xref: /qemu/target/arm/tcg/mve_helper.c (revision f0ffff5163cb503de236fc766121601592f08744)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_eci_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector correspond
33      * to beats being executed. The mask has 1 bits for executed lanes
34      * and 0 bits where ECI says this beat was already executed.
35      */
36     int eci;
37 
38     if ((env->condexec_bits & 0xf) != 0) {
39         return 0xffff;
40     }
41 
42     eci = env->condexec_bits >> 4;
43     switch (eci) {
44     case ECI_NONE:
45         return 0xffff;
46     case ECI_A0:
47         return 0xfff0;
48     case ECI_A0A1:
49         return 0xff00;
50     case ECI_A0A1A2:
51     case ECI_A0A1A2B0:
52         return 0xf000;
53     default:
54         g_assert_not_reached();
55     }
56 }
57 
58 static uint16_t mve_element_mask(CPUARMState *env)
59 {
60     /*
61      * Return the mask of which elements in the MVE vector should be
62      * updated. This is a combination of multiple things:
63      *  (1) by default, we update every lane in the vector
64      *  (2) VPT predication stores its state in the VPR register;
65      *  (3) low-overhead-branch tail predication will mask out part
66      *      the vector on the final iteration of the loop
67      *  (4) if EPSR.ECI is set then we must execute only some beats
68      *      of the insn
69      * We combine all these into a 16-bit result with the same semantics
70      * as VPR.P0: 0 to mask the lane, 1 if it is active.
71      * 8-bit vector ops will look at all bits of the result;
72      * 16-bit ops will look at bits 0, 2, 4, ...;
73      * 32-bit ops will look at bits 0, 4, 8 and 12.
74      * Compare pseudocode GetCurInstrBeat(), though that only returns
75      * the 4-bit slice of the mask corresponding to a single beat.
76      */
77     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
78 
79     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
80         mask |= 0xff;
81     }
82     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
83         mask |= 0xff00;
84     }
85 
86     if (env->v7m.ltpsize < 4 &&
87         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
88         /*
89          * Tail predication active, and this is the last loop iteration.
90          * The element size is (1 << ltpsize), and we only want to process
91          * loopcount elements, so we want to retain the least significant
92          * (loopcount * esize) predicate bits and zero out bits above that.
93          */
94         int masklen = env->regs[14] << env->v7m.ltpsize;
95         assert(masklen <= 16);
96         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
97         mask &= ltpmask;
98     }
99 
100     /*
101      * ECI bits indicate which beats are already executed;
102      * we handle this by effectively predicating them out.
103      */
104     mask &= mve_eci_mask(env);
105     return mask;
106 }
107 
108 static void mve_advance_vpt(CPUARMState *env)
109 {
110     /* Advance the VPT and ECI state if necessary */
111     uint32_t vpr = env->v7m.vpr;
112     unsigned mask01, mask23;
113     uint16_t inv_mask;
114     uint16_t eci_mask = mve_eci_mask(env);
115 
116     if ((env->condexec_bits & 0xf) == 0) {
117         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
118             (ECI_A0 << 4) : (ECI_NONE << 4);
119     }
120 
121     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
122         /* VPT not enabled, nothing to do */
123         return;
124     }
125 
126     /* Invert P0 bits if needed, but only for beats we actually executed */
127     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
128     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
129     /* Start by assuming we invert all bits corresponding to executed beats */
130     inv_mask = eci_mask;
131     if (mask01 <= 8) {
132         /* MASK01 says don't invert low half of P0 */
133         inv_mask &= ~0xff;
134     }
135     if (mask23 <= 8) {
136         /* MASK23 says don't invert high half of P0 */
137         inv_mask &= ~0xff00;
138     }
139     vpr ^= inv_mask;
140     /* Only update MASK01 if beat 1 executed */
141     if (eci_mask & 0xf0) {
142         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
143     }
144     /* Beat 3 always executes, so update MASK23 */
145     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
146     env->v7m.vpr = vpr;
147 }
148 
149 /* For loads, predicated lanes are zeroed instead of keeping their old values */
150 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
151     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
152     {                                                                   \
153         TYPE *d = vd;                                                   \
154         uint16_t mask = mve_element_mask(env);                          \
155         uint16_t eci_mask = mve_eci_mask(env);                          \
156         unsigned b, e;                                                  \
157         /*                                                              \
158          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
159          * beats so we don't care if we update part of the dest and     \
160          * then take an exception.                                      \
161          */                                                             \
162         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
163             if (eci_mask & (1 << b)) {                                  \
164                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
165                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
166             }                                                           \
167             addr += MSIZE;                                              \
168         }                                                               \
169         mve_advance_vpt(env);                                           \
170     }
171 
172 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
173     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
174     {                                                                   \
175         TYPE *d = vd;                                                   \
176         uint16_t mask = mve_element_mask(env);                          \
177         unsigned b, e;                                                  \
178         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
179             if (mask & (1 << b)) {                                      \
180                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
181             }                                                           \
182             addr += MSIZE;                                              \
183         }                                                               \
184         mve_advance_vpt(env);                                           \
185     }
186 
187 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
188 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
189 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
190 
191 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
192 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
193 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
194 
195 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
196 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
197 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
198 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
199 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
200 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
201 
202 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
203 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
204 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
205 
206 #undef DO_VLDR
207 #undef DO_VSTR
208 
209 /*
210  * The mergemask(D, R, M) macro performs the operation "*D = R" but
211  * storing only the bytes which correspond to 1 bits in M,
212  * leaving other bytes in *D unchanged. We use _Generic
213  * to select the correct implementation based on the type of D.
214  */
215 
216 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
217 {
218     if (mask & 1) {
219         *d = r;
220     }
221 }
222 
223 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
224 {
225     mergemask_ub((uint8_t *)d, r, mask);
226 }
227 
228 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
229 {
230     uint16_t bmask = expand_pred_b_data[mask & 3];
231     *d = (*d & ~bmask) | (r & bmask);
232 }
233 
234 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
235 {
236     mergemask_uh((uint16_t *)d, r, mask);
237 }
238 
239 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
240 {
241     uint32_t bmask = expand_pred_b_data[mask & 0xf];
242     *d = (*d & ~bmask) | (r & bmask);
243 }
244 
245 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
246 {
247     mergemask_uw((uint32_t *)d, r, mask);
248 }
249 
250 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
251 {
252     uint64_t bmask = expand_pred_b_data[mask & 0xff];
253     *d = (*d & ~bmask) | (r & bmask);
254 }
255 
256 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
257 {
258     mergemask_uq((uint64_t *)d, r, mask);
259 }
260 
261 #define mergemask(D, R, M)                      \
262     _Generic(D,                                 \
263              uint8_t *: mergemask_ub,           \
264              int8_t *:  mergemask_sb,           \
265              uint16_t *: mergemask_uh,          \
266              int16_t *:  mergemask_sh,          \
267              uint32_t *: mergemask_uw,          \
268              int32_t *:  mergemask_sw,          \
269              uint64_t *: mergemask_uq,          \
270              int64_t *:  mergemask_sq)(D, R, M)
271 
272 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
273 {
274     /*
275      * The generated code already replicated an 8 or 16 bit constant
276      * into the 32-bit value, so we only need to write the 32-bit
277      * value to all elements of the Qreg, allowing for predication.
