xref: /qemu/target/arm/tcg/mve_helper.c (revision 8abd3c80b18757c54e9b270244ca351e407b6405)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 
28 static uint16_t mve_element_mask(CPUARMState *env)
29 {
30     /*
31      * Return the mask of which elements in the MVE vector should be
32      * updated. This is a combination of multiple things:
33      *  (1) by default, we update every lane in the vector
34      *  (2) VPT predication stores its state in the VPR register;
35      *  (3) low-overhead-branch tail predication will mask out part
36      *      the vector on the final iteration of the loop
37      *  (4) if EPSR.ECI is set then we must execute only some beats
38      *      of the insn
39      * We combine all these into a 16-bit result with the same semantics
40      * as VPR.P0: 0 to mask the lane, 1 if it is active.
41      * 8-bit vector ops will look at all bits of the result;
42      * 16-bit ops will look at bits 0, 2, 4, ...;
43      * 32-bit ops will look at bits 0, 4, 8 and 12.
44      * Compare pseudocode GetCurInstrBeat(), though that only returns
45      * the 4-bit slice of the mask corresponding to a single beat.
46      */
47     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
48 
49     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
50         mask |= 0xff;
51     }
52     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
53         mask |= 0xff00;
54     }
55 
56     if (env->v7m.ltpsize < 4 &&
57         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
58         /*
59          * Tail predication active, and this is the last loop iteration.
60          * The element size is (1 << ltpsize), and we only want to process
61          * loopcount elements, so we want to retain the least significant
62          * (loopcount * esize) predicate bits and zero out bits above that.
63          */
64         int masklen = env->regs[14] << env->v7m.ltpsize;
65         assert(masklen <= 16);
66         mask &= MAKE_64BIT_MASK(0, masklen);
67     }
68 
69     if ((env->condexec_bits & 0xf) == 0) {
70         /*
71          * ECI bits indicate which beats are already executed;
72          * we handle this by effectively predicating them out.
73          */
74         int eci = env->condexec_bits >> 4;
75         switch (eci) {
76         case ECI_NONE:
77             break;
78         case ECI_A0:
79             mask &= 0xfff0;
80             break;
81         case ECI_A0A1:
82             mask &= 0xff00;
83             break;
84         case ECI_A0A1A2:
85         case ECI_A0A1A2B0:
86             mask &= 0xf000;
87             break;
88         default:
89             g_assert_not_reached();
90         }
91     }
92 
93     return mask;
94 }
95 
96 static void mve_advance_vpt(CPUARMState *env)
97 {
98     /* Advance the VPT and ECI state if necessary */
99     uint32_t vpr = env->v7m.vpr;
100     unsigned mask01, mask23;
101 
102     if ((env->condexec_bits & 0xf) == 0) {
103         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
104             (ECI_A0 << 4) : (ECI_NONE << 4);
105     }
106 
107     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
108         /* VPT not enabled, nothing to do */
109         return;
110     }
111 
112     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
113     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
114     if (mask01 > 8) {
115         /* high bit set, but not 0b1000: invert the relevant half of P0 */
116         vpr ^= 0xff;
117     }
118     if (mask23 > 8) {
119         /* high bit set, but not 0b1000: invert the relevant half of P0 */
120         vpr ^= 0xff00;
121     }
122     vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
123     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
124     env->v7m.vpr = vpr;
125 }
126 
127 
128 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
129     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
130     {                                                                   \
131         TYPE *d = vd;                                                   \
132         uint16_t mask = mve_element_mask(env);                          \
133         unsigned b, e;                                                  \
134         /*                                                              \
135          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
136          * beats so we don't care if we update part of the dest and     \
137          * then take an exception.                                      \
138          */                                                             \
139         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
140             if (mask & (1 << b)) {                                      \
141                 d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
142             }                                                           \
143             addr += MSIZE;                                              \
144         }                                                               \
145         mve_advance_vpt(env);                                           \
146     }
147 
148 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
149     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
150     {                                                                   \
151         TYPE *d = vd;                                                   \
152         uint16_t mask = mve_element_mask(env);                          \
153         unsigned b, e;                                                  \
154         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
155             if (mask & (1 << b)) {                                      \
156                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
157             }                                                           \
158             addr += MSIZE;                                              \
159         }                                                               \
160         mve_advance_vpt(env);                                           \
161     }
162 
163 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
164 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
165 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
166 
167 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
168 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
169 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
170 
171 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
172 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
173 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
174 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
175 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
176 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
177 
178 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
179 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
180 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
181 
182 #undef DO_VLDR
183 #undef DO_VSTR
184 
185 /*
186  * The mergemask(D, R, M) macro performs the operation "*D = R" but
187  * storing only the bytes which correspond to 1 bits in M,
188  * leaving other bytes in *D unchanged. We use _Generic
189  * to select the correct implementation based on the type of D.
