xref: /qemu/target/arm/tcg/mve_helper.c (revision 303db86fc73c68d8774203d4796b9995cc122886)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 
29 static uint16_t mve_element_mask(CPUARMState *env)
30 {
31     /*
32      * Return the mask of which elements in the MVE vector should be
33      * updated. This is a combination of multiple things:
34      *  (1) by default, we update every lane in the vector
35      *  (2) VPT predication stores its state in the VPR register;
36      *  (3) low-overhead-branch tail predication will mask out part
37      *      the vector on the final iteration of the loop
38      *  (4) if EPSR.ECI is set then we must execute only some beats
39      *      of the insn
40      * We combine all these into a 16-bit result with the same semantics
41      * as VPR.P0: 0 to mask the lane, 1 if it is active.
42      * 8-bit vector ops will look at all bits of the result;
43      * 16-bit ops will look at bits 0, 2, 4, ...;
44      * 32-bit ops will look at bits 0, 4, 8 and 12.
45      * Compare pseudocode GetCurInstrBeat(), though that only returns
46      * the 4-bit slice of the mask corresponding to a single beat.
47      */
48     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
49 
50     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
51         mask |= 0xff;
52     }
53     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
54         mask |= 0xff00;
55     }
56 
57     if (env->v7m.ltpsize < 4 &&
58         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
59         /*
60          * Tail predication active, and this is the last loop iteration.
61          * The element size is (1 << ltpsize), and we only want to process
62          * loopcount elements, so we want to retain the least significant
63          * (loopcount * esize) predicate bits and zero out bits above that.
64          */
65         int masklen = env->regs[14] << env->v7m.ltpsize;
66         assert(masklen <= 16);
67         mask &= MAKE_64BIT_MASK(0, masklen);
68     }
69 
70     if ((env->condexec_bits & 0xf) == 0) {
71         /*
72          * ECI bits indicate which beats are already executed;
73          * we handle this by effectively predicating them out.
74          */
75         int eci = env->condexec_bits >> 4;
76         switch (eci) {
77         case ECI_NONE:
78             break;
79         case ECI_A0:
80             mask &= 0xfff0;
81             break;
82         case ECI_A0A1:
83             mask &= 0xff00;
84             break;
85         case ECI_A0A1A2:
86         case ECI_A0A1A2B0:
87             mask &= 0xf000;
88             break;
89         default:
90             g_assert_not_reached();
91         }
92     }
93 
94     return mask;
95 }
96 
97 static void mve_advance_vpt(CPUARMState *env)
98 {
99     /* Advance the VPT and ECI state if necessary */
100     uint32_t vpr = env->v7m.vpr;
101     unsigned mask01, mask23;
102 
103     if ((env->condexec_bits & 0xf) == 0) {
104         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
105             (ECI_A0 << 4) : (ECI_NONE << 4);
106     }
107 
108     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
109         /* VPT not enabled, nothing to do */
110         return;
111     }
112 
113     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
114     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
115     if (mask01 > 8) {
116         /* high bit set, but not 0b1000: invert the relevant half of P0 */
117         vpr ^= 0xff;
118     }
119     if (mask23 > 8) {
120         /* high bit set, but not 0b1000: invert the relevant half of P0 */
121         vpr ^= 0xff00;
122     }
123     vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
124     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
125     env->v7m.vpr = vpr;
126 }
127 
128 
129 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
130     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
131     {                                                                   \
132         TYPE *d = vd;                                                   \
133         uint16_t mask = mve_element_mask(env);                          \
134         unsigned b, e;                                                  \
135         /*                                                              \
136          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
137          * beats so we don't care if we update part of the dest and     \
138          * then take an exception.                                      \
139          */                                                             \
140         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
141             if (mask & (1 << b)) {                                      \
142                 d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \
143             }                                                           \
144             addr += MSIZE;                                              \
145         }                                                               \
146         mve_advance_vpt(env);                                           \
147     }
148 
149 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
150     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
151     {                                                                   \
152         TYPE *d = vd;                                                   \
153         uint16_t mask = mve_element_mask(env);                          \
154         unsigned b, e;                                                  \
155         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
156             if (mask & (1 << b)) {                                      \
157                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
158             }                                                           \
159             addr += MSIZE;                                              \
160         }                                                               \
161         mve_advance_vpt(env);                                           \
162     }
163 
164 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
165 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
166 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
167 
168 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
169 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
170 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
171 
172 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
173 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
174 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
175 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
176 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
177 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
178 
179 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
180 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
181 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
182 
183 #undef DO_VLDR
184 #undef DO_VSTR
185 
186 /*
187  * The mergemask(D, R, M) macro performs the operation "*D = R" but
188  * storing only the bytes which correspond to 1 bits in M,
189  * leaving other bytes in *D unchanged. We use _Generic
190  * to select the correct implementation based on the type of D.
