1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #ifdef CONFIG_USER_ONLY 27 #include "user/cpu_loop.h" 28 #include "user/page-protection.h" 29 #else 30 #include "system/ram_addr.h" 31 #endif 32 #include "exec/cpu_ldst.h" 33 #include "exec/helper-proto.h" 34 #include "exec/tlb-flags.h" 35 #include "accel/tcg/cpu-ops.h" 36 #include "qapi/error.h" 37 #include "qemu/guest-random.h" 38 #include "mte_helper.h" 39 40 41 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 42 { 43 if (exclude == 0xffff) { 44 return 0; 45 } 46 if (offset == 0) { 47 while (exclude & (1 << tag)) { 48 tag = (tag + 1) & 15; 49 } 50 } else { 51 do { 52 do { 53 tag = (tag + 1) & 15; 54 } while (exclude & (1 << tag)); 55 } while (--offset > 0); 56 } 57 return tag; 58 } 59 60 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 61 uint64_t ptr, MMUAccessType ptr_access, 62 int ptr_size, MMUAccessType tag_access, 63 bool probe, uintptr_t ra) 64 { 65 #ifdef CONFIG_USER_ONLY 66 uint64_t clean_ptr = useronly_clean_ptr(ptr); 67 int flags = page_get_flags(clean_ptr); 68 uint8_t *tags; 69 uintptr_t index; 70 71 assert(!(probe && ra)); 72 73 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 74 if (probe) { 75 return NULL; 76 } 77 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 78 !(flags & PAGE_VALID), ra); 79 } 80 81 /* Require both MAP_ANON and PROT_MTE for the page. */ 82 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 83 return NULL; 84 } 85 86 tags = page_get_target_data(clean_ptr); 87 88 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 89 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 90 return tags + index; 91 #else 92 CPUTLBEntryFull *full; 93 MemTxAttrs attrs; 94 int in_page, flags; 95 hwaddr ptr_paddr, tag_paddr, xlat; 96 MemoryRegion *mr; 97 ARMASIdx tag_asi; 98 AddressSpace *tag_as; 99 void *host; 100 101 /* 102 * Probe the first byte of the virtual address. This raises an 103 * exception for inaccessible pages, and resolves the virtual address 104 * into the softmmu tlb. 105 * 106 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 107 * Indicate to probe_access_flags no-fault, then either return NULL 108 * for the pure probe, or assert that we received a valid page for the 109 * no-fault-expected probe. 110 */ 111 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 112 ra == 0, &host, &full, ra); 113 if (probe && (flags & TLB_INVALID_MASK)) { 114 return NULL; 115 } 116 assert(!(flags & TLB_INVALID_MASK)); 117 118 /* If the virtual page MemAttr != Tagged, access unchecked. */ 119 if (full->extra.arm.pte_attrs != 0xf0) { 120 return NULL; 121 } 122 123 /* 124 * If not backed by host ram, there is no tag storage: access unchecked. 125 * This is probably a guest os bug though, so log it. 126 */ 127 if (unlikely(flags & TLB_MMIO)) { 128 qemu_log_mask(LOG_GUEST_ERROR, 129 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 130 "but is not backed by host ram\n", ptr); 131 return NULL; 132 } 133 134 /* 135 * Remember these values across the second lookup below, 136 * which may invalidate this pointer via tlb resize. 137 */ 138 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 139 attrs = full->attrs; 140 full = NULL; 141 142 /* 143 * The Normal memory access can extend to the next page. E.g. a single 144 * 8-byte access to the last byte of a page will check only the last 145 * tag on the first page. 146 * Any page access exception has priority over tag check exception. 147 */ 148 in_page = -(ptr | TARGET_PAGE_MASK); 149 if (unlikely(ptr_size > in_page)) { 150 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 151 ptr_mmu_idx, ra == 0, &host, &full, ra); 152 assert(!