1 /* 2 * M-profile MVE Operations 3 * 4 * Copyright (c) 2021 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/int128.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "vec_internal.h" 25 #include "exec/helper-proto.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 30 static uint16_t mve_element_mask(CPUARMState *env) 31 { 32 /* 33 * Return the mask of which elements in the MVE vector should be 34 * updated. This is a combination of multiple things: 35 * (1) by default, we update every lane in the vector 36 * (2) VPT predication stores its state in the VPR register; 37 * (3) low-overhead-branch tail predication will mask out part 38 * the vector on the final iteration of the loop 39 * (4) if EPSR.ECI is set then we must execute only some beats 40 * of the insn 41 * We combine all these into a 16-bit result with the same semantics 42 * as VPR.P0: 0 to mask the lane, 1 if it is active. 43 * 8-bit vector ops will look at all bits of the result; 44 * 16-bit ops will look at bits 0, 2, 4, ...; 45 * 32-bit ops will look at bits 0, 4, 8 and 12. 46 * Compare pseudocode GetCurInstrBeat(), though that only returns 47 * the 4-bit slice of the mask corresponding to a single beat. 48 */ 49 uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); 50 51 if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) { 52 mask |= 0xff; 53 } 54 if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) { 55 mask |= 0xff00; 56 } 57 58 if (env->v7m.ltpsize < 4 && 59 env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) { 60 /* 61 * Tail predication active, and this is the last loop iteration. 62 * The element size is (1 << ltpsize), and we only want to process 63 * loopcount elements, so we want to retain the least significant 64 * (loopcount * esize) predicate bits and zero out bits above that. 65 */ 66 int masklen = env->regs[14] << env->v7m.ltpsize; 67 assert(masklen <= 16); 68 mask &= MAKE_64BIT_MASK(0, masklen); 69 } 70 71 if ((env->condexec_bits & 0xf) == 0) { 72 /* 73 * ECI bits indicate which beats are already executed; 74 * we handle this by effectively predicating them out. 75 */ 76 int eci = env->condexec_bits >> 4; 77 switch (eci) { 78 case ECI_NONE: 79 break; 80 case ECI_A0: 81 mask &= 0xfff0; 82 break; 83 case ECI_A0A1: 84 mask &= 0xff00; 85 break; 86 case ECI_A0A1A2: 87 case ECI_A0A1A2B0: 88 mask &= 0xf000; 89 break; 90 default: 91 g_assert_not_reached(); 92 } 93 } 94 95 return mask; 96 } 97 98 static void mve_advance_vpt(CPUARMState *env) 99 { 100 /* Advance the VPT and ECI state if necessary */ 101 uint32_t vpr = env->v7m.vpr; 102 unsigned mask01, mask23; 103 104 if ((env->condexec_bits & 0xf) == 0) { 105 env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ? 106 (ECI_A0 << 4) : (ECI_NONE << 4); 107 } 108 109 if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) { 110 /* VPT not enabled, nothing to do */ 111 return; 112 } 113 114 mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01); 115 mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23); 116 if (mask01 > 8) { 117 /* high bit set, but not 0b1000: invert the relevant half of P0 */ 118 vpr ^= 0xff; 119 } 120 if (mask23 > 8) { 121 /* high bit set, but not 0b1000: invert the relevant half of P0 */ 122 vpr ^= 0xff00; 123 } 124 vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1); 125 vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1); 126 env->v7m.vpr = vpr; 127 } 128 129 130 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \ 131 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ 132 { \ 133 TYPE *d = vd; \ 134 uint16_t mask = mve_element_mask(env); \ 135 unsigned b, e; \ 136 /* \ 137 * R_SXTM allows the dest reg to become UNKNOWN for abandoned \ 138 * beats so we don't care if we update part of the dest and \ 139 * then take an exception. \ 140 */ \ 141 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ 142 if (mask & (1 << b)) { \ 143 d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \ 144 } \ 145 addr += MSIZE; \ 146 } \ 147 mve_advance_vpt(env); \ 148 } 149 150 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \ 151 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ 152 { \ 153 TYPE *d = vd; \ 154 uint16_t mask = mve_element_mask(env); \ 155 unsigned b, e; \ 156 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ 