1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #ifdef CONFIG_USER_ONLY 27 #include "user/page-protection.h" 28 #else 29 #include "exec/ram_addr.h" 30 #endif 31 #include "exec/cpu_ldst.h" 32 #include "exec/helper-proto.h" 33 #include "hw/core/tcg-cpu-ops.h" 34 #include "qapi/error.h" 35 #include "qemu/guest-random.h" 36 #include "mte_helper.h" 37 38 39 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 40 { 41 if (exclude == 0xffff) { 42 return 0; 43 } 44 if (offset == 0) { 45 while (exclude & (1 << tag)) { 46 tag = (tag + 1) & 15; 47 } 48 } else { 49 do { 50 do { 51 tag = (tag + 1) & 15; 52 } while (exclude & (1 << tag)); 53 } while (--offset > 0); 54 } 55 return tag; 56 } 57 58 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 59 uint64_t ptr, MMUAccessType ptr_access, 60 int ptr_size, MMUAccessType tag_access, 61 bool probe, uintptr_t ra) 62 { 63 #ifdef CONFIG_USER_ONLY 64 uint64_t clean_ptr = useronly_clean_ptr(ptr); 65 int flags = page_get_flags(clean_ptr); 66 uint8_t *tags; 67 uintptr_t index; 68 69 assert(!(probe && ra)); 70 71 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 72 if (probe) { 73 return NULL; 74 } 75 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 76 !(flags & PAGE_VALID), ra); 77 } 78 79 /* Require both MAP_ANON and PROT_MTE for the page. */ 80 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 81 return NULL; 82 } 83 84 tags = page_get_target_data(clean_ptr); 85 86 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 87 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 88 return tags + index; 89 #else 90 CPUTLBEntryFull *full; 91 MemTxAttrs attrs; 92 int in_page, flags; 93 hwaddr ptr_paddr, tag_paddr, xlat; 94 MemoryRegion *mr; 95 ARMASIdx tag_asi; 96 AddressSpace *tag_as; 97 void *host; 98 99 /* 100 * Probe the first byte of the virtual address. This raises an 101 * exception for inaccessible pages, and resolves the virtual address 102 * into the softmmu tlb. 103 * 104 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 105 * Indicate to probe_access_flags no-fault, then either return NULL 106 * for the pure probe, or assert that we received a valid page for the 107 * no-fault-expected probe. 108 */ 109 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 110 ra == 0, &host, &full, ra); 111 if (probe && (flags & TLB_INVALID_MASK)) { 112 return NULL; 113 } 114 assert(!(flags & TLB_INVALID_MASK)); 115 116 /* If the virtual page MemAttr != Tagged, access unchecked. */ 117 if (full->extra.arm.pte_attrs != 0xf0) { 118 return NULL; 119 } 120 121 /* 122 * If not backed by host ram, there is no tag storage: access unchecked. 123 * This is probably a guest os bug though, so log it. 124 */ 125 if (unlikely(flags & TLB_MMIO)) { 126 qemu_log_mask(LOG_GUEST_ERROR, 127 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 128 "but is not backed by host ram\n", ptr); 129 return NULL; 130 } 131 132 /* 133 * Remember these values across the second lookup below, 134 * which may invalidate this pointer via tlb resize. 135 */ 136 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 137 attrs = full->attrs; 138 full = NULL; 139 140 /* 141 * The Normal memory access can extend to the next page. E.g. a single 142 * 8-byte access to the last byte of a page will check only the last 143 * tag on the first page. 144 * Any page access exception has priority over tag check exception. 145 */ 146 in_page = -(ptr | TARGET_PAGE_MASK); 147 if (unlikely(ptr_size > in_page)) { 148 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 149 ptr_mmu_idx, ra == 0, &host, &full, ra); 150 assert(!(flags & TLB_INVALID_MASK)); 151 } 152 153 /* Any debug exception has priority over a tag check exception. */ 154 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 155 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 156 assert(ra != 0); 157 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 158 } 159 160 /* Convert to the physical address in tag space. */ 161 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 162 163 /* Look up the address in tag space. */ 164 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 165 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 166 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 