xref: /qemu/target/arm/tcg/mve_helper.c (revision 9a7d445c09aa79a14bc4c5eede635b043622cbf0)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "accel/tcg/cpu-ldst.h"
26 #include "tcg/tcg.h"
27 #include "fpu/softfloat.h"
28 #include "crypto/clmul.h"
29 
30 static uint16_t mve_eci_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector correspond
34      * to beats being executed. The mask has 1 bits for executed lanes
35      * and 0 bits where ECI says this beat was already executed.
36      */
37     int eci;
38 
39     if ((env->condexec_bits & 0xf) != 0) {
40         return 0xffff;
41     }
42 
43     eci = env->condexec_bits >> 4;
44     switch (eci) {
45     case ECI_NONE:
46         return 0xffff;
47     case ECI_A0:
48         return 0xfff0;
49     case ECI_A0A1:
50         return 0xff00;
51     case ECI_A0A1A2:
52     case ECI_A0A1A2B0:
53         return 0xf000;
54     default:
55         g_assert_not_reached();
56     }
57 }
58 
59 static uint16_t mve_element_mask(CPUARMState *env)
60 {
61     /*
62      * Return the mask of which elements in the MVE vector should be
63      * updated. This is a combination of multiple things:
64      *  (1) by default, we update every lane in the vector
65      *  (2) VPT predication stores its state in the VPR register;
66      *  (3) low-overhead-branch tail predication will mask out part
67      *      the vector on the final iteration of the loop
68      *  (4) if EPSR.ECI is set then we must execute only some beats
69      *      of the insn
70      * We combine all these into a 16-bit result with the same semantics
71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
72      * 8-bit vector ops will look at all bits of the result;
73      * 16-bit ops will look at bits 0, 2, 4, ...;
74      * 32-bit ops will look at bits 0, 4, 8 and 12.
75      * Compare pseudocode GetCurInstrBeat(), though that only returns
76      * the 4-bit slice of the mask corresponding to a single beat.
77      */
78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
79 
80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
81         mask |= 0xff;
82     }
83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
84         mask |= 0xff00;
85     }
86 
87     if (env->v7m.ltpsize < 4 &&
88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
89         /*
90          * Tail predication active, and this is the last loop iteration.
91          * The element size is (1 << ltpsize), and we only want to process
92          * loopcount elements, so we want to retain the least significant
93          * (loopcount * esize) predicate bits and zero out bits above that.
94          */
95         int masklen = env->regs[14] << env->v7m.ltpsize;
96         assert(masklen <= 16);
97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
98         mask &= ltpmask;
99     }
100 
101     /*
102      * ECI bits indicate which beats are already executed;
103      * we handle this by effectively predicating them out.
104      */
105     mask &= mve_eci_mask(env);
106     return mask;
107 }
108 
109 static void mve_advance_vpt(CPUARMState *env)
110 {
111     /* Advance the VPT and ECI state if necessary */
112     uint32_t vpr = env->v7m.vpr;
113     unsigned mask01, mask23;
114     uint16_t inv_mask;
115     uint16_t eci_mask = mve_eci_mask(env);
116 
117     if ((env->condexec_bits & 0xf) == 0) {
118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
119             (ECI_A0 << 4) : (ECI_NONE << 4);
120     }
121 
122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
123         /* VPT not enabled, nothing to do */
124         return;
125     }
126 
127     /* Invert P0 bits if needed, but only for beats we actually executed */
128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
130     /* Start by assuming we invert all bits corresponding to executed beats */
131     inv_mask = eci_mask;
132     if (mask01 <= 8) {
133         /* MASK01 says don't invert low half of P0 */
134         inv_mask &= ~0xff;
135     }
136     if (mask23 <= 8) {
137         /* MASK23 says don't invert high half of P0 */
138         inv_mask &= ~0xff00;
139     }
140     vpr ^= inv_mask;
141     /* Only update MASK01 if beat 1 executed */
142     if (eci_mask & 0xf0) {
143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
144     }
145     /* Beat 3 always executes, so update MASK23 */
146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
147     env->v7m.vpr = vpr;
148 }
149 
150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
151 #define DO_VLDR(OP, MFLAG, MSIZE, MTYPE, LDTYPE, ESIZE, TYPE)           \
152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
153     {                                                                   \
154         TYPE *d = vd;                                                   \
155         uint16_t mask = mve_element_mask(env);                          \
156         uint16_t eci_mask = mve_eci_mask(env);                          \
157         unsigned b, e;                                                  \
158         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
159         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
160         /*                                                              \
161          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
162          * beats so we don't care if we update part of the dest and     \
163          * then take an exception.                                      \
164          */                                                             \
165         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
166             if (eci_mask & (1 << b)) {                                  \
167                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
168                     (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;\
169             }                                                           \
170             addr += MSIZE;                                              \
171         }                                                               \
172         mve_advance_vpt(env);                                           \
173     }
174 
175 #define DO_VSTR(OP, MFLAG, MSIZE, STTYPE, ESIZE, TYPE)                  \
176     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
177     {                                                                   \
178         TYPE *d = vd;                                                   \
179         uint16_t mask = mve_element_mask(env);                          \
180         unsigned b, e;                                                  \
181         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
182         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
183         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
184             if (mask & (1 << b)) {                                      \
185                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
186             }                                                           \
187             addr += MSIZE;                                              \
188         }                                                               \
189         mve_advance_vpt(env);                                           \
190     }
191 
192 DO_VLDR(vldrb, MO_UB, 1, uint8_t, ldb, 1, uint8_t)
193 DO_VLDR(vldrh, MO_TEUW, 2, uint16_t, ldw, 2, uint16_t)
194 DO_VLDR(vldrw, MO_TEUL, 4, uint32_t, ldl, 4, uint32_t)
195 
196 DO_VSTR(vstrb, MO_UB, 1, stb, 1, uint8_t)
197 DO_VSTR(vstrh, MO_TEUW, 2, stw, 2, uint16_t)
198 DO_VSTR(vstrw, MO_TEUL, 4, stl, 4, uint32_t)
199 
200 DO_VLDR(vldrb_sh, MO_SB, 1, int8_t, ldb, 2, int16_t)
201 DO_VLDR(vldrb_sw, MO_SB, 1, int8_t, ldb, 4, int32_t)
202 DO_VLDR(vldrb_uh, MO_UB, 1, uint8_t, ldb, 2, uint16_t)
203 DO_VLDR(vldrb_uw, MO_UB, 1, uint8_t, ldb, 4, uint32_t)
204 DO_VLDR(vldrh_sw, MO_TESW, 2, int16_t, ldw, 4, int32_t)
205 DO_VLDR(vldrh_uw, MO_TEUW, 2, uint16_t, ldw, 4, uint32_t)
206 
207 DO_VSTR(vstrb_h, MO_UB, 1, stb, 2, int16_t)
208 DO_VSTR(vstrb_w, MO_UB, 1, stb, 4, int32_t)
209 DO_VSTR(vstrh_w, MO_TEUW, 2, stw, 4, int32_t)
210 
211 #undef DO_VLDR
212 #undef DO_VSTR
213 
214 /*
215  * Gather loads/scatter stores. Here each element of Qm specifies
216  * an offset to use from the base register Rm. In the _os_ versions
217  * that offset is scaled by the element size.
218  * For loads, predicated lanes are zeroed instead of retaining
219  * their previous values.
220  */
221 #define DO_VLDR_SG(OP, MFLAG, MTYPE, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)\
222     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
223                           uint32_t base)                                \
224     {                                                                   \
225         TYPE *d = vd;                                                   \
226         OFFTYPE *m = vm;                                                \
227         uint16_t mask = mve_element_mask(env);                          \
228         uint16_t eci_mask = mve_eci_mask(env);                          \
229         unsigned e;                                                     \
230         uint32_t addr;                                                  \
231         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
232         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
233         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
234             if (!(eci_mask & 1)) {                                      \
235                 continue;                                               \
236             }                                                           \
237             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
238             d[H##ESIZE(e)] = (mask & 1) ?                               \
239                 (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;  \
240             if (WB) {                                                   \
241                 m[H##ESIZE(e)] = addr;                                  \
242             }                                                           \
243         }                                                               \
244         mve_advance_vpt(env);                                           \
245     }
246 
247 /* We know here TYPE is unsigned so always the same as the offset type */
248 #define DO_VSTR_SG(OP, MFLAG, STTYPE, ESIZE, TYPE, ADDRFN, WB)          \
249     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
250                           uint32_t base)                                \
251     {                                                                   \
252         TYPE *d = vd;                                                   \
253         TYPE *m = vm;                                                   \
254         uint16_t mask = mve_element_mask(env);                          \
255         uint16_t eci_mask = mve_eci_mask(env);                          \
256         unsigned e;                                                     \
257         uint32_t addr;                                                  \
258         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
259         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
260         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
261             if (!(eci_mask & 1)) {                                      \
262                 continue;                                               \
263             }                                                           \
264             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
265             if (mask & 1) {                                             \
266                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
267             }                                                           \
268             if (WB) {                                                   \
269                 m[H##ESIZE(e)] = addr;                                  \
270             }                                                           \
271         }                                                               \
272         mve_advance_vpt(env);                                           \
273     }
274 
275 /*
276  * 64-bit accesses are slightly different: they are done as two 32-bit
277  * accesses, controlled by the predicate mask for the relevant beat,
278  * and with a single 32-bit offset in the first of the two Qm elements.
279  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
280  * Address writeback happens on the odd beats and updates the address
281  * stored in the even-beat element.
282  */
283 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
284     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
285                           uint32_t base)                                \
286     {                                                                   \
287         uint32_t *d = vd;                                               \
288         uint32_t *m = vm;                                               \
289         uint16_t mask = mve_element_mask(env);                          \
290         uint16_t eci_mask = mve_eci_mask(env);                          \
291         unsigned e;                                                     \
292         uint32_t addr;                                                  \
293         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
294         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
295         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
296             if (!(eci_mask & 1)) {                                      \
297                 continue;                                               \
298             }                                                           \
299             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
300             addr += 4 * (e & 1);                                        \
301             d[H4(e)] = (mask & 1) ? cpu_ldl_mmu(env, addr, oi, GETPC()) : 0; \
302             if (WB && (e & 1)) {                                        \
303                 m[H4(e & ~1)] = addr - 4;                               \
304             }                                                           \
305         }                                                               \
306         mve_advance_vpt(env);                                           \
307     }
308 
309 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
310     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
311                           uint32_t base)                                \
312     {                                                                   \
313         uint32_t *d = vd;                                               \
314         uint32_t *m = vm;                                               \
315         uint16_t mask = mve_element_mask(env);                          \
316         uint16_t eci_mask = mve_eci_mask(env);                          \
317         unsigned e;                                                     \
318         uint32_t addr;                                                  \
319         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
320         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
321         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
322             if (!(eci_mask & 1)) {                                      \
323                 continue;                                               \
324             }                                                           \
325             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
326             addr += 4 * (e & 1);                                        \
327             if (mask & 1) {                                             \
328                 cpu_stl_mmu(env, addr, d[H4(e)], oi, GETPC());          \
329             }                                                           \
330             if (WB && (e & 1)) {                                        \
331                 m[H4(e & ~1)] = addr - 4;                               \
332             }                                                           \
333         }                                                               \
334         mve_advance_vpt(env);                                           \
335     }
336 
337 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
338 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
339 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
340 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
341 
342 DO_VLDR_SG(vldrb_sg_sh, MO_SB, int8_t, ldb, 2, int16_t, uint16_t, ADDR_ADD, false)
343 DO_VLDR_SG(vldrb_sg_sw, MO_SB, int8_t, ldb, 4, int32_t, uint32_t, ADDR_ADD, false)
344 DO_VLDR_SG(vldrh_sg_sw, MO_TESW, int16_t, ldw, 4, int32_t, uint32_t, ADDR_ADD, false)
345 
346 DO_VLDR_SG(vldrb_sg_ub, MO_UB, uint8_t, ldb, 1, uint8_t, uint8_t, ADDR_ADD, false)
347 DO_VLDR_SG(vldrb_sg_uh, MO_UB, uint8_t, ldb, 2, uint16_t, uint16_t, ADDR_ADD, false)
348 DO_VLDR_SG(vldrb_sg_uw, MO_UB, uint8_t, ldb, 4, uint32_t, uint32_t, ADDR_ADD, false)
349 DO_VLDR_SG(vldrh_sg_uh, MO_TEUW, uint16_t, ldw, 2, uint16_t, uint16_t, ADDR_ADD, false)
350 DO_VLDR_SG(vldrh_sg_uw, MO_TEUW, uint16_t, ldw, 4, uint32_t, uint32_t, ADDR_ADD, false)
351 DO_VLDR_SG(vldrw_sg_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
352 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
353 
354 DO_VLDR_SG(vldrh_sg_os_sw, MO_TESW, int16_t, ldw, 4,
355            int32_t, uint32_t, ADDR_ADD_OSH, false)
356 DO_VLDR_SG(vldrh_sg_os_uh, MO_TEUW, uint16_t, ldw, 2,
357            uint16_t, uint16_t, ADDR_ADD_OSH, false)
358 DO_VLDR_SG(vldrh_sg_os_uw, MO_TEUW, uint16_t, ldw, 4,
359            uint32_t, uint32_t, ADDR_ADD_OSH, false)
360 DO_VLDR_SG(vldrw_sg_os_uw, MO_TEUL, uint32_t, ldl, 4,
361            uint32_t, uint32_t, ADDR_ADD_OSW, false)
362 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
363 
364 DO_VSTR_SG(vstrb_sg_ub, MO_UB, stb, 1, uint8_t, ADDR_ADD, false)
365 DO_VSTR_SG(vstrb_sg_uh, MO_UB, stb, 2, uint16_t, ADDR_ADD, false)
366 DO_VSTR_SG(vstrb_sg_uw, MO_UB, stb, 4, uint32_t, ADDR_ADD, false)
367 DO_VSTR_SG(vstrh_sg_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD, false)
368 DO_VSTR_SG(vstrh_sg_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD, false)
369 DO_VSTR_SG(vstrw_sg_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, false)
370 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
371 
372 DO_VSTR_SG(vstrh_sg_os_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD_OSH, false)
373 DO_VSTR_SG(vstrh_sg_os_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD_OSH, false)
374 DO_VSTR_SG(vstrw_sg_os_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD_OSW, false)
375 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
376 
377 DO_VLDR_SG(vldrw_sg_wb_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
378 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
379 DO_VSTR_SG(vstrw_sg_wb_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, true)
380 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
381 
382 /*
383  * Deinterleaving loads/interleaving stores.
