xref: /qemu/target/arm/tcg/mve_helper.c (revision 41704cc262d6f451470c2074560bc7309064865d)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_eci_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector correspond
33      * to beats being executed. The mask has 1 bits for executed lanes
34      * and 0 bits where ECI says this beat was already executed.
35      */
36     int eci;
37 
38     if ((env->condexec_bits & 0xf) != 0) {
39         return 0xffff;
40     }
41 
42     eci = env->condexec_bits >> 4;
43     switch (eci) {
44     case ECI_NONE:
45         return 0xffff;
46     case ECI_A0:
47         return 0xfff0;
48     case ECI_A0A1:
49         return 0xff00;
50     case ECI_A0A1A2:
51     case ECI_A0A1A2B0:
52         return 0xf000;
53     default:
54         g_assert_not_reached();
55     }
56 }
57 
58 static uint16_t mve_element_mask(CPUARMState *env)
59 {
60     /*
61      * Return the mask of which elements in the MVE vector should be
62      * updated. This is a combination of multiple things:
63      *  (1) by default, we update every lane in the vector
64      *  (2) VPT predication stores its state in the VPR register;
65      *  (3) low-overhead-branch tail predication will mask out part
66      *      the vector on the final iteration of the loop
67      *  (4) if EPSR.ECI is set then we must execute only some beats
68      *      of the insn
69      * We combine all these into a 16-bit result with the same semantics
70      * as VPR.P0: 0 to mask the lane, 1 if it is active.
71      * 8-bit vector ops will look at all bits of the result;
72      * 16-bit ops will look at bits 0, 2, 4, ...;
73      * 32-bit ops will look at bits 0, 4, 8 and 12.
74      * Compare pseudocode GetCurInstrBeat(), though that only returns
75      * the 4-bit slice of the mask corresponding to a single beat.
76      */
77     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
78 
79     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
80         mask |= 0xff;
81     }
82     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
83         mask |= 0xff00;
84     }
85 
86     if (env->v7m.ltpsize < 4 &&
87         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
88         /*
89          * Tail predication active, and this is the last loop iteration.
90          * The element size is (1 << ltpsize), and we only want to process
91          * loopcount elements, so we want to retain the least significant
92          * (loopcount * esize) predicate bits and zero out bits above that.
93          */
94         int masklen = env->regs[14] << env->v7m.ltpsize;
95         assert(masklen <= 16);
96         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
97         mask &= ltpmask;
98     }
99 
100     /*
101      * ECI bits indicate which beats are already executed;
102      * we handle this by effectively predicating them out.
103      */
104     mask &= mve_eci_mask(env);
105     return mask;
106 }
107 
108 static void mve_advance_vpt(CPUARMState *env)
109 {
110     /* Advance the VPT and ECI state if necessary */
111     uint32_t vpr = env->v7m.vpr;
112     unsigned mask01, mask23;
113     uint16_t inv_mask;
114     uint16_t eci_mask = mve_eci_mask(env);
115 
116     if ((env->condexec_bits & 0xf) == 0) {
117         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
118             (ECI_A0 << 4) : (ECI_NONE << 4);
119     }
120 
121     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
122         /* VPT not enabled, nothing to do */
123         return;
124     }
125 
126     /* Invert P0 bits if needed, but only for beats we actually executed */
127     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
128     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
129     /* Start by assuming we invert all bits corresponding to executed beats */
130     inv_mask = eci_mask;
131     if (mask01 <= 8) {
132         /* MASK01 says don't invert low half of P0 */
133         inv_mask &= ~0xff;
134     }
135     if (mask23 <= 8) {
136         /* MASK23 says don't invert high half of P0 */
137         inv_mask &= ~0xff00;
138     }
139     vpr ^= inv_mask;
140     /* Only update MASK01 if beat 1 executed */
141     if (eci_mask & 0xf0) {
142         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
143     }
144     /* Beat 3 always executes, so update MASK23 */
145     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
146     env->v7m.vpr = vpr;
147 }
148 
149 /* For loads, predicated lanes are zeroed instead of keeping their old values */
150 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
151     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
152     {                                                                   \
153         TYPE *d = vd;                                                   \
154         uint16_t mask = mve_element_mask(env);                          \
155         uint16_t eci_mask = mve_eci_mask(env);                          \
156         unsigned b, e;                                                  \
157         /*                                                              \
158          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
159          * beats so we don't care if we update part of the dest and     \
160          * then take an exception.                                      \
161          */                                                             \
162         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
163             if (eci_mask & (1 << b)) {                                  \
164                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
165                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
166             }                                                           \
167             addr += MSIZE;                                              \
168         }                                                               \
169         mve_advance_vpt(env);                                           \
170     }
171 
172 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
173     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
174     {                                                                   \
175         TYPE *d = vd;                                                   \
176         uint16_t mask = mve_element_mask(env);                          \
177         unsigned b, e;                                                  \
178         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
179             if (mask & (1 << b)) {                                      \
180                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
181             }                                                           \
182             addr += MSIZE;                                              \
183         }                                                               \
184         mve_advance_vpt(env);                                           \
185     }
186 
187 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
188 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
189 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
190 
191 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
192 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
193 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
194 
195 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
196 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
197 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
198 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
199 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
200 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
201 
202 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
203 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
204 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
205 
206 #undef DO_VLDR
207 #undef DO_VSTR
208 
209 /*
210  * The mergemask(D, R, M) macro performs the operation "*D = R" but
211  * storing only the bytes which correspond to 1 bits in M,
212  * leaving other bytes in *D unchanged. We use _Generic
213  * to select the correct implementation based on the type of D.
