1 /* 2 * ARM v8.5-MemTag Operations 3 * 4 * Copyright (c) 2020 Linaro, Ltd. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "internals.h" 24 #include "exec/exec-all.h" 25 #include "exec/ram_addr.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/helper-proto.h" 28 #include "hw/core/tcg-cpu-ops.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 32 33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) 34 { 35 if (exclude == 0xffff) { 36 return 0; 37 } 38 if (offset == 0) { 39 while (exclude & (1 << tag)) { 40 tag = (tag + 1) & 15; 41 } 42 } else { 43 do { 44 do { 45 tag = (tag + 1) & 15; 46 } while (exclude & (1 << tag)); 47 } while (--offset > 0); 48 } 49 return tag; 50 } 51 52 /** 53 * allocation_tag_mem: 54 * @env: the cpu environment 55 * @ptr_mmu_idx: the addressing regime to use for the virtual address 56 * @ptr: the virtual address for which to look up tag memory 57 * @ptr_access: the access to use for the virtual address 58 * @ptr_size: the number of bytes in the normal memory access 59 * @tag_access: the access to use for the tag memory 60 * @ra: the return address for exception handling 61 * 62 * Our tag memory is formatted as a sequence of little-endian nibbles. 63 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two 64 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] 65 * for the higher addr. 66 * 67 * Here, resolve the physical address from the virtual address, and return 68 * a pointer to the corresponding tag byte. Exit with exception if the 69 * virtual address is not accessible for @ptr_access. 70 * 71 * If there is no tag storage corresponding to @ptr, return NULL. 72 */ 73 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, 74 uint64_t ptr, MMUAccessType ptr_access, 75 int ptr_size, MMUAccessType tag_access, 76 uintptr_t ra) 77 { 78 #ifdef CONFIG_USER_ONLY 79 uint64_t clean_ptr = useronly_clean_ptr(ptr); 80 int flags = page_get_flags(clean_ptr); 81 uint8_t *tags; 82 uintptr_t index; 83 84 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) { 85 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access, 86 !(flags & PAGE_VALID), ra); 87 } 88 89 /* Require both MAP_ANON and PROT_MTE for the page. */ 90 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) { 91 return NULL; 92 } 93 94 tags = page_get_target_data(clean_ptr); 95 96 index = extract32(ptr, LOG2_TAG_GRANULE + 1, 97 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1); 98 return tags + index; 99 #else 100 CPUTLBEntryFull *full; 101 MemTxAttrs attrs; 102 int in_page, flags; 103 hwaddr ptr_paddr, tag_paddr, xlat; 104 MemoryRegion *mr; 105 ARMASIdx tag_asi; 106 AddressSpace *tag_as; 107 void *host; 108 109 /* 110 * Probe the first byte of the virtual address. This raises an 111 * exception for inaccessible pages, and resolves the virtual address 112 * into the softmmu tlb. 113 * 114 * When RA == 0, this is for mte_probe. The page is expected to be 115 * valid. Indicate to probe_access_flags no-fault, then assert that 116 * we received a valid page. 117 */ 118 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx, 119 ra == 0, &host, &full, ra); 120 assert(!(flags & TLB_INVALID_MASK)); 121 122 /* If the virtual page MemAttr != Tagged, access unchecked. */ 123 if (full->pte_attrs != 0xf0) { 124 return NULL; 125 } 126 127 /* 128 * If not backed by host ram, there is no tag storage: access unchecked. 129 * This is probably a guest os bug though, so log it. 130 */ 131 if (unlikely(flags & TLB_MMIO)) { 132 qemu_log_mask(LOG_GUEST_ERROR, 133 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory " 134 "but is not backed by host ram\n", ptr); 135 return NULL; 136 } 137 138 /* 139 * Remember these values across the second lookup below, 140 * which may invalidate this pointer via tlb resize. 141 */ 142 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK); 143 attrs = full->attrs; 144 full = NULL; 145 146 /* 147 * The Normal memory access can extend to the next page. E.g. a single 148 * 8-byte access to the last byte of a page will check only the last 149 * tag on the first page. 150 * Any page access exception has priority over tag check exception. 