384  *
385  * For these helpers we are passed the index of the first Qreg
386  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
387  * and the value of the base address register Rn.
388  * The helpers are specialized for pattern and element size, so
389  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
390  *
391  * These insns are beatwise but not predicated, so we must honour ECI,
392  * but need not look at mve_element_mask().
393  *
394  * The pseudocode implements these insns with multiple memory accesses
395  * of the element size, but rules R_VVVG and R_FXDM permit us to make
396  * one 32-bit memory access per beat.
397  */
398 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
399     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
400                           uint32_t base)                                \
401     {                                                                   \
402         int beat, e;                                                    \
403         uint16_t mask = mve_eci_mask(env);                              \
404         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
405         uint32_t addr, data;                                            \
406         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
407         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
408         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
409             if ((mask & 1) == 0) {                                      \
410                 /* ECI says skip this beat */                           \
411                 continue;                                               \
412             }                                                           \
413             addr = base + off[beat] * 4;                                \
414             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
415             for (e = 0; e < 4; e++, data >>= 8) {                       \
416                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
417                 qd[H1(off[beat])] = data;                               \
418             }                                                           \
419         }                                                               \
420     }
421 
422 #define DO_VLD4H(OP, O1, O2)                                            \
423     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
424                           uint32_t base)                                \
425     {                                                                   \
426         int beat;                                                       \
427         uint16_t mask = mve_eci_mask(env);                              \
428         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
429         uint32_t addr, data;                                            \
430         int y; /* y counts 0 2 0 2 */                                   \
431         uint16_t *qd;                                                   \
432         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
433         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
434         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
435             if ((mask & 1) == 0) {                                      \
436                 /* ECI says skip this beat */                           \
437                 continue;                                               \
438             }                                                           \
439             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
440             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
441             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
442             qd[H2(off[beat])] = data;                                   \
443             data >>= 16;                                                \
444             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
445             qd[H2(off[beat])] = data;                                   \
446         }                                                               \
447     }
448 
449 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
450     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
451                           uint32_t base)                                \
452     {                                                                   \
453         int beat;                                                       \
454         uint16_t mask = mve_eci_mask(env);                              \
455         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
456         uint32_t addr, data;                                            \
457         uint32_t *qd;                                                   \
458         int y;                                                          \
459         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
460         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
461         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
462             if ((mask & 1) == 0) {                                      \
463                 /* ECI says skip this beat */                           \
464                 continue;                                               \
465             }                                                           \
466             addr = base + off[beat] * 4;                                \
467             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
468             y = (beat + (O1 & 2)) & 3;                                  \
469             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
470             qd[H4(off[beat] >> 2)] = data;                              \
471         }                                                               \
472     }
473 
474 DO_VLD4B(vld40b, 0, 1, 10, 11)
475 DO_VLD4B(vld41b, 2, 3, 12, 13)
476 DO_VLD4B(vld42b, 4, 5, 14, 15)
477 DO_VLD4B(vld43b, 6, 7, 8, 9)
478 
479 DO_VLD4H(vld40h, 0, 5)
480 DO_VLD4H(vld41h, 1, 6)
481 DO_VLD4H(vld42h, 2, 7)
482 DO_VLD4H(vld43h, 3, 4)
483 
484 DO_VLD4W(vld40w, 0, 1, 10, 11)
485 DO_VLD4W(vld41w, 2, 3, 12, 13)
486 DO_VLD4W(vld42w, 4, 5, 14, 15)
487 DO_VLD4W(vld43w, 6, 7, 8, 9)
488 
489 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
490     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
491                           uint32_t base)                                \
492     {                                                                   \
493         int beat, e;                                                    \
494         uint16_t mask = mve_eci_mask(env);                              \
495         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
496         uint32_t addr, data;                                            \
497         uint8_t *qd;                                                    \
498         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
499         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
501             if ((mask & 1) == 0) {                                      \
502                 /* ECI says skip this beat */                           \
503                 continue;                                               \
504             }                                                           \
505             addr = base + off[beat] * 2;                                \
506             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
507             for (e = 0; e < 4; e++, data >>= 8) {                       \
508                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
509                 qd[H1(off[beat] + (e >> 1))] = data;                    \
510             }                                                           \
511         }                                                               \
512     }
513 
514 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
516                           uint32_t base)                                \
517     {                                                                   \
518         int beat;                                                       \
519         uint16_t mask = mve_eci_mask(env);                              \
520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
521         uint32_t addr, data;                                            \
522         int e;                                                          \
523         uint16_t *qd;                                                   \
524         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
525         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
526         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
527             if ((mask & 1) == 0) {                                      \
528                 /* ECI says skip this beat */                           \
529                 continue;                                               \
530             }                                                           \
531             addr = base + off[beat] * 4;                                \
532             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
533             for (e = 0; e < 2; e++, data >>= 16) {                      \
534                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
535                 qd[H2(off[beat])] = data;                               \
536             }                                                           \
537         }                                                               \
538     }
539 
540 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
541     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
542                           uint32_t base)                                \
543     {                                                                   \
544         int beat;                                                       \
545         uint16_t mask = mve_eci_mask(env);                              \
546         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
547         uint32_t addr, data;                                            \
548         uint32_t *qd;                                                   \
549         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
550         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
551         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
552             if ((mask & 1) == 0) {                                      \
553                 /* ECI says skip this beat */                           \
554                 continue;                                               \
555             }                                                           \
556             addr = base + off[beat];                                    \
557             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
558             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
559             qd[H4(off[beat] >> 3)] = data;                              \
560         }                                                               \
561     }
562 
563 DO_VLD2B(vld20b, 0, 2, 12, 14)
564 DO_VLD2B(vld21b, 4, 6, 8, 10)
565 
566 DO_VLD2H(vld20h, 0, 1, 6, 7)
567 DO_VLD2H(vld21h, 2, 3, 4, 5)
568 
569 DO_VLD2W(vld20w, 0, 4, 24, 28)
570 DO_VLD2W(vld21w, 8, 12, 16, 20)
571 
572 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
573     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
574                           uint32_t base)                                \
575     {                                                                   \
576         int beat, e;                                                    \
577         uint16_t mask = mve_eci_mask(env);                              \
578         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
579         uint32_t addr, data;                                            \
580         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
581         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
582         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
583             if ((mask & 1) == 0) {                                      \
584                 /* ECI says skip this beat */                           \
585                 continue;                                               \
586             }                                                           \
587             addr = base + off[beat] * 4;                                \
588             data = 0;                                                   \
589             for (e = 3; e >= 0; e--) {                                  \
590                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
591                 data = (data << 8) | qd[H1(off[beat])];                 \
592             }                                                           \
593             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
594         }                                                               \
595     }
596 
597 #define DO_VST4H(OP, O1, O2)                                            \
598     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
599                           uint32_t base)                                \
600     {                                                                   \
601         int beat;                                                       \
602         uint16_t mask = mve_eci_mask(env);                              \
603         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
604         uint32_t addr, data;                                            \
605         int y; /* y counts 0 2 0 2 */                                   \
606         uint16_t *qd;                                                   \
607         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
608         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
609         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
610             if ((mask & 1) == 0) {                                      \
611                 /* ECI says skip this beat */                           \
612                 continue;                                               \
613             }                                                           \
614             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
615             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
616             data = qd[H2(off[beat])];                                   \
617             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
618             data |= qd[H2(off[beat])] << 16;                            \
619             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
620         }                                                               \
621     }
622 
623 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
624     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
625                           uint32_t base)                                \
626     {                                                                   \
627         int beat;                                                       \
628         uint16_t mask = mve_eci_mask(env);                              \
629         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
630         uint32_t addr, data;                                            \
631         uint32_t *qd;                                                   \
632         int y;                                                          \
633         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
634         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
635         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
636             if ((mask & 1) == 0) {                                      \
637                 /* ECI says skip this beat */                           \
638                 continue;                                               \
639             }                                                           \
640             addr = base + off[beat] * 4;                                \
641             y = (beat + (O1 & 2)) & 3;                                  \
642             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
643             data = qd[H4(off[beat] >> 2)];                              \
644             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
645         }                                                               \
646     }
647 
648 DO_VST4B(vst40b, 0, 1, 10, 11)
649 DO_VST4B(vst41b, 2, 3, 12, 13)
650 DO_VST4B(vst42b, 4, 5, 14, 15)
651 DO_VST4B(vst43b, 6, 7, 8, 9)
652 
653 DO_VST4H(vst40h, 0, 5)
654 DO_VST4H(vst41h, 1, 6)
655 DO_VST4H(vst42h, 2, 7)
656 DO_VST4H(vst43h, 3, 4)
657 
658 DO_VST4W(vst40w, 0, 1, 10, 11)
659 DO_VST4W(vst41w, 2, 3, 12, 13)
660 DO_VST4W(vst42w, 4, 5, 14, 15)
661 DO_VST4W(vst43w, 6, 7, 8, 9)
662 
663 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
664     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
665                           uint32_t base)                                \
666     {                                                                   \
667         int beat, e;                                                    \
668         uint16_t mask = mve_eci_mask(env);                              \
669         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
670         uint32_t addr, data;                                            \
671         uint8_t *qd;                                                    \
672         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
673         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
674         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
675             if ((mask & 1) == 0) {                                      \
676                 /* ECI says skip this beat */                           \
677                 continue;                                               \
678             }                                                           \
679             addr = base + off[beat] * 2;                                \
680             data = 0;                                                   \
681             for (e = 3; e >= 0; e--) {                                  \
682                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
683                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
684             }                                                           \
685             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
686         }                                                               \
687     }
688 
689 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
690     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
691                           uint32_t base)                                \
692     {                                                                   \
693         int beat;                                                       \
694         uint16_t mask = mve_eci_mask(env);                              \
695         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
696         uint32_t addr, data;                                            \
697         int e;                                                          \
698         uint16_t *qd;                                                   \
699         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
700         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
701         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
702             if ((mask & 1) == 0) {                                      \
703                 /* ECI says skip this beat */                           \
704                 continue;                                               \
705             }                                                           \
706             addr = base + off[beat] * 4;                                \
707             data = 0;                                                   \
708             for (e = 1; e >= 0; e--) {                                  \
709                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
710                 data = (data << 16) | qd[H2(off[beat])];                \
711             }                                                           \
712             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
713         }                                                               \
714     }
715 
716 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
717     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
718                           uint32_t base)                                \
719     {                                                                   \
720         int beat;                                                       \
721         uint16_t mask = mve_eci_mask(env);                              \
722         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
723         uint32_t addr, data;                                            \
724         uint32_t *qd;                                                   \
725         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
726         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
727         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
728             if ((mask & 1) == 0) {                                      \
729                 /* ECI says skip this beat */                           \
730                 continue;                                               \
731             }                                                           \
732             addr = base + off[beat];                                    \
733             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
734             data = qd[H4(off[beat] >> 3)];                              \
735             cpu_stl_mmu(env, addr, data, oi, GETPC());                  \
736         }                                                               \
737     }
738 
739 DO_VST2B(vst20b, 0, 2, 12, 14)
740 DO_VST2B(vst21b, 4, 6, 8, 10)
741 
742 DO_VST2H(vst20h, 0, 1, 6, 7)
743 DO_VST2H(vst21h, 2, 3, 4, 5)
744 
745 DO_VST2W(vst20w, 0, 4, 24, 28)
746 DO_VST2W(vst21w, 8, 12, 16, 20)
747 
748 /*
749  * The mergemask(D, R, M) macro performs the operation "*D = R" but
750  * storing only the bytes which correspond to 1 bits in M,
751  * leaving other bytes in *D unchanged. We use _Generic
752  * to select the correct implementation based on the type of D.