214  */
215 
216 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
217 {
218     if (mask & 1) {
219         *d = r;
220     }
221 }
222 
223 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
224 {
225     mergemask_ub((uint8_t *)d, r, mask);
226 }
227 
228 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
229 {
230     uint16_t bmask = expand_pred_b_data[mask & 3];
231     *d = (*d & ~bmask) | (r & bmask);
232 }
233 
234 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
235 {
236     mergemask_uh((uint16_t *)d, r, mask);
237 }
238 
239 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
240 {
241     uint32_t bmask = expand_pred_b_data[mask & 0xf];
242     *d = (*d & ~bmask) | (r & bmask);
243 }
244 
245 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
246 {
247     mergemask_uw((uint32_t *)d, r, mask);
248 }
249 
250 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
251 {
252     uint64_t bmask = expand_pred_b_data[mask & 0xff];
253     *d = (*d & ~bmask) | (r & bmask);
254 }
255 
256 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
257 {
258     mergemask_uq((uint64_t *)d, r, mask);
259 }
260 
261 #define mergemask(D, R, M)                      \
262     _Generic(D,                                 \
263              uint8_t *: mergemask_ub,           \
264              int8_t *:  mergemask_sb,           \
265              uint16_t *: mergemask_uh,          \
266              int16_t *:  mergemask_sh,          \
267              uint32_t *: mergemask_uw,          \
268              int32_t *:  mergemask_sw,          \
269              uint64_t *: mergemask_uq,          \
270              int64_t *:  mergemask_sq)(D, R, M)
271 
272 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
273 {
274     /*
275      * The generated code already replicated an 8 or 16 bit constant
276      * into the 32-bit value, so we only need to write the 32-bit
277      * value to all elements of the Qreg, allowing for predication.
278      */
279     uint32_t *d = vd;
280     uint16_t mask = mve_element_mask(env);
281     unsigned e;
282     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
283         mergemask(&d[H4(e)], val, mask);
284     }
285     mve_advance_vpt(env);
286 }
287 
288 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
289     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
290     {                                                                   \
291         TYPE *d = vd, *m = vm;                                          \
292         uint16_t mask = mve_element_mask(env);                          \
293         unsigned e;                                                     \
294         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
295             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
296         }                                                               \
297         mve_advance_vpt(env);                                           \
298     }
299 
300 #define DO_CLS_B(N)   (clrsb32(N) - 24)
301 #define DO_CLS_H(N)   (clrsb32(N) - 16)
302 
303 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
304 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
305 DO_1OP(vclsw, 4, int32_t, clrsb32)
306 
307 #define DO_CLZ_B(N)   (clz32(N) - 24)
308 #define DO_CLZ_H(N)   (clz32(N) - 16)
309 
310 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
311 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
312 DO_1OP(vclzw, 4, uint32_t, clz32)
313 
314 DO_1OP(vrev16b, 2, uint16_t, bswap16)
315 DO_1OP(vrev32b, 4, uint32_t, bswap32)
316 DO_1OP(vrev32h, 4, uint32_t, hswap32)
317 DO_1OP(vrev64b, 8, uint64_t, bswap64)
318 DO_1OP(vrev64h, 8, uint64_t, hswap64)
319 DO_1OP(vrev64w, 8, uint64_t, wswap64)
320 
321 #define DO_NOT(N) (~(N))
322 
323 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
324 
325 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
326 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
327 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
328 
329 DO_1OP(vabsb, 1, int8_t, DO_ABS)
330 DO_1OP(vabsh, 2, int16_t, DO_ABS)
331 DO_1OP(vabsw, 4, int32_t, DO_ABS)
332 
333 /* We can do these 64 bits at a time */
334 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
335 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
336 
337 #define DO_NEG(N)    (-(N))
338 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
339 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
340 
341 DO_1OP(vnegb, 1, int8_t, DO_NEG)
342 DO_1OP(vnegh, 2, int16_t, DO_NEG)
343 DO_1OP(vnegw, 4, int32_t, DO_NEG)
344 
345 /* We can do these 64 bits at a time */
346 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
347 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
348 
349 /*
350  * 1 operand immediates: Vda is destination and possibly also one source.
351  * All these insns work at 64-bit widths.
352  */
353 #define DO_1OP_IMM(OP, FN)                                              \
354     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
355     {                                                                   \
356         uint64_t *da = vda;                                             \
357         uint16_t mask = mve_element_mask(env);                          \
358         unsigned e;                                                     \
359         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
360             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
361         }                                                               \
362         mve_advance_vpt(env);                                           \
363     }
364 
365 #define DO_MOVI(N, I) (I)
366 #define DO_ANDI(N, I) ((N) & (I))
367 #define DO_ORRI(N, I) ((N) | (I))
368 
369 DO_1OP_IMM(vmovi, DO_MOVI)
370 DO_1OP_IMM(vandi, DO_ANDI)
371 DO_1OP_IMM(vorri, DO_ORRI)
372 
373 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
374     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
375                                 void *vd, void *vn, void *vm)           \
376     {                                                                   \
377         TYPE *d = vd, *n = vn, *m = vm;                                 \
378         uint16_t mask = mve_element_mask(env);                          \
379         unsigned e;                                                     \
380         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
381             mergemask(&d[H##ESIZE(e)],                                  \
382                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
383         }                                                               \
384         mve_advance_vpt(env);                                           \
385     }
386 
387 /* provide unsigned 2-op helpers for all sizes */
388 #define DO_2OP_U(OP, FN)                        \
389     DO_2OP(OP##b, 1, uint8_t, FN)               \
390     DO_2OP(OP##h, 2, uint16_t, FN)              \
391     DO_2OP(OP##w, 4, uint32_t, FN)
392 
393 /* provide signed 2-op helpers for all sizes */
394 #define DO_2OP_S(OP, FN)                        \
395     DO_2OP(OP##b, 1, int8_t, FN)                \
396     DO_2OP(OP##h, 2, int16_t, FN)               \
397     DO_2OP(OP##w, 4, int32_t, FN)
398 
399 /*
400  * "Long" operations where two half-sized inputs (taken from either the
401  * top or the bottom of the input vector) produce a double-width result.
