xref: /qemu/target/arm/tcg/mve_helper.c (revision eab84139855dac258c8d89ad736f6649e3edc76a)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_element_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector should be
33      * updated. This is a combination of multiple things:
34      *  (1) by default, we update every lane in the vector
35      *  (2) VPT predication stores its state in the VPR register;
36      *  (3) low-overhead-branch tail predication will mask out part
37      *      the vector on the final iteration of the loop
38      *  (4) if EPSR.ECI is set then we must execute only some beats
39      *      of the insn
40      * We combine all these into a 16-bit result with the same semantics
41      * as VPR.P0: 0 to mask the lane, 1 if it is active.
42      * 8-bit vector ops will look at all bits of the result;
43      * 16-bit ops will look at bits 0, 2, 4, ...;
44      * 32-bit ops will look at bits 0, 4, 8 and 12.
45      * Compare pseudocode GetCurInstrBeat(), though that only returns
46      * the 4-bit slice of the mask corresponding to a single beat.
47      */
48     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
49 
50     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
51         mask |= 0xff;
52     }
53     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
54         mask |= 0xff00;
55     }
56 
57     if (env->v7m.ltpsize < 4 &&
58         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
59         /*
60          * Tail predication active, and this is the last loop iteration.
61          * The element size is (1 << ltpsize), and we only want to process
62          * loopcount elements, so we want to retain the least significant
63          * (loopcount * esize) predicate bits and zero out bits above that.
64          */
65         int masklen = env->regs[14] << env->v7m.ltpsize;
66         assert(masklen <= 16);
67         mask &= MAKE_64BIT_MASK(0, masklen);
68     }
69 
70     if ((env->condexec_bits & 0xf) == 0) {
71         /*
72          * ECI bits indicate which beats are already executed;
73          * we handle this by effectively predicating them out.
74          */
75         int eci = env->condexec_bits >> 4;
76         switch (eci) {
77         case ECI_NONE:
78             break;
79         case ECI_A0:
80             mask &= 0xfff0;
81             break;
82         case ECI_A0A1:
83             mask &= 0xff00;
84             break;
85         case ECI_A0A1A2:
86         case ECI_A0A1A2B0:
87             mask &= 0xf000;
88             break;
89         default:
90             g_assert_not_reached();
91         }
92     }
93 
94     return mask;
95 }
96 
97 static void mve_advance_vpt(CPUARMState *env)
98 {
99     /* Advance the VPT and ECI state if necessary */
100     uint32_t vpr = env->v7m.vpr;
101     unsigned mask01, mask23;
102 
103     if ((env->condexec_bits & 0xf) == 0) {
104         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
105             (ECI_A0 << 4) : (ECI_NONE << 4);
106     }
107 
108     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
109         /* VPT not enabled, nothing to do */
110         return;
111     }
112 
113     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
114     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
115     if (mask01 > 8) {
116         /* high bit set, but not 0b1000: invert the relevant half of P0 */
117         vpr ^= 0xff;
118     }
119     if (mask23 > 8) {
120         /* high bit set, but not 0b1000: invert the relevant half of P0 */
121         vpr ^= 0xff00;
122     }
123     vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
124     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
125     env->v7m.vpr = vpr;
126 }
127 
128 
129 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
130     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
131     {                                                                   \
132         TYPE *d = vd;                                                   \
133         uint16_t mask = mve_element_mask(env);                          \
134         unsigned b, e;                                                  \
135         /*                                                              \
136          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
137          * beats so we don't care if we update part of the dest and     \
138          * then take an exception.                                      \
139          */                                                             \
140         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
141             if (mask & (1 << b)) {                                      \
142                 d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
143             }                                                           \
144             addr += MSIZE;                                              \
145         }                                                               \
146         mve_advance_vpt(env);                                           \
147     }
148 
149 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
150     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
151     {                                                                   \
152         TYPE *d = vd;                                                   \
153         uint16_t mask = mve_element_mask(env);                          \
154         unsigned b, e;                                                  \
155         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
156             if (mask & (1 << b)) {                                      \
157                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
158             }                                                           \
159             addr += MSIZE;                                              \
160         }                                                               \
161         mve_advance_vpt(env);                                           \
162     }
163 
164 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
165 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
166 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
167 
168 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
169 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
170 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
171 
172 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
173 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
174 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
175 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
176 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
177 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
178 
179 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
180 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
181 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
182 
183 #undef DO_VLDR
184 #undef DO_VSTR
185 
186 /*
187  * The mergemask(D, R, M) macro performs the operation "*D = R" but
188  * storing only the bytes which correspond to 1 bits in M,
189  * leaving other bytes in *D unchanged. We use _Generic
190  * to select the correct implementation based on the type of D.