167 tag_access == MMU_DATA_STORE, attrs); 168 169 /* 170 * Note that @mr will never be NULL. If there is nothing in the address 171 * space at @tag_paddr, the translation will return the unallocated memory 172 * region. For our purposes, the result must be ram. 173 */ 174 if (unlikely(!memory_region_is_ram(mr))) { 175 /* ??? Failure is a board configuration error. */ 176 qemu_log_mask(LOG_UNIMP, 177 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 178 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 179 tag_paddr, ptr_paddr); 180 return NULL; 181 } 182 183 /* 184 * Ensure the tag memory is dirty on write, for migration. 185 * Tag memory can never contain code or display memory (vga). 186 */ 187 if (tag_access == MMU_DATA_STORE) { 188 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 189 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 190 } 191 192 return memory_region_get_ram_ptr(mr) + xlat; 193 #endif 194 } 195 196 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 197 uint64_t ptr, MMUAccessType ptr_access, 198 int ptr_size, MMUAccessType tag_access, 199 uintptr_t ra) 200 { 201 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 202 ptr_size, tag_access, false, ra); 203 } 204 205 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 206 { 207 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 208 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 209 int start = extract32(env->cp15.rgsr_el1, 0, 4); 210 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 211 int offset, i, rtag; 212 213 /* 214 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 215 * deterministic algorithm. Except that with RRND==1 the kernel is 216 * not required to have set RGSR_EL1.SEED != 0, which is required for 217 * the deterministic algorithm to function. So we force a non-zero 218 * SEED for that case. 219 */ 220 if (unlikely(seed == 0) && rrnd) { 221 do { 222 Error *err = NULL; 223 uint16_t two; 224 225 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 226 /* 227 * Failed, for unknown reasons in the crypto subsystem. 228 * Best we can do is log the reason and use a constant seed. 229 */ 230 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 231 error_get_pretty(err)); 232 error_free(err); 233 two = 1; 234 } 235 seed = two; 236 } while (seed == 0); 237 } 238 239 /* RandomTag */ 240 for (i = offset = 0; i < 4; ++i) { 241 /* NextRandomTagBit */ 242 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 243 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 244 seed = (top << 15) | (seed >> 1); 245 offset |= top << i; 246 } 247 rtag = choose_nonexcluded_tag(start, offset, exclude); 248 env->cp15.rgsr_el1 = rtag | (seed << 8); 249 250 return address_with_allocation_tag(rn, rtag); 251 } 252 253 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 254 int32_t offset, uint32_t tag_offset) 255 { 256 int start_tag = allocation_tag_from_addr(ptr); 257 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 258 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 259 260 return address_with_allocation_tag(ptr + offset, rtag); 261 } 262 263 int load_tag1(uint64_t ptr, uint8_t *mem) 264 { 265 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 266 return extract32(*mem, ofs, 4); 267 } 268 269 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 270 { 271 int mmu_idx = arm_env_mmu_index(env); 272 uint8_t *mem; 273 int rtag = 0; 274 275 /* Trap if accessing an invalid page. */ 276 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 277 MMU_DATA_LOAD, GETPC()); 278 279 /* Load if page supports tags. */ 280 if (mem) { 281 rtag = load_tag1(ptr, mem); 282 } 283 284 return address_with_allocation_tag(xt, rtag); 285 } 286 287 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 288 { 289 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 290 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 291 arm_env_mmu_index(env), ra); 292 g_assert_not_reached(); 293 } 294 } 295 296 /* For use in a non-parallel context, store to the given nibble. */ 297 void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 298 { 299 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 300 *mem = deposit32(*mem, ofs, 4, tag); 301 } 302 303 /* For