xref: /qemu/target/arm/tcg/mve_helper.c (revision 26aa0e36bfdbbc0f4b07b4ea51e910c4dc43e890)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "accel/tcg/cpu-ldst.h"
26 #include "tcg/tcg.h"
27 #include "fpu/softfloat.h"
28 #include "crypto/clmul.h"
29 
30 static uint16_t mve_eci_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector correspond
34      * to beats being executed. The mask has 1 bits for executed lanes
35      * and 0 bits where ECI says this beat was already executed.
36      */
37     int eci;
38 
39     if ((env->condexec_bits & 0xf) != 0) {
40         return 0xffff;
41     }
42 
43     eci = env->condexec_bits >> 4;
44     switch (eci) {
45     case ECI_NONE:
46         return 0xffff;
47     case ECI_A0:
48         return 0xfff0;
49     case ECI_A0A1:
50         return 0xff00;
51     case ECI_A0A1A2:
52     case ECI_A0A1A2B0:
53         return 0xf000;
54     default:
55         g_assert_not_reached();
56     }
57 }
58 
59 static uint16_t mve_element_mask(CPUARMState *env)
60 {
61     /*
62      * Return the mask of which elements in the MVE vector should be
63      * updated. This is a combination of multiple things:
64      *  (1) by default, we update every lane in the vector
65      *  (2) VPT predication stores its state in the VPR register;
66      *  (3) low-overhead-branch tail predication will mask out part
67      *      the vector on the final iteration of the loop
68      *  (4) if EPSR.ECI is set then we must execute only some beats
69      *      of the insn
70      * We combine all these into a 16-bit result with the same semantics
71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
72      * 8-bit vector ops will look at all bits of the result;
73      * 16-bit ops will look at bits 0, 2, 4, ...;
74      * 32-bit ops will look at bits 0, 4, 8 and 12.
75      * Compare pseudocode GetCurInstrBeat(), though that only returns
76      * the 4-bit slice of the mask corresponding to a single beat.
77      */
78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
79 
80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
81         mask |= 0xff;
82     }
83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
84         mask |= 0xff00;
85     }
86 
87     if (env->v7m.ltpsize < 4 &&
88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
89         /*
90          * Tail predication active, and this is the last loop iteration.
91          * The element size is (1 << ltpsize), and we only want to process
92          * loopcount elements, so we want to retain the least significant
93          * (loopcount * esize) predicate bits and zero out bits above that.
94          */
95         int masklen = env->regs[14] << env->v7m.ltpsize;
96         assert(masklen <= 16);
97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
98         mask &= ltpmask;
99     }
100 
101     /*
102      * ECI bits indicate which beats are already executed;
103      * we handle this by effectively predicating them out.
104      */
105     mask &= mve_eci_mask(env);
106     return mask;
107 }
108 
109 static void mve_advance_vpt(CPUARMState *env)
110 {
111     /* Advance the VPT and ECI state if necessary */
112     uint32_t vpr = env->v7m.vpr;
113     unsigned mask01, mask23;
114     uint16_t inv_mask;
115     uint16_t eci_mask = mve_eci_mask(env);
116 
117     if ((env->condexec_bits & 0xf) == 0) {
118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
119             (ECI_A0 << 4) : (ECI_NONE << 4);
120     }
121 
122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
123         /* VPT not enabled, nothing to do */
124         return;
125     }
126 
127     /* Invert P0 bits if needed, but only for beats we actually executed */
128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
130     /* Start by assuming we invert all bits corresponding to executed beats */
131     inv_mask = eci_mask;
132     if (mask01 <= 8) {
133         /* MASK01 says don't invert low half of P0 */
134         inv_mask &= ~0xff;
135     }
136     if (mask23 <= 8) {
137         /* MASK23 says don't invert high half of P0 */
138         inv_mask &= ~0xff00;
139     }
140     vpr ^= inv_mask;
141     /* Only update MASK01 if beat 1 executed */
142     if (eci_mask & 0xf0) {
143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
144     }
145     /* Beat 3 always executes, so update MASK23 */
146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
147     env->v7m.vpr = vpr;
148 }
149 
150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
151 #define DO_VLDR(OP, MFLAG, MSIZE, MTYPE, LDTYPE, ESIZE, TYPE)           \
152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
153     {                                                                   \
154         TYPE *d = vd;                                                   \
155         uint16_t mask = mve_element_mask(env);                          \
156         uint16_t eci_mask = mve_eci_mask(env);                          \
157         unsigned b, e;                                                  \
158         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
159         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
160         /*                                                              \
161          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
162          * beats so we don't care if we update part of the dest and     \
163          * then take an exception.                                      \
164          */                                                             \
165         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
166             if (eci_mask & (1 << b)) {                                  \
167                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
168                     (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;\
169             }                                                           \
170             addr += MSIZE;                                              \
171         }                                                               \
172         mve_advance_vpt(env);                                           \
173     }
174 
175 #define DO_VSTR(OP, MFLAG, MSIZE, STTYPE, ESIZE, TYPE)                  \
176     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
177     {                                                                   \
178         TYPE *d = vd;                                                   \
179         uint16_t mask = mve_element_mask(env);                          \
180         unsigned b, e;                                                  \
181         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
182         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
183         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
184             if (mask & (1 << b)) {                                      \
185                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
186             }                                                           \
187             addr += MSIZE;                                              \
188         }                                                               \
189         mve_advance_vpt(env);                                           \
190     }
191 
192 DO_VLDR(vldrb, MO_UB, 1, uint8_t, ldb, 1, uint8_t)
193 DO_VLDR(vldrh, MO_TEUW, 2, uint16_t, ldw, 2, uint16_t)
194 DO_VLDR(vldrw, MO_TEUL, 4, uint32_t, ldl, 4, uint32_t)
195 
196 DO_VSTR(vstrb, MO_UB, 1, stb, 1, uint8_t)
197 DO_VSTR(vstrh, MO_TEUW, 2, stw, 2, uint16_t)
198 DO_VSTR(vstrw, MO_TEUL, 4, stl, 4, uint32_t)
199 
200 DO_VLDR(vldrb_sh, MO_SB, 1, int8_t, ldb, 2, int16_t)
201 DO_VLDR(vldrb_sw, MO_SB, 1, int8_t, ldb, 4, int32_t)
202 DO_VLDR(vldrb_uh, MO_UB, 1, uint8_t, ldb, 2, uint16_t)
203 DO_VLDR(vldrb_uw, MO_UB, 1, uint8_t, ldb, 4, uint32_t)
204 DO_VLDR(vldrh_sw, MO_TESW, 2, int16_t, ldw, 4, int32_t)
205 DO_VLDR(vldrh_uw, MO_TEUW, 2, uint16_t, ldw, 4, uint32_t)
206 
207 DO_VSTR(vstrb_h, MO_UB, 1, stb, 2, int16_t)
208 DO_VSTR(vstrb_w, MO_UB, 1, stb, 4, int32_t)
209 DO_VSTR(vstrh_w, MO_TEUW, 2, stw, 4, int32_t)
210 
211 #undef DO_VLDR
212 #undef DO_VSTR
213 
214 /*
215  * Gather loads/scatter stores. Here each element of Qm specifies
216  * an offset to use from the base register Rm. In the _os_ versions
217  * that offset is scaled by the element size.
218  * For loads, predicated lanes are zeroed instead of retaining
219  * their previous values.
220  */
221 #define DO_VLDR_SG(OP, MFLAG, MTYPE, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)\
222     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
223                           uint32_t base)                                \
224     {                                                                   \
225         TYPE *d = vd;                                                   \
226         OFFTYPE *m = vm;                                                \
227         uint16_t mask = mve_element_mask(env);                          \
228         uint16_t eci_mask = mve_eci_mask(env);                          \
229         unsigned e;                                                     \
230         uint32_t addr;                                                  \
231         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
232         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
233         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
234             if (!(eci_mask & 1)) {                                      \
235                 continue;                                               \
236             }                                                           \
237             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
238             d[H##ESIZE(e)] = (mask & 1) ?                               \
239                 (MTYPE)cpu_##LDTYPE##_mmu(env, addr, oi, GETPC()) : 0;  \
240             if (WB) {                                                   \
241                 m[H##ESIZE(e)] = addr;                                  \
242             }                                                           \
243         }                                                               \
244         mve_advance_vpt(env);                                           \
245     }
246 
247 /* We know here TYPE is unsigned so always the same as the offset type */
248 #define DO_VSTR_SG(OP, MFLAG, STTYPE, ESIZE, TYPE, ADDRFN, WB)          \
249     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
250                           uint32_t base)                                \
251     {                                                                   \
252         TYPE *d = vd;                                                   \
253         TYPE *m = vm;                                                   \
254         uint16_t mask = mve_element_mask(env);                          \
255         uint16_t eci_mask = mve_eci_mask(env);                          \
256         unsigned e;                                                     \
257         uint32_t addr;                                                  \
258         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
259         MemOpIdx oi = make_memop_idx(MFLAG | MO_ALIGN, mmu_idx);        \
260         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
261             if (!(eci_mask & 1)) {                                      \
262                 continue;                                               \
263             }                                                           \
264             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
265             if (mask & 1) {                                             \
266                 cpu_##STTYPE##_mmu(env, addr, d[H##ESIZE(e)], oi, GETPC()); \
267             }                                                           \
268             if (WB) {                                                   \
269                 m[H##ESIZE(e)] = addr;                                  \
270             }                                                           \
271         }                                                               \
272         mve_advance_vpt(env);                                           \
273     }
274 
275 /*
276  * 64-bit accesses are slightly different: they are done as two 32-bit
277  * accesses, controlled by the predicate mask for the relevant beat,
278  * and with a single 32-bit offset in the first of the two Qm elements.
279  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
280  * Address writeback happens on the odd beats and updates the address
281  * stored in the even-beat element.
282  */
283 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
284     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
285                           uint32_t base)                                \
286     {                                                                   \
287         uint32_t *d = vd;                                               \
288         uint32_t *m = vm;                                               \
289         uint16_t mask = mve_element_mask(env);                          \
290         uint16_t eci_mask = mve_eci_mask(env);                          \
291         unsigned e;                                                     \
292         uint32_t addr;                                                  \
293         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
294         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
295         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
296             if (!(eci_mask & 1)) {                                      \
297                 continue;                                               \
298             }                                                           \
299             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
300             addr += 4 * (e & 1);                                        \
301             d[H4(e)] = (mask & 1) ? cpu_ldl_mmu(env, addr, oi, GETPC()) : 0; \
302             if (WB && (e & 1)) {                                        \
303                 m[H4(e & ~1)] = addr - 4;                               \
304             }                                                           \
305         }                                                               \
306         mve_advance_vpt(env);                                           \
307     }
308 
309 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
310     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
311                           uint32_t base)                                \
312     {                                                                   \
313         uint32_t *d = vd;                                               \
314         uint32_t *m = vm;                                               \
315         uint16_t mask = mve_element_mask(env);                          \
316         uint16_t eci_mask = mve_eci_mask(env);                          \
317         unsigned e;                                                     \
318         uint32_t addr;                                                  \
319         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
320         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
321         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
322             if (!(eci_mask & 1)) {                                      \
323                 continue;                                               \
324             }                                                           \
325             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
326             addr += 4 * (e & 1);                                        \
327             if (mask & 1) {                                             \
328                 cpu_stl_mmu(env, addr, d[H4(e)], oi, GETPC());          \
329             }                                                           \
330             if (WB && (e & 1)) {                                        \
331                 m[H4(e & ~1)] = addr - 4;                               \
332             }                                                           \
333         }                                                               \
334         mve_advance_vpt(env);                                           \
335     }
336 
337 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
338 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
339 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
340 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
341 
342 DO_VLDR_SG(vldrb_sg_sh, MO_SB, int8_t, ldb, 2, int16_t, uint16_t, ADDR_ADD, false)
343 DO_VLDR_SG(vldrb_sg_sw, MO_SB, int8_t, ldb, 4, int32_t, uint32_t, ADDR_ADD, false)
344 DO_VLDR_SG(vldrh_sg_sw, MO_TESW, int16_t, ldw, 4, int32_t, uint32_t, ADDR_ADD, false)
345 
346 DO_VLDR_SG(vldrb_sg_ub, MO_UB, uint8_t, ldb, 1, uint8_t, uint8_t, ADDR_ADD, false)
347 DO_VLDR_SG(vldrb_sg_uh, MO_UB, uint8_t, ldb, 2, uint16_t, uint16_t, ADDR_ADD, false)
348 DO_VLDR_SG(vldrb_sg_uw, MO_UB, uint8_t, ldb, 4, uint32_t, uint32_t, ADDR_ADD, false)
349 DO_VLDR_SG(vldrh_sg_uh, MO_TEUW, uint16_t, ldw, 2, uint16_t, uint16_t, ADDR_ADD, false)
350 DO_VLDR_SG(vldrh_sg_uw, MO_TEUW, uint16_t, ldw, 4, uint32_t, uint32_t, ADDR_ADD, false)
351 DO_VLDR_SG(vldrw_sg_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
352 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
353 
354 DO_VLDR_SG(vldrh_sg_os_sw, MO_TESW, int16_t, ldw, 4,
355            int32_t, uint32_t, ADDR_ADD_OSH, false)
356 DO_VLDR_SG(vldrh_sg_os_uh, MO_TEUW, uint16_t, ldw, 2,
357            uint16_t, uint16_t, ADDR_ADD_OSH, false)
358 DO_VLDR_SG(vldrh_sg_os_uw, MO_TEUW, uint16_t, ldw, 4,
359            uint32_t, uint32_t, ADDR_ADD_OSH, false)
360 DO_VLDR_SG(vldrw_sg_os_uw, MO_TEUL, uint32_t, ldl, 4,
361            uint32_t, uint32_t, ADDR_ADD_OSW, false)
362 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
363 
364 DO_VSTR_SG(vstrb_sg_ub, MO_UB, stb, 1, uint8_t, ADDR_ADD, false)
365 DO_VSTR_SG(vstrb_sg_uh, MO_UB, stb, 2, uint16_t, ADDR_ADD, false)
366 DO_VSTR_SG(vstrb_sg_uw, MO_UB, stb, 4, uint32_t, ADDR_ADD, false)
367 DO_VSTR_SG(vstrh_sg_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD, false)
368 DO_VSTR_SG(vstrh_sg_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD, false)
369 DO_VSTR_SG(vstrw_sg_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, false)
370 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
371 
372 DO_VSTR_SG(vstrh_sg_os_uh, MO_TEUW, stw, 2, uint16_t, ADDR_ADD_OSH, false)
373 DO_VSTR_SG(vstrh_sg_os_uw, MO_TEUW, stw, 4, uint32_t, ADDR_ADD_OSH, false)
374 DO_VSTR_SG(vstrw_sg_os_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD_OSW, false)
375 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
376 
377 DO_VLDR_SG(vldrw_sg_wb_uw, MO_TEUL, uint32_t, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
378 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
379 DO_VSTR_SG(vstrw_sg_wb_uw, MO_TEUL, stl, 4, uint32_t, ADDR_ADD, true)
380 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
381 
382 /*
383  * Deinterleaving loads/interleaving stores.