278      */
279     uint32_t *d = vd;
280     uint16_t mask = mve_element_mask(env);
281     unsigned e;
282     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
283         mergemask(&d[H4(e)], val, mask);
284     }
285     mve_advance_vpt(env);
286 }
287 
288 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
289     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
290     {                                                                   \
291         TYPE *d = vd, *m = vm;                                          \
292         uint16_t mask = mve_element_mask(env);                          \
293         unsigned e;                                                     \
294         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
295             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
296         }                                                               \
297         mve_advance_vpt(env);                                           \
298     }
299 
300 #define DO_CLS_B(N)   (clrsb32(N) - 24)
301 #define DO_CLS_H(N)   (clrsb32(N) - 16)
302 
303 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
304 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
305 DO_1OP(vclsw, 4, int32_t, clrsb32)
306 
307 #define DO_CLZ_B(N)   (clz32(N) - 24)
308 #define DO_CLZ_H(N)   (clz32(N) - 16)
309 
310 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
311 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
312 DO_1OP(vclzw, 4, uint32_t, clz32)
313 
314 DO_1OP(vrev16b, 2, uint16_t, bswap16)
315 DO_1OP(vrev32b, 4, uint32_t, bswap32)
316 DO_1OP(vrev32h, 4, uint32_t, hswap32)
317 DO_1OP(vrev64b, 8, uint64_t, bswap64)
318 DO_1OP(vrev64h, 8, uint64_t, hswap64)
319 DO_1OP(vrev64w, 8, uint64_t, wswap64)
320 
321 #define DO_NOT(N) (~(N))
322 
323 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
324 
325 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
326 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
327 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
328 
329 DO_1OP(vabsb, 1, int8_t, DO_ABS)
330 DO_1OP(vabsh, 2, int16_t, DO_ABS)
331 DO_1OP(vabsw, 4, int32_t, DO_ABS)
332 
333 /* We can do these 64 bits at a time */
334 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
335 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
336 
337 #define DO_NEG(N)    (-(N))
338 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
339 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
340 
341 DO_1OP(vnegb, 1, int8_t, DO_NEG)
342 DO_1OP(vnegh, 2, int16_t, DO_NEG)
343 DO_1OP(vnegw, 4, int32_t, DO_NEG)
344 
345 /* We can do these 64 bits at a time */
346 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
347 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
348 
349 /*
350  * 1 operand immediates: Vda is destination and possibly also one source.
351  * All these insns work at 64-bit widths.
352  */
353 #define DO_1OP_IMM(OP, FN)                                              \
354     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
355     {                                                                   \
356         uint64_t *da = vda;                                             \
357         uint16_t mask = mve_element_mask(env);                          \
358         unsigned e;                                                     \
359         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
360             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
361         }                                                               \
362         mve_advance_vpt(env);                                           \
363     }
364 
365 #define DO_MOVI(N, I) (I)
366 #define DO_ANDI(N, I) ((N) & (I))
367 #define DO_ORRI(N, I) ((N) | (I))
368 
369 DO_1OP_IMM(vmovi, DO_MOVI)
370 DO_1OP_IMM(vandi, DO_ANDI)
371 DO_1OP_IMM(vorri, DO_ORRI)
372 
373 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
374     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
375                                 void *vd, void *vn, void *vm)           \
376     {                                                                   \
377         TYPE *d = vd, *n = vn, *m = vm;                                 \
378         uint16_t mask = mve_element_mask(env);                          \
379         unsigned e;                                                     \
380         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
381             mergemask(&d[H##ESIZE(e)],                                  \
382                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
383         }                                                               \
384         mve_advance_vpt(env);                                           \
385     }
386 
387 /* provide unsigned 2-op helpers for all sizes */
388 #define DO_2OP_U(OP, FN)                        \
389     DO_2OP(OP##b, 1, uint8_t, FN)               \
390     DO_2OP(OP##h, 2, uint16_t, FN)              \
391     DO_2OP(OP##w, 4, uint32_t, FN)
392 
393 /* provide signed 2-op helpers for all sizes */
394 #define DO_2OP_S(OP, FN)                        \
395     DO_2OP(OP##b, 1, int8_t, FN)                \
396     DO_2OP(OP##h, 2, int16_t, FN)               \
397     DO_2OP(OP##w, 4, int32_t, FN)
398 
399 /*
400  * "Long" operations where two half-sized inputs (taken from either the
401  * top or the bottom of the input vector) produce a double-width result.
402  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
403  */
404 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
405     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
406     {                                                                   \
407         LTYPE *d = vd;                                                  \
408         TYPE *n = vn, *m = vm;                                          \
409         uint16_t mask = mve_element_mask(env);                          \
410         unsigned le;                                                    \
411         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
412             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
413                          m[H##ESIZE(le * 2 + TOP)]);                    \
414             mergemask(&d[H##LESIZE(le)], r, mask);                      \
415         }                                                               \
416         mve_advance_vpt(env);                                           \
417     }
418 
419 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
420     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
421     {                                                                   \
422         TYPE *d = vd, *n = vn, *m = vm;                                 \
423         uint16_t mask = mve_element_mask(env);                          \
424         unsigned e;                                                     \
425         bool qc = false;                                                \
426         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
427             bool sat = false;                                           \
428             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
429             mergemask(&d[H##ESIZE(e)], r, mask);                        \
430             qc |= sat & mask & 1;                                       \
431         }                                                               \
432         if (qc) {                                                       \
433             env->vfp.qc[0] = qc;                                        \
434         }                                                               \
435         mve_advance_vpt(env);                                           \
436     }
437 
438 /* provide unsigned 2-op helpers for all sizes */
439 #define DO_2OP_SAT_U(OP, FN)                    \
440     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
441     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
442     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
443 
444 /* provide signed 2-op helpers for all sizes */
445 #define DO_2OP_SAT_S(OP, FN)                    \
446     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
447     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
448     DO_2OP_SAT(OP##w, 4, int32_t, FN)
449 
450 #define DO_AND(N, M)  ((N) & (M))
451 #define DO_BIC(N, M)  ((N) & ~(M))
452 #define DO_ORR(N, M)  ((N) | (M))
453 #define DO_ORN(N, M)  ((N) | ~(M))
454 #define DO_EOR(N, M)  ((N) ^ (M))
455 
456 DO_2OP(vand, 8, uint64_t, DO_AND)
457 DO_2OP(vbic, 8, uint64_t, DO_BIC)
458 DO_2OP(vorr, 8, uint64_t, DO_ORR)
459 DO_2OP(vorn, 8, uint64_t, DO_ORN)
460 DO_2OP(veor, 8, uint64_t, DO_EOR)
461 
462 #define DO_ADD(N, M) ((N) + (M))
463 #define DO_SUB(N, M) ((N) - (M))
464 #define DO_MUL(N, M) ((N) * (M))
465 
466 DO_2OP_U(vadd, DO_ADD)
467 DO_2OP_U(vsub, DO_SUB)
468 DO_2OP_U(vmul, DO_MUL)
469 
470 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
471 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
472 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
473 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
474 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
475 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
476 
477 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
478 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
479 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
480 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
481 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
482 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
483 
484 /*
485  * Polynomial multiply. We can always do this generating 64 bits
486  * of the result at a time, so we don't need to use DO_2OP_L.