use in a parallel context, atomically store to the given nibble. */ 304 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 305 { 306 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 307 uint8_t old = qatomic_read(mem); 308 309 while (1) { 310 uint8_t new = deposit32(old, ofs, 4, tag); 311 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 312 if (likely(cmp == old)) { 313 return; 314 } 315 old = cmp; 316 } 317 } 318 319 typedef void stg_store1(uint64_t, uint8_t *, int); 320 321 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 322 uintptr_t ra, stg_store1 store1) 323 { 324 int mmu_idx = arm_env_mmu_index(env); 325 uint8_t *mem; 326 327 check_tag_aligned(env, ptr, ra); 328 329 /* Trap if accessing an invalid page. */ 330 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 331 MMU_DATA_STORE, ra); 332 333 /* Store if page supports tags. */ 334 if (mem) { 335 store1(ptr, mem, allocation_tag_from_addr(xt)); 336 } 337 } 338 339 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 340 { 341 do_stg(env, ptr, xt, GETPC(), store_tag1); 342 } 343 344 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 345 { 346 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 347 } 348 349 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 350 { 351 int mmu_idx = arm_env_mmu_index(env); 352 uintptr_t ra = GETPC(); 353 354 check_tag_aligned(env, ptr, ra); 355 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 356 } 357 358 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 359 uintptr_t ra, stg_store1 store1) 360 { 361 int mmu_idx = arm_env_mmu_index(env); 362 int tag = allocation_tag_from_addr(xt); 363 uint8_t *mem1, *mem2; 364 365 check_tag_aligned(env, ptr, ra); 366 367 /* 368 * Trap if accessing an invalid page(s). 369 * This takes priority over !allocation_tag_access_enabled. 370 */ 371 if (ptr & TAG_GRANULE) { 372 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 373 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 374 TAG_GRANULE, MMU_DATA_STORE, ra); 375 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 376 MMU_DATA_STORE, TAG_GRANULE, 377 MMU_DATA_STORE, ra); 378 379 /* Store if page(s) support tags. */ 380 if (mem1) { 381 store1(TAG_GRANULE, mem1, tag); 382 } 383 if (mem2) { 384 store1(0, mem2, tag); 385 } 386 } else { 387 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 388 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 389 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 390 if (mem1) { 391 tag |= tag << 4; 392 qatomic_set(mem1, tag); 393 } 394 } 395 } 396 397 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 398 { 399 do_st2g(env, ptr, xt, GETPC(), store_tag1); 400 } 401 402 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 403 { 404 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 405 } 406 407 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 408 { 409 int mmu_idx = arm_env_mmu_index(env); 410 uintptr_t ra = GETPC(); 411 int in_page = -(ptr | TARGET_PAGE_MASK); 412 413 check_tag_aligned(env, ptr, ra); 414 415 if (likely(in_page >= 2 * TAG_GRANULE)) { 416 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 417 } else { 418 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 419 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 420 } 421 } 422 423 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 424 { 425 int mmu_idx = arm_env_mmu_index(env); 426 uintptr_t ra = GETPC(); 427 int gm_bs = env_archcpu(env)->gm_blocksize; 428 int gm_bs_bytes = 4 << gm_bs; 429 void *tag_mem; 430 uint64_t ret; 431 int shift; 432 433 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 434 435 /* Trap if accessing an invalid page. */ 436 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 437 gm_bs_bytes, MMU_DATA_LOAD, ra); 438 439 /* The tag is squashed to zero if the page does not support tags. */ 440 if (!tag_mem) { 441 return 0; 442 } 443 444 /* 445 * The ordering of elements within the word corresponds to 446 * a little-endian operation. Computation of shift comes from 447 * 448 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 449 * data<index*4+3:index*4> = tag 450 * 451 * Because of the alignment of ptr above, BS=6 has shift=0. 