xref: /qemu/target/arm/tcg/mve_helper.c (revision 39f2ec8592dd3c823034dc4decc64c7e4cc42bfd)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/int128.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "vec_internal.h"
25 #include "exec/helper-proto.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 
30 static uint16_t mve_element_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector should be
34      * updated. This is a combination of multiple things:
35      *  (1) by default, we update every lane in the vector
36      *  (2) VPT predication stores its state in the VPR register;
37      *  (3) low-overhead-branch tail predication will mask out part
38      *      the vector on the final iteration of the loop
39      *  (4) if EPSR.ECI is set then we must execute only some beats
40      *      of the insn
41      * We combine all these into a 16-bit result with the same semantics
42      * as VPR.P0: 0 to mask the lane, 1 if it is active.
43      * 8-bit vector ops will look at all bits of the result;
44      * 16-bit ops will look at bits 0, 2, 4, ...;
45      * 32-bit ops will look at bits 0, 4, 8 and 12.
46      * Compare pseudocode GetCurInstrBeat(), though that only returns
47      * the 4-bit slice of the mask corresponding to a single beat.
48      */
49     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
50 
51     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
52         mask |= 0xff;
53     }
54     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
55         mask |= 0xff00;
56     }
57 
58     if (env->v7m.ltpsize < 4 &&
59         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
60         /*
61          * Tail predication active, and this is the last loop iteration.
62          * The element size is (1 << ltpsize), and we only want to process
63          * loopcount elements, so we want to retain the least significant
64          * (loopcount * esize) predicate bits and zero out bits above that.
65          */
66         int masklen = env->regs[14] << env->v7m.ltpsize;
67         assert(masklen <= 16);
68         mask &= MAKE_64BIT_MASK(0, masklen);
69     }
70 
71     if ((env->condexec_bits & 0xf) == 0) {
72         /*
73          * ECI bits indicate which beats are already executed;
74          * we handle this by effectively predicating them out.
75          */
76         int eci = env->condexec_bits >> 4;
77         switch (eci) {
78         case ECI_NONE:
79             break;
80         case ECI_A0:
81             mask &= 0xfff0;
82             break;
83         case ECI_A0A1:
84             mask &= 0xff00;
85             break;
86         case ECI_A0A1A2:
87         case ECI_A0A1A2B0:
88             mask &= 0xf000;
89             break;
90         default:
91             g_assert_not_reached();
92         }
93     }
94 
95     return mask;
96 }
97 
98 static void mve_advance_vpt(CPUARMState *env)
99 {
100     /* Advance the VPT and ECI state if necessary */
101     uint32_t vpr = env->v7m.vpr;
102     unsigned mask01, mask23;
103 
104     if ((env->condexec_bits & 0xf) == 0) {
105         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
106             (ECI_A0 << 4) : (ECI_NONE << 4);
107     }
108 
109     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
110         /* VPT not enabled, nothing to do */
111         return;
112     }
113 
114     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
115     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
116     if (mask01 > 8) {
117         /* high bit set, but not 0b1000: invert the relevant half of P0 */
118         vpr ^= 0xff;
119     }
120     if (mask23 > 8) {
121         /* high bit set, but not 0b1000: invert the relevant half of P0 */
122         vpr ^= 0xff00;
123     }
124     vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
125     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
126     env->v7m.vpr = vpr;
127 }
128 
129 
130 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
131     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
132     {                                                                   \
133         TYPE *d = vd;                                                   \
134         uint16_t mask = mve_element_mask(env);                          \
135         unsigned b, e;                                                  \
136         /*                                                              \
137          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
138          * beats so we don't care if we update part of the dest and     \
139          * then take an exception.                                      \
140          */                                                             \
141         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
142             if (mask & (1 << b)) {                                      \
143                 d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
144             }                                                           \
145             addr += MSIZE;                                              \
146         }                                                               \
147         mve_advance_vpt(env);                                           \
148     }
149 
150 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
151     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
152     {                                                                   \
153         TYPE *d = vd;                                                   \
154         uint16_t mask = mve_element_mask(env);                          \
155         unsigned b, e;                                                  \
156         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
157             if (mask & (1 << b)) {                                      \
158                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
159             }                                                           \
160             addr += MSIZE;                                              \
161         }                                                               \
162         mve_advance_vpt(env);                                           \
163     }
164 
165 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
166 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
167 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
168 
169 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
170 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
171 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
172 
173 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
174 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
175 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
176 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
177 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
178 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
179 
180 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
181 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
182 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
183 
184 #undef DO_VLDR
185 #undef DO_VSTR
186 
187 /*
188  * The mergemask(D, R, M) macro performs the operation "*D = R" but
189  * storing only the bytes which correspond to 1 bits in M,
190  * leaving other bytes in *D unchanged. We use _Generic
191  * to select the correct implementation based on the type of D.