157 if (mask & (1 << b)) { \ 158 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ 159 } \ 160 addr += MSIZE; \ 161 } \ 162 mve_advance_vpt(env); \ 163 } 164 165 DO_VLDR(vldrb, 1, ldub, 1, uint8_t) 166 DO_VLDR(vldrh, 2, lduw, 2, uint16_t) 167 DO_VLDR(vldrw, 4, ldl, 4, uint32_t) 168 169 DO_VSTR(vstrb, 1, stb, 1, uint8_t) 170 DO_VSTR(vstrh, 2, stw, 2, uint16_t) 171 DO_VSTR(vstrw, 4, stl, 4, uint32_t) 172 173 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t) 174 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t) 175 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t) 176 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t) 177 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t) 178 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t) 179 180 DO_VSTR(vstrb_h, 1, stb, 2, int16_t) 181 DO_VSTR(vstrb_w, 1, stb, 4, int32_t) 182 DO_VSTR(vstrh_w, 2, stw, 4, int32_t) 183 184 #undef DO_VLDR 185 #undef DO_VSTR 186 187 /* 188 * The mergemask(D, R, M) macro performs the operation "*D = R" but 189 * storing only the bytes which correspond to 1 bits in M, 190 * leaving other bytes in *D unchanged. We use _Generic 191 * to select the correct implementation based on the type of D. 192 */ 193 194 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask) 195 { 196 if (mask & 1) { 197 *d = r; 198 } 199 } 200 201 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask) 202 { 203 mergemask_ub((uint8_t *)d, r, mask); 204 } 205 206 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask) 207 { 208 uint16_t bmask = expand_pred_b_data[mask & 3]; 209 *d = (*d & ~bmask) | (r & bmask); 210 } 211 212 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask) 213 { 214 mergemask_uh((uint16_t *)d, r, mask); 215 } 216 217 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask) 218 { 219 uint32_t bmask = expand_pred_b_data[mask & 0xf]; 220 *d = (*d & ~bmask) | (r & bmask); 221 } 222 223 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask) 224 { 225 mergemask_uw((uint32_t *)d, r, mask); 226 } 227 228 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask) 229 { 230 uint64_t bmask = expand_pred_b_data[mask & 0xff]; 231 *d = (*d & ~bmask) | (r & bmask); 232 } 233 234 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask) 235 { 236 mergemask_uq((uint64_t *)d, r, mask); 237 } 238 239 #define mergemask(D, R, M) \ 240 _Generic(D, \ 241 uint8_t *: mergemask_ub, \ 242 int8_t *: mergemask_sb, \ 243 uint16_t *: mergemask_uh, \ 244 int16_t *: mergemask_sh, \ 245 uint32_t *: mergemask_uw, \ 246 int32_t *: mergemask_sw, \ 247 uint64_t *: mergemask_uq, \ 248 int64_t *: mergemask_sq)(D, R, M) 249 250 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val) 251 { 252 /* 253 * The generated code already replicated an 8 or 16 bit constant 254 * into the 32-bit value, so we only need to write the 32-bit 255 * value to all elements of the Qreg, allowing for predication. 256 */ 257 uint32_t *d = vd; 258 uint16_t mask = mve_element_mask(env); 259 unsigned e; 260 for (e = 0; e < 16 / 4; e++, mask >>= 4) { 261 mergemask(&d[H4(e)], val, mask); 262 } 263 mve_advance_vpt(env); 264 } 265 266 #define DO_1OP(OP, ESIZE, TYPE, FN) \ 267 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ 268 { \ 269 TYPE *d = vd, *m = vm; \ 270 uint16_t mask = mve_element_mask(env); \ 271 unsigned e; \ 272 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 273 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \ 274 } \ 275 mve_advance_vpt(env); \ 276 } 277 278 #define DO_CLS_B(N) (clrsb32(N) - 24) 279 #define DO_CLS_H(N) (clrsb32(N) - 16) 280 281 DO_1OP(vclsb, 1, int8_t, DO_CLS_B) 282 DO_1OP(vclsh, 2, int16_t, DO_CLS_H) 283 DO_1OP(vclsw, 4, int32_t, clrsb32) 284 285 #define DO_CLZ_B(N) (clz32(N) - 24) 286 #define DO_CLZ_H(N) (clz32(N) - 16) 287 288 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B) 289 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H) 290 DO_1OP(vclzw, 4, uint32_t, clz32) 291 292 DO_1OP(vrev16b, 2, uint16_t, bswap16) 293 DO_1OP(vrev32b, 4, uint32_t, bswap32) 294 DO_1OP(vrev32h, 4, uint32_t, hswap32) 295 DO_1OP(vrev64b, 8, uint64_t, bswap64) 296 DO_1OP(vrev64h, 8, uint64_t, hswap64) 297 DO_1OP(vrev64w, 8, uint64_t, wswap64) 298 299 #define DO_NOT(N) (~(N)) 300 301 DO_1OP(vmvn, 8, uint64_t, DO_NOT) 302 303 #define DO_ABS(N) ((N) < 