191  */
192 
193 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
194 {
195     if (mask & 1) {
196         *d = r;
197     }
198 }
199 
200 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
201 {
202     mergemask_ub((uint8_t *)d, r, mask);
203 }
204 
205 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
206 {
207     uint16_t bmask = expand_pred_b_data[mask & 3];
208     *d = (*d & ~bmask) | (r & bmask);
209 }
210 
211 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
212 {
213     mergemask_uh((uint16_t *)d, r, mask);
214 }
215 
216 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
217 {
218     uint32_t bmask = expand_pred_b_data[mask & 0xf];
219     *d = (*d & ~bmask) | (r & bmask);
220 }
221 
222 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
223 {
224     mergemask_uw((uint32_t *)d, r, mask);
225 }
226 
227 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
228 {
229     uint64_t bmask = expand_pred_b_data[mask & 0xff];
230     *d = (*d & ~bmask) | (r & bmask);
231 }
232 
233 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
234 {
235     mergemask_uq((uint64_t *)d, r, mask);
236 }
237 
238 #define mergemask(D, R, M)                      \
239     _Generic(D,                                 \
240              uint8_t *: mergemask_ub,           \
241              int8_t *:  mergemask_sb,           \
242              uint16_t *: mergemask_uh,          \
243              int16_t *:  mergemask_sh,          \
244              uint32_t *: mergemask_uw,          \
245              int32_t *:  mergemask_sw,          \
246              uint64_t *: mergemask_uq,          \
247              int64_t *:  mergemask_sq)(D, R, M)
248 
249 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
250 {
251     /*
252      * The generated code already replicated an 8 or 16 bit constant
253      * into the 32-bit value, so we only need to write the 32-bit
254      * value to all elements of the Qreg, allowing for predication.
255      */
256     uint32_t *d = vd;
257     uint16_t mask = mve_element_mask(env);
258     unsigned e;
259     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
260         mergemask(&d[H4(e)], val, mask);
261     }
262     mve_advance_vpt(env);
263 }
264 
265 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
266     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
267     {                                                                   \
268         TYPE *d = vd, *m = vm;                                          \
269         uint16_t mask = mve_element_mask(env);                          \
270         unsigned e;                                                     \
271         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
272             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
273         }                                                               \
274         mve_advance_vpt(env);                                           \
275     }
276 
277 #define DO_CLS_B(N)   (clrsb32(N) - 24)
278 #define DO_CLS_H(N)   (clrsb32(N) - 16)
279 
280 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
281 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
282 DO_1OP(vclsw, 4, int32_t, clrsb32)
283 
284 #define DO_CLZ_B(N)   (clz32(N) - 24)
285 #define DO_CLZ_H(N)   (clz32(N) - 16)
286 
287 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
288 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
289 DO_1OP(vclzw, 4, uint32_t, clz32)
290 
291 DO_1OP(vrev16b, 2, uint16_t, bswap16)
292 DO_1OP(vrev32b, 4, uint32_t, bswap32)
293 DO_1OP(vrev32h, 4, uint32_t, hswap32)
294 DO_1OP(vrev64b, 8, uint64_t, bswap64)
295 DO_1OP(vrev64h, 8, uint64_t, hswap64)
296 DO_1OP(vrev64w, 8, uint64_t, wswap64)
297 
298 #define DO_NOT(N) (~(N))
299 
300 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
301 
302 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
303 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
304 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
305 
306 DO_1OP(vabsb, 1, int8_t, DO_ABS)
307 DO_1OP(vabsh, 2, int16_t, DO_ABS)
308 DO_1OP(vabsw, 4, int32_t, DO_ABS)
309 
310 /* We can do these 64 bits at a time */
311 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
312 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
313 
314 #define DO_NEG(N)    (-(N))
315 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
316 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
317 
318 DO_1OP(vnegb, 1, int8_t, DO_NEG)
319 DO_1OP(vnegh, 2, int16_t, DO_NEG)
320 DO_1OP(vnegw, 4, int32_t, DO_NEG)
321 
322 /* We can do these 64 bits at a time */
323 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
324 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
325 
326 /*
327  * 1 operand immediates: Vda is destination and possibly also one source.