402  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
403  */
404 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
405     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
406     {                                                                   \
407         LTYPE *d = vd;                                                  \
408         TYPE *n = vn, *m = vm;                                          \
409         uint16_t mask = mve_element_mask(env);                          \
410         unsigned le;                                                    \
411         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
412             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
413                          m[H##ESIZE(le * 2 + TOP)]);                    \
414             mergemask(&d[H##LESIZE(le)], r, mask);                      \
415         }                                                               \
416         mve_advance_vpt(env);                                           \
417     }
418 
419 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
420     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
421     {                                                                   \
422         TYPE *d = vd, *n = vn, *m = vm;                                 \
423         uint16_t mask = mve_element_mask(env);                          \
424         unsigned e;                                                     \
425         bool qc = false;                                                \
426         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
427             bool sat = false;                                           \
428             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
429             mergemask(&d[H##ESIZE(e)], r, mask);                        \
430             qc |= sat & mask & 1;                                       \
431         }                                                               \
432         if (qc) {                                                       \
433             env->vfp.qc[0] = qc;                                        \
434         }                                                               \
435         mve_advance_vpt(env);                                           \
436     }
437 
438 /* provide unsigned 2-op helpers for all sizes */
439 #define DO_2OP_SAT_U(OP, FN)                    \
440     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
441     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
442     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
443 
444 /* provide signed 2-op helpers for all sizes */
445 #define DO_2OP_SAT_S(OP, FN)                    \
446     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
447     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
448     DO_2OP_SAT(OP##w, 4, int32_t, FN)
449 
450 #define DO_AND(N, M)  ((N) & (M))
451 #define DO_BIC(N, M)  ((N) & ~(M))
452 #define DO_ORR(N, M)  ((N) | (M))
453 #define DO_ORN(N, M)  ((N) | ~(M))
454 #define DO_EOR(N, M)  ((N) ^ (M))
455 
456 DO_2OP(vand, 8, uint64_t, DO_AND)
457 DO_2OP(vbic, 8, uint64_t, DO_BIC)
458 DO_2OP(vorr, 8, uint64_t, DO_ORR)
459 DO_2OP(vorn, 8, uint64_t, DO_ORN)
460 DO_2OP(veor, 8, uint64_t, DO_EOR)
461 
462 #define DO_ADD(N, M) ((N) + (M))
463 #define DO_SUB(N, M) ((N) - (M))
464 #define DO_MUL(N, M) ((N) * (M))
465 
466 DO_2OP_U(vadd, DO_ADD)
467 DO_2OP_U(vsub, DO_SUB)
468 DO_2OP_U(vmul, DO_MUL)
469 
470 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
471 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
472 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
473 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
474 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
475 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
476 
477 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
478 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
479 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
480 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
481 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
482 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
483 
484 /*
485  * Because the computation type is at least twice as large as required,
486  * these work for both signed and unsigned source types.
487  */
488 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
489 {
490     return (n * m) >> 8;
491 }
492 
493 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
494 {
495     return (n * m) >> 16;
496 }
497 
498 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
499 {
500     return (n * m) >> 32;
501 }
502 
503 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
504 {
505     return (n * m + (1U << 7)) >> 8;
506 }
507 
508 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
509 {
510     return (n * m + (1U << 15)) >> 16;
511 }
512 
513 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
514 {
515     return (n * m + (1U << 31)) >> 32;
516 }
517 
518 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
519 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
520 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
521 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
522 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
523 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
524 
525 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
526 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
527 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
528 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
529 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
530 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
531 
532 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
533 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
534 
535 DO_2OP_S(vmaxs, DO_MAX)
536 DO_2OP_U(vmaxu, DO_MAX)
537 DO_2OP_S(vmins, DO_MIN)
538 DO_2OP_U(vminu, DO_MIN)
539 
540 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
541 
542 DO_2OP_S(vabds, DO_ABD)
543 DO_2OP_U(vabdu, DO_ABD)
544 
545 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
546 {
547     return ((uint64_t)n + m) >> 1;
548 }
549 
550 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
551 {
552     return ((int64_t)n + m) >> 1;
553 }
554 
555 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
556 {
557     return ((uint64_t)n - m) >> 1;
558 }
559 
560 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
561 {
562     return ((int64_t)n - m) >> 1;
563 }
564 
565 DO_2OP_S(vhadds, do_vhadd_s)
566 DO_2OP_U(vhaddu, do_vhadd_u)
567 DO_2OP_S(vhsubs, do_vhsub_s)
568 DO_2OP_U(vhsubu, do_vhsub_u)
569 
570 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
571 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
572 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
573 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
574 
575 DO_2OP_S(vshls, DO_VSHLS)
576 DO_2OP_U(vshlu, DO_VSHLU)
577 DO_2OP_S(vrshls, DO_VRSHLS)
578 DO_2OP_U(vrshlu, DO_VRSHLU)
579 
580 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
581 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
582 
583 DO_2OP_S(vrhadds, DO_RHADD_S)
584 DO_2OP_U(vrhaddu, DO_RHADD_U)
585 
586 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
587                     uint32_t inv, uint32_t carry_in, bool update_flags)
588 {
589     uint16_t mask = mve_element_mask(env);
590     unsigned e;
591 
592     /* If any additions trigger, we will update flags. */
593     if (mask & 0x1111) {
594         update_flags = true;
595     }
596 
597     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
598         uint64_t r = carry_in;
599         r += n[H4(e)];
600         r += m[H4(e)] ^ inv;
601         if (mask & 1) {
602             carry_in = r >> 32;
603         }
604         mergemask(&d[H4(e)], r, mask);
605     }
606 
607     if (update_flags) {
608         /* Store C, clear NZV. */
609         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
610         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
611     }
612     mve_advance_vpt(env);
613 }
614 
615 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
616 {
617     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
618     do_vadc(env, vd, vn, vm, 0, carry_in, false);
619 }
620 
621 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
622 {
623     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
624     do_vadc(env, vd, vn, vm, -1, carry_in, false);
625 }
626 
627 
628 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
629 {
630     do_vadc(env, vd, vn, vm, 0, 0, true);
631 }
632 
633 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
634 {
635     do_vadc(env, vd, vn, vm, -1, 1, true);
636 }
637 
638 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
639     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
640     {                                                                   \
641         TYPE *d = vd, *n = vn, *m = vm;                                 \
642         uint16_t mask = mve_element_mask(env);                          \
643         unsigned e;                                                     \
644         TYPE r[16 / ESIZE];                                             \
645         /* Calculate all results first to avoid overwriting inputs */   \
