xref: /qemu/target/arm/tcg/mve_helper.c (revision dc18628b1833157a50a424cb6b83b63eca560402)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_eci_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector correspond
33      * to beats being executed. The mask has 1 bits for executed lanes
34      * and 0 bits where ECI says this beat was already executed.
35      */
36     int eci;
37 
38     if ((env->condexec_bits & 0xf) != 0) {
39         return 0xffff;
40     }
41 
42     eci = env->condexec_bits >> 4;
43     switch (eci) {
44     case ECI_NONE:
45         return 0xffff;
46     case ECI_A0:
47         return 0xfff0;
48     case ECI_A0A1:
49         return 0xff00;
50     case ECI_A0A1A2:
51     case ECI_A0A1A2B0:
52         return 0xf000;
53     default:
54         g_assert_not_reached();
55     }
56 }
57 
58 static uint16_t mve_element_mask(CPUARMState *env)
59 {
60     /*
61      * Return the mask of which elements in the MVE vector should be
62      * updated. This is a combination of multiple things:
63      *  (1) by default, we update every lane in the vector
64      *  (2) VPT predication stores its state in the VPR register;
65      *  (3) low-overhead-branch tail predication will mask out part
66      *      the vector on the final iteration of the loop
67      *  (4) if EPSR.ECI is set then we must execute only some beats
68      *      of the insn
69      * We combine all these into a 16-bit result with the same semantics
70      * as VPR.P0: 0 to mask the lane, 1 if it is active.
71      * 8-bit vector ops will look at all bits of the result;
72      * 16-bit ops will look at bits 0, 2, 4, ...;
73      * 32-bit ops will look at bits 0, 4, 8 and 12.
74      * Compare pseudocode GetCurInstrBeat(), though that only returns
75      * the 4-bit slice of the mask corresponding to a single beat.
76      */
77     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
78 
79     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
80         mask |= 0xff;
81     }
82     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
83         mask |= 0xff00;
84     }
85 
86     if (env->v7m.ltpsize < 4 &&
87         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
88         /*
89          * Tail predication active, and this is the last loop iteration.
90          * The element size is (1 << ltpsize), and we only want to process
91          * loopcount elements, so we want to retain the least significant
92          * (loopcount * esize) predicate bits and zero out bits above that.
93          */
94         int masklen = env->regs[14] << env->v7m.ltpsize;
95         assert(masklen <= 16);
96         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
97         mask &= ltpmask;
98     }
99 
100     /*
101      * ECI bits indicate which beats are already executed;
102      * we handle this by effectively predicating them out.
103      */
104     mask &= mve_eci_mask(env);
105     return mask;
106 }
107 
108 static void mve_advance_vpt(CPUARMState *env)
109 {
110     /* Advance the VPT and ECI state if necessary */
111     uint32_t vpr = env->v7m.vpr;
112     unsigned mask01, mask23;
113     uint16_t inv_mask;
114     uint16_t eci_mask = mve_eci_mask(env);
115 
116     if ((env->condexec_bits & 0xf) == 0) {
117         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
118             (ECI_A0 << 4) : (ECI_NONE << 4);
119     }
120 
121     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
122         /* VPT not enabled, nothing to do */
123         return;
124     }
125 
126     /* Invert P0 bits if needed, but only for beats we actually executed */
127     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
128     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
129     /* Start by assuming we invert all bits corresponding to executed beats */
130     inv_mask = eci_mask;
131     if (mask01 <= 8) {
132         /* MASK01 says don't invert low half of P0 */
133         inv_mask &= ~0xff;
134     }
135     if (mask23 <= 8) {
136         /* MASK23 says don't invert high half of P0 */
137         inv_mask &= ~0xff00;
138     }
139     vpr ^= inv_mask;
140     /* Only update MASK01 if beat 1 executed */
141     if (eci_mask & 0xf0) {
142         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
143     }
144     /* Beat 3 always executes, so update MASK23 */
145     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
146     env->v7m.vpr = vpr;
147 }
148 
149 /* For loads, predicated lanes are zeroed instead of keeping their old values */
150 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
151     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
152     {                                                                   \
153         TYPE *d = vd;                                                   \
154         uint16_t mask = mve_element_mask(env);                          \
155         uint16_t eci_mask = mve_eci_mask(env);                          \
156         unsigned b, e;                                                  \
157         /*                                                              \
158          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
159          * beats so we don't care if we update part of the dest and     \
160          * then take an exception.                                      \
161          */                                                             \
162         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
163             if (eci_mask & (1 << b)) {                                  \
164                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
165                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
166             }                                                           \
167             addr += MSIZE;                                              \
168         }                                                               \
169         mve_advance_vpt(env);                                           \
170     }
171 
172 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
173     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
174     {                                                                   \
175         TYPE *d = vd;                                                   \
176         uint16_t mask = mve_element_mask(env);                          \
177         unsigned b, e;                                                  \
178         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
179             if (mask & (1 << b)) {                                      \
180                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
181             }                                                           \
182             addr += MSIZE;                                              \
183         }                                                               \
184         mve_advance_vpt(env);                                           \
185     }
186 
187 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
188 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
189 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
190 
191 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
192 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
193 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
194 
195 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
196 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
197 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
198 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
199 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
200 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
201 
202 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
203 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
204 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
205 
206 #undef DO_VLDR
207 #undef DO_VSTR
208 
209 /*
210  * Gather loads/scatter stores. Here each element of Qm specifies
211  * an offset to use from the base register Rm. In the _os_ versions
212  * that offset is scaled by the element size.
213  * For loads, predicated lanes are zeroed instead of retaining
214  * their previous values.
215  */
216 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN)            \
217     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
218                           uint32_t base)                                \
219     {                                                                   \
220         TYPE *d = vd;                                                   \
221         OFFTYPE *m = vm;                                                \
222         uint16_t mask = mve_element_mask(env);                          \
223         uint16_t eci_mask = mve_eci_mask(env);                          \
224         unsigned e;                                                     \
225         uint32_t addr;                                                  \
226         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
227             if (!(eci_mask & 1)) {                                      \
228                 continue;                                               \
229             }                                                           \
230             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
231             d[H##ESIZE(e)] = (mask & 1) ?                               \
232                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
233         }                                                               \
234         mve_advance_vpt(env);                                           \
235     }
236 
237 /* We know here TYPE is unsigned so always the same as the offset type */
238 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN)                     \
239     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
240                           uint32_t base)                                \
241     {                                                                   \
242         TYPE *d = vd;                                                   \
243         TYPE *m = vm;                                                   \
244         uint16_t mask = mve_element_mask(env);                          \
245         unsigned e;                                                     \
246         uint32_t addr;                                                  \
247         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
248             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
249             if (mask & 1) {                                             \
250                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
251             }                                                           \
252         }                                                               \
253         mve_advance_vpt(env);                                           \
254     }
255 
256 /*
257  * 64-bit accesses are slightly different: they are done as two 32-bit
258  * accesses, controlled by the predicate mask for the relevant beat,
259  * and with a single 32-bit offset in the first of the two Qm elements.
260  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
261  */
262 #define DO_VLDR64_SG(OP, ADDRFN)                                        \
263     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
264                           uint32_t base)                                \
265     {                                                                   \
266         uint32_t *d = vd;                                               \
267         uint32_t *m = vm;                                               \
268         uint16_t mask = mve_element_mask(env);                          \
269         uint16_t eci_mask = mve_eci_mask(env);                          \
270         unsigned e;                                                     \
271         uint32_t addr;                                                  \
272         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
273             if (!(eci_mask & 1)) {                                      \
274                 continue;                                               \
275             }                                                           \
276             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
277             addr += 4 * (e & 1);                                        \
278             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
279         }                                                               \
280         mve_advance_vpt(env);                                           \
281     }
282 
283 #define DO_VSTR64_SG(OP, ADDRFN)                                        \
284     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
285                           uint32_t base)                                \
286     {                                                                   \
287         uint32_t *d = vd;                                               \
288         uint32_t *m = vm;                                               \
289         uint16_t mask = mve_element_mask(env);                          \
290         unsigned e;                                                     \
291         uint32_t addr;                                                  \
292         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
293             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
294             addr += 4 * (e & 1);                                        \
295             if (mask & 1) {                                             \
296                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
297             }                                                           \
298         }                                                               \
299         mve_advance_vpt(env);                                           \
300     }
301 
302 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
303 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
304 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
305 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
306 
307 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD)
308 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD)
309 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD)
310 
311 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD)
312 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD)
313 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD)
314 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD)
315 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD)
316 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD)
317 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD)
318 
319 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH)
320 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH)
321 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH)
322 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW)
323 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD)
324 
325 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD)
326 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD)
327 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD)
328 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD)
329 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD)
330 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD)
331 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD)
332 
333 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH)
334 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH)
335 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW)
336 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD)
337 
338 /*
339  * The mergemask(D, R, M) macro performs the operation "*D = R" but
340  * storing only the bytes which correspond to 1 bits in M,
341  * leaving other bytes in *D unchanged. We use _Generic
342  * to select the correct implementation based on the type of D.