(flags & TLB_INVALID_MASK)); 153 } 154 155 /* Any debug exception has priority over a tag check exception. */ 156 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 157 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 158 assert(ra != 0); 159 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 160 } 161 162 /* Convert to the physical address in tag space. */ 163 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 164 165 /* Look up the address in tag space. */ 166 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 167 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 168 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 169 tag_access == MMU_DATA_STORE, attrs); 170 171 /* 172 * Note that @mr will never be NULL. If there is nothing in the address 173 * space at @tag_paddr, the translation will return the unallocated memory 174 * region. For our purposes, the result must be ram. 175 */ 176 if (unlikely(!memory_region_is_ram(mr))) { 177 /* ??? Failure is a board configuration error. */ 178 qemu_log_mask(LOG_UNIMP, 179 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 180 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 181 tag_paddr, ptr_paddr); 182 return NULL; 183 } 184 185 /* 186 * Ensure the tag memory is dirty on write, for migration. 187 * Tag memory can never contain code or display memory (vga). 188 */ 189 if (tag_access == MMU_DATA_STORE) { 190 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 191 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 192 } 193 194 return memory_region_get_ram_ptr(mr) + xlat; 195 #endif 196 } 197 198 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 199 uint64_t ptr, MMUAccessType ptr_access, 200 int ptr_size, MMUAccessType tag_access, 201 uintptr_t ra) 202 { 203 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 204 ptr_size, tag_access, false, ra); 205 } 206 207 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 208 { 209 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 210 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 211 int start = extract32(env->cp15.rgsr_el1, 0, 4); 212 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 213 int offset, i, rtag; 214 215 /* 216 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 217 * deterministic algorithm. Except that with RRND==1 the kernel is 218 * not required to have set RGSR_EL1.SEED != 0, which is required for 219 * the deterministic algorithm to function. So we force a non-zero 220 * SEED for that case. 221 */ 222 if (unlikely(seed == 0) && rrnd) { 223 do { 224 Error *err = NULL; 225 uint16_t two; 226 227 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 228 /* 229 * Failed, for unknown reasons in the crypto subsystem. 230 * Best we can do is log the reason and use a constant seed. 231 */ 232 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 233 error_get_pretty(err)); 234 error_free(err); 235 two = 1; 236 } 237 seed = two; 238 } while (seed == 0); 239 } 240 241 /* RandomTag */ 242 for (i = offset = 0; i < 4; ++i) { 243 /* NextRandomTagBit */ 244 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 245 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 246 seed = (top << 15) | (seed >> 1); 247 offset |= top << i; 248 } 249 rtag = choose_nonexcluded_tag(start, offset, exclude); 250 env->cp15.rgsr_el1 = rtag | (seed << 8); 251 252 return address_with_allocation_tag(rn, rtag); 253 } 254 255 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 256 int32_t offset, uint32_t tag_offset) 257 { 258 int start_tag = allocation_tag_from_addr(ptr); 259 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 260 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 261 262 return address_with_allocation_tag(ptr + offset, rtag); 263 } 264 265 int load_tag1(uint64_t ptr, uint8_t *mem) 266 { 267 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 268 return extract32(*mem, ofs, 4); 269 } 270 271 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 272 { 273 int mmu_idx = arm_env_mmu_index(env); 274 uint8_t *mem; 275 int rtag = 0; 276 277 /* Trap if accessing an invalid page. */ 278 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 279 MMU_DATA_LOAD, GETPC()); 280 281 /* Load if page supports tags. */ 282 if (mem) { 283 rtag = load_tag1(ptr, mem); 284 } 285 286 return address_with_allocation_tag(xt, rtag); 287 } 288 289 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 290 { 291 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 292 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 293 arm_env_mmu_index(env), ra); 294 g_assert_not_reached(); 295 } 296 } 297 298 /* For use in a non-parallel context, store to the given nibble. */ 299 void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 300 { 301 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 302 *mem = deposit32(*mem, ofs, 4, tag); 303 } 304 305 /* For use in a parallel context, atomically store to the given nibble. */ 306 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 307 { 308 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 309 uint8_t old = qatomic_read(mem); 310 311 while (1) { 312 uint8_t new = deposit32(old, ofs, 4, tag); 313 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 314 if (likely(cmp == old)) { 315 return; 316 } 317 old = cmp; 318 } 319 } 320 321 typedef void stg_store1(uint64_t, uint8_t *, int); 322 323 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 324 uintptr_t ra, stg_store1 store1) 325 { 326 int mmu_idx = arm_env_mmu_index(env); 327 uint8_t *mem; 328 329 check_tag_aligned(env, ptr, ra); 330 331 /* Trap if accessing an invalid page. */ 332 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 333 MMU_DATA_STORE, ra); 334 335 /* Store if page supports tags. */ 336 if (mem) { 337 store1(ptr, mem, allocation_tag_from_addr(xt)); 338 } 339 } 340 341 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 342 { 343 do_stg(env, ptr, xt, GETPC(), store_tag1); 344 } 345 346 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 347 { 348 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 349 } 350 351 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 352 { 353 int mmu_idx = arm_env_mmu_index(env); 354 uintptr_t ra = GETPC(); 355 356 check_tag_aligned(env, ptr, ra); 357 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 358 } 359 360 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 361 uintptr_t ra, stg_store1 store1) 362 { 363 int mmu_idx = arm_env_mmu_index(env); 364 int tag = allocation_tag_from_addr(xt); 365 uint8_t *mem1, *mem2; 366 367 check_tag_aligned(env, ptr, ra); 368 369 /* 370 * Trap if accessing an invalid page(s). 371 * This takes priority over !allocation_tag_access_enabled. 372 */ 373 if (ptr & TAG_GRANULE) { 374 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 375 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 376 TAG_GRANULE, MMU_DATA_STORE, ra); 377 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 378 MMU_DATA_STORE, TAG_GRANULE, 379 MMU_DATA_STORE, ra); 380 381 /* Store if page(s) support tags. */ 382 if (mem1) { 383 store1(TAG_GRANULE, mem1, tag); 384 } 385 if (mem2) { 386 store1(0, mem2, tag); 387 } 388 } else { 389 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 390 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 391 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 392 if (mem1) { 393 tag |= tag << 4; 394 qatomic_set(mem1, tag); 395 } 396 } 397 } 398 399 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 400 { 401 do_st2g(env, ptr, xt, GETPC(), store_tag1); 402 } 403 404 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 405 { 406 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 407 } 408 409 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 410 { 411 int mmu_idx = arm_env_mmu_index(env); 412 uintptr_t ra = GETPC(); 413 int in_page = -(ptr | TARGET_PAGE_MASK); 414 415 check_tag_aligned(env, ptr, ra); 416 417 if (likely(in_page >= 2 * TAG_GRANULE)) { 418 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 419 } else { 420 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 421 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 422 } 423 } 424 425 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 426 { 427 int mmu_idx = arm_env_mmu_index(env); 428 uintptr_t ra = GETPC(); 429 int gm_bs = env_archcpu(env)->gm_blocksize; 430 int gm_bs_bytes = 4 << gm_bs; 431 void *tag_mem; 432 uint64_t ret; 433 int shift; 434 435 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 436 437 /* Trap if accessing an invalid page. */ 438 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 439 gm_bs_bytes, MMU_DATA_LOAD, ra); 440 441 /* The tag is squashed to zero if the page does not support tags. */ 442 if (!tag_mem) { 443 return 0; 444 } 445 446 /* 447 * The ordering of elements within the word corresponds to 448 * a little-endian operation. Computation of shift comes from 449 * 450 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 451 * data<index*4+3:index*4> = tag 452 * 453 * Because of the alignment of ptr above, BS=6 has shift=0. 