646         for (e = 0; e < 16 / ESIZE; e++) {                              \
647             if (!(e & 1)) {                                             \
648                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
649             } else {                                                    \
650                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
651             }                                                           \
652         }                                                               \
653         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
654             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
655         }                                                               \
656         mve_advance_vpt(env);                                           \
657     }
658 
659 #define DO_VCADD_ALL(OP, FN0, FN1)              \
660     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
661     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
662     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
663 
664 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
665 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
666 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
667 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
668 
669 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
670 {
671     if (val > max) {
672         *s = true;
673         return max;
674     } else if (val < min) {
675         *s = true;
676         return min;
677     }
678     return val;
679 }
680 
681 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
682 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
683 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
684 
685 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
686 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
687 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
688 
689 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
690 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
691 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
692 
693 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
694 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
695 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
696 
697 /*
698  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
699  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
700  */
701 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
702                                         INT8_MIN, INT8_MAX, s)
703 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
704                                         INT16_MIN, INT16_MAX, s)
705 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
706                                         INT32_MIN, INT32_MAX, s)
707 
708 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
709                                          INT8_MIN, INT8_MAX, s)
710 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
711                                          INT16_MIN, INT16_MAX, s)
712 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
713                                          INT32_MIN, INT32_MAX, s)
714 
715 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
716 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
717 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
718 
719 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
720 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
721 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
722 
723 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
724 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
725 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
726 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
727 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
728 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
729 
730 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
731 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
732 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
733 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
734 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
735 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
736 
737 /*
738  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
739  * and friends wanting a uint32_t* sat and our needing a bool*.
740  */
741 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
742     ({                                                                  \
743         uint32_t su32 = 0;                                              \
744         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
745         if (su32) {                                                     \
746             *satp = true;                                               \
747         }                                                               \
748         r;                                                              \
749     })
750 
751 #define DO_SQSHL_OP(N, M, satp) \
752     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
753 #define DO_UQSHL_OP(N, M, satp) \
754     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
755 #define DO_SQRSHL_OP(N, M, satp) \
756     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
757 #define DO_UQRSHL_OP(N, M, satp) \
758     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
759 #define DO_SUQSHL_OP(N, M, satp) \
760     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
761 
762 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
763 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
764 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
765 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
766 
767 /*
768  * Multiply add dual returning high half
769  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
770  * whether to add the rounding constant, and the pointer to the
771  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
772  * saturate to twice the input size and return the high half; or
773  * (A * B - C * D) etc for VQDMLSDH.
774  */
775 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
776     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
777                                 void *vm)                               \
778     {                                                                   \
779         TYPE *d = vd, *n = vn, *m = vm;                                 \
780         uint16_t mask = mve_element_mask(env);                          \
781         unsigned e;                                                     \
782         bool qc = false;                                                \
783         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
784             bool sat = false;                                           \
785             if ((e & 1) == XCHG) {                                      \
786                 TYPE r = FN(n[H##ESIZE(e)],                             \
787                             m[H##ESIZE(e - XCHG)],                      \
788                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
789                             m[H##ESIZE(e + (1 - XCHG))],                \
790                             ROUND, &sat);                               \
791                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
792                 qc |= sat & mask & 1;                                   \
793             }                                                           \
794         }                                                               \
795         if (qc) {                                                       \
796             env->vfp.qc[0] = qc;                                        \
797         }                                                               \
798         mve_advance_vpt(env);                                           \
799     }
800 
801 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
802                             int round, bool *sat)
803 {
804     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
805     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
806 }
807 
808 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
809                              int round, bool *sat)
810 {
811     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
812     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
813 }
814 
815 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
816                              int round, bool *sat)
817 {
818     int64_t m1 = (int64_t)a * b;
819     int64_t m2 = (int64_t)c * d;
820     int64_t r;
821     /*
822      * Architecturally we should do the entire add, double, round
823      * and then check for saturation. We do three saturating adds,
824      * but we need to be careful about the order. If the first
825      * m1 + m2 saturates then it's impossible for the *2+rc to
826      * bring it back into the non-saturated range. However, if
827      * m1 + m2 is negative then it's possible that doing the doubling
828      * would take the intermediate result below INT64_MAX and the
829      * addition of the rounding constant then brings it back in range.
830      * So we add half the rounding constant before doubling rather
831      * than adding the rounding constant after the doubling.