191  */
192 
193 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
194 {
195     if (mask & 1) {
196         *d = r;
197     }
198 }
199 
200 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
201 {
202     mergemask_ub((uint8_t *)d, r, mask);
203 }
204 
205 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
206 {
207     uint16_t bmask = expand_pred_b_data[mask & 3];
208     *d = (*d & ~bmask) | (r & bmask);
209 }
210 
211 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
212 {
213     mergemask_uh((uint16_t *)d, r, mask);
214 }
215 
216 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
217 {
218     uint32_t bmask = expand_pred_b_data[mask & 0xf];
219     *d = (*d & ~bmask) | (r & bmask);
220 }
221 
222 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
223 {
224     mergemask_uw((uint32_t *)d, r, mask);
225 }
226 
227 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
228 {
229     uint64_t bmask = expand_pred_b_data[mask & 0xff];
230     *d = (*d & ~bmask) | (r & bmask);
231 }
232 
233 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
234 {
235     mergemask_uq((uint64_t *)d, r, mask);
236 }
237 
238 #define mergemask(D, R, M)                      \
239     _Generic(D,                                 \
240              uint8_t *: mergemask_ub,           \
241              int8_t *:  mergemask_sb,           \
242              uint16_t *: mergemask_uh,          \
243              int16_t *:  mergemask_sh,          \
244              uint32_t *: mergemask_uw,          \
245              int32_t *:  mergemask_sw,          \
246              uint64_t *: mergemask_uq,          \
247              int64_t *:  mergemask_sq)(D, R, M)
248 
249 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
250 {
251     /*
252      * The generated code already replicated an 8 or 16 bit constant
253      * into the 32-bit value, so we only need to write the 32-bit
254      * value to all elements of the Qreg, allowing for predication.
