xref: /qemu/target/arm/tcg/mve_helper.c (revision c9bc9f57ffbafea6bb9fe45610b9a1e9ff33e990)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "accel/tcg/cpu-ldst.h"
26 #include "tcg/tcg.h"
27 #include "fpu/softfloat.h"
28 #include "crypto/clmul.h"
29 
30 static uint16_t mve_eci_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector correspond
34      * to beats being executed. The mask has 1 bits for executed lanes
35      * and 0 bits where ECI says this beat was already executed.
36      */
37     int eci;
38 
39     if ((env->condexec_bits & 0xf) != 0) {
40         return 0xffff;
41     }
42 
43     eci = env->condexec_bits >> 4;
44     switch (eci) {
45     case ECI_NONE:
46         return 0xffff;
47     case ECI_A0:
48         return 0xfff0;
49     case ECI_A0A1:
50         return 0xff00;
51     case ECI_A0A1A2:
52     case ECI_A0A1A2B0:
53         return 0xf000;
54     default:
55         g_assert_not_reached();
56     }
57 }
58 
59 static uint16_t mve_element_mask(CPUARMState *env)
60 {
61     /*
62      * Return the mask of which elements in the MVE vector should be
63      * updated. This is a combination of multiple things:
64      *  (1) by default, we update every lane in the vector
65      *  (2) VPT predication stores its state in the VPR register;
66      *  (3) low-overhead-branch tail predication will mask out part
67      *      the vector on the final iteration of the loop
68      *  (4) if EPSR.ECI is set then we must execute only some beats
69      *      of the insn
70      * We combine all these into a 16-bit result with the same semantics
71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
72      * 8-bit vector ops will look at all bits of the result;
73      * 16-bit ops will look at bits 0, 2, 4, ...;
74      * 32-bit ops will look at bits 0, 4, 8 and 12.
75      * Compare pseudocode GetCurInstrBeat(), though that only returns
76      * the 4-bit slice of the mask corresponding to a single beat.
77      */
78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
79 
80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
81         mask |= 0xff;
82     }
83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
84         mask |= 0xff00;
85     }
86 
87     if (env->v7m.ltpsize < 4 &&
88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
89         /*
90          * Tail predication active, and this is the last loop iteration.
91          * The element size is (1 << ltpsize), and we only want to process
92          * loopcount elements, so we want to retain the least significant
93          * (loopcount * esize) predicate bits and zero out bits above that.
94          */
95         int masklen = env->regs[14] << env->v7m.ltpsize;
96         assert(masklen <= 16);
97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
98         mask &= ltpmask;
99     }
100 
101     /*
102      * ECI bits indicate which beats are already executed;
103      * we handle this by effectively predicating them out.
104      */
105     mask &= mve_eci_mask(env);
106     return mask;
107 }
108 
109 static void mve_advance_vpt(CPUARMState *env)
110 {
111     /* Advance the VPT and ECI state if necessary */
112     uint32_t vpr = env->v7m.vpr;
113     unsigned mask01, mask23;
114     uint16_t inv_mask;
115     uint16_t eci_mask = mve_eci_mask(env);
116 
117     if ((env->condexec_bits & 0xf) == 0) {
118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
119             (ECI_A0 << 4) : (ECI_NONE << 4);
120     }
121 
122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
123         /* VPT not enabled, nothing to do */
124         return;
125     }
126 
127     /* Invert P0 bits if needed, but only for beats we actually executed */
128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
130     /* Start by assuming we invert all bits corresponding to executed beats */
131     inv_mask = eci_mask;
132     if (mask01 <= 8) {
133         /* MASK01 says don't invert low half of P0 */
134         inv_mask &= ~0xff;
135     }
136     if (mask23 <= 8) {
137         /* MASK23 says don't invert high half of P0 */
138         inv_mask &= ~0xff00;
139     }
140     vpr ^= inv_mask;
141     /* Only update MASK01 if beat 1 executed */
142     if (eci_mask & 0xf0) {
143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
144     }
145     /* Beat 3 always executes, so update MASK23 */
146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
147     env->v7m.vpr = vpr;
148 }
149 
150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
151 #define DO_VLDR(OP, MFLAG, MSIZE, MTYPE, LDTYPE, ESIZE, TYPE)           \
152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
153     {                                                                   \
154         TYPE *d = vd;                                                   \
155         uint16_t mask = mve_element_mask(env);                          \
156         uint16_t eci_mask = mve_eci_mask(env);                          \
157         unsigned b, e;                                                  \
158         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
159         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
160         /*                                                              \
161          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
162          * beats so we don't care if we update part of the dest and     \
163          * then take an exception.                                      \
164          */                                                             \
165         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
166             if (eci_mask & (1 << b)) {                                  \
167                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
168                     (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;\
169             }                                                           \
170             addr += MSIZE;                                              \
171         }                                                               \
172         mve_advance_vpt(env);                                           \
173     }
174 
175 #define DO_VSTR(OP, MFLAG, MSIZE, STTYPE, ESIZE, TYPE)                  \
176     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
177     {                                                                   \
178         TYPE *d = vd;                                                   \
179         uint16_t mask = mve_element_mask(env);                          \
180         unsigned b, e;                                                  \
181         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
182         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
183         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
184             if (mask & (1 << b)) {                                      \
185                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
186             }                                                           \
187             addr += MSIZE;                                              \
188         }                                                               \
189         mve_advance_vpt(env);                                           \
190     }
191 
192 DO_VLDR(vldrb, MO_UB, 1, uint8_t, ldb, 1, uint8_t)
193 DO_VLDR(vldrh, MO_TEUW, 2, uint16_t, ldw, 2, uint16_t)
194 DO_VLDR(vldrw, MO_TEUL, 4, uint32_t, ldl, 4, uint32_t)
195 
196 DO_VSTR(vstrb, MO_UB, 1, stb, 1, uint8_t)
197 DO_VSTR(vstrh, MO_TEUW, 2, stw, 2, uint16_t)
198 DO_VSTR(vstrw, MO_TEUL, 4, stl, 4, uint32_t)
199 
200 DO_VLDR(vldrb_sh, MO_SB, 1, int8_t, ldb, 2, int16_t)
201 DO_VLDR(vldrb_sw, MO_SB, 1, int8_t, ldb, 4, int32_t)
202 DO_VLDR(vldrb_uh, MO_UB, 1, uint8_t, ldb, 2, uint16_t)
203 DO_VLDR(vldrb_uw, MO_UB, 1, uint8_t, ldb, 4, uint32_t)
204 DO_VLDR(vldrh_sw, MO_TESW, 2, int16_t, ldw, 4, int32_t)
205 DO_VLDR(vldrh_uw, MO_TEUW, 2, uint16_t, ldw, 4, uint32_t)
206 
207 DO_VSTR(vstrb_h, MO_UB, 1, stb, 2, int16_t)
208 DO_VSTR(vstrb_w, MO_UB, 1, stb, 4, int32_t)
209 DO_VSTR(vstrh_w, MO_TEUW, 2, stw, 4, int32_t)
210 
211 #undef DO_VLDR
212 #undef DO_VSTR
213 
214 /*
215  * Gather loads/scatter stores. Here each element of Qm specifies
216  * an offset to use from the base register Rm. In the _os_ versions
217  * that offset is scaled by the element size.
218  * For loads, predicated lanes are zeroed instead of retaining
219  * their previous values.
220  */
221 #define DO_VLDR_SG(OP, MFLAG, MTYPE, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)\
222     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
223                           uint32_t base)                                \
224     {                                                                   \
225         TYPE *d = vd;                                                   \
226         OFFTYPE *m = vm;                                                \
227         uint16_t mask = mve_element_mask(env);                          \
228         uint16_t eci_mask = mve_eci_mask(env);                          \
229         unsigned e;                                                     \
230         uint32_t addr;                                                  \
231         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
232         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
233         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
234             if (!(eci_mask & 1)) {                                      \
235                 continue;                                               \
236             }                                                           \
237             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
238             d[H##ESIZE(e)] = (mask & 1) ?                               \
239                 (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;  \
240             if (WB) {                                                   \
241                 m[H##ESIZE(e)] = addr;                                  \
242             }                                                           \
243         }                                                               \
244         mve_advance_vpt(env);                                           \
245     }
246 
247 /* We know here TYPE is unsigned so always the same as the offset type */
248 #define DO_VSTR_SG(OP, MFLAG, STTYPE, ESIZE, TYPE, ADDRFN, WB)          \
249     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
250                           uint32_t base)                                \
251     {                                                                   \
252         TYPE *d = vd;                                                   \
253         TYPE *m = vm;                                                   \
254         uint16_t mask = mve_element_mask(env);                          \
255         uint16_t eci_mask = mve_eci_mask(env);                          \
256         unsigned e;                                                     \
257         uint32_t addr;                                                  \
258         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
259         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
260         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
261             if (!(eci_mask & 1)) {                                      \
262                 continue;                                               \
263             }                                                           \
264             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
265             if (mask & 1) {                                             \
266                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
267             }                                                           \
268             if (WB) {                                                   \
269                 m[H##ESIZE(e)] = addr;                                  \
270             }                                                           \
271         }                                                               \
272         mve_advance_vpt(env);                                           \
273     }
274 
275 /*
276  * 64-bit accesses are slightly different: they are done as two 32-bit
277  * accesses, controlled by the predicate mask for the relevant beat,
278  * and with a single 32-bit offset in the first of the two Qm elements.
279  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
280  * Address writeback happens on the odd beats and updates the address
281  * stored in the even-beat element.
282  */
283 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
284     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
285                           uint32_t base)                                \
286     {                                                                   \
287         uint32_t *d = vd;                                               \
288         uint32_t *m = vm;                                               \
289         uint16_t mask = mve_element_mask(env);                          \
290         uint16_t eci_mask = mve_eci_mask(env);                          \
291         unsigned e;                                                     \
292         uint32_t addr;                                                  \
293         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
294         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
295         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
296             if (!(eci_mask & 1)) {                                      \
297                 continue;                                               \
298             }                                                           \
299             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
300             addr += 4 * (e & 1);                                        \
301             d[H4(e)] = (mask & 1) ? cpu_ldl_mmu(env, addr, oi, GETPC()) : 0; \
302             if (WB && (e & 1)) {                                        \
303                 m[H4(e & ~1)] = addr - 4;                               \
304             }                                                           \
305         }                                                               \
306         mve_advance_vpt(env);                                           \
307     }
308 
309 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
310     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
311                           uint32_t base)                                \
312     {                                                                   \
313         uint32_t *d = vd;                                               \
314         uint32_t *m = vm;                                               \
315         uint16_t mask = mve_element_mask(env);                          \
316         uint16_t eci_mask = mve_eci_mask(env);                          \
317         unsigned e;                                                     \
318         uint32_t addr;                                                  \
319         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
320         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
321         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
322             if (!(eci_mask & 1)) {                                      \
323                 continue;                                               \
324             }                                                           \
325             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
326             addr += 4 * (e & 1);                                        \
327             if (mask & 1) {                                             \
328                 cpu_stl_mmu(env, addr, d[H4(e)], oi, GETPC());          \
329             }                                                           \
330             if (WB && (e & 1)) {                                        \
331                 m[H4(e & ~1)] = addr - 4;                               \
332             }                                                           \
333         }                                                               \
334         mve_advance_vpt(env);                                           \
335     }
336 
337 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
338 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
339 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
340 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
341 
342 DO_VLDR_SG(vldrb_sg_sh, MO_SB, int8_t, ldb, 2, int16_t, uint16_t, ADDR_ADD, false)
343 DO_VLDR_SG(vldrb_sg_sw, MO_SB, int8_t, ldb, 4, int32_t, uint32_t, ADDR_ADD, false)
344 DO_VLDR_SG(vldrh_sg_sw, MO_TESW, int16_t, ldw, 4, int32_t, uint32_t, ADDR_ADD, false)
345 
346 DO_VLDR_SG(vldrb_sg_ub, MO_UB, uint8_t, ldb, 1, uint8_t, uint8_t, ADDR_ADD, false)
347 DO_VLDR_SG(vldrb_sg_uh, MO_UB, uint8_t, ldb, 2, uint16_t, uint16_t, ADDR_ADD, false)
348 DO_VLDR_SG(vldrb_sg_uw, MO_UB, uint8_t, ldb, 4, uint32_t, uint32_t, ADDR_ADD, false)
349 DO_VLDR_SG(vldrh_sg_uh, MO_TEUW, uint16_t, ldw, 2, uint16_t, uint16_t, ADDR_ADD, false)
350 DO_VLDR_SG(vldrh_sg_uw, MO_TEUW, uint16_t, ldw, 4, uint32_t, uint32_t, ADDR_ADD, false)
351 DO_VLDR_SG(vldrw_sg_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
352 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
353 
354 DO_VLDR_SG(vldrh_sg_os_sw, MO_TESW, int16_t, ldw, 4,
355            int32_t, uint32_t, ADDR_ADD_OSH, false)
356 DO_VLDR_SG(vldrh_sg_os_uh, MO_TEUW, uint16_t, ldw, 2,
357            uint16_t, uint16_t, ADDR_ADD_OSH, false)
358 DO_VLDR_SG(vldrh_sg_os_uw, MO_TEUW, uint16_t, ldw, 4,
359            uint32_t, uint32_t, ADDR_ADD_OSH, false)
360 DO_VLDR_SG(vldrw_sg_os_uw, MO_TEUL, uint32_t, ldl, 4,
361            uint32_t, uint32_t, ADDR_ADD_OSW, false)
362 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
363 
364 DO_VSTR_SG(vstrb_sg_ub, MO_UB, stb, 1, uint8_t, ADDR_ADD, false)
365 DO_VSTR_SG(vstrb_sg_uh, MO_UB, stb, 2, uint16_t, ADDR_ADD, false)
366 DO_VSTR_SG(vstrb_sg_uw, MO_UB, stb, 4, uint32_t, ADDR_ADD, false)
367 DO_VSTR_SG(vstrh_sg_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD, false)
368 DO_VSTR_SG(vstrh_sg_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD, false)
369 DO_VSTR_SG(vstrw_sg_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, false)
370 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
371 
372 DO_VSTR_SG(vstrh_sg_os_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD_OSH, false)
373 DO_VSTR_SG(vstrh_sg_os_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD_OSH, false)
374 DO_VSTR_SG(vstrw_sg_os_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD_OSW, false)
375 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
376 
377 DO_VLDR_SG(vldrw_sg_wb_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
378 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
379 DO_VSTR_SG(vstrw_sg_wb_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, true)
380 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
381 
382 /*
383  * Deinterleaving loads/interleaving stores.