832      */
833     if (sadd64_overflow(m1, m2, &r) ||
834         sadd64_overflow(r, (round << 30), &r) ||
835         sadd64_overflow(r, r, &r)) {
836         *sat = true;
837         return r < 0 ? INT32_MAX : INT32_MIN;
838     }
839     return r >> 32;
840 }
841 
842 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
843                             int round, bool *sat)
844 {
845     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
846     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
847 }
848 
849 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
850                              int round, bool *sat)
851 {
852     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
853     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
854 }
855 
856 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
857                              int round, bool *sat)
858 {
859     int64_t m1 = (int64_t)a * b;
860     int64_t m2 = (int64_t)c * d;
861     int64_t r;
862     /* The same ordering issue as in do_vqdmladh_w applies here too */
863     if (ssub64_overflow(m1, m2, &r) ||
864         sadd64_overflow(r, (round << 30), &r) ||
865         sadd64_overflow(r, r, &r)) {
866         *sat = true;
867         return r < 0 ? INT32_MAX : INT32_MIN;
868     }
869     return r >> 32;
870 }
871 
872 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
873 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
874 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
875 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
876 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
877 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
878 
879 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
880 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
881 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
882 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
883 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
884 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
885 
886 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
887 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
888 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
889 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
890 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
891 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
892 
893 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
894 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
895 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
896 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
897 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
898 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
899 
900 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
901     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
902                                 uint32_t rm)                            \
903     {                                                                   \
904         TYPE *d = vd, *n = vn;                                          \
905         TYPE m = rm;                                                    \
906         uint16_t mask = mve_element_mask(env);                          \
907         unsigned e;                                                     \
908         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
909             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
910         }                                                               \
911         mve_advance_vpt(env);                                           \
912     }
913 
914 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
915     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
916                                 uint32_t rm)                            \
917     {                                                                   \
918         TYPE *d = vd, *n = vn;                                          \
919         TYPE m = rm;                                                    \
920         uint16_t mask = mve_element_mask(env);                          \
921         unsigned e;                                                     \
922         bool qc = false;                                                \
923         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
924             bool sat = false;                                           \
925             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
926                       mask);                                            \
927             qc |= sat & mask & 1;                                       \
928         }                                                               \
929         if (qc) {                                                       \
930             env->vfp.qc[0] = qc;                                        \
931         }                                                               \
932         mve_advance_vpt(env);                                           \
933     }
934 
935 /* provide unsigned 2-op scalar helpers for all sizes */
936 #define DO_2OP_SCALAR_U(OP, FN)                 \
937     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
938     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
939     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
940 #define DO_2OP_SCALAR_S(OP, FN)                 \
941     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
942     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
943     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
944 
945 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
946 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
947 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
948 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
949 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
950 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
951 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
952 
953 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
954 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
955 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
956 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
957 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
958 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
959 
960 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
961 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
962 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
963 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
964 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
965 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
966 
967 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
968 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
969 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
970 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
971 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
972 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
973 
974 /*
975  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
976  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
977  * SATMASK specifies which bits of the predicate mask matter for determining
978  * whether to propagate a saturation indication into FPSCR.QC -- for
979  * the 16x16->32 case we must check only the bit corresponding to the T or B
980  * half that we used, but for the 32x32->64 case we propagate if the mask
981  * bit is set for either half.
982  */
983 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
984     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
985                                 uint32_t rm)                            \
986     {                                                                   \
987         LTYPE *d = vd;                                                  \
988         TYPE *n = vn;                                                   \
989         TYPE m = rm;                                                    \
990         uint16_t mask = mve_element_mask(env);                          \
991         unsigned le;                                                    \
992         bool qc = false;                                                \
993         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
994             bool sat = false;                                           \
995             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
996             mergemask(&d[H##LESIZE(le)], r, mask);                      \
997             qc |= sat && (mask & SATMASK);                              \
998         }                                                               \
999         if (qc) {                                                       \
1000             env->vfp.qc[0] = qc;                                        \
1001         }                                                               \
1002         mve_advance_vpt(env);                                           \
1003     }
1004 
1005 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1006 {
1007     int64_t r = ((int64_t)n * m) * 2;
1008     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1009 }
1010 
1011 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1012 {
1013     /* The multiply can't overflow, but the doubling might */
1014     int64_t r = (int64_t)n * m;
1015     if (r > INT64_MAX / 2) {
1016         *sat = true;
1017         return INT64_MAX;
1018     } else if (r < INT64_MIN / 2) {
1019         *sat = true;
1020         return INT64_MIN;
1021     } else {
1022         return r * 2;
1023     }
1024 }
1025 
1026 #define SATMASK16B 1
1027 #define SATMASK16T (1 << 2)
1028 #define SATMASK32 ((1 << 4) | 1)
1029 
1030 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1031                     do_qdmullh, SATMASK16B)
1032 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1033                     do_qdmullw, SATMASK32)
1034 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1035                     do_qdmullh, SATMASK16T)
1036 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1037                     do_qdmullw, SATMASK32)
1038 
1039 /*
1040  * Long saturating ops
1041  */
1042 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1043     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1044                                 void *vm)                               \
1045     {                                                                   \
1046         LTYPE *d = vd;                                                  \
1047         TYPE *n = vn, *m = vm;                                          \
1048         uint16_t mask = mve_element_mask(env);                          \
1049         unsigned le;                                                    \
1050         bool qc = false;                                                \
1051         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1052             bool sat = false;                                           \
1053             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1054             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1055             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1056             qc |= sat && (mask & SATMASK);                              \
1057         }                                                               \
1058         if (qc) {                                                       \
1059             env->vfp.qc[0] = qc;                                        \
1060         }                                                               \
1061         mve_advance_vpt(env);                                           \
1062     }
1063 
1064 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1065 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1066 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1067 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1068 
1069 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1070 {
1071     m &= 0xff;
1072     if (m == 0) {
1073         return 0;
1074     }
1075     n = revbit8(n);
1076     if (m < 8) {
1077         n >>= 8 - m;
1078     }
1079     return n;
1080 }
1081 
1082 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1083 {
1084     m &= 0xff;
1085     if (m == 0) {
1086         return 0;
1087     }
1088     n = revbit16(n);
1089     if (m < 16) {
1090         n >>= 16 - m;
1091     }
1092     return n;
1093 }
1094 
1095 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1096 {
1097     m &= 0xff;
1098     if (m == 0) {
1099         return 0;
1100     }
1101     n = revbit32(n);
1102     if (m < 32) {
1103         n >>= 32 - m;
1104     }
1105     return n;
1106 }
1107 
1108 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1109 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1110 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1111 
1112 /*
1113  * Multiply add long dual accumulate ops.