452 * All memory operations are aligned. Defer support for BS=2, 453 * requiring insertion or extraction of a nibble, until we 454 * support a cpu that requires it. 455 */ 456 switch (gm_bs) { 457 case 3: 458 /* 32 bytes -> 2 tags -> 8 result bits */ 459 ret = *(uint8_t *)tag_mem; 460 break; 461 case 4: 462 /* 64 bytes -> 4 tags -> 16 result bits */ 463 ret = cpu_to_le16(*(uint16_t *)tag_mem); 464 break; 465 case 5: 466 /* 128 bytes -> 8 tags -> 32 result bits */ 467 ret = cpu_to_le32(*(uint32_t *)tag_mem); 468 break; 469 case 6: 470 /* 256 bytes -> 16 tags -> 64 result bits */ 471 return cpu_to_le64(*(uint64_t *)tag_mem); 472 default: 473 /* 474 * CPU configured with unsupported/invalid gm blocksize. 475 * This is detected early in arm_cpu_realizefn. 476 */ 477 g_assert_not_reached(); 478 } 479 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 480 return ret << shift; 481 } 482 483 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 484 { 485 int mmu_idx = arm_env_mmu_index(env); 486 uintptr_t ra = GETPC(); 487 int gm_bs = env_archcpu(env)->gm_blocksize; 488 int gm_bs_bytes = 4 << gm_bs; 489 void *tag_mem; 490 int shift; 491 492 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 493 494 /* Trap if accessing an invalid page. */ 495 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 496 gm_bs_bytes, MMU_DATA_LOAD, ra); 497 498 /* 499 * Tag store only happens if the page support tags, 500 * and if the OS has enabled access to the tags. 501 */ 502 if (!tag_mem) { 503 return; 504 } 505 506 /* See LDGM for comments on BS and on shift. */ 507 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 508 val >>= shift; 509 switch (gm_bs) { 510 case 3: 511 /* 32 bytes -> 2 tags -> 8 result bits */ 512 *(uint8_t *)tag_mem = val; 513 break; 514 case 4: 515 /* 64 bytes -> 4 tags -> 16 result bits */ 516 *(uint16_t *)tag_mem = cpu_to_le16(val); 517 break; 518 case 5: 519 /* 128 bytes -> 8 tags -> 32 result bits */ 520 *(uint32_t *)tag_mem = cpu_to_le32(val); 521 break; 522 case 6: 523 /* 256 bytes -> 16 tags -> 64 result bits */ 524 *(uint64_t *)tag_mem = cpu_to_le64(val); 525 break; 526 default: 527 /* cpu configured with unsupported gm blocksize. */ 528 g_assert_not_reached(); 529 } 530 } 531 532 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 533 { 534 uintptr_t ra = GETPC(); 535 int mmu_idx = arm_env_mmu_index(env); 536 int log2_dcz_bytes, log2_tag_bytes; 537 intptr_t dcz_bytes, tag_bytes; 538 uint8_t *mem; 539 540 /* 541 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 542 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 543 * to make sure that we can access one complete tag byte here. 544 */ 545 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 546 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 547 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 548 tag_bytes = (intptr_t)1 << log2_tag_bytes; 549 ptr &= -dcz_bytes; 550 551 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 552 MMU_DATA_STORE, ra); 553 if (mem) { 554 int tag_pair = (val & 0xf) * 0x11; 555 memset(mem, tag_pair, tag_bytes); 556 } 557 } 558 559 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 560 uint64_t dirty_ptr, uintptr_t ra) 561 { 562 int is_write, syn; 563 564 env->exception.vaddress = dirty_ptr; 565 566 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 567 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 568 0x11); 569 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 570 g_assert_not_reached(); 571 } 572 573 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 574 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 575 { 576 int select; 577 578 if (regime_has_2_ranges(arm_mmu_idx)) { 579 select = extract64(dirty_ptr, 55, 1); 580 } else { 581 select = 0; 582 } 583 env->cp15.tfsr_el[el] |= 1 << select; 584 #ifdef CONFIG_USER_ONLY 585 /* 586 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 587 * which then sends a SIGSEGV when the thread is next scheduled. 588 * This cpu will return to the main loop at the end of the TB, 589 * which is rather sooner than "normal". But the alternative 590 * is waiting until the next syscall. 