487  */
488 #define VMULLPH_MASK 0x00ff00ff00ff00ffULL
489 #define VMULLPW_MASK 0x0000ffff0000ffffULL
490 #define DO_VMULLPBH(N, M) pmull_h((N) & VMULLPH_MASK, (M) & VMULLPH_MASK)
491 #define DO_VMULLPTH(N, M) DO_VMULLPBH((N) >> 8, (M) >> 8)
492 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
493 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
494 
495 DO_2OP(vmullpbh, 8, uint64_t, DO_VMULLPBH)
496 DO_2OP(vmullpth, 8, uint64_t, DO_VMULLPTH)
497 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
498 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
499 
500 /*
501  * Because the computation type is at least twice as large as required,
502  * these work for both signed and unsigned source types.
503  */
504 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
505 {
506     return (n * m) >> 8;
507 }
508 
509 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
510 {
511     return (n * m) >> 16;
512 }
513 
514 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
515 {
516     return (n * m) >> 32;
517 }
518 
519 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
520 {
521     return (n * m + (1U << 7)) >> 8;
522 }
523 
524 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
525 {
526     return (n * m + (1U << 15)) >> 16;
527 }
528 
529 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
530 {
531     return (n * m + (1U << 31)) >> 32;
532 }
533 
534 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
535 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
536 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
537 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
538 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
539 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
540 
541 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
542 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
543 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
544 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
545 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
546 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
547 
548 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
549 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
550 
551 DO_2OP_S(vmaxs, DO_MAX)
552 DO_2OP_U(vmaxu, DO_MAX)
553 DO_2OP_S(vmins, DO_MIN)
554 DO_2OP_U(vminu, DO_MIN)
555 
556 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
557 
558 DO_2OP_S(vabds, DO_ABD)
559 DO_2OP_U(vabdu, DO_ABD)
560 
561 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
562 {
563     return ((uint64_t)n + m) >> 1;
564 }
565 
566 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
567 {
568     return ((int64_t)n + m) >> 1;
569 }
570 
571 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
572 {
573     return ((uint64_t)n - m) >> 1;
574 }
575 
576 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
577 {
578     return ((int64_t)n - m) >> 1;
579 }
580 
581 DO_2OP_S(vhadds, do_vhadd_s)
582 DO_2OP_U(vhaddu, do_vhadd_u)
583 DO_2OP_S(vhsubs, do_vhsub_s)
584 DO_2OP_U(vhsubu, do_vhsub_u)
585 
586 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
587 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
588 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
589 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
590 
591 DO_2OP_S(vshls, DO_VSHLS)
592 DO_2OP_U(vshlu, DO_VSHLU)
593 DO_2OP_S(vrshls, DO_VRSHLS)
594 DO_2OP_U(vrshlu, DO_VRSHLU)
595 
596 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
597 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
598 
599 DO_2OP_S(vrhadds, DO_RHADD_S)
600 DO_2OP_U(vrhaddu, DO_RHADD_U)
601 
602 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
603                     uint32_t inv, uint32_t carry_in, bool update_flags)
604 {
605     uint16_t mask = mve_element_mask(env);
606     unsigned e;
607 
608     /* If any additions trigger, we will update flags. */
609     if (mask & 0x1111) {
610         update_flags = true;
611     }
612 
613     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
614         uint64_t r = carry_in;
615         r += n[H4(e)];
616         r += m[H4(e)] ^ inv;
617         if (mask & 1) {
618             carry_in = r >> 32;
619         }
620         mergemask(&d[H4(e)], r, mask);
621     }
622 
623     if (update_flags) {
624         /* Store C, clear NZV. */
625         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
626         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
627     }
628     mve_advance_vpt(env);
629 }
630 
631 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
632 {
633     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
634     do_vadc(env, vd, vn, vm, 0, carry_in, false);
635 }
636 
637 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
638 {
639     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
640     do_vadc(env, vd, vn, vm, -1, carry_in, false);
641 }
642 
643 
644 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
645 {
646     do_vadc(env, vd, vn, vm, 0, 0, true);
647 }
648 
649 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
650 {
651     do_vadc(env, vd, vn, vm, -1, 1, true);
652 }
653 
654 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
655     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
656     {                                                                   \
657         TYPE *d = vd, *n = vn, *m = vm;                                 \
658         uint16_t mask = mve_element_mask(env);                          \
659         unsigned e;                                                     \
660         TYPE r[16 / ESIZE];                                             \
661         /* Calculate all results first to avoid overwriting inputs */   \
662         for (e = 0; e < 16 / ESIZE; e++) {                              \
663             if (!(e & 1)) {                                             \
664                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
665             } else {                                                    \
666                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
667             }                                                           \
668         }                                                               \
669         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
670             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
671         }                                                               \
672         mve_advance_vpt(env);                                           \
673     }
674 
675 #define DO_VCADD_ALL(OP, FN0, FN1)              \
676     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
677     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
678     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
679 
680 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
681 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
682 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
683 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
684 
685 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
686 {
687     if (val > max) {
688         *s = true;
689         return max;
690     } else if (val < min) {
691         *s = true;
692         return min;
693     }
694     return val;
695 }
696 
697 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
698 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
699 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
700 
701 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
702 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
703 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
704 
705 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
706 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
707 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
708 
709 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
710 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
711 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
712 
713 /*
714  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
715  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
716  */
717 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
718                                         INT8_MIN, INT8_MAX, s)
719 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
720                                         INT16_MIN, INT16_MAX, s)
721 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
722                                         INT32_MIN, INT32_MAX, s)
723 
724 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
725                                          INT8_MIN, INT8_MAX, s)
726 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
727                                          INT16_MIN, INT16_MAX, s)
728 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
729                                          INT32_MIN, INT32_MAX, s)
730 
731 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
732 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
733 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
734 
735 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
736 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
737 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
738 
739 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
740 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
741 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
742 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
743 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
744 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
745 
746 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
747 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
748 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
749 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
750 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
751 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
752 
753 /*
754  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
755  * and friends wanting a uint32_t* sat and our needing a bool*.
756  */
757 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
758     ({                                                                  \
759         uint32_t su32 = 0;                                              \
760         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
761         if (su32) {                                                     \
762             *satp = true;                                               \
763         }                                                               \
764         r;                                                              \
765     })
766 
767 #define DO_SQSHL_OP(N, M, satp) \
768     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
769 #define DO_UQSHL_OP(N, M, satp) \
770     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
771 #define DO_SQRSHL_OP(N, M, satp) \
772     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
773 #define DO_UQRSHL_OP(N, M, satp) \
774     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
775 #define DO_SUQSHL_OP(N, M, satp) \
776     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
777 
778 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
779 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
780 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
781 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
782 
783 /*
784  * Multiply add dual returning high half
785  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
786  * whether to add the rounding constant, and the pointer to the
787  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
788  * saturate to twice the input size and return the high half; or
789  * (A * B - C * D) etc for VQDMLSDH.