1114  */
1115 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1116     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1117                                     void *vm, uint64_t a)               \
1118     {                                                                   \
1119         uint16_t mask = mve_element_mask(env);                          \
1120         unsigned e;                                                     \
1121         TYPE *n = vn, *m = vm;                                          \
1122         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1123             if (mask & 1) {                                             \
1124                 if (e & 1) {                                            \
1125                     a ODDACC                                            \
1126                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1127                 } else {                                                \
1128                     a EVENACC                                           \
1129                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1130                 }                                                       \
1131             }                                                           \
1132         }                                                               \
1133         mve_advance_vpt(env);                                           \
1134         return a;                                                       \
1135     }
1136 
1137 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1138 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1139 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1140 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1141 
1142 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1143 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1144 
1145 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1146 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1147 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1148 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1149 
1150 /*
1151  * Rounding multiply add long dual accumulate high. In the pseudocode
1152  * this is implemented with a 72-bit internal accumulator value of which
1153  * the top 64 bits are returned. We optimize this to avoid having to
1154  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1155  * is squashed back into 64-bits after each beat.
1156  */
1157 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1158     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1159                                     void *vm, uint64_t a)               \
1160     {                                                                   \
1161         uint16_t mask = mve_element_mask(env);                          \
1162         unsigned e;                                                     \
1163         TYPE *n = vn, *m = vm;                                          \
1164         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1165             if (mask & 1) {                                             \
1166                 LTYPE mul;                                              \
1167                 if (e & 1) {                                            \
1168                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1169                     if (SUB) {                                          \
1170                         mul = -mul;                                     \
1171                     }                                                   \
1172                 } else {                                                \
1173                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1174                 }                                                       \
1175                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1176                 a += mul;                                               \
1177             }                                                           \
1178         }                                                               \
1179         mve_advance_vpt(env);                                           \
1180         return a;                                                       \
1181     }
1182 
1183 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1184 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1185 
1186 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1187 
1188 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1189 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1190 
1191 /* Vector add across vector */
1192 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1193     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1194                                     uint32_t ra)                \
1195     {                                                           \
1196         uint16_t mask = mve_element_mask(env);                  \
1197         unsigned e;                                             \
1198         TYPE *m = vm;                                           \
1199         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1200             if (mask & 1) {                                     \
1201                 ra += m[H##ESIZE(e)];                           \
1202             }                                                   \
1203         }                                                       \
1204         mve_advance_vpt(env);                                   \
1205         return ra;                                              \
1206     }                                                           \
1207 
1208 DO_VADDV(vaddvsb, 1, int8_t)
1209 DO_VADDV(vaddvsh, 2, int16_t)
1210 DO_VADDV(vaddvsw, 4, int32_t)
1211 DO_VADDV(vaddvub, 1, uint8_t)
1212 DO_VADDV(vaddvuh, 2, uint16_t)
1213 DO_VADDV(vaddvuw, 4, uint32_t)
1214 
1215 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1216     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1217                                     uint64_t ra)                \
1218     {                                                           \
1219         uint16_t mask = mve_element_mask(env);                  \
1220         unsigned e;                                             \
1221         TYPE *m = vm;                                           \
1222         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1223             if (mask & 1) {                                     \
1224                 ra += (LTYPE)m[H4(e)];                          \
1225             }                                                   \
1226         }                                                       \
1227         mve_advance_vpt(env);                                   \
1228         return ra;                                              \
1229     }                                                           \
1230 
1231 DO_VADDLV(vaddlv_s, int32_t, int64_t)
1232 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
1233 
1234 /* Shifts by immediate */
1235 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
1236     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1237                                 void *vm, uint32_t shift)       \
1238     {                                                           \
1239         TYPE *d = vd, *m = vm;                                  \
1240         uint16_t mask = mve_element_mask(env);                  \
1241         unsigned e;                                             \
1242         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1243             mergemask(&d[H##ESIZE(e)],                          \
1244                       FN(m[H##ESIZE(e)], shift), mask);         \
1245         }                                                       \
1246         mve_advance_vpt(env);                                   \
1247     }
1248 
1249 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
1250     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1251                                 void *vm, uint32_t shift)       \
1252     {                                                           \
1253         TYPE *d = vd, *m = vm;                                  \
1254         uint16_t mask = mve_element_mask(env);                  \
1255         unsigned e;                                             \
1256         bool qc = false;                                        \
1257         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1258             bool sat = false;                                   \
1259             mergemask(&d[H##ESIZE(e)],                          \
1260                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
1261             qc |= sat & mask & 1;                               \
1262         }                                                       \
1263         if (qc) {                                               \
1264             env->vfp.qc[0] = qc;                                \
1265         }                                                       \
