1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "exec/ram_addr.h" 28 #endif 29 #include "exec/cpu_ldst.h" 30 #include "exec/helper-proto.h" 31 #include "hw/core/tcg-cpu-ops.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #include "mte_helper.h" 35 36 37 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 38 { 39 if (exclude == 0xffff) { 40 return 0; 41 } 42 if (offset == 0) { 43 while (exclude & (1 << tag)) { 44 tag = (tag + 1) & 15; 45 } 46 } else { 47 do { 48 do { 49 tag = (tag + 1) & 15; 50 } while (exclude & (1 << tag)); 51 } while (--offset > 0); 52 } 53 return tag; 54 } 55 56 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx, 57 uint64_t ptr, MMUAccessType ptr_access, 58 int ptr_size, MMUAccessType tag_access, 59 bool probe, uintptr_t ra) 60 { 61 #ifdef CONFIG_USER_ONLY 62 uint64_t clean_ptr = useronly_clean_ptr(ptr); 63 int flags = page_get_flags(clean_ptr); 64 uint8_t *tags; 65 uintptr_t index; 66 67 assert(!(probe && ra)); 68 69 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 70 if (probe) { 71 return NULL; 72 } 73 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 74 !(flags & PAGE_VALID), ra); 75 } 76 77 /* Require both MAP_ANON and PROT_MTE for the page. */ 78 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 79 return NULL; 80 } 81 82 tags = page_get_target_data(clean_ptr); 83 84 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 85 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 86 return tags + index; 87 #else 88 CPUTLBEntryFull *full; 89 MemTxAttrs attrs; 90 int in_page, flags; 91 hwaddr ptr_paddr, tag_paddr, xlat; 92 MemoryRegion *mr; 93 ARMASIdx tag_asi; 94 AddressSpace *tag_as; 95 void *host; 96 97 /* 98 * Probe the first byte of the virtual address. This raises an 99 * exception for inaccessible pages, and resolves the virtual address 100 * into the softmmu tlb. 101 * 102 * When RA == 0, this is either a pure probe or a no-fault-expected probe. 103 * Indicate to probe_access_flags no-fault, then either return NULL 104 * for the pure probe, or assert that we received a valid page for the 105 * no-fault-expected probe. 106 */ 107 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 108 ra == 0, &host, &full, ra); 109 if (probe && (flags & TLB_INVALID_MASK)) { 110 return NULL; 111 } 112 assert(!(flags & TLB_INVALID_MASK)); 113 114 /* If the virtual page MemAttr != Tagged, access unchecked. */ 115 if (full->extra.arm.pte_attrs != 0xf0) { 116 return NULL; 117 } 118 119 /* 120 * If not backed by host ram, there is no tag storage: access unchecked. 121 * This is probably a guest os bug though, so log it. 122 */ 123 if (unlikely(flags & TLB_MMIO)) { 124 qemu_log_mask(LOG_GUEST_ERROR, 125 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 126 "but is not backed by host ram\n", ptr); 127 return NULL; 128 } 129 130 /* 131 * Remember these values across the second lookup below, 132 * which may invalidate this pointer via tlb resize. 133 */ 134 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 135 attrs = full->attrs; 136 full = NULL; 137 138 /* 139 * The Normal memory access can extend to the next page. E.g. a single 140 * 8-byte access to the last byte of a page will check only the last 141 * tag on the first page. 142 * Any page access exception has priority over tag check exception. 143 */ 144 in_page = -(ptr | TARGET_PAGE_MASK); 145 if (unlikely(ptr_size > in_page)) { 146 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 147 ptr_mmu_idx, ra == 0, &host, &full, ra); 148 assert(!(flags & TLB_INVALID_MASK)); 149 } 150 151 /* Any debug exception has priority over a tag check exception. */ 152 if (!probe && unlikely(flags & TLB_WATCHPOINT)) { 153 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 154 assert(ra != 0); 155 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 156 } 157 158 /* Convert to the physical address in tag space. */ 159 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 160 161 /* Look up the address in tag space. */ 162 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 163 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 164 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 165 tag_access == MMU_DATA_STORE, attrs); 166 167 /* 168 * Note that @mr will never be NULL. If there is nothing in the address 169 * space at @tag_paddr, the translation will return the unallocated memory 170 * region. For our purposes, the result must be ram. 171 */ 172 if (unlikely(!memory_region_is_ram(mr))) { 173 /* ??? Failure is a board configuration error. */ 174 qemu_log_mask(LOG_UNIMP, 175 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 176 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 177 tag_paddr, ptr_paddr); 178 return NULL; 179 } 180 181 /* 182 * Ensure the tag memory is dirty on write, for migration. 