753  */
754 
755 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
756 {
757     if (mask & 1) {
758         *d = r;
759     }
760 }
761 
762 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
763 {
764     mergemask_ub((uint8_t *)d, r, mask);
765 }
766 
767 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
768 {
769     uint16_t bmask = expand_pred_b(mask);
770     *d = (*d & ~bmask) | (r & bmask);
771 }
772 
773 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
774 {
775     mergemask_uh((uint16_t *)d, r, mask);
776 }
777 
778 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
779 {
780     uint32_t bmask = expand_pred_b(mask);
781     *d = (*d & ~bmask) | (r & bmask);
782 }
783 
784 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
785 {
786     mergemask_uw((uint32_t *)d, r, mask);
787 }
788 
789 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
790 {
791     uint64_t bmask = expand_pred_b(mask);
792     *d = (*d & ~bmask) | (r & bmask);
793 }
794 
795 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
796 {
797     mergemask_uq((uint64_t *)d, r, mask);
798 }
799 
800 #define mergemask(D, R, M)                      \
801     _Generic(D,                                 \
802              uint8_t *: mergemask_ub,           \
803              int8_t *:  mergemask_sb,           \
804              uint16_t *: mergemask_uh,          \
805              int16_t *:  mergemask_sh,          \
806              uint32_t *: mergemask_uw,          \
807              int32_t *:  mergemask_sw,          \
808              uint64_t *: mergemask_uq,          \
809              int64_t *:  mergemask_sq)(D, R, M)
810 
811 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
812 {
813     /*
814      * The generated code already replicated an 8 or 16 bit constant
815      * into the 32-bit value, so we only need to write the 32-bit
816      * value to all elements of the Qreg, allowing for predication.
817      */
818     uint32_t *d = vd;
819     uint16_t mask = mve_element_mask(env);
820     unsigned e;
821     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
822         mergemask(&d[H4(e)], val, mask);
823     }
824     mve_advance_vpt(env);
825 }
826 
827 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
828     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
829     {                                                                   \
830         TYPE *d = vd, *m = vm;                                          \
831         uint16_t mask = mve_element_mask(env);                          \
832         unsigned e;                                                     \
833         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
834             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
835         }                                                               \
836         mve_advance_vpt(env);                                           \
837     }
838 
839 #define DO_CLS_B(N)   (clrsb32(N) - 24)
840 #define DO_CLS_H(N)   (clrsb32(N) - 16)
841 
842 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
843 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
844 DO_1OP(vclsw, 4, int32_t, clrsb32)
845 
846 #define DO_CLZ_B(N)   (clz32(N) - 24)
847 #define DO_CLZ_H(N)   (clz32(N) - 16)
848 
849 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
850 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
851 DO_1OP(vclzw, 4, uint32_t, clz32)
852 
853 DO_1OP(vrev16b, 2, uint16_t, bswap16)
854 DO_1OP(vrev32b, 4, uint32_t, bswap32)
855 DO_1OP(vrev32h, 4, uint32_t, hswap32)
856 DO_1OP(vrev64b, 8, uint64_t, bswap64)
857 DO_1OP(vrev64h, 8, uint64_t, hswap64)
858 DO_1OP(vrev64w, 8, uint64_t, wswap64)
859 
860 #define DO_NOT(N) (~(N))
861 
862 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
863 
864 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
865 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
866 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
867 
868 DO_1OP(vabsb, 1, int8_t, DO_ABS)
869 DO_1OP(vabsh, 2, int16_t, DO_ABS)
870 DO_1OP(vabsw, 4, int32_t, DO_ABS)
871 
872 /* We can do these 64 bits at a time */
873 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
874 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
875 
876 #define DO_NEG(N)    (-(N))
877 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
878 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
879 
880 DO_1OP(vnegb, 1, int8_t, DO_NEG)
881 DO_1OP(vnegh, 2, int16_t, DO_NEG)
882 DO_1OP(vnegw, 4, int32_t, DO_NEG)
883 
884 /* We can do these 64 bits at a time */
885 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
886 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
887 
888 /*
889  * 1 operand immediates: Vda is destination and possibly also one source.
890  * All these insns work at 64-bit widths.
891  */
892 #define DO_1OP_IMM(OP, FN)                                              \
893     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
894     {                                                                   \
895         uint64_t *da = vda;                                             \
896         uint16_t mask = mve_element_mask(env);                          \
897         unsigned e;                                                     \
898         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
899             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
900         }                                                               \
901         mve_advance_vpt(env);                                           \
902     }
903 
904 #define DO_MOVI(N, I) (I)
905 #define DO_ANDI(N, I) ((N) & (I))
906 #define DO_ORRI(N, I) ((N) | (I))
907 
908 DO_1OP_IMM(vmovi, DO_MOVI)
909 DO_1OP_IMM(vandi, DO_ANDI)
910 DO_1OP_IMM(vorri, DO_ORRI)
911 
912 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
913     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
914                                 void *vd, void *vn, void *vm)           \
915     {                                                                   \
916         TYPE *d = vd, *n = vn, *m = vm;                                 \
917         uint16_t mask = mve_element_mask(env);                          \
918         unsigned e;                                                     \
919         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
920             mergemask(&d[H##ESIZE(e)],                                  \
921                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
922         }                                                               \
923         mve_advance_vpt(env);                                           \
924     }
925 
926 /* provide unsigned 2-op helpers for all sizes */
927 #define DO_2OP_U(OP, FN)                        \
928     DO_2OP(OP##b, 1, uint8_t, FN)               \
929     DO_2OP(OP##h, 2, uint16_t, FN)              \
930     DO_2OP(OP##w, 4, uint32_t, FN)
931 
932 /* provide signed 2-op helpers for all sizes */
933 #define DO_2OP_S(OP, FN)                        \
934     DO_2OP(OP##b, 1, int8_t, FN)                \
935     DO_2OP(OP##h, 2, int16_t, FN)               \
936     DO_2OP(OP##w, 4, int32_t, FN)
937 
938 /*
939  * "Long" operations where two half-sized inputs (taken from either the
940  * top or the bottom of the input vector) produce a double-width result.
941  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
942  */
943 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
944     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
945     {                                                                   \
946         LTYPE *d = vd;                                                  \
947         TYPE *n = vn, *m = vm;                                          \
948         uint16_t mask = mve_element_mask(env);                          \
949         unsigned le;                                                    \
950         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
951             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
952                          m[H##ESIZE(le * 2 + TOP)]);                    \
953             mergemask(&d[H##LESIZE(le)], r, mask);                      \
954         }                                                               \
955         mve_advance_vpt(env);                                           \
956     }
957 
958 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
959     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
960     {                                                                   \
961         TYPE *d = vd, *n = vn, *m = vm;                                 \
962         uint16_t mask = mve_element_mask(env);                          \
963         unsigned e;                                                     \
964         bool qc = false;                                                \
965         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
966             bool sat = false;                                           \
967             TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);         \
968             mergemask(&d[H##ESIZE(e)], r_, mask);                       \
969             qc |= sat & mask & 1;                                       \
970         }                                                               \
971         if (qc) {                                                       \
972             env->vfp.qc[0] = qc;                                        \
973         }                                                               \
974         mve_advance_vpt(env);                                           \
975     }
976 
977 /* provide unsigned 2-op helpers for all sizes */
978 #define DO_2OP_SAT_U(OP, FN)                    \
979     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
980     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
981     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
982 
983 /* provide signed 2-op helpers for all sizes */
984 #define DO_2OP_SAT_S(OP, FN)                    \
985     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
986     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
987     DO_2OP_SAT(OP##w, 4, int32_t, FN)
988 
989 #define DO_AND(N, M)  ((N) & (M))
990 #define DO_BIC(N, M)  ((N) & ~(M))
991 #define DO_ORR(N, M)  ((N) | (M))
992 #define DO_ORN(N, M)  ((N) | ~(M))
993 #define DO_EOR(N, M)  ((N) ^ (M))
994 
995 DO_2OP(vand, 8, uint64_t, DO_AND)
996 DO_2OP(vbic, 8, uint64_t, DO_BIC)
997 DO_2OP(vorr, 8, uint64_t, DO_ORR)
998 DO_2OP(vorn, 8, uint64_t, DO_ORN)
999 DO_2OP(veor, 8, uint64_t, DO_EOR)
1000 
1001 #define DO_ADD(N, M) ((N) + (M))
1002 #define DO_SUB(N, M) ((N) - (M))
1003 #define DO_MUL(N, M) ((N) * (M))
1004 
1005 DO_2OP_U(vadd, DO_ADD)
1006 DO_2OP_U(vsub, DO_SUB)
1007 DO_2OP_U(vmul, DO_MUL)
1008 
1009 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
1010 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
1011 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
1012 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
1013 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
1014 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
1015 
1016 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
1017 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
1018 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
1019 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
1020 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
1021 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
1022 
1023 /*
1024  * Polynomial multiply. We can always do this generating 64 bits
1025  * of the result at a time, so we don't need to use DO_2OP_L.
1026  */
1027 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
1028 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
1029 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
1030 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
1031 
1032 /*
1033  * Because the computation type is at least twice as large as required,
1034  * these work for both signed and unsigned source types.