454 * All memory operations are aligned. Defer support for BS=2, 455 * requiring insertion or extraction of a nibble, until we 456 * support a cpu that requires it. 457 */ 458 switch (gm_bs) { 459 case 3: 460 /* 32 bytes -> 2 tags -> 8 result bits */ 461 ret = *(uint8_t *)tag_mem; 462 break; 463 case 4: 464 /* 64 bytes -> 4 tags -> 16 result bits */ 465 ret = cpu_to_le16(*(uint16_t *)tag_mem); 466 break; 467 case 5: 468 /* 128 bytes -> 8 tags -> 32 result bits */ 469 ret = cpu_to_le32(*(uint32_t *)tag_mem); 470 break; 471 case 6: 472 /* 256 bytes -> 16 tags -> 64 result bits */ 473 return cpu_to_le64(*(uint64_t *)tag_mem); 474 default: 475 /* 476 * CPU configured with unsupported/invalid gm blocksize. 477 * This is detected early in arm_cpu_realizefn. 478 */ 479 g_assert_not_reached(); 480 } 481 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 482 return ret << shift; 483 } 484 485 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 486 { 487 int mmu_idx = arm_env_mmu_index(env); 488 uintptr_t ra = GETPC(); 489 int gm_bs = env_archcpu(env)->gm_blocksize; 490 int gm_bs_bytes = 4 << gm_bs; 491 void *tag_mem; 492 int shift; 493 494 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 495 496 /* Trap if accessing an invalid page. */ 497 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 498 gm_bs_bytes, MMU_DATA_LOAD, ra); 499 500 /* 501 * Tag store only happens if the page support tags, 502 * and if the OS has enabled access to the tags. 503 */ 504 if (!tag_mem) { 505 return; 506 } 507 508 /* See LDGM for comments on BS and on shift. */ 509 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 510 val >>= shift; 511 switch (gm_bs) { 512 case 3: 513 /* 32 bytes -> 2 tags -> 8 result bits */ 514 *(uint8_t *)tag_mem = val; 515 break; 516 case 4: 517 /* 64 bytes -> 4 tags -> 16 result bits */ 518 *(uint16_t *)tag_mem = cpu_to_le16(val); 519 break; 520 case 5: 521 /* 128 bytes -> 8 tags -> 32 result bits */ 522 *(uint32_t *)tag_mem = cpu_to_le32(val); 523 break; 524 case 6: 525 /* 256 bytes -> 16 tags -> 64 result bits */ 526 *(uint64_t *)tag_mem = cpu_to_le64(val); 527 break; 528 default: 529 /* cpu configured with unsupported gm blocksize. */ 530 g_assert_not_reached(); 531 } 532 } 533 534 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 535 { 536 uintptr_t ra = GETPC(); 537 int mmu_idx = arm_env_mmu_index(env); 538 int log2_dcz_bytes, log2_tag_bytes; 539 intptr_t dcz_bytes, tag_bytes; 540 uint8_t *mem; 541 542 /* 543 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 544 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 545 * to make sure that we can access one complete tag byte here. 546 */ 547 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 548 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 549 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 550 tag_bytes = (intptr_t)1 << log2_tag_bytes; 551 ptr &= -dcz_bytes; 552 553 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 554 MMU_DATA_STORE, ra); 555 if (mem) { 556 int tag_pair = (val & 0xf) * 0x11; 557 memset(mem, tag_pair, tag_bytes); 558 } 559 } 560 561 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 562 uint64_t dirty_ptr, uintptr_t ra) 563 { 564 int is_write, syn; 565 566 env->exception.vaddress = dirty_ptr; 567 568 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 569 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 570 0x11); 571 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 572 g_assert_not_reached(); 573 } 574 575 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 576 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 577 { 578 int select; 579 580 if (regime_has_2_ranges(arm_mmu_idx)) { 581 select = extract64(dirty_ptr, 55, 1); 582 } else { 583 select = 0; 584 } 585 env->cp15.tfsr_el[el] |= 1 << select; 586 #ifdef CONFIG_USER_ONLY 587 /* 588 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 589 * which then sends a SIGSEGV when the thread is next scheduled. 590 * This cpu will return to the main loop at the end of the TB, 591 * which is rather sooner than "normal". But the alternative 592 * is waiting until the next syscall. 