255      */
256     uint32_t *d = vd;
257     uint16_t mask = mve_element_mask(env);
258     unsigned e;
259     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
260         mergemask(&d[H4(e)], val, mask);
261     }
262     mve_advance_vpt(env);
263 }
264 
265 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
266     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
267     {                                                                   \
268         TYPE *d = vd, *m = vm;                                          \
269         uint16_t mask = mve_element_mask(env);                          \
270         unsigned e;                                                     \
271         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
272             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
273         }                                                               \
274         mve_advance_vpt(env);                                           \
275     }
276 
277 #define DO_CLS_B(N)   (clrsb32(N) - 24)
278 #define DO_CLS_H(N)   (clrsb32(N) - 16)
279 
280 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
281 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
282 DO_1OP(vclsw, 4, int32_t, clrsb32)
283 
284 #define DO_CLZ_B(N)   (clz32(N) - 24)
285 #define DO_CLZ_H(N)   (clz32(N) - 16)
286 
287 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
288 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
289 DO_1OP(vclzw, 4, uint32_t, clz32)
290 
291 DO_1OP(vrev16b, 2, uint16_t, bswap16)
292 DO_1OP(vrev32b, 4, uint32_t, bswap32)
293 DO_1OP(vrev32h, 4, uint32_t, hswap32)
294 DO_1OP(vrev64b, 8, uint64_t, bswap64)
295 DO_1OP(vrev64h, 8, uint64_t, hswap64)
296 DO_1OP(vrev64w, 8, uint64_t, wswap64)
297 
298 #define DO_NOT(N) (~(N))
299 
300 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
301 
302 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
303 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
304 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
305 
306 DO_1OP(vabsb, 1, int8_t, DO_ABS)
307 DO_1OP(vabsh, 2, int16_t, DO_ABS)
308 DO_1OP(vabsw, 4, int32_t, DO_ABS)
309 
310 /* We can do these 64 bits at a time */
311 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
312 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
313 
314 #define DO_NEG(N)    (-(N))
315 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
316 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
317 
318 DO_1OP(vnegb, 1, int8_t, DO_NEG)
319 DO_1OP(vnegh, 2, int16_t, DO_NEG)
320 DO_1OP(vnegw, 4, int32_t, DO_NEG)
321 
322 /* We can do these 64 bits at a time */
323 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
324 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
325 
326 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
327     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
328                                 void *vd, void *vn, void *vm)           \
329     {                                                                   \
330         TYPE *d = vd, *n = vn, *m = vm;                                 \
331         uint16_t mask = mve_element_mask(env);                          \
332         unsigned e;                                                     \
333         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
334             mergemask(&d[H##ESIZE(e)],                                  \
335                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
336         }                                                               \
337         mve_advance_vpt(env);                                           \
338     }
339 
340 /* provide unsigned 2-op helpers for all sizes */
341 #define DO_2OP_U(OP, FN)                        \
342     DO_2OP(OP##b, 1, uint8_t, FN)               \
343     DO_2OP(OP##h, 2, uint16_t, FN)              \
344     DO_2OP(OP##w, 4, uint32_t, FN)
345 
346 /* provide signed 2-op helpers for all sizes */
347 #define DO_2OP_S(OP, FN)                        \
348     DO_2OP(OP##b, 1, int8_t, FN)                \
349     DO_2OP(OP##h, 2, int16_t, FN)               \
350     DO_2OP(OP##w, 4, int32_t, FN)
351 
352 /*
353  * "Long" operations where two half-sized inputs (taken from either the
354  * top or the bottom of the input vector) produce a double-width result.
355  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
356  */
357 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
358     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
359     {                                                                   \
360         LTYPE *d = vd;                                                  \
361         TYPE *n = vn, *m = vm;                                          \
362         uint16_t mask = mve_element_mask(env);                          \
363         unsigned le;                                                    \
364         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
365             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
366                          m[H##ESIZE(le * 2 + TOP)]);                    \
367             mergemask(&d[H##LESIZE(le)], r, mask);                      \
368         }                                                               \
369         mve_advance_vpt(env);                                           \
370     }
371 
372 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
373     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
374     {                                                                   \
375         TYPE *d = vd, *n = vn, *m = vm;                                 \
376         uint16_t mask = mve_element_mask(env);                          \
377         unsigned e;                                                     \
378         bool qc = false;                                                \
379         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
380             bool sat = false;                                           \
381             TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);          \
382             mergemask(&d[H##ESIZE(e)], r, mask);                        \
383             qc |= sat & mask & 1;                                       \
384         }                                                               \
385         if (qc) {                                                       \
386             env->vfp.qc[0] = qc;                                        \
387         }                                                               \