384  *
385  * For these helpers we are passed the index of the first Qreg
386  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
387  * and the value of the base address register Rn.
388  * The helpers are specialized for pattern and element size, so
389  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
390  *
391  * These insns are beatwise but not predicated, so we must honour ECI,
392  * but need not look at mve_element_mask().
393  *
394  * The pseudocode implements these insns with multiple memory accesses
395  * of the element size, but rules R_VVVG and R_FXDM permit us to make
396  * one 32-bit memory access per beat.
397  */
398 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
399     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
400                           uint32_t base)                                \
401     {                                                                   \
402         int beat, e;                                                    \
403         uint16_t mask = mve_eci_mask(env);                              \
404         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
405         uint32_t addr, data;                                            \
406         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
407         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
408         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
409             if ((mask & 1) == 0) {                                      \
410                 /* ECI says skip this beat */                           \
411                 continue;                                               \
412             }                                                           \
413             addr = base + off[beat] * 4;                                \
414             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
415             for (e = 0; e < 4; e++, data >>= 8) {                       \
416                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
417                 qd[H1(off[beat])] = data;                               \
418             }                                                           \
419         }                                                               \
420     }
421 
422 #define DO_VLD4H(OP, O1, O2)                                            \
423     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
424                           uint32_t base)                                \
425     {                                                                   \
426         int beat;                                                       \
427         uint16_t mask = mve_eci_mask(env);                              \
428         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
429         uint32_t addr, data;                                            \
430         int y; /* y counts 0 2 0 2 */                                   \
431         uint16_t *qd;                                                   \
432         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
433         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
434         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
435             if ((mask & 1) == 0) {                                      \
436                 /* ECI says skip this beat */                           \
437                 continue;                                               \
438             }                                                           \
439             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
440             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
441             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
442             qd[H2(off[beat])] = data;                                   \
443             data >>= 16;                                                \
444             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
445             qd[H2(off[beat])] = data;                                   \
446         }                                                               \
447     }
448 
449 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
450     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
451                           uint32_t base)                                \
452     {                                                                   \
453         int beat;                                                       \
454         uint16_t mask = mve_eci_mask(env);                              \
455         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
456         uint32_t addr, data;                                            \
457         uint32_t *qd;                                                   \
458         int y;                                                          \
459         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
460         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
461         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
462             if ((mask & 1) == 0) {                                      \
463                 /* ECI says skip this beat */                           \
464                 continue;                                               \
465             }                                                           \
466             addr = base + off[beat] * 4;                                \
467             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
468             y = (beat + (O1 & 2)) & 3;                                  \
469             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
470             qd[H4(off[beat] >> 2)] = data;                              \
471         }                                                               \
472     }
473 
474 DO_VLD4B(vld40b, 0, 1, 10, 11)
475 DO_VLD4B(vld41b, 2, 3, 12, 13)
476 DO_VLD4B(vld42b, 4, 5, 14, 15)
477 DO_VLD4B(vld43b, 6, 7, 8, 9)
478 
479 DO_VLD4H(vld40h, 0, 5)
480 DO_VLD4H(vld41h, 1, 6)
481 DO_VLD4H(vld42h, 2, 7)
482 DO_VLD4H(vld43h, 3, 4)
483 
484 DO_VLD4W(vld40w, 0, 1, 10, 11)
485 DO_VLD4W(vld41w, 2, 3, 12, 13)
486 DO_VLD4W(vld42w, 4, 5, 14, 15)
487 DO_VLD4W(vld43w, 6, 7, 8, 9)
488 
489 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
490     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
491                           uint32_t base)                                \
492     {                                                                   \
493         int beat, e;                                                    \
494         uint16_t mask = mve_eci_mask(env);                              \
495         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
496         uint32_t addr, data;                                            \
497         uint8_t *qd;                                                    \
498         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
499         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
501             if ((mask & 1) == 0) {                                      \
502                 /* ECI says skip this beat */                           \
503                 continue;                                               \
504             }                                                           \
505             addr = base + off[beat] * 2;                                \
506             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
507             for (e = 0; e < 4; e++, data >>= 8) {                       \
508                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
509                 qd[H1(off[beat] + (e >> 1))] = data;                    \
510             }                                                           \
511         }                                                               \
512     }
513 
514 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
516                           uint32_t base)                                \
517     {                                                                   \
518         int beat;                                                       \
519         uint16_t mask = mve_eci_mask(env);                              \
520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
521         uint32_t addr, data;                                            \
522         int e;                                                          \
523         uint16_t *qd;                                                   \
524         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
525         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
526         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
527             if ((mask & 1) == 0) {                                      \
528                 /* ECI says skip this beat */                           \
529                 continue;                                               \
530             }                                                           \
531             addr = base + off[beat] * 4;                                \
532             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
533             for (e = 0; e < 2; e++, data >>= 16) {                      \
534                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
535                 qd[H2(off[beat])] = data;                               \
536             }                                                           \
537         }                                                               \
538     }
539 
540 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
541     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
542                           uint32_t base)                                \
543     {                                                                   \
544         int beat;                                                       \
545         uint16_t mask = mve_eci_mask(env);                              \
546         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
547         uint32_t addr, data;                                            \
548         uint32_t *qd;                                                   \
549         int mmu_idx = arm_to_core_mmu_idx(arm_mmu_idx(env));            \
550         MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mmu_idx);      \
551         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
552             if ((mask & 1) == 0) {                                      \
553                 /* ECI says skip this beat */                           \
554                 continue;                                               \
555             }                                                           \
556             addr = base + off[beat];                                    \
557             data = cpu_ldl_mmu(env, addr, oi, GETPC());                 \
558             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
559             qd[H4(off[beat] >> 3)] = data;                              \
560         }                                                               \
561     }
562 
563 DO_VLD2B(vld20b, 0, 2, 12, 14)
564 DO_VLD2B(vld21b, 4, 6, 8, 10)
565 
566 DO_VLD2H(vld20h, 0, 1, 6, 7)
567 DO_VLD2H(vld21h, 2, 3, 4, 5)
568 
569 DO_VLD2W(vld20w, 0, 4, 24, 28)
570 DO_VLD2W(vld21w, 8, 12, 16, 20)
571 
572 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
573     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
574                           uint32_t base)                                \
575     {                                                                   \
576         int beat, e;                                                    \
577         uint16_t mask = mve_eci_mask(env);                              \
578         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
579         uint32_t addr, data;                                            \
580         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
581             if ((mask & 1) == 0) {                                      \
582                 /* ECI says skip this beat */                           \
583                 continue;                                               \
584             }                                                           \
585             addr = base + off[beat] * 4;                                \
586             data = 0;                                                   \
587             for (e = 3; e >= 0; e--) {                                  \
588                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
589                 data = (data << 8) | qd[H1(off[beat])];                 \
590             }                                                           \
591             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
592         }                                                               \
593     }
594 
595 #define DO_VST4H(OP, O1, O2)                                            \
596     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
597                           uint32_t base)                                \
598     {                                                                   \
599         int beat;                                                       \
600         uint16_t mask = mve_eci_mask(env);                              \
601         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
602         uint32_t addr, data;                                            \
603         int y; /* y counts 0 2 0 2 */                                   \
604         uint16_t *qd;                                                   \
605         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
606             if ((mask & 1) == 0) {                                      \
607                 /* ECI says skip this beat */                           \
608                 continue;                                               \
609             }                                                           \
610             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
611             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
612             data = qd[H2(off[beat])];                                   \
613             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
614             data |= qd[H2(off[beat])] << 16;                            \
615             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
616         }                                                               \
617     }
618 
619 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
620     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
621                           uint32_t base)                                \
622     {                                                                   \
623         int beat;                                                       \
624         uint16_t mask = mve_eci_mask(env);                              \
625         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
626         uint32_t addr, data;                                            \
627         uint32_t *qd;                                                   \
628         int y;                                                          \
629         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
630             if ((mask & 1) == 0) {                                      \
631                 /* ECI says skip this beat */                           \
632                 continue;                                               \
633             }                                                           \
634             addr = base + off[beat] * 4;                                \
635             y = (beat + (O1 & 2)) & 3;                                  \
636             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
637             data = qd[H4(off[beat] >> 2)];                              \
638             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
639         }                                                               \
640     }
641 
642 DO_VST4B(vst40b, 0, 1, 10, 11)
643 DO_VST4B(vst41b, 2, 3, 12, 13)
644 DO_VST4B(vst42b, 4, 5, 14, 15)
645 DO_VST4B(vst43b, 6, 7, 8, 9)
646 
647 DO_VST4H(vst40h, 0, 5)
648 DO_VST4H(vst41h, 1, 6)
649 DO_VST4H(vst42h, 2, 7)
650 DO_VST4H(vst43h, 3, 4)
651 
652 DO_VST4W(vst40w, 0, 1, 10, 11)
653 DO_VST4W(vst41w, 2, 3, 12, 13)
654 DO_VST4W(vst42w, 4, 5, 14, 15)
655 DO_VST4W(vst43w, 6, 7, 8, 9)
656 
657 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
658     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
659                           uint32_t base)                                \
660     {                                                                   \
661         int beat, e;                                                    \
662         uint16_t mask = mve_eci_mask(env);                              \
663         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
664         uint32_t addr, data;                                            \
665         uint8_t *qd;                                                    \
666         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
667             if ((mask & 1) == 0) {                                      \
668                 /* ECI says skip this beat */                           \
669                 continue;                                               \
670             }                                                           \
671             addr = base + off[beat] * 2;                                \
672             data = 0;                                                   \
673             for (e = 3; e >= 0; e--) {                                  \
674                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
675                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
676             }                                                           \
677             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
678         }                                                               \
679     }
680 
681 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
682     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
683                           uint32_t base)                                \
684     {                                                                   \
685         int beat;                                                       \
686         uint16_t mask = mve_eci_mask(env);                              \
687         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
688         uint32_t addr, data;                                            \
689         int e;                                                          \
690         uint16_t *qd;                                                   \
691         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
692             if ((mask & 1) == 0) {                                      \
693                 /* ECI says skip this beat */                           \
694                 continue;                                               \
695             }                                                           \
696             addr = base + off[beat] * 4;                                \
697             data = 0;                                                   \
698             for (e = 1; e >= 0; e--) {                                  \
699                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
700                 data = (data << 16) | qd[H2(off[beat])];                \
701             }                                                           \
702             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
703         }                                                               \
704     }
705 
706 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
707     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
708                           uint32_t base)                                \
709     {                                                                   \
710         int beat;                                                       \
711         uint16_t mask = mve_eci_mask(env);                              \
712         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
713         uint32_t addr, data;                                            \
714         uint32_t *qd;                                                   \
715         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
716             if ((mask & 1) == 0) {                                      \
717                 /* ECI says skip this beat */                           \
718                 continue;                                               \
719             }                                                           \
720             addr = base + off[beat];                                    \
721             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
722             data = qd[H4(off[beat] >> 3)];                              \
723             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
724         }                                                               \
725     }
726 
727 DO_VST2B(vst20b, 0, 2, 12, 14)
728 DO_VST2B(vst21b, 4, 6, 8, 10)
729 
730 DO_VST2H(vst20h, 0, 1, 6, 7)
731 DO_VST2H(vst21h, 2, 3, 4, 5)
732 
733 DO_VST2W(vst20w, 0, 4, 24, 28)
734 DO_VST2W(vst21w, 8, 12, 16, 20)
735 
736 /*
737  * The mergemask(D, R, M) macro performs the operation "*D = R" but
738  * storing only the bytes which correspond to 1 bits in M,
739  * leaving other bytes in *D unchanged. We use _Generic
740  * to select the correct implementation based on the type of D.
