane in the vector
64      *  (2) VPT predication stores its state in the VPR register;
65      *  (3) low-overhead-branch tail predication will mask out part
66      *      the vector on the final iteration of the loop
67      *  (4) if EPSR.ECI is set then we must execute only some beats
68      *      of the insn
69      * We combine all these into a 16-bit result with the same semantics
70      * as VPR.P0: 0 to mask the lane, 1 if it is active.
71      * 8-bit vector ops will look at all bits of the result;
72      * 16-bit ops will look at bits 0, 2, 4, ...;
73      * 32-bit ops will look at bits 0, 4, 8 and 12.
74      * Compare pseudocode GetCurInstrBeat(), though that only returns
75      * the 4-bit slice of the mask corresponding to a single beat.
76      */
77     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
78 
79     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
80         mask |= 0xff;
81     }
82     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
83         mask |= 0xff00;
84     }
85 
86     if (env->v7m.ltpsize < 4 &&
87         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
88         /*
89          * Tail predication active, and this is the last loop iteration.
90          * The element size is (1 << ltpsize), and we only want to process
91          * loopcount elements, so we want to retain the least significant
92          * (loopcount * esize) predicate bits and zero out bits above that.
93          */
94         int masklen = env->regs[14] << env->v7m.ltpsize;
95         assert(masklen <= 16);
96         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
97         mask &= ltpmask;
98     }
99 
100     /*
101      * ECI bits indicate which beats are already executed;
102      * we handle this by effectively predicating them out.
103      */
104     mask &= mve_eci_mask(env);
105     return mask;
106 }
107 
108 static void mve_advance_vpt(CPUARMState *env)
109 {
110     /* Advance the VPT and ECI state if necessary */
111     uint32_t vpr = env->v7m.vpr;
112     unsigned mask01, mask23;
113     uint16_t inv_mask;
114     uint16_t eci_mask = mve_eci_mask(env);
115 
116     if ((env->condexec_bits & 0xf) == 0) {
117         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
118             (ECI_A0 << 4) : (ECI_NONE << 4);
119     }
120 
121     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
122         /* VPT not enabled, nothing to do */
123         return;
124     }
125 
126     /* Invert P0 bits if needed, but only for beats we actually executed */
127     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
128     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
129     /* Start by assuming we invert all bits corresponding to executed beats */
130     inv_mask = eci_mask;
131     if (mask01 <= 8) {
132         /* MASK01 says don't invert low half of P0 */
133         inv_mask &= ~0xff;
134     }
135     if (mask23 <= 8) {
136         /* MASK23 says don't invert high half of P0 */
137         inv_mask &= ~0xff00;
138     }
139     vpr ^= inv_mask;
140     /* Only update MASK01 if beat 1 executed */
141     if (eci_mask & 0xf0) {
142         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
143     }
144     /* Beat 3 always executes, so update MASK23 */
145     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
146     env->v7m.vpr = vpr;
147 }
148 
149 /* For loads, predicated lanes are zeroed instead of keeping their old values */
150 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
151     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
152     {                                                                   \
153         TYPE *d = vd;                                                   \
154         uint16_t mask = mve_element_mask(env);                          \
155         uint16_t eci_mask = mve_eci_mask(env);                          \
156         unsigned b, e;                                                  \
157         /*                                                              \
158          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
159          * beats so we don't care if we update part of the dest and     \
160          * then take an exception.                                      \
161          */                                                             \
162         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
163             if (eci_mask & (1 << b)) {                                  \
164                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
165                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
166             }                                                           \
167             addr += MSIZE;                                              \
168         }                                                               \
169         mve_advance_vpt(env);                                           \
170     }
171 
172 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
173     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
174     {                                                                   \
175         TYPE *d = vd;                                                   \
176         uint16_t mask = mve_element_mask(env);                          \
177         unsigned b, e;                                                  \
178         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
179             if (mask & (1 << b)) {                                      \
180                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
181             }                                                           \
182             addr += MSIZE;                                              \
183         }                                                               \
184         mve_advance_vpt(env);                                           \
185     }
186 
187 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
188 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
189 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
190 
191 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
192 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
193 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
194 
195 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
196 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
197 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
198 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
199 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
200 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
201 
202 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
203 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
204 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
205 
206 #undef DO_VLDR
207 #undef DO_VSTR
208 
209 /*
210  * Gather loads/scatter stores. Here each element of Qm specifies
211  * an offset to use from the base register Rm. In the _os_ versions
212  * that offset is scaled by the element size.
213  * For loads, predicated lanes are zeroed instead of retaining
214  * their previous values.
215  */
216 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
217     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
218                           uint32_t base)                                \
219     {                                                                   \
220         TYPE *d = vd;                                                   \
221         OFFTYPE *m = vm;                                                \
222         uint16_t mask = mve_element_mask(env);                          \
223         uint16_t eci_mask = mve_eci_mask(env);                          \
224         unsigned e;                                                     \
225         uint32_t addr;                                                  \
226         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
227             if (!(eci_mask & 1)) {                                      \
228                 continue;                                               \
229             }                                                           \
230             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
231             d[H##ESIZE(e)] = (mask & 1) ?                               \
232                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
233             if (WB) {                                                   \
234                 m[H##ESIZE(e)] = addr;                                  \
235             }                                                           \
236         }                                                               \
237         mve_advance_vpt(env);                                           \
238     }
239 
240 /* We know here TYPE is unsigned so always the same as the offset type */
241 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
242     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
243                           uint32_t base)                                \
244     {                                                                   \
245         TYPE *d = vd;                                                   \
246         TYPE *m = vm;                                                   \
247         uint16_t mask = mve_element_mask(env);                          \
248         uint16_t eci_mask = mve_eci_mask(env);                          \
249         unsigned e;                                                     \
250         uint32_t addr;                                                  \
251         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
252             if (!(eci_mask & 1)) {                                      \
253                 continue;                                               \
254             }                                                           \
255             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
256             if (mask & 1) {                                             \
257                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
258             }                                                           \
259             if (WB) {                                                   \
260                 m[H##ESIZE(e)] = addr;                                  \
261             }                                                           \
262         }                                                               \
263         mve_advance_vpt(env);                                           \
264     }
265 
266 /*
267  * 64-bit accesses are slightly different: they are done as two 32-bit
268  * accesses, controlled by the predicate mask for the relevant beat,
269  * and with a single 32-bit offset in the first of the two Qm elements.
270  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
271  * Address writeback happens on the odd beats and updates the address
272  * stored in the even-beat element.
273  */
274 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
275     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
276                           uint32_t base)                                \
277     {                                                                   \
278         uint32_t *d = vd;                                               \
279         uint32_t *m = vm;                                               \
280         uint16_t mask = mve_element_mask(env);                          \
281         uint16_t eci_mask = mve_eci_mask(env);                          \
282         unsigned e;                                                     \
283         uint32_t addr;                                                  \
284         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
285             if (!(eci_mask & 1)) {                                      \
286                 continue;                                               \
287             }                                                           \
288             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
289             addr += 4 * (e & 1);                                        \
290             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
291             if (WB && (e & 1)) {                                        \
292                 m[H4(e & ~1)] = addr - 4;                               \
293             }                                                           \
294         }                                                               \
295         mve_advance_vpt(env);                                           \
296     }
297 
298 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
299     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
300                           uint32_t base)                                \
301     {                                                                   \
302         uint32_t *d = vd;                                               \
303         uint32_t *m = vm;                                               \
304         uint16_t mask = mve_element_mask(env);                          \
305         uint16_t eci_mask = mve_eci_mask(env);                          \
306         unsigned e;                                                     \
307         uint32_t addr;                                                  \
308         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
309             if (!(eci_mask & 1)) {                                      \
310                 continue;                                               \
311             }                                                           \
312             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
313             addr += 4 * (e & 1);                                        \
314             if (mask & 1) {                                             \
315                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
316             }                                                           \
317             if (WB && (e & 1)) {                                        \
318                 m[H4(e & ~1)] = addr - 4;                               \
319             }                                                           \
320         }                                                               \
321         mve_advance_vpt(env);                                           \
322     }
323 
324 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
325 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
326 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
327 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
328 
329 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
330 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
331 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
332 
333 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
334 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
335 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
336 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
337 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
338 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
339 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
340 
341 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
342 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
343 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
344 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
345 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
346 
347 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
348 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
349 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
350 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
351 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
352 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
353 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
354 
355 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
356 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
357 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
358 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
359 
360 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
361 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
362 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
363 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
364 
365 /*
366  * The mergemask(D, R, M) macro performs the operation "*D = R" but
367  * storing only the bytes which correspond to 1 bits in M,
368  * leaving other bytes in *D unchanged. We use _Generic
369  * to select the correct implementation based on the type of D.