384  *
385  * For these helpers we are passed the index of the first Qreg
386  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
387  * and the value of the base address register Rn.
388  * The helpers are specialized for pattern and element size, so
389  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
390  *
391  * These insns are beatwise but not predicated, so we must honour ECI,
392  * but need not look at mve_element_mask().
393  *
394  * The pseudocode implements these insns with multiple memory accesses
395  * of the element size, but rules R_VVVG and R_FXDM permit us to make
396  * one 32-bit memory access per beat.
397  */
398 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
399     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
400                           uint32_t base)                                \
401     {                                                                   \
402         int beat, e;                                                    \
403         uint16_t mask = mve_eci_mask(env);                              \
404         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
405         uint32_t addr, data;                                            \
406         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
407         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
408         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
409             if ((mask & 1) == 0) {                                      \
410                 /* ECI says skip this beat */                           \
411                 continue;                                               \
412             }                                                           \
413             addr = base + off[beat] * 4;                                \
414             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
415             for (e = 0; e < 4; e++, data >>= 8) {                       \
416                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
417                 qd[H1(off[beat])] = data;                               \
418             }                                                           \
419         }                                                               \
420     }
421 
422 #define DO_VLD4H(OP, O1, O2)                                            \
423     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
424                           uint32_t base)                                \
425     {                                                                   \
426         int beat;                                                       \
427         uint16_t mask = mve_eci_mask(env);                              \
428         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
429         uint32_t addr, data;                                            \
430         int y; /* y counts 0 2 0 2 */                                   \
431         uint16_t *qd;                                                   \
432         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
433         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
434         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
435             if ((mask & 1) == 0) {                                      \
436                 /* ECI says skip this beat */                           \
437                 continue;                                               \
438             }                                                           \
439             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
440             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
441             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
442             qd[H2(off[beat])] = data;                                   \
443             data >>= 16;                                                \
444             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
445             qd[H2(off[beat])] = data;                                   \
446         }                                                               \
447     }
448 
449 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
450     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
451                           uint32_t base)                                \
452     {                                                                   \
453         int beat;                                                       \
454         uint16_t mask = mve_eci_mask(env);                              \
455         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
456         uint32_t addr, data;                                            \
457         uint32_t *qd;                                                   \
458         int y;                                                          \
459         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
460         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
461         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
462             if ((mask & 1) == 0) {                                      \
463                 /* ECI says skip this beat */                           \
464                 continue;                                               \
465             }                                                           \
466             addr = base + off[beat] * 4;                                \
467             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
468             y = (beat + (O1 & 2)) & 3;                                  \
469             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
470             qd[H4(off[beat] >> 2)] = data;                              \
471         }                                                               \
472     }
473 
474 DO_VLD4B(vld40b, 0, 1, 10, 11)
475 DO_VLD4B(vld41b, 2, 3, 12, 13)
476 DO_VLD4B(vld42b, 4, 5, 14, 15)
477 DO_VLD4B(vld43b, 6, 7, 8, 9)
478 
479 DO_VLD4H(vld40h, 0, 5)
480 DO_VLD4H(vld41h, 1, 6)
481 DO_VLD4H(vld42h, 2, 7)
482 DO_VLD4H(vld43h, 3, 4)
483 
484 DO_VLD4W(vld40w, 0, 1, 10, 11)
485 DO_VLD4W(vld41w, 2, 3, 12, 13)
486 DO_VLD4W(vld42w, 4, 5, 14, 15)
487 DO_VLD4W(vld43w, 6, 7, 8, 9)
488 
489 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
490     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
491                           uint32_t base)                                \
492     {                                                                   \
493         int beat, e;                                                    \
494         uint16_t mask = mve_eci_mask(env);                              \
495         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
496         uint32_t addr, data;                                            \
497         uint8_t *qd;                                                    \
498         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
499         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
501             if ((mask & 1) == 0) {                                      \
502                 /* ECI says skip this beat */                           \
503                 continue;                                               \
504             }                                                           \
505             addr = base + off[beat] * 2;                                \
506             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
507             for (e = 0; e < 4; e++, data >>= 8) {                       \
508                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
509                 qd[H1(off[beat] + (e >> 1))] = data;                    \
510             }                                                           \
511         }                                                               \
512     }
513 
514 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
516                           uint32_t base)                                \
517     {                                                                   \
518         int beat;                                                       \
519         uint16_t mask = mve_eci_mask(env);                              \
520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
521         uint32_t addr, data;                                            \
522         int e;                                                          \
523         uint16_t *qd;                                                   \
524         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
525         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
526         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
527             if ((mask & 1) == 0) {                                      \
528                 /* ECI says skip this beat */                           \
529                 continue;                                               \
530             }                                                           \
531             addr = base + off[beat] * 4;                                \
532             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
533             for (e = 0; e < 2; e++, data >>= 16) {                      \
534                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
535                 qd[H2(off[beat])] = data;                               \
536             }                                                           \
537         }                                                               \
538     }
539 
540 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
541     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
542                           uint32_t base)                                \
543     {                                                                   \
544         int beat;                                                       \
545         uint16_t mask = mve_eci_mask(env);                              \
546         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
547         uint32_t addr, data;                                            \
548         uint32_t *qd;                                                   \
549         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
550         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
551         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
552             if ((mask & 1) == 0) {                                      \
553                 /* ECI says skip this beat */                           \
554                 continue;                                               \
555             }                                                           \
556             addr = base + off[beat];                                    \
557             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
558             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
559             qd[H4(off[beat] >> 3)] = data;                              \
560         }                                                               \
561     }
562 
563 DO_VLD2B(vld20b, 0, 2, 12, 14)
564 DO_VLD2B(vld21b, 4, 6, 8, 10)
565 
566 DO_VLD2H(vld20h, 0, 1, 6, 7)
567 DO_VLD2H(vld21h, 2, 3, 4, 5)
568 
569 DO_VLD2W(vld20w, 0, 4, 24, 28)
570 DO_VLD2W(vld21w, 8, 12, 16, 20)
571 
572 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
573     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
574                           uint32_t base)                                \
575     {                                                                   \
576         int beat, e;                                                    \
577         uint16_t mask = mve_eci_mask(env);                              \
578         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
579         uint32_t addr, data;                                            \
580         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
581         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
582         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
583             if ((mask & 1) == 0) {                                      \
584                 /* ECI says skip this beat */                           \
585                 continue;                                               \
586             }                                                           \
587             addr = base + off[beat] * 4;                                \
588             data = 0;                                                   \
589             for (e = 3; e >= 0; e--) {                                  \
590                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
591                 data = (data << 8) | qd[H1(off[beat])];                 \
592             }                                                           \
593             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
594         }                                                               \
595     }
596 
597 #define DO_VST4H(OP, O1, O2)                                            \
598     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
599                           uint32_t base)                                \
600     {                                                                   \
601         int beat;                                                       \
602         uint16_t mask = mve_eci_mask(env);                              \
603         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
604         uint32_t addr, data;                                            \
605         int y; /* y counts 0 2 0 2 */                                   \
606         uint16_t *qd;                                                   \
607         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
608         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
609         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
610             if ((mask & 1) == 0) {                                      \
611                 /* ECI says skip this beat */                           \
612                 continue;                                               \
613             }                                                           \
614             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
615             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
616             data = qd[H2(off[beat])];                                   \
617             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
618             data |= qd[H2(off[beat])] << 16;                            \
619             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
620         }                                                               \
621     }
622 
623 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
624     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
625                           uint32_t base)                                \
626     {                                                                   \
627         int beat;                                                       \
628         uint16_t mask = mve_eci_mask(env);                              \
629         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
630         uint32_t addr, data;                                            \
631         uint32_t *qd;                                                   \
632         int y;                                                          \
633         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
634         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
635         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
636             if ((mask & 1) == 0) {                                      \
637                 /* ECI says skip this beat */                           \
638                 continue;                                               \
639             }                                                           \
640             addr = base + off[beat] * 4;                                \
641             y = (beat + (O1 & 2)) & 3;                                  \
642             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
643             data = qd[H4(off[beat] >> 2)];                              \
644             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
645         }                                                               \
646     }
647 
648 DO_VST4B(vst40b, 0, 1, 10, 11)
649 DO_VST4B(vst41b, 2, 3, 12, 13)
650 DO_VST4B(vst42b, 4, 5, 14, 15)
651 DO_VST4B(vst43b, 6, 7, 8, 9)
652 
653 DO_VST4H(vst40h, 0, 5)
654 DO_VST4H(vst41h, 1, 6)
655 DO_VST4H(vst42h, 2, 7)
656 DO_VST4H(vst43h, 3, 4)
657 
658 DO_VST4W(vst40w, 0, 1, 10, 11)
659 DO_VST4W(vst41w, 2, 3, 12, 13)
660 DO_VST4W(vst42w, 4, 5, 14, 15)
661 DO_VST4W(vst43w, 6, 7, 8, 9)
662 
663 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
664     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
665                           uint32_t base)                                \
666     {                                                                   \
667         int beat, e;                                                    \
668         uint16_t mask = mve_eci_mask(env);                              \
669         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
670         uint32_t addr, data;                                            \
671         uint8_t *qd;                                                    \
672         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
673         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
674         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
675             if ((mask & 1) == 0) {                                      \
676                 /* ECI says skip this beat */                           \
677                 continue;                                               \
678             }                                                           \
679             addr = base + off[beat] * 2;                                \
680             data = 0;                                                   \
681             for (e = 3; e >= 0; e--) {                                  \
682                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
683                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
684             }                                                           \
685             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
686         }                                                               \
687     }
688 
689 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
690     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
691                           uint32_t base)                                \
692     {                                                                   \
693         int beat;                                                       \
694         uint16_t mask = mve_eci_mask(env);                              \
695         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
696         uint32_t addr, data;                                            \
697         int e;                                                          \
698         uint16_t *qd;                                                   \
699         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
700         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
701         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
702             if ((mask & 1) == 0) {                                      \
703                 /* ECI says skip this beat */                           \
704                 continue;                                               \
705             }                                                           \
706             addr = base + off[beat] * 4;                                \
707             data = 0;                                                   \
708             for (e = 1; e >= 0; e--) {                                  \
709                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
710                 data = (data << 16) | qd[H2(off[beat])];                \
711             }                                                           \
712             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
713         }                                                               \
714     }
715 
716 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
717     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
718                           uint32_t base)                                \
719     {                                                                   \
720         int beat;                                                       \
721         uint16_t mask = mve_eci_mask(env);                              \
722         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
723         uint32_t addr, data;                                            \
724         uint32_t *qd;                                                   \
725         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
726         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
727         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
728             if ((mask & 1) == 0) {                                      \
729                 /* ECI says skip this beat */                           \
730                 continue;                                               \
731             }                                                           \
732             addr = base + off[beat];                                    \
733             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
734             data = qd[H4(off[beat] >> 3)];                              \
735             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
736         }                                                               \
737     }
738 
739 DO_VST2B(vst20b, 0, 2, 12, 14)
740 DO_VST2B(vst21b, 4, 6, 8, 10)
741 
742 DO_VST2H(vst20h, 0, 1, 6, 7)
743 DO_VST2H(vst21h, 2, 3, 4, 5)
744 
745 DO_VST2W(vst20w, 0, 4, 24, 28)
746 DO_VST2W(vst21w, 8, 12, 16, 20)
747 
748 /*
749  * The mergemask(D, R, M) macro performs the operation "*D = R" but
750  * storing only the bytes which correspond to 1 bits in M,
751  * leaving other bytes in *D unchanged. We use _Generic
752  * to select the correct implementation based on the type of D.