790  */
791 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
792     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
793                                 void *vm)                               \
794     {                                                                   \
795         TYPE *d = vd, *n = vn, *m = vm;                                 \
796         uint16_t mask = mve_element_mask(env);                          \
797         unsigned e;                                                     \
798         bool qc = false;                                                \
799         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
800             bool sat = false;                                           \
801             if ((e & 1) == XCHG) {                                      \
802                 TYPE r = FN(n[H##ESIZE(e)],                             \
803                             m[H##ESIZE(e - XCHG)],                      \
804                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
805                             m[H##ESIZE(e + (1 - XCHG))],                \
806                             ROUND, &sat);                               \
807                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
808                 qc |= sat & mask & 1;                                   \
809             }                                                           \
810         }                                                               \
811         if (qc) {                                                       \
812             env->vfp.qc[0] = qc;                                        \
813         }                                                               \
814         mve_advance_vpt(env);                                           \
815     }
816 
817 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
818                             int round, bool *sat)
819 {
820     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
821     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
822 }
823 
824 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
825                              int round, bool *sat)
826 {
827     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
828     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
829 }
830 
831 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
832                              int round, bool *sat)
833 {
834     int64_t m1 = (int64_t)a * b;
835     int64_t m2 = (int64_t)c * d;
836     int64_t r;
837     /*
838      * Architecturally we should do the entire add, double, round
839      * and then check for saturation. We do three saturating adds,
840      * but we need to be careful about the order. If the first
841      * m1 + m2 saturates then it's impossible for the *2+rc to
842      * bring it back into the non-saturated range. However, if
843      * m1 + m2 is negative then it's possible that doing the doubling
844      * would take the intermediate result below INT64_MAX and the
845      * addition of the rounding constant then brings it back in range.
846      * So we add half the rounding constant before doubling rather
847      * than adding the rounding constant after the doubling.
848      */
849     if (sadd64_overflow(m1, m2, &r) ||
850         sadd64_overflow(r, (round << 30), &r) ||
851         sadd64_overflow(r, r, &r)) {
852         *sat = true;
853         return r < 0 ? INT32_MAX : INT32_MIN;
854     }
855     return r >> 32;
856 }
857 
858 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
859                             int round, bool *sat)
860 {
861     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
862     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
863 }
864 
865 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
866                              int round, bool *sat)
867 {
868     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
869     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
870 }
871 
872 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
873                              int round, bool *sat)
874 {
875     int64_t m1 = (int64_t)a * b;
876     int64_t m2 = (int64_t)c * d;
877     int64_t r;
878     /* The same ordering issue as in do_vqdmladh_w applies here too */
879     if (ssub64_overflow(m1, m2, &r) ||
880         sadd64_overflow(r, (round << 30), &r) ||
881         sadd64_overflow(r, r, &r)) {
882         *sat = true;
883         return r < 0 ? INT32_MAX : INT32_MIN;
884     }
885     return r >> 32;
886 }
887 
888 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
889 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
890 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
891 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
892 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
893 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
894 
895 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
896 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
897 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
898 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
899 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
900 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
901 
902 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
903 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
904 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
905 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
906 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
907 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
908 
909 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
910 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
911 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
912 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
913 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
914 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
915 
916 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
917     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
918                                 uint32_t rm)                            \
919     {                                                                   \
920         TYPE *d = vd, *n = vn;                                          \
921         TYPE m = rm;                                                    \
922         uint16_t mask = mve_element_mask(env);                          \
923         unsigned e;                                                     \
924         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
925             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
926         }                                                               \
927         mve_advance_vpt(env);                                           \
928     }
929 
930 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
931     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
932                                 uint32_t rm)                            \
933     {                                                                   \
934         TYPE *d = vd, *n = vn;                                          \
935         TYPE m = rm;                                                    \
936         uint16_t mask = mve_element_mask(env);                          \
937         unsigned e;                                                     \
938         bool qc = false;                                                \
939         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
940             bool sat = false;                                           \
941             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
942                       mask);                                            \
943             qc |= sat & mask & 1;                                       \
944         }                                                               \
945         if (qc) {                                                       \
946             env->vfp.qc[0] = qc;                                        \
947         }                                                               \
948         mve_advance_vpt(env);                                           \
949     }
950 
951 /* "accumulating" version where FN takes d as well as n and m */
952 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
953     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
954                                 uint32_t rm)                            \
955     {                                                                   \
956         TYPE *d = vd, *n = vn;                                          \
957         TYPE m = rm;                                                    \
958         uint16_t mask = mve_element_mask(env);                          \
959         unsigned e;                                                     \
960         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
961             mergemask(&d[H##ESIZE(e)],                                  \
962                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
963         }                                                               \
964         mve_advance_vpt(env);                                           \
965     }
966 
967 /* provide unsigned 2-op scalar helpers for all sizes */
968 #define DO_2OP_SCALAR_U(OP, FN)                 \
969     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
970     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
971     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
972 #define DO_2OP_SCALAR_S(OP, FN)                 \
973     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
974     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
975     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
976 
977 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
978     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
979     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
980     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
981 
982 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
983 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
984 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
985 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
986 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
987 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
988 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
989 
990 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
991 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
992 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
993 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
994 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
995 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
996 
997 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
998 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
999 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1000 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1001 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1002 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1003 
1004 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1005 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1006 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1007 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1008 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1009 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1010 
1011 /* Vector by vector plus scalar */
1012 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1013 
1014 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1015 
1016 /*
1017  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1018  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1019  * SATMASK specifies which bits of the predicate mask matter for determining
1020  * whether to propagate a saturation indication into FPSCR.QC -- for
1021  * the 16x16->32 case we must check only the bit corresponding to the T or B
1022  * half that we used, but for the 32x32->64 case we propagate if the mask
1023  * bit is set for either half.
1024  */
1025 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1026     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1027                                 uint32_t rm)                            \
1028     {                                                                   \
1029         LTYPE *d = vd;                                                  \
1030         TYPE *n = vn;                                                   \
1031         TYPE m = rm;                                                    \
1032         uint16_t mask = mve_element_mask(env);                          \
1033         unsigned le;                                                    \
1034         bool qc = false;                                                \
1035         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1036             bool sat = false;                                           \
1037             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1038             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1039             qc |= sat && (mask & SATMASK);                              \
1040         }                                                               \
1041         if (qc) {                                                       \
1042             env->vfp.qc[0] = qc;                                        \
1043         }                                                               \
1044         mve_advance_vpt(env);                                           \
1045     }
1046 
1047 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1048 {
1049     int64_t r = ((int64_t)n * m) * 2;
1050     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1051 }
1052 
1053 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1054 {
1055     /* The multiply can't overflow, but the doubling might */
1056     int64_t r = (int64_t)n * m;
1057     if (r > INT64_MAX / 2) {
1058         *sat = true;
1059         return INT64_MAX;
1060     } else if (r < INT64_MIN / 2) {
1061         *sat = true;
1062         return INT64_MIN;
1063     } else {
1064         return r * 2;
1065     }
1066 }
1067 
1068 #define SATMASK16B 1
1069 #define SATMASK16T (1 << 2)
1070 #define SATMASK32 ((1 << 4) | 1)
1071 
1072 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1073                     do_qdmullh, SATMASK16B)
1074 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1075                     do_qdmullw, SATMASK32)
1076 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1077                     do_qdmullh, SATMASK16T)
1078 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1079                     do_qdmullw, SATMASK32)
1080 
1081 /*
1082  * Long saturating ops
1083  */
1084 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1085     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1086                                 void *vm)                               \
1087     {                                                                   \
1088         LTYPE *d = vd;                                                  \
1089         TYPE *n = vn, *m = vm;                                          \
1090         uint16_t mask = mve_element_mask(env);                          \
1091         unsigned le;                                                    \
1092         bool qc = false;                                                \
1093         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1094             bool sat = false;                                           \
1095             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1096             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1097             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1098             qc |= sat && (mask & SATMASK);                              \
1099         }                                                               \
1100         if (qc) {                                                       \
1101             env->vfp.qc[0] = qc;                                        \
1102         }                                                               \
1103         mve_advance_vpt(env);                                           \
1104     }
1105 
1106 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1107 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1108 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1109 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1110 
1111 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1112 {
1113     m &= 0xff;
1114     if (m == 0) {
1115         return 0;
1116     }
1117     n = revbit8(n);
1118     if (m < 8) {
1119         n >>= 8 - m;
1120     }
1121     return n;
1122 }
1123 
1124 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1125 {
1126     m &= 0xff;
1127     if (m == 0) {
1128         return 0;
1129     }
1130     n = revbit16(n);
1131     if (m < 16) {
1132         n >>= 16 - m;
1133     }
1134     return n;
1135 }
1136 
1137 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1138 {
1139     m &= 0xff;
1140     if (m == 0) {
1141         return 0;
1142     }
1143     n = revbit32(n);
1144     if (m < 32) {
1145         n >>= 32 - m;
1146     }
1147     return n;
1148 }
1149 
1150 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1151 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1152 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1153 
1154 /*
1155  * Multiply add long dual accumulate ops.