343  */
344 
345 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
346 {
347     if (mask & 1) {
348         *d = r;
349     }
350 }
351 
352 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
353 {
354     mergemask_ub((uint8_t *)d, r, mask);
355 }
356 
357 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
358 {
359     uint16_t bmask = expand_pred_b_data[mask & 3];
360     *d = (*d & ~bmask) | (r & bmask);
361 }
362 
363 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
364 {
365     mergemask_uh((uint16_t *)d, r, mask);
366 }
367 
368 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
369 {
370     uint32_t bmask = expand_pred_b_data[mask & 0xf];
371     *d = (*d & ~bmask) | (r & bmask);
372 }
373 
374 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
375 {
376     mergemask_uw((uint32_t *)d, r, mask);
377 }
378 
379 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
380 {
381     uint64_t bmask = expand_pred_b_data[mask & 0xff];
382     *d = (*d & ~bmask) | (r & bmask);
383 }
384 
385 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
386 {
387     mergemask_uq((uint64_t *)d, r, mask);
388 }
389 
390 #define mergemask(D, R, M)                      \
391     _Generic(D,                                 \
392              uint8_t *: mergemask_ub,           \
393              int8_t *:  mergemask_sb,           \
394              uint16_t *: mergemask_uh,          \
395              int16_t *:  mergemask_sh,          \
396              uint32_t *: mergemask_uw,          \
397              int32_t *:  mergemask_sw,          \
398              uint64_t *: mergemask_uq,          \
399              int64_t *:  mergemask_sq)(D, R, M)
400 
401 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
402 {
403     /*
404      * The generated code already replicated an 8 or 16 bit constant
405      * into the 32-bit value, so we only need to write the 32-bit
406      * value to all elements of the Qreg, allowing for predication.
407      */
408     uint32_t *d = vd;
409     uint16_t mask = mve_element_mask(env);
410     unsigned e;
411     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
412         mergemask(&d[H4(e)], val, mask);
413     }
414     mve_advance_vpt(env);
415 }
416 
417 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
418     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
419     {                                                                   \
420         TYPE *d = vd, *m = vm;                                          \
421         uint16_t mask = mve_element_mask(env);                          \
422         unsigned e;                                                     \
423         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
424             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
425         }                                                               \
426         mve_advance_vpt(env);                                           \
427     }
428 
429 #define DO_CLS_B(N)   (clrsb32(N) - 24)
430 #define DO_CLS_H(N)   (clrsb32(N) - 16)
431 
432 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
433 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
434 DO_1OP(vclsw, 4, int32_t, clrsb32)
435 
436 #define DO_CLZ_B(N)   (clz32(N) - 24)
437 #define DO_CLZ_H(N)   (clz32(N) - 16)
438 
439 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
440 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
441 DO_1OP(vclzw, 4, uint32_t, clz32)
442 
443 DO_1OP(vrev16b, 2, uint16_t, bswap16)
444 DO_1OP(vrev32b, 4, uint32_t, bswap32)
445 DO_1OP(vrev32h, 4, uint32_t, hswap32)
446 DO_1OP(vrev64b, 8, uint64_t, bswap64)
447 DO_1OP(vrev64h, 8, uint64_t, hswap64)
448 DO_1OP(vrev64w, 8, uint64_t, wswap64)
449 
450 #define DO_NOT(N) (~(N))
451 
452 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
453 
454 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
455 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
456 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
457 
458 DO_1OP(vabsb, 1, int8_t, DO_ABS)
459 DO_1OP(vabsh, 2, int16_t, DO_ABS)
460 DO_1OP(vabsw, 4, int32_t, DO_ABS)
461 
462 /* We can do these 64 bits at a time */
463 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
464 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
465 
466 #define DO_NEG(N)    (-(N))
467 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
468 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
469 
470 DO_1OP(vnegb, 1, int8_t, DO_NEG)
471 DO_1OP(vnegh, 2, int16_t, DO_NEG)
472 DO_1OP(vnegw, 4, int32_t, DO_NEG)
473 
474 /* We can do these 64 bits at a time */
475 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
476 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
477 
478 /*
479  * 1 operand immediates: Vda is destination and possibly also one source.
480  * All these insns work at 64-bit widths.
481  */
482 #define DO_1OP_IMM(OP, FN)                                              \
483     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
484     {                                                                   \
485         uint64_t *da = vda;                                             \
486         uint16_t mask = mve_element_mask(env);                          \
487         unsigned e;                                                     \
488         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
489             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
490         }                                                               \
491         mve_advance_vpt(env);                                           \
492     }
493 
494 #define DO_MOVI(N, I) (I)
495 #define DO_ANDI(N, I) ((N) & (I))
496 #define DO_ORRI(N, I) ((N) | (I))
497 
498 DO_1OP_IMM(vmovi, DO_MOVI)
499 DO_1OP_IMM(vandi, DO_ANDI)
500 DO_1OP_IMM(vorri, DO_ORRI)
501 
502 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
503     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
504                                 void *vd, void *vn, void *vm)           \
505     {                                                                   \
506         TYPE *d = vd, *n = vn, *m = vm;                                 \
507         uint16_t mask = mve_element_mask(env);                          \
508         unsigned e;                                                     \
509         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
510             mergemask(&d[H##ESIZE(e)],                                  \
511                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
512         }                                                               \
513         mve_advance_vpt(env);                                           \
514     }
515 
516 /* provide unsigned 2-op helpers for all sizes */
517 #define DO_2OP_U(OP, FN)                        \
518     DO_2OP(OP##b, 1, uint8_t, FN)               \
519     DO_2OP(OP##h, 2, uint16_t, FN)              \
520     DO_2OP(OP##w, 4, uint32_t, FN)
521 
522 /* provide signed 2-op helpers for all sizes */
523 #define DO_2OP_S(OP, FN)                        \
524     DO_2OP(OP##b, 1, int8_t, FN)                \
525     DO_2OP(OP##h, 2, int16_t, FN)               \
526     DO_2OP(OP##w, 4, int32_t, FN)
527 
528 /*
529  * "Long" operations where two half-sized inputs (taken from either the
530  * top or the bottom of the input vector) produce a double-width result.
531  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
532  */
533 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
534     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
535     {                                                                   \
536         LTYPE *d = vd;                                                  \
537         TYPE *n = vn, *m = vm;                                          \
538         uint16_t mask = mve_element_mask(env);                          \
539         unsigned le;                                                    \
540         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
541             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
542                          m[H##ESIZE(le * 2 + TOP)]);                    \
543             mergemask(&d[H##LESIZE(le)], r, mask);                      \
544         }                                                               \
545         mve_advance_vpt(env);                                           \
546     }
547 
548 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
549     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
550     {                                                                   \
551         TYPE *d = vd, *n = vn, *m = vm;                                 \
552         uint16_t mask = mve_element_mask(env);                          \
553         unsigned e;                                                     \
554         bool qc = false;                                                \
555         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
556             bool sat = false;                                           \
557             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
558             mergemask(&d[H##ESIZE(e)], r, mask);                        \
559             qc |= sat & mask & 1;                                       \
560         }                                                               \
561         if (qc) {                                                       \
562             env->vfp.qc[0] = qc;                                        \
563         }                                                               \
564         mve_advance_vpt(env);                                           \
565     }
566 
567 /* provide unsigned 2-op helpers for all sizes */
568 #define DO_2OP_SAT_U(OP, FN)                    \
569     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
570     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
571     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
572 
573 /* provide signed 2-op helpers for all sizes */
574 #define DO_2OP_SAT_S(OP, FN)                    \
575     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
576     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
577     DO_2OP_SAT(OP##w, 4, int32_t, FN)
578 
579 #define DO_AND(N, M)  ((N) & (M))
580 #define DO_BIC(N, M)  ((N) & ~(M))
581 #define DO_ORR(N, M)  ((N) | (M))
582 #define DO_ORN(N, M)  ((N) | ~(M))
583 #define DO_EOR(N, M)  ((N) ^ (M))
584 
585 DO_2OP(vand, 8, uint64_t, DO_AND)
586 DO_2OP(vbic, 8, uint64_t, DO_BIC)
587 DO_2OP(vorr, 8, uint64_t, DO_ORR)
588 DO_2OP(vorn, 8, uint64_t, DO_ORN)
589 DO_2OP(veor, 8, uint64_t, DO_EOR)
590 
591 #define DO_ADD(N, M) ((N) + (M))
592 #define DO_SUB(N, M) ((N) - (M))
593 #define DO_MUL(N, M) ((N) * (M))
594 
595 DO_2OP_U(vadd, DO_ADD)
596 DO_2OP_U(vsub, DO_SUB)
597 DO_2OP_U(vmul, DO_MUL)
598 
599 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
600 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
601 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
602 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
603 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
604 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
605 
606 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
607 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
608 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
609 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
610 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
611 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
612 
613 /*
614  * Polynomial multiply. We can always do this generating 64 bits
615  * of the result at a time, so we don't need to use DO_2OP_L.