183 * Tag memory can never contain code or display memory (vga). 184 */ 185 if (tag_access == MMU_DATA_STORE) { 186 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 187 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 188 } 189 190 return memory_region_get_ram_ptr(mr) + xlat; 191 #endif 192 } 193 194 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 195 uint64_t ptr, MMUAccessType ptr_access, 196 int ptr_size, MMUAccessType tag_access, 197 uintptr_t ra) 198 { 199 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access, 200 ptr_size, tag_access, false, ra); 201 } 202 203 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 204 { 205 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 206 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 207 int start = extract32(env->cp15.rgsr_el1, 0, 4); 208 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 209 int offset, i, rtag; 210 211 /* 212 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 213 * deterministic algorithm. Except that with RRND==1 the kernel is 214 * not required to have set RGSR_EL1.SEED != 0, which is required for 215 * the deterministic algorithm to function. So we force a non-zero 216 * SEED for that case. 217 */ 218 if (unlikely(seed == 0) && rrnd) { 219 do { 220 Error *err = NULL; 221 uint16_t two; 222 223 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 224 /* 225 * Failed, for unknown reasons in the crypto subsystem. 226 * Best we can do is log the reason and use a constant seed. 227 */ 228 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 229 error_get_pretty(err)); 230 error_free(err); 231 two = 1; 232 } 233 seed = two; 234 } while (seed == 0); 235 } 236 237 /* RandomTag */ 238 for (i = offset = 0; i < 4; ++i) { 239 /* NextRandomTagBit */ 240 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 241 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 242 seed = (top << 15) | (seed >> 1); 243 offset |= top << i; 244 } 245 rtag = choose_nonexcluded_tag(start, offset, exclude); 246 env->cp15.rgsr_el1 = rtag | (seed << 8); 247 248 return address_with_allocation_tag(rn, rtag); 249 } 250 251 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 252 int32_t offset, uint32_t tag_offset) 253 { 254 int start_tag = allocation_tag_from_addr(ptr); 255 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 256 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 257 258 return address_with_allocation_tag(ptr + offset, rtag); 259 } 260 261 int load_tag1(uint64_t ptr, uint8_t *mem) 262 { 263 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 264 return extract32(*mem, ofs, 4); 265 } 266 267 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 268 { 269 int mmu_idx = arm_env_mmu_index(env); 270 uint8_t *mem; 271 int rtag = 0; 272 273 /* Trap if accessing an invalid page. */ 274 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 275 MMU_DATA_LOAD, GETPC()); 276 277 /* Load if page supports tags. */ 278 if (mem) { 279 rtag = load_tag1(ptr, mem); 280 } 281 282 return address_with_allocation_tag(xt, rtag); 283 } 284 285 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 286 { 287 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 288 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 289 arm_env_mmu_index(env), ra); 290 g_assert_not_reached(); 291 } 292 } 293 294 /* For use in a non-parallel context, store to the given nibble. */ 295 void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 296 { 297 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 298 *mem = deposit32(*mem, ofs, 4, tag); 299 } 300 301 /* For use in a parallel context, atomically store to the given nibble. */ 