1156  */
1157 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1158     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1159                                     void *vm, uint64_t a)               \
1160     {                                                                   \
1161         uint16_t mask = mve_element_mask(env);                          \
1162         unsigned e;                                                     \
1163         TYPE *n = vn, *m = vm;                                          \
1164         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1165             if (mask & 1) {                                             \
1166                 if (e & 1) {                                            \
1167                     a ODDACC                                            \
1168                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1169                 } else {                                                \
1170                     a EVENACC                                           \
1171                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1172                 }                                                       \
1173             }                                                           \
1174         }                                                               \
1175         mve_advance_vpt(env);                                           \
1176         return a;                                                       \
1177     }
1178 
1179 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1180 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1181 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1182 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1183 
1184 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1185 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1186 
1187 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1188 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1189 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1190 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1191 
1192 /*
1193  * Multiply add dual accumulate ops
1194  */
1195 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1196     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1197                                     void *vm, uint32_t a)               \
1198     {                                                                   \
1199         uint16_t mask = mve_element_mask(env);                          \
1200         unsigned e;                                                     \
1201         TYPE *n = vn, *m = vm;                                          \
1202         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1203             if (mask & 1) {                                             \
1204                 if (e & 1) {                                            \
1205                     a ODDACC                                            \
1206                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1207                 } else {                                                \
1208                     a EVENACC                                           \
1209                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1210                 }                                                       \
1211             }                                                           \
1212         }                                                               \
1213         mve_advance_vpt(env);                                           \
1214         return a;                                                       \
1215     }
1216 
1217 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1218     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1219     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1220     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1221 
1222 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1223     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1224     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1225     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1226 
1227 DO_DAV_S(vmladavs, false, +=, +=)
1228 DO_DAV_U(vmladavu, false, +=, +=)
1229 DO_DAV_S(vmlsdav, false, +=, -=)
1230 DO_DAV_S(vmladavsx, true, +=, +=)
1231 DO_DAV_S(vmlsdavx, true, +=, -=)
1232 
1233 /*
1234  * Rounding multiply add long dual accumulate high. In the pseudocode
1235  * this is implemented with a 72-bit internal accumulator value of which
1236  * the top 64 bits are returned. We optimize this to avoid having to
1237  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1238  * is squashed back into 64-bits after each beat.
1239  */
1240 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1241     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1242                                     void *vm, uint64_t a)               \
1243     {                                                                   \
1244         uint16_t mask = mve_element_mask(env);                          \
1245         unsigned e;                                                     \
1246         TYPE *n = vn, *m = vm;                                          \
1247         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1248             if (mask & 1) {                                             \
1249                 LTYPE mul;                                              \
1250                 if (e & 1) {                                            \
1251                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1252                     if (SUB) {                                          \
1253                         mul = -mul;                                     \
1254                     }                                                   \
1255                 } else {                                                \
1256                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1257                 }                                                       \
1258                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1259                 a += mul;                                               \
1260             }                                                           \
1261         }                                                               \
1262         mve_advance_vpt(env);                                           \
1263         return a;                                                       \
1264     }
1265 
1266 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1267 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1268 
1269 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1270 
1271 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1272 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1273 
1274 /* Vector add across vector */
1275 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1276     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1277                                     uint32_t ra)                \
1278     {                                                           \
1279         uint16_t mask = mve_element_mask(env);                  \
1280         unsigned e;                                             \
1281         TYPE *m = vm;                                           \
1282         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1283             if (mask & 1) {                                     \
1284                 ra += m[H##ESIZE(e)];                           \
1285             }                                                   \
1286         }                                                       \
1287         mve_advance_vpt(env);                                   \
1288         return ra;                                              \
1289     }                                                           \
1290 
1291 DO_VADDV(vaddvsb, 1, int8_t)
1292 DO_VADDV(vaddvsh, 2, int16_t)
1293 DO_VADDV(vaddvsw, 4, int32_t)
1294 DO_VADDV(vaddvub, 1, uint8_t)
1295 DO_VADDV(vaddvuh, 2, uint16_t)
1296 DO_VADDV(vaddvuw, 4, uint32_t)
1297 
1298 /*
1299  * Vector max/min across vector. Unlike VADDV, we must
1300  * read ra as the element size, not its full width.
1301  * We work with int64_t internally for simplicity.
1302  */
1303 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1304     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1305                                     uint32_t ra_in)             \
1306     {                                                           \
1307         uint16_t mask = mve_element_mask(env);                  \
1308         unsigned e;                                             \
1309         TYPE *m = vm;                                           \
1310         int64_t ra = (RATYPE)ra_in;                             \
1311         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1312             if (mask & 1) {                                     \
1313                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1314             }                                                   \
1315         }                                                       \
1316         mve_advance_vpt(env);                                   \
1317         return ra;                                              \
1318     }                                                           \
1319 
1320 #define DO_VMAXMINV_U(INSN, FN)                         \
1321     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1322     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1323     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1324 #define DO_VMAXMINV_S(INSN, FN)                         \
1325     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1326     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1327     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1328 
1329 /*
1330  * Helpers for max and min of absolute values across vector:
1331  * note that we only take the absolute value of 'm', not 'n'
1332  */
1333 static int64_t do_maxa(int64_t n, int64_t m)
1334 {
1335     if (m < 0) {
1336         m = -m;
1337     }
1338     return MAX(n, m);
1339 }
1340 
1341 static int64_t do_mina(int64_t n, int64_t m)
1342 {
1343     if (m < 0) {
1344         m = -m;
1345     }
1346     return MIN(n, m);
1347 }
1348 
1349 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1350 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1351 DO_VMAXMINV_S(vminvs, DO_MIN)
1352 DO_VMAXMINV_U(vminvu, DO_MIN)
1353 /*
1354  * VMAXAV, VMINAV treat the general purpose input as unsigned
1355  * and the vector elements as signed.