388         mve_advance_vpt(env);                                           \
389     }
390 
391 /* provide unsigned 2-op helpers for all sizes */
392 #define DO_2OP_SAT_U(OP, FN)                    \
393     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
394     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
395     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
396 
397 /* provide signed 2-op helpers for all sizes */
398 #define DO_2OP_SAT_S(OP, FN)                    \
399     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
400     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
401     DO_2OP_SAT(OP##w, 4, int32_t, FN)
402 
403 #define DO_AND(N, M)  ((N) & (M))
404 #define DO_BIC(N, M)  ((N) & ~(M))
405 #define DO_ORR(N, M)  ((N) | (M))
406 #define DO_ORN(N, M)  ((N) | ~(M))
407 #define DO_EOR(N, M)  ((N) ^ (M))
408 
409 DO_2OP(vand, 8, uint64_t, DO_AND)
410 DO_2OP(vbic, 8, uint64_t, DO_BIC)
411 DO_2OP(vorr, 8, uint64_t, DO_ORR)
412 DO_2OP(vorn, 8, uint64_t, DO_ORN)
413 DO_2OP(veor, 8, uint64_t, DO_EOR)
414 
415 #define DO_ADD(N, M) ((N) + (M))
416 #define DO_SUB(N, M) ((N) - (M))
417 #define DO_MUL(N, M) ((N) * (M))
418 
419 DO_2OP_U(vadd, DO_ADD)
420 DO_2OP_U(vsub, DO_SUB)
421 DO_2OP_U(vmul, DO_MUL)
422 
423 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
424 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
425 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
426 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
427 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
428 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
429 
430 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
431 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
432 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
433 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
434 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
435 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
436 
437 /*
438  * Because the computation type is at least twice as large as required,
439  * these work for both signed and unsigned source types.
440  */
441 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
442 {
443     return (n * m) >> 8;
444 }
445 
446 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
447 {
448     return (n * m) >> 16;
449 }
450 
451 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
452 {
453     return (n * m) >> 32;
454 }
455 
456 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
457 {
458     return (n * m + (1U << 7)) >> 8;
459 }
460 
461 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
462 {
463     return (n * m + (1U << 15)) >> 16;
464 }
465 
466 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
467 {
468     return (n * m + (1U << 31)) >> 32;
469 }
470 
471 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
472 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
473 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
474 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
475 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
476 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
477 
478 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
479 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
480 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
481 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
482 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
483 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
484 
485 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
486 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
487 
488 DO_2OP_S(vmaxs, DO_MAX)
489 DO_2OP_U(vmaxu, DO_MAX)
490 DO_2OP_S(vmins, DO_MIN)
491 DO_2OP_U(vminu, DO_MIN)
492 
493 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
494 
495 DO_2OP_S(vabds, DO_ABD)
496 DO_2OP_U(vabdu, DO_ABD)
497 
498 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
499 {
500     return ((uint64_t)n + m) >> 1;
501 }
502 
503 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
504 {
505     return ((int64_t)n + m) >> 1;
506 }
507 
508 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
509 {
510     return ((uint64_t)n - m) >> 1;
511 }
512 
513 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
514 {
515     return ((int64_t)n - m) >> 1;
516 }
517 
518 DO_2OP_S(vhadds, do_vhadd_s)
519 DO_2OP_U(vhaddu, do_vhadd_u)
520 DO_2OP_S(vhsubs, do_vhsub_s)
521 DO_2OP_U(vhsubu, do_vhsub_u)
522 
523 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
524 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
525 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
526 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
527 
528 DO_2OP_S(vshls, DO_VSHLS)
529 DO_2OP_U(vshlu, DO_VSHLU)
530 DO_2OP_S(vrshls, DO_VRSHLS)
531 DO_2OP_U(vrshlu, DO_VRSHLU)
532 
533 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
534 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
535 
536 DO_2OP_S(vrhadds, DO_RHADD_S)
537 DO_2OP_U(vrhaddu, DO_RHADD_U)
538 
539 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
540                     uint32_t inv, uint32_t carry_in, bool update_flags)
541 {
542     uint16_t mask = mve_element_mask(env);
543     unsigned e;
544 
545     /* If any additions trigger, we will update flags. */
546     if (mask & 0x1111) {
547         update_flags = true;
548     }
549 
550     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
551         uint64_t r = carry_in;
552         r += n[H4(e)];
553         r += m[H4(e)] ^ inv;
554         if (mask & 1) {
555             carry_in = r >> 32;
556         }
557         mergemask(&d[H4(e)], r, mask);
558     }
559 
560     if (update_flags) {
561         /* Store C, clear NZV. */
562         env->vfp.xregs[ARM_VFP_FPSCR] &= ~FPCR_NZCV_MASK;
563         env->vfp.xregs[ARM_VFP_FPSCR] |= carry_in * FPCR_C;
564     }
565     mve_advance_vpt(env);
566 }
567 
568 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
569 {
570     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
571     do_vadc(env, vd, vn, vm, 0, carry_in, false);
572 }
573 
574 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
575 {
576     bool carry_in = env->vfp.xregs[ARM_VFP_FPSCR] & FPCR_C;
577     do_vadc(env, vd, vn, vm, -1, carry_in, false);
578 }
579 
580 
581 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
582 {
583     do_vadc(env, vd, vn, vm, 0, 0, true);
584 }
585 
586 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
587 {
588     do_vadc(env, vd, vn, vm, -1, 1, true);
589 }
590 
591 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