616  */
617 #define VMULLPH_MASK 0x00ff00ff00ff00ffULL
618 #define VMULLPW_MASK 0x0000ffff0000ffffULL
619 #define DO_VMULLPBH(N, M) pmull_h((N) & VMULLPH_MASK, (M) & VMULLPH_MASK)
620 #define DO_VMULLPTH(N, M) DO_VMULLPBH((N) >> 8, (M) >> 8)
621 #define DO_VMULLPBW(N, M) pmull_w((N) & VMULLPW_MASK, (M) & VMULLPW_MASK)
622 #define DO_VMULLPTW(N, M) DO_VMULLPBW((N) >> 16, (M) >> 16)
623 
624 DO_2OP(vmullpbh, 8, uint64_t, DO_VMULLPBH)
625 DO_2OP(vmullpth, 8, uint64_t, DO_VMULLPTH)
626 DO_2OP(vmullpbw, 8, uint64_t, DO_VMULLPBW)
627 DO_2OP(vmullptw, 8, uint64_t, DO_VMULLPTW)
628 
629 /*
630  * Because the computation type is at least twice as large as required,
631  * these work for both signed and unsigned source types.
632  */
633 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
634 {
635     return (n * m) >> 8;
636 }
637 
638 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
639 {
640     return (n * m) >> 16;
641 }
642 
643 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
644 {
645     return (n * m) >> 32;
646 }
647 
648 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
649 {
650     return (n * m + (1U << 7)) >> 8;
651 }
652 
653 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
654 {
655     return (n * m + (1U << 15)) >> 16;
656 }
657 
658 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
659 {
660     return (n * m + (1U << 31)) >> 32;
661 }
662 
663 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
664 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
665 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
666 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
667 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
668 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
669 
670 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
671 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
672 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
673 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
674 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
675 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
676 
677 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
678 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
679 
680 DO_2OP_S(vmaxs, DO_MAX)
681 DO_2OP_U(vmaxu, DO_MAX)
682 DO_2OP_S(vmins, DO_MIN)
683 DO_2OP_U(vminu, DO_MIN)
684 
685 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
686 
687 DO_2OP_S(vabds, DO_ABD)
688 DO_2OP_U(vabdu, DO_ABD)
689 
690 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
691 {
692     return ((uint64_t)n + m) >> 1;
693 }
694 
695 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
696 {
697     return ((int64_t)n + m) >> 1;
698 }
699 
700 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
701 {
702     return ((uint64_t)n - m) >> 1;
703 }
704 
705 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
706 {
707     return ((int64_t)n - m) >> 1;
708 }
709 
710 DO_2OP_S(vhadds, do_vhadd_s)
711 DO_2OP_U(vhaddu, do_vhadd_u)
712 DO_2OP_S(vhsubs, do_vhsub_s)
713 DO_2OP_U(vhsubu, do_vhsub_u)
714 
715 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
716 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
717 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
718 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
719 
720 DO_2OP_S(vshls, DO_VSHLS)
721 DO_2OP_U(vshlu, DO_VSHLU)
722 DO_2OP_S(vrshls, DO_VRSHLS)
723 DO_2OP_U(vrshlu, DO_VRSHLU)
724 
725 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
726 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
727 
728 DO_2OP_S(vrhadds, DO_RHADD_S)
729 DO_2OP_U(vrhaddu, DO_RHADD_U)
730 
731 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
732                     uint32_t inv, uint32_t carry_in, bool update_flags)
733 {
734     uint16_t mask = mve_element_mask(env);
735     unsigned e;
736 
737     /* If any additions trigger, we will update flags. */
738     if (mask & 0x1111) {
739         update_flags = true;
740     }
741 
742     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
743         uint64_t r = carry_in;
744         r += n[H4(e)];
745         r += m[H4(e)] ^ inv;
746         if (mask & 1) {
747             carry_in = r >> 32;
748         }
749         mergemask(&d[H4(e)], r, mask);
750     }
751 
752     if (update_flags) {
753         /* Store C, clear NZV. */
754         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
755         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
756     }
757     mve_advance_vpt(env);
758 }
759 
760 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
761 {
762     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
763     do_vadc(env, vd, vn, vm, 0, carry_in, false);
764 }
765 
766 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
767 {
768     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
769     do_vadc(env, vd, vn, vm, -1, carry_in, false);
770 }
771 
772 
773 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
774 {
775     do_vadc(env, vd, vn, vm, 0, 0, true);
776 }
777 
778 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
779 {
780     do_vadc(env, vd, vn, vm, -1, 1, true);
781 }
782 
783 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
784     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
785     {                                                                   \
786         TYPE *d = vd, *n = vn, *m = vm;                                 \
787         uint16_t mask = mve_element_mask(env);                          \
788         unsigned e;                                                     \
789         TYPE r[16 / ESIZE];                                             \
790         /* Calculate all results first to avoid overwriting inputs */   \
791         for (e = 0; e < 16 / ESIZE; e++) {                              \
792             if (!(e & 1)) {                                             \
793                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
794             } else {                                                    \
795                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
796             }                                                           \
797         }                                                               \
798         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
799             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
800         }                                                               \
801         mve_advance_vpt(env);                                           \
802     }
803 
804 #define DO_VCADD_ALL(OP, FN0, FN1)              \
805     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
806     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
807     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
808 
809 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
810 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
811 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
812 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
813 
814 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
815 {
816     if (val > max) {
817         *s = true;
818         return max;
819     } else if (val < min) {
820         *s = true;
821         return min;
822     }
823     return val;
824 }
825 
826 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
827 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
828 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
829 
830 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
831 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
832 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
833 
834 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
835 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
836 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
837 
838 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
839 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
840 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
841 
842 /*
843  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
844  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
845  */
846 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
847                                         INT8_MIN, INT8_MAX, s)
848 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
849                                         INT16_MIN, INT16_MAX, s)
850 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
851                                         INT32_MIN, INT32_MAX, s)
852 
853 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
854                                          INT8_MIN, INT8_MAX, s)
855 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
856                                          INT16_MIN, INT16_MAX, s)
857 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
858                                          INT32_MIN, INT32_MAX, s)
859 
860 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
861 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
862 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
863 
864 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
865 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
866 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
867 
868 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
869 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
870 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
871 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
872 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
873 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
874 
875 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
876 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
877 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
878 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
879 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
880 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
881 
882 /*
883  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
884  * and friends wanting a uint32_t* sat and our needing a bool*.
885  */
886 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
887     ({                                                                  \
888         uint32_t su32 = 0;                                              \
889         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
890         if (su32) {                                                     \
891             *satp = true;                                               \
892         }                                                               \
893         r;                                                              \
894     })
895 
896 #define DO_SQSHL_OP(N, M, satp) \
897     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
898 #define DO_UQSHL_OP(N, M, satp) \
899     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
900 #define DO_SQRSHL_OP(N, M, satp) \
901     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
902 #define DO_UQRSHL_OP(N, M, satp) \
903     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
904 #define DO_SUQSHL_OP(N, M, satp) \
905     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
906 
907 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
908 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
909 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
910 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
911 
912 /*
913  * Multiply add dual returning high half
914  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
915  * whether to add the rounding constant, and the pointer to the
916  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
917  * saturate to twice the input size and return the high half; or
918  * (A * B - C * D) etc for VQDMLSDH.