741  */
742 
743 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
744 {
745     if (mask & 1) {
746         *d = r;
747     }
748 }
749 
750 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
751 {
752     mergemask_ub((uint8_t *)d, r, mask);
753 }
754 
755 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
756 {
757     uint16_t bmask = expand_pred_b(mask);
758     *d = (*d & ~bmask) | (r & bmask);
759 }
760 
761 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
762 {
763     mergemask_uh((uint16_t *)d, r, mask);
764 }
765 
766 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
767 {
768     uint32_t bmask = expand_pred_b(mask);
769     *d = (*d & ~bmask) | (r & bmask);
770 }
771 
772 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
773 {
774     mergemask_uw((uint32_t *)d, r, mask);
775 }
776 
777 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
778 {
779     uint64_t bmask = expand_pred_b(mask);
780     *d = (*d & ~bmask) | (r & bmask);
781 }
782 
783 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
784 {
785     mergemask_uq((uint64_t *)d, r, mask);
786 }
787 
788 #define mergemask(D, R, M)                      \
789     _Generic(D,                                 \
790              uint8_t *: mergemask_ub,           \
791              int8_t *:  mergemask_sb,           \
792              uint16_t *: mergemask_uh,          \
793              int16_t *:  mergemask_sh,          \
794              uint32_t *: mergemask_uw,          \
795              int32_t *:  mergemask_sw,          \
796              uint64_t *: mergemask_uq,          \
797              int64_t *:  mergemask_sq)(D, R, M)
798 
799 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
800 {
801     /*
802      * The generated code already replicated an 8 or 16 bit constant
803      * into the 32-bit value, so we only need to write the 32-bit
804      * value to all elements of the Qreg, allowing for predication.
805      */
806     uint32_t *d = vd;
807     uint16_t mask = mve_element_mask(env);
808     unsigned e;
809     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
810         mergemask(&d[H4(e)], val, mask);
811     }
812     mve_advance_vpt(env);
813 }
814 
815 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
816     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
817     {                                                                   \
818         TYPE *d = vd, *m = vm;                                          \
819         uint16_t mask = mve_element_mask(env);                          \
820         unsigned e;                                                     \
821         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
822             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
823         }                                                               \
824         mve_advance_vpt(env);                                           \
825     }
826 
827 #define DO_CLS_B(N)   (clrsb32(N) - 24)
828 #define DO_CLS_H(N)   (clrsb32(N) - 16)
829 
830 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
831 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
832 DO_1OP(vclsw, 4, int32_t, clrsb32)
833 
834 #define DO_CLZ_B(N)   (clz32(N) - 24)
835 #define DO_CLZ_H(N)   (clz32(N) - 16)
836 
837 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
838 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
839 DO_1OP(vclzw, 4, uint32_t, clz32)
840 
841 DO_1OP(vrev16b, 2, uint16_t, bswap16)
842 DO_1OP(vrev32b, 4, uint32_t, bswap32)
843 DO_1OP(vrev32h, 4, uint32_t, hswap32)
844 DO_1OP(vrev64b, 8, uint64_t, bswap64)
845 DO_1OP(vrev64h, 8, uint64_t, hswap64)
846 DO_1OP(vrev64w, 8, uint64_t, wswap64)
847 
848 #define DO_NOT(N) (~(N))
849 
850 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
851 
852 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
853 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
854 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
855 
856 DO_1OP(vabsb, 1, int8_t, DO_ABS)
857 DO_1OP(vabsh, 2, int16_t, DO_ABS)
858 DO_1OP(vabsw, 4, int32_t, DO_ABS)
859 
860 /* We can do these 64 bits at a time */
861 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
862 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
863 
864 #define DO_NEG(N)    (-(N))
865 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
866 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
867 
868 DO_1OP(vnegb, 1, int8_t, DO_NEG)
869 DO_1OP(vnegh, 2, int16_t, DO_NEG)
870 DO_1OP(vnegw, 4, int32_t, DO_NEG)
871 
872 /* We can do these 64 bits at a time */
873 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
874 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
875 
876 /*
877  * 1 operand immediates: Vda is destination and possibly also one source.
878  * All these insns work at 64-bit widths.
879  */
880 #define DO_1OP_IMM(OP, FN)                                              \
881     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
882     {                                                                   \
883         uint64_t *da = vda;                                             \
884         uint16_t mask = mve_element_mask(env);                          \
885         unsigned e;                                                     \
886         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
887             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
888         }                                                               \
889         mve_advance_vpt(env);                                           \
890     }
891 
892 #define DO_MOVI(N, I) (I)
893 #define DO_ANDI(N, I) ((N) & (I))
894 #define DO_ORRI(N, I) ((N) | (I))
895 
896 DO_1OP_IMM(vmovi, DO_MOVI)
897 DO_1OP_IMM(vandi, DO_ANDI)
898 DO_1OP_IMM(vorri, DO_ORRI)
899 
900 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
901     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
902                                 void *vd, void *vn, void *vm)           \
903     {                                                                   \
904         TYPE *d = vd, *n = vn, *m = vm;                                 \
905         uint16_t mask = mve_element_mask(env);                          \
906         unsigned e;                                                     \
907         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
908             mergemask(&d[H##ESIZE(e)],                                  \
909                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
910         }                                                               \
911         mve_advance_vpt(env);                                           \
912     }
913 
914 /* provide unsigned 2-op helpers for all sizes */
915 #define DO_2OP_U(OP, FN)                        \
916     DO_2OP(OP##b, 1, uint8_t, FN)               \
917     DO_2OP(OP##h, 2, uint16_t, FN)              \
918     DO_2OP(OP##w, 4, uint32_t, FN)
919 
920 /* provide signed 2-op helpers for all sizes */
921 #define DO_2OP_S(OP, FN)                        \
922     DO_2OP(OP##b, 1, int8_t, FN)                \
923     DO_2OP(OP##h, 2, int16_t, FN)               \
924     DO_2OP(OP##w, 4, int32_t, FN)
925 
926 /*
927  * "Long" operations where two half-sized inputs (taken from either the
928  * top or the bottom of the input vector) produce a double-width result.
929  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
930  */
931 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
932     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
933     {                                                                   \
934         LTYPE *d = vd;                                                  \
935         TYPE *n = vn, *m = vm;                                          \
936         uint16_t mask = mve_element_mask(env);                          \
937         unsigned le;                                                    \
938         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
939             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
940                          m[H##ESIZE(le * 2 + TOP)]);                    \
941             mergemask(&d[H##LESIZE(le)], r, mask);                      \
942         }                                                               \
943         mve_advance_vpt(env);                                           \
944     }
945 
946 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
947     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
948     {                                                                   \
949         TYPE *d = vd, *n = vn, *m = vm;                                 \
950         uint16_t mask = mve_element_mask(env);                          \
951         unsigned e;                                                     \
952         bool qc = false;                                                \
953         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
954             bool sat = false;                                           \
955             TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);         \
956             mergemask(&d[H##ESIZE(e)], r_, mask);                       \
957             qc |= sat & mask & 1;                                       \
958         }                                                               \
959         if (qc) {                                                       \
960             env->vfp.qc[0] = qc;                                        \
961         }                                                               \
962         mve_advance_vpt(env);                                           \
963     }
964 
965 /* provide unsigned 2-op helpers for all sizes */
966 #define DO_2OP_SAT_U(OP, FN)                    \
967     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
968     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
969     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
970 
971 /* provide signed 2-op helpers for all sizes */
972 #define DO_2OP_SAT_S(OP, FN)                    \
973     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
974     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
975     DO_2OP_SAT(OP##w, 4, int32_t, FN)
976 
977 #define DO_AND(N, M)  ((N) & (M))
978 #define DO_BIC(N, M)  ((N) & ~(M))
979 #define DO_ORR(N, M)  ((N) | (M))
980 #define DO_ORN(N, M)  ((N) | ~(M))
981 #define DO_EOR(N, M)  ((N) ^ (M))
982 
983 DO_2OP(vand, 8, uint64_t, DO_AND)
984 DO_2OP(vbic, 8, uint64_t, DO_BIC)
985 DO_2OP(vorr, 8, uint64_t, DO_ORR)
986 DO_2OP(vorn, 8, uint64_t, DO_ORN)
987 DO_2OP(veor, 8, uint64_t, DO_EOR)
988 
989 #define DO_ADD(N, M) ((N) + (M))
990 #define DO_SUB(N, M) ((N) - (M))
991 #define DO_MUL(N, M) ((N) * (M))
992 
993 DO_2OP_U(vadd, DO_ADD)
994 DO_2OP_U(vsub, DO_SUB)
995 DO_2OP_U(vmul, DO_MUL)
996 
997 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
998 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
999 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
1000 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
1001 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
1002 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
1003 
1004 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
1005 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
1006 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
1007 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
1008 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
1009 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
1010 
1011 /*
1012  * Polynomial multiply. We can always do this generating 64 bits
1013  * of the result at a time, so we don't need to use DO_2OP_L.
1014  */
1015 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
1016 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
1017 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
1018 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
1019 
1020 /*
1021  * Because the computation type is at least twice as large as required,
1022  * these work for both signed and unsigned source types.