592     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
593     {                                                                   \
594         TYPE *d = vd, *n = vn, *m = vm;                                 \
595         uint16_t mask = mve_element_mask(env);                          \
596         unsigned e;                                                     \
597         TYPE r[16 / ESIZE];                                             \
598         /* Calculate all results first to avoid overwriting inputs */   \
599         for (e = 0; e < 16 / ESIZE; e++) {                              \
600             if (!(e & 1)) {                                             \
601                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
602             } else {                                                    \
603                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
604             }                                                           \
605         }                                                               \
606         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
607             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
608         }                                                               \
609         mve_advance_vpt(env);                                           \
610     }
611 
612 #define DO_VCADD_ALL(OP, FN0, FN1)              \
613     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
614     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
615     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
616 
617 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
618 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
619 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
620 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
621 
622 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
623 {
624     if (val > max) {
625         *s = true;
626         return max;
627     } else if (val < min) {
628         *s = true;
629         return min;
630     }
631     return val;
632 }
633 
634 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
635 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
636 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
637 
638 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
639 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
640 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
641 
642 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
643 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
644 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
645 
646 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
647 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
648 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
649 
650 /*
651  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
652  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
653  */
654 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
655                                         INT8_MIN, INT8_MAX, s)
656 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
657                                         INT16_MIN, INT16_MAX, s)
658 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
659                                         INT32_MIN, INT32_MAX, s)
660 
661 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
662                                          INT8_MIN, INT8_MAX, s)
663 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
664                                          INT16_MIN, INT16_MAX, s)
665 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
666                                          INT32_MIN, INT32_MAX, s)
667 
668 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
669 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
670 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
671 
672 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
673 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
674 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
675 
676 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
677 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
678 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
679 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
680 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
681 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
682 
683 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
684 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
685 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
686 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
687 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
688 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
689 
690 /*
691  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
692  * and friends wanting a uint32_t* sat and our needing a bool*.
693  */
694 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
695     ({                                                                  \
696         uint32_t su32 = 0;                                              \
697         typeof(N) r = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32);  \
698         if (su32) {                                                     \
699             *satp = true;                                               \
700         }                                                               \
701         r;                                                              \
702     })
703 
704 #define DO_SQSHL_OP(N, M, satp) \
705     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
706 #define DO_UQSHL_OP(N, M, satp) \
707     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
708 #define DO_SQRSHL_OP(N, M, satp) \
709     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
710 #define DO_UQRSHL_OP(N, M, satp) \
711     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
712 
713 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
714 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
715 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
716 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
717 
718 /*
719  * Multiply add dual returning high half
720  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
721  * whether to add the rounding constant, and the pointer to the
722  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
723  * saturate to twice the input size and return the high half; or
724  * (A * B - C * D) etc for VQDMLSDH.