192  */
193 
194 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
195 {
196     if (mask & 1) {
197         *d = r;
198     }
199 }
200 
201 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
202 {
203     mergemask_ub((uint8_t *)d, r, mask);
204 }
205 
206 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
207 {
208     uint16_t bmask = expand_pred_b_data[mask & 3];
209     *d = (*d & ~bmask) | (r & bmask);
210 }
211 
212 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
213 {
214     mergemask_uh((uint16_t *)d, r, mask);
215 }
216 
217 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
218 {
219     uint32_t bmask = expand_pred_b_data[mask & 0xf];
220     *d = (*d & ~bmask) | (r & bmask);
221 }
222 
223 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
224 {
225     mergemask_uw((uint32_t *)d, r, mask);
226 }
227 
228 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
229 {
230     uint64_t bmask = expand_pred_b_data[mask & 0xff];
231     *d = (*d & ~bmask) | (r & bmask);
232 }
233 
234 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
235 {
236     mergemask_uq((uint64_t *)d, r, mask);
237 }
238 
239 #define mergemask(D, R, M)                      \
240     _Generic(D,                                 \
241              uint8_t *: mergemask_ub,           \
242              int8_t *:  mergemask_sb,           \
243              uint16_t *: mergemask_uh,          \
244              int16_t *:  mergemask_sh,          \
245              uint32_t *: mergemask_uw,          \
246              int32_t *:  mergemask_sw,          \
247              uint64_t *: mergemask_uq,          \
248              int64_t *:  mergemask_sq)(D, R, M)
249 
250 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
251 {
252     /*
253      * The generated code already replicated an 8 or 16 bit constant
254      * into the 32-bit value, so we only need to write the 32-bit
255      * value to all elements of the Qreg, allowing for predication.
256      */
257     uint32_t *d = vd;
258     uint16_t mask = mve_element_mask(env);
259     unsigned e;
260     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
261         mergemask(&d[H4(e)], val, mask);
262     }
263     mve_advance_vpt(env);
264 }
265 
266 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
267     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
268     {                                                                   \
269         TYPE *d = vd, *m = vm;                                          \
270         uint16_t mask = mve_element_mask(env);                          \
271         unsigned e;                                                     \
272         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
273             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
274         }                                                               \
275         mve_advance_vpt(env);                                           \
276     }
277 
278 #define DO_CLS_B(N)   (clrsb32(N) - 24)
279 #define DO_CLS_H(N)   (clrsb32(N) - 16)
280 
281 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
282 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
283 DO_1OP(vclsw, 4, int32_t, clrsb32)
284 
285 #define DO_CLZ_B(N)   (clz32(N) - 24)
286 #define DO_CLZ_H(N)   (clz32(N) - 16)
287 
288 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
289 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
290 DO_1OP(vclzw, 4, uint32_t, clz32)
291 
292 DO_1OP(vrev16b, 2, uint16_t, bswap16)
293 DO_1OP(vrev32b, 4, uint32_t, bswap32)
294 DO_1OP(vrev32h, 4, uint32_t, hswap32)
295 DO_1OP(vrev64b, 8, uint64_t, bswap64)
296 DO_1OP(vrev64h, 8, uint64_t, hswap64)
297 DO_1OP(vrev64w, 8, uint64_t, wswap64)
298 
299 #define DO_NOT(N) (~(N))
300 
301 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
302 
303 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
304 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
305 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
306 
307 DO_1OP(vabsb, 1, int8_t, DO_ABS)
308 DO_1OP(vabsh, 2, int16_t, DO_ABS)
309 DO_1OP(vabsw, 4, int32_t, DO_ABS)
310 
311 /* We can do these 64 bits at a time */
312 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
313 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
314 
315 #define DO_NEG(N)    (-(N))
316 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
317 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
318 
319 DO_1OP(vnegb, 1, int8_t, DO_NEG)
320 DO_1OP(vnegh, 2, int16_t, DO_NEG)
321 DO_1OP(vnegw, 4, int32_t, DO_NEG)
322 
323 /* We can do these 64 bits at a time */
324 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
325 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
326 
327 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
328     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
329                                 void *vd, void *vn, void *vm)           \
330     {                                                                   \
331         TYPE *d = vd, *n = vn, *m = vm;                                 \
332         uint16_t mask = mve_element_mask(env);                          \
333         unsigned e;                                                     \
334         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
335             mergemask(&d[H##ESIZE(e)],                                  \
336                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
337         }                                                               \
338         mve_advance_vpt(env);                                           \
339     }
340 
341 /* provide unsigned 2-op helpers for all sizes */
342 #define DO_2OP_U(OP, FN)                        \
343     DO_2OP(OP##b, 1, uint8_t, FN)               \
344     DO_2OP(OP##h, 2, uint16_t, FN)              \
345     DO_2OP(OP##w, 4, uint32_t, FN)
346 
347 /* provide signed 2-op helpers for all sizes */
348 #define DO_2OP_S(OP, FN)                        \
349     DO_2OP(OP##b, 1, int8_t, FN)                \
350     DO_2OP(OP##h, 2, int16_t, FN)               \
351     DO_2OP(OP##w, 4, int32_t, FN)
352 
353 /*
354  * "Long" operations where two half-sized inputs (taken from either the
355  * top or the bottom of the input vector) produce a double-width result.