302 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 303 { 304 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 305 uint8_t old = qatomic_read(mem); 306 307 while (1) { 308 uint8_t new = deposit32(old, ofs, 4, tag); 309 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 310 if (likely(cmp == old)) { 311 return; 312 } 313 old = cmp; 314 } 315 } 316 317 typedef void stg_store1(uint64_t, uint8_t *, int); 318 319 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 320 uintptr_t ra, stg_store1 store1) 321 { 322 int mmu_idx = arm_env_mmu_index(env); 323 uint8_t *mem; 324 325 check_tag_aligned(env, ptr, ra); 326 327 /* Trap if accessing an invalid page. */ 328 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 329 MMU_DATA_STORE, ra); 330 331 /* Store if page supports tags. */ 332 if (mem) { 333 store1(ptr, mem, allocation_tag_from_addr(xt)); 334 } 335 } 336 337 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 338 { 339 do_stg(env, ptr, xt, GETPC(), store_tag1); 340 } 341 342 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 343 { 344 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 345 } 346 347 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 348 { 349 int mmu_idx = arm_env_mmu_index(env); 350 uintptr_t ra = GETPC(); 351 352 check_tag_aligned(env, ptr, ra); 353 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 354 } 355 356 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 357 uintptr_t ra, stg_store1 store1) 358 { 359 int mmu_idx = arm_env_mmu_index(env); 360 int tag = allocation_tag_from_addr(xt); 361 uint8_t *mem1, *mem2; 362 363 check_tag_aligned(env, ptr, ra); 364 365 /* 366 * Trap if accessing an invalid page(s). 367 * This takes priority over !allocation_tag_access_enabled. 368 */ 369 if (ptr & TAG_GRANULE) { 370 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 371 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 372 TAG_GRANULE, MMU_DATA_STORE, ra); 373 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 374 MMU_DATA_STORE, TAG_GRANULE, 375 MMU_DATA_STORE, ra); 376 377 /* Store if page(s) support tags. */ 378 if (mem1) { 379 store1(TAG_GRANULE, mem1, tag); 380 } 381 if (mem2) { 382 store1(0, mem2, tag); 383 } 384 } else { 385 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 386 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 387 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 388 if (mem1) { 389 tag |= tag << 4; 390 qatomic_set(mem1, tag); 391 } 392 } 393 } 394 395 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 396 { 397 do_st2g(env, ptr, xt, GETPC(), store_tag1); 398 } 399 400 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 401 { 402 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 403 } 404 405 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 406 { 407 int mmu_idx = arm_env_mmu_index(env); 408 uintptr_t ra = GETPC(); 409 int in_page = -(ptr | TARGET_PAGE_MASK); 410 411 check_tag_aligned(env, ptr, ra); 412 413 if (likely(in_page >= 2 * TAG_GRANULE)) { 414 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 415 } else { 416 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 417 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 418 } 419 } 420 421 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 422 { 423 int mmu_idx = arm_env_mmu_index(env); 424 uintptr_t ra = GETPC(); 425 int gm_bs = env_archcpu(env)->gm_blocksize; 426 int gm_bs_bytes = 4 << gm_bs; 427 void *tag_mem; 428 uint64_t ret; 429 int shift; 430 431 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 432 433 /* Trap if accessing an invalid page. */ 434 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 435 gm_bs_bytes, MMU_DATA_LOAD, ra); 436 437 /* The tag is squashed to zero if the page does not support tags. */ 438 if (!tag_mem) { 439 return 0; 440 } 441 442 /* 443 * The ordering of elements within the word corresponds to 444 * a little-endian operation. Computation of shift comes from 445 * 446 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 447 * data<index*4+3:index*4> = tag 448 * 449 * Because of the alignment of ptr above, BS=6 has shift=0. 