753  */
754 
755 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
756 {
757     if (mask & 1) {
758         *d = r;
759     }
760 }
761 
762 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
763 {
764     mergemask_ub((uint8_t *)d, r, mask);
765 }
766 
767 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
768 {
769     uint16_t bmask = expand_pred_b(mask);
770     *d = (*d & ~bmask) | (r & bmask);
771 }
772 
773 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
774 {
775     mergemask_uh((uint16_t *)d, r, mask);
776 }
777 
778 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
779 {
780     uint32_t bmask = expand_pred_b(mask);
781     *d = (*d & ~bmask) | (r & bmask);
782 }
783 
784 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
785 {
786     mergemask_uw((uint32_t *)d, r, mask);
787 }
788 
789 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
790 {
791     uint64_t bmask = expand_pred_b(mask);
792     *d = (*d & ~bmask) | (r & bmask);
793 }
794 
795 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
796 {
797     mergemask_uq((uint64_t *)d, r, mask);
798 }
799 
800 #define mergemask(D, R, M)                      \
801     _Generic(D,                                 \
802              uint8_t *: mergemask_ub,           \
803              int8_t *:  mergemask_sb,           \
804              uint16_t *: mergemask_uh,          \
805              int16_t *:  mergemask_sh,          \
806              uint32_t *: mergemask_uw,          \
807              int32_t *:  mergemask_sw,          \
808              uint64_t *: mergemask_uq,          \
809              int64_t *:  mergemask_sq)(D, R, M)
810 
811 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
812 {
813     /*
814      * The generated code already replicated an 8 or 16 bit constant
815      * into the 32-bit value, so we only need to write the 32-bit
816      * value to all elements of the Qreg, allowing for predication.
817      */
818     uint32_t *d = vd;
819     uint16_t mask = mve_element_mask(env);
820     unsigned e;
821     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
822         mergemask(&d[H4(e)], val, mask);
823     }
824     mve_advance_vpt(env);
825 }
826 
827 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
828     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
829     {                                                                   \
830         TYPE *d = vd, *m = vm;                                          \
831         uint16_t mask = mve_element_mask(env);                          \
832         unsigned e;                                                     \
833         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
834             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
835         }                                                               \
836         mve_advance_vpt(env);                                           \
837     }
838 
839 #define DO_CLS_B(N)   (clrsb32(N) - 24)
840 #define DO_CLS_H(N)   (clrsb32(N) - 16)
841 
842 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
843 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
844 DO_1OP(vclsw, 4, int32_t, clrsb32)
845 
846 #define DO_CLZ_B(N)   (clz32(N) - 24)
847 #define DO_CLZ_H(N)   (clz32(N) - 16)
848 
849 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
850 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
851 DO_1OP(vclzw, 4, uint32_t, clz32)
852 
853 DO_1OP(vrev16b, 2, uint16_t, bswap16)
854 DO_1OP(vrev32b, 4, uint32_t, bswap32)
855 DO_1OP(vrev32h, 4, uint32_t, hswap32)
856 DO_1OP(vrev64b, 8, uint64_t, bswap64)
857 DO_1OP(vrev64h, 8, uint64_t, hswap64)
858 DO_1OP(vrev64w, 8, uint64_t, wswap64)
859 
860 #define DO_NOT(N) (~(N))
861 
862 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
863 
864 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
865 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
866 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
867 
868 DO_1OP(vabsb, 1, int8_t, DO_ABS)
869 DO_1OP(vabsh, 2, int16_t, DO_ABS)
870 DO_1OP(vabsw, 4, int32_t, DO_ABS)
871 
872 /* We can do these 64 bits at a time */
873 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
874 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
875 
876 #define DO_NEG(N)    (-(N))
877 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
878 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
879 
880 DO_1OP(vnegb, 1, int8_t, DO_NEG)
881 DO_1OP(vnegh, 2, int16_t, DO_NEG)
882 DO_1OP(vnegw, 4, int32_t, DO_NEG)
883 
884 /* We can do these 64 bits at a time */
885 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
886 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
887 
888 /*
889  * 1 operand immediates: Vda is destination and possibly also one source.
890  * All these insns work at 64-bit widths.
891  */
892 #define DO_1OP_IMM(OP, FN)                                              \
893     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
894     {                                                                   \
895         uint64_t *da = vda;                                             \
896         uint16_t mask = mve_element_mask(env);                          \
897         unsigned e;                                                     \
898         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
899             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
900         }                                                               \
901         mve_advance_vpt(env);                                           \
902     }
903 
904 #define DO_MOVI(N, I) (I)
905 #define DO_ANDI(N, I) ((N) & (I))
906 #define DO_ORRI(N, I) ((N) | (I))
907 
908 DO_1OP_IMM(vmovi, DO_MOVI)
909 DO_1OP_IMM(vandi, DO_ANDI)
910 DO_1OP_IMM(vorri, DO_ORRI)
911 
912 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
913     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
914                                 void *vd, void *vn, void *vm)           \
915     {                                                                   \
916         TYPE *d = vd, *n = vn, *m = vm;                                 \
917         uint16_t mask = mve_element_mask(env);                          \
918         unsigned e;                                                     \
919         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
920             mergemask(&d[H##ESIZE(e)],                                  \
921                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
922         }                                                               \
923         mve_advance_vpt(env);                                           \
924     }
925 
926 /* provide unsigned 2-op helpers for all sizes */
927 #define DO_2OP_U(OP, FN)                        \
928     DO_2OP(OP##b, 1, uint8_t, FN)               \
929     DO_2OP(OP##h, 2, uint16_t, FN)              \
930     DO_2OP(OP##w, 4, uint32_t, FN)
931 
932 /* provide signed 2-op helpers for all sizes */
933 #define DO_2OP_S(OP, FN)                        \
934     DO_2OP(OP##b, 1, int8_t, FN)                \
935     DO_2OP(OP##h, 2, int16_t, FN)               \
936     DO_2OP(OP##w, 4, int32_t, FN)
937 
938 /*
939  * "Long" operations where two half-sized inputs (taken from either the
940  * top or the bottom of the input vector) produce a double-width result.
941  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
942  */
943 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
944     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
945     {                                                                   \
946         LTYPE *d = vd;                                                  \
947         TYPE *n = vn, *m = vm;                                          \
948         uint16_t mask = mve_element_mask(env);                          \
949         unsigned le;                                                    \
950         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
951             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
952                          m[H##ESIZE(le * 2 + TOP)]);                    \
953             mergemask(&d[H##LESIZE(le)], r, mask);                      \
954         }                                                               \
955         mve_advance_vpt(env);                                           \
956     }
957 
958 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
959     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
960     {                                                                   \
961         TYPE *d = vd, *n = vn, *m = vm;                                 \
962         uint16_t mask = mve_element_mask(env);                          \
963         unsigned e;                                                     \
964         bool qc = false;                                                \
965         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
966             bool sat = false;                                           \
967             TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);         \
968             mergemask(&d[H##ESIZE(e)], r_, mask);                       \
969             qc |= sat & mask & 1;                                       \
970         }                                                               \
971         if (qc) {                                                       \
972             env->vfp.qc[0] = qc;                                        \
973         }                                                               \
974         mve_advance_vpt(env);                                           \
975     }
976 
977 /* provide unsigned 2-op helpers for all sizes */
978 #define DO_2OP_SAT_U(OP, FN)                    \
979     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
980     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
981     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
982 
983 /* provide signed 2-op helpers for all sizes */
984 #define DO_2OP_SAT_S(OP, FN)                    \
985     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
986     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
987     DO_2OP_SAT(OP##w, 4, int32_t, FN)
988 
989 #define DO_AND(N, M)  ((N) & (M))
990 #define DO_BIC(N, M)  ((N) & ~(M))
991 #define DO_ORR(N, M)  ((N) | (M))
992 #define DO_ORN(N, M)  ((N) | ~(M))
993 #define DO_EOR(N, M)  ((N) ^ (M))
994 
995 DO_2OP(vand, 8, uint64_t, DO_AND)
996 DO_2OP(vbic, 8, uint64_t, DO_BIC)
997 DO_2OP(vorr, 8, uint64_t, DO_ORR)
998 DO_2OP(vorn, 8, uint64_t, DO_ORN)
999 DO_2OP(veor, 8, uint64_t, DO_EOR)
1000 
1001 #define DO_ADD(N, M) ((N) + (M))
1002 #define DO_SUB(N, M) ((N) - (M))
1003 #define DO_MUL(N, M) ((N) * (M))
1004 
1005 DO_2OP_U(vadd, DO_ADD)
1006 DO_2OP_U(vsub, DO_SUB)
1007 DO_2OP_U(vmul, DO_MUL)
1008 
1009 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
1010 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
1011 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
1012 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
1013 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
1014 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
1015 
1016 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
1017 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
1018 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
1019 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
1020 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
1021 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
1022 
1023 /*
1024  * Polynomial multiply. We can always do this generating 64 bits
1025  * of the result at a time, so we don't need to use DO_2OP_L.
1026  */
1027 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
1028 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
1029 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
1030 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
1031 
1032 /*
1033  * Because the computation type is at least twice as large as required,
1034  * these work for both signed and unsigned source types.