356  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
357  */
358 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
359     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
360     {                                                                   \
361         LTYPE *d = vd;                                                  \
362         TYPE *n = vn, *m = vm;                                          \
363         uint16_t mask = mve_element_mask(env);                          \
364         unsigned le;                                                    \
365         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
366             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
367                          m[H##ESIZE(le * 2 + TOP)]);                    \
368             mergemask(&d[H##LESIZE(le)], r, mask);                      \
369         }                                                               \
370         mve_advance_vpt(env);                                           \
371     }
372 
373 #define DO_AND(N, M)  ((N) & (M))
374 #define DO_BIC(N, M)  ((N) & ~(M))
375 #define DO_ORR(N, M)  ((N) | (M))
376 #define DO_ORN(N, M)  ((N) | ~(M))
377 #define DO_EOR(N, M)  ((N) ^ (M))
378 
379 DO_2OP(vand, 8, uint64_t, DO_AND)
380 DO_2OP(vbic, 8, uint64_t, DO_BIC)
381 DO_2OP(vorr, 8, uint64_t, DO_ORR)
382 DO_2OP(vorn, 8, uint64_t, DO_ORN)
383 DO_2OP(veor, 8, uint64_t, DO_EOR)
384 
385 #define DO_ADD(N, M) ((N) + (M))
386 #define DO_SUB(N, M) ((N) - (M))
387 #define DO_MUL(N, M) ((N) * (M))
388 
389 DO_2OP_U(vadd, DO_ADD)
390 DO_2OP_U(vsub, DO_SUB)
391 DO_2OP_U(vmul, DO_MUL)
392 
393 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
394 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
395 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
396 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
397 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
398 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
399 
400 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
401 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
402 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
403 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
404 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
405 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
406 
407 /*
408  * Because the computation type is at least twice as large as required,
409  * these work for both signed and unsigned source types.
410  */
411 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
412 {
413     return (n * m) >> 8;
414 }
415 
416 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
417 {
418     return (n * m) >> 16;
419 }
420 
421 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
422 {
423     return (n * m) >> 32;
424 }
425 
426 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
427 {
428     return (n * m + (1U << 7)) >> 8;
429 }
430 
431 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
432 {
433     return (n * m + (1U << 15)) >> 16;
434 }
435 
436 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
437 {
438     return (n * m + (1U << 31)) >> 32;
439 }
440 
441 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
442 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
443 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
444 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
445 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
446 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
447 
448 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
449 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
450 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
451 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
452 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
453 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
454 
455 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
456 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
457 
458 DO_2OP_S(vmaxs, DO_MAX)
459 DO_2OP_U(vmaxu, DO_MAX)
460 DO_2OP_S(vmins, DO_MIN)
461 DO_2OP_U(vminu, DO_MIN)
462 
463 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
464 
465 DO_2OP_S(vabds, DO_ABD)
466 DO_2OP_U(vabdu, DO_ABD)
467 
468 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
469 {
470     return ((uint64_t)n + m) >> 1;
471 }
472 
473 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
474 {
475     return ((int64_t)n + m) >> 1;
476 }
477 
478 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
479 {
480     return ((uint64_t)n - m) >> 1;
481 }
482 
483 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
484 {
485     return ((int64_t)n - m) >> 1;
486 }
487 
488 DO_2OP_S(vhadds, do_vhadd_s)
489 DO_2OP_U(vhaddu, do_vhadd_u)
490 DO_2OP_S(vhsubs, do_vhsub_s)
491 DO_2OP_U(vhsubu, do_vhsub_u)
492 
493 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
494 {
495     if (val > max) {
496         *s = true;
497         return max;
498     } else if (val < min) {
499         *s = true;
500         return min;
501     }
502     return val;
503 }
504 
505 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
506 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
507 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
508 
509 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
510 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
511 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
512 
513 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
514 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
515 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
516 
517 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
518 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
519 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
520 
521 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
522     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
523                                 uint32_t rm)                            \
524     {                                                                   \
525         TYPE *d = vd, *n = vn;                                          \
526         TYPE m = rm;                                                    \
527         uint16_t mask = mve_element_mask(env);                          \
528         unsigned e;                                                     \
529         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
530             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
531         }                                                               \
532         mve_advance_vpt(env);                                           \
533     }
534 
535 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
536     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
537                                 uint32_t rm)                            \
538     {                                                                   \
539         TYPE *d = vd, *n = vn;                                          \
540         TYPE m = rm;                                                    \
541         uint16_t mask = mve_element_mask(env);                          \
542         unsigned e;                                                     \
543         bool qc = false;                                                \
544         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
545             bool sat = false;                                           \
546             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