328  * All these insns work at 64-bit widths.
329  */
330 #define DO_1OP_IMM(OP, FN)                                              \
331     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
332     {                                                                   \
333         uint64_t *da = vda;                                             \
334         uint16_t mask = mve_element_mask(env);                          \
335         unsigned e;                                                     \
336         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
337             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
338         }                                                               \
339         mve_advance_vpt(env);                                           \
340     }
341 
342 #define DO_MOVI(N, I) (I)
343 #define DO_ANDI(N, I) ((N) & (I))
344 #define DO_ORRI(N, I) ((N) | (I))
345 
346 DO_1OP_IMM(vmovi, DO_MOVI)
347 DO_1OP_IMM(vandi, DO_ANDI)
348 DO_1OP_IMM(vorri, DO_ORRI)
349 
350 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
351     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
352                                 void *vd, void *vn, void *vm)           \
353     {                                                                   \
354         TYPE *d = vd, *n = vn, *m = vm;                                 \
355         uint16_t mask = mve_element_mask(env);                          \
356         unsigned e;                                                     \
357         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
358             mergemask(&d[H##ESIZE(e)],                                  \
359                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
360         }                                                               \
361         mve_advance_vpt(env);                                           \
362     }
363 
364 /* provide unsigned 2-op helpers for all sizes */
365 #define DO_2OP_U(OP, FN)                        \
366     DO_2OP(OP##b, 1, uint8_t, FN)               \
367     DO_2OP(OP##h, 2, uint16_t, FN)              \
368     DO_2OP(OP##w, 4, uint32_t, FN)
369 
370 /* provide signed 2-op helpers for all sizes */
371 #define DO_2OP_S(OP, FN)                        \
372     DO_2OP(OP##b, 1, int8_t, FN)                \
373     DO_2OP(OP##h, 2, int16_t, FN)               \
374     DO_2OP(OP##w, 4, int32_t, FN)
375 
376 /*
377  * "Long" operations where two half-sized inputs (taken from either the
378  * top or the bottom of the input vector) produce a double-width result.