0 ? -(N) : (N)) 304 #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff)) 305 #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff)) 306 307 DO_1OP(vabsb, 1, int8_t, DO_ABS) 308 DO_1OP(vabsh, 2, int16_t, DO_ABS) 309 DO_1OP(vabsw, 4, int32_t, DO_ABS) 310 311 /* We can do these 64 bits at a time */ 312 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH) 313 DO_1OP(vfabss, 8, uint64_t, DO_FABSS) 314 315 #define DO_NEG(N) (-(N)) 316 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000)) 317 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000)) 318 319 DO_1OP(vnegb, 1, int8_t, DO_NEG) 320 DO_1OP(vnegh, 2, int16_t, DO_NEG) 321 DO_1OP(vnegw, 4, int32_t, DO_NEG) 322 323 /* We can do these 64 bits at a time */ 324 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH) 325 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS) 326 327 #define DO_2OP(OP, ESIZE, TYPE, FN) \ 328 void HELPER(glue(mve_, OP))(CPUARMState *env, \ 329 void *vd, void *vn, void *vm) \ 330 { \ 331 TYPE *d = vd, *n = vn, *m = vm; \ 332 uint16_t mask = mve_element_mask(env); \ 333 unsigned e; \ 334 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 335 mergemask(&d[H##ESIZE(e)], \ 336 FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \ 337 } \ 338 mve_advance_vpt(env); \ 339 } 340 341 /* provide unsigned 2-op helpers for all sizes */ 342 #define DO_2OP_U(OP, FN) \ 343 DO_2OP(OP##b, 1, uint8_t, FN) \ 344 DO_2OP(OP##h, 2, uint16_t, FN) \ 345 DO_2OP(OP##w, 4, uint32_t, FN) 346 347 /* provide signed 2-op helpers for all sizes */ 348 #define DO_2OP_S(OP, FN) \ 349 DO_2OP(OP##b, 1, int8_t, FN) \ 350 DO_2OP(OP##h, 2, int16_t, FN) \ 351 DO_2OP(OP##w, 4, int32_t, FN) 352 353 /* 354 * "Long" operations where two half-sized inputs (taken from either the 355 * top or the bottom of the input vector) produce a double-width result. 356 * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output. 357 */ 358 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ 359 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ 360 { \ 361 LTYPE *d = vd; \ 362 TYPE *n = vn, *m = vm; \ 363 uint16_t mask = mve_element_mask(env); \ 364 unsigned le; \ 365 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 366 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \ 367 m[H##ESIZE(le * 2 + TOP)]); \ 368 mergemask(&d[H##LESIZE(le)], r, mask); \ 369 } \ 370 mve_advance_vpt(env); \ 371 } 372 373 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \ 374 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ 375 { \ 376 TYPE *d = vd, *n = vn, *m = vm; \ 377 uint16_t mask = mve_element_mask(env); \ 378 unsigned e; \ 379 bool qc = false; \ 380 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 381 bool sat = false; \ 382 TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \ 383 mergemask(&d[H##ESIZE(e)], r, mask); \ 384 qc |= sat & mask & 1; \ 385 } \ 386 if (qc) { \ 387 env->vfp.qc[0] = qc; \ 388 } \ 389 mve_advance_vpt(env); \ 390 } 391 392 #define DO_AND(N, M) ((N) & (M)) 393 #define DO_BIC(N, M) ((N) & ~(M)) 394 #define DO_ORR(N, M) ((N) | (M)) 395 #define DO_ORN(N, M) ((N) | ~(M)) 396 #define DO_EOR(N, M) ((N) ^ (M)) 397 398 DO_2OP(vand, 8, uint64_t, DO_AND) 399 DO_2OP(vbic, 8, uint64_t, DO_BIC) 400 DO_2OP(vorr, 8, uint64_t, DO_ORR) 401 DO_2OP(vorn, 8, uint64_t, DO_ORN) 402 DO_2OP(veor, 8, uint64_t, DO_EOR) 403 404 #define DO_ADD(N, M) ((N) + (M)) 405 #define DO_SUB(N, M) ((N) - (M)) 406 #define DO_MUL(N, M) ((N) * (M)) 407 408 DO_2OP_U(vadd, DO_ADD) 409 DO_2OP_U(vsub, DO_SUB) 410 DO_2OP_U(vmul, DO_MUL) 411 412 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL) 413 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL) 414 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL) 415 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL) 416 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL) 417 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL) 418 419 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL) 420 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL) 421 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL) 422 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL) 423 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL) 424 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL) 425 426 /* 427 * Because the computation type is at least twice as large as required, 428 * these work for both signed and unsigned source types. 