725  */
726 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
727     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
728                                 void *vm)                               \
729     {                                                                   \
730         TYPE *d = vd, *n = vn, *m = vm;                                 \
731         uint16_t mask = mve_element_mask(env);                          \
732         unsigned e;                                                     \
733         bool qc = false;                                                \
734         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
735             bool sat = false;                                           \
736             if ((e & 1) == XCHG) {                                      \
737                 TYPE r = FN(n[H##ESIZE(e)],                             \
738                             m[H##ESIZE(e - XCHG)],                      \
739                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
740                             m[H##ESIZE(e + (1 - XCHG))],                \
741                             ROUND, &sat);                               \
742                 mergemask(&d[H##ESIZE(e)], r, mask);                    \
743                 qc |= sat & mask & 1;                                   \
744             }                                                           \
745         }                                                               \
746         if (qc) {                                                       \
747             env->vfp.qc[0] = qc;                                        \
748         }                                                               \
749         mve_advance_vpt(env);                                           \
750     }
751 
752 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
753                             int round, bool *sat)
754 {
755     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
756     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
757 }
758 
759 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
760                              int round, bool *sat)
761 {
762     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
763     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
764 }
765 
766 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
767                              int round, bool *sat)
768 {
769     int64_t m1 = (int64_t)a * b;
770     int64_t m2 = (int64_t)c * d;
771     int64_t r;
772     /*
773      * Architecturally we should do the entire add, double, round
774      * and then check for saturation. We do three saturating adds,
775      * but we need to be careful about the order. If the first
776      * m1 + m2 saturates then it's impossible for the *2+rc to
777      * bring it back into the non-saturated range. However, if
778      * m1 + m2 is negative then it's possible that doing the doubling
779      * would take the intermediate result below INT64_MAX and the
780      * addition of the rounding constant then brings it back in range.
781      * So we add half the rounding constant before doubling rather
782      * than adding the rounding constant after the doubling.
783      */
784     if (sadd64_overflow(m1, m2, &r) ||
785         sadd64_overflow(r, (round << 30), &r) ||
786         sadd64_overflow(r, r, &r)) {
787         *sat = true;
788         return r < 0 ? INT32_MAX : INT32_MIN;
789     }
790     return r >> 32;
791 }
792 
793 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
794                             int round, bool *sat)
795 {
796     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
797     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
798 }
799 
800 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
801                              int round, bool *sat)
802 {
803     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
804     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
805 }
806 
807 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
808                              int round, bool *sat)
809 {
810     int64_t m1 = (int64_t)a * b;
811     int64_t m2 = (int64_t)c * d;
812     int64_t r;
813     /* The same ordering issue as in do_vqdmladh_w applies here too */
814     if (ssub64_overflow(m1, m2, &r) ||
815         sadd64_overflow(r, (round << 30), &r) ||
816         sadd64_overflow(r, r, &r)) {
817         *sat = true;
818         return r < 0 ? INT32_MAX : INT32_MIN;
819     }
820     return r >> 32;
821 }
822 
823 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
824 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
825 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
826 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
827 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
828 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
829 
830 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
831 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
832 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
833 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
834 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
835 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
836 
837 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
838 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
839 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
840 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
841 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
842 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
843 
844 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
845 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
846 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
847 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
848 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
849 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
850 
851 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
852     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
853                                 uint32_t rm)                            \
854     {                                                                   \
855         TYPE *d = vd, *n = vn;                                          \
856         TYPE m = rm;                                                    \
857         uint16_t mask = mve_element_mask(env);                          \
858         unsigned e;                                                     \
859         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
860             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
861         }                                                               \
862         mve_advance_vpt(env);                                           \
863     }
864 
865 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
866     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
867                                 uint32_t rm)                            \
868     {                                                                   \
869         TYPE *d = vd, *n = vn;                                          \
870         TYPE m = rm;                                                    \
871         uint16_t mask = mve_element_mask(env);                          \
872         unsigned e;                                                     \
873         bool qc = false;                                                \
874         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
875             bool sat = false;                                           \
876             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
877                       mask);                                            \
878             qc |= sat & mask & 1;                                       \
879         }                                                               \
880         if (qc) {                                                       \
881             env->vfp.qc[0] = qc;                                        \