1035  */
1036 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
1037 {
1038     return (n * m) >> 8;
1039 }
1040 
1041 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1042 {
1043     return (n * m) >> 16;
1044 }
1045 
1046 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1047 {
1048     return (n * m) >> 32;
1049 }
1050 
1051 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1052 {
1053     return (n * m + (1U << 7)) >> 8;
1054 }
1055 
1056 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1057 {
1058     return (n * m + (1U << 15)) >> 16;
1059 }
1060 
1061 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1062 {
1063     return (n * m + (1U << 31)) >> 32;
1064 }
1065 
1066 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1067 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1068 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1069 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1070 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1071 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1072 
1073 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1074 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1075 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1076 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1077 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1078 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1079 
1080 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1081 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1082 
1083 DO_2OP_S(vmaxs, DO_MAX)
1084 DO_2OP_U(vmaxu, DO_MAX)
1085 DO_2OP_S(vmins, DO_MIN)
1086 DO_2OP_U(vminu, DO_MIN)
1087 
1088 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1089 
1090 DO_2OP_S(vabds, DO_ABD)
1091 DO_2OP_U(vabdu, DO_ABD)
1092 
1093 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1094 {
1095     return ((uint64_t)n + m) >> 1;
1096 }
1097 
1098 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1099 {
1100     return ((int64_t)n + m) >> 1;
1101 }
1102 
1103 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1104 {
1105     return ((uint64_t)n - m) >> 1;
1106 }
1107 
1108 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1109 {
1110     return ((int64_t)n - m) >> 1;
1111 }
1112 
1113 DO_2OP_S(vhadds, do_vhadd_s)
1114 DO_2OP_U(vhaddu, do_vhadd_u)
1115 DO_2OP_S(vhsubs, do_vhsub_s)
1116 DO_2OP_U(vhsubu, do_vhsub_u)
1117 
1118 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1119 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1120 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1121 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1122 
1123 DO_2OP_S(vshls, DO_VSHLS)
1124 DO_2OP_U(vshlu, DO_VSHLU)
1125 DO_2OP_S(vrshls, DO_VRSHLS)
1126 DO_2OP_U(vrshlu, DO_VRSHLU)
1127 
1128 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1129 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1130 
1131 DO_2OP_S(vrhadds, DO_RHADD_S)
1132 DO_2OP_U(vrhaddu, DO_RHADD_U)
1133 
1134 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1135                     uint32_t inv, uint32_t carry_in, bool update_flags)
1136 {
1137     uint16_t mask = mve_element_mask(env);
1138     unsigned e;
1139 
1140     /* If any additions trigger, we will update flags. */
1141     if (mask & 0x1111) {
1142         update_flags = true;
1143     }
1144 
1145     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1146         uint64_t r = carry_in;
1147         r += n[H4(e)];
1148         r += m[H4(e)] ^ inv;
1149         if (mask & 1) {
1150             carry_in = r >> 32;
1151         }
1152         mergemask(&d[H4(e)], r, mask);
1153     }
1154 
1155     if (update_flags) {
1156         /* Store C, clear NZV. */
1157         env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1158         env->vfp.fpsr |= carry_in * FPSR_C;
1159     }
1160     mve_advance_vpt(env);
1161 }
1162 
1163 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1164 {
1165     bool carry_in = env->vfp.fpsr & FPSR_C;
1166     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1167 }
1168 
1169 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1170 {
1171     bool carry_in = env->vfp.fpsr & FPSR_C;
1172     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1173 }
1174 
1175 
1176 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1177 {
1178     do_vadc(env, vd, vn, vm, 0, 0, true);
1179 }
1180 
1181 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1182 {
1183     do_vadc(env, vd, vn, vm, -1, 1, true);
1184 }
1185 
1186 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1187     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1188     {                                                                   \
1189         TYPE *d = vd, *n = vn, *m = vm;                                 \
1190         uint16_t mask = mve_element_mask(env);                          \
1191         unsigned e;                                                     \
1192         TYPE r[16 / ESIZE];                                             \
1193         /* Calculate all results first to avoid overwriting inputs */   \
1194         for (e = 0; e < 16 / ESIZE; e++) {                              \
1195             if (!(e & 1)) {                                             \
1196                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1197             } else {                                                    \
1198                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1199             }                                                           \
1200         }                                                               \
1201         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1202             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1203         }                                                               \
1204         mve_advance_vpt(env);                                           \
1205     }
1206 
1207 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1208     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1209     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1210     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1211 
1212 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1213 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1214 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1215 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1216 
1217 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1218 {
1219     if (val > max) {
1220         *s = true;
1221         return max;
1222     } else if (val < min) {
1223         *s = true;
1224         return min;
1225     }
1226     return val;
1227 }
1228 
1229 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1230 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1231 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1232 
1233 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1234 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1235 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1236 
1237 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1238 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1239 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1240 
1241 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1242 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1243 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1244 
1245 /*
1246  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1247  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1248  */
1249 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1250                                         INT8_MIN, INT8_MAX, s)
1251 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1252                                         INT16_MIN, INT16_MAX, s)
1253 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1254                                         INT32_MIN, INT32_MAX, s)
1255 
1256 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1257                                          INT8_MIN, INT8_MAX, s)
1258 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1259                                          INT16_MIN, INT16_MAX, s)
1260 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1261                                          INT32_MIN, INT32_MAX, s)
1262 
1263 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1264 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1265 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1266 
1267 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1268 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1269 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1270 
1271 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1272 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1273 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1274 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1275 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1276 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1277 
1278 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1279 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1280 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1281 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1282 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1283 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1284 
1285 /*
1286  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1287  * and friends wanting a uint32_t* sat and our needing a bool*.
1288  */
1289 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1290     ({                                                                  \
1291         uint32_t su32 = 0;                                              \
1292         typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1293         if (su32) {                                                     \
1294             *satp = true;                                               \
1295         }                                                               \
1296         qrshl_ret;                                                      \
1297     })
1298 
1299 #define DO_SQSHL_OP(N, M, satp) \
1300     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1301 #define DO_UQSHL_OP(N, M, satp) \
1302     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1303 #define DO_SQRSHL_OP(N, M, satp) \
1304     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1305 #define DO_UQRSHL_OP(N, M, satp) \
1306     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1307 #define DO_SUQSHL_OP(N, M, satp) \
1308     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1309 
1310 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1311 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1312 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1313 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1314 
1315 /*
1316  * Multiply add dual returning high half
1317  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1318  * whether to add the rounding constant, and the pointer to the
1319  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1320  * saturate to twice the input size and return the high half; or
1321  * (A * B - C * D) etc for VQDMLSDH.
1322  */
1323 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1324     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1325                                 void *vm)                               \
1326     {                                                                   \
1327         TYPE *d = vd, *n = vn, *m = vm;                                 \
1328         uint16_t mask = mve_element_mask(env);                          \
1329         unsigned e;                                                     \
1330         bool qc = false;                                                \
1331         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1332             bool sat = false;                                           \
1333             if ((e & 1) == XCHG) {                                      \
1334                 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)],                  \
1335                             m[H##ESIZE(e - XCHG)],                      \
1336                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1337                             m[H##ESIZE(e + (1 - XCHG))],                \
1338                             ROUND, &sat);                               \
1339                 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask);         \
1340                 qc |= sat & mask & 1;                                   \
1341             }                                                           \
1342         }                                                               \
1343         if (qc) {                                                       \
1344             env->vfp.qc[0] = qc;                                        \
1345         }                                                               \
1346         mve_advance_vpt(env);                                           \
1347     }
1348 
1349 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1350                             int round, bool *sat)
1351 {
1352     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1353     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1354 }
1355 
1356 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1357                              int round, bool *sat)
1358 {
1359     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1360     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1361 }
1362 
1363 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1364                              int round, bool *sat)
1365 {
1366     int64_t m1 = (int64_t)a * b;
1367     int64_t m2 = (int64_t)c * d;
1368     int64_t r;
1369     /*
1370      * Architecturally we should do the entire add, double, round
1371      * and then check for saturation. We do three saturating adds,
1372      * but we need to be careful about the order. If the first
1373      * m1 + m2 saturates then it's impossible for the *2+rc to
1374      * bring it back into the non-saturated range. However, if
1375      * m1 + m2 is negative then it's possible that doing the doubling
1376      * would take the intermediate result below INT64_MAX and the
1377      * addition of the rounding constant then brings it back in range.
1378      * So we add half the rounding constant before doubling rather
1379      * than adding the rounding constant after the doubling.
1380      */
1381     if (sadd64_overflow(m1, m2, &r) ||
1382         sadd64_overflow(r, (round << 30), &r) ||
1383         sadd64_overflow(r, r, &r)) {
1384         *sat = true;
1385         return r < 0 ? INT32_MAX : INT32_MIN;
1386     }
1387     return r >> 32;
1388 }
1389 
1390 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1391                             int round, bool *sat)
1392 {
1393     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1394     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1395 }
1396 
1397 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1398                              int round, bool *sat)
1399 {
1400     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1401     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1402 }
1403 
1404 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1405                              int round, bool *sat)
1406 {
1407     int64_t m1 = (int64_t)a * b;
1408     int64_t m2 = (int64_t)c * d;
1409     int64_t r;
1410     /* The same ordering issue as in do_vqdmladh_w applies here too */
1411     if (ssub64_overflow(m1, m2, &r) ||
1412         sadd64_overflow(r, (round << 30), &r) ||
1413         sadd64_overflow(r, r, &r)) {
1414         *sat = true;
1415         return r < 0 ? INT32_MAX : INT32_MIN;
1416     }
1417     return r >> 32;
1418 }
1419 
1420 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1421 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1422 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1423 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1424 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1425 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1426 
1427 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1428 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1429 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1430 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1431 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1432 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1433 
1434 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1435 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1436 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1437 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1438 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1439 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1440 
1441 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1442 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1443 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1444 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1445 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1446 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1447 
1448 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1449     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1450                                 uint32_t rm)                            \
1451     {                                                                   \
1452         TYPE *d = vd, *n = vn;                                          \
1453         TYPE m = rm;                                                    \
1454         uint16_t mask = mve_element_mask(env);                          \
1455         unsigned e;                                                     \
1456         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1457             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1458         }                                                               \
1459         mve_advance_vpt(env);                                           \
1460     }
1461 
1462 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1463     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1464                                 uint32_t rm)                            \
1465     {                                                                   \
1466         TYPE *d = vd, *n = vn;                                          \
1467         TYPE m = rm;                                                    \
1468         uint16_t mask = mve_element_mask(env);                          \
1469         unsigned e;                                                     \
1470         bool qc = false;                                                \
1471         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1472             bool sat = false;                                           \
1473             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1474                       mask);                                            \
1475             qc |= sat & mask & 1;                                       \
1476         }                                                               \
1477         if (qc) {                                                       \
1478             env->vfp.qc[0] = qc;                                        \
1479         }                                                               \
1480         mve_advance_vpt(env);                                           \
1481     }
1482 
1483 /* "accumulating" version where FN takes d as well as n and m */
1484 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1485     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1486                                 uint32_t rm)                            \
1487     {                                                                   \
1488         TYPE *d = vd, *n = vn;                                          \
1489         TYPE m = rm;                                                    \
1490         uint16_t mask = mve_element_mask(env);                          \
1491         unsigned e;                                                     \
1492         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1493             mergemask(&d[H##ESIZE(e)],                                  \
1494                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1495         }                                                               \
1496         mve_advance_vpt(env);                                           \
1497     }
1498 
1499 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1500     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1501                                 uint32_t rm)                            \
1502     {                                                                   \
1503         TYPE *d = vd, *n = vn;                                          \
1504         TYPE m = rm;                                                    \
1505         uint16_t mask = mve_element_mask(env);                          \
1506         unsigned e;                                                     \
1507         bool qc = false;                                                \
1508         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1509             bool sat = false;                                           \
1510             mergemask(&d[H##ESIZE(e)],                                  \
1511                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1512                       mask);                                            \
1513             qc |= sat & mask & 1;                                       \
1514         }                                                               \
1515         if (qc) {                                                       \
1516             env->vfp.qc[0] = qc;                                        \
1517         }                                                               \
1518         mve_advance_vpt(env);                                           \
1519     }
1520 
1521 /* provide unsigned 2-op scalar helpers for all sizes */
1522 #define DO_2OP_SCALAR_U(OP, FN)                 \
1523     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1524     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1525     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1526 #define DO_2OP_SCALAR_S(OP, FN)                 \
1527     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1528     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1529     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1530 
1531 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1532     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1533     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1534     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1535 
1536 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1537 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1538 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1539 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1540 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1541 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1542 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1543 
1544 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1545 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1546 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1547 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1548 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1549 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1550 
1551 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1552 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1553 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1554 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1555 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1556 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1557 
1558 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1559 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1560 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1561 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1562 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1563 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1564 
1565 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1566 {
1567     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1568     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1569 }
1570 
1571 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1572                            int round, bool *sat)
1573 {
1574     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1575     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1576 }
1577 
1578 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1579                             int round, bool *sat)
1580 {
1581     /*
1582      * Architecturally we should do the entire add, double, round
1583      * and then check for saturation. We do three saturating adds,
1584      * but we need to be careful about the order. If the first
1585      * m1 + m2 saturates then it's impossible for the *2+rc to
1586      * bring it back into the non-saturated range. However, if
1587      * m1 + m2 is negative then it's possible that doing the doubling
1588      * would take the intermediate result below INT64_MAX and the
1589      * addition of the rounding constant then brings it back in range.
1590      * So we add half the rounding constant and half the "c << esize"
1591      * before doubling rather than adding the rounding constant after
1592      * the doubling.
1593      */
1594     int64_t m1 = (int64_t)a * b;
1595     int64_t m2 = (int64_t)c << 31;
1596     int64_t r;
1597     if (sadd64_overflow(m1, m2, &r) ||
1598         sadd64_overflow(r, (round << 30), &r) ||
1599         sadd64_overflow(r, r, &r)) {
1600         *sat = true;
1601         return r < 0 ? INT32_MAX : INT32_MIN;
1602     }
1603     return r >> 32;
1604 }
1605 
1606 /*
1607  * The *MLAH insns are vector * scalar + vector;
1608  * the *MLASH insns are vector * vector + scalar
1609  */
1610 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1611 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1612 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1613 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1614 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1615 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1616 
1617 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1618 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1619 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1620 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1621 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1622 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1623 
1624 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1625 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1626 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1627 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1628 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1629 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1630 
1631 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1632 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1633 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1634 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1635 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1636 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1637 
1638 /* Vector by scalar plus vector */
1639 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1640 
1641 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1642 
1643 /* Vector by vector plus scalar */
1644 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1645 
1646 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1647 
1648 /*
1649  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1650  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1651  * SATMASK specifies which bits of the predicate mask matter for determining
1652  * whether to propagate a saturation indication into FPSCR.QC -- for
1653  * the 16x16->32 case we must check only the bit corresponding to the T or B
1654  * half that we used, but for the 32x32->64 case we propagate if the mask
1655  * bit is set for either half.