1035  */
1036 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
1037 {
1038     return (n * m) >> 8;
1039 }
1040 
1041 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1042 {
1043     return (n * m) >> 16;
1044 }
1045 
1046 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1047 {
1048     return (n * m) >> 32;
1049 }
1050 
1051 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1052 {
1053     return (n * m + (1U << 7)) >> 8;
1054 }
1055 
1056 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1057 {
1058     return (n * m + (1U << 15)) >> 16;
1059 }
1060 
1061 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1062 {
1063     return (n * m + (1U << 31)) >> 32;
1064 }
1065 
1066 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1067 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1068 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1069 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1070 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1071 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1072 
1073 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1074 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1075 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1076 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1077 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1078 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1079 
1080 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1081 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1082 
1083 DO_2OP_S(vmaxs, DO_MAX)
1084 DO_2OP_U(vmaxu, DO_MAX)
1085 DO_2OP_S(vmins, DO_MIN)
1086 DO_2OP_U(vminu, DO_MIN)
1087 
1088 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1089 
1090 DO_2OP_S(vabds, DO_ABD)
1091 DO_2OP_U(vabdu, DO_ABD)
1092 
1093 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1094 {
1095     return ((uint64_t)n + m) >> 1;
1096 }
1097 
1098 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1099 {
1100     return ((int64_t)n + m) >> 1;
1101 }
1102 
1103 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1104 {
1105     return ((uint64_t)n - m) >> 1;
1106 }
1107 
1108 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1109 {
1110     return ((int64_t)n - m) >> 1;
1111 }
1112 
1113 DO_2OP_S(vhadds, do_vhadd_s)
1114 DO_2OP_U(vhaddu, do_vhadd_u)
1115 DO_2OP_S(vhsubs, do_vhsub_s)
1116 DO_2OP_U(vhsubu, do_vhsub_u)
1117 
1118 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1119 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1120 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1121 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1122 
1123 DO_2OP_S(vshls, DO_VSHLS)
1124 DO_2OP_U(vshlu, DO_VSHLU)
1125 DO_2OP_S(vrshls, DO_VRSHLS)
1126 DO_2OP_U(vrshlu, DO_VRSHLU)
1127 
1128 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1129 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1130 
1131 DO_2OP_S(vrhadds, DO_RHADD_S)
1132 DO_2OP_U(vrhaddu, DO_RHADD_U)
1133 
1134 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1135                     uint32_t inv, uint32_t carry_in, bool update_flags)
1136 {
1137     uint16_t mask = mve_element_mask(env);
1138     unsigned e;
1139 
1140     /* If any additions trigger, we will update flags. */
1141     if (mask & 0x1111) {
1142         update_flags = true;
1143     }
1144 
1145     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1146         uint64_t r = carry_in;
1147         r += n[H4(e)];
1148         r += m[H4(e)] ^ inv;
1149         if (mask & 1) {
1150             carry_in = r >> 32;
1151         }
1152         mergemask(&d[H4(e)], r, mask);
1153     }
1154 
1155     if (update_flags) {
1156         /* Store C, clear NZV. */
1157         env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1158         env->vfp.fpsr |= carry_in * FPSR_C;
1159     }
1160     mve_advance_vpt(env);
1161 }
1162 
1163 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1164 {
1165     bool carry_in = env->vfp.fpsr & FPSR_C;
1166     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1167 }
1168 
1169 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1170 {
1171     bool carry_in = env->vfp.fpsr & FPSR_C;
1172     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1173 }
1174 
1175 
1176 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1177 {
1178     do_vadc(env, vd, vn, vm, 0, 0, true);
1179 }
1180 
1181 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1182 {
1183     do_vadc(env, vd, vn, vm, -1, 1, true);
1184 }
1185 
1186 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1187     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1188     {                                                                   \
1189         TYPE *d = vd, *n = vn, *m = vm;                                 \
1190         uint16_t mask = mve_element_mask(env);                          \
1191         unsigned e;                                                     \
1192         TYPE r[16 / ESIZE];                                             \
1193         /* Calculate all results first to avoid overwriting inputs */   \
1194         for (e = 0; e < 16 / ESIZE; e++) {                              \
1195             if (!(e & 1)) {                                             \
1196                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1197             } else {                                                    \
1198                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1199             }                                                           \
1200         }                                                               \
1201         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1202             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1203         }                                                               \
1204         mve_advance_vpt(env);                                           \
1205     }
1206 
1207 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1208     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1209     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1210     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1211 
1212 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1213 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1214 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1215 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1216 
1217 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1218 {
1219     if (val > max) {
1220         *s = true;
1221         return max;
1222     } else if (val < min) {
1223         *s = true;
1224         return min;
1225     }
1226     return val;
1227 }
1228 
1229 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1230 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1231 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1232 
1233 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1234 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1235 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1236 
1237 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1238 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1239 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1240 
1241 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1242 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1243 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1244 
1245 /*
1246  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1247  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1248  */
1249 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1250                                         INT8_MIN, INT8_MAX, s)
1251 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1252                                         INT16_MIN, INT16_MAX, s)
1253 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1254                                         INT32_MIN, INT32_MAX, s)
1255 
1256 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1257                                          INT8_MIN, INT8_MAX, s)
1258 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1259                                          INT16_MIN, INT16_MAX, s)
1260 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1261                                          INT32_MIN, INT32_MAX, s)
1262 
1263 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1264 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1265 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1266 
1267 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1268 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1269 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1270 
1271 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1272 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1273 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1274 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1275 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1276 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1277 
1278 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1279 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1280 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1281 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1282 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1283 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1284 
1285 /*
1286  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1287  * and friends wanting a uint32_t* sat and our needing a bool*.
1288  */
1289 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1290     ({                                                                  \
1291         uint32_t su32 = 0;                                              \
1292         typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1293         if (su32) {                                                     \
1294             *satp = true;                                               \
1295         }                                                               \
1296         qrshl_ret;                                                      \
1297     })
1298 
1299 #define DO_SQSHL_OP(N, M, satp) \
1300     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1301 #define DO_UQSHL_OP(N, M, satp) \
1302     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1303 #define DO_SQRSHL_OP(N, M, satp) \
1304     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1305 #define DO_UQRSHL_OP(N, M, satp) \
1306     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1307 #define DO_SUQSHL_OP(N, M, satp) \
1308     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1309 
1310 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1311 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1312 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1313 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1314 
1315 /*
1316  * Multiply add dual returning high half
1317  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1318  * whether to add the rounding constant, and the pointer to the
1319  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1320  * saturate to twice the input size and return the high half; or
1321  * (A * B - C * D) etc for VQDMLSDH.
1322  */
1323 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1324     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1325                                 void *vm)                               \
1326     {                                                                   \
1327         TYPE *d = vd, *n = vn, *m = vm;                                 \
1328         uint16_t mask = mve_element_mask(env);                          \
1329         unsigned e;                                                     \
1330         bool qc = false;                                                \
1331         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1332             bool sat = false;                                           \
1333             if ((e & 1) == XCHG) {                                      \
1334                 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)],                  \
1335                             m[H##ESIZE(e - XCHG)],                      \
1336                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1337                             m[H##ESIZE(e + (1 - XCHG))],                \
1338                             ROUND, &sat);                               \
1339                 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask);         \
1340                 qc |= sat & mask & 1;                                   \
1341             }                                                           \
1342         }                                                               \
1343         if (qc) {                                                       \
1344             env->vfp.qc[0] = qc;                                        \
1345         }                                                               \
1346         mve_advance_vpt(env);                                           \
1347     }
1348 
1349 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1350                             int round, bool *sat)
1351 {
1352     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1353     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1354 }
1355 
1356 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1357                              int round, bool *sat)
1358 {
1359     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1360     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1361 }
1362 
1363 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1364                              int round, bool *sat)
1365 {
1366     int64_t m1 = (int64_t)a * b;
1367     int64_t m2 = (int64_t)c * d;
1368     int64_t r;
1369     /*
1370      * Architecturally we should do the entire add, double, round
1371      * and then check for saturation. We do three saturating adds,
1372      * but we need to be careful about the order. If the first
1373      * m1 + m2 saturates then it's impossible for the *2+rc to
1374      * bring it back into the non-saturated range. However, if
1375      * m1 + m2 is negative then it's possible that doing the doubling
1376      * would take the intermediate result below INT64_MAX and the
1377      * addition of the rounding constant then brings it back in range.
1378      * So we add half the rounding constant before doubling rather
1379      * than adding the rounding constant after the doubling.
1380      */
1381     if (sadd64_overflow(m1, m2, &r) ||
1382         sadd64_overflow(r, (round << 30), &r) ||
1383         sadd64_overflow(r, r, &r)) {
1384         *sat = true;
1385         return r < 0 ? INT32_MAX : INT32_MIN;
1386     }
1387     return r >> 32;
1388 }
1389 
1390 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1391                             int round, bool *sat)
1392 {
1393     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1394     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1395 }
1396 
1397 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1398                              int round, bool *sat)
1399 {
1400     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1401     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1402 }
1403 
1404 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1405                              int round, bool *sat)
1406 {
1407     int64_t m1 = (int64_t)a * b;
1408     int64_t m2 = (int64_t)c * d;
1409     int64_t r;
1410     /* The same ordering issue as in do_vqdmladh_w applies here too */
1411     if (ssub64_overflow(m1, m2, &r) ||
1412         sadd64_overflow(r, (round << 30), &r) ||
1413         sadd64_overflow(r, r, &r)) {
1414         *sat = true;
1415         return r < 0 ? INT32_MAX : INT32_MIN;
1416     }
1417     return r >> 32;
1418 }
1419 
1420 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1421 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1422 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1423 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1424 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1425 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1426 
1427 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1428 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1429 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1430 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1431 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1432 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1433 
1434 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1435 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1436 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1437 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1438 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1439 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1440 
1441 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1442 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1443 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1444 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1445 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1446 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1447 
1448 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1449     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1450                                 uint32_t rm)                            \
1451     {                                                                   \
1452         TYPE *d = vd, *n = vn;                                          \
1453         TYPE m = rm;                                                    \
1454         uint16_t mask = mve_element_mask(env);                          \
1455         unsigned e;                                                     \
1456         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1457             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1458         }                                                               \
1459         mve_advance_vpt(env);                                           \
1460     }
1461 
1462 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1463     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1464                                 uint32_t rm)                            \
1465     {                                                                   \
1466         TYPE *d = vd, *n = vn;                                          \
1467         TYPE m = rm;                                                    \
1468         uint16_t mask = mve_element_mask(env);                          \
1469         unsigned e;                                                     \
1470         bool qc = false;                                                \
1471         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1472             bool sat = false;                                           \
1473             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1474                       mask);                                            \
1475             qc |= sat & mask & 1;                                       \
1476         }                                                               \
1477         if (qc) {                                                       \
1478             env->vfp.qc[0] = qc;                                        \
1479         }                                                               \
1480         mve_advance_vpt(env);                                           \
1481     }
1482 
1483 /* "accumulating" version where FN takes d as well as n and m */
1484 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1485     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1486                                 uint32_t rm)                            \
1487     {                                                                   \
1488         TYPE *d = vd, *n = vn;                                          \
1489         TYPE m = rm;                                                    \
1490         uint16_t mask = mve_element_mask(env);                          \
1491         unsigned e;                                                     \
1492         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1493             mergemask(&d[H##ESIZE(e)],                                  \
1494                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1495         }                                                               \
1496         mve_advance_vpt(env);                                           \
1497     }
1498 
1499 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1500     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1501                                 uint32_t rm)                            \
1502     {                                                                   \
1503         TYPE *d = vd, *n = vn;                                          \
1504         TYPE m = rm;                                                    \
1505         uint16_t mask = mve_element_mask(env);                          \
1506         unsigned e;                                                     \
1507         bool qc = false;                                                \
1508         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1509             bool sat = false;                                           \
1510             mergemask(&d[H##ESIZE(e)],                                  \
1511                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1512                       mask);                                            \
1513             qc |= sat & mask & 1;                                       \
1514         }                                                               \
1515         if (qc) {                                                       \
1516             env->vfp.qc[0] = qc;                                        \
1517         }                                                               \
1518         mve_advance_vpt(env);                                           \
1519     }
1520 
1521 /* provide unsigned 2-op scalar helpers for all sizes */
1522 #define DO_2OP_SCALAR_U(OP, FN)                 \
1523     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1524     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1525     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1526 #define DO_2OP_SCALAR_S(OP, FN)                 \
1527     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1528     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1529     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1530 
1531 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1532     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1533     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1534     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1535 
1536 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1537 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1538 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1539 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1540 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1541 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1542 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1543 
1544 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1545 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1546 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1547 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1548 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1549 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1550 
1551 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1552 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1553 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1554 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1555 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1556 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1557 
1558 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1559 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1560 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1561 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1562 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1563 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1564 
1565 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1566 {
1567     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1568     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1569 }
1570 
1571 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1572                            int round, bool *sat)
1573 {
1574     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1575     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1576 }
1577 
1578 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1579                             int round, bool *sat)
1580 {
1581     /*
1582      * Architecturally we should do the entire add, double, round
1583      * and then check for saturation. We do three saturating adds,
1584      * but we need to be careful about the order. If the first
1585      * m1 + m2 saturates then it's impossible for the *2+rc to
1586      * bring it back into the non-saturated range. However, if
1587      * m1 + m2 is negative then it's possible that doing the doubling
1588      * would take the intermediate result below INT64_MAX and the
1589      * addition of the rounding constant then brings it back in range.
1590      * So we add half the rounding constant and half the "c << esize"
1591      * before doubling rather than adding the rounding constant after
1592      * the doubling.
1593      */
1594     int64_t m1 = (int64_t)a * b;
1595     int64_t m2 = (int64_t)c << 31;
1596     int64_t r;
1597     if (sadd64_overflow(m1, m2, &r) ||
1598         sadd64_overflow(r, (round << 30), &r) ||
1599         sadd64_overflow(r, r, &r)) {
1600         *sat = true;
1601         return r < 0 ? INT32_MAX : INT32_MIN;
1602     }
1603     return r >> 32;
1604 }
1605 
1606 /*
1607  * The *MLAH insns are vector * scalar + vector;
1608  * the *MLASH insns are vector * vector + scalar
1609  */
1610 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1611 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1612 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1613 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1614 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1615 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1616 
1617 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1618 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1619 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1620 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1621 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1622 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1623 
1624 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1625 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1626 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1627 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1628 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1629 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1630 
1631 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1632 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1633 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1634 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1635 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1636 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1637 
1638 /* Vector by scalar plus vector */
1639 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1640 
1641 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1642 
1643 /* Vector by vector plus scalar */
1644 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1645 
1646 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1647 
1648 /*
1649  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1650  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1651  * SATMASK specifies which bits of the predicate mask matter for determining
1652  * whether to propagate a saturation indication into FPSCR.QC -- for
1653  * the 16x16->32 case we must check only the bit corresponding to the T or B
1654  * half that we used, but for the 32x32->64 case we propagate if the mask
1655  * bit is set for either half.