882         }                                                               \
883         mve_advance_vpt(env);                                           \
884     }
885 
886 /* provide unsigned 2-op scalar helpers for all sizes */
887 #define DO_2OP_SCALAR_U(OP, FN)                 \
888     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
889     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
890     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
891 #define DO_2OP_SCALAR_S(OP, FN)                 \
892     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
893     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
894     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
895 
896 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
897 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
898 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
899 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
900 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
901 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
902 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
903 
904 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
905 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
906 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
907 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
908 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
909 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
910 
911 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
912 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
913 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
914 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
915 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
916 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
917 
918 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
919 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
920 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
921 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
922 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
923 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
924 
925 /*
926  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
927  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
928  * SATMASK specifies which bits of the predicate mask matter for determining
929  * whether to propagate a saturation indication into FPSCR.QC -- for
930  * the 16x16->32 case we must check only the bit corresponding to the T or B
931  * half that we used, but for the 32x32->64 case we propagate if the mask
932  * bit is set for either half.
933  */
934 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
935     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
936                                 uint32_t rm)                            \
937     {                                                                   \
938         LTYPE *d = vd;                                                  \
939         TYPE *n = vn;                                                   \
940         TYPE m = rm;                                                    \
941         uint16_t mask = mve_element_mask(env);                          \
942         unsigned le;                                                    \
943         bool qc = false;                                                \
944         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
945             bool sat = false;                                           \
946             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
947             mergemask(&d[H##LESIZE(le)], r, mask);                      \
948             qc |= sat && (mask & SATMASK);                              \
949         }                                                               \
950         if (qc) {                                                       \
951             env->vfp.qc[0] = qc;                                        \
952         }                                                               \
953         mve_advance_vpt(env);                                           \
954     }
955 
956 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
957 {
958     int64_t r = ((int64_t)n * m) * 2;
959     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
960 }
961 
962 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
963 {
964     /* The multiply can't overflow, but the doubling might */
965     int64_t r = (int64_t)n * m;
966     if (r > INT64_MAX / 2) {
967         *sat = true;
968         return INT64_MAX;
969     } else if (r < INT64_MIN / 2) {
970         *sat = true;
971         return INT64_MIN;
972     } else {
973         return r * 2;
974     }
975 }
976 
977 #define SATMASK16B 1
978 #define SATMASK16T (1 << 2)
979 #define SATMASK32 ((1 << 4) | 1)
980 
981 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
982                     do_qdmullh, SATMASK16B)
983 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
984                     do_qdmullw, SATMASK32)
985 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
986                     do_qdmullh, SATMASK16T)
987 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
988                     do_qdmullw, SATMASK32)
989 
990 /*
991  * Long saturating ops
992  */
993 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
994     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
995                                 void *vm)                               \
996     {                                                                   \
997         LTYPE *d = vd;                                                  \
998         TYPE *n = vn, *m = vm;                                          \
999         uint16_t mask = mve_element_mask(env);                          \
1000         unsigned le;                                                    \
1001         bool qc = false;                                                \
1002         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1003             bool sat = false;                                           \
1004             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1005             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1006             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1007             qc |= sat && (mask & SATMASK);                              \
1008         }                                                               \
1009         if (qc) {                                                       \
1010             env->vfp.qc[0] = qc;                                        \
1011         }                                                               \
1012         mve_advance_vpt(env);                                           \
1013     }
1014 
1015 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1016 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1017 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1018 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1019 
1020 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1021 {
1022     m &= 0xff;
1023     if (m == 0) {
1024         return 0;
1025     }
1026     n = revbit8(n);
1027     if (m < 8) {
1028         n >>= 8 - m;
1029     }
1030     return n;
1031 }
1032 
1033 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1034 {
1035     m &= 0xff;
1036     if (m == 0) {
1037         return 0;
1038     }
1039     n = revbit16(n);
1040     if (m < 16) {
1041         n >>= 16 - m;
1042     }
1043     return n;
1044 }
1045 
1046 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1047 {
1048     m &= 0xff;
1049     if (m == 0) {
1050         return 0;
1051     }
1052     n = revbit32(n);
1053     if (m < 32) {
1054         n >>= 32 - m;
1055     }
1056     return n;
1057 }
1058 
1059 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1060 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1061 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1062 
1063 /*
1064  * Multiply add long dual accumulate ops.