190  */
191 
192 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
193 {
194     if (mask & 1) {
195         *d = r;
196     }
197 }
198 
199 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
200 {
201     mergemask_ub((uint8_t *)d, r, mask);
202 }
203 
204 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
205 {
206     uint16_t bmask = expand_pred_b_data[mask & 3];
207     *d = (*d & ~bmask) | (r & bmask);
208 }
209 
210 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
211 {
212     mergemask_uh((uint16_t *)d, r, mask);
213 }
214 
215 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
216 {
217     uint32_t bmask = expand_pred_b_data[mask & 0xf];
218     *d = (*d & ~bmask) | (r & bmask);
219 }
220 
221 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
222 {
223     mergemask_uw((uint32_t *)d, r, mask);
224 }
225 
226 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
227 {
228     uint64_t bmask = expand_pred_b_data[mask & 0xff];
229     *d = (*d & ~bmask) | (r & bmask);
230 }
231 
232 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
233 {
234     mergemask_uq((uint64_t *)d, r, mask);
235 }
236 
237 #define mergemask(D, R, M)                      \
238     _Generic(D,                                 \
239              uint8_t *: mergemask_ub,           \
240              int8_t *:  mergemask_sb,           \
241              uint16_t *: mergemask_uh,          \
242              int16_t *:  mergemask_sh,          \
243              uint32_t *: mergemask_uw,          \
244              int32_t *:  mergemask_sw,          \
245              uint64_t *: mergemask_uq,          \
246              int64_t *:  mergemask_sq)(D, R, M)
247 
248 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
249     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
250     {                                                                   \
251         TYPE *d = vd, *m = vm;                                          \
252         uint16_t mask = mve_element_mask(env);                          \
253         unsigned e;                                                     \
254         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
255             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
256         }                                                               \
257         mve_advance_vpt(env);                                           \
258     }
259 
260 #define DO_CLS_B(N)   (clrsb32(N) - 24)
261 #define DO_CLS_H(N)   (clrsb32(N) - 16)
262 
263 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
264 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
265 DO_1OP(vclsw, 4, int32_t, clrsb32)
266 
267 #define DO_CLZ_B(N)   (clz32(N) - 24)
268 #define DO_CLZ_H(N)   (clz32(N) - 16)
269 
270 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
271 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
272 DO_1OP(vclzw, 4, uint32_t, clz32)
273 
274 DO_1OP(vrev16b, 2, uint16_t, bswap16)
275 DO_1OP(vrev32b, 4, uint32_t, bswap32)
276 DO_1OP(vrev32h, 4, uint32_t, hswap32)
277 DO_1OP(vrev64b, 8, uint64_t, bswap64)
278 DO_1OP(vrev64h, 8, uint64_t, hswap64)
279 DO_1OP(vrev64w, 8, uint64_t, wswap64)
280 
281 #define DO_NOT(N) (~(N))
282 
283 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
284