919  */
920 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
921     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
922                                 void *vm)                               \
923     {                                                                   \
924         TYPE *d = vd, *n = vn, *m = vm;                                 \
925         uint16_t mask = mve_element_mask(env);                          \
926         unsigned e;                                                     \
927         bool qc = false;                                                \
928         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
929             bool sat = false;                                           \
930             if ((e & 1) == XCHG) {                                      \
931                 TYPE r = FN(n[H##ESIZE(e)],                             \
932                             m[H##ESIZE(e - XCHG)],                      \
933                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
934                             m[H##ESIZE(e + (1 - XCHG))],                \
935                             ROUND, &sat);                               \
936                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
937                 qc |= sat & mask & 1;                                   \
938             }                                                           \
939         }                                                               \
940         if (qc) {                                                       \
941             env->vfp.qc[0] = qc;                                        \
942         }                                                               \
943         mve_advance_vpt(env);                                           \
944     }
945 
946 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
947                             int round, bool *sat)
948 {
949     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
950     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
951 }
952 
953 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
954                              int round, bool *sat)
955 {
956     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
957     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
958 }
959 
960 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
961                              int round, bool *sat)
962 {
963     int64_t m1 = (int64_t)a * b;
964     int64_t m2 = (int64_t)c * d;
965     int64_t r;
966     /*
967      * Architecturally we should do the entire add, double, round
968      * and then check for saturation. We do three saturating adds,
969      * but we need to be careful about the order. If the first
970      * m1 + m2 saturates then it's impossible for the *2+rc to
971      * bring it back into the non-saturated range. However, if
972      * m1 + m2 is negative then it's possible that doing the doubling
973      * would take the intermediate result below INT64_MAX and the
974      * addition of the rounding constant then brings it back in range.
975      * So we add half the rounding constant before doubling rather
976      * than adding the rounding constant after the doubling.
977      */
978     if (sadd64_overflow(m1, m2, &r) ||
979         sadd64_overflow(r, (round << 30), &r) ||
980         sadd64_overflow(r, r, &r)) {
981         *sat = true;
982         return r < 0 ? INT32_MAX : INT32_MIN;
983     }
984     return r >> 32;
985 }
986 
987 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
988                             int round, bool *sat)
989 {
990     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
991     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
992 }
993 
994 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
995                              int round, bool *sat)
996 {
997     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
998     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
999 }
1000 
1001 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1002                              int round, bool *sat)
1003 {
1004     int64_t m1 = (int64_t)a * b;
1005     int64_t m2 = (int64_t)c * d;
1006     int64_t r;
1007     /* The same ordering issue as in do_vqdmladh_w applies here too */
1008     if (ssub64_overflow(m1, m2, &r) ||
1009         sadd64_overflow(r, (round << 30), &r) ||
1010         sadd64_overflow(r, r, &r)) {
1011         *sat = true;
1012         return r < 0 ? INT32_MAX : INT32_MIN;
1013     }
1014     return r >> 32;
1015 }
1016 
1017 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1018 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1019 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1020 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1021 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1022 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1023 
1024 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1025 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1026 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1027 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1028 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1029 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1030 
1031 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1032 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1033 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1034 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1035 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1036 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1037 
1038 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1039 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1040 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1041 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1042 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1043 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1044 
1045 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1046     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1047                                 uint32_t rm)                            \
1048     {                                                                   \
1049         TYPE *d = vd, *n = vn;                                          \
1050         TYPE m = rm;                                                    \
1051         uint16_t mask = mve_element_mask(env);                          \
1052         unsigned e;                                                     \
1053         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1054             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1055         }                                                               \
1056         mve_advance_vpt(env);                                           \
1057     }
1058 
1059 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1060     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1061                                 uint32_t rm)                            \
1062     {                                                                   \
1063         TYPE *d = vd, *n = vn;                                          \
1064         TYPE m = rm;                                                    \
1065         uint16_t mask = mve_element_mask(env);                          \
1066         unsigned e;                                                     \
1067         bool qc = false;                                                \
1068         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1069             bool sat = false;                                           \
1070             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1071                       mask);                                            \
1072             qc |= sat & mask & 1;                                       \
1073         }                                                               \
1074         if (qc) {                                                       \
1075             env->vfp.qc[0] = qc;                                        \
1076         }                                                               \
1077         mve_advance_vpt(env);                                           \
1078     }
1079 
1080 /* "accumulating" version where FN takes d as well as n and m */
1081 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1082     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1083                                 uint32_t rm)                            \
1084     {                                                                   \
1085         TYPE *d = vd, *n = vn;                                          \
1086         TYPE m = rm;                                                    \
1087         uint16_t mask = mve_element_mask(env);                          \
1088         unsigned e;                                                     \
1089         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1090             mergemask(&d[H##ESIZE(e)],                                  \
1091                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1092         }                                                               \
1093         mve_advance_vpt(env);                                           \
1094     }
1095 
1096 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1097     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1098                                 uint32_t rm)                            \
1099     {                                                                   \
1100         TYPE *d = vd, *n = vn;                                          \
1101         TYPE m = rm;                                                    \
1102         uint16_t mask = mve_element_mask(env);                          \
1103         unsigned e;                                                     \
1104         bool qc = false;                                                \
1105         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1106             bool sat = false;                                           \
1107             mergemask(&d[H##ESIZE(e)],                                  \
1108                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1109                       mask);                                            \
1110             qc |= sat & mask & 1;                                       \
1111         }                                                               \
1112         if (qc) {                                                       \
1113             env->vfp.qc[0] = qc;                                        \
1114         }                                                               \
1115         mve_advance_vpt(env);                                           \
1116     }
1117 
1118 /* provide unsigned 2-op scalar helpers for all sizes */
1119 #define DO_2OP_SCALAR_U(OP, FN)                 \
1120     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1121     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1122     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1123 #define DO_2OP_SCALAR_S(OP, FN)                 \
1124     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1125     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1126     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1127 
1128 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1129     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1130     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1131     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1132 
1133 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1134 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1135 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1136 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1137 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1138 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1139 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1140 
1141 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1142 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1143 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1144 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1145 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1146 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1147 
1148 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1149 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1150 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1151 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1152 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1153 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1154 
1155 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1156 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1157 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1158 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1159 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1160 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1161 
1162 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1163 {
1164     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1165     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1166 }
1167 
1168 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1169                            int round, bool *sat)
1170 {
1171     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1172     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1173 }
1174 
1175 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1176                             int round, bool *sat)
1177 {
1178     /*
1179      * Architecturally we should do the entire add, double, round
1180      * and then check for saturation. We do three saturating adds,
1181      * but we need to be careful about the order. If the first
1182      * m1 + m2 saturates then it's impossible for the *2+rc to
1183      * bring it back into the non-saturated range. However, if
1184      * m1 + m2 is negative then it's possible that doing the doubling
1185      * would take the intermediate result below INT64_MAX and the
1186      * addition of the rounding constant then brings it back in range.
1187      * So we add half the rounding constant and half the "c << esize"
1188      * before doubling rather than adding the rounding constant after
1189      * the doubling.
1190      */
1191     int64_t m1 = (int64_t)a * b;
1192     int64_t m2 = (int64_t)c << 31;
1193     int64_t r;
1194     if (sadd64_overflow(m1, m2, &r) ||
1195         sadd64_overflow(r, (round << 30), &r) ||
1196         sadd64_overflow(r, r, &r)) {
1197         *sat = true;
1198         return r < 0 ? INT32_MAX : INT32_MIN;
1199     }
1200     return r >> 32;
1201 }
1202 
1203 /*
1204  * The *MLAH insns are vector * scalar + vector;
1205  * the *MLASH insns are vector * vector + scalar
1206  */
1207 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1208 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1209 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1210 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1211 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1212 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1213 
1214 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1215 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1216 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1217 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1218 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1219 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1220 
1221 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1222 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1223 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1224 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1225 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1226 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1227 
1228 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1229 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1230 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1231 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1232 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1233 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1234 
1235 /* Vector by scalar plus vector */
1236 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1237 
1238 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1239 
1240 /* Vector by vector plus scalar */
1241 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1242 
1243 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1244 
1245 /*
1246  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1247  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1248  * SATMASK specifies which bits of the predicate mask matter for determining
1249  * whether to propagate a saturation indication into FPSCR.QC -- for
1250  * the 16x16->32 case we must check only the bit corresponding to the T or B
1251  * half that we used, but for the 32x32->64 case we propagate if the mask
1252  * bit is set for either half.