379  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
380  */
381 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
382     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
383     {                                                                   \
384         LTYPE *d = vd;                                                  \
385         TYPE *n = vn, *m = vm;                                          \
386         uint16_t mask = mve_element_mask(env);                          \
387         unsigned le;                                                    \
388         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
389             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
390                          m[H##ESIZE(le * 2 + TOP)]);                    \
391             mergemask(&d[H##LESIZE(le)], r, mask);                      \
392         }                                                               \
393         mve_advance_vpt(env);                                           \
394     }
395 
396 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
397     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
398     {                                                                   \
399         TYPE *d = vd, *n = vn, *m = vm;                                 \
400         uint16_t mask = mve_element_mask(env);                          \
401         unsigned e;                                                     \
402         bool qc = false;                                                \
403         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
404             bool sat = false;                                           \
405             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
406             mergemask(&d[H##ESIZE(e)], r, mask);                        \
407             qc |= sat & mask & 1;                                       \
408         }                                                               \
409         if (qc) {                                                       \
410             env->vfp.qc[0] = qc;                                        \
411         }                                                               \
412         mve_advance_vpt(env);                                           \
413     }
414 
415 /* provide unsigned 2-op helpers for all sizes */
416 #define DO_2OP_SAT_U(OP, FN)                    \
417     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
418     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
419     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
420 
421 /* provide signed 2-op helpers for all sizes */
422 #define DO_2OP_SAT_S(OP, FN)                    \
423     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
424     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
425     DO_2OP_SAT(OP##w, 4, int32_t, FN)
426 
427 #define DO_AND(N, M)  ((N) & (M))
428 #define DO_BIC(N, M)  ((N) & ~(M))
429 #define DO_ORR(N, M)  ((N) | (M))
430 #define DO_ORN(N, M)  ((N) | ~(M))
431 #define DO_EOR(N, M)  ((N) ^ (M))
432 
433 DO_2OP(vand, 8, uint64_t, DO_AND)
434 DO_2OP(vbic, 8, uint64_t, DO_BIC)
435 DO_2OP(vorr, 8, uint64_t, DO_ORR)
436 DO_2OP(vorn, 8, uint64_t, DO_ORN)
437 DO_2OP(veor, 8, uint64_t, DO_EOR)
438 
439 #define DO_ADD(N, M) ((N) + (M))
440 #define DO_SUB(N, M) ((N) - (M))
441 #define DO_MUL(N, M) ((N) * (M))
442 
443 DO_2OP_U(vadd, DO_ADD)
444 DO_2OP_U(vsub, DO_SUB)
445 DO_2OP_U(vmul, DO_MUL)
446 
447 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
448 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
449 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
450 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
451 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
452 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
453 
454 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
455 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
456 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
457 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
458 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
459 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
460 
461 /*
462  * Because the computation type is at least twice as large as required,
463  * these work for both signed and unsigned source types.
464  */
465 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
466 {
467     return (n * m) >> 8;
468 }
469 
470 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
471 {
472     return (n * m) >> 16;
473 }
474 
475 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
476 {
477     return (n * m) >> 32;
478 }
479 
480 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
481 {
482     return (n * m + (1U << 7)) >> 8;
483 }
484 
485 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
486 {
487     return (n * m + (1U << 15)) >> 16;
488 }
489 
490 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
491 {
492     return (n * m + (1U << 31)) >> 32;
493 }
494 
495 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
496 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
497 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
498 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
499 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
500 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
501 
502 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
503 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
504 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
505 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
506 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
507 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
508 
509 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
510 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
511 
512 DO_2OP_S(vmaxs, DO_MAX)
513 DO_2OP_U(vmaxu, DO_MAX)
514 DO_2OP_S(vmins, DO_MIN)
515 DO_2OP_U(vminu, DO_MIN)
516 
517 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
518 
519 DO_2OP_S(vabds, DO_ABD)
520 DO_2OP_U(vabdu, DO_ABD)
521 
522 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
523 {
524     return ((uint64_t)n + m) >> 1;
525 }
526 
527 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
528 {
529     return ((int64_t)n + m) >> 1;
530 }
531 
532 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
533 {
534     return ((uint64_t)n - m) >> 1;
535 }
536 
537 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
538 {
539     return ((int64_t)n - m) >> 1;
540 }
541 
542 DO_2OP_S(vhadds, do_vhadd_s)
543 DO_2OP_U(vhaddu, do_vhadd_u)
544 DO_2OP_S(vhsubs, do_vhsub_s)
545 DO_2OP_U(vhsubu, do_vhsub_u)
546 
547 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
548 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
549 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
550 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
551 
552 DO_2OP_S(vshls, DO_VSHLS)
553 DO_2OP_U(vshlu, DO_VSHLU)
554 DO_2OP_S(vrshls, DO_VRSHLS)
555 DO_2OP_U(vrshlu, DO_VRSHLU)
556 
557 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
558 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
559 
560 DO_2OP_S(vrhadds, DO_RHADD_S)
561 DO_2OP_U(vrhaddu, DO_RHADD_U)
562 
563 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
564                     uint32_t inv, uint32_t carry_in, bool update_flags)
565 {
566     uint16_t mask = mve_element_mask(env);
567     unsigned e;
568 
569     /* If any additions trigger, we will update flags. */
570     if (mask & 0x1111) {
571         update_flags = true;
572     }
573 
574     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
575         uint64_t r = carry_in;