151 */ 152 in_page = -(ptr | TARGET_PAGE_MASK); 153 if (unlikely(ptr_size > in_page)) { 154 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access, 155 ptr_mmu_idx, ra == 0, &host, &full, ra); 156 assert(!(flags & TLB_INVALID_MASK)); 157 } 158 159 /* Any debug exception has priority over a tag check exception. */ 160 if (unlikely(flags & TLB_WATCHPOINT)) { 161 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE; 162 assert(ra != 0); 163 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra); 164 } 165 166 /* Convert to the physical address in tag space. */ 167 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1); 168 169 /* Look up the address in tag space. */ 170 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS; 171 tag_as = cpu_get_address_space(env_cpu(env), tag_asi); 172 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL, 173 tag_access == MMU_DATA_STORE, attrs); 174 175 /* 176 * Note that @mr will never be NULL. If there is nothing in the address 177 * space at @tag_paddr, the translation will return the unallocated memory 178 * region. For our purposes, the result must be ram. 179 */ 180 if (unlikely(!memory_region_is_ram(mr))) { 181 /* ??? Failure is a board configuration error. */ 182 qemu_log_mask(LOG_UNIMP, 183 "Tag Memory @ 0x%" HWADDR_PRIx " not found for " 184 "Normal Memory @ 0x%" HWADDR_PRIx "\n", 185 tag_paddr, ptr_paddr); 186 return NULL; 187 } 188 189 /* 190 * Ensure the tag memory is dirty on write, for migration. 191 * Tag memory can never contain code or display memory (vga). 192 */ 193 if (tag_access == MMU_DATA_STORE) { 194 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat; 195 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION); 196 } 197 198 return memory_region_get_ram_ptr(mr) + xlat; 199 #endif 200 } 201 202 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) 203 { 204 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); 205 int rrnd = extract32(env->cp15.gcr_el1, 16, 1); 206 int start = extract32(env->cp15.rgsr_el1, 0, 4); 207 int seed = extract32(env->cp15.rgsr_el1, 8, 16); 208 int offset, i, rtag; 209 210 /* 211 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the 212 * deterministic algorithm. Except that with RRND==1 the kernel is 213 * not required to have set RGSR_EL1.SEED != 0, which is required for 214 * the deterministic algorithm to function. So we force a non-zero 215 * SEED for that case. 216 */ 217 if (unlikely(seed == 0) && rrnd) { 218 do { 219 Error *err = NULL; 220 uint16_t two; 221 222 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) { 223 /* 224 * Failed, for unknown reasons in the crypto subsystem. 225 * Best we can do is log the reason and use a constant seed. 226 */ 227 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n", 228 error_get_pretty(err)); 229 error_free(err); 230 two = 1; 231 } 232 seed = two; 233 } while (seed == 0); 234 } 235 236 /* RandomTag */ 237 for (i = offset = 0; i < 4; ++i) { 238 /* NextRandomTagBit */ 239 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ 240 extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); 241 seed = (top << 15) | (seed >> 1); 242 offset |= top << i; 243 } 244 rtag = choose_nonexcluded_tag(start, offset, exclude); 245 env->cp15.rgsr_el1 = rtag | (seed << 8); 246 247 return address_with_allocation_tag(rn, rtag); 248 } 249 250 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, 251 int32_t offset, uint32_t tag_offset) 252 { 253 int start_tag = allocation_tag_from_addr(ptr); 254 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); 255 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); 256 257 return address_with_allocation_tag(ptr + offset, rtag); 258 } 259 260 static int load_tag1(uint64_t ptr, uint8_t *mem) 261 { 262 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 263 return extract32(*mem, ofs, 4); 264 } 265 266 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 267 { 268 int mmu_idx = cpu_mmu_index(env, false); 269 uint8_t *mem; 270 int rtag = 0; 271 272 /* Trap if accessing an invalid page. */ 273 