1253  */
1254 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1255     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1256                                 uint32_t rm)                            \
1257     {                                                                   \
1258         LTYPE *d = vd;                                                  \
1259         TYPE *n = vn;                                                   \
1260         TYPE m = rm;                                                    \
1261         uint16_t mask = mve_element_mask(env);                          \
1262         unsigned le;                                                    \
1263         bool qc = false;                                                \
1264         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1265             bool sat = false;                                           \
1266             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1267             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1268             qc |= sat && (mask & SATMASK);                              \
1269         }                                                               \
1270         if (qc) {                                                       \
1271             env->vfp.qc[0] = qc;                                        \
1272         }                                                               \
1273         mve_advance_vpt(env);                                           \
1274     }
1275 
1276 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1277 {
1278     int64_t r = ((int64_t)n * m) * 2;
1279     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1280 }
1281 
1282 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1283 {
1284     /* The multiply can't overflow, but the doubling might */
1285     int64_t r = (int64_t)n * m;
1286     if (r > INT64_MAX / 2) {
1287         *sat = true;
1288         return INT64_MAX;
1289     } else if (r < INT64_MIN / 2) {
1290         *sat = true;
1291         return INT64_MIN;
1292     } else {
1293         return r * 2;
1294     }
1295 }
1296 
1297 #define SATMASK16B 1
1298 #define SATMASK16T (1 << 2)
1299 #define SATMASK32 ((1 << 4) | 1)
1300 
1301 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1302                     do_qdmullh, SATMASK16B)
1303 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1304                     do_qdmullw, SATMASK32)
1305 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1306                     do_qdmullh, SATMASK16T)
1307 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1308                     do_qdmullw, SATMASK32)
1309 
1310 /*
1311  * Long saturating ops
1312  */
1313 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1314     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1315                                 void *vm)                               \
1316     {                                                                   \
1317         LTYPE *d = vd;                                                  \
1318         TYPE *n = vn, *m = vm;                                          \
1319         uint16_t mask = mve_element_mask(env);                          \
1320         unsigned le;                                                    \
1321         bool qc = false;                                                \
1322         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1323             bool sat = false;                                           \
1324             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1325             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1326             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1327             qc |= sat && (mask & SATMASK);                              \
1328         }                                                               \
1329         if (qc) {                                                       \
1330             env->vfp.qc[0] = qc;                                        \
1331         }                                                               \
1332         mve_advance_vpt(env);                                           \
1333     }
1334 
1335 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1336 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1337 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1338 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1339 
1340 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1341 {
1342     m &= 0xff;
1343     if (m == 0) {
1344         return 0;
1345     }
1346     n = revbit8(n);
1347     if (m < 8) {
1348         n >>= 8 - m;
1349     }
1350     return n;
1351 }
1352 
1353 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1354 {
1355     m &= 0xff;
1356     if (m == 0) {
1357         return 0;
1358     }
1359     n = revbit16(n);
1360     if (m < 16) {
1361         n >>= 16 - m;
1362     }
1363     return n;
1364 }
1365 
1366 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1367 {
1368     m &= 0xff;
1369     if (m == 0) {
1370         return 0;
1371     }
1372     n = revbit32(n);
1373     if (m < 32) {
1374         n >>= 32 - m;
1375     }
1376     return n;
1377 }
1378 
1379 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1380 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1381 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1382 
1383 /*
1384  * Multiply add long dual accumulate ops.
1385  */
1386 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1387     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1388                                     void *vm, uint64_t a)               \
1389     {                                                                   \
1390         uint16_t mask = mve_element_mask(env);                          \
1391         unsigned e;                                                     \
1392         TYPE *n = vn, *m = vm;                                          \
1393         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1394             if (mask & 1) {                                             \
1395                 if (e & 1) {                                            \
1396                     a ODDACC                                            \
1397                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1398                 } else {                                                \
1399                     a EVENACC                                           \
1400                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1401                 }                                                       \
1402             }                                                           \
1403         }                                                               \
1404         mve_advance_vpt(env);                                           \
1405         return a;                                                       \
1406     }
1407 
1408 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1409 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1410 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1411 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1412 
1413 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1414 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1415 
1416 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1417 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1418 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1419 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1420 
1421 /*
1422  * Multiply add dual accumulate ops
1423  */
1424 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1425     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1426                                     void *vm, uint32_t a)               \
1427     {                                                                   \
1428         uint16_t mask = mve_element_mask(env);                          \
1429         unsigned e;                                                     \
1430         TYPE *n = vn, *m = vm;                                          \
1431         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1432             if (mask & 1) {                                             \
1433                 if (e & 1) {                                            \
1434                     a ODDACC                                            \
1435                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1436                 } else {                                                \
1437                     a EVENACC                                           \
1438                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1439                 }                                                       \
1440             }                                                           \
1441         }                                                               \
1442         mve_advance_vpt(env);                                           \
1443         return a;                                                       \
1444     }
1445 
1446 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1447     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1448     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1449     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1450 
1451 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1452     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1453     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1454     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1455 
1456 DO_DAV_S(vmladavs, false, +=, +=)
1457 DO_DAV_U(vmladavu, false, +=, +=)
1458 DO_DAV_S(vmlsdav, false, +=, -=)
1459 DO_DAV_S(vmladavsx, true, +=, +=)
1460 DO_DAV_S(vmlsdavx, true, +=, -=)
1461 
1462 /*
1463  * Rounding multiply add long dual accumulate high. In the pseudocode
1464  * this is implemented with a 72-bit internal accumulator value of which
1465  * the top 64 bits are returned. We optimize this to avoid having to
1466  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1467  * is squashed back into 64-bits after each beat.
1468  */
1469 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1470     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1471                                     void *vm, uint64_t a)               \
1472     {                                                                   \
1473         uint16_t mask = mve_element_mask(env);                          \
1474         unsigned e;                                                     \
1475         TYPE *n = vn, *m = vm;                                          \
1476         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1477             if (mask & 1) {                                             \
1478                 LTYPE mul;                                              \
1479                 if (e & 1) {                                            \
1480                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1481                     if (SUB) {                                          \
1482                         mul = -mul;                                     \
1483                     }                                                   \
1484                 } else {                                                \
1485                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1486                 }                                                       \
1487                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1488                 a += mul;                                               \
1489             }                                                           \
1490         }                                                               \
1491         mve_advance_vpt(env);                                           \
1492         return a;                                                       \
1493     }
1494 
1495 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1496 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1497 
1498 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1499 
1500 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1501 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1502 
1503 /* Vector add across vector */
1504 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1505     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1506                                     uint32_t ra)                \
1507     {                                                           \
1508         uint16_t mask = mve_element_mask(env);                  \
1509         unsigned e;                                             \
1510         TYPE *m = vm;                                           \
1511         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1512             if (mask & 1) {                                     \
1513                 ra += m[H##ESIZE(e)];                           \
1514             }                                                   \
1515         }                                                       \
1516         mve_advance_vpt(env);                                   \
1517         return ra;                                              \
1518     }                                                           \
1519 
1520 DO_VADDV(vaddvsb, 1, int8_t)
1521 DO_VADDV(vaddvsh, 2, int16_t)
1522 DO_VADDV(vaddvsw, 4, int32_t)
1523 DO_VADDV(vaddvub, 1, uint8_t)
1524 DO_VADDV(vaddvuh, 2, uint16_t)
1525 DO_VADDV(vaddvuw, 4, uint32_t)
1526 
1527 /*
1528  * Vector max/min across vector. Unlike VADDV, we must
1529  * read ra as the element size, not its full width.
1530  * We work with int64_t internally for simplicity.