1023  */
1024 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
1025 {
1026     return (n * m) >> 8;
1027 }
1028 
1029 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1030 {
1031     return (n * m) >> 16;
1032 }
1033 
1034 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1035 {
1036     return (n * m) >> 32;
1037 }
1038 
1039 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1040 {
1041     return (n * m + (1U << 7)) >> 8;
1042 }
1043 
1044 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1045 {
1046     return (n * m + (1U << 15)) >> 16;
1047 }
1048 
1049 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1050 {
1051     return (n * m + (1U << 31)) >> 32;
1052 }
1053 
1054 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1055 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1056 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1057 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1058 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1059 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1060 
1061 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1062 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1063 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1064 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1065 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1066 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1067 
1068 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1069 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1070 
1071 DO_2OP_S(vmaxs, DO_MAX)
1072 DO_2OP_U(vmaxu, DO_MAX)
1073 DO_2OP_S(vmins, DO_MIN)
1074 DO_2OP_U(vminu, DO_MIN)
1075 
1076 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1077 
1078 DO_2OP_S(vabds, DO_ABD)
1079 DO_2OP_U(vabdu, DO_ABD)
1080 
1081 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1082 {
1083     return ((uint64_t)n + m) >> 1;
1084 }
1085 
1086 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1087 {
1088     return ((int64_t)n + m) >> 1;
1089 }
1090 
1091 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1092 {
1093     return ((uint64_t)n - m) >> 1;
1094 }
1095 
1096 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1097 {
1098     return ((int64_t)n - m) >> 1;
1099 }
1100 
1101 DO_2OP_S(vhadds, do_vhadd_s)
1102 DO_2OP_U(vhaddu, do_vhadd_u)
1103 DO_2OP_S(vhsubs, do_vhsub_s)
1104 DO_2OP_U(vhsubu, do_vhsub_u)
1105 
1106 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1107 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1108 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1109 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1110 
1111 DO_2OP_S(vshls, DO_VSHLS)
1112 DO_2OP_U(vshlu, DO_VSHLU)
1113 DO_2OP_S(vrshls, DO_VRSHLS)
1114 DO_2OP_U(vrshlu, DO_VRSHLU)
1115 
1116 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1117 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1118 
1119 DO_2OP_S(vrhadds, DO_RHADD_S)
1120 DO_2OP_U(vrhaddu, DO_RHADD_U)
1121 
1122 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1123                     uint32_t inv, uint32_t carry_in, bool update_flags)
1124 {
1125     uint16_t mask = mve_element_mask(env);
1126     unsigned e;
1127 
1128     /* If any additions trigger, we will update flags. */
1129     if (mask & 0x1111) {
1130         update_flags = true;
1131     }
1132 
1133     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1134         uint64_t r = carry_in;
1135         r += n[H4(e)];
1136         r += m[H4(e)] ^ inv;
1137         if (mask & 1) {
1138             carry_in = r >> 32;
1139         }
1140         mergemask(&d[H4(e)], r, mask);
1141     }
1142 
1143     if (update_flags) {
1144         /* Store C, clear NZV. */
1145         env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1146         env->vfp.fpsr |= carry_in * FPSR_C;
1147     }
1148     mve_advance_vpt(env);
1149 }
1150 
1151 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1152 {
1153     bool carry_in = env->vfp.fpsr & FPSR_C;
1154     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1155 }
1156 
1157 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1158 {
1159     bool carry_in = env->vfp.fpsr & FPSR_C;
1160     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1161 }
1162 
1163 
1164 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1165 {
1166     do_vadc(env, vd, vn, vm, 0, 0, true);
1167 }
1168 
1169 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1170 {
1171     do_vadc(env, vd, vn, vm, -1, 1, true);
1172 }
1173 
1174 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1175     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1176     {                                                                   \
1177         TYPE *d = vd, *n = vn, *m = vm;                                 \
1178         uint16_t mask = mve_element_mask(env);                          \
1179         unsigned e;                                                     \
1180         TYPE r[16 / ESIZE];                                             \
1181         /* Calculate all results first to avoid overwriting inputs */   \
1182         for (e = 0; e < 16 / ESIZE; e++) {                              \
1183             if (!(e & 1)) {                                             \
1184                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1185             } else {                                                    \
1186                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1187             }                                                           \
1188         }                                                               \
1189         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1190             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1191         }                                                               \
1192         mve_advance_vpt(env);                                           \
1193     }
1194 
1195 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1196     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1197     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1198     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1199 
1200 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1201 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1202 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1203 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1204 
1205 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1206 {
1207     if (val > max) {
1208         *s = true;
1209         return max;
1210     } else if (val < min) {
1211         *s = true;
1212         return min;
1213     }
1214     return val;
1215 }
1216 
1217 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1218 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1219 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1220 
1221 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1222 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1223 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1224 
1225 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1226 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1227 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1228 
1229 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1230 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1231 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1232 
1233 /*
1234  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1235  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1236  */
1237 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1238                                         INT8_MIN, INT8_MAX, s)
1239 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1240                                         INT16_MIN, INT16_MAX, s)
1241 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1242                                         INT32_MIN, INT32_MAX, s)
1243 
1244 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1245                                          INT8_MIN, INT8_MAX, s)
1246 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1247                                          INT16_MIN, INT16_MAX, s)
1248 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1249                                          INT32_MIN, INT32_MAX, s)
1250 
1251 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1252 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1253 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1254 
1255 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1256 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1257 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1258 
1259 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1260 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1261 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1262 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1263 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1264 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1265 
1266 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1267 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1268 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1269 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1270 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1271 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1272 
1273 /*
1274  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1275  * and friends wanting a uint32_t* sat and our needing a bool*.
1276  */
1277 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1278     ({                                                                  \
1279         uint32_t su32 = 0;                                              \
1280         typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1281         if (su32) {                                                     \
1282             *satp = true;                                               \
1283         }                                                               \
1284         qrshl_ret;                                                      \
1285     })
1286 
1287 #define DO_SQSHL_OP(N, M, satp) \
1288     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1289 #define DO_UQSHL_OP(N, M, satp) \
1290     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1291 #define DO_SQRSHL_OP(N, M, satp) \
1292     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1293 #define DO_UQRSHL_OP(N, M, satp) \
1294     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1295 #define DO_SUQSHL_OP(N, M, satp) \
1296     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1297 
1298 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1299 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1300 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1301 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1302 
1303 /*
1304  * Multiply add dual returning high half
1305  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1306  * whether to add the rounding constant, and the pointer to the
1307  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1308  * saturate to twice the input size and return the high half; or
1309  * (A * B - C * D) etc for VQDMLSDH.
1310  */
1311 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1312     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1313                                 void *vm)                               \
1314     {                                                                   \
1315         TYPE *d = vd, *n = vn, *m = vm;                                 \
1316         uint16_t mask = mve_element_mask(env);                          \
1317         unsigned e;                                                     \
1318         bool qc = false;                                                \
1319         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1320             bool sat = false;                                           \
1321             if ((e & 1) == XCHG) {                                      \
1322                 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)],                  \
1323                             m[H##ESIZE(e - XCHG)],                      \
1324                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1325                             m[H##ESIZE(e + (1 - XCHG))],                \
1326                             ROUND, &sat);                               \
1327                 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask);         \
1328                 qc |= sat & mask & 1;                                   \
1329             }                                                           \
1330         }                                                               \
1331         if (qc) {                                                       \
1332             env->vfp.qc[0] = qc;                                        \
1333         }                                                               \
1334         mve_advance_vpt(env);                                           \
1335     }
1336 
1337 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1338                             int round, bool *sat)
1339 {
1340     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1341     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1342 }
1343 
1344 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1345                              int round, bool *sat)
1346 {
1347     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1348     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1349 }
1350 
1351 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1352                              int round, bool *sat)
1353 {
1354     int64_t m1 = (int64_t)a * b;
1355     int64_t m2 = (int64_t)c * d;
1356     int64_t r;
1357     /*
1358      * Architecturally we should do the entire add, double, round
1359      * and then check for saturation. We do three saturating adds,
1360      * but we need to be careful about the order. If the first
1361      * m1 + m2 saturates then it's impossible for the *2+rc to
1362      * bring it back into the non-saturated range. However, if
1363      * m1 + m2 is negative then it's possible that doing the doubling
1364      * would take the intermediate result below INT64_MAX and the
1365      * addition of the rounding constant then brings it back in range.
1366      * So we add half the rounding constant before doubling rather
1367      * than adding the rounding constant after the doubling.
1368      */
1369     if (sadd64_overflow(m1, m2, &r) ||
1370         sadd64_overflow(r, (round << 30), &r) ||
1371         sadd64_overflow(r, r, &r)) {
1372         *sat = true;
1373         return r < 0 ? INT32_MAX : INT32_MIN;
1374     }
1375     return r >> 32;
1376 }
1377 
1378 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1379                             int round, bool *sat)
1380 {
1381     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1382     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1383 }
1384 
1385 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1386                              int round, bool *sat)
1387 {
1388     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1389     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1390 }
1391 
1392 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1393                              int round, bool *sat)
1394 {
1395     int64_t m1 = (int64_t)a * b;
1396     int64_t m2 = (int64_t)c * d;
1397     int64_t r;
1398     /* The same ordering issue as in do_vqdmladh_w applies here too */
1399     if (ssub64_overflow(m1, m2, &r) ||
1400         sadd64_overflow(r, (round << 30), &r) ||
1401         sadd64_overflow(r, r, &r)) {
1402         *sat = true;
1403         return r < 0 ? INT32_MAX : INT32_MIN;
1404     }
1405     return r >> 32;
1406 }
1407 
1408 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1409 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1410 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1411 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1412 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1413 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1414 
1415 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1416 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1417 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1418 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1419 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1420 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1421 
1422 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1423 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1424 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1425 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1426 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1427 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1428 
1429 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1430 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1431 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1432 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1433 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1434 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1435 
1436 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1437     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1438                                 uint32_t rm)                            \
1439     {                                                                   \
1440         TYPE *d = vd, *n = vn;                                          \
1441         TYPE m = rm;                                                    \
1442         uint16_t mask = mve_element_mask(env);                          \
1443         unsigned e;                                                     \
1444         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1445             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1446         }                                                               \
1447         mve_advance_vpt(env);                                           \
1448     }
1449 
1450 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1451     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1452                                 uint32_t rm)                            \
1453     {                                                                   \
1454         TYPE *d = vd, *n = vn;                                          \
1455         TYPE m = rm;                                                    \
1456         uint16_t mask = mve_element_mask(env);                          \
1457         unsigned e;                                                     \
1458         bool qc = false;                                                \
1459         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1460             bool sat = false;                                           \
1461             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1462                       mask);                                            \
1463             qc |= sat & mask & 1;                                       \
1464         }                                                               \
1465         if (qc) {                                                       \
1466             env->vfp.qc[0] = qc;                                        \
1467         }                                                               \
1468         mve_advance_vpt(env);                                           \
1469     }
1470 
1471 /* "accumulating" version where FN takes d as well as n and m */
1472 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1473     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1474                                 uint32_t rm)                            \
1475     {                                                                   \
1476         TYPE *d = vd, *n = vn;                                          \
1477         TYPE m = rm;                                                    \
1478         uint16_t mask = mve_element_mask(env);                          \
1479         unsigned e;                                                     \
1480         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1481             mergemask(&d[H##ESIZE(e)],                                  \
1482                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1483         }                                                               \
1484         mve_advance_vpt(env);                                           \
1485     }
1486 
1487 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1488     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1489                                 uint32_t rm)                            \
1490     {                                                                   \
1491         TYPE *d = vd, *n = vn;                                          \
1492         TYPE m = rm;                                                    \
1493         uint16_t mask = mve_element_mask(env);                          \
1494         unsigned e;                                                     \
1495         bool qc = false;                                                \
1496         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1497             bool sat = false;                                           \
1498             mergemask(&d[H##ESIZE(e)],                                  \
1499                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1500                       mask);                                            \
1501             qc |= sat & mask & 1;                                       \
1502         }                                                               \
1503         if (qc) {                                                       \
1504             env->vfp.qc[0] = qc;                                        \
1505         }                                                               \
1506         mve_advance_vpt(env);                                           \
1507     }
1508 
1509 /* provide unsigned 2-op scalar helpers for all sizes */
1510 #define DO_2OP_SCALAR_U(OP, FN)                 \
1511     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1512     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1513     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1514 #define DO_2OP_SCALAR_S(OP, FN)                 \
1515     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1516     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1517     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1518 
1519 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1520     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1521     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1522     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1523 
1524 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1525 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1526 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1527 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1528 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1529 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1530 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1531 
1532 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1533 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1534 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1535 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1536 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1537 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1538 
1539 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1540 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1541 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1542 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1543 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1544 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1545 
1546 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1547 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1548 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1549 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1550 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1551 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1552 
1553 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1554 {
1555     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1556     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1557 }
1558 
1559 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1560                            int round, bool *sat)
1561 {
1562     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1563     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1564 }
1565 
1566 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1567                             int round, bool *sat)
1568 {
1569     /*
1570      * Architecturally we should do the entire add, double, round
1571      * and then check for saturation. We do three saturating adds,
1572      * but we need to be careful about the order. If the first
1573      * m1 + m2 saturates then it's impossible for the *2+rc to
1574      * bring it back into the non-saturated range. However, if
1575      * m1 + m2 is negative then it's possible that doing the doubling
1576      * would take the intermediate result below INT64_MAX and the
1577      * addition of the rounding constant then brings it back in range.
1578      * So we add half the rounding constant and half the "c << esize"
1579      * before doubling rather than adding the rounding constant after
1580      * the doubling.
1581      */
1582     int64_t m1 = (int64_t)a * b;
1583     int64_t m2 = (int64_t)c << 31;
1584     int64_t r;
1585     if (sadd64_overflow(m1, m2, &r) ||
1586         sadd64_overflow(r, (round << 30), &r) ||
1587         sadd64_overflow(r, r, &r)) {
1588         *sat = true;
1589         return r < 0 ? INT32_MAX : INT32_MIN;
1590     }
1591     return r >> 32;
1592 }
1593 
1594 /*
1595  * The *MLAH insns are vector * scalar + vector;
1596  * the *MLASH insns are vector * vector + scalar
1597  */
1598 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1599 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1600 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1601 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1602 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1603 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1604 
1605 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1606 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1607 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1608 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1609 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1610 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1611 
1612 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1613 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1614 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1615 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1616 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1617 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1618 
1619 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1620 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1621 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1622 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1623 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1624 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1625 
1626 /* Vector by scalar plus vector */
1627 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1628 
1629 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1630 
1631 /* Vector by vector plus scalar */
1632 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1633 
1634 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1635 
1636 /*
1637  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1638  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1639  * SATMASK specifies which bits of the predicate mask matter for determining
1640  * whether to propagate a saturation indication into FPSCR.QC -- for
1641  * the 16x16->32 case we must check only the bit corresponding to the T or B
1642  * half that we used, but for the 32x32->64 case we propagate if the mask
1643  * bit is set for either half.