450 * All memory operations are aligned. Defer support for BS=2, 451 * requiring insertion or extraction of a nibble, until we 452 * support a cpu that requires it. 453 */ 454 switch (gm_bs) { 455 case 3: 456 /* 32 bytes -> 2 tags -> 8 result bits */ 457 ret = *(uint8_t *)tag_mem; 458 break; 459 case 4: 460 /* 64 bytes -> 4 tags -> 16 result bits */ 461 ret = cpu_to_le16(*(uint16_t *)tag_mem); 462 break; 463 case 5: 464 /* 128 bytes -> 8 tags -> 32 result bits */ 465 ret = cpu_to_le32(*(uint32_t *)tag_mem); 466 break; 467 case 6: 468 /* 256 bytes -> 16 tags -> 64 result bits */ 469 return cpu_to_le64(*(uint64_t *)tag_mem); 470 default: 471 /* 472 * CPU configured with unsupported/invalid gm blocksize. 473 * This is detected early in arm_cpu_realizefn. 474 */ 475 g_assert_not_reached(); 476 } 477 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 478 return ret << shift; 479 } 480 481 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 482 { 483 int mmu_idx = arm_env_mmu_index(env); 484 uintptr_t ra = GETPC(); 485 int gm_bs = env_archcpu(env)->gm_blocksize; 486 int gm_bs_bytes = 4 << gm_bs; 487 void *tag_mem; 488 int shift; 489 490 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 491 492 /* Trap if accessing an invalid page. */ 493 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 494 gm_bs_bytes, MMU_DATA_LOAD, ra); 495 496 /* 497 * Tag store only happens if the page support tags, 498 * and if the OS has enabled access to the tags. 499 */ 500 if (!tag_mem) { 501 return; 502 } 503 504 /* See LDGM for comments on BS and on shift. */ 505 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 506 val >>= shift; 507 switch (gm_bs) { 508 case 3: 509 /* 32 bytes -> 2 tags -> 8 result bits */ 510 *(uint8_t *)tag_mem = val; 511 break; 512 case 4: 513 /* 64 bytes -> 4 tags -> 16 result bits */ 514 *(uint16_t *)tag_mem = cpu_to_le16(val); 515 break; 516 case 5: 517 /* 128 bytes -> 8 tags -> 32 result bits */ 518 *(uint32_t *)tag_mem = cpu_to_le32(val); 519 break; 520 case 6: 521 /* 256 bytes -> 16 tags -> 64 result bits */ 522 *(uint64_t *)tag_mem = cpu_to_le64(val); 523 break; 524 default: 525 /* cpu configured with unsupported gm blocksize. */ 526 g_assert_not_reached(); 527 } 528 } 529 530 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 531 { 532 uintptr_t ra = GETPC(); 533 int mmu_idx = arm_env_mmu_index(env); 534 int log2_dcz_bytes, log2_tag_bytes; 535 intptr_t dcz_bytes, tag_bytes; 536 uint8_t *mem; 537 538 /* 539 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 540 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 541 * to make sure that we can access one complete tag byte here. 542 */ 543 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 544 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 545 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 546 tag_bytes = (intptr_t)1 << log2_tag_bytes; 547 ptr &= -dcz_bytes; 548 549 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 550 MMU_DATA_STORE, ra); 551 if (mem) { 552 int tag_pair = (val & 0xf) * 0x11; 553 memset(mem, tag_pair, tag_bytes); 554 } 555 } 556 557 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 558 uint64_t dirty_ptr, uintptr_t ra) 559 { 560 int is_write, syn; 561 562 env->exception.vaddress = dirty_ptr; 563 564 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 565 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 566 0x11); 567 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 568 g_assert_not_reached(); 569 } 570 571 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 572 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 573 { 574 int select; 575 576 if (regime_has_2_ranges(arm_mmu_idx)) { 577 select = extract64(dirty_ptr, 55, 1); 578 } else { 579 select = 0; 580 } 581 env->cp15.tfsr_el[el] |= 1 << select; 582 #ifdef CONFIG_USER_ONLY 583 /* 584 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 585 * which then sends a SIGSEGV when the thread is next scheduled. 586 * This cpu will return to the main loop at the end of the TB, 587 * which is rather sooner than "normal". But the alternative 588 * is waiting until the next syscall. 