591 */ 592 qemu_cpu_kick(env_cpu(env)); 593 #endif 594 } 595 596 /* Record a tag check failure. */ 597 void mte_check_fail(CPUARMState *env, uint32_t desc, 598 uint64_t dirty_ptr, uintptr_t ra) 599 { 600 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 601 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 602 int el, reg_el, tcf; 603 uint64_t sctlr; 604 605 reg_el = regime_el(env, arm_mmu_idx); 606 sctlr = env->cp15.sctlr_el[reg_el]; 607 608 switch (arm_mmu_idx) { 609 case ARMMMUIdx_E10_0: 610 case ARMMMUIdx_E20_0: 611 el = 0; 612 tcf = extract64(sctlr, 38, 2); 613 break; 614 default: 615 el = reg_el; 616 tcf = extract64(sctlr, 40, 2); 617 } 618 619 switch (tcf) { 620 case 1: 621 /* Tag check fail causes a synchronous exception. */ 622 mte_sync_check_fail(env, desc, dirty_ptr, ra); 623 break; 624 625 case 0: 626 /* 627 * Tag check fail does not affect the PE. 628 * We eliminate this case by not setting MTE_ACTIVE 629 * in tb_flags, so that we never make this runtime call. 630 */ 631 g_assert_not_reached(); 632 633 case 2: 634 /* Tag check fail causes asynchronous flag set. */ 635 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 636 break; 637 638 case 3: 639 /* 640 * Tag check fail causes asynchronous flag set for stores, or 641 * a synchronous exception for loads. 642 */ 643 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 644 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 645 } else { 646 mte_sync_check_fail(env, desc, dirty_ptr, ra); 647 } 648 break; 649 } 650 } 651 652 /** 653 * checkN: 654 * @tag: tag memory to test 655 * @odd: true to begin testing at tags at odd nibble 656 * @cmp: the tag to compare against 657 * @count: number of tags to test 658 * 659 * Return the number of successful tests. 660 * Thus a return value < @count indicates a failure. 661 * 662 * A note about sizes: count is expected to be small. 663 * 664 * The most common use will be LDP/STP of two integer registers, 665 * which means 16 bytes of memory touching at most 2 tags, but 666 * often the access is aligned and thus just 1 tag. 667 * 668 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 669 * touching at most 5 tags. SVE LDR/STR (vector) with the default 670 * vector length is also 64 bytes; the maximum architectural length 671 * is 256 bytes touching at most 9 tags. 672 * 673 * The loop below uses 7 logical operations and 1 memory operation 674 * per tag pair. An implementation that loads an aligned word and 675 * uses masking to ignore adjacent tags requires 18 logical operations 676 * and thus does not begin to pay off until 6 tags. 677 * Which, according to the survey above, is unlikely to be common. 678 */ 679 static int checkN(uint8_t *mem, int odd, int cmp, int count) 680 { 681 int n = 0, diff; 682 683 /* Replicate the test tag and compare. */ 684 cmp *= 0x11; 685 diff = *mem++ ^ cmp; 686 687 if (odd) { 688 goto start_odd; 689 } 690 691 while (1) { 692 /* Test even tag. */ 693 if (unlikely((diff) & 0x0f)) { 694 break; 695 } 696 if (++n == count) { 697 break; 698 } 699 700 start_odd: 701 /* Test odd tag. */ 702 if (unlikely((diff) & 0xf0)) { 703 break; 704 } 705 if (++n == count) { 706 break; 707 } 708 709 diff = *mem++ ^ cmp; 710 } 711 return n; 712 } 713 714 /** 715 * checkNrev: 716 * @tag: tag memory to test 717 * @odd: true to begin testing at tags at odd nibble 718 * @cmp: the tag to compare against 719 * @count: number of tags to test 720 * 721 * Return the number of successful tests. 722 * Thus a return value < @count indicates a failure. 723 * 724 * This is like checkN, but it runs backwards, checking the 725 * tags starting with @tag and then the tags preceding it. 726 * This is needed by the backwards-memory-copying operations. 727 */ 728 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 729 { 730 int n = 0, diff; 731 732 /* Replicate the test tag and compare. */ 733 cmp *= 0x11; 734 diff = *mem-- ^ cmp; 735 736 if (!odd) { 737 goto start_even; 738 } 739 740 while (1) { 741 /* Test odd tag. */ 742 if (unlikely((diff) & 0xf0)) { 743 break; 744 } 745 if (++n == count) { 746 break; 747 } 748 749 start_even: 750 /* Test even tag. */ 751 if (unlikely((diff) & 0x0f)) { 752 break; 753 } 754 if (++n == count) { 755 break; 756 } 757 758 diff = *mem-- ^ cmp; 759 } 760 return n; 761 } 762 763 /** 764 * mte_probe_int() - helper for mte_probe and mte_check 765 * @env: CPU environment 766 * @desc: MTEDESC descriptor 767 * @ptr: virtual address of the base of the access 768 * @fault: return virtual address of the first check failure 769 * 770 * Internal routine for both mte_probe and mte_check. 