1644  */
1645 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1646     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1647                                 uint32_t rm)                            \
1648     {                                                                   \
1649         LTYPE *d = vd;                                                  \
1650         TYPE *n = vn;                                                   \
1651         TYPE m = rm;                                                    \
1652         uint16_t mask = mve_element_mask(env);                          \
1653         unsigned le;                                                    \
1654         bool qc = false;                                                \
1655         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1656             bool sat = false;                                           \
1657             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1658             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1659             qc |= sat && (mask & SATMASK);                              \
1660         }                                                               \
1661         if (qc) {                                                       \
1662             env->vfp.qc[0] = qc;                                        \
1663         }                                                               \
1664         mve_advance_vpt(env);                                           \
1665     }
1666 
1667 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1668 {
1669     int64_t r = ((int64_t)n * m) * 2;
1670     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1671 }
1672 
1673 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1674 {
1675     /* The multiply can't overflow, but the doubling might */
1676     int64_t r = (int64_t)n * m;
1677     if (r > INT64_MAX / 2) {
1678         *sat = true;
1679         return INT64_MAX;
1680     } else if (r < INT64_MIN / 2) {
1681         *sat = true;
1682         return INT64_MIN;
1683     } else {
1684         return r * 2;
1685     }
1686 }
1687 
1688 #define SATMASK16B 1
1689 #define SATMASK16T (1 << 2)
1690 #define SATMASK32 ((1 << 4) | 1)
1691 
1692 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1693                     do_qdmullh, SATMASK16B)
1694 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1695                     do_qdmullw, SATMASK32)
1696 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1697                     do_qdmullh, SATMASK16T)
1698 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1699                     do_qdmullw, SATMASK32)
1700 
1701 /*
1702  * Long saturating ops
1703  */
1704 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1705     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1706                                 void *vm)                               \
1707     {                                                                   \
1708         LTYPE *d = vd;                                                  \
1709         TYPE *n = vn, *m = vm;                                          \
1710         uint16_t mask = mve_element_mask(env);                          \
1711         unsigned le;                                                    \
1712         bool qc = false;                                                \
1713         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1714             bool sat = false;                                           \
1715             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1716             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1717             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1718             qc |= sat && (mask & SATMASK);                              \
1719         }                                                               \
1720         if (qc) {                                                       \
1721             env->vfp.qc[0] = qc;                                        \
1722         }                                                               \
1723         mve_advance_vpt(env);                                           \
1724     }
1725 
1726 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1727 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1728 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1729 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1730 
1731 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1732 {
1733     m &= 0xff;
1734     if (m == 0) {
1735         return 0;
1736     }
1737     n = revbit8(n);
1738     if (m < 8) {
1739         n >>= 8 - m;
1740     }
1741     return n;
1742 }
1743 
1744 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1745 {
1746     m &= 0xff;
1747     if (m == 0) {
1748         return 0;
1749     }
1750     n = revbit16(n);
1751     if (m < 16) {
1752         n >>= 16 - m;
1753     }
1754     return n;
1755 }
1756 
1757 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1758 {
1759     m &= 0xff;
1760     if (m == 0) {
1761         return 0;
1762     }
1763     n = revbit32(n);
1764     if (m < 32) {
1765         n >>= 32 - m;
1766     }
1767     return n;
1768 }
1769 
1770 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1771 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1772 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1773 
1774 /*
1775  * Multiply add long dual accumulate ops.
1776  */
1777 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1778     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1779                                     void *vm, uint64_t a)               \
1780     {                                                                   \
1781         uint16_t mask = mve_element_mask(env);                          \
1782         unsigned e;                                                     \
1783         TYPE *n = vn, *m = vm;                                          \
1784         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1785             if (mask & 1) {                                             \
1786                 if (e & 1) {                                            \
1787                     a ODDACC                                            \
1788                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1789                 } else {                                                \
1790                     a EVENACC                                           \
1791                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1792                 }                                                       \
1793             }                                                           \
1794         }                                                               \
1795         mve_advance_vpt(env);                                           \
1796         return a;                                                       \
1797     }
1798 
1799 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1800 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1801 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1802 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1803 
1804 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1805 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1806 
1807 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1808 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1809 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1810 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1811 
1812 /*
1813  * Multiply add dual accumulate ops
1814  */
1815 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1816     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1817                                     void *vm, uint32_t a)               \
1818     {                                                                   \
1819         uint16_t mask = mve_element_mask(env);                          \
1820         unsigned e;                                                     \
1821         TYPE *n = vn, *m = vm;                                          \
1822         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1823             if (mask & 1) {                                             \
1824                 if (e & 1) {                                            \
1825                     a ODDACC                                            \
1826                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1827                 } else {                                                \
1828                     a EVENACC                                           \
1829                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1830                 }                                                       \
1831             }                                                           \
1832         }                                                               \
1833         mve_advance_vpt(env);                                           \
1834         return a;                                                       \
1835     }
1836 
1837 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1838     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1839     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1840     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1841 
1842 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1843     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1844     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1845     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1846 
1847 DO_DAV_S(vmladavs, false, +=, +=)
1848 DO_DAV_U(vmladavu, false, +=, +=)
1849 DO_DAV_S(vmlsdav, false, +=, -=)
1850 DO_DAV_S(vmladavsx, true, +=, +=)
1851 DO_DAV_S(vmlsdavx, true, +=, -=)
1852 
1853 /*
1854  * Rounding multiply add long dual accumulate high. In the pseudocode
1855  * this is implemented with a 72-bit internal accumulator value of which
1856  * the top 64 bits are returned. We optimize this to avoid having to
1857  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1858  * is squashed back into 64-bits after each beat.
1859  */
1860 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1861     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1862                                     void *vm, uint64_t a)               \
1863     {                                                                   \
1864         uint16_t mask = mve_element_mask(env);                          \
1865         unsigned e;                                                     \
1866         TYPE *n = vn, *m = vm;                                          \
1867         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1868             if (mask & 1) {                                             \
1869                 LTYPE mul;                                              \
1870                 if (e & 1) {                                            \
1871                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1872                     if (SUB) {                                          \
1873                         mul = -mul;                                     \
1874                     }                                                   \
1875                 } else {                                                \
1876                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1877                 }                                                       \
1878                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1879                 a += mul;                                               \
1880             }                                                           \
1881         }                                                               \
1882         mve_advance_vpt(env);                                           \
1883         return a;                                                       \
1884     }
1885 
1886 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1887 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1888 
1889 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1890 
1891 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1892 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1893 
1894 /* Vector add across vector */
1895 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1896     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1897                                     uint32_t ra)                \
1898     {                                                           \
1899         uint16_t mask = mve_element_mask(env);                  \
1900         unsigned e;                                             \
1901         TYPE *m = vm;                                           \
1902         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1903             if (mask & 1) {                                     \
1904                 ra += m[H##ESIZE(e)];                           \
1905             }                                                   \
1906         }                                                       \
1907         mve_advance_vpt(env);                                   \
1908         return ra;                                              \
1909     }                                                           \
1910 
1911 DO_VADDV(vaddvsb, 1, int8_t)
1912 DO_VADDV(vaddvsh, 2, int16_t)
1913 DO_VADDV(vaddvsw, 4, int32_t)
1914 DO_VADDV(vaddvub, 1, uint8_t)
1915 DO_VADDV(vaddvuh, 2, uint16_t)
1916 DO_VADDV(vaddvuw, 4, uint32_t)
1917 
1918 /*
1919  * Vector max/min across vector. Unlike VADDV, we must
1920  * read ra as the element size, not its full width.
1921  * We work with int64_t internally for simplicity.
1922  */
1923 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1924     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1925                                     uint32_t ra_in)             \
1926     {                                                           \
1927         uint16_t mask = mve_element_mask(env);                  \
1928         unsigned e;                                             \
1929         TYPE *m = vm;                                           \
1930         int64_t ra = (RATYPE)ra_in;                             \
1931         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1932             if (mask & 1) {                                     \
1933                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1934             }                                                   \
1935         }                                                       \
1936         mve_advance_vpt(env);                                   \
1937         return ra;                                              \
1938     }                                                           \
1939 
1940 #define DO_VMAXMINV_U(INSN, FN)                         \
1941     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1942     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1943     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1944 #define DO_VMAXMINV_S(INSN, FN)                         \
1945     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1946     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1947     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1948 
1949 /*
1950  * Helpers for max and min of absolute values across vector:
1951  * note that we only take the absolute value of 'm', not 'n'
1952  */
1953 static int64_t do_maxa(int64_t n, int64_t m)
1954 {
1955     if (m < 0) {
1956         m = -m;
1957     }
1958     return MAX(n, m);
1959 }
1960 
1961 static int64_t do_mina(int64_t n, int64_t m)
1962 {
1963     if (m < 0) {
1964         m = -m;
1965     }
1966     return MIN(n, m);
1967 }
1968 
1969 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1970 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1971 DO_VMAXMINV_S(vminvs, DO_MIN)
1972 DO_VMAXMINV_U(vminvu, DO_MIN)
1973 /*
1974  * VMAXAV, VMINAV treat the general purpose input as unsigned
1975  * and the vector elements as signed.
1976  */
1977 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1978 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1979 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1980 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1981 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1982 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1983 
1984 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1985     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1986                                     void *vm, uint32_t ra)      \
1987     {                                                           \
1988         uint16_t mask = mve_element_mask(env);                  \
1989         unsigned e;                                             \
1990         TYPE *m = vm, *n = vn;                                  \
1991         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1992             if (mask & 1) {                                     \
1993                 int64_t n0 = n[H##ESIZE(e)];                    \
1994                 int64_t m0 = m[H##ESIZE(e)];                    \
1995                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1996                 ra += r;                                        \
1997             }                                                   \
1998         }                                                       \
1999         mve_advance_vpt(env);                                   \
2000         return ra;                                              \
2001     }
2002 
2003 DO_VABAV(vabavsb, 1, int8_t)
2004 DO_VABAV(vabavsh, 2, int16_t)
2005 DO_VABAV(vabavsw, 4, int32_t)
2006 DO_VABAV(vabavub, 1, uint8_t)
2007 DO_VABAV(vabavuh, 2, uint16_t)
2008 DO_VABAV(vabavuw, 4, uint32_t)
2009 
2010 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
2011     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
2012                                     uint64_t ra)                \
2013     {                                                           \
2014         uint16_t mask = mve_element_mask(env);                  \
2015         unsigned e;                                             \
2016         TYPE *m = vm;                                           \
2017         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
2018             if (mask & 1) {                                     \
2019                 ra += (LTYPE)m[H4(e)];                          \
2020             }                                                   \
2021         }                                                       \
2022         mve_advance_vpt(env);                                   \
2023         return ra;                                              \
2024     }                                                           \
2025 
2026 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2027 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2028 
2029 /* Shifts by immediate */
2030 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2031     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2032                                 void *vm, uint32_t shift)       \
2033     {                                                           \
2034         TYPE *d = vd, *m = vm;                                  \
2035         uint16_t mask = mve_element_mask(env);                  \
2036         unsigned e;                                             \
2037         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2038             mergemask(&d[H##ESIZE(e)],                          \
2039                       FN(m[H##ESIZE(e)], shift), mask);         \
2040         }                                                       \
2041         mve_advance_vpt(env);                                   \
2042     }
2043 
2044 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2045     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2046                                 void *vm, uint32_t shift)       \
2047     {                                                           \
2048         TYPE *d = vd, *m = vm;                                  \
2049         uint16_t mask = mve_element_mask(env);                  \
2050         unsigned e;                                             \
2051         bool qc = false;                                        \
2052         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2053             bool sat = false;                                   \
2054             mergemask(&d[H##ESIZE(e)],                          \
2055                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2056             qc |= sat & mask & 1;                               \
2057         }                                                       \
2058         if (qc) {                                               \
2059             env->vfp.qc[0] = qc;                                \
2060         }                                                       \
2061         mve_advance_vpt(env);                                   \
2062     }
2063 
2064 /* provide unsigned 2-op shift helpers for all sizes */
2065 #define DO_2SHIFT_U(OP, FN)                     \
2066     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2067     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2068     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2069 #define DO_2SHIFT_S(OP, FN)                     \
2070     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2071     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2072     DO_2SHIFT(OP##w, 4, int32_t, FN)
2073 
2074 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2075     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2076     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2077     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2078 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2079     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2080     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2081     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2082 
2083 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2084 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2085 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2086 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2087 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2088 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2089 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2090 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2091 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2092 
2093 /* Shift-and-insert; we always work with 64 bits at a time */
2094 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2095     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2096                                 void *vm, uint32_t shift)               \
2097     {                                                                   \
2098         uint64_t *d = vd, *m = vm;                                      \
2099         uint16_t mask;                                                  \
2100         uint64_t shiftmask;                                             \
2101         unsigned e;                                                     \
2102         if (shift == ESIZE * 8) {                                       \
2103             /*                                                          \
2104              * Only VSRI can shift by <dt>; it should mean "don't       \
2105              * update the destination". The generic logic can't handle  \
2106              * this because it would try to shift by an out-of-range    \
2107              * amount, so special case it here.                         \
2108              */                                                         \
2109             goto done;                                                  \
2110         }                                                               \
2111         assert(shift < ESIZE * 8);                                      \
2112         mask = mve_element_mask(env);                                   \
2113         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2114         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2115         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2116             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2117                 (d[H8(e)] & ~shiftmask);                                \
2118             mergemask(&d[H8(e)], r, mask);                              \
2119         }                                                               \
2120 done:                                                                   \
2121         mve_advance_vpt(env);                                           \
2122     }
2123 
2124 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2125 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2126 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2127 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2128 
2129 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2130 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2131 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2132 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2133 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2134 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2135 
2136 /*
2137  * Long shifts taking half-sized inputs from top or bottom of the input
2138  * vector and producing a double-width result. ESIZE, TYPE are for
2139  * the input, and LESIZE, LTYPE for the output.