1656  */
1657 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1658     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1659                                 uint32_t rm)                            \
1660     {                                                                   \
1661         LTYPE *d = vd;                                                  \
1662         TYPE *n = vn;                                                   \
1663         TYPE m = rm;                                                    \
1664         uint16_t mask = mve_element_mask(env);                          \
1665         unsigned le;                                                    \
1666         bool qc = false;                                                \
1667         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1668             bool sat = false;                                           \
1669             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1670             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1671             qc |= sat && (mask & SATMASK);                              \
1672         }                                                               \
1673         if (qc) {                                                       \
1674             env->vfp.qc[0] = qc;                                        \
1675         }                                                               \
1676         mve_advance_vpt(env);                                           \
1677     }
1678 
1679 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1680 {
1681     int64_t r = ((int64_t)n * m) * 2;
1682     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1683 }
1684 
1685 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1686 {
1687     /* The multiply can't overflow, but the doubling might */
1688     int64_t r = (int64_t)n * m;
1689     if (r > INT64_MAX / 2) {
1690         *sat = true;
1691         return INT64_MAX;
1692     } else if (r < INT64_MIN / 2) {
1693         *sat = true;
1694         return INT64_MIN;
1695     } else {
1696         return r * 2;
1697     }
1698 }
1699 
1700 #define SATMASK16B 1
1701 #define SATMASK16T (1 << 2)
1702 #define SATMASK32 ((1 << 4) | 1)
1703 
1704 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1705                     do_qdmullh, SATMASK16B)
1706 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1707                     do_qdmullw, SATMASK32)
1708 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1709                     do_qdmullh, SATMASK16T)
1710 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1711                     do_qdmullw, SATMASK32)
1712 
1713 /*
1714  * Long saturating ops
1715  */
1716 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1717     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1718                                 void *vm)                               \
1719     {                                                                   \
1720         LTYPE *d = vd;                                                  \
1721         TYPE *n = vn, *m = vm;                                          \
1722         uint16_t mask = mve_element_mask(env);                          \
1723         unsigned le;                                                    \
1724         bool qc = false;                                                \
1725         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1726             bool sat = false;                                           \
1727             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1728             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1729             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1730             qc |= sat && (mask & SATMASK);                              \
1731         }                                                               \
1732         if (qc) {                                                       \
1733             env->vfp.qc[0] = qc;                                        \
1734         }                                                               \
1735         mve_advance_vpt(env);                                           \
1736     }
1737 
1738 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1739 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1740 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1741 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1742 
1743 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1744 {
1745     m &= 0xff;
1746     if (m == 0) {
1747         return 0;
1748     }
1749     n = revbit8(n);
1750     if (m < 8) {
1751         n >>= 8 - m;
1752     }
1753     return n;
1754 }
1755 
1756 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1757 {
1758     m &= 0xff;
1759     if (m == 0) {
1760         return 0;
1761     }
1762     n = revbit16(n);
1763     if (m < 16) {
1764         n >>= 16 - m;
1765     }
1766     return n;
1767 }
1768 
1769 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1770 {
1771     m &= 0xff;
1772     if (m == 0) {
1773         return 0;
1774     }
1775     n = revbit32(n);
1776     if (m < 32) {
1777         n >>= 32 - m;
1778     }
1779     return n;
1780 }
1781 
1782 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1783 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1784 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1785 
1786 /*
1787  * Multiply add long dual accumulate ops.
1788  */
1789 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1790     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1791                                     void *vm, uint64_t a)               \
1792     {                                                                   \
1793         uint16_t mask = mve_element_mask(env);                          \
1794         unsigned e;                                                     \
1795         TYPE *n = vn, *m = vm;                                          \
1796         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1797             if (mask & 1) {                                             \
1798                 if (e & 1) {                                            \
1799                     a ODDACC                                            \
1800                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1801                 } else {                                                \
1802                     a EVENACC                                           \
1803                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1804                 }                                                       \
1805             }                                                           \
1806         }                                                               \
1807         mve_advance_vpt(env);                                           \
1808         return a;                                                       \
1809     }
1810 
1811 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1812 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1813 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1814 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1815 
1816 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1817 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1818 
1819 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1820 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1821 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1822 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1823 
1824 /*
1825  * Multiply add dual accumulate ops
1826  */
1827 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1828     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1829                                     void *vm, uint32_t a)               \
1830     {                                                                   \
1831         uint16_t mask = mve_element_mask(env);                          \
1832         unsigned e;                                                     \
1833         TYPE *n = vn, *m = vm;                                          \
1834         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1835             if (mask & 1) {                                             \
1836                 if (e & 1) {                                            \
1837                     a ODDACC                                            \
1838                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1839                 } else {                                                \
1840                     a EVENACC                                           \
1841                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1842                 }                                                       \
1843             }                                                           \
1844         }                                                               \
1845         mve_advance_vpt(env);                                           \
1846         return a;                                                       \
1847     }
1848 
1849 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1850     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1851     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1852     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1853 
1854 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1855     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1856     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1857     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1858 
1859 DO_DAV_S(vmladavs, false, +=, +=)
1860 DO_DAV_U(vmladavu, false, +=, +=)
1861 DO_DAV_S(vmlsdav, false, +=, -=)
1862 DO_DAV_S(vmladavsx, true, +=, +=)
1863 DO_DAV_S(vmlsdavx, true, +=, -=)
1864 
1865 /*
1866  * Rounding multiply add long dual accumulate high. In the pseudocode
1867  * this is implemented with a 72-bit internal accumulator value of which
1868  * the top 64 bits are returned. We optimize this to avoid having to
1869  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1870  * is squashed back into 64-bits after each beat.
1871  */
1872 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1873     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1874                                     void *vm, uint64_t a)               \
1875     {                                                                   \
1876         uint16_t mask = mve_element_mask(env);                          \
1877         unsigned e;                                                     \
1878         TYPE *n = vn, *m = vm;                                          \
1879         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1880             if (mask & 1) {                                             \
1881                 LTYPE mul;                                              \
1882                 if (e & 1) {                                            \
1883                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1884                     if (SUB) {                                          \
1885                         mul = -mul;                                     \
1886                     }                                                   \
1887                 } else {                                                \
1888                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1889                 }                                                       \
1890                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1891                 a += mul;                                               \
1892             }                                                           \
1893         }                                                               \
1894         mve_advance_vpt(env);                                           \
1895         return a;                                                       \
1896     }
1897 
1898 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1899 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1900 
1901 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1902 
1903 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1904 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1905 
1906 /* Vector add across vector */
1907 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1908     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1909                                     uint32_t ra)                \
1910     {                                                           \
1911         uint16_t mask = mve_element_mask(env);                  \
1912         unsigned e;                                             \
1913         TYPE *m = vm;                                           \
1914         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1915             if (mask & 1) {                                     \
1916                 ra += m[H##ESIZE(e)];                           \
1917             }                                                   \
1918         }                                                       \
1919         mve_advance_vpt(env);                                   \
1920         return ra;                                              \
1921     }                                                           \
1922 
1923 DO_VADDV(vaddvsb, 1, int8_t)
1924 DO_VADDV(vaddvsh, 2, int16_t)
1925 DO_VADDV(vaddvsw, 4, int32_t)
1926 DO_VADDV(vaddvub, 1, uint8_t)
1927 DO_VADDV(vaddvuh, 2, uint16_t)
1928 DO_VADDV(vaddvuw, 4, uint32_t)
1929 
1930 /*
1931  * Vector max/min across vector. Unlike VADDV, we must
1932  * read ra as the element size, not its full width.
1933  * We work with int64_t internally for simplicity.
1934  */
1935 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1936     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1937                                     uint32_t ra_in)             \
1938     {                                                           \
1939         uint16_t mask = mve_element_mask(env);                  \
1940         unsigned e;                                             \
1941         TYPE *m = vm;                                           \
1942         int64_t ra = (RATYPE)ra_in;                             \
1943         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1944             if (mask & 1) {                                     \
1945                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1946             }                                                   \
1947         }                                                       \
1948         mve_advance_vpt(env);                                   \
1949         return ra;                                              \
1950     }                                                           \
1951 
1952 #define DO_VMAXMINV_U(INSN, FN)                         \
1953     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1954     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1955     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1956 #define DO_VMAXMINV_S(INSN, FN)                         \
1957     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1958     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1959     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1960 
1961 /*
1962  * Helpers for max and min of absolute values across vector:
1963  * note that we only take the absolute value of 'm', not 'n'
1964  */
1965 static int64_t do_maxa(int64_t n, int64_t m)
1966 {
1967     if (m < 0) {
1968         m = -m;
1969     }
1970     return MAX(n, m);
1971 }
1972 
1973 static int64_t do_mina(int64_t n, int64_t m)
1974 {
1975     if (m < 0) {
1976         m = -m;
1977     }
1978     return MIN(n, m);
1979 }
1980 
1981 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1982 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1983 DO_VMAXMINV_S(vminvs, DO_MIN)
1984 DO_VMAXMINV_U(vminvu, DO_MIN)
1985 /*
1986  * VMAXAV, VMINAV treat the general purpose input as unsigned
1987  * and the vector elements as signed.
1988  */
1989 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1990 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1991 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1992 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1993 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1994 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1995 
1996 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1997     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1998                                     void *vm, uint32_t ra)      \
1999     {                                                           \
2000         uint16_t mask = mve_element_mask(env);                  \
2001         unsigned e;                                             \
2002         TYPE *m = vm, *n = vn;                                  \
2003         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2004             if (mask & 1) {                                     \
2005                 int64_t n0 = n[H##ESIZE(e)];                    \
2006                 int64_t m0 = m[H##ESIZE(e)];                    \
2007                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
2008                 ra += r;                                        \
2009             }                                                   \
2010         }                                                       \
2011         mve_advance_vpt(env);                                   \
2012         return ra;                                              \
2013     }
2014 
2015 DO_VABAV(vabavsb, 1, int8_t)
2016 DO_VABAV(vabavsh, 2, int16_t)
2017 DO_VABAV(vabavsw, 4, int32_t)
2018 DO_VABAV(vabavub, 1, uint8_t)
2019 DO_VABAV(vabavuh, 2, uint16_t)
2020 DO_VABAV(vabavuw, 4, uint32_t)
2021 
2022 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
2023     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
2024                                     uint64_t ra)                \
2025     {                                                           \
2026         uint16_t mask = mve_element_mask(env);                  \
2027         unsigned e;                                             \
2028         TYPE *m = vm;                                           \
2029         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
2030             if (mask & 1) {                                     \
2031                 ra += (LTYPE)m[H4(e)];                          \
2032             }                                                   \
2033         }                                                       \
2034         mve_advance_vpt(env);                                   \
2035         return ra;                                              \
2036     }                                                           \
2037 
2038 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2039 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2040 
2041 /* Shifts by immediate */
2042 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2043     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2044                                 void *vm, uint32_t shift)       \
2045     {                                                           \
2046         TYPE *d = vd, *m = vm;                                  \
2047         uint16_t mask = mve_element_mask(env);                  \
2048         unsigned e;                                             \
2049         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2050             mergemask(&d[H##ESIZE(e)],                          \
2051                       FN(m[H##ESIZE(e)], shift), mask);         \
2052         }                                                       \
2053         mve_advance_vpt(env);                                   \
2054     }
2055 
2056 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2057     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2058                                 void *vm, uint32_t shift)       \
2059     {                                                           \
2060         TYPE *d = vd, *m = vm;                                  \
2061         uint16_t mask = mve_element_mask(env);                  \
2062         unsigned e;                                             \
2063         bool qc = false;                                        \
2064         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2065             bool sat = false;                                   \
2066             mergemask(&d[H##ESIZE(e)],                          \
2067                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2068             qc |= sat & mask & 1;                               \
2069         }                                                       \
2070         if (qc) {                                               \
2071             env->vfp.qc[0] = qc;                                \
2072         }                                                       \
2073         mve_advance_vpt(env);                                   \
2074     }
2075 
2076 /* provide unsigned 2-op shift helpers for all sizes */
2077 #define DO_2SHIFT_U(OP, FN)                     \
2078     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2079     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2080     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2081 #define DO_2SHIFT_S(OP, FN)                     \
2082     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2083     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2084     DO_2SHIFT(OP##w, 4, int32_t, FN)
2085 
2086 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2087     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2088     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2089     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2090 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2091     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2092     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2093     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2094 
2095 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2096 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2097 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2098 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2099 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2100 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2101 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2102 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2103 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2104 
2105 /* Shift-and-insert; we always work with 64 bits at a time */
2106 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2107     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2108                                 void *vm, uint32_t shift)               \
2109     {                                                                   \
2110         uint64_t *d = vd, *m = vm;                                      \
2111         uint16_t mask;                                                  \
2112         uint64_t shiftmask;                                             \
2113         unsigned e;                                                     \
2114         if (shift == ESIZE * 8) {                                       \
2115             /*                                                          \
2116              * Only VSRI can shift by <dt>; it should mean "don't       \
2117              * update the destination". The generic logic can't handle  \
2118              * this because it would try to shift by an out-of-range    \
2119              * amount, so special case it here.                         \
2120              */                                                         \
2121             goto done;                                                  \
2122         }                                                               \
2123         assert(shift < ESIZE * 8);                                      \
2124         mask = mve_element_mask(env);                                   \
2125         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2126         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2127         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2128             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2129                 (d[H8(e)] & ~shiftmask);                                \
2130             mergemask(&d[H8(e)], r, mask);                              \
2131         }                                                               \
2132 done:                                                                   \
2133         mve_advance_vpt(env);                                           \
2134     }
2135 
2136 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2137 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2138 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2139 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2140 
2141 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2142 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2143 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2144 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2145 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2146 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2147 
2148 /*
2149  * Long shifts taking half-sized inputs from top or bottom of the input
2150  * vector and producing a double-width result. ESIZE, TYPE are for
2151  * the input, and LESIZE, LTYPE for the output.