1531  */
1532 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1533     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1534                                     uint32_t ra_in)             \
1535     {                                                           \
1536         uint16_t mask = mve_element_mask(env);                  \
1537         unsigned e;                                             \
1538         TYPE *m = vm;                                           \
1539         int64_t ra = (RATYPE)ra_in;                             \
1540         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1541             if (mask & 1) {                                     \
1542                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1543             }                                                   \
1544         }                                                       \
1545         mve_advance_vpt(env);                                   \
1546         return ra;                                              \
1547     }                                                           \
1548 
1549 #define DO_VMAXMINV_U(INSN, FN)                         \
1550     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1551     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1552     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1553 #define DO_VMAXMINV_S(INSN, FN)                         \
1554     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1555     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1556     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1557 
1558 /*
1559  * Helpers for max and min of absolute values across vector:
1560  * note that we only take the absolute value of 'm', not 'n'
1561  */
1562 static int64_t do_maxa(int64_t n, int64_t m)
1563 {
1564     if (m < 0) {
1565         m = -m;
1566     }
1567     return MAX(n, m);
1568 }
1569 
1570 static int64_t do_mina(int64_t n, int64_t m)
1571 {
1572     if (m < 0) {
1573         m = -m;
1574     }
1575     return MIN(n, m);
1576 }
1577 
1578 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1579 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1580 DO_VMAXMINV_S(vminvs, DO_MIN)
1581 DO_VMAXMINV_U(vminvu, DO_MIN)
1582 /*
1583  * VMAXAV, VMINAV treat the general purpose input as unsigned
1584  * and the vector elements as signed.
1585  */
1586 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1587 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1588 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1589 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1590 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1591 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1592 
1593 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1594     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1595                                     void *vm, uint32_t ra)      \
1596     {                                                           \
1597         uint16_t mask = mve_element_mask(env);                  \
1598         unsigned e;                                             \
1599         TYPE *m = vm, *n = vn;                                  \
1600         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1601             if (mask & 1) {                                     \
1602                 int64_t n0 = n[H##ESIZE(e)];                    \
1603                 int64_t m0 = m[H##ESIZE(e)];                    \
1604                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1605                 ra += r;                                        \
1606             }                                                   \
1607         }                                                       \
1608         mve_advance_vpt(env);                                   \
1609         return ra;                                              \
1610     }
1611 
1612 DO_VABAV(vabavsb, 1, int8_t)
1613 DO_VABAV(vabavsh, 2, int16_t)
1614 DO_VABAV(vabavsw, 4, int32_t)
1615 DO_VABAV(vabavub, 1, uint8_t)
1616 DO_VABAV(vabavuh, 2, uint16_t)
1617 DO_VABAV(vabavuw, 4, uint32_t)
1618 
1619 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1620     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1621                                     uint64_t ra)                \
1622     {                                                           \
1623         uint16_t mask = mve_element_mask(env);                  \
1624         unsigned e;                                             \
1625         TYPE *m = vm;                                           \
1626         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1627             if (mask & 1) {                                     \
1628                 ra += (LTYPE)m[H4(e)];                          \
1629             }                                                   \
1630         }                                                       \
1631         mve_advance_vpt(env);                                   \
1632         return ra;                                              \
1633     }                                                           \
1634 
1635 DO_VADDLV(vaddlv_s, int32_t, int64_t)
1636 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
1637 
1638 /* Shifts by immediate */
1639 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
1640     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1641                                 void *vm, uint32_t shift)       \
1642     {                                                           \
1643         TYPE *d = vd, *m = vm;                                  \
1644         uint16_t mask = mve_element_mask(env);                  \
1645         unsigned e;                                             \
1646         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1647             mergemask(&d[H##ESIZE(e)],                          \
1648                       FN(m[H##ESIZE(e)], shift), mask);         \
1649         }                                                       \
1650         mve_advance_vpt(env);                                   \
1651     }
1652 
1653 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
1654     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1655                                 void *vm, uint32_t shift)       \
1656     {                                                           \
1657         TYPE *d = vd, *m = vm;                                  \
1658         uint16_t mask = mve_element_mask(env);                  \
1659         unsigned e;                                             \
1660         bool qc = false;                                        \
1661         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1662             bool sat = false;                                   \
1663             mergemask(&d[H##ESIZE(e)],                          \
1664                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
1665             qc |= sat & mask & 1;                               \
1666         }                                                       \
1667         if (qc) {                                               \
1668             env->vfp.qc[0] = qc;                                \
1669         }                                                       \
1670         mve_advance_vpt(env);                                   \
1671     }
1672 
1673 /* provide unsigned 2-op shift helpers for all sizes */
1674 #define DO_2SHIFT_U(OP, FN)                     \
1675     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
1676     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
1677     DO_2SHIFT(OP##w, 4, uint32_t, FN)
1678 #define DO_2SHIFT_S(OP, FN)                     \
1679     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
1680     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
1681     DO_2SHIFT(OP##w, 4, int32_t, FN)
1682 
1683 #define DO_2SHIFT_SAT_U(OP, FN)                 \
1684     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
1685     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
1686     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
1687 #define DO_2SHIFT_SAT_S(OP, FN)                 \
1688     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
1689     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
1690     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
1691 
1692 DO_2SHIFT_U(vshli_u, DO_VSHLU)
1693 DO_2SHIFT_S(vshli_s, DO_VSHLS)
1694 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
1695 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
1696 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
1697 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
1698 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
1699 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
1700 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
1701 
1702 /* Shift-and-insert; we always work with 64 bits at a time */
1703 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
1704     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1705                                 void *vm, uint32_t shift)               \
1706     {                                                                   \
1707         uint64_t *d = vd, *m = vm;                                      \
1708         uint16_t mask;                                                  \
1709         uint64_t shiftmask;                                             \
1710         unsigned e;                                                     \
1711         if (shift == ESIZE * 8) {                                       \
1712             /*                                                          \
1713              * Only VSRI can shift by <dt>; it should mean "don't       \
1714              * update the destination". The generic logic can't handle  \
1715              * this because it would try to shift by an out-of-range    \
1716              * amount, so special case it here.                         \
1717              */                                                         \
1718             goto done;                                                  \
1719         }                                                               \
1720         assert(shift < ESIZE * 8);                                      \
1721         mask = mve_element_mask(env);                                   \
1722         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
1723         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
1724         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
1725             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
1726                 (d[H8(e)] & ~shiftmask);                                \
1727             mergemask(&d[H8(e)], r, mask);                              \
1728         }                                                               \
1729 done:                                                                   \
1730         mve_advance_vpt(env);                                           \
1731     }
1732 
1733 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
1734 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
1735 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
1736 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
1737 
1738 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
1739 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
1740 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
1741 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
1742 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
1743 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
1744 
1745 /*
1746  * Long shifts taking half-sized inputs from top or bottom of the input
1747  * vector and producing a double-width result. ESIZE, TYPE are for
1748  * the input, and LESIZE, LTYPE for the output.
1749  * Unlike the normal shift helpers, we do not handle negative shift counts,
1750  * because the long shift is strictly left-only.
1751  */
1752 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1753     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1754                                 void *vm, uint32_t shift)               \
1755     {                                                                   \
1756         LTYPE *d = vd;                                                  \
1757         TYPE *m = vm;                                                   \
1758         uint16_t mask = mve_element_mask(env);                          \
1759         unsigned le;                                                    \
1760         assert(shift <= 16);                                            \
1761         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1762             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
1763             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1764         }                                                               \
1765         mve_advance_vpt(env);                                           \
1766     }
1767 
1768 #define DO_VSHLL_ALL(OP, TOP)                                \
1769     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
1770     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
1771     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
1772     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
1773 
1774 DO_VSHLL_ALL(vshllb, false)
1775 DO_VSHLL_ALL(vshllt, true)
1776 
1777 /*
1778  * Narrowing right shifts, taking a double sized input, shifting it
1779  * and putting the result in either the top or bottom half of the output.