771 * Return zero on failure, filling in *fault. 772 * Return negative on trivial success for tbi disabled. 773 * Return positive on success with tbi enabled. 774 */ 775 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 776 uintptr_t ra, uint64_t *fault) 777 { 778 int mmu_idx, ptr_tag, bit55; 779 uint64_t ptr_last, prev_page, next_page; 780 uint64_t tag_first, tag_last; 781 uint32_t sizem1, tag_count, n, c; 782 uint8_t *mem1, *mem2; 783 MMUAccessType type; 784 785 bit55 = extract64(ptr, 55, 1); 786 *fault = ptr; 787 788 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 789 if (unlikely(!tbi_check(desc, bit55))) { 790 return -1; 791 } 792 793 ptr_tag = allocation_tag_from_addr(ptr); 794 795 if (tcma_check(desc, bit55, ptr_tag)) { 796 return 1; 797 } 798 799 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 800 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 801 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 802 803 /* Find the addr of the end of the access */ 804 ptr_last = ptr + sizem1; 805 806 /* Round the bounds to the tag granule, and compute the number of tags. */ 807 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 808 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 809 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 810 811 /* Locate the page boundaries. */ 812 prev_page = ptr & TARGET_PAGE_MASK; 813 next_page = prev_page + TARGET_PAGE_SIZE; 814 815 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 816 /* Memory access stays on one page. */ 817 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 818 MMU_DATA_LOAD, ra); 819 if (!mem1) { 820 return 1; 821 } 822 /* Perform all of the comparisons. */ 823 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 824 } else { 825 /* Memory access crosses to next page. */ 826 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 827 MMU_DATA_LOAD, ra); 828 829 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 830 ptr_last - next_page + 1, 831 MMU_DATA_LOAD, ra); 832 833 /* 834 * Perform all of the comparisons. 835 * Note the possible but unlikely case of the operation spanning 836 * two pages that do not both have tagging enabled. 837 */ 838 n = c = (next_page - tag_first) / TAG_GRANULE; 839 if (mem1) { 840 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 841 } 842 if (n == c) { 843 if (!mem2) { 844 return 1; 845 } 846 n += checkN(mem2, 0, ptr_tag, tag_count - c); 847 } 848 } 849 850 if (likely(n == tag_count)) { 851 return 1; 852 } 853 854 /* 855 * If we failed, we know which granule. For the first granule, the 856 * failure address is @ptr, the first byte accessed. Otherwise the 857 * failure address is the first byte of the nth granule. 858 */ 859 if (n > 0) { 860 *fault = tag_first + n * TAG_GRANULE; 861 } 862 return 0; 863 } 864 865 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 866 { 867 uint64_t fault; 868 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 869 870 if (unlikely(ret == 0)) { 871 mte_check_fail(env, desc, fault, ra); 872 } else if (ret < 0) { 873 return ptr; 874 } 875 return useronly_clean_ptr(ptr); 876 } 877 878 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 879 { 880 /* 881 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 882 * higher than any translation fault. When MTE is disabled, tcg 883 * performs the alignment check during the code generated for the 884 * memory access. With MTE enabled, we must check this here before 885 * raising any translation fault in allocation_tag_mem. 886 */ 887 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 888 if (unlikely(align)) { 889 align = (1u << align) - 1; 890 if (unlikely(ptr & align)) { 891 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 892 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 893 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 894 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 895 } 896 } 897 898 return mte_check(env, desc, ptr, GETPC()); 899 } 900 901 /* 902 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 903 * Returns false if the access is Checked and the check failed. This 904 * is only intended to probe the tag -- the validity of the page must 905 * be checked beforehand. 