593 */ 594 qemu_cpu_kick(env_cpu(env)); 595 #endif 596 } 597 598 /* Record a tag check failure. */ 599 void mte_check_fail(CPUARMState *env, uint32_t desc, 600 uint64_t dirty_ptr, uintptr_t ra) 601 { 602 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 603 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 604 int el, reg_el, tcf; 605 uint64_t sctlr; 606 607 reg_el = regime_el(env, arm_mmu_idx); 608 sctlr = env->cp15.sctlr_el[reg_el]; 609 610 switch (arm_mmu_idx) { 611 case ARMMMUIdx_E10_0: 612 case ARMMMUIdx_E20_0: 613 el = 0; 614 tcf = extract64(sctlr, 38, 2); 615 break; 616 default: 617 el = reg_el; 618 tcf = extract64(sctlr, 40, 2); 619 } 620 621 switch (tcf) { 622 case 1: 623 /* Tag check fail causes a synchronous exception. */ 624 mte_sync_check_fail(env, desc, dirty_ptr, ra); 625 break; 626 627 case 0: 628 /* 629 * Tag check fail does not affect the PE. 630 * We eliminate this case by not setting MTE_ACTIVE 631 * in tb_flags, so that we never make this runtime call. 632 */ 633 g_assert_not_reached(); 634 635 case 2: 636 /* Tag check fail causes asynchronous flag set. */ 637 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 638 break; 639 640 case 3: 641 /* 642 * Tag check fail causes asynchronous flag set for stores, or 643 * a synchronous exception for loads. 644 */ 645 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 646 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 647 } else { 648 mte_sync_check_fail(env, desc, dirty_ptr, ra); 649 } 650 break; 651 } 652 } 653 654 /** 655 * checkN: 656 * @tag: tag memory to test 657 * @odd: true to begin testing at tags at odd nibble 658 * @cmp: the tag to compare against 659 * @count: number of tags to test 660 * 661 * Return the number of successful tests. 662 * Thus a return value < @count indicates a failure. 663 * 664 * A note about sizes: count is expected to be small. 665 * 666 * The most common use will be LDP/STP of two integer registers, 667 * which means 16 bytes of memory touching at most 2 tags, but 668 * often the access is aligned and thus just 1 tag. 669 * 670 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 671 * touching at most 5 tags. SVE LDR/STR (vector) with the default 672 * vector length is also 64 bytes; the maximum architectural length 673 * is 256 bytes touching at most 9 tags. 674 * 675 * The loop below uses 7 logical operations and 1 memory operation 676 * per tag pair. An implementation that loads an aligned word and 677 * uses masking to ignore adjacent tags requires 18 logical operations 678 * and thus does not begin to pay off until 6 tags. 679 * Which, according to the survey above, is unlikely to be common. 680 */ 681 static int checkN(uint8_t *mem, int odd, int cmp, int count) 682 { 683 int n = 0, diff; 684 685 /* Replicate the test tag and compare. */ 686 cmp *= 0x11; 687 diff = *mem++ ^ cmp; 688 689 if (odd) { 690 goto start_odd; 691 } 692 693 while (1) { 694 /* Test even tag. */ 695 if (unlikely((diff) & 0x0f)) { 696 break; 697 } 698 if (++n == count) { 699 break; 700 } 701 702 start_odd: 703 /* Test odd tag. */ 704 if (unlikely((diff) & 0xf0)) { 705 break; 706 } 707 if (++n == count) { 708 break; 709 } 710 711 diff = *mem++ ^ cmp; 712 } 713 return n; 714 } 715 716 /** 717 * checkNrev: 718 * @tag: tag memory to test 719 * @odd: true to begin testing at tags at odd nibble 720 * @cmp: the tag to compare against 721 * @count: number of tags to test 722 * 723 * Return the number of successful tests. 724 * Thus a return value < @count indicates a failure. 725 * 726 * This is like checkN, but it runs backwards, checking the 727 * tags starting with @tag and then the tags preceding it. 728 * This is needed by the backwards-memory-copying operations. 729 */ 730 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 731 { 732 int n = 0, diff; 733 734 /* Replicate the test tag and compare. */ 735 cmp *= 0x11; 736 diff = *mem-- ^ cmp; 737 738 if (!odd) { 739 goto start_even; 740 } 741 742 while (1) { 743 /* Test odd tag. */ 744 if (unlikely((diff) & 0xf0)) { 745 break; 746 } 747 if (++n == count) { 748 break; 749 } 750 751 start_even: 752 /* Test even tag. */ 753 if (unlikely((diff) & 0x0f)) { 754 break; 755 } 756 if (++n == count) { 757 break; 758 } 759 760 diff = *mem-- ^ cmp; 761 } 762 return n; 763 } 764 765 /** 766 * mte_probe_int() - helper for mte_probe and mte_check 767 * @env: CPU environment 768 * @desc: MTEDESC descriptor 769 * @ptr: virtual address of the base of the access 770 * @fault: return virtual address of the first check failure 771 * 772 * Internal routine for both mte_probe and mte_check. 