1780  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
1781  */
1782 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
1783     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1784                                 void *vm, uint32_t shift)       \
1785     {                                                           \
1786         LTYPE *m = vm;                                          \
1787         TYPE *d = vd;                                           \
1788         uint16_t mask = mve_element_mask(env);                  \
1789         unsigned le;                                            \
1790         mask >>= ESIZE * TOP;                                   \
1791         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1792             TYPE r = FN(m[H##LESIZE(le)], shift);               \
1793             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1794         }                                                       \
1795         mve_advance_vpt(env);                                   \
1796     }
1797 
1798 #define DO_VSHRN_ALL(OP, FN)                                    \
1799     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
1800     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
1801     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
1802     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
1803 
1804 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
1805 {
1806     if (likely(sh < 64)) {
1807         return (x >> sh) + ((x >> (sh - 1)) & 1);
1808     } else if (sh == 64) {
1809         return x >> 63;
1810     } else {
1811         return 0;
1812     }
1813 }
1814 
1815 static inline int64_t do_srshr(int64_t x, unsigned sh)
1816 {
1817     if (likely(sh < 64)) {
1818         return (x >> sh) + ((x >> (sh - 1)) & 1);
1819     } else {
1820         /* Rounding the sign bit always produces 0. */
1821         return 0;
1822     }
1823 }
1824 
1825 DO_VSHRN_ALL(vshrn, DO_SHR)
1826 DO_VSHRN_ALL(vrshrn, do_urshr)
1827 
1828 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
1829                                  bool *satp)
1830 {
1831     if (val > max) {
1832         *satp = true;
1833         return max;
1834     } else if (val < min) {
1835         *satp = true;
1836         return min;
1837     } else {
1838         return val;
1839     }
1840 }
1841 
1842 /* Saturating narrowing right shifts */
1843 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
1844     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1845                                 void *vm, uint32_t shift)       \
1846     {                                                           \
1847         LTYPE *m = vm;                                          \
1848         TYPE *d = vd;                                           \
1849         uint16_t mask = mve_element_mask(env);                  \
1850         bool qc = false;                                        \
1851         unsigned le;                                            \
1852         mask >>= ESIZE * TOP;                                   \
1853         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1854             bool sat = false;                                   \
1855             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
1856             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1857             qc |= sat & mask & 1;                               \
1858         }                                                       \
1859         if (qc) {                                               \
1860             env->vfp.qc[0] = qc;                                \
1861         }                                                       \
1862         mve_advance_vpt(env);                                   \
1863     }
1864 
1865 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
1866     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1867     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1868 
1869 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
1870     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1871     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1872 
1873 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
1874     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1875     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1876 
1877 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
1878     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1879     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1880 
1881 #define DO_SHRN_SB(N, M, SATP)                                  \
1882     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
1883 #define DO_SHRN_UB(N, M, SATP)                                  \
1884     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1885 #define DO_SHRUN_B(N, M, SATP)                                  \
1886     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1887 
1888 #define DO_SHRN_SH(N, M, SATP)                                  \
1889     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
1890 #define DO_SHRN_UH(N, M, SATP)                                  \
1891     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1892 #define DO_SHRUN_H(N, M, SATP)                                  \
1893     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1894 
1895 #define DO_RSHRN_SB(N, M, SATP)                                 \
1896     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
1897 #define DO_RSHRN_UB(N, M, SATP)                                 \
1898     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
1899 #define DO_RSHRUN_B(N, M, SATP)                                 \
1900     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
1901 
1902 #define DO_RSHRN_SH(N, M, SATP)                                 \
1903     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
1904 #define DO_RSHRN_UH(N, M, SATP)                                 \
1905     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
1906 #define DO_RSHRUN_H(N, M, SATP)                                 \
1907     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
1908 
1909 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
1910 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
1911 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
1912 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
1913 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
1914 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
1915 
1916 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
1917 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
1918 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
1919 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
1920 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
1921 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
1922 
1923 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1924     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1925     {                                                                   \
1926         LTYPE *m = vm;                                                  \
1927         TYPE *d = vd;                                                   \
1928         uint16_t mask = mve_element_mask(env);                          \
1929         unsigned le;                                                    \
1930         mask >>= ESIZE * TOP;                                           \
1931         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1932             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
1933                       m[H##LESIZE(le)], mask);                          \
1934         }                                                               \
1935         mve_advance_vpt(env);                                           \
1936     }
1937 
1938 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
1939 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
1940 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
1941 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
1942 
1943 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
1944     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
1945     {                                                                   \
1946         LTYPE *m = vm;                                                  \
1947         TYPE *d = vd;                                                   \
1948         uint16_t mask = mve_element_mask(env);                          \
1949         bool qc = false;                                                \
1950         unsigned le;                                                    \
1951         mask >>= ESIZE * TOP;                                           \
1952         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1953             bool sat = false;                                           \
1954             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
1955             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
1956             qc |= sat & mask & 1;                                       \
1957         }                                                               \
1958         if (qc) {                                                       \
1959             env->vfp.qc[0] = qc;                                        \
1960         }                                                               \
1961         mve_advance_vpt(env);                                           \
1962     }
1963 
1964 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
1965     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1966     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1967 
1968 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
1969     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1970     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1971 
1972 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
1973     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1974     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1975 
1976 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
1977     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1978     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1979 
1980 #define DO_VQMOVN_SB(N, SATP)                           \
1981     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
1982 #define DO_VQMOVN_UB(N, SATP)                           \
1983     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
1984 #define DO_VQMOVUN_B(N, SATP)                           \
1985     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
1986 
1987 #define DO_VQMOVN_SH(N, SATP)                           \
1988     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
1989 #define DO_VQMOVN_UH(N, SATP)                           \
1990     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
1991 #define DO_VQMOVUN_H(N, SATP)                           \
1992     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
1993 
1994 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
1995 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
1996 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
1997 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
1998 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
1999 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2000 
2001 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2002                            uint32_t shift)
2003 {
2004     uint32_t *d = vd;
2005     uint16_t mask = mve_element_mask(env);
2006     unsigned e;
2007     uint32_t r;
2008 
2009     /*
2010      * For each 32-bit element, we shift it left, bringing in the
2011      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2012      * the top become the new rdm, if the predicate mask permits.
2013      * The final rdm value is returned to update the register.
2014      * shift == 0 here means "shift by 32 bits".
2015      */
2016     if (shift == 0) {
2017         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2018             r = rdm;
2019             if (mask & 1) {
2020                 rdm = d[H4(e)];
2021             }
2022             mergemask(&d[H4(e)], r, mask);
2023         }
2024     } else {
2025         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2026 
2027         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2028             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2029             if (mask & 1) {
2030                 rdm = d[H4(e)] >> (32 - shift);
2031             }
2032             mergemask(&d[H4(e)], r, mask);
2033         }
2034     }
2035     mve_advance_vpt(env);
2036     return rdm;
2037 }
2038 
2039 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2040 {
2041     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2042 }
2043 
2044 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2045 {
2046     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2047 }
2048 
2049 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2050 {
2051     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2052 }
2053 
2054 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2055 {
2056     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2057 }
2058 
2059 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2060 {
2061     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2062 }
2063 
2064 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2065 {
2066     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2067 }
2068 
2069 /* Operate on 64-bit values, but saturate at 48 bits */
2070 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2071                                     bool round, uint32_t *sat)
2072 {
2073     int64_t val, extval;
2074 
2075     if (shift <= -48) {
2076         /* Rounding the sign bit always produces 0. */
2077         if (round) {
2078             return 0;
2079         }
2080         return src >> 63;
2081     } else if (shift < 0) {
2082         if (round) {
2083             src >>= -shift - 1;
2084             val = (src >> 1) + (src & 1);
2085         } else {
2086             val = src >> -shift;
2087         }
2088         extval = sextract64(val, 0, 48);
2089         if (!sat || val == extval) {
2090             return extval;
2091         }
2092     } else if (shift < 48) {
2093         int64_t extval = sextract64(src << shift, 0, 48);
2094         if (!sat || src == (extval >> shift)) {
2095             return extval;
2096         }
2097     } else if (!sat || src == 0) {
2098         return 0;
2099     }
2100 
2101     *sat = 1;
2102     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2103 }
2104 
2105 /* Operate on 64-bit values, but saturate at 48 bits */
2106 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2107                                      bool round, uint32_t *sat)
2108 {
2109     uint64_t val, extval;
2110 
2111     if (shift <= -(48 + round)) {
2112         return 0;
2113     } else if (shift < 0) {
2114         if (round) {
2115             val = src >> (-shift - 1);
2116             val = (val >> 1) + (val & 1);
2117         } else {
2118             val = src >> -shift;
2119         }
2120         extval = extract64(val, 0, 48);
2121         if (!sat || val == extval) {
2122             return extval;
2123         }
2124     } else if (shift < 48) {
2125         uint64_t extval = extract64(src << shift, 0, 48);
2126         if (!sat || src == (extval >> shift)) {
2127             return extval;
2128         }
2129     } else if (!sat || src == 0) {
2130         return 0;
2131     }
2132 
2133     *sat = 1;
2134     return MAKE_64BIT_MASK(0, 48);
2135 }
2136 
2137 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2138 {
2139     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2140 }
2141 
2142 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2143 {
2144     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2145 }
2146 
2147 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2148 {
2149     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2150 }
2151 
2152 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2153 {
2154     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2155 }
2156 
2157 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2158 {
2159     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2160 }
2161 
2162 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2163 {
2164     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2165 }
2166 
2167 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2168     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2169                            uint32_t offset, uint32_t imm)       \
2170     {                                                           \
2171         TYPE *d = vd;                                           \
2172         uint16_t mask = mve_element_mask(env);                  \
2173         unsigned e;                                             \
2174         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2175             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2176             offset = FN(offset, imm);                           \
2177         }                                                       \
2178         mve_advance_vpt(env);                                   \
2179         return offset;                                          \
2180     }
2181 
2182 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2183     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2184                               uint32_t offset, uint32_t wrap,   \
2185                               uint32_t imm)                     \
2186     {                                                           \
2187         TYPE *d = vd;                                           \
2188         uint16_t mask = mve_element_mask(env);                  \
2189         unsigned e;                                             \
2190         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2191             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2192             offset = FN(offset, wrap, imm);                     \
2193         }                                                       \
2194         mve_advance_vpt(env);                                   \
2195         return offset;                                          \
2196     }
2197 
2198 #define DO_VIDUP_ALL(OP, FN)                    \
2199     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2200     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2201     DO_VIDUP(OP##w, 4, int32_t, FN)
2202 
2203 #define DO_VIWDUP_ALL(OP, FN)                   \
2204     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2205     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2206     DO_VIWDUP(OP##w, 4, int32_t, FN)
2207 
2208 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2209 {
2210     offset += imm;
2211     if (offset == wrap) {
2212         offset = 0;
2213     }
2214     return offset;
2215 }
2216 
2217 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2218 {
2219     if (offset == 0) {
2220         offset = wrap;
2221     }
2222     offset -= imm;
2223     return offset;
2224 }
2225 
2226 DO_VIDUP_ALL(vidup, DO_ADD)
2227 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2228 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2229 
2230 /*
2231  * Vector comparison.