370  */
371 
372 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
373 {
374     if (mask & 1) {
375         *d = r;
376     }
377 }
378 
379 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
380 {
381     mergemask_ub((uint8_t *)d, r, mask);
382 }
383 
384 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
385 {
386     uint16_t bmask = expand_pred_b_data[mask & 3];
387     *d = (*d & ~bmask) | (r & bmask);
388 }
389 
390 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
391 {
392     mergemask_uh((uint16_t *)d, r, mask);
393 }
394 
395 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
396 {
397     uint32_t bmask = expand_pred_b_data[mask & 0xf];
398     *d = (*d & ~bmask) | (r & bmask);
399 }
400 
401 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
402 {
403     mergemask_uw((uint32_t *)d, r, mask);
404 }
405 
406 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
407 {
408     uint64_t bmask = expand_pred_b_data[mask & 0xff];
409     *d = (*d & ~bmask) | (r & bmask);
410 }
411 
412 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
413 {
414     mergemask_uq((uint64_t *)d, r, mask);
415 }
416 
417 #define mergemask(D, R, M)                      \
418     _Generic(D,                                 \
419              uint8_t *: mergemask_ub,           \
420              int8_t *:  mergemask_sb,           \
421              uint16_t *: mergemask_uh,          \
422              int16_t *:  mergemask_sh,          \
423              uint32_t *: mergemask_uw,          \
424              int32_t *:  mergemask_sw,          \
425              uint64_t *: mergemask_uq,          \
426              int64_t *:  mergemask_sq)(D, R, M)
427 
428 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
429 {
430     /*
431      * The generated code already replicated an 8 or 16 bit constant
432      * into the 32-bit value, so we only need to write the 32-bit
433      * value to all elements of the Qreg, allowing for predication.
434      */
435     uint32_t *d = vd;
436     uint16_t mask = mve_element_mask(env);
437     unsigned e;
438     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
439         mergemask(&d[H4(e)], val, mask);
440     }
441     mve_advance_vpt(env);
442 }
443 
444 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
445     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
446     {                                                                   \
447         TYPE *d = vd, *m = vm;                                          \
448         uint16_t mask = mve_element_mask(env);                          \
449         unsigned e;                                                     \
450         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
451             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
452         }                                                               \
453         mve_advance_vpt(env);                                           \
454     }
455 
456 #define DO_CLS_B(N)   (clrsb32(N) - 24)
457 #define DO_CLS_H(N)   (clrsb32(N) - 16)
458 
459 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
460 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
461 DO_1OP(vclsw, 4, int32_t, clrsb32)
462 
463 #define DO_CLZ_B(N)   (clz32(N) - 24)
464 #define DO_CLZ_H(N)   (clz32(N) - 16)
465 
466 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
467 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
468 DO_1OP(vclzw, 4, uint32_t, clz32)
469 
470 DO_1OP(vrev16b, 2, uint16_t, bswap16)
471 DO_1OP(vrev32b, 4, uint32_t, bswap32)
472 DO_1OP(vrev32h, 4, uint32_t, hswap32)
473 DO_1OP(vrev64b, 8, uint64_t, bswap64)
474 DO_1OP(vrev64h, 8, uint64_t, hswap64)
475 DO_1OP(vrev64w, 8, uint64_t, wswap64)
476 
477 #define DO_NOT(N) (~(N))
478 
479 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
480 
481 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
482 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
483 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
484 
485 DO_1OP(vabsb, 1, int8_t, DO_ABS)
486 DO_1OP(vabsh, 2, int16_t, DO_ABS)
487 DO_1OP(vabsw, 4, int32_t, DO_ABS)
488 
489 /* We can do these 64 bits at a time */
490 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
491 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
492 
493 #define DO_NEG(N)    (-(N))
494 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
495 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
496 
497 DO_1OP(vnegb, 1, int8_t, DO_NEG)
498 DO_1OP(vnegh, 2, int16_t, DO_NEG)
499 DO_1OP(vnegw, 4, int32_t, DO_NEG)
500 
501 /* We can do these 64 bits at a time */
502 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
503 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
504 
505 /*
506  * 1 operand immediates: Vda is destination and possibly also one source.
507  * All these insns work at 64-bit widths.
508  */
509 #define DO_1OP_IMM(OP, FN)                                              \
510     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
511     {                                                                   \
512         uint64_t *da = vda;                                             \
513         uint16_t mask = mve_element_mask(env);                          \
514         unsigned e;                                                     \
515         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
516             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
517         }                                                               \
518         mve_advance_vpt(env);                                           \
519     }
520 
521 #define DO_MOVI(N, I) (I)
522 #define DO_ANDI(N, I) ((N) & (I))
523 #define DO_ORRI(N, I) ((N) | (I))
524 
525 DO_1OP_IMM(vmovi, DO_MOVI)
526 DO_1OP_IMM(vandi, DO_ANDI)
527 DO_1OP_IMM(vorri, DO_ORRI)
528 
529 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
530     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
531                                 void *vd, void *vn, void *vm)           \
532     {                                                                   \
533         TYPE *d = vd, *n = vn, *m = vm;                                 \
534         uint16_t mask = mve_element_mask(env);                          \
535         unsigned e;                                                     \
536         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
537             mergemask(&d[H##ESIZE(e)],                                  \
538                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
539         }                                                               \
540         mve_advance_vpt(env);                                           \
541     }
542 
543 /* provide unsigned 2-op helpers for all sizes */
544 #define DO_2OP_U(OP, FN)                        \
545     DO_2OP(OP##b, 1, uint8_t, FN)               \
546     DO_2OP(OP##h, 2, uint16_t, FN)              \
547     DO_2OP(OP##w, 4, uint32_t, FN)
548 
549 /* provide signed 2-op helpers for all sizes */
550 #define DO_2OP_S(OP, FN)                        \
551     DO_2OP(OP##b, 1, int8_t, FN)                \
552     DO_2OP(OP##h, 2, int16_t, FN)               \
553     DO_2OP(OP##w, 4, int32_t, FN)
554 
555 /*
556  * "Long" operations where two half-sized inputs (taken from either the
557  * top or the bottom of the input vector) produce a double-width result.
558  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
559  */
560 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
561     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
562     {                                                                   \
563         LTYPE *d = vd;                                                  \
564         TYPE *n = vn, *m = vm;                                          \
565         uint16_t mask = mve_element_mask(env);                          \
566         unsigned le;                                                    \
567         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
568             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
569                          m[H##ESIZE(le * 2 + TOP)]);                    \
570             mergemask(&d[H##LESIZE(le)], r, mask);                      \
571         }                                                               \
572         mve_advance_vpt(env);                                           \
573     }
574 
575 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
576     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
577     {                                                                   \
578         TYPE *d = vd, *n = vn, *m = vm;                                 \
579         uint16_t mask = mve_element_mask(env);                          \
580         unsigned e;                                                     \
581         bool qc = false;                                                \
582         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
583             bool sat = false;                                           \
584             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
585             mergemask(&d[H##ESIZE(e)], r, mask);                        \
586             qc |= sat & mask & 1;                                       \
587         }                                                               \
588         if (qc) {                                                       \
589             env->vfp.qc[0] = qc;                                        \
590         }                                                               \
591         mve_advance_vpt(env);                                           \
592     }
593 
594 /* provide unsigned 2-op helpers for all sizes */
595 #define DO_2OP_SAT_U(OP, FN)                    \
596     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
597     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
598     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
599 
600 /* provide signed 2-op helpers for all sizes */
601 #define DO_2OP_SAT_S(OP, FN)                    \
602     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
603     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
604     DO_2OP_SAT(OP##w, 4, int32_t, FN)
605 
606 #define DO_AND(N, M)  ((N) & (M))
607 #define DO_BIC(N, M)  ((N) & ~(M))
608 #define DO_ORR(N, M)  ((N) | (M))
609 #define DO_ORN(N, M)  ((N) | ~(M))
610 #define DO_EOR(N, M)  ((N) ^ (M))
611 
612 DO_2OP(vand, 8, uint64_t, DO_AND)
613 DO_2OP(vbic, 8, uint64_t, DO_BIC)
614 DO_2OP(vorr, 8, uint64_t, DO_ORR)
615 DO_2OP(vorn, 8, uint64_t, DO_ORN)
616 DO_2OP(veor, 8, uint64_t, DO_EOR)
617 
618 #define DO_ADD(N, M) ((N) + (M))
619 #define DO_SUB(N, M) ((N) - (M))
620 #define DO_MUL(N, M) ((N) * (M))
621 
622 DO_2OP_U(vadd, DO_ADD)
623 DO_2OP_U(vsub, DO_SUB)
624 DO_2OP_U(vmul, DO_MUL)
625 
626 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
627 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
628 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
629 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
630 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
631 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
632 
633 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
634 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
635 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
636 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
637 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
638 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
639 
640 /*
641  * Polynomial multiply. We can always do this generating 64 bits
642  * of the result at a time, so we don't need to use DO_2OP_L.