773 * Return zero on failure, filling in *fault. 774 * Return negative on trivial success for tbi disabled. 775 * Return positive on success with tbi enabled. 776 */ 777 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 778 uintptr_t ra, uint64_t *fault) 779 { 780 int mmu_idx, ptr_tag, bit55; 781 uint64_t ptr_last, prev_page, next_page; 782 uint64_t tag_first, tag_last; 783 uint32_t sizem1, tag_count, n, c; 784 uint8_t *mem1, *mem2; 785 MMUAccessType type; 786 787 bit55 = extract64(ptr, 55, 1); 788 *fault = ptr; 789 790 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 791 if (unlikely(!tbi_check(desc, bit55))) { 792 return -1; 793 } 794 795 ptr_tag = allocation_tag_from_addr(ptr); 796 797 if (tcma_check(desc, bit55, ptr_tag)) { 798 return 1; 799 } 800 801 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 802 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 803 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 804 805 /* Find the addr of the end of the access */ 806 ptr_last = ptr + sizem1; 807 808 /* Round the bounds to the tag granule, and compute the number of tags. */ 809 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 810 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 811 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 812 813 /* Locate the page boundaries. */ 814 prev_page = ptr & TARGET_PAGE_MASK; 815 next_page = prev_page + TARGET_PAGE_SIZE; 816 817 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 818 /* Memory access stays on one page. */ 819 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 820 MMU_DATA_LOAD, ra); 821 if (!mem1) { 822 return 1; 823 } 824 /* Perform all of the comparisons. */ 825 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 826 } else { 827 /* Memory access crosses to next page. */ 828 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 829 MMU_DATA_LOAD, ra); 830 831 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 832 ptr_last - next_page + 1, 833 MMU_DATA_LOAD, ra); 834 835 /* 836 * Perform all of the comparisons. 837 * Note the possible but unlikely case of the operation spanning 838 * two pages that do not both have tagging enabled. 839 */ 840 n = c = (next_page - tag_first) / TAG_GRANULE; 841 if (mem1) { 842 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 843 } 844 if (n == c) { 845 if (!mem2) { 846 return 1; 847 } 848 n += checkN(mem2, 0, ptr_tag, tag_count - c); 849 } 850 } 851 852 if (likely(n == tag_count)) { 853 return 1; 854 } 855 856 /* 857 * If we failed, we know which granule. For the first granule, the 858 * failure address is @ptr, the first byte accessed. Otherwise the 859 * failure address is the first byte of the nth granule. 860 */ 861 if (n > 0) { 862 *fault = tag_first + n * TAG_GRANULE; 863 } 864 return 0; 865 } 866 867 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 868 { 869 uint64_t fault; 870 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 871 872 if (unlikely(ret == 0)) { 873 mte_check_fail(env, desc, fault, ra); 874 } else if (ret < 0) { 875 return ptr; 876 } 877 return useronly_clean_ptr(ptr); 878 } 879 880 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 881 { 882 /* 883 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 884 * higher than any translation fault. When MTE is disabled, tcg 885 * performs the alignment check during the code generated for the 886 * memory access. With MTE enabled, we must check this here before 887 * raising any translation fault in allocation_tag_mem. 888 */ 889 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 890 if (unlikely(align)) { 891 align = (1u << align) - 1; 892 if (unlikely(ptr & align)) { 893 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 894 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 895 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 896 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 897 } 898 } 899 900 return mte_check(env, desc, ptr, GETPC()); 901 } 902 903 /* 904 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 905 * Returns false if the access is Checked and the check failed. This 906 * is only intended to probe the tag -- the validity of the page must 907 * be checked beforehand. 