576         r += n[H4(e)];
577         r += m[H4(e)] ^ inv;
578         if (mask & 1) {
579             carry_in = r >> 32;
580         }
581         mergemask(&d[H4(e)], r, mask);
582     }
583 
584     if (update_flags) {
585         /* Store C, clear NZV. */
586         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
587         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
588     }
589     mve_advance_vpt(env);
590 }
591 
592 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
593 {
594     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
595     do_vadc(env, vd, vn, vm, 0, carry_in, false);
596 }
597 
598 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
599 {
600     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
601     do_vadc(env, vd, vn, vm, -1, carry_in, false);
602 }
603 
604 
605 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
606 {
607     do_vadc(env, vd, vn, vm, 0, 0, true);
608 }
609 
610 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
611 {
612     do_vadc(env, vd, vn, vm, -1, 1, true);
613 }
614 
615 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
616     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
617     {                                                                   \
618         TYPE *d = vd, *n = vn, *m = vm;                                 \
619         uint16_t mask = mve_element_mask(env);                          \
620         unsigned e;                                                     \
621         TYPE r[16 / ESIZE];                                             \
622         /* Calculate all results first to avoid overwriting inputs */   \
623         for (e = 0; e < 16 / ESIZE; e++) {                              \
624             if (!(e & 1)) {                                             \
625                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
626             } else {                                                    \
627                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
628             }                                                           \
629         }                                                               \
630         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
631             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
632         }                                                               \
633         mve_advance_vpt(env);                                           \
634     }
635 
636 #define DO_VCADD_ALL(OP, FN0, FN1)              \
637     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
638     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
639     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
640 
641 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
642 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
643 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
644 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
645 
646 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
647 {
648     if (val > max) {
649         *s = true;
650         return max;
651     } else if (val < min) {
652         *s = true;
653         return min;
654     }
655     return val;
656 }
657 
658 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
659 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
660 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
661 
662 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
663 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
664 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
665 
666 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
667 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
668 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
669 
670 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
671 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
672 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
673 
674 /*
675  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
676  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
677  */
678 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
679                                         INT8_MIN, INT8_MAX, s)
680 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
681                                         INT16_MIN, INT16_MAX, s)
682 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
683                                         INT32_MIN, INT32_MAX, s)
684 
685 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
686                                          INT8_MIN, INT8_MAX, s)
687 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
688                                          INT16_MIN, INT16_MAX, s)
689 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
690                                          INT32_MIN, INT32_MAX, s)
691 
692 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
693 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
694 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
695 
696 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
697 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
698 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
699 
700 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
701 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
702 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
703 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
704 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
705 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
706 
707 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
708 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
709 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
710 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
711 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
712 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
713 
714 /*
715  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
716  * and friends wanting a uint32_t* sat and our needing a bool*.
717  */
718 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
719     ({                                                                  \
720         uint32_t su32 = 0;                                              \
721         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
722         if (su32) {                                                     \
723             *satp = true;                                               \
724         }                                                               \
725         r;                                                              \
726     })
727 
728 #define DO_SQSHL_OP(N, M, satp) \
729     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
730 #define DO_UQSHL_OP(N, M, satp) \
731     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
732 #define DO_SQRSHL_OP(N, M, satp) \
733     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
734 #define DO_UQRSHL_OP(N, M, satp) \
735     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
736 
737 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
738 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
739 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
740 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
741 
742 /*
743  * Multiply add dual returning high half
744  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
745  * whether to add the rounding constant, and the pointer to the
746  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
747  * saturate to twice the input size and return the high half; or
748  * (A * B - C * D) etc for VQDMLSDH.