1266         mve_advance_vpt(env);                                   \
1267     }
1268 
1269 /* provide unsigned 2-op shift helpers for all sizes */
1270 #define DO_2SHIFT_U(OP, FN)                     \
1271     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
1272     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
1273     DO_2SHIFT(OP##w, 4, uint32_t, FN)
1274 #define DO_2SHIFT_S(OP, FN)                     \
1275     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
1276     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
1277     DO_2SHIFT(OP##w, 4, int32_t, FN)
1278 
1279 #define DO_2SHIFT_SAT_U(OP, FN)                 \
1280     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
1281     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
1282     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
1283 #define DO_2SHIFT_SAT_S(OP, FN)                 \
1284     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
1285     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
1286     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
1287 
1288 DO_2SHIFT_U(vshli_u, DO_VSHLU)
1289 DO_2SHIFT_S(vshli_s, DO_VSHLS)
1290 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
1291 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
1292 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
1293 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
1294 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
1295 
1296 /* Shift-and-insert; we always work with 64 bits at a time */
1297 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
1298     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1299                                 void *vm, uint32_t shift)               \
1300     {                                                                   \
1301         uint64_t *d = vd, *m = vm;                                      \
1302         uint16_t mask;                                                  \
1303         uint64_t shiftmask;                                             \
1304         unsigned e;                                                     \
1305         if (shift == ESIZE * 8) {                                       \
1306             /*                                                          \
1307              * Only VSRI can shift by <dt>; it should mean "don't       \
1308              * update the destination". The generic logic can't handle  \
1309              * this because it would try to shift by an out-of-range    \
1310              * amount, so special case it here.                         \
1311              */                                                         \
1312             goto done;                                                  \
1313         }                                                               \
1314         assert(shift < ESIZE * 8);                                      \
1315         mask = mve_element_mask(env);                                   \
1316         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
1317         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
1318         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
1319             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
1320                 (d[H8(e)] & ~shiftmask);                                \
1321             mergemask(&d[H8(e)], r, mask);                              \
1322         }                                                               \
1323 done:                                                                   \
1324         mve_advance_vpt(env);                                           \
1325     }
1326 
1327 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
1328 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
1329 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
1330 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
1331 
1332 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
1333 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
1334 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
1335 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
1336 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
1337 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
1338 
1339 /*
1340  * Long shifts taking half-sized inputs from top or bottom of the input
1341  * vector and producing a double-width result. ESIZE, TYPE are for
1342  * the input, and LESIZE, LTYPE for the output.
1343  * Unlike the normal shift helpers, we do not handle negative shift counts,
1344  * because the long shift is strictly left-only.
1345  */
1346 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
1347     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
1348                                 void *vm, uint32_t shift)               \
1349     {                                                                   \
1350         LTYPE *d = vd;                                                  \
1351         TYPE *m = vm;                                                   \
1352         uint16_t mask = mve_element_mask(env);                          \
1353         unsigned le;                                                    \
1354         assert(shift <= 16);                                            \
1355         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1356             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
1357             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1358         }                                                               \
1359         mve_advance_vpt(env);                                           \
1360     }
1361 
1362 #define DO_VSHLL_ALL(OP, TOP)                                \
1363     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
1364     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
1365     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
1366     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
1367 
1368 DO_VSHLL_ALL(vshllb, false)
1369 DO_VSHLL_ALL(vshllt, true)
1370 
1371 /*
1372  * Narrowing right shifts, taking a double sized input, shifting it
1373  * and putting the result in either the top or bottom half of the output.
1374  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
1375  */
1376 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
1377     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1378                                 void *vm, uint32_t shift)       \
1379     {                                                           \
1380         LTYPE *m = vm;                                          \
1381         TYPE *d = vd;                                           \
1382         uint16_t mask = mve_element_mask(env);                  \
1383         unsigned le;                                            \
1384         mask >>= ESIZE * TOP;                                   \
1385         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1386             TYPE r = FN(m[H##LESIZE(le)], shift);               \
1387             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1388         }                                                       \
1389         mve_advance_vpt(env);                                   \
1390     }
1391 
1392 #define DO_VSHRN_ALL(OP, FN)                                    \
1393     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
1394     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
1395     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
1396     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
1397 
1398 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
1399 {
1400     if (likely(sh < 64)) {
1401         return (x >> sh) + ((x >> (sh - 1)) & 1);
1402     } else if (sh == 64) {
1403         return x >> 63;
1404     } else {
1405         return 0;
1406     }
1407 }
1408 
1409 static inline int64_t do_srshr(int64_t x, unsigned sh)
1410 {
1411     if (likely(sh < 64)) {
1412         return (x >> sh) + ((x >> (sh - 1)) & 1);
1413     } else {
1414         /* Rounding the sign bit always produces 0. */
1415         return 0;
1416     }
1417 }
1418 
1419 DO_VSHRN_ALL(vshrn, DO_SHR)
1420 DO_VSHRN_ALL(vrshrn, do_urshr)
1421 
1422 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
1423                                  bool *satp)
1424 {
1425     if (val > max) {
1426         *satp = true;
1427         return max;
1428     } else if (val < min) {
1429         *satp = true;
1430         return min;
1431     } else {
1432         return val;
1433     }
1434 }
1435 
1436 /* Saturating narrowing right shifts */
1437 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
1438     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
1439                                 void *vm, uint32_t shift)       \
1440     {                                                           \
1441         LTYPE *m = vm;                                          \
1442         TYPE *d = vd;                                           \
1443         uint16_t mask = mve_element_mask(env);                  \
1444         bool qc = false;                                        \