643  */
644 #define VMULLPH_MASK 0x00ff00ff00ff00ffULL
645 #define VMULLPW_MASK 0x0000ffff0000ffffULL
646 #define DO_VMULLPBH(N, M) pmull_h((N) & VMULLPH_MASK, (M) & VMULLPH_MASK)
647 #define DO_VMULLPTH(N, M) DO_VMULLPBH((N) >> 8, (M) >> 8)
648 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
649 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
650 
651 DO_2OP(vmullpbh, 8, uint64_t, DO_VMULLPBH)
652 DO_2OP(vmullpth, 8, uint64_t, DO_VMULLPTH)
653 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
654 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
655 
656 /*
657  * Because the computation type is at least twice as large as required,
658  * these work for both signed and unsigned source types.
659  */
660 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
661 {
662     return (n * m) >> 8;
663 }
664 
665 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
666 {
667     return (n * m) >> 16;
668 }
669 
670 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
671 {
672     return (n * m) >> 32;
673 }
674 
675 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
676 {
677     return (n * m + (1U << 7)) >> 8;
678 }
679 
680 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
681 {
682     return (n * m + (1U << 15)) >> 16;
683 }
684 
685 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
686 {
687     return (n * m + (1U << 31)) >> 32;
688 }
689 
690 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
691 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
692 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
693 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
694 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
695 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
696 
697 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
698 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
699 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
700 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
701 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
702 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
703 
704 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
705 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
706 
707 DO_2OP_S(vmaxs, DO_MAX)
708 DO_2OP_U(vmaxu, DO_MAX)
709 DO_2OP_S(vmins, DO_MIN)
710 DO_2OP_U(vminu, DO_MIN)
711 
712 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
713 
714 DO_2OP_S(vabds, DO_ABD)
715 DO_2OP_U(vabdu, DO_ABD)
716 
717 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
718 {
719     return ((uint64_t)n + m) >> 1;
720 }
721 
722 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
723 {
724     return ((int64_t)n + m) >> 1;
725 }
726 
727 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
728 {
729     return ((uint64_t)n - m) >> 1;
730 }
731 
732 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
733 {
734     return ((int64_t)n - m) >> 1;
735 }
736 
737 DO_2OP_S(vhadds, do_vhadd_s)
738 DO_2OP_U(vhaddu, do_vhadd_u)
739 DO_2OP_S(vhsubs, do_vhsub_s)
740 DO_2OP_U(vhsubu, do_vhsub_u)
741 
742 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
743 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
744 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
745 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
746 
747 DO_2OP_S(vshls, DO_VSHLS)
748 DO_2OP_U(vshlu, DO_VSHLU)
749 DO_2OP_S(vrshls, DO_VRSHLS)
750 DO_2OP_U(vrshlu, DO_VRSHLU)
751 
752 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
753 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
754 
755 DO_2OP_S(vrhadds, DO_RHADD_S)
756 DO_2OP_U(vrhaddu, DO_RHADD_U)
757 
758 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
759                     uint32_t inv, uint32_t carry_in, bool update_flags)
760 {
761     uint16_t mask = mve_element_mask(env);
762     unsigned e;
763 
764     /* If any additions trigger, we will update flags. */
765     if (mask & 0x1111) {
766         update_flags = true;
767     }
768 
769     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
770         uint64_t r = carry_in;
771         r += n[H4(e)];
772         r += m[H4(e)] ^ inv;
773         if (mask & 1) {
774             carry_in = r >> 32;
775         }
776         mergemask(&d[H4(e)], r, mask);
777     }
778 
779     if (update_flags) {
780         /* Store C, clear NZV. */
781         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
782         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
783     }
784     mve_advance_vpt(env);
785 }
786 
787 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
788 {
789     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
790     do_vadc(env, vd, vn, vm, 0, carry_in, false);
791 }
792 
793 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
794 {
795     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
796     do_vadc(env, vd, vn, vm, -1, carry_in, false);
797 }
798 
799 
800 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
801 {
802     do_vadc(env, vd, vn, vm, 0, 0, true);
803 }
804 
805 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
806 {
807     do_vadc(env, vd, vn, vm, -1, 1, true);
808 }
809 
810 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
811     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
812     {                                                                   \
813         TYPE *d = vd, *n = vn, *m = vm;                                 \
814         uint16_t mask = mve_element_mask(env);                          \
815         unsigned e;                                                     \
816         TYPE r[16 / ESIZE];                                             \
817         /* Calculate all results first to avoid overwriting inputs */   \
818         for (e = 0; e < 16 / ESIZE; e++) {                              \
819             if (!(e & 1)) {                                             \
820                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
821             } else {                                                    \
822                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
823             }                                                           \
824         }                                                               \
825         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
826             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
827         }                                                               \
828         mve_advance_vpt(env);                                           \
829     }
830 
831 #define DO_VCADD_ALL(OP, FN0, FN1)              \
832     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
833     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
834     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
835 
836 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
837 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
838 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
839 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
840 
841 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
842 {
843     if (val > max) {
844         *s = true;
845         return max;
846     } else if (val < min) {
847         *s = true;
848         return min;
849     }
850     return val;
851 }
852 
853 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
854 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
855 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
856 
857 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
858 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
859 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
860 
861 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
862 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
863 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
864 
865 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
866 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
867 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
868 
869 /*
870  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
871  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
872  */
873 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
874                                         INT8_MIN, INT8_MAX, s)
875 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
876                                         INT16_MIN, INT16_MAX, s)
877 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
878                                         INT32_MIN, INT32_MAX, s)
879 
880 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
881                                          INT8_MIN, INT8_MAX, s)
882 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
883                                          INT16_MIN, INT16_MAX, s)
884 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
885                                          INT32_MIN, INT32_MAX, s)
886 
887 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
888 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
889 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
890 
891 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
892 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
893 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
894 
895 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
896 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
897 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
898 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
899 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
900 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
901 
902 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
903 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
904 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
905 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
906 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
907 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
908 
909 /*
910  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
911  * and friends wanting a uint32_t* sat and our needing a bool*.
912  */
913 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
914     ({                                                                  \
915         uint32_t su32 = 0;                                              \
916         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
917         if (su32) {                                                     \
918             *satp = true;                                               \
919         }                                                               \
920         r;                                                              \
921     })
922 
923 #define DO_SQSHL_OP(N, M, satp) \
924     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
925 #define DO_UQSHL_OP(N, M, satp) \
926     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
927 #define DO_SQRSHL_OP(N, M, satp) \
928     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
929 #define DO_UQRSHL_OP(N, M, satp) \
930     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
931 #define DO_SUQSHL_OP(N, M, satp) \
932     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
933 
934 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
935 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
936 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
937 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
938 
939 /*
940  * Multiply add dual returning high half
941  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
942  * whether to add the rounding constant, and the pointer to the
943  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
944  * saturate to twice the input size and return the high half; or
945  * (A * B - C * D) etc for VQDMLSDH.