589 */ 590 qemu_cpu_kick(env_cpu(env)); 591 #endif 592 } 593 594 /* Record a tag check failure. */ 595 void mte_check_fail(CPUARMState *env, uint32_t desc, 596 uint64_t dirty_ptr, uintptr_t ra) 597 { 598 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 599 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 600 int el, reg_el, tcf; 601 uint64_t sctlr; 602 603 reg_el = regime_el(env, arm_mmu_idx); 604 sctlr = env->cp15.sctlr_el[reg_el]; 605 606 switch (arm_mmu_idx) { 607 case ARMMMUIdx_E10_0: 608 case ARMMMUIdx_E20_0: 609 el = 0; 610 tcf = extract64(sctlr, 38, 2); 611 break; 612 default: 613 el = reg_el; 614 tcf = extract64(sctlr, 40, 2); 615 } 616 617 switch (tcf) { 618 case 1: 619 /* Tag check fail causes a synchronous exception. */ 620 mte_sync_check_fail(env, desc, dirty_ptr, ra); 621 break; 622 623 case 0: 624 /* 625 * Tag check fail does not affect the PE. 626 * We eliminate this case by not setting MTE_ACTIVE 627 * in tb_flags, so that we never make this runtime call. 628 */ 629 g_assert_not_reached(); 630 631 case 2: 632 /* Tag check fail causes asynchronous flag set. */ 633 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 634 break; 635 636 case 3: 637 /* 638 * Tag check fail causes asynchronous flag set for stores, or 639 * a synchronous exception for loads. 640 */ 641 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 642 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 643 } else { 644 mte_sync_check_fail(env, desc, dirty_ptr, ra); 645 } 646 break; 647 } 648 } 649 650 /** 651 * checkN: 652 * @tag: tag memory to test 653 * @odd: true to begin testing at tags at odd nibble 654 * @cmp: the tag to compare against 655 * @count: number of tags to test 656 * 657 * Return the number of successful tests. 658 * Thus a return value < @count indicates a failure. 659 * 660 * A note about sizes: count is expected to be small. 661 * 662 * The most common use will be LDP/STP of two integer registers, 663 * which means 16 bytes of memory touching at most 2 tags, but 664 * often the access is aligned and thus just 1 tag. 665 * 666 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 667 * touching at most 5 tags. SVE LDR/STR (vector) with the default 668 * vector length is also 64 bytes; the maximum architectural length 669 * is 256 bytes touching at most 9 tags. 670 * 671 * The loop below uses 7 logical operations and 1 memory operation 672 * per tag pair. An implementation that loads an aligned word and 673 * uses masking to ignore adjacent tags requires 18 logical operations 674 * and thus does not begin to pay off until 6 tags. 675 * Which, according to the survey above, is unlikely to be common. 676 */ 677 static int checkN(uint8_t *mem, int odd, int cmp, int count) 678 { 679 int n = 0, diff; 680 681 /* Replicate the test tag and compare. */ 682 cmp *= 0x11; 683 diff = *mem++ ^ cmp; 684 685 if (odd) { 686 goto start_odd; 687 } 688 689 while (1) { 690 /* Test even tag. */ 691 if (unlikely((diff) & 0x0f)) { 692 break; 693 } 694 if (++n == count) { 695 break; 696 } 697 698 start_odd: 699 /* Test odd tag. */ 700 if (unlikely((diff) & 0xf0)) { 701 break; 702 } 703 if (++n == count) { 704 break; 705 } 706 707 diff = *mem++ ^ cmp; 708 } 709 return n; 710 } 711 712 /** 713 * checkNrev: 714 * @tag: tag memory to test 715 * @odd: true to begin testing at tags at odd nibble 716 * @cmp: the tag to compare against 717 * @count: number of tags to test 718 * 719 * Return the number of successful tests. 720 * Thus a return value < @count indicates a failure. 721 * 722 * This is like checkN, but it runs backwards, checking the 723 * tags starting with @tag and then the tags preceding it. 724 * This is needed by the backwards-memory-copying operations. 725 */ 726 static int checkNrev(uint8_t *mem, int odd, int cmp, int count) 727 { 728 int n = 0, diff; 729 730 /* Replicate the test tag and compare. */ 731 cmp *= 0x11; 732 diff = *mem-- ^ cmp; 733 734 if (!odd) { 735 goto start_even; 736 } 737 738 while (1) { 739 /* Test odd tag. */ 740 if (unlikely((diff) & 0xf0)) { 741 break; 742 } 743 if (++n == count) { 744 break; 745 } 746 747 start_even: 748 /* Test even tag. */ 749 if (unlikely((diff) & 0x0f)) { 750 break; 751 } 752 if (++n == count) { 753 break; 754 } 755 756 diff = *mem-- ^ cmp; 757 } 758 return n; 759 } 760 761 /** 762 * mte_probe_int() - helper for mte_probe and mte_check 763 * @env: CPU environment 764 * @desc: MTEDESC descriptor 765 * @ptr: virtual address of the base of the access 766 * @fault: return virtual address of the first check failure 767 * 768 * Internal routine for both mte_probe and mte_check. 