1656  */
1657 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1658     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1659                                 uint32_t rm)                            \
1660     {                                                                   \
1661         LTYPE *d = vd;                                                  \
1662         TYPE *n = vn;                                                   \
1663         TYPE m = rm;                                                    \
1664         uint16_t mask = mve_element_mask(env);                          \
1665         unsigned le;                                                    \
1666         bool qc = false;                                                \
1667         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1668             bool sat = false;                                           \
1669             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1670             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1671             qc |= sat && (mask & SATMASK);                              \
1672         }                                                               \
1673         if (qc) {                                                       \
1674             env->vfp.qc[0] = qc;                                        \
1675         }                                                               \
1676         mve_advance_vpt(env);                                           \
1677     }
1678 
1679 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1680 {
1681     int64_t r = ((int64_t)n * m) * 2;
1682     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1683 }
1684 
1685 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1686 {
1687     /* The multiply can't overflow, but the doubling might */
1688     int64_t r = (int64_t)n * m;
1689     if (r > INT64_MAX / 2) {
1690         *sat = true;
1691         return INT64_MAX;
1692     } else if (r < INT64_MIN / 2) {
1693         *sat = true;
1694         return INT64_MIN;
1695     } else {
1696         return r * 2;
1697     }
1698 }
1699 
1700 #define SATMASK16B 1
1701 #define SATMASK16T (1 << 2)
1702 #define SATMASK32 ((1 << 4) | 1)
1703 
1704 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1705                     do_qdmullh, SATMASK16B)
1706 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1707                     do_qdmullw, SATMASK32)
1708 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1709                     do_qdmullh, SATMASK16T)
1710 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1711                     do_qdmullw, SATMASK32)
1712 
1713 /*
1714  * Long saturating ops
1715  */
1716 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1717     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1718                                 void *vm)                               \
1719     {                                                                   \
1720         LTYPE *d = vd;                                                  \
1721         TYPE *n = vn, *m = vm;                                          \
1722         uint16_t mask = mve_element_mask(env);                          \
1723         unsigned le;                                                    \
1724         bool qc = false;                                                \
1725         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1726             bool sat = false;                                           \
1727             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1728             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1729             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1730             qc |= sat && (mask & SATMASK);                              \
1731         }                                                               \
1732         if (qc) {                                                       \
1733             env->vfp.qc[0] = qc;                                        \
1734         }                                                               \
1735         mve_advance_vpt(env);                                           \
1736     }
1737 
1738 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1739 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1740 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1741 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1742 
1743 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1744 {
1745     m &= 0xff;
1746     if (m == 0) {
1747         return 0;
1748     }
1749     n = revbit8(n);
1750     if (m < 8) {
1751         n >>= 8 - m;
1752     }
1753     return n;
1754 }
1755 
1756 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1757 {
1758     m &= 0xff;
1759     if (m == 0) {
1760         return 0;
1761     }
1762     n = revbit16(n);
1763     if (m < 16) {
1764         n >>= 16 - m;
1765     }
1766     return n;
1767 }
1768 
1769 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1770 {
1771     m &= 0xff;
1772     if (m == 0) {
1773         return 0;
1774     }
1775     n = revbit32(n);
1776     if (m < 32) {
1777         n >>= 32 - m;
1778     }
1779     return n;
1780 }
1781 
1782 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1783 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1784 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1785 
1786 /*
1787  * Multiply add long dual accumulate ops.
1788  */
1789 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1790     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1791                                     void *vm, uint64_t a)               \
1792     {                                                                   \
1793         uint16_t mask = mve_element_mask(env);                          \
1794         unsigned e;                                                     \
1795         TYPE *n = vn, *m = vm;                                          \
1796         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1797             if (mask & 1) {                                             \
1798                 if (e & 1) {                                            \
1799                     a ODDACC                                            \
1800                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1801                 } else {                                                \
1802                     a EVENACC                                           \
1803                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1804                 }                                                       \
1805             }                                                           \
1806         }                                                               \
1807         mve_advance_vpt(env);                                           \
1808         return a;                                                       \
1809     }
1810 
1811 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1812 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1813 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1814 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1815 
1816 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1817 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1818 
1819 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1820 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1821 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1822 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1823 
1824 /*
1825  * Multiply add dual accumulate ops
1826  */
1827 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1828     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1829                                     void *vm, uint32_t a)               \
1830     {                                                                   \
1831         uint16_t mask = mve_element_mask(env);                          \
1832         unsigned e;                                                     \
1833         TYPE *n = vn, *m = vm;                                          \
1834         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1835             if (mask & 1) {                                             \
1836                 if (e & 1) {                                            \
1837                     a ODDACC                                            \
1838                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1839                 } else {                                                \
1840                     a EVENACC                                           \
1841                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1842                 }                                                       \
1843             }                                                           \
1844         }                                                               \
1845         mve_advance_vpt(env);                                           \
1846         return a;                                                       \
1847     }
1848 
1849 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1850     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1851     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1852     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1853 
1854 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1855     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1856     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1857     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1858 
1859 DO_DAV_S(vmladavs, false, +=, +=)
1860 DO_DAV_U(vmladavu, false, +=, +=)
1861 DO_DAV_S(vmlsdav, false, +=, -=)
1862 DO_DAV_S(vmladavsx, true, +=, +=)
1863 DO_DAV_S(vmlsdavx, true, +=, -=)
1864 
1865 /*
1866  * Rounding multiply add long dual accumulate high. In the pseudocode
1867  * this is implemented with a 72-bit internal accumulator value of which
1868  * the top 64 bits are returned. We optimize this to avoid having to
1869  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1870  * is squashed back into 64-bits after each beat.
1871  */
1872 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1873     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1874                                     void *vm, uint64_t a)               \
1875     {                                                                   \
1876         uint16_t mask = mve_element_mask(env);                          \
1877         unsigned e;                                                     \
1878         TYPE *n = vn, *m = vm;                                          \
1879         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1880             if (mask & 1) {                                             \
1881                 LTYPE mul;                                              \
1882                 if (e & 1) {                                            \
1883                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1884                     if (SUB) {                                          \
1885                         mul = -mul;                                     \
1886                     }                                                   \
1887                 } else {                                                \
1888                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1889                 }                                                       \
1890                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1891                 a += mul;                                               \
1892             }                                                           \
1893         }                                                               \
1894         mve_advance_vpt(env);                                           \
1895         return a;                                                       \
1896     }
1897 
1898 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1899 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1900 
1901 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1902 
1903 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1904 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1905 
1906 /* Vector add across vector */
1907 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1908     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1909                                     uint32_t ra)                \
1910     {                                                           \
1911         uint16_t mask = mve_element_mask(env);                  \
1912         unsigned e;                                             \
1913         TYPE *m = vm;                                           \
1914         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1915             if (mask & 1) {                                     \
1916                 ra += m[H##ESIZE(e)];                           \
1917             }                                                   \
1918         }                                                       \
1919         mve_advance_vpt(env);                                   \
1920         return ra;                                              \
1921     }                                                           \
1922 
1923 DO_VADDV(vaddvsb, 1, int8_t)
1924 DO_VADDV(vaddvsh, 2, int16_t)
1925 DO_VADDV(vaddvsw, 4, int32_t)
1926 DO_VADDV(vaddvub, 1, uint8_t)
1927 DO_VADDV(vaddvuh, 2, uint16_t)
1928 DO_VADDV(vaddvuw, 4, uint32_t)
1929 
1930 /*
1931  * Vector max/min across vector. Unlike VADDV, we must
1932  * read ra as the element size, not its full width.
1933  * We work with int64_t internally for simplicity.
1934  */
1935 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1936     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1937                                     uint32_t ra_in)             \
1938     {                                                           \
1939         uint16_t mask = mve_element_mask(env);                  \
1940         unsigned e;                                             \
1941         TYPE *m = vm;                                           \
1942         int64_t ra = (RATYPE)ra_in;                             \
1943         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1944             if (mask & 1) {                                     \
1945                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1946             }                                                   \
1947         }                                                       \
1948         mve_advance_vpt(env);                                   \
1949         return ra;                                              \
1950     }                                                           \
1951 
1952 #define DO_VMAXMINV_U(INSN, FN)                         \
1953     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1954     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1955     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1956 #define DO_VMAXMINV_S(INSN, FN)                         \
1957     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1958     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1959     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1960 
1961 /*
1962  * Helpers for max and min of absolute values across vector:
1963  * note that we only take the absolute value of 'm', not 'n'
1964  */
1965 static int64_t do_maxa(int64_t n, int64_t m)
1966 {
1967     if (m < 0) {
1968         m = -m;
1969     }
1970     return MAX(n, m);
1971 }
1972 
1973 static int64_t do_mina(int64_t n, int64_t m)
1974 {
1975     if (m < 0) {
1976         m = -m;
1977     }
1978     return MIN(n, m);
1979 }
1980 
1981 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1982 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1983 DO_VMAXMINV_S(vminvs, DO_MIN)
1984 DO_VMAXMINV_U(vminvu, DO_MIN)
1985 /*
1986  * VMAXAV, VMINAV treat the general purpose input as unsigned
1987  * and the vector elements as signed.
1988  */
1989 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1990 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1991 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1992 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1993 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1994 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1995 
1996 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1997     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1998                                     void *vm, uint32_t ra)      \
1999     {                                                           \
2000         uint16_t mask = mve_element_mask(env);                  \
2001         unsigned e;                                             \
2002         TYPE *m = vm, *n = vn;                                  \
2003         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2004             if (mask & 1) {                                     \
2005                 int64_t n0 = n[H##ESIZE(e)];                    \
2006                 int64_t m0 = m[H##ESIZE(e)];                    \
2007                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
2008                 ra += r;                                        \
2009             }                                                   \
2010         }                                                       \
2011         mve_advance_vpt(env);                                   \
2012         return ra;                                              \
2013     }
2014 
2015 DO_VABAV(vabavsb, 1, int8_t)
2016 DO_VABAV(vabavsh, 2, int16_t)
2017 DO_VABAV(vabavsw, 4, int32_t)
2018 DO_VABAV(vabavub, 1, uint8_t)
2019 DO_VABAV(vabavuh, 2, uint16_t)
2020 DO_VABAV(vabavuw, 4, uint32_t)
2021 
2022 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
2023     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
2024                                     uint64_t ra)                \
2025     {                                                           \
2026         uint16_t mask = mve_element_mask(env);                  \
2027         unsigned e;                                             \
2028         TYPE *m = vm;                                           \
2029         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
2030             if (mask & 1) {                                     \
2031                 ra += (LTYPE)m[H4(e)];                          \
2032             }                                                   \
2033         }                                                       \
2034         mve_advance_vpt(env);                                   \
2035         return ra;                                              \
2036     }                                                           \
2037 
2038 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2039 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2040 
2041 /* Shifts by immediate */
2042 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2043     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2044                                 void *vm, uint32_t shift)       \
2045     {                                                           \
2046         TYPE *d = vd, *m = vm;                                  \
2047         uint16_t mask = mve_element_mask(env);                  \
2048         unsigned e;                                             \
2049         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2050             mergemask(&d[H##ESIZE(e)],                          \
2051                       FN(m[H##ESIZE(e)], shift), mask);         \
2052         }                                                       \
2053         mve_advance_vpt(env);                                   \
2054     }
2055 
2056 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2057     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2058                                 void *vm, uint32_t shift)       \
2059     {                                                           \
2060         TYPE *d = vd, *m = vm;                                  \
2061         uint16_t mask = mve_element_mask(env);                  \
2062         unsigned e;                                             \
2063         bool qc = false;                                        \
2064         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2065             bool sat = false;                                   \
2066             mergemask(&d[H##ESIZE(e)],                          \
2067                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2068             qc |= sat & mask & 1;                               \
2069         }                                                       \
2070         if (qc) {                                               \
2071             env->vfp.qc[0] = qc;                                \
2072         }                                                       \
2073         mve_advance_vpt(env);                                   \
2074     }
2075 
2076 /* provide unsigned 2-op shift helpers for all sizes */
2077 #define DO_2SHIFT_U(OP, FN)                     \
2078     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2079     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2080     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2081 #define DO_2SHIFT_S(OP, FN)                     \
2082     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2083     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2084     DO_2SHIFT(OP##w, 4, int32_t, FN)
2085 
2086 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2087     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2088     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2089     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2090 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2091     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2092     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2093     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2094 
2095 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2096 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2097 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2098 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2099 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2100 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2101 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2102 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2103 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2104 
2105 /* Shift-and-insert; we always work with 64 bits at a time */
2106 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2107     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2108                                 void *vm, uint32_t shift)               \
2109     {                                                                   \
2110         uint64_t *d = vd, *m = vm;                                      \
2111         uint16_t mask;                                                  \
2112         uint64_t shiftmask;                                             \
2113         unsigned e;                                                     \
2114         if (shift == ESIZE * 8) {                                       \
2115             /*                                                          \
2116              * Only VSRI can shift by <dt>; it should mean "don't       \
2117              * update the destination". The generic logic can't handle  \
2118              * this because it would try to shift by an out-of-range    \
2119              * amount, so special case it here.                         \
2120              */                                                         \
2121             goto done;                                                  \
2122         }                                                               \
2123         assert(shift < ESIZE * 8);                                      \
2124         mask = mve_element_mask(env);                                   \
2125         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2126         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2127         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2128             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2129                 (d[H8(e)] & ~shiftmask);                                \
2130             mergemask(&d[H8(e)], r, mask);                              \
2131         }                                                               \
2132 done:                                                                   \
2133         mve_advance_vpt(env);                                           \
2134     }
2135 
2136 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2137 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2138 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2139 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2140 
2141 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2142 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2143 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2144 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2145 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2146 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2147 
2148 /*
2149  * Long shifts taking half-sized inputs from top or bottom of the input
2150  * vector and producing a double-width result. ESIZE, TYPE are for
2151  * the input, and LESIZE, LTYPE for the output.