946  */
947 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
948     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
949                                 void *vm)                               \
950     {                                                                   \
951         TYPE *d = vd, *n = vn, *m = vm;                                 \
952         uint16_t mask = mve_element_mask(env);                          \
953         unsigned e;                                                     \
954         bool qc = false;                                                \
955         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
956             bool sat = false;                                           \
957             if ((e & 1) == XCHG) {                                      \
958                 TYPE r = FN(n[H##ESIZE(e)],                             \
959                             m[H##ESIZE(e - XCHG)],                      \
960                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
961                             m[H##ESIZE(e + (1 - XCHG))],                \
962                             ROUND, &sat);                               \
963                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
964                 qc |= sat & mask & 1;                                   \
965             }                                                           \
966         }                                                               \
967         if (qc) {                                                       \
968             env->vfp.qc[0] = qc;                                        \
969         }                                                               \
970         mve_advance_vpt(env);                                           \
971     }
972 
973 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
974                             int round, bool *sat)
975 {
976     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
977     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
978 }
979 
980 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
981                              int round, bool *sat)
982 {
983     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
984     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
985 }
986 
987 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
988                              int round, bool *sat)
989 {
990     int64_t m1 = (int64_t)a * b;
991     int64_t m2 = (int64_t)c * d;
992     int64_t r;
993     /*
994      * Architecturally we should do the entire add, double, round
995      * and then check for saturation. We do three saturating adds,
996      * but we need to be careful about the order. If the first
997      * m1 + m2 saturates then it's impossible for the *2+rc to
998      * bring it back into the non-saturated range. However, if
999      * m1 + m2 is negative then it's possible that doing the doubling
1000      * would take the intermediate result below INT64_MAX and the
1001      * addition of the rounding constant then brings it back in range.
1002      * So we add half the rounding constant before doubling rather
1003      * than adding the rounding constant after the doubling.
1004      */
1005     if (sadd64_overflow(m1, m2, &r) ||
1006         sadd64_overflow(r, (round << 30), &r) ||
1007         sadd64_overflow(r, r, &r)) {
1008         *sat = true;
1009         return r < 0 ? INT32_MAX : INT32_MIN;
1010     }
1011     return r >> 32;
1012 }
1013 
1014 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1015                             int round, bool *sat)
1016 {
1017     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1018     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1019 }
1020 
1021 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1022                              int round, bool *sat)
1023 {
1024     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1025     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1026 }
1027 
1028 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1029                              int round, bool *sat)
1030 {
1031     int64_t m1 = (int64_t)a * b;
1032     int64_t m2 = (int64_t)c * d;
1033     int64_t r;
1034     /* The same ordering issue as in do_vqdmladh_w applies here too */
1035     if (ssub64_overflow(m1, m2, &r) ||
1036         sadd64_overflow(r, (round << 30), &r) ||
1037         sadd64_overflow(r, r, &r)) {
1038         *sat = true;
1039         return r < 0 ? INT32_MAX : INT32_MIN;
1040     }
1041     return r >> 32;
1042 }
1043 
1044 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1045 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1046 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1047 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1048 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1049 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1050 
1051 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1052 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1053 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1054 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1055 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1056 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1057 
1058 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1059 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1060 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1061 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1062 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1063 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1064 
1065 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1066 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1067 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1068 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1069 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1070 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1071 
1072 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1073     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1074                                 uint32_t rm)                            \
1075     {                                                                   \
1076         TYPE *d = vd, *n = vn;                                          \
1077         TYPE m = rm;                                                    \
1078         uint16_t mask = mve_element_mask(env);                          \
1079         unsigned e;                                                     \
1080         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1081             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1082         }                                                               \
1083         mve_advance_vpt(env);                                           \
1084     }
1085 
1086 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1087     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1088                                 uint32_t rm)                            \
1089     {                                                                   \
1090         TYPE *d = vd, *n = vn;                                          \
1091         TYPE m = rm;                                                    \
1092         uint16_t mask = mve_element_mask(env);                          \
1093         unsigned e;                                                     \
1094         bool qc = false;                                                \
1095         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1096             bool sat = false;                                           \
1097             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1098                       mask);                                            \
1099             qc |= sat & mask & 1;                                       \
1100         }                                                               \
1101         if (qc) {                                                       \
1102             env->vfp.qc[0] = qc;                                        \
1103         }                                                               \
1104         mve_advance_vpt(env);                                           \
1105     }
1106 
1107 /* "accumulating" version where FN takes d as well as n and m */
1108 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1109     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1110                                 uint32_t rm)                            \
1111     {                                                                   \
1112         TYPE *d = vd, *n = vn;                                          \
1113         TYPE m = rm;                                                    \
1114         uint16_t mask = mve_element_mask(env);                          \
1115         unsigned e;                                                     \
1116         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1117             mergemask(&d[H##ESIZE(e)],                                  \
1118                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1119         }                                                               \
1120         mve_advance_vpt(env);                                           \
1121     }
1122 
1123 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1124     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1125                                 uint32_t rm)                            \
1126     {                                                                   \
1127         TYPE *d = vd, *n = vn;                                          \
1128         TYPE m = rm;                                                    \
1129         uint16_t mask = mve_element_mask(env);                          \
1130         unsigned e;                                                     \
1131         bool qc = false;                                                \
1132         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1133             bool sat = false;                                           \
1134             mergemask(&d[H##ESIZE(e)],                                  \
1135                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1136                       mask);                                            \
1137             qc |= sat & mask & 1;                                       \
1138         }                                                               \
1139         if (qc) {                                                       \
1140             env->vfp.qc[0] = qc;                                        \
1141         }                                                               \
1142         mve_advance_vpt(env);                                           \
1143     }
1144 
1145 /* provide unsigned 2-op scalar helpers for all sizes */
1146 #define DO_2OP_SCALAR_U(OP, FN)                 \
1147     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1148     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1149     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1150 #define DO_2OP_SCALAR_S(OP, FN)                 \
1151     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1152     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1153     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1154 
1155 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1156     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1157     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1158     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1159 
1160 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1161 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1162 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1163 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1164 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1165 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1166 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1167 
1168 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1169 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1170 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1171 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1172 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1173 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1174 
1175 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1176 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1177 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1178 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1179 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1180 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1181 
1182 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1183 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1184 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1185 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1186 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1187 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1188 
1189 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1190 {
1191     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1192     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1193 }
1194 
1195 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1196                            int round, bool *sat)
1197 {
1198     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1199     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1200 }
1201 
1202 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1203                             int round, bool *sat)
1204 {
1205     /*
1206      * Architecturally we should do the entire add, double, round
1207      * and then check for saturation. We do three saturating adds,
1208      * but we need to be careful about the order. If the first
1209      * m1 + m2 saturates then it's impossible for the *2+rc to
1210      * bring it back into the non-saturated range. However, if
1211      * m1 + m2 is negative then it's possible that doing the doubling
1212      * would take the intermediate result below INT64_MAX and the
1213      * addition of the rounding constant then brings it back in range.
1214      * So we add half the rounding constant and half the "c << esize"
1215      * before doubling rather than adding the rounding constant after
1216      * the doubling.
1217      */
1218     int64_t m1 = (int64_t)a * b;
1219     int64_t m2 = (int64_t)c << 31;
1220     int64_t r;
1221     if (sadd64_overflow(m1, m2, &r) ||
1222         sadd64_overflow(r, (round << 30), &r) ||
1223         sadd64_overflow(r, r, &r)) {
1224         *sat = true;
1225         return r < 0 ? INT32_MAX : INT32_MIN;
1226     }
1227     return r >> 32;
1228 }
1229 
1230 /*
1231  * The *MLAH insns are vector * scalar + vector;
1232  * the *MLASH insns are vector * vector + scalar
1233  */
1234 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1235 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1236 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1237 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1238 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1239 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1240 
1241 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1242 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1243 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1244 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1245 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1246 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1247 
1248 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1249 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1250 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1251 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1252 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1253 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1254 
1255 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1256 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1257 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1258 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1259 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1260 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1261 
1262 /* Vector by scalar plus vector */
1263 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1264 
1265 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1266 
1267 /* Vector by vector plus scalar */
1268 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1269 
1270 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1271 
1272 /*
1273  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1274  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1275  * SATMASK specifies which bits of the predicate mask matter for determining
1276  * whether to propagate a saturation indication into FPSCR.QC -- for
1277  * the 16x16->32 case we must check only the bit corresponding to the T or B
1278  * half that we used, but for the 32x32->64 case we propagate if the mask
1279  * bit is set for either half.