1356  */
1357 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1358 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1359 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1360 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1361 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1362 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1363 
1364 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1365     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1366                                     void *vm, uint32_t ra)      \
1367     {                                                           \
1368         uint16_t mask = mve_element_mask(env);                  \
1369         unsigned e;                                             \
1370         TYPE *m = vm, *n = vn;                                  \
1371         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1372             if (mask & 1) {                                     \
1373                 int64_t n0 = n[H##ESIZE(e)];                    \
1374                 int64_t m0 = m[H##ESIZE(e)];                    \
1375                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1376                 ra += r;                                        \
1377             }                                                   \
1378         }                                                       \
1379         mve_advance_vpt(env);                                   \
1380         return ra;                                              \
1381     }
1382 
1383 DO_VABAV(vabavsb, 1, int8_t)
1384 DO_VABAV(vabavsh, 2, int16_t)
1385 DO_VABAV(vabavsw, 4, int32_t)
1386 DO_VABAV(vabavub, 1, uint8_t)
1387 DO_VABAV(vabavuh, 2, uint16_t)
1388 DO_VABAV(vabavuw, 4, uint32_t)
1389 
1390 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1391     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1392                                     uint64_t ra)                \
1393     {                                                           \
1394         uint16_t mask = mve_element_mask(env);                  \
1395         unsigned e;                                             \
1396         TYPE *m = vm;                                           \
1397         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1398             if (mask & 1) {                                     \
1399                 ra += (LTYPE)m[H4(e)];                          \
1400             }                                                   \
1401         }                                                       \
1402         mve_advance_vpt(env);                                   \
1403         return ra;                                              \
1404     }                                                           \
1405 
1406 DO_VADDLV(vaddlv_s, int32_t, int64_t)
1407 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
1408 
1409 /* Shifts by immediate */
1410 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
1411     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1412                                 void *vm, uint32_t shift)       \
1413     {                                                           \
1414         TYPE *d = vd, *m = vm;                                  \
1415         uint16_t mask = mve_element_mask(env);                  \
1416         unsigned e;                                             \
1417         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1418             mergemask(&d[H##ESIZE(e)],                          \
1419                       FN(m[H##ESIZE(e)], shift), mask);         \
1420         }                                                       \
1421         mve_advance_vpt(env);                                   \
1422     }
1423 
1424 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
1425     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1426                                 void *vm, uint32_t shift)       \
1427     {                                                           \
1428         TYPE *d = vd, *m = vm;                                  \
1429         uint16_t mask = mve_element_mask(env);                  \
1430         unsigned e;                                             \
1431         bool qc = false;                                        \
1432         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1433             bool sat = false;                                   \
1434             mergemask(&d[H##ESIZE(e)],                          \
1435                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
1436             qc |= sat & mask & 1;                               \
1437         }                                                       \
1438         if (qc) {                                               \
1439             env->vfp.qc[0] = qc;                                \
1440         }                                                       \
1441         mve_advance_vpt(env);                                   \
1442     }
1443 
1444 /* provide unsigned 2-op shift helpers for all sizes */
1445 #define DO_2SHIFT_U(OP, FN)                     \
1446     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
1447     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
1448     DO_2SHIFT(OP##w, 4, uint32_t, FN)
1449 #define DO_2SHIFT_S(OP, FN)                     \
1450     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
1451     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
1452     DO_2SHIFT(OP##w, 4, int32_t, FN)
1453 
1454 #define DO_2SHIFT_SAT_U(OP, FN)                 \
1455     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
1456     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
1457     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
1458 #define DO_2SHIFT_SAT_S(OP, FN)                 \
1459     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
1460     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
1461     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
1462 
1463 DO_2SHIFT_U(vshli_u, DO_VSHLU)
1464 DO_2SHIFT_S(vshli_s, DO_VSHLS)
1465 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
1466 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
1467 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
1468 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
1469 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
1470 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
1471 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
1472 
1473 /* Shift-and-insert; we always work with 64 bits at a time */
1474 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
1475     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1476                                 void *vm, uint32_t shift)               \
1477     {                                                                   \
1478         uint64_t *d = vd, *m = vm;                                      \
1479         uint16_t mask;                                                  \
1480         uint64_t shiftmask;                                             \
1481         unsigned e;                                                     \
1482         if (shift == ESIZE * 8) {                                       \
1483             /*                                                          \
1484              * Only VSRI can shift by <dt>; it should mean "don't       \
1485              * update the destination". The generic logic can't handle  \
1486              * this because it would try to shift by an out-of-range    \
1487              * amount, so special case it here.                         \
1488              */                                                         \
1489             goto done;                                                  \
1490         }                                                               \
1491         assert(shift < ESIZE * 8);                                      \
1492         mask = mve_element_mask(env);                                   \
1493         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
1494         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
1495         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
1496             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
1497                 (d[H8(e)] & ~shiftmask);                                \
1498             mergemask(&d[H8(e)], r, mask);                              \
1499         }                                                               \
1500 done:                                                                   \
1501         mve_advance_vpt(env);                                           \
1502     }
1503 
1504 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
1505 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
1506 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
1507 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
1508 
1509 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
1510 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
1511 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
1512 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
1513 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
1514 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
1515 
1516 /*
1517  * Long shifts taking half-sized inputs from top or bottom of the input
1518  * vector and producing a double-width result. ESIZE, TYPE are for
1519  * the input, and LESIZE, LTYPE for the output.
1520  * Unlike the normal shift helpers, we do not handle negative shift counts,
1521  * because the long shift is strictly left-only.
1522  */
1523 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1524     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1525                                 void *vm, uint32_t shift)               \
1526     {                                                                   \
1527         LTYPE *d = vd;                                                  \
1528         TYPE *m = vm;                                                   \
1529         uint16_t mask = mve_element_mask(env);                          \
1530         unsigned le;                                                    \
1531         assert(shift <= 16);                                            \
1532         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1533             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
1534             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1535         }                                                               \
1536         mve_advance_vpt(env);                                           \
1537     }
1538 
1539 #define DO_VSHLL_ALL(OP, TOP)                                \
1540     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
1541     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
1542     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
1543     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
1544 
1545 DO_VSHLL_ALL(vshllb, false)
1546 DO_VSHLL_ALL(vshllt, true)
1547 
1548 /*
1549  * Narrowing right shifts, taking a double sized input, shifting it
1550  * and putting the result in either the top or bottom half of the output.