2152  * Unlike the normal shift helpers, we do not handle negative shift counts,
2153  * because the long shift is strictly left-only.
2154  */
2155 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2156     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2157                                 void *vm, uint32_t shift)               \
2158     {                                                                   \
2159         LTYPE *d = vd;                                                  \
2160         TYPE *m = vm;                                                   \
2161         uint16_t mask = mve_element_mask(env);                          \
2162         unsigned le;                                                    \
2163         assert(shift <= 16);                                            \
2164         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2165             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2166             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2167         }                                                               \
2168         mve_advance_vpt(env);                                           \
2169     }
2170 
2171 #define DO_VSHLL_ALL(OP, TOP)                                \
2172     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2173     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2174     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2175     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2176 
2177 DO_VSHLL_ALL(vshllb, false)
2178 DO_VSHLL_ALL(vshllt, true)
2179 
2180 /*
2181  * Narrowing right shifts, taking a double sized input, shifting it
2182  * and putting the result in either the top or bottom half of the output.
2183  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2184  */
2185 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2186     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2187                                 void *vm, uint32_t shift)       \
2188     {                                                           \
2189         LTYPE *m = vm;                                          \
2190         TYPE *d = vd;                                           \
2191         uint16_t mask = mve_element_mask(env);                  \
2192         unsigned le;                                            \
2193         mask >>= ESIZE * TOP;                                   \
2194         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2195             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2196             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2197         }                                                       \
2198         mve_advance_vpt(env);                                   \
2199     }
2200 
2201 #define DO_VSHRN_ALL(OP, FN)                                    \
2202     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2203     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2204     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2205     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2206 
2207 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2208 {
2209     if (likely(sh < 64)) {
2210         return (x >> sh) + ((x >> (sh - 1)) & 1);
2211     } else if (sh == 64) {
2212         return x >> 63;
2213     } else {
2214         return 0;
2215     }
2216 }
2217 
2218 static inline int64_t do_srshr(int64_t x, unsigned sh)
2219 {
2220     if (likely(sh < 64)) {
2221         return (x >> sh) + ((x >> (sh - 1)) & 1);
2222     } else {
2223         /* Rounding the sign bit always produces 0. */
2224         return 0;
2225     }
2226 }
2227 
2228 DO_VSHRN_ALL(vshrn, DO_SHR)
2229 DO_VSHRN_ALL(vrshrn, do_urshr)
2230 
2231 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2232                                  bool *satp)
2233 {
2234     if (val > max) {
2235         *satp = true;
2236         return max;
2237     } else if (val < min) {
2238         *satp = true;
2239         return min;
2240     } else {
2241         return val;
2242     }
2243 }
2244 
2245 /* Saturating narrowing right shifts */
2246 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2247     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2248                                 void *vm, uint32_t shift)       \
2249     {                                                           \
2250         LTYPE *m = vm;                                          \
2251         TYPE *d = vd;                                           \
2252         uint16_t mask = mve_element_mask(env);                  \
2253         bool qc = false;                                        \
2254         unsigned le;                                            \
2255         mask >>= ESIZE * TOP;                                   \
2256         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2257             bool sat = false;                                   \
2258             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2259             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2260             qc |= sat & mask & 1;                               \
2261         }                                                       \
2262         if (qc) {                                               \
2263             env->vfp.qc[0] = qc;                                \
2264         }                                                       \
2265         mve_advance_vpt(env);                                   \
2266     }
2267 
2268 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2269     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2270     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2271 
2272 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2273     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2274     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2275 
2276 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2277     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2278     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2279 
2280 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2281     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2282     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2283 
2284 #define DO_SHRN_SB(N, M, SATP)                                  \
2285     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2286 #define DO_SHRN_UB(N, M, SATP)                                  \
2287     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2288 #define DO_SHRUN_B(N, M, SATP)                                  \
2289     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2290 
2291 #define DO_SHRN_SH(N, M, SATP)                                  \
2292     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2293 #define DO_SHRN_UH(N, M, SATP)                                  \
2294     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2295 #define DO_SHRUN_H(N, M, SATP)                                  \
2296     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2297 
2298 #define DO_RSHRN_SB(N, M, SATP)                                 \
2299     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2300 #define DO_RSHRN_UB(N, M, SATP)                                 \
2301     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2302 #define DO_RSHRUN_B(N, M, SATP)                                 \
2303     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2304 
2305 #define DO_RSHRN_SH(N, M, SATP)                                 \
2306     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2307 #define DO_RSHRN_UH(N, M, SATP)                                 \
2308     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2309 #define DO_RSHRUN_H(N, M, SATP)                                 \
2310     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2311 
2312 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2313 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2314 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2315 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2316 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2317 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2318 
2319 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2320 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2321 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2322 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2323 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2324 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2325 
2326 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2327     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2328     {                                                                   \
2329         LTYPE *m = vm;                                                  \
2330         TYPE *d = vd;                                                   \
2331         uint16_t mask = mve_element_mask(env);                          \
2332         unsigned le;                                                    \
2333         mask >>= ESIZE * TOP;                                           \
2334         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2335             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2336                       m[H##LESIZE(le)], mask);                          \
2337         }                                                               \
2338         mve_advance_vpt(env);                                           \
2339     }
2340 
2341 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2342 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2343 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2344 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2345 
2346 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2347     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2348     {                                                                   \
2349         LTYPE *m = vm;                                                  \
2350         TYPE *d = vd;                                                   \
2351         uint16_t mask = mve_element_mask(env);                          \
2352         bool qc = false;                                                \
2353         unsigned le;                                                    \
2354         mask >>= ESIZE * TOP;                                           \
2355         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2356             bool sat = false;                                           \
2357             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2358             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2359             qc |= sat & mask & 1;                                       \
2360         }                                                               \
2361         if (qc) {                                                       \
2362             env->vfp.qc[0] = qc;                                        \
2363         }                                                               \
2364         mve_advance_vpt(env);                                           \
2365     }
2366 
2367 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2368     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2369     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2370 
2371 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2372     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2373     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2374 
2375 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2376     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2377     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2378 
2379 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2380     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2381     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2382 
2383 #define DO_VQMOVN_SB(N, SATP)                           \
2384     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2385 #define DO_VQMOVN_UB(N, SATP)                           \
2386     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2387 #define DO_VQMOVUN_B(N, SATP)                           \
2388     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2389 
2390 #define DO_VQMOVN_SH(N, SATP)                           \
2391     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2392 #define DO_VQMOVN_UH(N, SATP)                           \
2393     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2394 #define DO_VQMOVUN_H(N, SATP)                           \
2395     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2396 
2397 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2398 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2399 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2400 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2401 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2402 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2403 
2404 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2405                            uint32_t shift)
2406 {
2407     uint32_t *d = vd;
2408     uint16_t mask = mve_element_mask(env);
2409     unsigned e;
2410     uint32_t r;
2411 
2412     /*
2413      * For each 32-bit element, we shift it left, bringing in the
2414      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2415      * the top become the new rdm, if the predicate mask permits.
2416      * The final rdm value is returned to update the register.
2417      * shift == 0 here means "shift by 32 bits".
2418      */
2419     if (shift == 0) {
2420         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2421             r = rdm;
2422             if (mask & 1) {
2423                 rdm = d[H4(e)];
2424             }
2425             mergemask(&d[H4(e)], r, mask);
2426         }
2427     } else {
2428         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2429 
2430         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2431             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2432             if (mask & 1) {
2433                 rdm = d[H4(e)] >> (32 - shift);
2434             }
2435             mergemask(&d[H4(e)], r, mask);
2436         }
2437     }
2438     mve_advance_vpt(env);
2439     return rdm;
2440 }
2441 
2442 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2443 {
2444     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2445 }
2446 
2447 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2448 {
2449     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2450 }
2451 
2452 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2453 {
2454     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2455 }
2456 
2457 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2458 {
2459     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2460 }
2461 
2462 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2463 {
2464     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2465 }
2466 
2467 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2468 {
2469     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2470 }
2471 
2472 /* Operate on 64-bit values, but saturate at 48 bits */
2473 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2474                                     bool round, uint32_t *sat)
2475 {
2476     int64_t val, extval;
2477 
2478     if (shift <= -48) {
2479         /* Rounding the sign bit always produces 0. */
2480         if (round) {
2481             return 0;
2482         }
2483         return src >> 63;
2484     } else if (shift < 0) {
2485         if (round) {
2486             src >>= -shift - 1;
2487             val = (src >> 1) + (src & 1);
2488         } else {
2489             val = src >> -shift;
2490         }
2491         extval = sextract64(val, 0, 48);
2492         if (!sat || val == extval) {
2493             return extval;
2494         }
2495     } else if (shift < 48) {
2496         extval = sextract64(src << shift, 0, 48);
2497         if (!sat || src == (extval >> shift)) {
2498             return extval;
2499         }
2500     } else if (!sat || src == 0) {
2501         return 0;
2502     }
2503 
2504     *sat = 1;
2505     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2506 }
2507 
2508 /* Operate on 64-bit values, but saturate at 48 bits */
2509 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2510                                      bool round, uint32_t *sat)
2511 {
2512     uint64_t val, extval;
2513 
2514     if (shift <= -(48 + round)) {
2515         return 0;
2516     } else if (shift < 0) {
2517         if (round) {
2518             val = src >> (-shift - 1);
2519             val = (val >> 1) + (val & 1);
2520         } else {
2521             val = src >> -shift;
2522         }
2523         extval = extract64(val, 0, 48);
2524         if (!sat || val == extval) {
2525             return extval;
2526         }
2527     } else if (shift < 48) {
2528         extval = extract64(src << shift, 0, 48);
2529         if (!sat || src == (extval >> shift)) {
2530             return extval;
2531         }
2532     } else if (!sat || src == 0) {
2533         return 0;
2534     }
2535 
2536     *sat = 1;
2537     return MAKE_64BIT_MASK(0, 48);
2538 }
2539 
2540 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2541 {
2542     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2543 }
2544 
2545 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2546 {
2547     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2548 }
2549 
2550 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2551 {
2552     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2553 }
2554 
2555 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2556 {
2557     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2558 }
2559 
2560 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2561 {
2562     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2563 }
2564 
2565 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2566 {
2567     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2568 }
2569 
2570 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2571     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2572                            uint32_t offset, uint32_t imm)       \
2573     {                                                           \
2574         TYPE *d = vd;                                           \
2575         uint16_t mask = mve_element_mask(env);                  \
2576         unsigned e;                                             \
2577         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2578             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2579             offset = FN(offset, imm);                           \
2580         }                                                       \
2581         mve_advance_vpt(env);                                   \
2582         return offset;                                          \
2583     }
2584 
2585 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2586     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2587                               uint32_t offset, uint32_t wrap,   \
2588                               uint32_t imm)                     \
2589     {                                                           \
2590         TYPE *d = vd;                                           \
2591         uint16_t mask = mve_element_mask(env);                  \
2592         unsigned e;                                             \
2593         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2594             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2595             offset = FN(offset, wrap, imm);                     \
2596         }                                                       \
2597         mve_advance_vpt(env);                                   \
2598         return offset;                                          \
2599     }
2600 
2601 #define DO_VIDUP_ALL(OP, FN)                    \
2602     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2603     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2604     DO_VIDUP(OP##w, 4, int32_t, FN)
2605 
2606 #define DO_VIWDUP_ALL(OP, FN)                   \
2607     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2608     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2609     DO_VIWDUP(OP##w, 4, int32_t, FN)
2610 
2611 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2612 {
2613     offset += imm;
2614     if (offset == wrap) {
2615         offset = 0;
2616     }
2617     return offset;
2618 }
2619 
2620 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2621 {
2622     if (offset == 0) {
2623         offset = wrap;
2624     }
2625     offset -= imm;
2626     return offset;
2627 }
2628 
2629 DO_VIDUP_ALL(vidup, DO_ADD)
2630 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2631 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2632 
2633 /*
2634  * Vector comparison.