1280  */
1281 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1282     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1283                                 uint32_t rm)                            \
1284     {                                                                   \
1285         LTYPE *d = vd;                                                  \
1286         TYPE *n = vn;                                                   \
1287         TYPE m = rm;                                                    \
1288         uint16_t mask = mve_element_mask(env);                          \
1289         unsigned le;                                                    \
1290         bool qc = false;                                                \
1291         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1292             bool sat = false;                                           \
1293             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1294             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1295             qc |= sat && (mask & SATMASK);                              \
1296         }                                                               \
1297         if (qc) {                                                       \
1298             env->vfp.qc[0] = qc;                                        \
1299         }                                                               \
1300         mve_advance_vpt(env);                                           \
1301     }
1302 
1303 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1304 {
1305     int64_t r = ((int64_t)n * m) * 2;
1306     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1307 }
1308 
1309 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1310 {
1311     /* The multiply can't overflow, but the doubling might */
1312     int64_t r = (int64_t)n * m;
1313     if (r > INT64_MAX / 2) {
1314         *sat = true;
1315         return INT64_MAX;
1316     } else if (r < INT64_MIN / 2) {
1317         *sat = true;
1318         return INT64_MIN;
1319     } else {
1320         return r * 2;
1321     }
1322 }
1323 
1324 #define SATMASK16B 1
1325 #define SATMASK16T (1 << 2)
1326 #define SATMASK32 ((1 << 4) | 1)
1327 
1328 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1329                     do_qdmullh, SATMASK16B)
1330 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1331                     do_qdmullw, SATMASK32)
1332 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1333                     do_qdmullh, SATMASK16T)
1334 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1335                     do_qdmullw, SATMASK32)
1336 
1337 /*
1338  * Long saturating ops
1339  */
1340 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1341     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1342                                 void *vm)                               \
1343     {                                                                   \
1344         LTYPE *d = vd;                                                  \
1345         TYPE *n = vn, *m = vm;                                          \
1346         uint16_t mask = mve_element_mask(env);                          \
1347         unsigned le;                                                    \
1348         bool qc = false;                                                \
1349         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1350             bool sat = false;                                           \
1351             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1352             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1353             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1354             qc |= sat && (mask & SATMASK);                              \
1355         }                                                               \
1356         if (qc) {                                                       \
1357             env->vfp.qc[0] = qc;                                        \
1358         }                                                               \
1359         mve_advance_vpt(env);                                           \
1360     }
1361 
1362 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1363 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1364 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1365 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1366 
1367 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1368 {
1369     m &= 0xff;
1370     if (m == 0) {
1371         return 0;
1372     }
1373     n = revbit8(n);
1374     if (m < 8) {
1375         n >>= 8 - m;
1376     }
1377     return n;
1378 }
1379 
1380 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1381 {
1382     m &= 0xff;
1383     if (m == 0) {
1384         return 0;
1385     }
1386     n = revbit16(n);
1387     if (m < 16) {
1388         n >>= 16 - m;
1389     }
1390     return n;
1391 }
1392 
1393 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1394 {
1395     m &= 0xff;
1396     if (m == 0) {
1397         return 0;
1398     }
1399     n = revbit32(n);
1400     if (m < 32) {
1401         n >>= 32 - m;
1402     }
1403     return n;
1404 }
1405 
1406 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1407 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1408 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1409 
1410 /*
1411  * Multiply add long dual accumulate ops.
1412  */
1413 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1414     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1415                                     void *vm, uint64_t a)               \
1416     {                                                                   \
1417         uint16_t mask = mve_element_mask(env);                          \
1418         unsigned e;                                                     \
1419         TYPE *n = vn, *m = vm;                                          \
1420         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1421             if (mask & 1) {                                             \
1422                 if (e & 1) {                                            \
1423                     a ODDACC                                            \
1424                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1425                 } else {                                                \
1426                     a EVENACC                                           \
1427                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1428                 }                                                       \
1429             }                                                           \
1430         }                                                               \
1431         mve_advance_vpt(env);                                           \
1432         return a;                                                       \
1433     }
1434 
1435 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1436 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1437 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1438 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1439 
1440 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1441 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1442 
1443 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1444 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1445 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1446 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1447 
1448 /*
1449  * Multiply add dual accumulate ops
1450  */
1451 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1452     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1453                                     void *vm, uint32_t a)               \
1454     {                                                                   \
1455         uint16_t mask = mve_element_mask(env);                          \
1456         unsigned e;                                                     \
1457         TYPE *n = vn, *m = vm;                                          \
1458         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1459             if (mask & 1) {                                             \
1460                 if (e & 1) {                                            \
1461                     a ODDACC                                            \
1462                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1463                 } else {                                                \
1464                     a EVENACC                                           \
1465                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1466                 }                                                       \
1467             }                                                           \
1468         }                                                               \
1469         mve_advance_vpt(env);                                           \
1470         return a;                                                       \
1471     }
1472 
1473 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1474     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1475     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1476     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1477 
1478 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1479     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1480     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1481     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1482 
1483 DO_DAV_S(vmladavs, false, +=, +=)
1484 DO_DAV_U(vmladavu, false, +=, +=)
1485 DO_DAV_S(vmlsdav, false, +=, -=)
1486 DO_DAV_S(vmladavsx, true, +=, +=)
1487 DO_DAV_S(vmlsdavx, true, +=, -=)
1488 
1489 /*
1490  * Rounding multiply add long dual accumulate high. In the pseudocode
1491  * this is implemented with a 72-bit internal accumulator value of which
1492  * the top 64 bits are returned. We optimize this to avoid having to
1493  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1494  * is squashed back into 64-bits after each beat.
1495  */
1496 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1497     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1498                                     void *vm, uint64_t a)               \
1499     {                                                                   \
1500         uint16_t mask = mve_element_mask(env);                          \
1501         unsigned e;                                                     \
1502         TYPE *n = vn, *m = vm;                                          \
1503         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1504             if (mask & 1) {                                             \
1505                 LTYPE mul;                                              \
1506                 if (e & 1) {                                            \
1507                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1508                     if (SUB) {                                          \
1509                         mul = -mul;                                     \
1510                     }                                                   \
1511                 } else {                                                \
1512                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1513                 }                                                       \
1514                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1515                 a += mul;                                               \
1516             }                                                           \
1517         }                                                               \
1518         mve_advance_vpt(env);                                           \
1519         return a;                                                       \
1520     }
1521 
1522 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1523 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1524 
1525 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1526 
1527 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1528 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1529 
1530 /* Vector add across vector */
1531 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1532     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1533                                     uint32_t ra)                \
1534     {                                                           \
1535         uint16_t mask = mve_element_mask(env);                  \
1536         unsigned e;                                             \
1537         TYPE *m = vm;                                           \
1538         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1539             if (mask & 1) {                                     \
1540                 ra += m[H##ESIZE(e)];                           \
1541             }                                                   \
1542         }                                                       \
1543         mve_advance_vpt(env);                                   \
1544         return ra;                                              \
1545     }                                                           \
1546 
1547 DO_VADDV(vaddvsb, 1, int8_t)
1548 DO_VADDV(vaddvsh, 2, int16_t)
1549 DO_VADDV(vaddvsw, 4, int32_t)
1550 DO_VADDV(vaddvub, 1, uint8_t)
1551 DO_VADDV(vaddvuh, 2, uint16_t)
1552 DO_VADDV(vaddvuw, 4, uint32_t)
1553 
1554 /*
1555  * Vector max/min across vector. Unlike VADDV, we must
1556  * read ra as the element size, not its full width.
1557  * We work with int64_t internally for simplicity.