2152  * Unlike the normal shift helpers, we do not handle negative shift counts,
2153  * because the long shift is strictly left-only.
2154  */
2155 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2156     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2157                                 void *vm, uint32_t shift)               \
2158     {                                                                   \
2159         LTYPE *d = vd;                                                  \
2160         TYPE *m = vm;                                                   \
2161         uint16_t mask = mve_element_mask(env);                          \
2162         unsigned le;                                                    \
2163         assert(shift <= 16);                                            \
2164         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2165             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2166             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2167         }                                                               \
2168         mve_advance_vpt(env);                                           \
2169     }
2170 
2171 #define DO_VSHLL_ALL(OP, TOP)                                \
2172     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2173     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2174     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2175     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2176 
2177 DO_VSHLL_ALL(vshllb, false)
2178 DO_VSHLL_ALL(vshllt, true)
2179 
2180 /*
2181  * Narrowing right shifts, taking a double sized input, shifting it
2182  * and putting the result in either the top or bottom half of the output.
2183  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2184  */
2185 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2186     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2187                                 void *vm, uint32_t shift)       \
2188     {                                                           \
2189         LTYPE *m = vm;                                          \
2190         TYPE *d = vd;                                           \
2191         uint16_t mask = mve_element_mask(env);                  \
2192         unsigned le;                                            \
2193         mask >>= ESIZE * TOP;                                   \
2194         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2195             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2196             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2197         }                                                       \
2198         mve_advance_vpt(env);                                   \
2199     }
2200 
2201 #define DO_VSHRN_ALL(OP, FN)                                    \
2202     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2203     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2204     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2205     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2206 
2207 DO_VSHRN_ALL(vshrn, DO_SHR)
2208 DO_VSHRN_ALL(vrshrn, do_urshr)
2209 
2210 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2211                                  bool *satp)
2212 {
2213     if (val > max) {
2214         *satp = true;
2215         return max;
2216     } else if (val < min) {
2217         *satp = true;
2218         return min;
2219     } else {
2220         return val;
2221     }
2222 }
2223 
2224 /* Saturating narrowing right shifts */
2225 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2226     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2227                                 void *vm, uint32_t shift)       \
2228     {                                                           \
2229         LTYPE *m = vm;                                          \
2230         TYPE *d = vd;                                           \
2231         uint16_t mask = mve_element_mask(env);                  \
2232         bool qc = false;                                        \
2233         unsigned le;                                            \
2234         mask >>= ESIZE * TOP;                                   \
2235         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2236             bool sat = false;                                   \
2237             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2238             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2239             qc |= sat & mask & 1;                               \
2240         }                                                       \
2241         if (qc) {                                               \
2242             env->vfp.qc[0] = qc;                                \
2243         }                                                       \
2244         mve_advance_vpt(env);                                   \
2245     }
2246 
2247 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2248     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2249     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2250 
2251 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2252     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2253     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2254 
2255 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2256     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2257     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2258 
2259 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2260     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2261     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2262 
2263 #define DO_SHRN_SB(N, M, SATP)                                  \
2264     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2265 #define DO_SHRN_UB(N, M, SATP)                                  \
2266     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2267 #define DO_SHRUN_B(N, M, SATP)                                  \
2268     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2269 
2270 #define DO_SHRN_SH(N, M, SATP)                                  \
2271     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2272 #define DO_SHRN_UH(N, M, SATP)                                  \
2273     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2274 #define DO_SHRUN_H(N, M, SATP)                                  \
2275     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2276 
2277 #define DO_RSHRN_SB(N, M, SATP)                                 \
2278     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2279 #define DO_RSHRN_UB(N, M, SATP)                                 \
2280     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2281 #define DO_RSHRUN_B(N, M, SATP)                                 \
2282     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2283 
2284 #define DO_RSHRN_SH(N, M, SATP)                                 \
2285     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2286 #define DO_RSHRN_UH(N, M, SATP)                                 \
2287     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2288 #define DO_RSHRUN_H(N, M, SATP)                                 \
2289     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2290 
2291 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2292 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2293 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2294 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2295 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2296 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2297 
2298 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2299 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2300 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2301 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2302 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2303 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2304 
2305 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2306     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2307     {                                                                   \
2308         LTYPE *m = vm;                                                  \
2309         TYPE *d = vd;                                                   \
2310         uint16_t mask = mve_element_mask(env);                          \
2311         unsigned le;                                                    \
2312         mask >>= ESIZE * TOP;                                           \
2313         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2314             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2315                       m[H##LESIZE(le)], mask);                          \
2316         }                                                               \
2317         mve_advance_vpt(env);                                           \
2318     }
2319 
2320 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2321 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2322 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2323 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2324 
2325 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2326     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2327     {                                                                   \
2328         LTYPE *m = vm;                                                  \
2329         TYPE *d = vd;                                                   \
2330         uint16_t mask = mve_element_mask(env);                          \
2331         bool qc = false;                                                \
2332         unsigned le;                                                    \
2333         mask >>= ESIZE * TOP;                                           \
2334         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2335             bool sat = false;                                           \
2336             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2337             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2338             qc |= sat & mask & 1;                                       \
2339         }                                                               \
2340         if (qc) {                                                       \
2341             env->vfp.qc[0] = qc;                                        \
2342         }                                                               \
2343         mve_advance_vpt(env);                                           \
2344     }
2345 
2346 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2347     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2348     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2349 
2350 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2351     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2352     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2353 
2354 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2355     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2356     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2357 
2358 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2359     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2360     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2361 
2362 #define DO_VQMOVN_SB(N, SATP)                           \
2363     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2364 #define DO_VQMOVN_UB(N, SATP)                           \
2365     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2366 #define DO_VQMOVUN_B(N, SATP)                           \
2367     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2368 
2369 #define DO_VQMOVN_SH(N, SATP)                           \
2370     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2371 #define DO_VQMOVN_UH(N, SATP)                           \
2372     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2373 #define DO_VQMOVUN_H(N, SATP)                           \
2374     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2375 
2376 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2377 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2378 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2379 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2380 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2381 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2382 
2383 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2384                            uint32_t shift)
2385 {
2386     uint32_t *d = vd;
2387     uint16_t mask = mve_element_mask(env);
2388     unsigned e;
2389     uint32_t r;
2390 
2391     /*
2392      * For each 32-bit element, we shift it left, bringing in the
2393      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2394      * the top become the new rdm, if the predicate mask permits.
2395      * The final rdm value is returned to update the register.
2396      * shift == 0 here means "shift by 32 bits".
2397      */
2398     if (shift == 0) {
2399         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2400             r = rdm;
2401             if (mask & 1) {
2402                 rdm = d[H4(e)];
2403             }
2404             mergemask(&d[H4(e)], r, mask);
2405         }
2406     } else {
2407         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2408 
2409         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2410             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2411             if (mask & 1) {
2412                 rdm = d[H4(e)] >> (32 - shift);
2413             }
2414             mergemask(&d[H4(e)], r, mask);
2415         }
2416     }
2417     mve_advance_vpt(env);
2418     return rdm;
2419 }
2420 
2421 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2422 {
2423     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2424 }
2425 
2426 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2427 {
2428     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2429 }
2430 
2431 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2432 {
2433     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2434 }
2435 
2436 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2437 {
2438     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2439 }
2440 
2441 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2442 {
2443     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2444 }
2445 
2446 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2447 {
2448     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2449 }
2450 
2451 /* Operate on 64-bit values, but saturate at 48 bits */
2452 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2453                                     bool round, uint32_t *sat)
2454 {
2455     int64_t val, extval;
2456 
2457     if (shift <= -48) {
2458         /* Rounding the sign bit always produces 0. */
2459         if (round) {
2460             return 0;
2461         }
2462         return src >> 63;
2463     } else if (shift < 0) {
2464         if (round) {
2465             src >>= -shift - 1;
2466             val = (src >> 1) + (src & 1);
2467         } else {
2468             val = src >> -shift;
2469         }
2470         extval = sextract64(val, 0, 48);
2471         if (!sat || val == extval) {
2472             return extval;
2473         }
2474     } else if (shift < 48) {
2475         extval = sextract64(src << shift, 0, 48);
2476         if (!sat || src == (extval >> shift)) {
2477             return extval;
2478         }
2479     } else if (!sat || src == 0) {
2480         return 0;
2481     }
2482 
2483     *sat = 1;
2484     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2485 }
2486 
2487 /* Operate on 64-bit values, but saturate at 48 bits */
2488 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2489                                      bool round, uint32_t *sat)
2490 {
2491     uint64_t val, extval;
2492 
2493     if (shift <= -(48 + round)) {
2494         return 0;
2495     } else if (shift < 0) {
2496         if (round) {
2497             val = src >> (-shift - 1);
2498             val = (val >> 1) + (val & 1);
2499         } else {
2500             val = src >> -shift;
2501         }
2502         extval = extract64(val, 0, 48);
2503         if (!sat || val == extval) {
2504             return extval;
2505         }
2506     } else if (shift < 48) {
2507         extval = extract64(src << shift, 0, 48);
2508         if (!sat || src == (extval >> shift)) {
2509             return extval;
2510         }
2511     } else if (!sat || src == 0) {
2512         return 0;
2513     }
2514 
2515     *sat = 1;
2516     return MAKE_64BIT_MASK(0, 48);
2517 }
2518 
2519 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2520 {
2521     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2522 }
2523 
2524 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2525 {
2526     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2527 }
2528 
2529 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2530 {
2531     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2532 }
2533 
2534 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2535 {
2536     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2537 }
2538 
2539 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2540 {
2541     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2542 }
2543 
2544 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2545 {
2546     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2547 }
2548 
2549 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2550     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2551                            uint32_t offset, uint32_t imm)       \
2552     {                                                           \
2553         TYPE *d = vd;                                           \
2554         uint16_t mask = mve_element_mask(env);                  \
2555         unsigned e;                                             \
2556         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2557             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2558             offset = FN(offset, imm);                           \
2559         }                                                       \
2560         mve_advance_vpt(env);                                   \
2561         return offset;                                          \
2562     }
2563 
2564 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2565     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2566                               uint32_t offset, uint32_t wrap,   \
2567                               uint32_t imm)                     \
2568     {                                                           \
2569         TYPE *d = vd;                                           \
2570         uint16_t mask = mve_element_mask(env);                  \
2571         unsigned e;                                             \
2572         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2573             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2574             offset = FN(offset, wrap, imm);                     \
2575         }                                                       \
2576         mve_advance_vpt(env);                                   \
2577         return offset;                                          \
2578     }
2579 
2580 #define DO_VIDUP_ALL(OP, FN)                    \
2581     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2582     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2583     DO_VIDUP(OP##w, 4, int32_t, FN)
2584 
2585 #define DO_VIWDUP_ALL(OP, FN)                   \
2586     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2587     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2588     DO_VIWDUP(OP##w, 4, int32_t, FN)
2589 
2590 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2591 {
2592     offset += imm;
2593     if (offset == wrap) {
2594         offset = 0;
2595     }
2596     return offset;
2597 }
2598 
2599 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2600 {
2601     if (offset == 0) {
2602         offset = wrap;
2603     }
2604     offset -= imm;
2605     return offset;
2606 }
2607 
2608 DO_VIDUP_ALL(vidup, DO_ADD)
2609 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2610 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2611 
2612 /*
2613  * Vector comparison.