906 */ 907 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 908 { 909 uint64_t fault; 910 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 911 912 return ret != 0; 913 } 914 915 /* 916 * Perform an MTE checked access for DC_ZVA. 917 */ 918 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 919 { 920 uintptr_t ra = GETPC(); 921 int log2_dcz_bytes, log2_tag_bytes; 922 int mmu_idx, bit55; 923 intptr_t dcz_bytes, tag_bytes, i; 924 void *mem; 925 uint64_t ptr_tag, mem_tag, align_ptr; 926 927 bit55 = extract64(ptr, 55, 1); 928 929 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 930 if (unlikely(!tbi_check(desc, bit55))) { 931 return ptr; 932 } 933 934 ptr_tag = allocation_tag_from_addr(ptr); 935 936 if (tcma_check(desc, bit55, ptr_tag)) { 937 goto done; 938 } 939 940 /* 941 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 942 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 943 * sure that we can access one complete tag byte here. 944 */ 945 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 946 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 947 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 948 tag_bytes = (intptr_t)1 << log2_tag_bytes; 949 align_ptr = ptr & -dcz_bytes; 950 951 /* 952 * Trap if accessing an invalid page. DC_ZVA requires that we supply 953 * the original pointer for an invalid page. But watchpoints require 954 * that we probe the actual space. So do both. 955 */ 956 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 957 (void) probe_write(env, ptr, 1, mmu_idx, ra); 958 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 959 dcz_bytes, MMU_DATA_LOAD, ra); 960 if (!mem) { 961 goto done; 962 } 963 964 /* 965 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 966 * it is quite easy to perform all of the comparisons at once without 967 * any extra masking. 968 * 969 * The most common zva block size is 64; some of the thunderx cpus use 970 * a block size of 128. For user-only, aarch64_max_initfn will set the 971 * block size to 512. Fill out the other cases for future-proofing. 972 * 973 * In order to be able to find the first miscompare later, we want the 974 * tag bytes to be in little-endian order. 975 */ 976 switch (log2_tag_bytes) { 977 case 0: /* zva_blocksize 32 */ 978 mem_tag = *(uint8_t *)mem; 979 ptr_tag *= 0x11u; 980 break; 981 case 1: /* zva_blocksize 64 */ 982 mem_tag = cpu_to_le16(*(uint16_t *)mem); 983 ptr_tag *= 0x1111u; 984 break; 985 case 2: /* zva_blocksize 128 */ 986 mem_tag = cpu_to_le32(*(uint32_t *)mem); 987 ptr_tag *= 0x11111111u; 988 break; 989 case 3: /* zva_blocksize 256 */ 990 mem_tag = cpu_to_le64(*(uint64_t *)mem); 991 ptr_tag *= 0x1111111111111111ull; 992 break; 993 994 default: /* zva_blocksize 512, 1024, 2048 */ 995 ptr_tag *= 0x1111111111111111ull; 996 i = 0; 997 do { 998 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 999 if (unlikely(mem_tag != ptr_tag)) { 1000 goto fail; 1001 } 1002 i += 8; 1003 align_ptr += 16 * TAG_GRANULE; 1004 } while (i < tag_bytes); 1005 goto done; 1006 } 1007 1008 if (likely(mem_tag == ptr_tag)) { 1009 goto done; 1010 } 1011 1012 fail: 1013 /* Locate the first nibble that differs. */ 1014 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1015 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1016 1017 done: 1018 return useronly_clean_ptr(ptr); 1019 } 1020 1021 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1022 uint32_t desc) 1023 { 1024 int mmu_idx, tag_count; 1025 uint64_t ptr_tag, tag_first, tag_last; 1026 void *mem; 1027 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1028 uint32_t n; 1029 1030 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1031 /* True probe; this will never fault */ 1032 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1033 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1034 size, MMU_DATA_LOAD, true, 0); 1035 if (!mem) { 1036 return size; 1037 } 1038 1039 /* 1040 * TODO: checkN() is not designed for checks of the size we expect 1041 * for FEAT_MOPS operations, so we should implement this differently. 