2635  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2636  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2637  * P0 bits otherwise are updated with the results of the comparisons.
2638  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2639  */
2640 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2641     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2642     {                                                                   \
2643         TYPE *n = vn, *m = vm;                                          \
2644         uint16_t mask = mve_element_mask(env);                          \
2645         uint16_t eci_mask = mve_eci_mask(env);                          \
2646         uint16_t beatpred = 0;                                          \
2647         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2648         unsigned e;                                                     \
2649         for (e = 0; e < 16 / ESIZE; e++) {                              \
2650             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2651             /* Comparison sets 0/1 bits for each byte in the element */ \
2652             beatpred |= r * emask;                                      \
2653             emask <<= ESIZE;                                            \
2654         }                                                               \
2655         beatpred &= mask;                                               \
2656         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2657             (beatpred & eci_mask);                                      \
2658         mve_advance_vpt(env);                                           \
2659     }
2660 
2661 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2662     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2663                                 uint32_t rm)                            \
2664     {                                                                   \
2665         TYPE *n = vn;                                                   \
2666         uint16_t mask = mve_element_mask(env);                          \
2667         uint16_t eci_mask = mve_eci_mask(env);                          \
2668         uint16_t beatpred = 0;                                          \
2669         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2670         unsigned e;                                                     \
2671         for (e = 0; e < 16 / ESIZE; e++) {                              \
2672             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2673             /* Comparison sets 0/1 bits for each byte in the element */ \
2674             beatpred |= r * emask;                                      \
2675             emask <<= ESIZE;                                            \
2676         }                                                               \
2677         beatpred &= mask;                                               \
2678         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2679             (beatpred & eci_mask);                                      \
2680         mve_advance_vpt(env);                                           \
2681     }
2682 
2683 #define DO_VCMP_S(OP, FN)                               \
2684     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2685     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2686     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2687     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2688     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2689     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2690 
2691 #define DO_VCMP_U(OP, FN)                               \
2692     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2693     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2694     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2695     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2696     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2697     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2698 
2699 #define DO_EQ(N, M) ((N) == (M))
2700 #define DO_NE(N, M) ((N) != (M))
2701 #define DO_EQ(N, M) ((N) == (M))
2702 #define DO_EQ(N, M) ((N) == (M))
2703 #define DO_GE(N, M) ((N) >= (M))
2704 #define DO_LT(N, M) ((N) < (M))
2705 #define DO_GT(N, M) ((N) > (M))
2706 #define DO_LE(N, M) ((N) <= (M))
2707 
2708 DO_VCMP_U(vcmpeq, DO_EQ)
2709 DO_VCMP_U(vcmpne, DO_NE)
2710 DO_VCMP_U(vcmpcs, DO_GE)
2711 DO_VCMP_U(vcmphi, DO_GT)
2712 DO_VCMP_S(vcmpge, DO_GE)
2713 DO_VCMP_S(vcmplt, DO_LT)
2714 DO_VCMP_S(vcmpgt, DO_GT)
2715 DO_VCMP_S(vcmple, DO_LE)
2716 
2717 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2718 {
2719     /*
2720      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2721      * but note that whether bytes are written to Qd is still subject
2722      * to (all forms of) predication in the usual way.
2723      */
2724     uint64_t *d = vd, *n = vn, *m = vm;
2725     uint16_t mask = mve_element_mask(env);
2726     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2727     unsigned e;
2728     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2729         uint64_t r = m[H8(e)];
2730         mergemask(&r, n[H8(e)], p0);
2731         mergemask(&d[H8(e)], r, mask);
2732     }
2733     mve_advance_vpt(env);
2734 }
2735 
2736 void HELPER(mve_vpnot)(CPUARMState *env)
2737 {
2738     /*
2739      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2740      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2741      * P0 bits otherwise are inverted.
2742      * (This is the same logic as VCMP.)
2743      * This insn is itself subject to predication and to beat-wise execution,
2744      * and after it executes VPT state advances in the usual way.
2745      */
2746     uint16_t mask = mve_element_mask(env);
2747     uint16_t eci_mask = mve_eci_mask(env);
2748     uint16_t beatpred = ~env->v7m.vpr & mask;
2749     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2750     mve_advance_vpt(env);
2751 }
2752 
2753 /*
2754  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2755  * otherwise set according to value of Rn. The calculation of
2756  * newmask here works in the same way as the calculation of the
2757  * ltpmask in mve_element_mask(), but we have pre-calculated
2758  * the masklen in the generated code.
2759  */
2760 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2761 {
2762     uint16_t mask = mve_element_mask(env);
2763     uint16_t eci_mask = mve_eci_mask(env);
2764     uint16_t newmask;
2765 
2766     assert(masklen <= 16);
2767     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2768     newmask &= mask;
2769     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2770     mve_advance_vpt(env);
2771 }
2772 
2773 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2774     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2775     {                                                                   \
2776         TYPE *d = vd, *m = vm;                                          \
2777         uint16_t mask = mve_element_mask(env);                          \
2778         unsigned e;                                                     \
2779         bool qc = false;                                                \
2780         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2781             bool sat = false;                                           \
2782             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2783             qc |= sat & mask & 1;                                       \
2784         }                                                               \
2785         if (qc) {                                                       \
2786             env->vfp.qc[0] = qc;                                        \
2787         }                                                               \
2788         mve_advance_vpt(env);                                           \
2789     }
2790 
2791 #define DO_VQABS_B(N, SATP) \
2792     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2793 #define DO_VQABS_H(N, SATP) \
2794     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2795 #define DO_VQABS_W(N, SATP) \
2796     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2797 
2798 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2799 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2800 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2801 
2802 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2803 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2804 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2805 
2806 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2807 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2808 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2809 
2810 /*
2811  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2812  * absolute value; we then do an unsigned comparison.
2813  */
2814 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2815     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2816     {                                                                   \
2817         UTYPE *d = vd;                                                  \
2818         STYPE *m = vm;                                                  \
2819         uint16_t mask = mve_element_mask(env);                          \
2820         unsigned e;                                                     \
2821         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2822             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2823             r = FN(d[H##ESIZE(e)], r);                                  \
2824             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2825         }                                                               \
2826         mve_advance_vpt(env);                                           \
2827     }
2828 
2829 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2830 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2831 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2832 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2833 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2834 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2835 
2836 /*
2837  * 2-operand floating point. Note that if an element is partially
2838  * predicated we must do the FP operation to update the non-predicated
2839  * bytes, but we must be careful to avoid updating the FP exception
2840  * state unless byte 0 of the element was unpredicated.
2841  */
2842 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2843     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2844                                 void *vd, void *vn, void *vm)           \
2845     {                                                                   \
2846         TYPE *d = vd, *n = vn, *m = vm;                                 \
2847         TYPE r;                                                         \
2848         uint16_t mask = mve_element_mask(env);                          \
2849         unsigned e;                                                     \
2850         float_status *fpst;                                             \
2851         float_status scratch_fpst;                                      \
2852         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2853             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2854                 continue;                                               \
2855             }                                                           \
2856             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2857             if (!(mask & 1)) {                                          \
2858                 /* We need the result but without updating flags */     \
2859                 scratch_fpst = *fpst;                                   \
2860                 fpst = &scratch_fpst;                                   \
2861             }                                                           \
2862             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2863             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2864         }                                                               \
2865         mve_advance_vpt(env);                                           \
2866     }
2867 
2868 #define DO_2OP_FP_ALL(OP, FN)                  \
2869     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2870     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2871 
2872 DO_2OP_FP_ALL(vfadd, add)
2873 DO_2OP_FP_ALL(vfsub, sub)
2874 DO_2OP_FP_ALL(vfmul, mul)
2875 
2876 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2877 {
2878     return float16_abs(float16_sub(a, b, s));
2879 }
2880 
2881 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2882 {
2883     return float32_abs(float32_sub(a, b, s));
2884 }
2885 
2886 DO_2OP_FP_ALL(vfabd, abd)
2887 DO_2OP_FP_ALL(vmaxnm, maxnum)
2888 DO_2OP_FP_ALL(vminnm, minnum)
2889 
2890 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2891 {
2892     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2893 }
2894 
2895 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2896 {
2897     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2898 }
2899 
2900 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2901 {
2902     return float16_minnum(float16_abs(a), float16_abs(b), s);
2903 }
2904 
2905 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2906 {
2907     return float32_minnum(float32_abs(a), float32_abs(b), s);
2908 }
2909 
2910 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2911 DO_2OP_FP_ALL(vminnma, minnuma)
2912 
2913 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2914     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2915                                 void *vd, void *vn, void *vm)           \
2916     {                                                                   \
2917         TYPE *d = vd, *n = vn, *m = vm;                                 \
2918         TYPE r[16 / ESIZE];                                             \
2919         uint16_t tm, mask = mve_element_mask(env);                      \
2920         unsigned e;                                                     \
2921         float_status *fpst;                                             \
2922         float_status scratch_fpst;                                      \
2923         /* Calculate all results first to avoid overwriting inputs */   \
2924         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2925             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2926                 r[e] = 0;                                               \
2927                 continue;                                               \
2928             }                                                           \
2929             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2930             if (!(tm & 1)) {                                            \
2931                 /* We need the result but without updating flags */     \
2932                 scratch_fpst = *fpst;                                   \
2933                 fpst = &scratch_fpst;                                   \
2934             }                                                           \
2935             if (!(e & 1)) {                                             \
2936                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2937             } else {                                                    \
2938                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2939             }                                                           \
2940         }                                                               \
2941         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2942             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2943         }                                                               \
2944         mve_advance_vpt(env);                                           \
2945     }
2946 
2947 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2948 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2949 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2950 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2951 
2952 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2953     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2954                                 void *vd, void *vn, void *vm)           \
2955     {                                                                   \
2956         TYPE *d = vd, *n = vn, *m = vm;                                 \
2957         TYPE r;                                                         \
2958         uint16_t mask = mve_element_mask(env);                          \
2959         unsigned e;                                                     \
2960         float_status *fpst;                                             \
2961         float_status scratch_fpst;                                      \
2962         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2963             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2964                 continue;                                               \
2965             }                                                           \
2966             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2967             if (!(mask & 1)) {                                          \
2968                 /* We need the result but without updating flags */     \
2969                 scratch_fpst = *fpst;                                   \
2970                 fpst = &scratch_fpst;                                   \
2971             }                                                           \
2972             r = n[H##ESIZE(e)];                                         \
2973             if (CHS) {                                                  \
2974                 r = TYPE##_chs(r);                                      \
2975             }                                                           \
2976             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2977                               0, fpst);                                 \
2978             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2979         }                                                               \
2980         mve_advance_vpt(env);                                           \
2981     }
2982 
2983 DO_VFMA(vfmah, 2, float16, false)
2984 DO_VFMA(vfmas, 4, float32, false)
2985 DO_VFMA(vfmsh, 2, float16, true)
2986 DO_VFMA(vfmss, 4, float32, true)
2987 
2988 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2989     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2990                                 void *vd, void *vn, void *vm)           \
2991     {                                                                   \
2992         TYPE *d = vd, *n = vn, *m = vm;                                 \
2993         TYPE r0, r1, e1, e2, e3, e4;                                    \
2994         uint16_t mask = mve_element_mask(env);                          \
2995         unsigned e;                                                     \
2996         float_status *fpst0, *fpst1;                                    \
2997         float_status scratch_fpst;                                      \
2998         /* We loop through pairs of elements at a time */               \
2999         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
3000             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
3001                 continue;                                               \
3002             }                                                           \
3003             fpst0 = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3004             fpst1 = fpst0;                                              \
3005             if (!(mask & 1)) {                                          \
3006                 scratch_fpst = *fpst0;                                  \
3007                 fpst0 = &scratch_fpst;                                  \
3008             }                                                           \
3009             if (!(mask & (1 << ESIZE))) {                               \
3010                 scratch_fpst = *fpst1;                                  \
3011                 fpst1 = &scratch_fpst;                                  \
3012             }                                                           \
3013             switch (ROT) {                                              \
3014             case 0:                                                     \
3015                 e1 = m[H##ESIZE(e)];                                    \
3016                 e2 = n[H##ESIZE(e)];                                    \
3017                 e3 = m[H##ESIZE(e + 1)];                                \
3018                 e4 = n[H##ESIZE(e)];                                    \
3019                 break;                                                  \
3020             case 1:                                                     \
3021                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3022                 e2 = n[H##ESIZE(e + 1)];                                \
3023                 e3 = m[H##ESIZE(e)];                                    \
3024                 e4 = n[H##ESIZE(e + 1)];                                \
3025                 break;                                                  \
3026             case 2:                                                     \
3027                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3028                 e2 = n[H##ESIZE(e)];                                    \
3029                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3030                 e4 = n[H##ESIZE(e)];                                    \
3031                 break;                                                  \
3032             case 3:                                                     \
3033                 e1 = m[H##ESIZE(e + 1)];                                \
3034                 e2 = n[H##ESIZE(e + 1)];                                \
3035                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3036                 e4 = n[H##ESIZE(e + 1)];                                \
3037                 break;                                                  \
3038             default:                                                    \
3039                 g_assert_not_reached();                                 \
3040             }                                                           \
3041             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3042             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3043             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3044             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3045         }                                                               \
3046         mve_advance_vpt(env);                                           \
3047     }
3048 
3049 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3050 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3051 
3052 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3053 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3054 