769 * Return zero on failure, filling in *fault. 770 * Return negative on trivial success for tbi disabled. 771 * Return positive on success with tbi enabled. 772 */ 773 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 774 uintptr_t ra, uint64_t *fault) 775 { 776 int mmu_idx, ptr_tag, bit55; 777 uint64_t ptr_last, prev_page, next_page; 778 uint64_t tag_first, tag_last; 779 uint32_t sizem1, tag_count, n, c; 780 uint8_t *mem1, *mem2; 781 MMUAccessType type; 782 783 bit55 = extract64(ptr, 55, 1); 784 *fault = ptr; 785 786 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 787 if (unlikely(!tbi_check(desc, bit55))) { 788 return -1; 789 } 790 791 ptr_tag = allocation_tag_from_addr(ptr); 792 793 if (tcma_check(desc, bit55, ptr_tag)) { 794 return 1; 795 } 796 797 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 798 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 799 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 800 801 /* Find the addr of the end of the access */ 802 ptr_last = ptr + sizem1; 803 804 /* Round the bounds to the tag granule, and compute the number of tags. */ 805 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 806 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 807 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 808 809 /* Locate the page boundaries. */ 810 prev_page = ptr & TARGET_PAGE_MASK; 811 next_page = prev_page + TARGET_PAGE_SIZE; 812 813 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 814 /* Memory access stays on one page. */ 815 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 816 MMU_DATA_LOAD, ra); 817 if (!mem1) { 818 return 1; 819 } 820 /* Perform all of the comparisons. */ 821 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 822 } else { 823 /* Memory access crosses to next page. */ 824 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 825 MMU_DATA_LOAD, ra); 826 827 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 828 ptr_last - next_page + 1, 829 MMU_DATA_LOAD, ra); 830 831 /* 832 * Perform all of the comparisons. 833 * Note the possible but unlikely case of the operation spanning 834 * two pages that do not both have tagging enabled. 835 */ 836 n = c = (next_page - tag_first) / TAG_GRANULE; 837 if (mem1) { 838 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 839 } 840 if (n == c) { 841 if (!mem2) { 842 return 1; 843 } 844 n += checkN(mem2, 0, ptr_tag, tag_count - c); 845 } 846 } 847 848 if (likely(n == tag_count)) { 849 return 1; 850 } 851 852 /* 853 * If we failed, we know which granule. For the first granule, the 854 * failure address is @ptr, the first byte accessed. Otherwise the 855 * failure address is the first byte of the nth granule. 856 */ 857 if (n > 0) { 858 *fault = tag_first + n * TAG_GRANULE; 859 } 860 return 0; 861 } 862 863 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 864 { 865 uint64_t fault; 866 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 867 868 if (unlikely(ret == 0)) { 869 mte_check_fail(env, desc, fault, ra); 870 } else if (ret < 0) { 871 return ptr; 872 } 873 return useronly_clean_ptr(ptr); 874 } 875 876 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 877 { 878 /* 879 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 880 * higher than any translation fault. When MTE is disabled, tcg 881 * performs the alignment check during the code generated for the 882 * memory access. With MTE enabled, we must check this here before 883 * raising any translation fault in allocation_tag_mem. 884 */ 885 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 886 if (unlikely(align)) { 887 align = (1u << align) - 1; 888 if (unlikely(ptr & align)) { 889 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 890 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 891 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 892 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 893 } 894 } 895 896 return mte_check(env, desc, ptr, GETPC()); 897 } 898 899 /* 900 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 901 * Returns false if the access is Checked and the check failed. This 902 * is only intended to probe the tag -- the validity of the page must 903 * be checked beforehand. 