1445         unsigned le;                                            \
1446         mask >>= ESIZE * TOP;                                   \
1447         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1448             bool sat = false;                                   \
1449             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
1450             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
1451             qc |= sat & mask & 1;                               \
1452         }                                                       \
1453         if (qc) {                                               \
1454             env->vfp.qc[0] = qc;                                \
1455         }                                                       \
1456         mve_advance_vpt(env);                                   \
1457     }
1458 
1459 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
1460     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
1461     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
1462 
1463 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
1464     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
1465     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
1466 
1467 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
1468     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
1469     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
1470 
1471 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
1472     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
1473     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
1474 
1475 #define DO_SHRN_SB(N, M, SATP)                                  \
1476     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
1477 #define DO_SHRN_UB(N, M, SATP)                                  \
1478     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1479 #define DO_SHRUN_B(N, M, SATP)                                  \
1480     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
1481 
1482 #define DO_SHRN_SH(N, M, SATP)                                  \
1483     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
1484 #define DO_SHRN_UH(N, M, SATP)                                  \
1485     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1486 #define DO_SHRUN_H(N, M, SATP)                                  \
1487     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
1488 
1489 #define DO_RSHRN_SB(N, M, SATP)                                 \
1490     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
1491 #define DO_RSHRN_UB(N, M, SATP)                                 \
1492     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
1493 #define DO_RSHRUN_B(N, M, SATP)                                 \
1494     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
1495 
1496 #define DO_RSHRN_SH(N, M, SATP)                                 \
1497     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
1498 #define DO_RSHRN_UH(N, M, SATP)                                 \
1499     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
1500 #define DO_RSHRUN_H(N, M, SATP)                                 \
1501     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
1502 
1503 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
1504 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
1505 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
1506 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
1507 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
1508 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
1509 
1510 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
1511 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
1512 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
1513 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
1514 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
1515 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
1516 
1517 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
1518                            uint32_t shift)
1519 {
1520     uint32_t *d = vd;
1521     uint16_t mask = mve_element_mask(env);
1522     unsigned e;
1523     uint32_t r;
1524 
1525     /*
1526      * For each 32-bit element, we shift it left, bringing in the
1527      * low 'shift' bits of rdm at the bottom. Bits shifted out at
1528      * the top become the new rdm, if the predicate mask permits.
1529      * The final rdm value is returned to update the register.
1530      * shift == 0 here means "shift by 32 bits".
1531      */
1532     if (shift == 0) {
1533         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1534             r = rdm;
1535             if (mask & 1) {
1536                 rdm = d[H4(e)];
1537             }
1538             mergemask(&d[H4(e)], r, mask);
1539         }
1540     } else {
1541         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
1542 
1543         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1544             r = (d[H4(e)] << shift) | (rdm & shiftmask);
1545             if (mask & 1) {
1546                 rdm = d[H4(e)] >> (32 - shift);
1547             }
1548             mergemask(&d[H4(e)], r, mask);
1549         }
1550     }
1551     mve_advance_vpt(env);
1552     return rdm;
1553 }
1554 
1555 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
1556 {
1557     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
1558 }
1559 
1560 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
1561 {
1562     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
1563 }
1564 
1565 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1566 {
1567     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
1568 }
1569 
1570 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1571 {
1572     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
1573 }
1574 
1575 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
1576 {
1577     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
1578 }
1579 
1580 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
1581 {
1582     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
1583 }
1584 
1585 /* Operate on 64-bit values, but saturate at 48 bits */
1586 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
1587                                     bool round, uint32_t *sat)
1588 {
1589     int64_t val, extval;
1590 
1591     if (shift <= -48) {
1592         /* Rounding the sign bit always produces 0. */
1593         if (round) {
1594             return 0;
1595         }
1596         return src >> 63;
1597     } else if (shift < 0) {
1598         if (round) {
1599             src >>= -shift - 1;
1600             val = (src >> 1) + (src & 1);
1601         } else {
1602             val = src >> -shift;
1603         }
1604         extval = sextract64(val, 0, 48);
1605         if (!sat || val == extval) {
1606             return extval;
1607         }
1608     } else if (shift < 48) {
1609         int64_t extval = sextract64(src << shift, 0, 48);
1610         if (!sat || src == (extval >> shift)) {
1611             return extval;
1612         }
1613     } else if (!sat || src == 0) {
1614         return 0;
1615     }
1616 
1617     *sat = 1;
1618     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
1619 }
1620 
1621 /* Operate on 64-bit values, but saturate at 48 bits */
1622 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
1623                                      bool round, uint32_t *sat)
1624 {
1625     uint64_t val, extval;
1626 
1627     if (shift <= -(48 + round)) {
1628         return 0;
1629     } else if (shift < 0) {
1630         if (round) {
1631             val = src >> (-shift - 1);
1632             val = (val >> 1) + (val & 1);
1633         } else {
1634             val = src >> -shift;
1635         }
1636         extval = extract64(val, 0, 48);
1637         if (!sat || val == extval) {
1638             return extval;
1639         }
1640     } else if (shift < 48) {
1641         uint64_t extval = extract64(src << shift, 0, 48);
1642         if (!sat || src == (extval >> shift)) {
1643             return extval;
1644         }
1645     } else if (!sat || src == 0) {
1646         return 0;
1647     }
1648 
1649     *sat = 1;
1650     return MAKE_64BIT_MASK(0, 48);
1651 }
1652 
1653 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
1654 {
1655     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
1656 }
1657 
1658 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
1659 {
1660     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
1661 }
1662 
1663 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1664 {
1665     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
1666 }
1667 
1668 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1669 {
1670     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
1671 }
1672 
1673 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
1674 {
1675     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
1676 }
1677 
1678 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
1679 {
1680     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
1681 }
1682