1558  */
1559 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1560     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1561                                     uint32_t ra_in)             \
1562     {                                                           \
1563         uint16_t mask = mve_element_mask(env);                  \
1564         unsigned e;                                             \
1565         TYPE *m = vm;                                           \
1566         int64_t ra = (RATYPE)ra_in;                             \
1567         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1568             if (mask & 1) {                                     \
1569                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1570             }                                                   \
1571         }                                                       \
1572         mve_advance_vpt(env);                                   \
1573         return ra;                                              \
1574     }                                                           \
1575 
1576 #define DO_VMAXMINV_U(INSN, FN)                         \
1577     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1578     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1579     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1580 #define DO_VMAXMINV_S(INSN, FN)                         \
1581     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1582     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1583     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1584 
1585 /*
1586  * Helpers for max and min of absolute values across vector:
1587  * note that we only take the absolute value of 'm', not 'n'
1588  */
1589 static int64_t do_maxa(int64_t n, int64_t m)
1590 {
1591     if (m < 0) {
1592         m = -m;
1593     }
1594     return MAX(n, m);
1595 }
1596 
1597 static int64_t do_mina(int64_t n, int64_t m)
1598 {
1599     if (m < 0) {
1600         m = -m;
1601     }
1602     return MIN(n, m);
1603 }
1604 
1605 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1606 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1607 DO_VMAXMINV_S(vminvs, DO_MIN)
1608 DO_VMAXMINV_U(vminvu, DO_MIN)
1609 /*
1610  * VMAXAV, VMINAV treat the general purpose input as unsigned
1611  * and the vector elements as signed.
1612  */
1613 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1614 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1615 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1616 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1617 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1618 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1619 
1620 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1621     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1622                                     void *vm, uint32_t ra)      \
1623     {                                                           \
1624         uint16_t mask = mve_element_mask(env);                  \
1625         unsigned e;                                             \
1626         TYPE *m = vm, *n = vn;                                  \
1627         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1628             if (mask & 1) {                                     \
1629                 int64_t n0 = n[H##ESIZE(e)];                    \
1630                 int64_t m0 = m[H##ESIZE(e)];                    \
1631                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1632                 ra += r;                                        \
1633             }                                                   \
1634         }                                                       \
1635         mve_advance_vpt(env);                                   \
1636         return ra;                                              \
1637     }
1638 
1639 DO_VABAV(vabavsb, 1, int8_t)
1640 DO_VABAV(vabavsh, 2, int16_t)
1641 DO_VABAV(vabavsw, 4, int32_t)
1642 DO_VABAV(vabavub, 1, uint8_t)
1643 DO_VABAV(vabavuh, 2, uint16_t)
1644 DO_VABAV(vabavuw, 4, uint32_t)
1645 
1646 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1647     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1648                                     uint64_t ra)                \
1649     {                                                           \
1650         uint16_t mask = mve_element_mask(env);                  \
1651         unsigned e;                                             \
1652         TYPE *m = vm;                                           \
1653         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1654             if (mask & 1) {                                     \
1655                 ra += (LTYPE)m[H4(e)];                          \
1656             }                                                   \
1657         }                                                       \
1658         mve_advance_vpt(env);                                   \
1659         return ra;                                              \
1660     }                                                           \
1661 
1662 DO_VADDLV(vaddlv_s, int32_t, int64_t)
1663 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
1664 
1665 /* Shifts by immediate */
1666 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
1667     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1668                                 void *vm, uint32_t shift)       \
1669     {                                                           \
1670         TYPE *d = vd, *m = vm;                                  \
1671         uint16_t mask = mve_element_mask(env);                  \
1672         unsigned e;                                             \
1673         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1674             mergemask(&d[H##ESIZE(e)],                          \
1675                       FN(m[H##ESIZE(e)], shift), mask);         \
1676         }                                                       \
1677         mve_advance_vpt(env);                                   \
1678     }
1679 
1680 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
1681     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1682                                 void *vm, uint32_t shift)       \
1683     {                                                           \
1684         TYPE *d = vd, *m = vm;                                  \
1685         uint16_t mask = mve_element_mask(env);                  \
1686         unsigned e;                                             \
1687         bool qc = false;                                        \
1688         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1689             bool sat = false;                                   \
1690             mergemask(&d[H##ESIZE(e)],                          \
1691                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
1692             qc |= sat & mask & 1;                               \
1693         }                                                       \
1694         if (qc) {                                               \
1695             env->vfp.qc[0] = qc;                                \
1696         }                                                       \
1697         mve_advance_vpt(env);                                   \
1698     }
1699 
1700 /* provide unsigned 2-op shift helpers for all sizes */
1701 #define DO_2SHIFT_U(OP, FN)                     \
1702     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
1703     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
1704     DO_2SHIFT(OP##w, 4, uint32_t, FN)
1705 #define DO_2SHIFT_S(OP, FN)                     \
1706     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
1707     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
1708     DO_2SHIFT(OP##w, 4, int32_t, FN)
1709 
1710 #define DO_2SHIFT_SAT_U(OP, FN)                 \
1711     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
1712     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
1713     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
1714 #define DO_2SHIFT_SAT_S(OP, FN)                 \
1715     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
1716     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
1717     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
1718 
1719 DO_2SHIFT_U(vshli_u, DO_VSHLU)
1720 DO_2SHIFT_S(vshli_s, DO_VSHLS)
1721 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
1722 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
1723 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
1724 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
1725 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
1726 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
1727 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
1728 
1729 /* Shift-and-insert; we always work with 64 bits at a time */
1730 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
1731     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1732                                 void *vm, uint32_t shift)               \
1733     {                                                                   \
1734         uint64_t *d = vd, *m = vm;                                      \
1735         uint16_t mask;                                                  \
1736         uint64_t shiftmask;                                             \
1737         unsigned e;                                                     \
1738         if (shift == ESIZE * 8) {                                       \
1739             /*                                                          \
1740              * Only VSRI can shift by <dt>; it should mean "don't       \
1741              * update the destination". The generic logic can't handle  \
1742              * this because it would try to shift by an out-of-range    \
1743              * amount, so special case it here.                         \
1744              */                                                         \
1745             goto done;                                                  \
1746         }                                                               \
1747         assert(shift < ESIZE * 8);                                      \
1748         mask = mve_element_mask(env);                                   \
1749         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
1750         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
1751         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
1752             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
1753                 (d[H8(e)] & ~shiftmask);                                \
1754             mergemask(&d[H8(e)], r, mask);                              \
1755         }                                                               \
1756 done:                                                                   \
1757         mve_advance_vpt(env);                                           \
1758     }
1759 
1760 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
1761 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
1762 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
1763 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
1764 
1765 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
1766 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
1767 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
1768 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
1769 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
1770 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
1771 
1772 /*
1773  * Long shifts taking half-sized inputs from top or bottom of the input
1774  * vector and producing a double-width result. ESIZE, TYPE are for
1775  * the input, and LESIZE, LTYPE for the output.
1776  * Unlike the normal shift helpers, we do not handle negative shift counts,
1777  * because the long shift is strictly left-only.
1778  */
1779 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1780     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1781                                 void *vm, uint32_t shift)               \
1782     {                                                                   \
1783         LTYPE *d = vd;                                                  \
1784         TYPE *m = vm;                                                   \
1785         uint16_t mask = mve_element_mask(env);                          \
1786         unsigned le;                                                    \
1787         assert(shift <= 16);                                            \
1788         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1789             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
1790             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1791         }                                                               \
1792         mve_advance_vpt(env);                                           \
1793     }
1794 
1795 #define DO_VSHLL_ALL(OP, TOP)                                \
1796     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
1797     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
1798     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
1799     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
1800 
1801 DO_VSHLL_ALL(vshllb, false)
1802 DO_VSHLL_ALL(vshllt, true)
1803 
1804 /*
1805  * Narrowing right shifts, taking a double sized input, shifting it
1806  * and putting the result in either the top or bottom half of the output.