749  */
750 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
751     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
752                                 void *vm)                               \
753     {                                                                   \
754         TYPE *d = vd, *n = vn, *m = vm;                                 \
755         uint16_t mask = mve_element_mask(env);                          \
756         unsigned e;                                                     \
757         bool qc = false;                                                \
758         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
759             bool sat = false;                                           \
760             if ((e & 1) == XCHG) {                                      \
761                 TYPE r = FN(n[H##ESIZE(e)],                             \
762                             m[H##ESIZE(e - XCHG)],                      \
763                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
764                             m[H##ESIZE(e + (1 - XCHG))],                \
765                             ROUND, &sat);                               \
766                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
767                 qc |= sat & mask & 1;                                   \
768             }                                                           \
769         }                                                               \
770         if (qc) {                                                       \
771             env->vfp.qc[0] = qc;                                        \
772         }                                                               \
773         mve_advance_vpt(env);                                           \
774     }
775 
776 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
777                             int round, bool *sat)
778 {
779     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
780     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
781 }
782 
783 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
784                              int round, bool *sat)
785 {
786     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
787     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
788 }
789 
790 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
791                              int round, bool *sat)
792 {
793     int64_t m1 = (int64_t)a * b;
794     int64_t m2 = (int64_t)c * d;
795     int64_t r;
796     /*
797      * Architecturally we should do the entire add, double, round
798      * and then check for saturation. We do three saturating adds,
799      * but we need to be careful about the order. If the first
800      * m1 + m2 saturates then it's impossible for the *2+rc to
801      * bring it back into the non-saturated range. However, if
802      * m1 + m2 is negative then it's possible that doing the doubling
803      * would take the intermediate result below INT64_MAX and the
804      * addition of the rounding constant then brings it back in range.
805      * So we add half the rounding constant before doubling rather
806      * than adding the rounding constant after the doubling.
807      */
808     if (sadd64_overflow(m1, m2, &r) ||
809         sadd64_overflow(r, (round << 30), &r) ||
810         sadd64_overflow(r, r, &r)) {
811         *sat = true;
812         return r < 0 ? INT32_MAX : INT32_MIN;
813     }
814     return r >> 32;
815 }
816 
817 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
818                             int round, bool *sat)
819 {
820     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
821     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
822 }
823 
824 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
825                              int round, bool *sat)
826 {
827     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
828     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
829 }
830 
831 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
832                              int round, bool *sat)
833 {
834     int64_t m1 = (int64_t)a * b;
835     int64_t m2 = (int64_t)c * d;
836     int64_t r;
837     /* The same ordering issue as in do_vqdmladh_w applies here too */
838     if (ssub64_overflow(m1, m2, &r) ||
839         sadd64_overflow(r, (round << 30), &r) ||
840         sadd64_overflow(r, r, &r)) {
841         *sat = true;
842         return r < 0 ? INT32_MAX : INT32_MIN;
843     }
844     return r >> 32;
845 }
846 
847 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
848 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
849 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
850 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
851 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
852 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
853 
854 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
855 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
856 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
857 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
858 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
859 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
860 
861 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
862 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
863 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
864 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
865 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
866 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
867 
868 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
869 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
870 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
871 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
872 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
873 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
874 
875 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
876     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
877                                 uint32_t rm)                            \
878     {                                                                   \
879         TYPE *d = vd, *n = vn;                                          \
880         TYPE m = rm;                                                    \
881         uint16_t mask = mve_element_mask(env);                          \
882         unsigned e;                                                     \
883         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
884             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
885         }                                                               \
886         mve_advance_vpt(env);                                           \
887     }
888 
889 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
890     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
891                                 uint32_t rm)                            \
892     {                                                                   \
893         TYPE *d = vd, *n = vn;                                          \
894         TYPE m = rm;                                                    \
895         uint16_t mask = mve_element_mask(env);                          \
896         unsigned e;                                                     \
897         bool qc = false;                                                \
898         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
899             bool sat = false;                                           \
900             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
901                       mask);                                            \
902             qc |= sat & mask & 1;                                       \
903         }                                                               \
904         if (qc) {                                                       \
905             env->vfp.qc[0] = qc;                                        \