2140  * Unlike the normal shift helpers, we do not handle negative shift counts,
2141  * because the long shift is strictly left-only.
2142  */
2143 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2144     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2145                                 void *vm, uint32_t shift)               \
2146     {                                                                   \
2147         LTYPE *d = vd;                                                  \
2148         TYPE *m = vm;                                                   \
2149         uint16_t mask = mve_element_mask(env);                          \
2150         unsigned le;                                                    \
2151         assert(shift <= 16);                                            \
2152         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2153             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2154             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2155         }                                                               \
2156         mve_advance_vpt(env);                                           \
2157     }
2158 
2159 #define DO_VSHLL_ALL(OP, TOP)                                \
2160     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2161     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2162     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2163     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2164 
2165 DO_VSHLL_ALL(vshllb, false)
2166 DO_VSHLL_ALL(vshllt, true)
2167 
2168 /*
2169  * Narrowing right shifts, taking a double sized input, shifting it
2170  * and putting the result in either the top or bottom half of the output.
2171  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2172  */
2173 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2174     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2175                                 void *vm, uint32_t shift)       \
2176     {                                                           \
2177         LTYPE *m = vm;                                          \
2178         TYPE *d = vd;                                           \
2179         uint16_t mask = mve_element_mask(env);                  \
2180         unsigned le;                                            \
2181         mask >>= ESIZE * TOP;                                   \
2182         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2183             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2184             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2185         }                                                       \
2186         mve_advance_vpt(env);                                   \
2187     }
2188 
2189 #define DO_VSHRN_ALL(OP, FN)                                    \
2190     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2191     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2192     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2193     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2194 
2195 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2196 {
2197     if (likely(sh < 64)) {
2198         return (x >> sh) + ((x >> (sh - 1)) & 1);
2199     } else if (sh == 64) {
2200         return x >> 63;
2201     } else {
2202         return 0;
2203     }
2204 }
2205 
2206 static inline int64_t do_srshr(int64_t x, unsigned sh)
2207 {
2208     if (likely(sh < 64)) {
2209         return (x >> sh) + ((x >> (sh - 1)) & 1);
2210     } else {
2211         /* Rounding the sign bit always produces 0. */
2212         return 0;
2213     }
2214 }
2215 
2216 DO_VSHRN_ALL(vshrn, DO_SHR)
2217 DO_VSHRN_ALL(vrshrn, do_urshr)
2218 
2219 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2220                                  bool *satp)
2221 {
2222     if (val > max) {
2223         *satp = true;
2224         return max;
2225     } else if (val < min) {
2226         *satp = true;
2227         return min;
2228     } else {
2229         return val;
2230     }
2231 }
2232 
2233 /* Saturating narrowing right shifts */
2234 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2235     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2236                                 void *vm, uint32_t shift)       \
2237     {                                                           \
2238         LTYPE *m = vm;                                          \
2239         TYPE *d = vd;                                           \
2240         uint16_t mask = mve_element_mask(env);                  \
2241         bool qc = false;                                        \
2242         unsigned le;                                            \
2243         mask >>= ESIZE * TOP;                                   \
2244         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2245             bool sat = false;                                   \
2246             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2247             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2248             qc |= sat & mask & 1;                               \
2249         }                                                       \
2250         if (qc) {                                               \
2251             env->vfp.qc[0] = qc;                                \
2252         }                                                       \
2253         mve_advance_vpt(env);                                   \
2254     }
2255 
2256 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2257     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2258     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2259 
2260 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2261     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2262     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2263 
2264 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2265     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2266     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2267 
2268 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2269     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2270     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2271 
2272 #define DO_SHRN_SB(N, M, SATP)                                  \
2273     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2274 #define DO_SHRN_UB(N, M, SATP)                                  \
2275     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2276 #define DO_SHRUN_B(N, M, SATP)                                  \
2277     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2278 
2279 #define DO_SHRN_SH(N, M, SATP)                                  \
2280     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2281 #define DO_SHRN_UH(N, M, SATP)                                  \
2282     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2283 #define DO_SHRUN_H(N, M, SATP)                                  \
2284     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2285 
2286 #define DO_RSHRN_SB(N, M, SATP)                                 \
2287     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2288 #define DO_RSHRN_UB(N, M, SATP)                                 \
2289     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2290 #define DO_RSHRUN_B(N, M, SATP)                                 \
2291     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2292 
2293 #define DO_RSHRN_SH(N, M, SATP)                                 \
2294     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2295 #define DO_RSHRN_UH(N, M, SATP)                                 \
2296     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2297 #define DO_RSHRUN_H(N, M, SATP)                                 \
2298     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2299 
2300 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2301 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2302 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2303 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2304 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2305 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2306 
2307 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2308 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2309 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2310 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2311 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2312 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2313 
2314 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2315     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2316     {                                                                   \
2317         LTYPE *m = vm;                                                  \
2318         TYPE *d = vd;                                                   \
2319         uint16_t mask = mve_element_mask(env);                          \
2320         unsigned le;                                                    \
2321         mask >>= ESIZE * TOP;                                           \
2322         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2323             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2324                       m[H##LESIZE(le)], mask);                          \
2325         }                                                               \
2326         mve_advance_vpt(env);                                           \
2327     }
2328 
2329 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2330 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2331 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2332 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2333 
2334 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2335     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2336     {                                                                   \
2337         LTYPE *m = vm;                                                  \
2338         TYPE *d = vd;                                                   \
2339         uint16_t mask = mve_element_mask(env);                          \
2340         bool qc = false;                                                \
2341         unsigned le;                                                    \
2342         mask >>= ESIZE * TOP;                                           \
2343         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2344             bool sat = false;                                           \
2345             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2346             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2347             qc |= sat & mask & 1;                                       \
2348         }                                                               \
2349         if (qc) {                                                       \
2350             env->vfp.qc[0] = qc;                                        \
2351         }                                                               \
2352         mve_advance_vpt(env);                                           \
2353     }
2354 
2355 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2356     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2357     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2358 
2359 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2360     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2361     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2362 
2363 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2364     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2365     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2366 
2367 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2368     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2369     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2370 
2371 #define DO_VQMOVN_SB(N, SATP)                           \
2372     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2373 #define DO_VQMOVN_UB(N, SATP)                           \
2374     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2375 #define DO_VQMOVUN_B(N, SATP)                           \
2376     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2377 
2378 #define DO_VQMOVN_SH(N, SATP)                           \
2379     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2380 #define DO_VQMOVN_UH(N, SATP)                           \
2381     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2382 #define DO_VQMOVUN_H(N, SATP)                           \
2383     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2384 
2385 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2386 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2387 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2388 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2389 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2390 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2391 
2392 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2393                            uint32_t shift)
2394 {
2395     uint32_t *d = vd;
2396     uint16_t mask = mve_element_mask(env);
2397     unsigned e;
2398     uint32_t r;
2399 
2400     /*
2401      * For each 32-bit element, we shift it left, bringing in the
2402      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2403      * the top become the new rdm, if the predicate mask permits.
2404      * The final rdm value is returned to update the register.
2405      * shift == 0 here means "shift by 32 bits".
2406      */
2407     if (shift == 0) {
2408         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2409             r = rdm;
2410             if (mask & 1) {
2411                 rdm = d[H4(e)];
2412             }
2413             mergemask(&d[H4(e)], r, mask);
2414         }
2415     } else {
2416         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2417 
2418         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2419             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2420             if (mask & 1) {
2421                 rdm = d[H4(e)] >> (32 - shift);
2422             }
2423             mergemask(&d[H4(e)], r, mask);
2424         }
2425     }
2426     mve_advance_vpt(env);
2427     return rdm;
2428 }
2429 
2430 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2431 {
2432     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2433 }
2434 
2435 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2436 {
2437     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2438 }
2439 
2440 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2441 {
2442     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2443 }
2444 
2445 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2446 {
2447     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2448 }
2449 
2450 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2451 {
2452     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2453 }
2454 
2455 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2456 {
2457     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2458 }
2459 
2460 /* Operate on 64-bit values, but saturate at 48 bits */
2461 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2462                                     bool round, uint32_t *sat)
2463 {
2464     int64_t val, extval;
2465 
2466     if (shift <= -48) {
2467         /* Rounding the sign bit always produces 0. */
2468         if (round) {
2469             return 0;
2470         }
2471         return src >> 63;
2472     } else if (shift < 0) {
2473         if (round) {
2474             src >>= -shift - 1;
2475             val = (src >> 1) + (src & 1);
2476         } else {
2477             val = src >> -shift;
2478         }
2479         extval = sextract64(val, 0, 48);
2480         if (!sat || val == extval) {
2481             return extval;
2482         }
2483     } else if (shift < 48) {
2484         extval = sextract64(src << shift, 0, 48);
2485         if (!sat || src == (extval >> shift)) {
2486             return extval;
2487         }
2488     } else if (!sat || src == 0) {
2489         return 0;
2490     }
2491 
2492     *sat = 1;
2493     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2494 }
2495 
2496 /* Operate on 64-bit values, but saturate at 48 bits */
2497 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2498                                      bool round, uint32_t *sat)
2499 {
2500     uint64_t val, extval;
2501 
2502     if (shift <= -(48 + round)) {
2503         return 0;
2504     } else if (shift < 0) {
2505         if (round) {
2506             val = src >> (-shift - 1);
2507             val = (val >> 1) + (val & 1);
2508         } else {
2509             val = src >> -shift;
2510         }
2511         extval = extract64(val, 0, 48);
2512         if (!sat || val == extval) {
2513             return extval;
2514         }
2515     } else if (shift < 48) {
2516         extval = extract64(src << shift, 0, 48);
2517         if (!sat || src == (extval >> shift)) {
2518             return extval;
2519         }
2520     } else if (!sat || src == 0) {
2521         return 0;
2522     }
2523 
2524     *sat = 1;
2525     return MAKE_64BIT_MASK(0, 48);
2526 }
2527 
2528 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2529 {
2530     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2531 }
2532 
2533 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2534 {
2535     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2536 }
2537 
2538 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2539 {
2540     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2541 }
2542 
2543 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2544 {
2545     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2546 }
2547 
2548 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2549 {
2550     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2551 }
2552 
2553 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2554 {
2555     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2556 }
2557 
2558 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2559     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2560                            uint32_t offset, uint32_t imm)       \
2561     {                                                           \
2562         TYPE *d = vd;                                           \
2563         uint16_t mask = mve_element_mask(env);                  \
2564         unsigned e;                                             \
2565         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2566             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2567             offset = FN(offset, imm);                           \
2568         }                                                       \
2569         mve_advance_vpt(env);                                   \
2570         return offset;                                          \
2571     }
2572 
2573 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2574     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2575                               uint32_t offset, uint32_t wrap,   \
2576                               uint32_t imm)                     \
2577     {                                                           \
2578         TYPE *d = vd;                                           \
2579         uint16_t mask = mve_element_mask(env);                  \
2580         unsigned e;                                             \
2581         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2582             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2583             offset = FN(offset, wrap, imm);                     \
2584         }                                                       \
2585         mve_advance_vpt(env);                                   \
2586         return offset;                                          \
2587     }
2588 
2589 #define DO_VIDUP_ALL(OP, FN)                    \
2590     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2591     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2592     DO_VIDUP(OP##w, 4, int32_t, FN)
2593 
2594 #define DO_VIWDUP_ALL(OP, FN)                   \
2595     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2596     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2597     DO_VIWDUP(OP##w, 4, int32_t, FN)
2598 
2599 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2600 {
2601     offset += imm;
2602     if (offset == wrap) {
2603         offset = 0;
2604     }
2605     return offset;
2606 }
2607 
2608 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2609 {
2610     if (offset == 0) {
2611         offset = wrap;
2612     }
2613     offset -= imm;
2614     return offset;
2615 }
2616 
2617 DO_VIDUP_ALL(vidup, DO_ADD)
2618 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2619 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2620 
2621 /*
2622  * Vector comparison.