1807  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
1808  */
1809 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
1810     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1811                                 void *vm, uint32_t shift)       \
1812     {                                                           \
1813         LTYPE *m = vm;                                          \
1814         TYPE *d = vd;                                           \
1815         uint16_t mask = mve_element_mask(env);                  \
1816         unsigned le;                                            \
1817         mask >>= ESIZE * TOP;                                   \
1818         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1819             TYPE r = FN(m[H##LESIZE(le)], shift);               \
1820             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1821         }                                                       \
1822         mve_advance_vpt(env);                                   \
1823     }
1824 
1825 #define DO_VSHRN_ALL(OP, FN)                                    \
1826     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
1827     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
1828     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
1829     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
1830 
1831 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
1832 {
1833     if (likely(sh < 64)) {
1834         return (x >> sh) + ((x >> (sh - 1)) & 1);
1835     } else if (sh == 64) {
1836         return x >> 63;
1837     } else {
1838         return 0;
1839     }
1840 }
1841 
1842 static inline int64_t do_srshr(int64_t x, unsigned sh)
1843 {
1844     if (likely(sh < 64)) {
1845         return (x >> sh) + ((x >> (sh - 1)) & 1);
1846     } else {
1847         /* Rounding the sign bit always produces 0. */
1848         return 0;
1849     }
1850 }
1851 
1852 DO_VSHRN_ALL(vshrn, DO_SHR)
1853 DO_VSHRN_ALL(vrshrn, do_urshr)
1854 
1855 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
1856                                  bool *satp)
1857 {
1858     if (val > max) {
1859         *satp = true;
1860         return max;
1861     } else if (val < min) {
1862         *satp = true;
1863         return min;
1864     } else {
1865         return val;
1866     }
1867 }
1868 
1869 /* Saturating narrowing right shifts */
1870 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
1871     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1872                                 void *vm, uint32_t shift)       \
1873     {                                                           \
1874         LTYPE *m = vm;                                          \
1875         TYPE *d = vd;                                           \
1876         uint16_t mask = mve_element_mask(env);                  \
1877         bool qc = false;                                        \
1878         unsigned le;                                            \
1879         mask >>= ESIZE * TOP;                                   \
1880         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1881             bool sat = false;                                   \
1882             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
1883             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1884             qc |= sat & mask & 1;                               \
1885         }                                                       \
1886         if (qc) {                                               \
1887             env->vfp.qc[0] = qc;                                \
1888         }                                                       \
1889         mve_advance_vpt(env);                                   \
1890     }
1891 
1892 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
1893     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1894     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1895 
1896 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
1897     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1898     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1899 
1900 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
1901     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1902     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1903 
1904 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
1905     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1906     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1907 
1908 #define DO_SHRN_SB(N, M, SATP)                                  \
1909     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
1910 #define DO_SHRN_UB(N, M, SATP)                                  \
1911     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1912 #define DO_SHRUN_B(N, M, SATP)                                  \
1913     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1914 
1915 #define DO_SHRN_SH(N, M, SATP)                                  \
1916     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
1917 #define DO_SHRN_UH(N, M, SATP)                                  \
1918     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1919 #define DO_SHRUN_H(N, M, SATP)                                  \
1920     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1921 
1922 #define DO_RSHRN_SB(N, M, SATP)                                 \
1923     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
1924 #define DO_RSHRN_UB(N, M, SATP)                                 \
1925     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
1926 #define DO_RSHRUN_B(N, M, SATP)                                 \
1927     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
1928 
1929 #define DO_RSHRN_SH(N, M, SATP)                                 \
1930     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
1931 #define DO_RSHRN_UH(N, M, SATP)                                 \
1932     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
1933 #define DO_RSHRUN_H(N, M, SATP)                                 \
1934     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
1935 
1936 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
1937 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
1938 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
1939 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
1940 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
1941 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
1942 
1943 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
1944 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
1945 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
1946 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
1947 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
1948 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
1949 
1950 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1951     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1952     {                                                                   \
1953         LTYPE *m = vm;                                                  \
1954         TYPE *d = vd;                                                   \
1955         uint16_t mask = mve_element_mask(env);                          \
1956         unsigned le;                                                    \
1957         mask >>= ESIZE * TOP;                                           \
1958         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1959             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
1960                       m[H##LESIZE(le)], mask);                          \
1961         }                                                               \
1962         mve_advance_vpt(env);                                           \
1963     }
1964 
1965 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
1966 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
1967 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
1968 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
1969 
1970 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
1971     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1972     {                                                                   \
1973         LTYPE *m = vm;                                                  \
1974         TYPE *d = vd;                                                   \
1975         uint16_t mask = mve_element_mask(env);                          \
1976         bool qc = false;                                                \
1977         unsigned le;                                                    \
1978         mask >>= ESIZE * TOP;                                           \
1979         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1980             bool sat = false;                                           \
1981             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
1982             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
1983             qc |= sat & mask & 1;                                       \
1984         }                                                               \
1985         if (qc) {                                                       \
1986             env->vfp.qc[0] = qc;                                        \
1987         }                                                               \
1988         mve_advance_vpt(env);                                           \
1989     }
1990 
1991 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
1992     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1993     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1994 
1995 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
1996     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1997     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1998 
1999 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2000     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2001     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2002 
2003 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2004     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2005     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2006 
2007 #define DO_VQMOVN_SB(N, SATP)                           \
2008     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2009 #define DO_VQMOVN_UB(N, SATP)                           \
2010     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2011 #define DO_VQMOVUN_B(N, SATP)                           \
2012     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2013 
2014 #define DO_VQMOVN_SH(N, SATP)                           \
2015     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2016 #define DO_VQMOVN_UH(N, SATP)                           \
2017     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2018 #define DO_VQMOVUN_H(N, SATP)                           \
2019     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2020 
2021 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2022 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2023 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2024 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2025 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2026 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2027 
2028 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2029                            uint32_t shift)
2030 {
2031     uint32_t *d = vd;
2032     uint16_t mask = mve_element_mask(env);
2033     unsigned e;
2034     uint32_t r;
2035 
2036     /*
2037      * For each 32-bit element, we shift it left, bringing in the
2038      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2039      * the top become the new rdm, if the predicate mask permits.
2040      * The final rdm value is returned to update the register.
2041      * shift == 0 here means "shift by 32 bits".
2042      */
2043     if (shift == 0) {
2044         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2045             r = rdm;
2046             if (mask & 1) {
2047                 rdm = d[H4(e)];
2048             }
2049             mergemask(&d[H4(e)], r, mask);
2050         }
2051     } else {
2052         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2053 
2054         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2055             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2056             if (mask & 1) {
2057                 rdm = d[H4(e)] >> (32 - shift);
2058             }
2059             mergemask(&d[H4(e)], r, mask);
2060         }
2061     }
2062     mve_advance_vpt(env);
2063     return rdm;
2064 }
2065 
2066 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2067 {
2068     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2069 }
2070 
2071 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2072 {
2073     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2074 }
2075 
2076 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2077 {
2078     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2079 }
2080 
2081 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2082 {
2083     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2084 }
2085 
2086 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2087 {
2088     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2089 }
2090 
2091 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2092 {
2093     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2094 }
2095 
2096 /* Operate on 64-bit values, but saturate at 48 bits */
2097 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2098                                     bool round, uint32_t *sat)
2099 {
2100     int64_t val, extval;
2101 
2102     if (shift <= -48) {
2103         /* Rounding the sign bit always produces 0. */
2104         if (round) {
2105             return 0;
2106         }
2107         return src >> 63;
2108     } else if (shift < 0) {
2109         if (round) {
2110             src >>= -shift - 1;
2111             val = (src >> 1) + (src & 1);
2112         } else {
2113             val = src >> -shift;
2114         }
2115         extval = sextract64(val, 0, 48);
2116         if (!sat || val == extval) {
2117             return extval;
2118         }
2119     } else if (shift < 48) {
2120         int64_t extval = sextract64(src << shift, 0, 48);
2121         if (!sat || src == (extval >> shift)) {
2122             return extval;
2123         }
2124     } else if (!sat || src == 0) {
2125         return 0;
2126     }
2127 
2128     *sat = 1;
2129     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2130 }
2131 
2132 /* Operate on 64-bit values, but saturate at 48 bits */
2133 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2134                                      bool round, uint32_t *sat)
2135 {
2136     uint64_t val, extval;
2137 
2138     if (shift <= -(48 + round)) {
2139         return 0;
2140     } else if (shift < 0) {
2141         if (round) {
2142             val = src >> (-shift - 1);
2143             val = (val >> 1) + (val & 1);
2144         } else {
2145             val = src >> -shift;
2146         }
2147         extval = extract64(val, 0, 48);
2148         if (!sat || val == extval) {
2149             return extval;
2150         }
2151     } else if (shift < 48) {
2152         uint64_t extval = extract64(src << shift, 0, 48);
2153         if (!sat || src == (extval >> shift)) {
2154             return extval;
2155         }
2156     } else if (!sat || src == 0) {
2157         return 0;
2158     }
2159 
2160     *sat = 1;
2161     return MAKE_64BIT_MASK(0, 48);
2162 }
2163 
2164 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2165 {
2166     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2167 }
2168 
2169 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2170 {
2171     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2172 }
2173 
2174 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2175 {
2176     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2177 }
2178 
2179 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2180 {
2181     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2182 }
2183 
2184 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2185 {
2186     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2187 }
2188 
2189 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2190 {
2191     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2192 }
2193 
2194 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2195     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2196                            uint32_t offset, uint32_t imm)       \
2197     {                                                           \
2198         TYPE *d = vd;                                           \
2199         uint16_t mask = mve_element_mask(env);                  \
2200         unsigned e;                                             \
2201         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2202             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2203             offset = FN(offset, imm);                           \
2204         }                                                       \
2205         mve_advance_vpt(env);                                   \
2206         return offset;                                          \
2207     }
2208 
2209 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2210     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2211                               uint32_t offset, uint32_t wrap,   \
2212                               uint32_t imm)                     \
2213     {                                                           \
2214         TYPE *d = vd;                                           \
2215         uint16_t mask = mve_element_mask(env);                  \
2216         unsigned e;                                             \
2217         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2218             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2219             offset = FN(offset, wrap, imm);                     \
2220         }                                                       \
2221         mve_advance_vpt(env);                                   \
2222         return offset;                                          \
2223     }
2224 
2225 #define DO_VIDUP_ALL(OP, FN)                    \
2226     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2227     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2228     DO_VIDUP(OP##w, 4, int32_t, FN)
2229 
2230 #define DO_VIWDUP_ALL(OP, FN)                   \
2231     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2232     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2233     DO_VIWDUP(OP##w, 4, int32_t, FN)
2234 
2235 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2236 {
2237     offset += imm;
2238     if (offset == wrap) {
2239         offset = 0;
2240     }
2241     return offset;
2242 }
2243 
2244 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2245 {
2246     if (offset == 0) {
2247         offset = wrap;
2248     }
2249     offset -= imm;
2250     return offset;
2251 }
2252 
2253 DO_VIDUP_ALL(vidup, DO_ADD)
2254 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2255 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2256 
2257 /*
2258  * Vector comparison.