547                       mask);                                            \
548             qc |= sat & mask & 1;                                       \
549         }                                                               \
550         if (qc) {                                                       \
551             env->vfp.qc[0] = qc;                                        \
552         }                                                               \
553         mve_advance_vpt(env);                                           \
554     }
555 
556 /* provide unsigned 2-op scalar helpers for all sizes */
557 #define DO_2OP_SCALAR_U(OP, FN)                 \
558     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
559     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
560     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
561 #define DO_2OP_SCALAR_S(OP, FN)                 \
562     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
563     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
564     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
565 
566 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
567 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
568 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
569 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
570 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
571 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
572 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
573 
574 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
575 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
576 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
577 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
578 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
579 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
580 
581 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
582 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
583 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
584 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
585 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
586 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
587 
588 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
589 {
590     m &= 0xff;
591     if (m == 0) {
592         return 0;
593     }
594     n = revbit8(n);
595     if (m < 8) {
596         n >>= 8 - m;
597     }
598     return n;
599 }
600 
601 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
602 {
603     m &= 0xff;
604     if (m == 0) {
605         return 0;
606     }
607     n = revbit16(n);
608     if (m < 16) {
609         n >>= 16 - m;
610     }
611     return n;
612 }
613 
614 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
615 {
616     m &= 0xff;
617     if (m == 0) {
618         return 0;
619     }
620     n = revbit32(n);
621     if (m < 32) {
622         n >>= 32 - m;
623     }
624     return n;
625 }
626 
627 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
628 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
629 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
630 
631 /*
632  * Multiply add long dual accumulate ops.
633  */
634 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
635     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
636                                     void *vm, uint64_t a)               \
637     {                                                                   \
638         uint16_t mask = mve_element_mask(env);                          \
639         unsigned e;                                                     \
640         TYPE *n = vn, *m = vm;                                          \
641         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
642             if (mask & 1) {                                             \
643                 if (e & 1) {                                            \
644                     a ODDACC                                            \
645                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
646                 } else {                                                \
647                     a EVENACC                                           \
648                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
649                 }                                                       \
650             }                                                           \
651         }                                                               \
652         mve_advance_vpt(env);                                           \
653         return a;                                                       \
654     }
655 
656 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
657 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
658 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
659 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
660 
661 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
662 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
663 
664 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
665 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
666 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
667 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
668 
669 /*
670  * Rounding multiply add long dual accumulate high: we must keep
671  * a 72-bit internal accumulator value and return the top 64 bits.
672  */
673 #define DO_LDAVH(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC, TO128)         \
674     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
675                                     void *vm, uint64_t a)               \
676     {                                                                   \
677         uint16_t mask = mve_element_mask(env);                          \
678         unsigned e;                                                     \
679         TYPE *n = vn, *m = vm;                                          \
680         Int128 acc = int128_lshift(TO128(a), 8);                        \
681         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
682             if (mask & 1) {                                             \
683                 if (e & 1) {                                            \
684                     acc = ODDACC(acc, TO128(n[H##ESIZE(e - 1 * XCHG)] * \
685                                             m[H##ESIZE(e)]));           \
686                 } else {                                                \
687                     acc = EVENACC(acc, TO128(n[H##ESIZE(e + 1 * XCHG)] * \
688                                              m[H##ESIZE(e)]));          \
689                 }                                                       \
690                 acc = int128_add(acc, int128_make64(1 << 7));           \
691             }                                                           \
692         }                                                               \
693         mve_advance_vpt(env);                                           \
694         return int128_getlo(int128_rshift(acc, 8));                     \
695     }
696 
697 DO_LDAVH(vrmlaldavhsw, 4, int32_t, false, int128_add, int128_add, int128_makes64)
698 DO_LDAVH(vrmlaldavhxsw, 4, int32_t, true, int128_add, int128_add, int128_makes64)
699 
700 DO_LDAVH(vrmlaldavhuw, 4, uint32_t, false, int128_add, int128_add, int128_make64)
701 
702 DO_LDAVH(vrmlsldavhsw, 4, int32_t, false, int128_add, int128_sub, int128_makes64)
703 DO_LDAVH(vrmlsldavhxsw, 4, int32_t, true, int128_add, int128_sub, int128_makes64)
704