906         }                                                               \
907         mve_advance_vpt(env);                                           \
908     }
909 
910 /* provide unsigned 2-op scalar helpers for all sizes */
911 #define DO_2OP_SCALAR_U(OP, FN)                 \
912     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
913     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
914     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
915 #define DO_2OP_SCALAR_S(OP, FN)                 \
916     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
917     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
918     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
919 
920 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
921 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
922 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
923 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
924 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
925 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
926 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
927 
928 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
929 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
930 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
931 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
932 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
933 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
934 
935 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
936 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
937 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
938 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
939 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
940 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
941 
942 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
943 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
944 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
945 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
946 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
947 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
948 
949 /*
950  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
951  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
952  * SATMASK specifies which bits of the predicate mask matter for determining
953  * whether to propagate a saturation indication into FPSCR.QC -- for
954  * the 16x16->32 case we must check only the bit corresponding to the T or B
955  * half that we used, but for the 32x32->64 case we propagate if the mask
956  * bit is set for either half.
957  */
958 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
959     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
960                                 uint32_t rm)                            \
961     {                                                                   \
962         LTYPE *d = vd;                                                  \
963         TYPE *n = vn;                                                   \
964         TYPE m = rm;                                                    \
965         uint16_t mask = mve_element_mask(env);                          \
966         unsigned le;                                                    \
967         bool qc = false;                                                \
968         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
969             bool sat = false;                                           \
970             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
971             mergemask(&d[H##LESIZE(le)], r, mask);                      \
972             qc |= sat && (mask & SATMASK);                              \
973         }                                                               \
974         if (qc) {                                                       \
975             env->vfp.qc[0] = qc;                                        \
976         }                                                               \
977         mve_advance_vpt(env);                                           \
978     }
979 
980 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
981 {
982     int64_t r = ((int64_t)n * m) * 2;
983     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
984 }
985 
986 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
987 {
988     /* The multiply can't overflow, but the doubling might */
989     int64_t r = (int64_t)n * m;
990     if (r > INT64_MAX / 2) {
991         *sat = true;
992         return INT64_MAX;
993     } else if (r < INT64_MIN / 2) {
994         *sat = true;
995         return INT64_MIN;
996     } else {
997         return r * 2;
998     }
999 }
1000 
1001 #define SATMASK16B 1
1002 #define SATMASK16T (1 << 2)
1003 #define SATMASK32 ((1 << 4) | 1)
1004 
1005 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1006                     do_qdmullh, SATMASK16B)
1007 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1008                     do_qdmullw, SATMASK32)
1009 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1010                     do_qdmullh, SATMASK16T)
1011 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1012                     do_qdmullw, SATMASK32)
1013 
1014 /*
1015  * Long saturating ops
1016  */
1017 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1018     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1019                                 void *vm)                               \
1020     {                                                                   \
1021         LTYPE *d = vd;                                                  \
1022         TYPE *n = vn, *m = vm;                                          \
1023         uint16_t mask = mve_element_mask(env);                          \
1024         unsigned le;                                                    \
1025         bool qc = false;                                                \
1026         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1027             bool sat = false;                                           \
1028             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1029             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1030             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1031             qc |= sat && (mask & SATMASK);                              \
1032         }                                                               \
1033         if (qc) {                                                       \
1034             env->vfp.qc[0] = qc;                                        \
1035         }                                                               \
1036         mve_advance_vpt(env);                                           \
1037     }
1038 
1039 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1040 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1041 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1042 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1043 
1044 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1045 {
1046     m &= 0xff;
1047     if (m == 0) {
1048         return 0;
1049     }
1050     n = revbit8(n);
1051     if (m < 8) {
1052         n >>= 8 - m;
1053     }
1054     return n;
1055 }
1056 
1057 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1058 {
1059     m &= 0xff;
1060     if (m == 0) {
1061         return 0;
1062     }
1063     n = revbit16(n);
1064     if (m < 16) {
1065         n >>= 16 - m;
1066     }
1067     return n;
1068 }
1069 
1070 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1071 {
1072     m &= 0xff;
1073     if (m == 0) {
1074         return 0;
1075     }
1076     n = revbit32(n);
1077     if (m < 32) {
1078         n >>= 32 - m;
1079     }
1080     return n;
1081 }
1082 
1083 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1084 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1085 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1086 
1087 /*
1088  * Multiply add long dual accumulate ops.