1551  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
1552  */
1553 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
1554     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1555                                 void *vm, uint32_t shift)       \
1556     {                                                           \
1557         LTYPE *m = vm;                                          \
1558         TYPE *d = vd;                                           \
1559         uint16_t mask = mve_element_mask(env);                  \
1560         unsigned le;                                            \
1561         mask >>= ESIZE * TOP;                                   \
1562         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1563             TYPE r = FN(m[H##LESIZE(le)], shift);               \
1564             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1565         }                                                       \
1566         mve_advance_vpt(env);                                   \
1567     }
1568 
1569 #define DO_VSHRN_ALL(OP, FN)                                    \
1570     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
1571     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
1572     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
1573     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
1574 
1575 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
1576 {
1577     if (likely(sh < 64)) {
1578         return (x >> sh) + ((x >> (sh - 1)) & 1);
1579     } else if (sh == 64) {
1580         return x >> 63;
1581     } else {
1582         return 0;
1583     }
1584 }
1585 
1586 static inline int64_t do_srshr(int64_t x, unsigned sh)
1587 {
1588     if (likely(sh < 64)) {
1589         return (x >> sh) + ((x >> (sh - 1)) & 1);
1590     } else {
1591         /* Rounding the sign bit always produces 0. */
1592         return 0;
1593     }
1594 }
1595 
1596 DO_VSHRN_ALL(vshrn, DO_SHR)
1597 DO_VSHRN_ALL(vrshrn, do_urshr)
1598 
1599 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
1600                                  bool *satp)
1601 {
1602     if (val > max) {
1603         *satp = true;
1604         return max;
1605     } else if (val < min) {
1606         *satp = true;
1607         return min;
1608     } else {
1609         return val;
1610     }
1611 }
1612 
1613 /* Saturating narrowing right shifts */
1614 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
1615     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1616                                 void *vm, uint32_t shift)       \
1617     {                                                           \
1618         LTYPE *m = vm;                                          \
1619         TYPE *d = vd;                                           \
1620         uint16_t mask = mve_element_mask(env);                  \
1621         bool qc = false;                                        \
1622         unsigned le;                                            \
1623         mask >>= ESIZE * TOP;                                   \
1624         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1625             bool sat = false;                                   \
1626             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
1627             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1628             qc |= sat & mask & 1;                               \
1629         }                                                       \
1630         if (qc) {                                               \
1631             env->vfp.qc[0] = qc;                                \
1632         }                                                       \
1633         mve_advance_vpt(env);                                   \
1634     }
1635 
1636 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
1637     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1638     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1639 
1640 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
1641     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1642     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1643 
1644 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
1645     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1646     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1647 
1648 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
1649     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1650     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1651 
1652 #define DO_SHRN_SB(N, M, SATP)                                  \
1653     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
1654 #define DO_SHRN_UB(N, M, SATP)                                  \
1655     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1656 #define DO_SHRUN_B(N, M, SATP)                                  \
1657     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1658 
1659 #define DO_SHRN_SH(N, M, SATP)                                  \
1660     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
1661 #define DO_SHRN_UH(N, M, SATP)                                  \
1662     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1663 #define DO_SHRUN_H(N, M, SATP)                                  \
1664     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1665 
1666 #define DO_RSHRN_SB(N, M, SATP)                                 \
1667     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
1668 #define DO_RSHRN_UB(N, M, SATP)                                 \
1669     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
1670 #define DO_RSHRUN_B(N, M, SATP)                                 \
1671     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
1672 
1673 #define DO_RSHRN_SH(N, M, SATP)                                 \
1674     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
1675 #define DO_RSHRN_UH(N, M, SATP)                                 \
1676     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
1677 #define DO_RSHRUN_H(N, M, SATP)                                 \
1678     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
1679 
1680 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
1681 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
1682 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
1683 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
1684 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
1685 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
1686 
1687 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
1688 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
1689 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
1690 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
1691 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
1692 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
1693 
1694 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1695     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1696     {                                                                   \
1697         LTYPE *m = vm;                                                  \
1698         TYPE *d = vd;                                                   \
1699         uint16_t mask = mve_element_mask(env);                          \
1700         unsigned le;                                                    \
1701         mask >>= ESIZE * TOP;                                           \
1702         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1703             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
1704                       m[H##LESIZE(le)], mask);                          \
1705         }                                                               \
1706         mve_advance_vpt(env);                                           \
1707     }
1708 
1709 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
1710 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
1711 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
1712 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
1713 
1714 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
1715     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1716     {                                                                   \
1717         LTYPE *m = vm;                                                  \
1718         TYPE *d = vd;                                                   \
1719         uint16_t mask = mve_element_mask(env);                          \
1720         bool qc = false;                                                \
1721         unsigned le;                                                    \
1722         mask >>= ESIZE * TOP;                                           \
1723         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1724             bool sat = false;                                           \
1725             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
1726             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
1727             qc |= sat & mask & 1;                                       \
1728         }                                                               \
1729         if (qc) {                                                       \
1730             env->vfp.qc[0] = qc;                                        \
1731         }                                                               \
1732         mve_advance_vpt(env);                                           \
1733     }
1734 
1735 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
1736     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1737     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1738 
1739 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
1740     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1741     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1742 
1743 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
1744     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1745     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1746 
1747 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
1748     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1749     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1750 
1751 #define DO_VQMOVN_SB(N, SATP)                           \
1752     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
1753 #define DO_VQMOVN_UB(N, SATP)                           \
1754     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
1755 #define DO_VQMOVUN_B(N, SATP)                           \
1756     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
1757 
1758 #define DO_VQMOVN_SH(N, SATP)                           \
1759     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
1760 #define DO_VQMOVN_UH(N, SATP)                           \
1761     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
1762 #define DO_VQMOVUN_H(N, SATP)                           \
1763     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
1764 
1765 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
1766 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
1767 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
1768 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
1769 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
1770 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
1771 
1772 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
1773                            uint32_t shift)
1774 {
1775     uint32_t *d = vd;
1776     uint16_t mask = mve_element_mask(env);
1777     unsigned e;
1778     uint32_t r;
1779 
1780     /*
1781      * For each 32-bit element, we shift it left, bringing in the
1782      * low 'shift' bits of rdm at the bottom. Bits shifted out at
1783      * the top become the new rdm, if the predicate mask permits.
1784      * The final rdm value is returned to update the register.
1785      * shift == 0 here means "shift by 32 bits".