1042 * Maybe we should do something like 1043 * if (region start and size are aligned nicely) { 1044 * do direct loads of 64 tag bits at a time; 1045 * } else { 1046 * call checkN() 1047 * } 1048 */ 1049 /* Round the bounds to the tag granule, and compute the number of tags. */ 1050 ptr_tag = allocation_tag_from_addr(ptr); 1051 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1052 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1053 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1054 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1055 if (likely(n == tag_count)) { 1056 return size; 1057 } 1058 1059 /* 1060 * Failure; for the first granule, it's at @ptr. Otherwise 1061 * it's at the first byte of the nth granule. Calculate how 1062 * many bytes we can access without hitting that failure. 1063 */ 1064 if (n == 0) { 1065 return 0; 1066 } else { 1067 return n * TAG_GRANULE - (ptr - tag_first); 1068 } 1069 } 1070 1071 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1072 uint32_t desc) 1073 { 1074 int mmu_idx, tag_count; 1075 uint64_t ptr_tag, tag_first, tag_last; 1076 void *mem; 1077 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1078 uint32_t n; 1079 1080 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1081 /* 1082 * True probe; this will never fault. Note that our caller passes 1083 * us a pointer to the end of the region, but allocation_tag_mem_probe() 1084 * wants a pointer to the start. Because we know we don't span a page 1085 * boundary and that allocation_tag_mem_probe() doesn't otherwise care 1086 * about the size, pass in a size of 1 byte. This is simpler than 1087 * adjusting the ptr to point to the start of the region and then having 1088 * to adjust the returned 'mem' to get the end of the tag memory. 1089 */ 1090 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1091 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1092 1, MMU_DATA_LOAD, true, 0); 1093 if (!mem) { 1094 return size; 1095 } 1096 1097 /* 1098 * TODO: checkNrev() is not designed for checks of the size we expect 1099 * for FEAT_MOPS operations, so we should implement this differently. 1100 * Maybe we should do something like 1101 * if (region start and size are aligned nicely) { 1102 * do direct loads of 64 tag bits at a time; 1103 * } else { 1104 * call checkN() 1105 * } 1106 */ 1107 /* Round the bounds to the tag granule, and compute the number of tags. */ 1108 ptr_tag = allocation_tag_from_addr(ptr); 1109 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1110 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1111 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1112 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1113 if (likely(n == tag_count)) { 1114 return size; 1115 } 1116 1117 /* 1118 * Failure; for the first granule, it's at @ptr. Otherwise 1119 * it's at the last byte of the nth granule. Calculate how 1120 * many bytes we can access without hitting that failure. 1121 */ 1122 if (n == 0) { 1123 return 0; 1124 } else { 1125 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1126 } 1127 } 1128 1129 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1130 uint32_t desc) 1131 { 1132 int mmu_idx, tag_count; 1133 uint64_t ptr_tag; 1134 void *mem; 1135 1136 if (!desc) { 1137 /* Tags not actually enabled */ 1138 return; 1139 } 1140 1141 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1142 /* True probe: this will never fault */ 1143 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1144 MMU_DATA_STORE, true, 0); 1145 if (!mem) { 1146 return; 1147 } 1148 1149 /* 1150 * We know that ptr and size are both TAG_GRANULE aligned; store 1151 * the tag from the pointer value into the tag memory. 1152 */ 1153 ptr_tag = allocation_tag_from_addr(ptr); 1154 tag_count = size / TAG_GRANULE; 1155 if (ptr & TAG_GRANULE) { 1156 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1157 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1158 mem++; 1159 tag_count--; 1160 } 1161 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1162 if (tag_count & 1) { 1163 /* Final trailing unaligned nibble */ 1164 mem += tag_count / 2; 1165 store_tag1_parallel(0, mem, ptr_tag); 1166 } 1167 } 1168