3055 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3056 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3057 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3058 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3059 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3060 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3061 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3062 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3063 
3064 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3065 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3066 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3067 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3068 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3069 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3070 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3071 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3072 
3073 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3074     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3075                                 void *vd, void *vn, uint32_t rm)        \
3076     {                                                                   \
3077         TYPE *d = vd, *n = vn;                                          \
3078         TYPE r, m = rm;                                                 \
3079         uint16_t mask = mve_element_mask(env);                          \
3080         unsigned e;                                                     \
3081         float_status *fpst;                                             \
3082         float_status scratch_fpst;                                      \
3083         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3084             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3085                 continue;                                               \
3086             }                                                           \
3087             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3088             if (!(mask & 1)) {                                          \
3089                 /* We need the result but without updating flags */     \
3090                 scratch_fpst = *fpst;                                   \
3091                 fpst = &scratch_fpst;                                   \
3092             }                                                           \
3093             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3094             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3095         }                                                               \
3096         mve_advance_vpt(env);                                           \
3097     }
3098 
3099 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3100     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3101     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3102 
3103 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3104 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3105 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3106 
3107 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3108     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3109                                 void *vd, void *vn, uint32_t rm)        \
3110     {                                                                   \
3111         TYPE *d = vd, *n = vn;                                          \
3112         TYPE r, m = rm;                                                 \
3113         uint16_t mask = mve_element_mask(env);                          \
3114         unsigned e;                                                     \
3115         float_status *fpst;                                             \
3116         float_status scratch_fpst;                                      \
3117         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3118             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3119                 continue;                                               \
3120             }                                                           \
3121             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3122             if (!(mask & 1)) {                                          \
3123                 /* We need the result but without updating flags */     \
3124                 scratch_fpst = *fpst;                                   \
3125                 fpst = &scratch_fpst;                                   \
3126             }                                                           \
3127             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3128             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3129         }                                                               \
3130         mve_advance_vpt(env);                                           \
3131     }
3132 
3133 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3134 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3135 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3136 
3137 /* VFMA is vector * scalar + vector */
3138 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3139 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3140 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3141 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3142 
3143 /* Floating point max/min across vector. */
3144 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3145     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3146                                     uint32_t ra_in)             \
3147     {                                                           \
3148         uint16_t mask = mve_element_mask(env);                  \
3149         unsigned e;                                             \
3150         TYPE *m = vm;                                           \
3151         TYPE ra = (TYPE)ra_in;                                  \
3152         float_status *fpst =                                    \
3153             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3154         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3155             if (mask & 1) {                                     \
3156                 TYPE v = m[H##ESIZE(e)];                        \
3157                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3158                     ra = TYPE##_silence_nan(ra, fpst);          \
3159                     float_raise(float_flag_invalid, fpst);      \
3160                 }                                               \
3161                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3162                     v = TYPE##_silence_nan(v, fpst);            \
3163                     float_raise(float_flag_invalid, fpst);      \
3164                 }                                               \
3165                 if (ABS) {                                      \
3166                     v = TYPE##_abs(v);                          \
3167                 }                                               \
3168                 ra = FN(ra, v, fpst);                           \
3169             }                                                   \
3170         }                                                       \
3171         mve_advance_vpt(env);                                   \
3172         return ra;                                              \
3173     }                                                           \
3174 
3175 #define NOP(X) (X)
3176 
3177 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3178 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3179 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3180 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3181 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3182 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3183 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3184 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3185 
3186 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3187 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3188     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3189     {                                                                   \
3190         TYPE *n = vn, *m = vm;                                          \
3191         uint16_t mask = mve_element_mask(env);                          \
3192         uint16_t eci_mask = mve_eci_mask(env);                          \
3193         uint16_t beatpred = 0;                                          \
3194         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3195         unsigned e;                                                     \
3196         float_status *fpst;                                             \
3197         float_status scratch_fpst;                                      \
3198         bool r;                                                         \
3199         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3200             if ((mask & emask) == 0) {                                  \
3201                 continue;                                               \
3202             }                                                           \
3203             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3204             if (!(mask & (1 << (e * ESIZE)))) {                         \
3205                 /* We need the result but without updating flags */     \
3206                 scratch_fpst = *fpst;                                   \
3207                 fpst = &scratch_fpst;                                   \
3208             }                                                           \
3209             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3210             /* Comparison sets 0/1 bits for each byte in the element */ \
3211             beatpred |= r * emask;                                      \
3212         }                                                               \
3213         beatpred &= mask;                                               \
3214         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3215             (beatpred & eci_mask);                                      \
3216         mve_advance_vpt(env);                                           \
3217     }
3218 
3219 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3220     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3221                                 uint32_t rm)                            \
3222     {                                                                   \
3223         TYPE *n = vn;                                                   \
3224         uint16_t mask = mve_element_mask(env);                          \
3225         uint16_t eci_mask = mve_eci_mask(env);                          \
3226         uint16_t beatpred = 0;                                          \
3227         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3228         unsigned e;                                                     \
3229         float_status *fpst;                                             \
3230         float_status scratch_fpst;                                      \
3231         bool r;                                                         \
3232         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3233             if ((mask & emask) == 0) {                                  \
3234                 continue;                                               \
3235             }                                                           \
3236             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3237             if (!(mask & (1 << (e * ESIZE)))) {                         \
3238                 /* We need the result but without updating flags */     \
3239                 scratch_fpst = *fpst;                                   \
3240                 fpst = &scratch_fpst;                                   \
3241             }                                                           \
3242             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3243             /* Comparison sets 0/1 bits for each byte in the element */ \
3244             beatpred |= r * emask;                                      \
3245         }                                                               \
3246         beatpred &= mask;                                               \
3247         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3248             (beatpred & eci_mask);                                      \
3249         mve_advance_vpt(env);                                           \
3250     }
3251 
3252 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3253     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3254     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3255 
3256 /*
3257  * Some care is needed here to get the correct result for the unordered case.
3258  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3259  * the NE, LT and LE comparisons are defined as simple logical inverses of
3260  * EQ, GE and GT and so they must return true for unordered. The softfloat
3261  * comparison functions float*_{eq,le,lt} all return false for unordered.
3262  */
3263 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3264 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3265 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3266 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3267 
3268 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3269 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3270 
3271 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3272 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3273 
3274 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3275 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3276 
3277 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3278 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3279 
3280 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3281 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3282 
3283 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3284 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3285 
3286 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3287     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3288                                 uint32_t shift)                         \
3289     {                                                                   \
3290         TYPE *d = vd, *m = vm;                                          \
3291         TYPE r;                                                         \
3292         uint16_t mask = mve_element_mask(env);                          \
3293         unsigned e;                                                     \
3294         float_status *fpst;                                             \
3295         float_status scratch_fpst;                                      \
3296         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3297             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3298                 continue;                                               \
3299             }                                                           \
3300             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3301             if (!(mask & 1)) {                                          \
3302                 /* We need the result but without updating flags */     \
3303                 scratch_fpst = *fpst;                                   \
3304                 fpst = &scratch_fpst;                                   \
3305             }                                                           \
3306             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3307             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3308         }                                                               \
3309         mve_advance_vpt(env);                                           \
3310     }
3311 
3312 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3313 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3314 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3315 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3316 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3317 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3318 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3319 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3320 
3321 /* VCVT with specified rmode */
3322 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3323     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3324                                 void *vd, void *vm, uint32_t rmode)     \
3325     {                                                                   \
3326         TYPE *d = vd, *m = vm;                                          \
3327         TYPE r;                                                         \
3328         uint16_t mask = mve_element_mask(env);                          \
3329         unsigned e;                                                     \
3330         float_status *fpst;                                             \
3331         float_status scratch_fpst;                                      \
3332         float_status *base_fpst =                                       \
3333             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD];  \
3334         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3335         set_float_rounding_mode(rmode, base_fpst);                      \
3336         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3337             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3338                 continue;                                               \
3339             }                                                           \
3340             fpst = base_fpst;                                           \
3341             if (!(mask & 1)) {                                          \
3342                 /* We need the result but without updating flags */     \
3343                 scratch_fpst = *fpst;                                   \
3344                 fpst = &scratch_fpst;                                   \
3345             }                                                           \
3346             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3347             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3348         }                                                               \
3349         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3350         mve_advance_vpt(env);                                           \
3351     }
3352 
3353 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3354 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3355 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3356 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3357 
3358 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3359 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3360 
3361 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3362 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3363 
3364 /*
3365  * VCVT between halfprec and singleprec. As usual for halfprec
3366  * conversions, FZ16 is ignored and AHP is observed.
3367  */
3368 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3369 {
3370     uint16_t *d = vd;
3371     uint32_t *m = vm;
3372     uint16_t r;
3373     uint16_t mask = mve_element_mask(env);
3374     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3375     unsigned e;
3376     float_status *fpst;
3377     float_status scratch_fpst;
3378     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3379     bool old_fz = get_flush_to_zero(base_fpst);
3380     set_flush_to_zero(false, base_fpst);
3381     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3382         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3383             continue;
3384         }
3385         fpst = base_fpst;
3386         if (!(mask & 1)) {
3387             /* We need the result but without updating flags */
3388             scratch_fpst = *fpst;
3389             fpst = &scratch_fpst;
3390         }
3391         r = float32_to_float16(m[H4(e)], ieee, fpst);
3392         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3393     }
3394     set_flush_to_zero(old_fz, base_fpst);
3395     mve_advance_vpt(env);
3396 }
3397 
3398 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3399 {
3400     uint32_t *d = vd;
3401     uint16_t *m = vm;
3402     uint32_t r;
3403     uint16_t mask = mve_element_mask(env);
3404     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3405     unsigned e;
3406     float_status *fpst;
3407     float_status scratch_fpst;
3408     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3409     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3410     set_flush_inputs_to_zero(false, base_fpst);
3411     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3412         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3413             continue;
3414         }
3415         fpst = base_fpst;
3416         if (!(mask & (1 << (top * 2)))) {
3417             /* We need the result but without updating flags */
3418             scratch_fpst = *fpst;
3419             fpst = &scratch_fpst;
3420         }
3421         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3422         mergemask(&d[H4(e)], r, mask);
3423     }
3424     set_flush_inputs_to_zero(old_fiz, base_fpst);
3425     mve_advance_vpt(env);
3426 }
3427 
3428 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3429 {
3430     do_vcvt_sh(env, vd, vm, 0);
3431 }
3432 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3433 {
3434     do_vcvt_sh(env, vd, vm, 1);
3435 }
3436 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3437 {
3438     do_vcvt_hs(env, vd, vm, 0);
3439 }
3440 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3441 {
3442     do_vcvt_hs(env, vd, vm, 1);
3443 }
3444 
3445 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3446     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3447     {                                                                   \
3448         TYPE *d = vd, *m = vm;                                          \
3449         TYPE r;                                                         \
3450         uint16_t mask = mve_element_mask(env);                          \
3451         unsigned e;                                                     \
3452         float_status *fpst;                                             \
3453         float_status scratch_fpst;                                      \
3454         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3455             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3456                 continue;                                               \
3457             }                                                           \
3458             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3459             if (!(mask & 1)) {                                          \
3460                 /* We need the result but without updating flags */     \
3461                 scratch_fpst = *fpst;                                   \
3462                 fpst = &scratch_fpst;                                   \
3463             }                                                           \
3464             r = FN(m[H##ESIZE(e)], fpst);                               \
3465             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3466         }                                                               \
3467         mve_advance_vpt(env);                                           \
3468     }
3469 
3470 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3471 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3472