2259  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2260  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2261  * P0 bits otherwise are updated with the results of the comparisons.
2262  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2263  */
2264 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2265     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2266     {                                                                   \
2267         TYPE *n = vn, *m = vm;                                          \
2268         uint16_t mask = mve_element_mask(env);                          \
2269         uint16_t eci_mask = mve_eci_mask(env);                          \
2270         uint16_t beatpred = 0;                                          \
2271         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2272         unsigned e;                                                     \
2273         for (e = 0; e < 16 / ESIZE; e++) {                              \
2274             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2275             /* Comparison sets 0/1 bits for each byte in the element */ \
2276             beatpred |= r * emask;                                      \
2277             emask <<= ESIZE;                                            \
2278         }                                                               \
2279         beatpred &= mask;                                               \
2280         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2281             (beatpred & eci_mask);                                      \
2282         mve_advance_vpt(env);                                           \
2283     }
2284 
2285 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2286     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2287                                 uint32_t rm)                            \
2288     {                                                                   \
2289         TYPE *n = vn;                                                   \
2290         uint16_t mask = mve_element_mask(env);                          \
2291         uint16_t eci_mask = mve_eci_mask(env);                          \
2292         uint16_t beatpred = 0;                                          \
2293         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2294         unsigned e;                                                     \
2295         for (e = 0; e < 16 / ESIZE; e++) {                              \
2296             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2297             /* Comparison sets 0/1 bits for each byte in the element */ \
2298             beatpred |= r * emask;                                      \
2299             emask <<= ESIZE;                                            \
2300         }                                                               \
2301         beatpred &= mask;                                               \
2302         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2303             (beatpred & eci_mask);                                      \
2304         mve_advance_vpt(env);                                           \
2305     }
2306 
2307 #define DO_VCMP_S(OP, FN)                               \
2308     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2309     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2310     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2311     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2312     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2313     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2314 
2315 #define DO_VCMP_U(OP, FN)                               \
2316     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2317     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2318     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2319     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2320     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2321     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2322 
2323 #define DO_EQ(N, M) ((N) == (M))
2324 #define DO_NE(N, M) ((N) != (M))
2325 #define DO_EQ(N, M) ((N) == (M))
2326 #define DO_EQ(N, M) ((N) == (M))
2327 #define DO_GE(N, M) ((N) >= (M))
2328 #define DO_LT(N, M) ((N) < (M))
2329 #define DO_GT(N, M) ((N) > (M))
2330 #define DO_LE(N, M) ((N) <= (M))
2331 
2332 DO_VCMP_U(vcmpeq, DO_EQ)
2333 DO_VCMP_U(vcmpne, DO_NE)
2334 DO_VCMP_U(vcmpcs, DO_GE)
2335 DO_VCMP_U(vcmphi, DO_GT)
2336 DO_VCMP_S(vcmpge, DO_GE)
2337 DO_VCMP_S(vcmplt, DO_LT)
2338 DO_VCMP_S(vcmpgt, DO_GT)
2339 DO_VCMP_S(vcmple, DO_LE)
2340 
2341 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2342 {
2343     /*
2344      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2345      * but note that whether bytes are written to Qd is still subject
2346      * to (all forms of) predication in the usual way.
2347      */
2348     uint64_t *d = vd, *n = vn, *m = vm;
2349     uint16_t mask = mve_element_mask(env);
2350     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2351     unsigned e;
2352     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2353         uint64_t r = m[H8(e)];
2354         mergemask(&r, n[H8(e)], p0);
2355         mergemask(&d[H8(e)], r, mask);
2356     }
2357     mve_advance_vpt(env);
2358 }
2359 
2360 void HELPER(mve_vpnot)(CPUARMState *env)
2361 {
2362     /*
2363      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2364      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2365      * P0 bits otherwise are inverted.
2366      * (This is the same logic as VCMP.)
2367      * This insn is itself subject to predication and to beat-wise execution,
2368      * and after it executes VPT state advances in the usual way.
2369      */
2370     uint16_t mask = mve_element_mask(env);
2371     uint16_t eci_mask = mve_eci_mask(env);
2372     uint16_t beatpred = ~env->v7m.vpr & mask;
2373     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2374     mve_advance_vpt(env);
2375 }
2376 
2377 /*
2378  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2379  * otherwise set according to value of Rn. The calculation of
2380  * newmask here works in the same way as the calculation of the
2381  * ltpmask in mve_element_mask(), but we have pre-calculated
2382  * the masklen in the generated code.
2383  */
2384 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2385 {
2386     uint16_t mask = mve_element_mask(env);
2387     uint16_t eci_mask = mve_eci_mask(env);
2388     uint16_t newmask;
2389 
2390     assert(masklen <= 16);
2391     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2392     newmask &= mask;
2393     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2394     mve_advance_vpt(env);
2395 }
2396 
2397 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2398     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2399     {                                                                   \
2400         TYPE *d = vd, *m = vm;                                          \
2401         uint16_t mask = mve_element_mask(env);                          \
2402         unsigned e;                                                     \
2403         bool qc = false;                                                \
2404         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2405             bool sat = false;                                           \
2406             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2407             qc |= sat & mask & 1;                                       \
2408         }                                                               \
2409         if (qc) {                                                       \
2410             env->vfp.qc[0] = qc;                                        \
2411         }                                                               \
2412         mve_advance_vpt(env);                                           \
2413     }
2414 
2415 #define DO_VQABS_B(N, SATP) \
2416     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2417 #define DO_VQABS_H(N, SATP) \
2418     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2419 #define DO_VQABS_W(N, SATP) \
2420     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2421 
2422 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2423 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2424 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2425 
2426 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2427 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2428 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2429 
2430 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2431 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2432 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2433 
2434 /*
2435  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2436  * absolute value; we then do an unsigned comparison.
2437  */
2438 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2439     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2440     {                                                                   \
2441         UTYPE *d = vd;                                                  \
2442         STYPE *m = vm;                                                  \
2443         uint16_t mask = mve_element_mask(env);                          \
2444         unsigned e;                                                     \
2445         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2446             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2447             r = FN(d[H##ESIZE(e)], r);                                  \
2448             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2449         }                                                               \
2450         mve_advance_vpt(env);                                           \
2451     }
2452 
2453 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2454 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2455 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2456 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2457 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2458 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2459