1065  */
1066 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1067     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1068                                     void *vm, uint64_t a)               \
1069     {                                                                   \
1070         uint16_t mask = mve_element_mask(env);                          \
1071         unsigned e;                                                     \
1072         TYPE *n = vn, *m = vm;                                          \
1073         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1074             if (mask & 1) {                                             \
1075                 if (e & 1) {                                            \
1076                     a ODDACC                                            \
1077                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1078                 } else {                                                \
1079                     a EVENACC                                           \
1080                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1081                 }                                                       \
1082             }                                                           \
1083         }                                                               \
1084         mve_advance_vpt(env);                                           \
1085         return a;                                                       \
1086     }
1087 
1088 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1089 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1090 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1091 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1092 
1093 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1094 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1095 
1096 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1097 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1098 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1099 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1100 
1101 /*
1102  * Rounding multiply add long dual accumulate high. In the pseudocode
1103  * this is implemented with a 72-bit internal accumulator value of which
1104  * the top 64 bits are returned. We optimize this to avoid having to
1105  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1106  * is squashed back into 64-bits after each beat.
1107  */
1108 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1109     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1110                                     void *vm, uint64_t a)               \
1111     {                                                                   \
1112         uint16_t mask = mve_element_mask(env);                          \
1113         unsigned e;                                                     \
1114         TYPE *n = vn, *m = vm;                                          \
1115         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1116             if (mask & 1) {                                             \
1117                 LTYPE mul;                                              \
1118                 if (e & 1) {                                            \
1119                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1120                     if (SUB) {                                          \
1121                         mul = -mul;                                     \
1122                     }                                                   \
1123                 } else {                                                \
1124                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1125                 }                                                       \
1126                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1127                 a += mul;                                               \
1128             }                                                           \
1129         }                                                               \
1130         mve_advance_vpt(env);                                           \
1131         return a;                                                       \
1132     }
1133 
1134 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1135 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1136 
1137 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1138 
1139 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1140 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1141 
1142 /* Vector add across vector */
1143 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1144     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1145                                     uint32_t ra)                \
1146     {                                                           \
1147         uint16_t mask = mve_element_mask(env);                  \
1148         unsigned e;                                             \
1149         TYPE *m = vm;                                           \
1150         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1151             if (mask & 1) {                                     \
1152                 ra += m[H##ESIZE(e)];                           \
1153             }                                                   \
1154         }                                                       \
1155         mve_advance_vpt(env);                                   \
1156         return ra;                                              \
1157     }                                                           \
1158 
1159 DO_VADDV(vaddvsb, 1, uint8_t)
1160 DO_VADDV(vaddvsh, 2, uint16_t)
1161 DO_VADDV(vaddvsw, 4, uint32_t)
1162 DO_VADDV(vaddvub, 1, uint8_t)
1163 DO_VADDV(vaddvuh, 2, uint16_t)
1164 DO_VADDV(vaddvuw, 4, uint32_t)
1165