908 */ 909 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 910 { 911 uint64_t fault; 912 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 913 914 return ret != 0; 915 } 916 917 /* 918 * Perform an MTE checked access for DC_ZVA. 919 */ 920 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 921 { 922 uintptr_t ra = GETPC(); 923 int log2_dcz_bytes, log2_tag_bytes; 924 int mmu_idx, bit55; 925 intptr_t dcz_bytes, tag_bytes, i; 926 void *mem; 927 uint64_t ptr_tag, mem_tag, align_ptr; 928 929 bit55 = extract64(ptr, 55, 1); 930 931 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 932 if (unlikely(!tbi_check(desc, bit55))) { 933 return ptr; 934 } 935 936 ptr_tag = allocation_tag_from_addr(ptr); 937 938 if (tcma_check(desc, bit55, ptr_tag)) { 939 goto done; 940 } 941 942 /* 943 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 944 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 945 * sure that we can access one complete tag byte here. 946 */ 947 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 948 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 949 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 950 tag_bytes = (intptr_t)1 << log2_tag_bytes; 951 align_ptr = ptr & -dcz_bytes; 952 953 /* 954 * Trap if accessing an invalid page. DC_ZVA requires that we supply 955 * the original pointer for an invalid page. But watchpoints require 956 * that we probe the actual space. So do both. 957 */ 958 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 959 (void) probe_write(env, ptr, 1, mmu_idx, ra); 960 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 961 dcz_bytes, MMU_DATA_LOAD, ra); 962 if (!mem) { 963 goto done; 964 } 965 966 /* 967 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 968 * it is quite easy to perform all of the comparisons at once without 969 * any extra masking. 970 * 971 * The most common zva block size is 64; some of the thunderx cpus use 972 * a block size of 128. For user-only, aarch64_max_initfn will set the 973 * block size to 512. Fill out the other cases for future-proofing. 974 * 975 * In order to be able to find the first miscompare later, we want the 976 * tag bytes to be in little-endian order. 977 */ 978 switch (log2_tag_bytes) { 979 case 0: /* zva_blocksize 32 */ 980 mem_tag = *(uint8_t *)mem; 981 ptr_tag *= 0x11u; 982 break; 983 case 1: /* zva_blocksize 64 */ 984 mem_tag = cpu_to_le16(*(uint16_t *)mem); 985 ptr_tag *= 0x1111u; 986 break; 987 case 2: /* zva_blocksize 128 */ 988 mem_tag = cpu_to_le32(*(uint32_t *)mem); 989 ptr_tag *= 0x11111111u; 990 break; 991 case 3: /* zva_blocksize 256 */ 992 mem_tag = cpu_to_le64(*(uint64_t *)mem); 993 ptr_tag *= 0x1111111111111111ull; 994 break; 995 996 default: /* zva_blocksize 512, 1024, 2048 */ 997 ptr_tag *= 0x1111111111111111ull; 998 i = 0; 999 do { 1000 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 1001 if (unlikely(mem_tag != ptr_tag)) { 1002 goto fail; 1003 } 1004 i += 8; 1005 align_ptr += 16 * TAG_GRANULE; 1006 } while (i < tag_bytes); 1007 goto done; 1008 } 1009 1010 if (likely(mem_tag == ptr_tag)) { 1011 goto done; 1012 } 1013 1014 fail: 1015 /* Locate the first nibble that differs. */ 1016 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1017 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1018 1019 done: 1020 return useronly_clean_ptr(ptr); 1021 } 1022 1023 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1024 uint32_t desc) 1025 { 1026 int mmu_idx, tag_count; 1027 uint64_t ptr_tag, tag_first, tag_last; 1028 void *mem; 1029 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1030 uint32_t n; 1031 1032 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1033 /* True probe; this will never fault */ 1034 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1035 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1036 size, MMU_DATA_LOAD, true, 0); 1037 if (!mem) { 1038 return size; 1039 } 1040 1041 /* 1042 * TODO: checkN() is not designed for checks of the size we expect 1043 * for FEAT_MOPS operations, so we should implement this differently. 