2232  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2233  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2234  * P0 bits otherwise are updated with the results of the comparisons.
2235  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2236  */
2237 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2238     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2239     {                                                                   \
2240         TYPE *n = vn, *m = vm;                                          \
2241         uint16_t mask = mve_element_mask(env);                          \
2242         uint16_t eci_mask = mve_eci_mask(env);                          \
2243         uint16_t beatpred = 0;                                          \
2244         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2245         unsigned e;                                                     \
2246         for (e = 0; e < 16 / ESIZE; e++) {                              \
2247             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2248             /* Comparison sets 0/1 bits for each byte in the element */ \
2249             beatpred |= r * emask;                                      \
2250             emask <<= ESIZE;                                            \
2251         }                                                               \
2252         beatpred &= mask;                                               \
2253         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2254             (beatpred & eci_mask);                                      \
2255         mve_advance_vpt(env);                                           \
2256     }
2257 
2258 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2259     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2260                                 uint32_t rm)                            \
2261     {                                                                   \
2262         TYPE *n = vn;                                                   \
2263         uint16_t mask = mve_element_mask(env);                          \
2264         uint16_t eci_mask = mve_eci_mask(env);                          \
2265         uint16_t beatpred = 0;                                          \
2266         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2267         unsigned e;                                                     \
2268         for (e = 0; e < 16 / ESIZE; e++) {                              \
2269             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2270             /* Comparison sets 0/1 bits for each byte in the element */ \
2271             beatpred |= r * emask;                                      \
2272             emask <<= ESIZE;                                            \
2273         }                                                               \
2274         beatpred &= mask;                                               \
2275         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2276             (beatpred & eci_mask);                                      \
2277         mve_advance_vpt(env);                                           \
2278     }
2279 
2280 #define DO_VCMP_S(OP, FN)                               \
2281     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2282     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2283     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2284     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2285     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2286     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2287 
2288 #define DO_VCMP_U(OP, FN)                               \
2289     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2290     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2291     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2292     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2293     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2294     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2295 
2296 #define DO_EQ(N, M) ((N) == (M))
2297 #define DO_NE(N, M) ((N) != (M))
2298 #define DO_EQ(N, M) ((N) == (M))
2299 #define DO_EQ(N, M) ((N) == (M))
2300 #define DO_GE(N, M) ((N) >= (M))
2301 #define DO_LT(N, M) ((N) < (M))
2302 #define DO_GT(N, M) ((N) > (M))
2303 #define DO_LE(N, M) ((N) <= (M))
2304 
2305 DO_VCMP_U(vcmpeq, DO_EQ)
2306 DO_VCMP_U(vcmpne, DO_NE)
2307 DO_VCMP_U(vcmpcs, DO_GE)
2308 DO_VCMP_U(vcmphi, DO_GT)
2309 DO_VCMP_S(vcmpge, DO_GE)
2310 DO_VCMP_S(vcmplt, DO_LT)
2311 DO_VCMP_S(vcmpgt, DO_GT)
2312 DO_VCMP_S(vcmple, DO_LE)
2313 
2314 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2315 {
2316     /*
2317      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2318      * but note that whether bytes are written to Qd is still subject
2319      * to (all forms of) predication in the usual way.
2320      */
2321     uint64_t *d = vd, *n = vn, *m = vm;
2322     uint16_t mask = mve_element_mask(env);
2323     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2324     unsigned e;
2325     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2326         uint64_t r = m[H8(e)];
2327         mergemask(&r, n[H8(e)], p0);
2328         mergemask(&d[H8(e)], r, mask);
2329     }
2330     mve_advance_vpt(env);
2331 }
2332 
2333 void HELPER(mve_vpnot)(CPUARMState *env)
2334 {
2335     /*
2336      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2337      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2338      * P0 bits otherwise are inverted.
2339      * (This is the same logic as VCMP.)
2340      * This insn is itself subject to predication and to beat-wise execution,
2341      * and after it executes VPT state advances in the usual way.
2342      */
2343     uint16_t mask = mve_element_mask(env);
2344     uint16_t eci_mask = mve_eci_mask(env);
2345     uint16_t beatpred = ~env->v7m.vpr & mask;
2346     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2347     mve_advance_vpt(env);
2348 }
2349 
2350 /*
2351  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2352  * otherwise set according to value of Rn. The calculation of
2353  * newmask here works in the same way as the calculation of the
2354  * ltpmask in mve_element_mask(), but we have pre-calculated
2355  * the masklen in the generated code.
2356  */
2357 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2358 {
2359     uint16_t mask = mve_element_mask(env);
2360     uint16_t eci_mask = mve_eci_mask(env);
2361     uint16_t newmask;
2362 
2363     assert(masklen <= 16);
2364     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2365     newmask &= mask;
2366     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2367     mve_advance_vpt(env);
2368 }
2369 
2370 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2371     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2372     {                                                                   \
2373         TYPE *d = vd, *m = vm;                                          \
2374         uint16_t mask = mve_element_mask(env);                          \
2375         unsigned e;                                                     \
2376         bool qc = false;                                                \
2377         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2378             bool sat = false;                                           \
2379             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2380             qc |= sat & mask & 1;                                       \
2381         }                                                               \
2382         if (qc) {                                                       \
2383             env->vfp.qc[0] = qc;                                        \
2384         }                                                               \
2385         mve_advance_vpt(env);                                           \
2386     }
2387 
2388 #define DO_VQABS_B(N, SATP) \
2389     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2390 #define DO_VQABS_H(N, SATP) \
2391     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2392 #define DO_VQABS_W(N, SATP) \
2393     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2394 
2395 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2396 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2397 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2398 
2399 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2400 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2401 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2402 
2403 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2404 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2405 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2406 
2407 /*
2408  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2409  * absolute value; we then do an unsigned comparison.
2410  */
2411 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2412     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2413     {                                                                   \
2414         UTYPE *d = vd;                                                  \
2415         STYPE *m = vm;                                                  \
2416         uint16_t mask = mve_element_mask(env);                          \
2417         unsigned e;                                                     \
2418         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2419             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2420             r = FN(d[H##ESIZE(e)], r);                                  \
2421             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2422         }                                                               \
2423         mve_advance_vpt(env);                                           \
2424     }
2425 
2426 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2427 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2428 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2429 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2430 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2431 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2432