2614  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2615  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2616  * P0 bits otherwise are updated with the results of the comparisons.
2617  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2618  */
2619 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2620     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2621     {                                                                   \
2622         TYPE *n = vn, *m = vm;                                          \
2623         uint16_t mask = mve_element_mask(env);                          \
2624         uint16_t eci_mask = mve_eci_mask(env);                          \
2625         uint16_t beatpred = 0;                                          \
2626         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2627         unsigned e;                                                     \
2628         for (e = 0; e < 16 / ESIZE; e++) {                              \
2629             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2630             /* Comparison sets 0/1 bits for each byte in the element */ \
2631             beatpred |= r * emask;                                      \
2632             emask <<= ESIZE;                                            \
2633         }                                                               \
2634         beatpred &= mask;                                               \
2635         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2636             (beatpred & eci_mask);                                      \
2637         mve_advance_vpt(env);                                           \
2638     }
2639 
2640 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2641     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2642                                 uint32_t rm)                            \
2643     {                                                                   \
2644         TYPE *n = vn;                                                   \
2645         uint16_t mask = mve_element_mask(env);                          \
2646         uint16_t eci_mask = mve_eci_mask(env);                          \
2647         uint16_t beatpred = 0;                                          \
2648         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2649         unsigned e;                                                     \
2650         for (e = 0; e < 16 / ESIZE; e++) {                              \
2651             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2652             /* Comparison sets 0/1 bits for each byte in the element */ \
2653             beatpred |= r * emask;                                      \
2654             emask <<= ESIZE;                                            \
2655         }                                                               \
2656         beatpred &= mask;                                               \
2657         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2658             (beatpred & eci_mask);                                      \
2659         mve_advance_vpt(env);                                           \
2660     }
2661 
2662 #define DO_VCMP_S(OP, FN)                               \
2663     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2664     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2665     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2666     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2667     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2668     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2669 
2670 #define DO_VCMP_U(OP, FN)                               \
2671     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2672     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2673     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2674     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2675     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2676     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2677 
2678 #define DO_EQ(N, M) ((N) == (M))
2679 #define DO_NE(N, M) ((N) != (M))
2680 #define DO_EQ(N, M) ((N) == (M))
2681 #define DO_EQ(N, M) ((N) == (M))
2682 #define DO_GE(N, M) ((N) >= (M))
2683 #define DO_LT(N, M) ((N) < (M))
2684 #define DO_GT(N, M) ((N) > (M))
2685 #define DO_LE(N, M) ((N) <= (M))
2686 
2687 DO_VCMP_U(vcmpeq, DO_EQ)
2688 DO_VCMP_U(vcmpne, DO_NE)
2689 DO_VCMP_U(vcmpcs, DO_GE)
2690 DO_VCMP_U(vcmphi, DO_GT)
2691 DO_VCMP_S(vcmpge, DO_GE)
2692 DO_VCMP_S(vcmplt, DO_LT)
2693 DO_VCMP_S(vcmpgt, DO_GT)
2694 DO_VCMP_S(vcmple, DO_LE)
2695 
2696 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2697 {
2698     /*
2699      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2700      * but note that whether bytes are written to Qd is still subject
2701      * to (all forms of) predication in the usual way.
2702      */
2703     uint64_t *d = vd, *n = vn, *m = vm;
2704     uint16_t mask = mve_element_mask(env);
2705     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2706     unsigned e;
2707     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2708         uint64_t r = m[H8(e)];
2709         mergemask(&r, n[H8(e)], p0);
2710         mergemask(&d[H8(e)], r, mask);
2711     }
2712     mve_advance_vpt(env);
2713 }
2714 
2715 void HELPER(mve_vpnot)(CPUARMState *env)
2716 {
2717     /*
2718      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2719      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2720      * P0 bits otherwise are inverted.
2721      * (This is the same logic as VCMP.)
2722      * This insn is itself subject to predication and to beat-wise execution,
2723      * and after it executes VPT state advances in the usual way.
2724      */
2725     uint16_t mask = mve_element_mask(env);
2726     uint16_t eci_mask = mve_eci_mask(env);
2727     uint16_t beatpred = ~env->v7m.vpr & mask;
2728     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2729     mve_advance_vpt(env);
2730 }
2731 
2732 /*
2733  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2734  * otherwise set according to value of Rn. The calculation of
2735  * newmask here works in the same way as the calculation of the
2736  * ltpmask in mve_element_mask(), but we have pre-calculated
2737  * the masklen in the generated code.
2738  */
2739 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2740 {
2741     uint16_t mask = mve_element_mask(env);
2742     uint16_t eci_mask = mve_eci_mask(env);
2743     uint16_t newmask;
2744 
2745     assert(masklen <= 16);
2746     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2747     newmask &= mask;
2748     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2749     mve_advance_vpt(env);
2750 }
2751 
2752 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2753     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2754     {                                                                   \
2755         TYPE *d = vd, *m = vm;                                          \
2756         uint16_t mask = mve_element_mask(env);                          \
2757         unsigned e;                                                     \
2758         bool qc = false;                                                \
2759         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2760             bool sat = false;                                           \
2761             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2762             qc |= sat & mask & 1;                                       \
2763         }                                                               \
2764         if (qc) {                                                       \
2765             env->vfp.qc[0] = qc;                                        \
2766         }                                                               \
2767         mve_advance_vpt(env);                                           \
2768     }
2769 
2770 #define DO_VQABS_B(N, SATP) \
2771     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2772 #define DO_VQABS_H(N, SATP) \
2773     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2774 #define DO_VQABS_W(N, SATP) \
2775     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2776 
2777 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2778 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2779 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2780 
2781 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2782 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2783 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2784 
2785 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2786 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2787 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2788 
2789 /*
2790  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2791  * absolute value; we then do an unsigned comparison.
2792  */
2793 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2794     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2795     {                                                                   \
2796         UTYPE *d = vd;                                                  \
2797         STYPE *m = vm;                                                  \
2798         uint16_t mask = mve_element_mask(env);                          \
2799         unsigned e;                                                     \
2800         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2801             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2802             r = FN(d[H##ESIZE(e)], r);                                  \
2803             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2804         }                                                               \
2805         mve_advance_vpt(env);                                           \
2806     }
2807 
2808 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2809 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2810 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2811 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2812 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2813 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2814 
2815 /*
2816  * 2-operand floating point. Note that if an element is partially
2817  * predicated we must do the FP operation to update the non-predicated
2818  * bytes, but we must be careful to avoid updating the FP exception
2819  * state unless byte 0 of the element was unpredicated.
2820  */
2821 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2822     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2823                                 void *vd, void *vn, void *vm)           \
2824     {                                                                   \
2825         TYPE *d = vd, *n = vn, *m = vm;                                 \
2826         TYPE r;                                                         \
2827         uint16_t mask = mve_element_mask(env);                          \
2828         unsigned e;                                                     \
2829         float_status *fpst;                                             \
2830         float_status scratch_fpst;                                      \
2831         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2832             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2833                 continue;                                               \
2834             }                                                           \
2835             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2836             if (!(mask & 1)) {                                          \
2837                 /* We need the result but without updating flags */     \
2838                 scratch_fpst = *fpst;                                   \
2839                 fpst = &scratch_fpst;                                   \
2840             }                                                           \
2841             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2842             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2843         }                                                               \
2844         mve_advance_vpt(env);                                           \
2845     }
2846 
2847 #define DO_2OP_FP_ALL(OP, FN)                  \
2848     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2849     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2850 
2851 DO_2OP_FP_ALL(vfadd, add)
2852 DO_2OP_FP_ALL(vfsub, sub)
2853 DO_2OP_FP_ALL(vfmul, mul)
2854 
2855 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2856 {
2857     return float16_abs(float16_sub(a, b, s));
2858 }
2859 
2860 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2861 {
2862     return float32_abs(float32_sub(a, b, s));
2863 }
2864 
2865 DO_2OP_FP_ALL(vfabd, abd)
2866 DO_2OP_FP_ALL(vmaxnm, maxnum)
2867 DO_2OP_FP_ALL(vminnm, minnum)
2868 
2869 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2870 {
2871     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2872 }
2873 
2874 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2875 {
2876     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2877 }
2878 
2879 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2880 {
2881     return float16_minnum(float16_abs(a), float16_abs(b), s);
2882 }
2883 
2884 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2885 {
2886     return float32_minnum(float32_abs(a), float32_abs(b), s);
2887 }
2888 
2889 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2890 DO_2OP_FP_ALL(vminnma, minnuma)
2891 
2892 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2893     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2894                                 void *vd, void *vn, void *vm)           \
2895     {                                                                   \
2896         TYPE *d = vd, *n = vn, *m = vm;                                 \
2897         TYPE r[16 / ESIZE];                                             \
2898         uint16_t tm, mask = mve_element_mask(env);                      \
2899         unsigned e;                                                     \
2900         float_status *fpst;                                             \
2901         float_status scratch_fpst;                                      \
2902         /* Calculate all results first to avoid overwriting inputs */   \
2903         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2904             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2905                 r[e] = 0;                                               \
2906                 continue;                                               \
2907             }                                                           \
2908             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2909             if (!(tm & 1)) {                                            \
2910                 /* We need the result but without updating flags */     \
2911                 scratch_fpst = *fpst;                                   \
2912                 fpst = &scratch_fpst;                                   \
2913             }                                                           \
2914             if (!(e & 1)) {                                             \
2915                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2916             } else {                                                    \
2917                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2918             }                                                           \
2919         }                                                               \
2920         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2921             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2922         }                                                               \
2923         mve_advance_vpt(env);                                           \
2924     }
2925 
2926 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2927 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2928 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2929 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2930 
2931 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2932     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2933                                 void *vd, void *vn, void *vm)           \
2934     {                                                                   \
2935         TYPE *d = vd, *n = vn, *m = vm;                                 \
2936         TYPE r;                                                         \
2937         uint16_t mask = mve_element_mask(env);                          \
2938         unsigned e;                                                     \
2939         float_status *fpst;                                             \
2940         float_status scratch_fpst;                                      \
2941         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2942             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2943                 continue;                                               \
2944             }                                                           \
2945             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2946             if (!(mask & 1)) {                                          \
2947                 /* We need the result but without updating flags */     \
2948                 scratch_fpst = *fpst;                                   \
2949                 fpst = &scratch_fpst;                                   \
2950             }                                                           \
2951             r = n[H##ESIZE(e)];                                         \
2952             if (CHS) {                                                  \
2953                 r = TYPE##_chs(r);                                      \
2954             }                                                           \
2955             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2956                               0, fpst);                                 \
2957             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2958         }                                                               \
2959         mve_advance_vpt(env);                                           \
2960     }
2961 
2962 DO_VFMA(vfmah, 2, float16, false)
2963 DO_VFMA(vfmas, 4, float32, false)
2964 DO_VFMA(vfmsh, 2, float16, true)
2965 DO_VFMA(vfmss, 4, float32, true)
2966 
2967 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2968     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2969                                 void *vd, void *vn, void *vm)           \
2970     {                                                                   \
2971         TYPE *d = vd, *n = vn, *m = vm;                                 \
2972         TYPE r0, r1, e1, e2, e3, e4;                                    \
2973         uint16_t mask = mve_element_mask(env);                          \
2974         unsigned e;                                                     \
2975         float_status *fpst0, *fpst1;                                    \
2976         float_status scratch_fpst;                                      \
2977         /* We loop through pairs of elements at a time */               \
2978         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2979             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2980                 continue;                                               \
2981             }                                                           \
2982             fpst0 = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2983             fpst1 = fpst0;                                              \
2984             if (!(mask & 1)) {                                          \
2985                 scratch_fpst = *fpst0;                                  \
2986                 fpst0 = &scratch_fpst;                                  \
2987             }                                                           \
2988             if (!(mask & (1 << ESIZE))) {                               \
2989                 scratch_fpst = *fpst1;                                  \
2990                 fpst1 = &scratch_fpst;                                  \
2991             }                                                           \
2992             switch (ROT) {                                              \
2993             case 0:                                                     \
2994                 e1 = m[H##ESIZE(e)];                                    \
2995                 e2 = n[H##ESIZE(e)];                                    \
2996                 e3 = m[H##ESIZE(e + 1)];                                \
2997                 e4 = n[H##ESIZE(e)];                                    \
2998                 break;                                                  \
2999             case 1:                                                     \
3000                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3001                 e2 = n[H##ESIZE(e + 1)];                                \
3002                 e3 = m[H##ESIZE(e)];                                    \
3003                 e4 = n[H##ESIZE(e + 1)];                                \
3004                 break;                                                  \
3005             case 2:                                                     \
3006                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3007                 e2 = n[H##ESIZE(e)];                                    \
3008                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3009                 e4 = n[H##ESIZE(e)];                                    \
3010                 break;                                                  \
3011             case 3:                                                     \
3012                 e1 = m[H##ESIZE(e + 1)];                                \
3013                 e2 = n[H##ESIZE(e + 1)];                                \
3014                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3015                 e4 = n[H##ESIZE(e + 1)];                                \
3016                 break;                                                  \
3017             default:                                                    \
3018                 g_assert_not_reached();                                 \
3019             }                                                           \
3020             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3021             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3022             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3023             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3024         }                                                               \
3025         mve_advance_vpt(env);                                           \
3026     }
3027 
3028 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3029 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3030 
3031 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3032 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3033 