2623  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2624  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2625  * P0 bits otherwise are updated with the results of the comparisons.
2626  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2627  */
2628 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2629     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2630     {                                                                   \
2631         TYPE *n = vn, *m = vm;                                          \
2632         uint16_t mask = mve_element_mask(env);                          \
2633         uint16_t eci_mask = mve_eci_mask(env);                          \
2634         uint16_t beatpred = 0;                                          \
2635         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2636         unsigned e;                                                     \
2637         for (e = 0; e < 16 / ESIZE; e++) {                              \
2638             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2639             /* Comparison sets 0/1 bits for each byte in the element */ \
2640             beatpred |= r * emask;                                      \
2641             emask <<= ESIZE;                                            \
2642         }                                                               \
2643         beatpred &= mask;                                               \
2644         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2645             (beatpred & eci_mask);                                      \
2646         mve_advance_vpt(env);                                           \
2647     }
2648 
2649 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2650     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2651                                 uint32_t rm)                            \
2652     {                                                                   \
2653         TYPE *n = vn;                                                   \
2654         uint16_t mask = mve_element_mask(env);                          \
2655         uint16_t eci_mask = mve_eci_mask(env);                          \
2656         uint16_t beatpred = 0;                                          \
2657         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2658         unsigned e;                                                     \
2659         for (e = 0; e < 16 / ESIZE; e++) {                              \
2660             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2661             /* Comparison sets 0/1 bits for each byte in the element */ \
2662             beatpred |= r * emask;                                      \
2663             emask <<= ESIZE;                                            \
2664         }                                                               \
2665         beatpred &= mask;                                               \
2666         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2667             (beatpred & eci_mask);                                      \
2668         mve_advance_vpt(env);                                           \
2669     }
2670 
2671 #define DO_VCMP_S(OP, FN)                               \
2672     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2673     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2674     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2675     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2676     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2677     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2678 
2679 #define DO_VCMP_U(OP, FN)                               \
2680     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2681     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2682     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2683     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2684     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2685     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2686 
2687 #define DO_EQ(N, M) ((N) == (M))
2688 #define DO_NE(N, M) ((N) != (M))
2689 #define DO_EQ(N, M) ((N) == (M))
2690 #define DO_EQ(N, M) ((N) == (M))
2691 #define DO_GE(N, M) ((N) >= (M))
2692 #define DO_LT(N, M) ((N) < (M))
2693 #define DO_GT(N, M) ((N) > (M))
2694 #define DO_LE(N, M) ((N) <= (M))
2695 
2696 DO_VCMP_U(vcmpeq, DO_EQ)
2697 DO_VCMP_U(vcmpne, DO_NE)
2698 DO_VCMP_U(vcmpcs, DO_GE)
2699 DO_VCMP_U(vcmphi, DO_GT)
2700 DO_VCMP_S(vcmpge, DO_GE)
2701 DO_VCMP_S(vcmplt, DO_LT)
2702 DO_VCMP_S(vcmpgt, DO_GT)
2703 DO_VCMP_S(vcmple, DO_LE)
2704 
2705 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2706 {
2707     /*
2708      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2709      * but note that whether bytes are written to Qd is still subject
2710      * to (all forms of) predication in the usual way.
2711      */
2712     uint64_t *d = vd, *n = vn, *m = vm;
2713     uint16_t mask = mve_element_mask(env);
2714     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2715     unsigned e;
2716     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2717         uint64_t r = m[H8(e)];
2718         mergemask(&r, n[H8(e)], p0);
2719         mergemask(&d[H8(e)], r, mask);
2720     }
2721     mve_advance_vpt(env);
2722 }
2723 
2724 void HELPER(mve_vpnot)(CPUARMState *env)
2725 {
2726     /*
2727      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2728      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2729      * P0 bits otherwise are inverted.
2730      * (This is the same logic as VCMP.)
2731      * This insn is itself subject to predication and to beat-wise execution,
2732      * and after it executes VPT state advances in the usual way.
2733      */
2734     uint16_t mask = mve_element_mask(env);
2735     uint16_t eci_mask = mve_eci_mask(env);
2736     uint16_t beatpred = ~env->v7m.vpr & mask;
2737     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2738     mve_advance_vpt(env);
2739 }
2740 
2741 /*
2742  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2743  * otherwise set according to value of Rn. The calculation of
2744  * newmask here works in the same way as the calculation of the
2745  * ltpmask in mve_element_mask(), but we have pre-calculated
2746  * the masklen in the generated code.
2747  */
2748 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2749 {
2750     uint16_t mask = mve_element_mask(env);
2751     uint16_t eci_mask = mve_eci_mask(env);
2752     uint16_t newmask;
2753 
2754     assert(masklen <= 16);
2755     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2756     newmask &= mask;
2757     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2758     mve_advance_vpt(env);
2759 }
2760 
2761 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2762     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2763     {                                                                   \
2764         TYPE *d = vd, *m = vm;                                          \
2765         uint16_t mask = mve_element_mask(env);                          \
2766         unsigned e;                                                     \
2767         bool qc = false;                                                \
2768         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2769             bool sat = false;                                           \
2770             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2771             qc |= sat & mask & 1;                                       \
2772         }                                                               \
2773         if (qc) {                                                       \
2774             env->vfp.qc[0] = qc;                                        \
2775         }                                                               \
2776         mve_advance_vpt(env);                                           \
2777     }
2778 
2779 #define DO_VQABS_B(N, SATP) \
2780     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2781 #define DO_VQABS_H(N, SATP) \
2782     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2783 #define DO_VQABS_W(N, SATP) \
2784     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2785 
2786 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2787 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2788 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2789 
2790 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2791 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2792 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2793 
2794 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2795 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2796 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2797 
2798 /*
2799  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2800  * absolute value; we then do an unsigned comparison.
2801  */
2802 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2803     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2804     {                                                                   \
2805         UTYPE *d = vd;                                                  \
2806         STYPE *m = vm;                                                  \
2807         uint16_t mask = mve_element_mask(env);                          \
2808         unsigned e;                                                     \
2809         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2810             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2811             r = FN(d[H##ESIZE(e)], r);                                  \
2812             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2813         }                                                               \
2814         mve_advance_vpt(env);                                           \
2815     }
2816 
2817 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2818 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2819 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2820 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2821 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2822 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2823 
2824 /*
2825  * 2-operand floating point. Note that if an element is partially
2826  * predicated we must do the FP operation to update the non-predicated
2827  * bytes, but we must be careful to avoid updating the FP exception
2828  * state unless byte 0 of the element was unpredicated.
2829  */
2830 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2831     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2832                                 void *vd, void *vn, void *vm)           \
2833     {                                                                   \
2834         TYPE *d = vd, *n = vn, *m = vm;                                 \
2835         TYPE r;                                                         \
2836         uint16_t mask = mve_element_mask(env);                          \
2837         unsigned e;                                                     \
2838         float_status *fpst;                                             \
2839         float_status scratch_fpst;                                      \
2840         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2841             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2842                 continue;                                               \
2843             }                                                           \
2844             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2845             if (!(mask & 1)) {                                          \
2846                 /* We need the result but without updating flags */     \
2847                 scratch_fpst = *fpst;                                   \
2848                 fpst = &scratch_fpst;                                   \
2849             }                                                           \
2850             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2851             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2852         }                                                               \
2853         mve_advance_vpt(env);                                           \
2854     }
2855 
2856 #define DO_2OP_FP_ALL(OP, FN)                  \
2857     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2858     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2859 
2860 DO_2OP_FP_ALL(vfadd, add)
2861 DO_2OP_FP_ALL(vfsub, sub)
2862 DO_2OP_FP_ALL(vfmul, mul)
2863 
2864 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2865 {
2866     return float16_abs(float16_sub(a, b, s));
2867 }
2868 
2869 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2870 {
2871     return float32_abs(float32_sub(a, b, s));
2872 }
2873 
2874 DO_2OP_FP_ALL(vfabd, abd)
2875 DO_2OP_FP_ALL(vmaxnm, maxnum)
2876 DO_2OP_FP_ALL(vminnm, minnum)
2877 
2878 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2879 {
2880     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2881 }
2882 
2883 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2884 {
2885     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2886 }
2887 
2888 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2889 {
2890     return float16_minnum(float16_abs(a), float16_abs(b), s);
2891 }
2892 
2893 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2894 {
2895     return float32_minnum(float32_abs(a), float32_abs(b), s);
2896 }
2897 
2898 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2899 DO_2OP_FP_ALL(vminnma, minnuma)
2900 
2901 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2902     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2903                                 void *vd, void *vn, void *vm)           \
2904     {                                                                   \
2905         TYPE *d = vd, *n = vn, *m = vm;                                 \
2906         TYPE r[16 / ESIZE];                                             \
2907         uint16_t tm, mask = mve_element_mask(env);                      \
2908         unsigned e;                                                     \
2909         float_status *fpst;                                             \
2910         float_status scratch_fpst;                                      \
2911         /* Calculate all results first to avoid overwriting inputs */   \
2912         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2913             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2914                 r[e] = 0;                                               \
2915                 continue;                                               \
2916             }                                                           \
2917             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2918             if (!(tm & 1)) {                                            \
2919                 /* We need the result but without updating flags */     \
2920                 scratch_fpst = *fpst;                                   \
2921                 fpst = &scratch_fpst;                                   \
2922             }                                                           \
2923             if (!(e & 1)) {                                             \
2924                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2925             } else {                                                    \
2926                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2927             }                                                           \
2928         }                                                               \
2929         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2930             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2931         }                                                               \
2932         mve_advance_vpt(env);                                           \
2933     }
2934 
2935 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2936 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2937 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2938 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2939 
2940 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2941     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2942                                 void *vd, void *vn, void *vm)           \
2943     {                                                                   \
2944         TYPE *d = vd, *n = vn, *m = vm;                                 \
2945         TYPE r;                                                         \
2946         uint16_t mask = mve_element_mask(env);                          \
2947         unsigned e;                                                     \
2948         float_status *fpst;                                             \
2949         float_status scratch_fpst;                                      \
2950         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2951             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2952                 continue;                                               \
2953             }                                                           \
2954             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2955             if (!(mask & 1)) {                                          \
2956                 /* We need the result but without updating flags */     \
2957                 scratch_fpst = *fpst;                                   \
2958                 fpst = &scratch_fpst;                                   \
2959             }                                                           \
2960             r = n[H##ESIZE(e)];                                         \
2961             if (CHS) {                                                  \
2962                 r = TYPE##_chs(r);                                      \
2963             }                                                           \
2964             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2965                               0, fpst);                                 \
2966             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2967         }                                                               \
2968         mve_advance_vpt(env);                                           \
2969     }
2970 
2971 DO_VFMA(vfmah, 2, float16, false)
2972 DO_VFMA(vfmas, 4, float32, false)
2973 DO_VFMA(vfmsh, 2, float16, true)
2974 DO_VFMA(vfmss, 4, float32, true)
2975 
2976 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2977     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2978                                 void *vd, void *vn, void *vm)           \
2979     {                                                                   \
2980         TYPE *d = vd, *n = vn, *m = vm;                                 \
2981         TYPE r0, r1, e1, e2, e3, e4;                                    \
2982         uint16_t mask = mve_element_mask(env);                          \
2983         unsigned e;                                                     \
2984         float_status *fpst0, *fpst1;                                    \
2985         float_status scratch_fpst;                                      \
2986         /* We loop through pairs of elements at a time */               \
2987         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2988             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2989                 continue;                                               \
2990             }                                                           \
2991             fpst0 = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2992             fpst1 = fpst0;                                              \
2993             if (!(mask & 1)) {                                          \
2994                 scratch_fpst = *fpst0;                                  \
2995                 fpst0 = &scratch_fpst;                                  \
2996             }                                                           \
2997             if (!(mask & (1 << ESIZE))) {                               \
2998                 scratch_fpst = *fpst1;                                  \
2999                 fpst1 = &scratch_fpst;                                  \
3000             }                                                           \
3001             switch (ROT) {                                              \
3002             case 0:                                                     \
3003                 e1 = m[H##ESIZE(e)];                                    \
3004                 e2 = n[H##ESIZE(e)];                                    \
3005                 e3 = m[H##ESIZE(e + 1)];                                \
3006                 e4 = n[H##ESIZE(e)];                                    \
3007                 break;                                                  \
3008             case 1:                                                     \
3009                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3010                 e2 = n[H##ESIZE(e + 1)];                                \
3011                 e3 = m[H##ESIZE(e)];                                    \
3012                 e4 = n[H##ESIZE(e + 1)];                                \
3013                 break;                                                  \
3014             case 2:                                                     \
3015                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3016                 e2 = n[H##ESIZE(e)];                                    \
3017                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
3018                 e4 = n[H##ESIZE(e)];                                    \
3019                 break;                                                  \
3020             case 3:                                                     \
3021                 e1 = m[H##ESIZE(e + 1)];                                \
3022                 e2 = n[H##ESIZE(e + 1)];                                \
3023                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3024                 e4 = n[H##ESIZE(e + 1)];                                \
3025                 break;                                                  \
3026             default:                                                    \
3027                 g_assert_not_reached();                                 \
3028             }                                                           \
3029             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3030             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3031             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3032             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3033         }                                                               \
3034         mve_advance_vpt(env);                                           \
3035     }
3036 
3037 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3038 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3039 
3040 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3041 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3042 