1089  */
1090 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1091     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1092                                     void *vm, uint64_t a)               \
1093     {                                                                   \
1094         uint16_t mask = mve_element_mask(env);                          \
1095         unsigned e;                                                     \
1096         TYPE *n = vn, *m = vm;                                          \
1097         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1098             if (mask & 1) {                                             \
1099                 if (e & 1) {                                            \
1100                     a ODDACC                                            \
1101                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1102                 } else {                                                \
1103                     a EVENACC                                           \
1104                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1105                 }                                                       \
1106             }                                                           \
1107         }                                                               \
1108         mve_advance_vpt(env);                                           \
1109         return a;                                                       \
1110     }
1111 
1112 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1113 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1114 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1115 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1116 
1117 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1118 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1119 
1120 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1121 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1122 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1123 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1124 
1125 /*
1126  * Rounding multiply add long dual accumulate high. In the pseudocode
1127  * this is implemented with a 72-bit internal accumulator value of which
1128  * the top 64 bits are returned. We optimize this to avoid having to
1129  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1130  * is squashed back into 64-bits after each beat.
1131  */
1132 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1133     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1134                                     void *vm, uint64_t a)               \
1135     {                                                                   \
1136         uint16_t mask = mve_element_mask(env);                          \
1137         unsigned e;                                                     \
1138         TYPE *n = vn, *m = vm;                                          \
1139         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1140             if (mask & 1) {                                             \
1141                 LTYPE mul;                                              \
1142                 if (e & 1) {                                            \
1143                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1144                     if (SUB) {                                          \
1145                         mul = -mul;                                     \
1146                     }                                                   \
1147                 } else {                                                \
1148                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1149                 }                                                       \
1150                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1151                 a += mul;                                               \
1152             }                                                           \
1153         }                                                               \
1154         mve_advance_vpt(env);                                           \
1155         return a;                                                       \
1156     }
1157 
1158 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1159 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1160 
1161 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1162 
1163 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1164 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1165 
1166 /* Vector add across vector */
1167 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1168     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1169                                     uint32_t ra)                \
1170     {                                                           \
1171         uint16_t mask = mve_element_mask(env);                  \
1172         unsigned e;                                             \
1173         TYPE *m = vm;                                           \
1174         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1175             if (mask & 1) {                                     \
1176                 ra += m[H##ESIZE(e)];                           \
1177             }                                                   \
1178         }                                                       \
1179         mve_advance_vpt(env);                                   \
1180         return ra;                                              \
1181     }                                                           \
1182 
1183 DO_VADDV(vaddvsb, 1, uint8_t)
1184 DO_VADDV(vaddvsh, 2, uint16_t)
1185 DO_VADDV(vaddvsw, 4, uint32_t)
1186 DO_VADDV(vaddvub, 1, uint8_t)
1187 DO_VADDV(vaddvuh, 2, uint16_t)
1188 DO_VADDV(vaddvuw, 4, uint32_t)
1189