1044 * Maybe we should do something like 1045 * if (region start and size are aligned nicely) { 1046 * do direct loads of 64 tag bits at a time; 1047 * } else { 1048 * call checkN() 1049 * } 1050 */ 1051 /* Round the bounds to the tag granule, and compute the number of tags. */ 1052 ptr_tag = allocation_tag_from_addr(ptr); 1053 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1054 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1055 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1056 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1057 if (likely(n == tag_count)) { 1058 return size; 1059 } 1060 1061 /* 1062 * Failure; for the first granule, it's at @ptr. Otherwise 1063 * it's at the first byte of the nth granule. Calculate how 1064 * many bytes we can access without hitting that failure. 1065 */ 1066 if (n == 0) { 1067 return 0; 1068 } else { 1069 return n * TAG_GRANULE - (ptr - tag_first); 1070 } 1071 } 1072 1073 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1074 uint32_t desc) 1075 { 1076 int mmu_idx, tag_count; 1077 uint64_t ptr_tag, tag_first, tag_last; 1078 void *mem; 1079 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1080 uint32_t n; 1081 1082 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1083 /* 1084 * True probe; this will never fault. Note that our caller passes 1085 * us a pointer to the end of the region, but allocation_tag_mem_probe() 1086 * wants a pointer to the start. Because we know we don't span a page 1087 * boundary and that allocation_tag_mem_probe() doesn't otherwise care 1088 * about the size, pass in a size of 1 byte. This is simpler than 1089 * adjusting the ptr to point to the start of the region and then having 1090 * to adjust the returned 'mem' to get the end of the tag memory. 1091 */ 1092 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1093 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1094 1, MMU_DATA_LOAD, true, 0); 1095 if (!mem) { 1096 return size; 1097 } 1098 1099 /* 1100 * TODO: checkNrev() is not designed for checks of the size we expect 1101 * for FEAT_MOPS operations, so we should implement this differently. 1102 * Maybe we should do something like 1103 * if (region start and size are aligned nicely) { 1104 * do direct loads of 64 tag bits at a time; 1105 * } else { 1106 * call checkN() 1107 * } 1108 */ 1109 /* Round the bounds to the tag granule, and compute the number of tags. */ 1110 ptr_tag = allocation_tag_from_addr(ptr); 1111 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1112 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1113 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1114 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1115 if (likely(n == tag_count)) { 1116 return size; 1117 } 1118 1119 /* 1120 * Failure; for the first granule, it's at @ptr. Otherwise 1121 * it's at the last byte of the nth granule. Calculate how 1122 * many bytes we can access without hitting that failure. 1123 */ 1124 if (n == 0) { 1125 return 0; 1126 } else { 1127 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1128 } 1129 } 1130 1131 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1132 uint32_t desc) 1133 { 1134 int mmu_idx, tag_count; 1135 uint64_t ptr_tag; 1136 void *mem; 1137 1138 if (!desc) { 1139 /* Tags not actually enabled */ 1140 return; 1141 } 1142 1143 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1144 /* True probe: this will never fault */ 1145 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1146 MMU_DATA_STORE, true, 0); 1147 if (!mem) { 1148 return; 1149 } 1150 1151 /* 1152 * We know that ptr and size are both TAG_GRANULE aligned; store 1153 * the tag from the pointer value into the tag memory. 1154 */ 1155 ptr_tag = allocation_tag_from_addr(ptr); 1156 tag_count = size / TAG_GRANULE; 1157 if (ptr & TAG_GRANULE) { 1158 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1159 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1160 mem++; 1161 tag_count--; 1162 } 1163 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1164 if (tag_count & 1) { 1165 /* Final trailing unaligned nibble */ 1166 mem += tag_count / 2; 1167 store_tag1_parallel(0, mem, ptr_tag); 1168 } 1169 } 1170