3034 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3035 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3036 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3037 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3038 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3039 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3040 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3041 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3042 
3043 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3044 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3045 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3046 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3047 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3048 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3049 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3050 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3051 
3052 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3053     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3054                                 void *vd, void *vn, uint32_t rm)        \
3055     {                                                                   \
3056         TYPE *d = vd, *n = vn;                                          \
3057         TYPE r, m = rm;                                                 \
3058         uint16_t mask = mve_element_mask(env);                          \
3059         unsigned e;                                                     \
3060         float_status *fpst;                                             \
3061         float_status scratch_fpst;                                      \
3062         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3063             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3064                 continue;                                               \
3065             }                                                           \
3066             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3067             if (!(mask & 1)) {                                          \
3068                 /* We need the result but without updating flags */     \
3069                 scratch_fpst = *fpst;                                   \
3070                 fpst = &scratch_fpst;                                   \
3071             }                                                           \
3072             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3073             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3074         }                                                               \
3075         mve_advance_vpt(env);                                           \
3076     }
3077 
3078 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3079     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3080     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3081 
3082 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3083 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3084 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3085 
3086 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3087     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3088                                 void *vd, void *vn, uint32_t rm)        \
3089     {                                                                   \
3090         TYPE *d = vd, *n = vn;                                          \
3091         TYPE r, m = rm;                                                 \
3092         uint16_t mask = mve_element_mask(env);                          \
3093         unsigned e;                                                     \
3094         float_status *fpst;                                             \
3095         float_status scratch_fpst;                                      \
3096         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3097             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3098                 continue;                                               \
3099             }                                                           \
3100             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3101             if (!(mask & 1)) {                                          \
3102                 /* We need the result but without updating flags */     \
3103                 scratch_fpst = *fpst;                                   \
3104                 fpst = &scratch_fpst;                                   \
3105             }                                                           \
3106             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3107             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3108         }                                                               \
3109         mve_advance_vpt(env);                                           \
3110     }
3111 
3112 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3113 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3114 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3115 
3116 /* VFMA is vector * scalar + vector */
3117 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3118 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3119 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3120 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3121 
3122 /* Floating point max/min across vector. */
3123 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3124     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3125                                     uint32_t ra_in)             \
3126     {                                                           \
3127         uint16_t mask = mve_element_mask(env);                  \
3128         unsigned e;                                             \
3129         TYPE *m = vm;                                           \
3130         TYPE ra = (TYPE)ra_in;                                  \
3131         float_status *fpst =                                    \
3132             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3133         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3134             if (mask & 1) {                                     \
3135                 TYPE v = m[H##ESIZE(e)];                        \
3136                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3137                     ra = TYPE##_silence_nan(ra, fpst);          \
3138                     float_raise(float_flag_invalid, fpst);      \
3139                 }                                               \
3140                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3141                     v = TYPE##_silence_nan(v, fpst);            \
3142                     float_raise(float_flag_invalid, fpst);      \
3143                 }                                               \
3144                 if (ABS) {                                      \
3145                     v = TYPE##_abs(v);                          \
3146                 }                                               \
3147                 ra = FN(ra, v, fpst);                           \
3148             }                                                   \
3149         }                                                       \
3150         mve_advance_vpt(env);                                   \
3151         return ra;                                              \
3152     }                                                           \
3153 
3154 #define NOP(X) (X)
3155 
3156 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3157 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3158 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3159 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3160 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3161 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3162 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3163 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3164 
3165 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3166 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3167     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3168     {                                                                   \
3169         TYPE *n = vn, *m = vm;                                          \
3170         uint16_t mask = mve_element_mask(env);                          \
3171         uint16_t eci_mask = mve_eci_mask(env);                          \
3172         uint16_t beatpred = 0;                                          \
3173         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3174         unsigned e;                                                     \
3175         float_status *fpst;                                             \
3176         float_status scratch_fpst;                                      \
3177         bool r;                                                         \
3178         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3179             if ((mask & emask) == 0) {                                  \
3180                 continue;                                               \
3181             }                                                           \
3182             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3183             if (!(mask & (1 << (e * ESIZE)))) {                         \
3184                 /* We need the result but without updating flags */     \
3185                 scratch_fpst = *fpst;                                   \
3186                 fpst = &scratch_fpst;                                   \
3187             }                                                           \
3188             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3189             /* Comparison sets 0/1 bits for each byte in the element */ \
3190             beatpred |= r * emask;                                      \
3191         }                                                               \
3192         beatpred &= mask;                                               \
3193         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3194             (beatpred & eci_mask);                                      \
3195         mve_advance_vpt(env);                                           \
3196     }
3197 
3198 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3199     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3200                                 uint32_t rm)                            \
3201     {                                                                   \
3202         TYPE *n = vn;                                                   \
3203         uint16_t mask = mve_element_mask(env);                          \
3204         uint16_t eci_mask = mve_eci_mask(env);                          \
3205         uint16_t beatpred = 0;                                          \
3206         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3207         unsigned e;                                                     \
3208         float_status *fpst;                                             \
3209         float_status scratch_fpst;                                      \
3210         bool r;                                                         \
3211         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3212             if ((mask & emask) == 0) {                                  \
3213                 continue;                                               \
3214             }                                                           \
3215             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3216             if (!(mask & (1 << (e * ESIZE)))) {                         \
3217                 /* We need the result but without updating flags */     \
3218                 scratch_fpst = *fpst;                                   \
3219                 fpst = &scratch_fpst;                                   \
3220             }                                                           \
3221             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3222             /* Comparison sets 0/1 bits for each byte in the element */ \
3223             beatpred |= r * emask;                                      \
3224         }                                                               \
3225         beatpred &= mask;                                               \
3226         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3227             (beatpred & eci_mask);                                      \
3228         mve_advance_vpt(env);                                           \
3229     }
3230 
3231 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3232     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3233     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3234 
3235 /*
3236  * Some care is needed here to get the correct result for the unordered case.
3237  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3238  * the NE, LT and LE comparisons are defined as simple logical inverses of
3239  * EQ, GE and GT and so they must return true for unordered. The softfloat
3240  * comparison functions float*_{eq,le,lt} all return false for unordered.
3241  */
3242 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3243 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3244 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3245 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3246 
3247 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3248 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3249 
3250 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3251 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3252 
3253 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3254 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3255 
3256 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3257 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3258 
3259 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3260 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3261 
3262 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3263 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3264 
3265 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3266     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3267                                 uint32_t shift)                         \
3268     {                                                                   \
3269         TYPE *d = vd, *m = vm;                                          \
3270         TYPE r;                                                         \
3271         uint16_t mask = mve_element_mask(env);                          \
3272         unsigned e;                                                     \
3273         float_status *fpst;                                             \
3274         float_status scratch_fpst;                                      \
3275         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3276             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3277                 continue;                                               \
3278             }                                                           \
3279             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3280             if (!(mask & 1)) {                                          \
3281                 /* We need the result but without updating flags */     \
3282                 scratch_fpst = *fpst;                                   \
3283                 fpst = &scratch_fpst;                                   \
3284             }                                                           \
3285             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3286             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3287         }                                                               \
3288         mve_advance_vpt(env);                                           \
3289     }
3290 
3291 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3292 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3293 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3294 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3295 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3296 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3297 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3298 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3299 
3300 /* VCVT with specified rmode */
3301 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3302     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3303                                 void *vd, void *vm, uint32_t rmode)     \
3304     {                                                                   \
3305         TYPE *d = vd, *m = vm;                                          \
3306         TYPE r;                                                         \
3307         uint16_t mask = mve_element_mask(env);                          \
3308         unsigned e;                                                     \
3309         float_status *fpst;                                             \
3310         float_status scratch_fpst;                                      \
3311         float_status *base_fpst =                                       \
3312             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD];  \
3313         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3314         set_float_rounding_mode(rmode, base_fpst);                      \
3315         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3316             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3317                 continue;                                               \
3318             }                                                           \
3319             fpst = base_fpst;                                           \
3320             if (!(mask & 1)) {                                          \
3321                 /* We need the result but without updating flags */     \
3322                 scratch_fpst = *fpst;                                   \
3323                 fpst = &scratch_fpst;                                   \
3324             }                                                           \
3325             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3326             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3327         }                                                               \
3328         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3329         mve_advance_vpt(env);                                           \
3330     }
3331 
3332 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3333 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3334 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3335 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3336 
3337 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3338 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3339 
3340 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3341 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3342 
3343 /*
3344  * VCVT between halfprec and singleprec. As usual for halfprec
3345  * conversions, FZ16 is ignored and AHP is observed.
3346  */
3347 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3348 {
3349     uint16_t *d = vd;
3350     uint32_t *m = vm;
3351     uint16_t r;
3352     uint16_t mask = mve_element_mask(env);
3353     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3354     unsigned e;
3355     float_status *fpst;
3356     float_status scratch_fpst;
3357     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3358     bool old_fz = get_flush_to_zero(base_fpst);
3359     set_flush_to_zero(false, base_fpst);
3360     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3361         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3362             continue;
3363         }
3364         fpst = base_fpst;
3365         if (!(mask & 1)) {
3366             /* We need the result but without updating flags */
3367             scratch_fpst = *fpst;
3368             fpst = &scratch_fpst;
3369         }
3370         r = float32_to_float16(m[H4(e)], ieee, fpst);
3371         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3372     }
3373     set_flush_to_zero(old_fz, base_fpst);
3374     mve_advance_vpt(env);
3375 }
3376 
3377 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3378 {
3379     uint32_t *d = vd;
3380     uint16_t *m = vm;
3381     uint32_t r;
3382     uint16_t mask = mve_element_mask(env);
3383     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3384     unsigned e;
3385     float_status *fpst;
3386     float_status scratch_fpst;
3387     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3388     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3389     set_flush_inputs_to_zero(false, base_fpst);
3390     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3391         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3392             continue;
3393         }
3394         fpst = base_fpst;
3395         if (!(mask & (1 << (top * 2)))) {
3396             /* We need the result but without updating flags */
3397             scratch_fpst = *fpst;
3398             fpst = &scratch_fpst;
3399         }
3400         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3401         mergemask(&d[H4(e)], r, mask);
3402     }
3403     set_flush_inputs_to_zero(old_fiz, base_fpst);
3404     mve_advance_vpt(env);
3405 }
3406 
3407 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3408 {
3409     do_vcvt_sh(env, vd, vm, 0);
3410 }
3411 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3412 {
3413     do_vcvt_sh(env, vd, vm, 1);
3414 }
3415 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3416 {
3417     do_vcvt_hs(env, vd, vm, 0);
3418 }
3419 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3420 {
3421     do_vcvt_hs(env, vd, vm, 1);
3422 }
3423 
3424 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3425     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3426     {                                                                   \
3427         TYPE *d = vd, *m = vm;                                          \
3428         TYPE r;                                                         \
3429         uint16_t mask = mve_element_mask(env);                          \
3430         unsigned e;                                                     \
3431         float_status *fpst;                                             \
3432         float_status scratch_fpst;                                      \
3433         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3434             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3435                 continue;                                               \
3436             }                                                           \
3437             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3438             if (!(mask & 1)) {                                          \
3439                 /* We need the result but without updating flags */     \
3440                 scratch_fpst = *fpst;                                   \
3441                 fpst = &scratch_fpst;                                   \
3442             }                                                           \
3443             r = FN(m[H##ESIZE(e)], fpst);                               \
3444             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3445         }                                                               \
3446         mve_advance_vpt(env);                                           \
3447     }
3448 
3449 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3450 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3451