429 */ 430 static inline uint8_t do_mulh_b(int32_t n, int32_t m) 431 { 432 return (n * m) >> 8; 433 } 434 435 static inline uint16_t do_mulh_h(int32_t n, int32_t m) 436 { 437 return (n * m) >> 16; 438 } 439 440 static inline uint32_t do_mulh_w(int64_t n, int64_t m) 441 { 442 return (n * m) >> 32; 443 } 444 445 static inline uint8_t do_rmulh_b(int32_t n, int32_t m) 446 { 447 return (n * m + (1U << 7)) >> 8; 448 } 449 450 static inline uint16_t do_rmulh_h(int32_t n, int32_t m) 451 { 452 return (n * m + (1U << 15)) >> 16; 453 } 454 455 static inline uint32_t do_rmulh_w(int64_t n, int64_t m) 456 { 457 return (n * m + (1U << 31)) >> 32; 458 } 459 460 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b) 461 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h) 462 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w) 463 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b) 464 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h) 465 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w) 466 467 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b) 468 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h) 469 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w) 470 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b) 471 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h) 472 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w) 473 474 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) 475 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) 476 477 DO_2OP_S(vmaxs, DO_MAX) 478 DO_2OP_U(vmaxu, DO_MAX) 479 DO_2OP_S(vmins, DO_MIN) 480 DO_2OP_U(vminu, DO_MIN) 481 482 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) 483 484 DO_2OP_S(vabds, DO_ABD) 485 DO_2OP_U(vabdu, DO_ABD) 486 487 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m) 488 { 489 return ((uint64_t)n + m) >> 1; 490 } 491 492 static inline int32_t do_vhadd_s(int32_t n, int32_t m) 493 { 494 return ((int64_t)n + m) >> 1; 495 } 496 497 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m) 498 { 499 return ((uint64_t)n - m) >> 1; 500 } 501 502 static inline int32_t do_vhsub_s(int32_t n, int32_t m) 503 { 504 return ((int64_t)n - m) >> 1; 505 } 506 507 DO_2OP_S(vhadds, do_vhadd_s) 508 DO_2OP_U(vhaddu, do_vhadd_u) 509 DO_2OP_S(vhsubs, do_vhsub_s) 510 DO_2OP_U(vhsubu, do_vhsub_u) 511 512 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s) 513 { 514 if (val > max) { 515 *s = true; 516 return max; 517 } else if (val < min) { 518 *s = true; 519 return min; 520 } 521 return val; 522 } 523 524 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s) 525 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s) 526 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s) 527 528 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s) 529 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s) 530 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s) 531 532 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s) 533 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s) 534 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s) 535 536 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s) 537 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s) 538 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s) 539 540 /* 541 * For QDMULH and QRDMULH we simplify "double and shift by esize" into 542 * "shift by esize-1", adjusting the QRDMULH rounding constant to match. 543 */ 544 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \ 545 INT8_MIN, INT8_MAX, s) 546 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \ 547 INT16_MIN, INT16_MAX, s) 548 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \ 549 INT32_MIN, INT32_MAX, s) 550 551 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \ 552 INT8_MIN, INT8_MAX, s) 553 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \ 554 INT16_MIN, INT16_MAX, s) 555 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \ 556 INT32_MIN, INT32_MAX, s) 557 558 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B) 559 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H) 560 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W) 561 562 