904 */ 905 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 906 { 907 uint64_t fault; 908 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 909 910 return ret != 0; 911 } 912 913 /* 914 * Perform an MTE checked access for DC_ZVA. 915 */ 916 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 917 { 918 uintptr_t ra = GETPC(); 919 int log2_dcz_bytes, log2_tag_bytes; 920 int mmu_idx, bit55; 921 intptr_t dcz_bytes, tag_bytes, i; 922 void *mem; 923 uint64_t ptr_tag, mem_tag, align_ptr; 924 925 bit55 = extract64(ptr, 55, 1); 926 927 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 928 if (unlikely(!tbi_check(desc, bit55))) { 929 return ptr; 930 } 931 932 ptr_tag = allocation_tag_from_addr(ptr); 933 934 if (tcma_check(desc, bit55, ptr_tag)) { 935 goto done; 936 } 937 938 /* 939 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 940 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 941 * sure that we can access one complete tag byte here. 942 */ 943 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 944 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 945 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 946 tag_bytes = (intptr_t)1 << log2_tag_bytes; 947 align_ptr = ptr & -dcz_bytes; 948 949 /* 950 * Trap if accessing an invalid page. DC_ZVA requires that we supply 951 * the original pointer for an invalid page. But watchpoints require 952 * that we probe the actual space. So do both. 953 */ 954 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 955 (void) probe_write(env, ptr, 1, mmu_idx, ra); 956 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 957 dcz_bytes, MMU_DATA_LOAD, ra); 958 if (!mem) { 959 goto done; 960 } 961 962 /* 963 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 964 * it is quite easy to perform all of the comparisons at once without 965 * any extra masking. 966 * 967 * The most common zva block size is 64; some of the thunderx cpus use 968 * a block size of 128. For user-only, aarch64_max_initfn will set the 969 * block size to 512. Fill out the other cases for future-proofing. 970 * 971 * In order to be able to find the first miscompare later, we want the 972 * tag bytes to be in little-endian order. 973 */ 974 switch (log2_tag_bytes) { 975 case 0: /* zva_blocksize 32 */ 976 mem_tag = *(uint8_t *)mem; 977 ptr_tag *= 0x11u; 978 break; 979 case 1: /* zva_blocksize 64 */ 980 mem_tag = cpu_to_le16(*(uint16_t *)mem); 981 ptr_tag *= 0x1111u; 982 break; 983 case 2: /* zva_blocksize 128 */ 984 mem_tag = cpu_to_le32(*(uint32_t *)mem); 985 ptr_tag *= 0x11111111u; 986 break; 987 case 3: /* zva_blocksize 256 */ 988 mem_tag = cpu_to_le64(*(uint64_t *)mem); 989 ptr_tag *= 0x1111111111111111ull; 990 break; 991 992 default: /* zva_blocksize 512, 1024, 2048 */ 993 ptr_tag *= 0x1111111111111111ull; 994 i = 0; 995 do { 996 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 997 if (unlikely(mem_tag != ptr_tag)) { 998 goto fail; 999 } 1000 i += 8; 1001 align_ptr += 16 * TAG_GRANULE; 1002 } while (i < tag_bytes); 1003 goto done; 1004 } 1005 1006 if (likely(mem_tag == ptr_tag)) { 1007 goto done; 1008 } 1009 1010 fail: 1011 /* Locate the first nibble that differs. */ 1012 i = ctz64(mem_tag ^ ptr_tag) >> 4; 1013 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 1014 1015 done: 1016 return useronly_clean_ptr(ptr); 1017 } 1018 1019 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size, 1020 uint32_t desc) 1021 { 1022 int mmu_idx, tag_count; 1023 uint64_t ptr_tag, tag_first, tag_last; 1024 void *mem; 1025 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1026 uint32_t n; 1027 1028 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1029 /* True probe; this will never fault */ 1030 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1031 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1032 size, MMU_DATA_LOAD, true, 0); 1033 if (!mem) { 1034 return size; 1035 } 1036 1037 /* 1038 * TODO: checkN() is not designed for checks of the size we expect 1039 * for FEAT_MOPS operations, so we should implement this differently. 