1786      */
1787     if (shift == 0) {
1788         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1789             r = rdm;
1790             if (mask & 1) {
1791                 rdm = d[H4(e)];
1792             }
1793             mergemask(&d[H4(e)], r, mask);
1794         }
1795     } else {
1796         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
1797 
1798         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1799             r = (d[H4(e)] << shift) | (rdm & shiftmask);
1800             if (mask & 1) {
1801                 rdm = d[H4(e)] >> (32 - shift);
1802             }
1803             mergemask(&d[H4(e)], r, mask);
1804         }
1805     }
1806     mve_advance_vpt(env);
1807     return rdm;
1808 }
1809 
1810 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
1811 {
1812     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
1813 }
1814 
1815 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
1816 {
1817     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
1818 }
1819 
1820 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1821 {
1822     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
1823 }
1824 
1825 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1826 {
1827     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
1828 }
1829 
1830 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
1831 {
1832     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
1833 }
1834 
1835 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1836 {
1837     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
1838 }
1839 
1840 /* Operate on 64-bit values, but saturate at 48 bits */
1841 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
1842                                     bool round, uint32_t *sat)
1843 {
1844     int64_t val, extval;
1845 
1846     if (shift <= -48) {
1847         /* Rounding the sign bit always produces 0. */
1848         if (round) {
1849             return 0;
1850         }
1851         return src >> 63;
1852     } else if (shift < 0) {
1853         if (round) {
1854             src >>= -shift - 1;
1855             val = (src >> 1) + (src & 1);
1856         } else {
1857             val = src >> -shift;
1858         }
1859         extval = sextract64(val, 0, 48);
1860         if (!sat || val == extval) {
1861             return extval;
1862         }
1863     } else if (shift < 48) {
1864         int64_t extval = sextract64(src << shift, 0, 48);
1865         if (!sat || src == (extval >> shift)) {
1866             return extval;
1867         }
1868     } else if (!sat || src == 0) {
1869         return 0;
1870     }
1871 
1872     *sat = 1;
1873     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
1874 }
1875 
1876 /* Operate on 64-bit values, but saturate at 48 bits */
1877 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
1878                                      bool round, uint32_t *sat)
1879 {
1880     uint64_t val, extval;
1881 
1882     if (shift <= -(48 + round)) {
1883         return 0;
1884     } else if (shift < 0) {
1885         if (round) {
1886             val = src >> (-shift - 1);
1887             val = (val >> 1) + (val & 1);
1888         } else {
1889             val = src >> -shift;
1890         }
1891         extval = extract64(val, 0, 48);
1892         if (!sat || val == extval) {
1893             return extval;
1894         }
1895     } else if (shift < 48) {
1896         uint64_t extval = extract64(src << shift, 0, 48);
1897         if (!sat || src == (extval >> shift)) {
1898             return extval;
1899         }
1900     } else if (!sat || src == 0) {
1901         return 0;
1902     }
1903 
1904     *sat = 1;
1905     return MAKE_64BIT_MASK(0, 48);
1906 }
1907 
1908 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
1909 {
1910     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
1911 }
1912 
1913 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
1914 {
1915     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
1916 }
1917 
1918 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1919 {
1920     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
1921 }
1922 
1923 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1924 {
1925     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
1926 }
1927 
1928 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1929 {
1930     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
1931 }
1932 
1933 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
1934 {
1935     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
1936 }
1937 
1938 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
1939     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
1940                            uint32_t offset, uint32_t imm)       \
1941     {                                                           \
1942         TYPE *d = vd;                                           \
1943         uint16_t mask = mve_element_mask(env);                  \
1944         unsigned e;                                             \
1945         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1946             mergemask(&d[H##ESIZE(e)], offset, mask);           \
1947             offset = FN(offset, imm);                           \
1948         }                                                       \
1949         mve_advance_vpt(env);                                   \
1950         return offset;                                          \
1951     }
1952 
1953 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
1954     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
1955                               uint32_t offset, uint32_t wrap,   \
1956                               uint32_t imm)                     \
1957     {                                                           \
1958         TYPE *d = vd;                                           \
1959         uint16_t mask = mve_element_mask(env);                  \
1960         unsigned e;                                             \
1961         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1962             mergemask(&d[H##ESIZE(e)], offset, mask);           \
1963             offset = FN(offset, wrap, imm);                     \
1964         }                                                       \
1965         mve_advance_vpt(env);                                   \
1966         return offset;                                          \
1967     }
1968 
1969 #define DO_VIDUP_ALL(OP, FN)                    \
1970     DO_VIDUP(OP##b, 1, int8_t, FN)              \
1971     DO_VIDUP(OP##h, 2, int16_t, FN)             \
1972     DO_VIDUP(OP##w, 4, int32_t, FN)
1973 
1974 #define DO_VIWDUP_ALL(OP, FN)                   \
1975     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
1976     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
1977     DO_VIWDUP(OP##w, 4, int32_t, FN)
1978 
1979 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
1980 {
1981     offset += imm;
1982     if (offset == wrap) {
1983         offset = 0;
1984     }
1985     return offset;
1986 }
1987 
1988 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
1989 {
1990     if (offset == 0) {
1991         offset = wrap;
1992     }
1993     offset -= imm;
1994     return offset;
1995 }
1996 
1997 DO_VIDUP_ALL(vidup, DO_ADD)
1998 DO_VIWDUP_ALL(viwdup, do_add_wrap)
1999 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2000 
2001 /*
2002  * Vector comparison.
2003  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2004  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2005  * P0 bits otherwise are updated with the results of the comparisons.
2006  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2007  */
2008 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2009     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2010     {                                                                   \
2011         TYPE *n = vn, *m = vm;                                          \
2012         uint16_t mask = mve_element_mask(env);                          \
2013         uint16_t eci_mask = mve_eci_mask(env);                          \
2014         uint16_t beatpred = 0;                                          \
2015         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2016         unsigned e;                                                     \
2017         for (e = 0; e < 16 / ESIZE; e++) {                              \
2018             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2019             /* Comparison sets 0/1 bits for each byte in the element */ \
2020             beatpred |= r * emask;                                      \
2021             emask <<= ESIZE;                                            \
2022         }                                                               \
2023         beatpred &= mask;                                               \
2024         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2025             (beatpred & eci_mask);                                      \
2026         mve_advance_vpt(env);                                           \
2027     }
2028 
2029 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2030     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2031                                 uint32_t rm)                            \
2032     {                                                                   \
2033         TYPE *n = vn;                                                   \
2034         uint16_t mask = mve_element_mask(env);                          \
2035         uint16_t eci_mask = mve_eci_mask(env);                          \
2036         uint16_t beatpred = 0;                                          \
2037         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2038         unsigned e;                                                     \
2039         for (e = 0; e < 16 / ESIZE; e++) {                              \
2040             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2041             /* Comparison sets 0/1 bits for each byte in the element */ \
2042             beatpred |= r * emask;                                      \
2043             emask <<= ESIZE;                                            \
2044         }                                                               \
2045         beatpred &= mask;                                               \
2046         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2047             (beatpred & eci_mask);                                      \
2048         mve_advance_vpt(env);                                           \
2049     }
2050 
2051 #define DO_VCMP_S(OP, FN)                               \
2052     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2053     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2054     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2055     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2056     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2057     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2058 
2059 #define DO_VCMP_U(OP, FN)                               \
2060     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2061     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2062     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2063     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2064     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2065     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2066 
2067 #define DO_EQ(N, M) ((N) == (M))
2068 #define DO_NE(N, M) ((N) != (M))
2069 #define DO_EQ(N, M) ((N) == (M))
2070 #define DO_EQ(N, M) ((N) == (M))
2071 #define DO_GE(N, M) ((N) >= (M))
2072 #define DO_LT(N, M) ((N) < (M))
2073 #define DO_GT(N, M) ((N) > (M))
2074 #define DO_LE(N, M) ((N) <= (M))
2075 
2076 DO_VCMP_U(vcmpeq, DO_EQ)
2077 DO_VCMP_U(vcmpne, DO_NE)
2078 DO_VCMP_U(vcmpcs, DO_GE)
2079 DO_VCMP_U(vcmphi, DO_GT)
2080 DO_VCMP_S(vcmpge, DO_GE)
2081 DO_VCMP_S(vcmplt, DO_LT)
2082 DO_VCMP_S(vcmpgt, DO_GT)
2083 DO_VCMP_S(vcmple, DO_LE)
2084 
2085 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2086 {
2087     /*
2088      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2089      * but note that whether bytes are written to Qd is still subject
2090      * to (all forms of) predication in the usual way.
2091      */
2092     uint64_t *d = vd, *n = vn, *m = vm;
2093     uint16_t mask = mve_element_mask(env);
2094     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2095     unsigned e;
2096     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2097         uint64_t r = m[H8(e)];
2098         mergemask(&r, n[H8(e)], p0);
2099         mergemask(&d[H8(e)], r, mask);
2100     }
2101     mve_advance_vpt(env);
2102 }
2103