3043 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3044 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3045 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3046 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3047 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3048 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3049 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3050 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3051 
3052 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3053 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3054 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3055 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3056 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3057 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3058 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3059 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3060 
3061 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3062     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3063                                 void *vd, void *vn, uint32_t rm)        \
3064     {                                                                   \
3065         TYPE *d = vd, *n = vn;                                          \
3066         TYPE r, m = rm;                                                 \
3067         uint16_t mask = mve_element_mask(env);                          \
3068         unsigned e;                                                     \
3069         float_status *fpst;                                             \
3070         float_status scratch_fpst;                                      \
3071         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3072             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3073                 continue;                                               \
3074             }                                                           \
3075             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3076             if (!(mask & 1)) {                                          \
3077                 /* We need the result but without updating flags */     \
3078                 scratch_fpst = *fpst;                                   \
3079                 fpst = &scratch_fpst;                                   \
3080             }                                                           \
3081             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3082             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3083         }                                                               \
3084         mve_advance_vpt(env);                                           \
3085     }
3086 
3087 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3088     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3089     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3090 
3091 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3092 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3093 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3094 
3095 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3096     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3097                                 void *vd, void *vn, uint32_t rm)        \
3098     {                                                                   \
3099         TYPE *d = vd, *n = vn;                                          \
3100         TYPE r, m = rm;                                                 \
3101         uint16_t mask = mve_element_mask(env);                          \
3102         unsigned e;                                                     \
3103         float_status *fpst;                                             \
3104         float_status scratch_fpst;                                      \
3105         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3106             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3107                 continue;                                               \
3108             }                                                           \
3109             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3110             if (!(mask & 1)) {                                          \
3111                 /* We need the result but without updating flags */     \
3112                 scratch_fpst = *fpst;                                   \
3113                 fpst = &scratch_fpst;                                   \
3114             }                                                           \
3115             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3116             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3117         }                                                               \
3118         mve_advance_vpt(env);                                           \
3119     }
3120 
3121 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3122 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3123 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3124 
3125 /* VFMA is vector * scalar + vector */
3126 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3127 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3128 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3129 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3130 
3131 /* Floating point max/min across vector. */
3132 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3133     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3134                                     uint32_t ra_in)             \
3135     {                                                           \
3136         uint16_t mask = mve_element_mask(env);                  \
3137         unsigned e;                                             \
3138         TYPE *m = vm;                                           \
3139         TYPE ra = (TYPE)ra_in;                                  \
3140         float_status *fpst =                                    \
3141             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3142         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3143             if (mask & 1) {                                     \
3144                 TYPE v = m[H##ESIZE(e)];                        \
3145                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3146                     ra = TYPE##_silence_nan(ra, fpst);          \
3147                     float_raise(float_flag_invalid, fpst);      \
3148                 }                                               \
3149                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3150                     v = TYPE##_silence_nan(v, fpst);            \
3151                     float_raise(float_flag_invalid, fpst);      \
3152                 }                                               \
3153                 if (ABS) {                                      \
3154                     v = TYPE##_abs(v);                          \
3155                 }                                               \
3156                 ra = FN(ra, v, fpst);                           \
3157             }                                                   \
3158         }                                                       \
3159         mve_advance_vpt(env);                                   \
3160         return ra;                                              \
3161     }                                                           \
3162 
3163 #define NOP(X) (X)
3164 
3165 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3166 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3167 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3168 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3169 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3170 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3171 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3172 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3173 
3174 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3175 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3176     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3177     {                                                                   \
3178         TYPE *n = vn, *m = vm;                                          \
3179         uint16_t mask = mve_element_mask(env);                          \
3180         uint16_t eci_mask = mve_eci_mask(env);                          \
3181         uint16_t beatpred = 0;                                          \
3182         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3183         unsigned e;                                                     \
3184         float_status *fpst;                                             \
3185         float_status scratch_fpst;                                      \
3186         bool r;                                                         \
3187         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3188             if ((mask & emask) == 0) {                                  \
3189                 continue;                                               \
3190             }                                                           \
3191             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3192             if (!(mask & (1 << (e * ESIZE)))) {                         \
3193                 /* We need the result but without updating flags */     \
3194                 scratch_fpst = *fpst;                                   \
3195                 fpst = &scratch_fpst;                                   \
3196             }                                                           \
3197             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3198             /* Comparison sets 0/1 bits for each byte in the element */ \
3199             beatpred |= r * emask;                                      \
3200         }                                                               \
3201         beatpred &= mask;                                               \
3202         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3203             (beatpred & eci_mask);                                      \
3204         mve_advance_vpt(env);                                           \
3205     }
3206 
3207 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3208     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3209                                 uint32_t rm)                            \
3210     {                                                                   \
3211         TYPE *n = vn;                                                   \
3212         uint16_t mask = mve_element_mask(env);                          \
3213         uint16_t eci_mask = mve_eci_mask(env);                          \
3214         uint16_t beatpred = 0;                                          \
3215         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3216         unsigned e;                                                     \
3217         float_status *fpst;                                             \
3218         float_status scratch_fpst;                                      \
3219         bool r;                                                         \
3220         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3221             if ((mask & emask) == 0) {                                  \
3222                 continue;                                               \
3223             }                                                           \
3224             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3225             if (!(mask & (1 << (e * ESIZE)))) {                         \
3226                 /* We need the result but without updating flags */     \
3227                 scratch_fpst = *fpst;                                   \
3228                 fpst = &scratch_fpst;                                   \
3229             }                                                           \
3230             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3231             /* Comparison sets 0/1 bits for each byte in the element */ \
3232             beatpred |= r * emask;                                      \
3233         }                                                               \
3234         beatpred &= mask;                                               \
3235         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3236             (beatpred & eci_mask);                                      \
3237         mve_advance_vpt(env);                                           \
3238     }
3239 
3240 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3241     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3242     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3243 
3244 /*
3245  * Some care is needed here to get the correct result for the unordered case.
3246  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3247  * the NE, LT and LE comparisons are defined as simple logical inverses of
3248  * EQ, GE and GT and so they must return true for unordered. The softfloat
3249  * comparison functions float*_{eq,le,lt} all return false for unordered.
3250  */
3251 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3252 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3253 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3254 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3255 
3256 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3257 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3258 
3259 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3260 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3261 
3262 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3263 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3264 
3265 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3266 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3267 
3268 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3269 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3270 
3271 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3272 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3273 
3274 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3275     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3276                                 uint32_t shift)                         \
3277     {                                                                   \
3278         TYPE *d = vd, *m = vm;                                          \
3279         TYPE r;                                                         \
3280         uint16_t mask = mve_element_mask(env);                          \
3281         unsigned e;                                                     \
3282         float_status *fpst;                                             \
3283         float_status scratch_fpst;                                      \
3284         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3285             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3286                 continue;                                               \
3287             }                                                           \
3288             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3289             if (!(mask & 1)) {                                          \
3290                 /* We need the result but without updating flags */     \
3291                 scratch_fpst = *fpst;                                   \
3292                 fpst = &scratch_fpst;                                   \
3293             }                                                           \
3294             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3295             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3296         }                                                               \
3297         mve_advance_vpt(env);                                           \
3298     }
3299 
3300 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3301 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3302 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3303 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3304 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3305 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3306 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3307 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3308 
3309 /* VCVT with specified rmode */
3310 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3311     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3312                                 void *vd, void *vm, uint32_t rmode)     \
3313     {                                                                   \
3314         TYPE *d = vd, *m = vm;                                          \
3315         TYPE r;                                                         \
3316         uint16_t mask = mve_element_mask(env);                          \
3317         unsigned e;                                                     \
3318         float_status *fpst;                                             \
3319         float_status scratch_fpst;                                      \
3320         float_status *base_fpst =                                       \
3321             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD];  \
3322         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3323         set_float_rounding_mode(rmode, base_fpst);                      \
3324         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3325             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3326                 continue;                                               \
3327             }                                                           \
3328             fpst = base_fpst;                                           \
3329             if (!(mask & 1)) {                                          \
3330                 /* We need the result but without updating flags */     \
3331                 scratch_fpst = *fpst;                                   \
3332                 fpst = &scratch_fpst;                                   \
3333             }                                                           \
3334             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3335             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3336         }                                                               \
3337         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3338         mve_advance_vpt(env);                                           \
3339     }
3340 
3341 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3342 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3343 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3344 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3345 
3346 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3347 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3348 
3349 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3350 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3351 
3352 /*
3353  * VCVT between halfprec and singleprec. As usual for halfprec
3354  * conversions, FZ16 is ignored and AHP is observed.
3355  */
3356 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3357 {
3358     uint16_t *d = vd;
3359     uint32_t *m = vm;
3360     uint16_t r;
3361     uint16_t mask = mve_element_mask(env);
3362     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3363     unsigned e;
3364     float_status *fpst;
3365     float_status scratch_fpst;
3366     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3367     bool old_fz = get_flush_to_zero(base_fpst);
3368     set_flush_to_zero(false, base_fpst);
3369     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3370         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3371             continue;
3372         }
3373         fpst = base_fpst;
3374         if (!(mask & 1)) {
3375             /* We need the result but without updating flags */
3376             scratch_fpst = *fpst;
3377             fpst = &scratch_fpst;
3378         }
3379         r = float32_to_float16(m[H4(e)], ieee, fpst);
3380         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3381     }
3382     set_flush_to_zero(old_fz, base_fpst);
3383     mve_advance_vpt(env);
3384 }
3385 
3386 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3387 {
3388     uint32_t *d = vd;
3389     uint16_t *m = vm;
3390     uint32_t r;
3391     uint16_t mask = mve_element_mask(env);
3392     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3393     unsigned e;
3394     float_status *fpst;
3395     float_status scratch_fpst;
3396     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3397     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3398     set_flush_inputs_to_zero(false, base_fpst);
3399     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3400         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3401             continue;
3402         }
3403         fpst = base_fpst;
3404         if (!(mask & (1 << (top * 2)))) {
3405             /* We need the result but without updating flags */
3406             scratch_fpst = *fpst;
3407             fpst = &scratch_fpst;
3408         }
3409         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3410         mergemask(&d[H4(e)], r, mask);
3411     }
3412     set_flush_inputs_to_zero(old_fiz, base_fpst);
3413     mve_advance_vpt(env);
3414 }
3415 
3416 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3417 {
3418     do_vcvt_sh(env, vd, vm, 0);
3419 }
3420 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3421 {
3422     do_vcvt_sh(env, vd, vm, 1);
3423 }
3424 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3425 {
3426     do_vcvt_hs(env, vd, vm, 0);
3427 }
3428 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3429 {
3430     do_vcvt_hs(env, vd, vm, 1);
3431 }
3432 
3433 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3434     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3435     {                                                                   \
3436         TYPE *d = vd, *m = vm;                                          \
3437         TYPE r;                                                         \
3438         uint16_t mask = mve_element_mask(env);                          \
3439         unsigned e;                                                     \
3440         float_status *fpst;                                             \
3441         float_status scratch_fpst;                                      \
3442         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3443             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3444                 continue;                                               \
3445             }                                                           \
3446             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3447             if (!(mask & 1)) {                                          \
3448                 /* We need the result but without updating flags */     \
3449                 scratch_fpst = *fpst;                                   \
3450                 fpst = &scratch_fpst;                                   \
3451             }                                                           \
3452             r = FN(m[H##ESIZE(e)], fpst);                               \
3453             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3454         }                                                               \
3455         mve_advance_vpt(env);                                           \
3456     }
3457 
3458 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3459 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3460