1040 * Maybe we should do something like 1041 * if (region start and size are aligned nicely) { 1042 * do direct loads of 64 tag bits at a time; 1043 * } else { 1044 * call checkN() 1045 * } 1046 */ 1047 /* Round the bounds to the tag granule, and compute the number of tags. */ 1048 ptr_tag = allocation_tag_from_addr(ptr); 1049 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1050 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE); 1051 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1052 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1053 if (likely(n == tag_count)) { 1054 return size; 1055 } 1056 1057 /* 1058 * Failure; for the first granule, it's at @ptr. Otherwise 1059 * it's at the first byte of the nth granule. Calculate how 1060 * many bytes we can access without hitting that failure. 1061 */ 1062 if (n == 0) { 1063 return 0; 1064 } else { 1065 return n * TAG_GRANULE - (ptr - tag_first); 1066 } 1067 } 1068 1069 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size, 1070 uint32_t desc) 1071 { 1072 int mmu_idx, tag_count; 1073 uint64_t ptr_tag, tag_first, tag_last; 1074 void *mem; 1075 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 1076 uint32_t n; 1077 1078 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1079 /* 1080 * True probe; this will never fault. Note that our caller passes 1081 * us a pointer to the end of the region, but allocation_tag_mem_probe() 1082 * wants a pointer to the start. Because we know we don't span a page 1083 * boundary and that allocation_tag_mem_probe() doesn't otherwise care 1084 * about the size, pass in a size of 1 byte. This is simpler than 1085 * adjusting the ptr to point to the start of the region and then having 1086 * to adjust the returned 'mem' to get the end of the tag memory. 1087 */ 1088 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, 1089 w ? MMU_DATA_STORE : MMU_DATA_LOAD, 1090 1, MMU_DATA_LOAD, true, 0); 1091 if (!mem) { 1092 return size; 1093 } 1094 1095 /* 1096 * TODO: checkNrev() is not designed for checks of the size we expect 1097 * for FEAT_MOPS operations, so we should implement this differently. 1098 * Maybe we should do something like 1099 * if (region start and size are aligned nicely) { 1100 * do direct loads of 64 tag bits at a time; 1101 * } else { 1102 * call checkN() 1103 * } 1104 */ 1105 /* Round the bounds to the tag granule, and compute the number of tags. */ 1106 ptr_tag = allocation_tag_from_addr(ptr); 1107 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE); 1108 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 1109 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 1110 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count); 1111 if (likely(n == tag_count)) { 1112 return size; 1113 } 1114 1115 /* 1116 * Failure; for the first granule, it's at @ptr. Otherwise 1117 * it's at the last byte of the nth granule. Calculate how 1118 * many bytes we can access without hitting that failure. 1119 */ 1120 if (n == 0) { 1121 return 0; 1122 } else { 1123 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last); 1124 } 1125 } 1126 1127 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size, 1128 uint32_t desc) 1129 { 1130 int mmu_idx, tag_count; 1131 uint64_t ptr_tag; 1132 void *mem; 1133 1134 if (!desc) { 1135 /* Tags not actually enabled */ 1136 return; 1137 } 1138 1139 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 1140 /* True probe: this will never fault */ 1141 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size, 1142 MMU_DATA_STORE, true, 0); 1143 if (!mem) { 1144 return; 1145 } 1146 1147 /* 1148 * We know that ptr and size are both TAG_GRANULE aligned; store 1149 * the tag from the pointer value into the tag memory. 1150 */ 1151 ptr_tag = allocation_tag_from_addr(ptr); 1152 tag_count = size / TAG_GRANULE; 1153 if (ptr & TAG_GRANULE) { 1154 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */ 1155 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag); 1156 mem++; 1157 tag_count--; 1158 } 1159 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2); 1160 if (tag_count & 1) { 1161 /* Final trailing unaligned nibble */ 1162 mem += tag_count / 2; 1163 store_tag1_parallel(0, mem, ptr_tag); 1164 } 1165 } 1166