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B) 563 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H) 564 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W) 565 566 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \ 567 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 568 uint32_t rm) \ 569 { \ 570 TYPE *d = vd, *n = vn; \ 571 TYPE m = rm; \ 572 uint16_t mask = mve_element_mask(env); \ 573 unsigned e; \ 574 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 575 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \ 576 } \ 577 mve_advance_vpt(env); \ 578 } 579 580 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \ 581 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 582 uint32_t rm) \ 583 { \ 584 TYPE *d = vd, *n = vn; \ 585 TYPE m = rm; \ 586 uint16_t mask = mve_element_mask(env); \ 587 unsigned e; \ 588 bool qc = false; \ 589 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 590 bool sat = false; \ 591 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \ 592 mask); \ 593 qc |= sat & mask & 1; \ 594 } \ 595 if (qc) { \ 596 env->vfp.qc[0] = qc; \ 597 } \ 598 mve_advance_vpt(env); \ 599 } 600 601 /* provide unsigned 2-op scalar helpers for all sizes */ 602 #define DO_2OP_SCALAR_U(OP, FN) \ 603 DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \ 604 DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \ 605 DO_2OP_SCALAR(OP##w, 4, uint32_t, FN) 606 #define DO_2OP_SCALAR_S(OP, FN) \ 607 DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \ 608 DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \ 609 DO_2OP_SCALAR(OP##w, 4, int32_t, FN) 610 611 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD) 612 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB) 613 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL) 614 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s) 615 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u) 616 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s) 617 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u) 618 619 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B) 620 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H) 621 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W) 622 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B) 623 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H) 624 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W) 625 626 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B) 627 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H) 628 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W) 629 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B) 630 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H) 631 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W) 632 633 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B) 634 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H) 635 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W) 636 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B) 637 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H) 638 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W) 639 640 /* 641 * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the 642 * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type. 643 * SATMASK specifies which bits of the predicate mask matter for determining 644 * whether to propagate a saturation indication into FPSCR.QC -- for 645 * the 16x16->32 case we must check only the bit corresponding to the T or B 646 * half that we used, but for the 32x32->64 case we propagate if the mask 647 * bit is set for either half. 648 */ 649 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ 650 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ 651 uint32_t rm) \ 652 { \ 653 LTYPE *d = vd; \ 654 TYPE *n = vn; \ 655 TYPE m = rm; \ 656 uint16_t mask = mve_element_mask(env); \ 657 unsigned le; \ 658 bool qc = false; \ 659 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ 660 bool sat = false; \ 661 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \ 662 mergemask(&d[H##LESIZE(le)], r, mask); \ 663 qc |= sat && (mask & SATMASK); \ 664 } \ 665 if (qc) { \ 666 env->vfp.qc[0] = qc; \ 667 } \ 668 mve_advance_vpt(env); \ 669 } 670 671 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat) 672 { 673 int64_t r = ((int64_t)n * m) * 2; 674 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat); 675 } 676 677 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat) 678 { 679 /* The multiply can't overflow, but the doubling might */ 680 int64_t r = (int64_t)n * m; 681 if (r > INT64_MAX / 2) { 682 *sat = true; 683 return INT64_MAX; 684 } else if (r < INT64_MIN / 2) { 685 *sat = true; 686 return INT64_MIN; 687 } else { 688 return r * 2; 689 } 690 } 691 692 #define SATMASK16B 1 693 #define SATMASK16T (1 << 2) 694 #define SATMASK32 ((1 << 4) | 1) 695 696 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \ 697 do_qdmullh, SATMASK16B) 698 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \ 699 do_qdmullw, SATMASK32) 700 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \ 701 do_qdmullh, SATMASK16T) 702 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \ 703 do_qdmullw, SATMASK32) 704 705 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m) 706 { 707 m &= 0xff; 708 if (m == 0) { 709 return 0; 710 } 711 n = revbit8(n); 712 if (m < 8) { 713 n >>= 8 - m; 714 } 715 return n; 716 } 717 718 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m) 719 { 720 m &= 0xff; 721 if (m == 0) { 722 return 0; 723 } 724 n = revbit16(n); 725 if (m < 16) { 726 n >>= 16 - m; 727 } 728 return n; 729 } 730 731 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m) 732 { 733 m &= 0xff; 734 if (m == 0) { 735 return 0; 736 } 737 n = revbit32(n); 738 if (m < 32) { 739 n >>= 32 - m; 740 } 741 return n; 742 } 743 744 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb) 745 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh) 746 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw) 747 748 /* 749 * Multiply add long dual accumulate ops. 750 */ 751 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ 752 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 753 void *vm, uint64_t a) \ 754 { \ 755 uint16_t mask = mve_element_mask(env); \ 756 unsigned e; \ 757 TYPE *n = vn, *m = vm; \ 758 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 759 if (mask & 1) { \ 760 if (e & 1) { \ 761 a ODDACC \ 762 (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ 763 } else { \ 764 a EVENACC \ 765 (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ 766 } \ 767 } \ 768 } \ 769 mve_advance_vpt(env); \ 770 return a; \ 771 } 772 773 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=) 774 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=) 775 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=) 776 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=) 777 778 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=) 779 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=) 780 781 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=) 782 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=) 783 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=) 784 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=) 785 786 /* 787 * Rounding multiply add long dual accumulate high: we must keep 788 * a 72-bit internal accumulator value and return the top 64 bits. 789 */ 790 #define DO_LDAVH(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC, TO128) \ 791 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ 792 void *vm, uint64_t a) \ 793 { \ 794 uint16_t mask = mve_element_mask(env); \ 795 unsigned e; \ 796 TYPE *n = vn, *m = vm; \ 797 Int128 acc = int128_lshift(TO128(a), 8); \ 798 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ 799 if (mask & 1) { \ 800 if (e & 1) { \ 801 acc = ODDACC(acc, TO128(n[H##ESIZE(e - 1 * XCHG)] * \ 802 m[H##ESIZE(e)])); \ 803 } else { \ 804 acc = EVENACC(acc, TO128(n[H##ESIZE(e + 1 * XCHG)] * \ 805 m[H##ESIZE(e)])); \ 806 } \ 807 acc = int128_add(acc, int128_make64(1 << 7)); \ 808 } \ 809 } \ 810 mve_advance_vpt(env); \ 811 return int128_getlo(int128_rshift(acc, 8)); \ 812 } 813 814 DO_LDAVH(vrmlaldavhsw, 4, int32_t, false, int128_add, int128_add, int128_makes64) 815 DO_LDAVH(vrmlaldavhxsw, 4, int32_t, true, int128_add, int128_add, int128_makes64) 816 817 DO_LDAVH(vrmlaldavhuw, 4, uint32_t, false, int128_add, int128_add, int128_make64) 818 819 DO_LDAVH(vrmlsldavhsw, 4, int32_t, false, int128_add, int128_sub, int128_makes64) 820 DO_LDAVH(vrmlsldavhxsw, 4, int32_t, true, int128_add, int128_sub, int128_makes64) 821