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, 274 MMU_DATA_LOAD, GETPC()); 275 276 /* Load if page supports tags. */ 277 if (mem) { 278 rtag = load_tag1(ptr, mem); 279 } 280 281 return address_with_allocation_tag(xt, rtag); 282 } 283 284 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) 285 { 286 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { 287 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, 288 cpu_mmu_index(env, false), ra); 289 g_assert_not_reached(); 290 } 291 } 292 293 /* For use in a non-parallel context, store to the given nibble. */ 294 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) 295 { 296 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 297 *mem = deposit32(*mem, ofs, 4, tag); 298 } 299 300 /* For use in a parallel context, atomically store to the given nibble. */ 301 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) 302 { 303 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; 304 uint8_t old = qatomic_read(mem); 305 306 while (1) { 307 uint8_t new = deposit32(old, ofs, 4, tag); 308 uint8_t cmp = qatomic_cmpxchg(mem, old, new); 309 if (likely(cmp == old)) { 310 return; 311 } 312 old = cmp; 313 } 314 } 315 316 typedef void stg_store1(uint64_t, uint8_t *, int); 317 318 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, 319 uintptr_t ra, stg_store1 store1) 320 { 321 int mmu_idx = cpu_mmu_index(env, false); 322 uint8_t *mem; 323 324 check_tag_aligned(env, ptr, ra); 325 326 /* Trap if accessing an invalid page. */ 327 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, 328 MMU_DATA_STORE, ra); 329 330 /* Store if page supports tags. */ 331 if (mem) { 332 store1(ptr, mem, allocation_tag_from_addr(xt)); 333 } 334 } 335 336 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) 337 { 338 do_stg(env, ptr, xt, GETPC(), store_tag1); 339 } 340 341 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 342 { 343 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); 344 } 345 346 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) 347 { 348 int mmu_idx = cpu_mmu_index(env, false); 349 uintptr_t ra = GETPC(); 350 351 check_tag_aligned(env, ptr, ra); 352 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 353 } 354 355 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, 356 uintptr_t ra, stg_store1 store1) 357 { 358 int mmu_idx = cpu_mmu_index(env, false); 359 int tag = allocation_tag_from_addr(xt); 360 uint8_t *mem1, *mem2; 361 362 check_tag_aligned(env, ptr, ra); 363 364 /* 365 * Trap if accessing an invalid page(s). 366 * This takes priority over !allocation_tag_access_enabled. 367 */ 368 if (ptr & TAG_GRANULE) { 369 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ 370 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 371 TAG_GRANULE, MMU_DATA_STORE, ra); 372 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, 373 MMU_DATA_STORE, TAG_GRANULE, 374 MMU_DATA_STORE, ra); 375 376 /* Store if page(s) support tags. */ 377 if (mem1) { 378 store1(TAG_GRANULE, mem1, tag); 379 } 380 if (mem2) { 381 store1(0, mem2, tag); 382 } 383 } else { 384 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ 385 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 386 2 * TAG_GRANULE, MMU_DATA_STORE, ra); 387 if (mem1) { 388 tag |= tag << 4; 389 qatomic_set(mem1, tag); 390 } 391 } 392 } 393 394 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) 395 { 396 do_st2g(env, ptr, xt, GETPC(), store_tag1); 397 } 398 399 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) 400 { 401 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); 402 } 403 404 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) 405 { 406 int mmu_idx = cpu_mmu_index(env, false); 407 uintptr_t ra = GETPC(); 408 int in_page = -(ptr | TARGET_PAGE_MASK); 409 410 check_tag_aligned(env, ptr, ra); 411 412 if (likely(in_page >= 2 * TAG_GRANULE)) { 413 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); 414 } else { 415 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); 416 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); 417 } 418 } 419 420 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) 421 { 422 int mmu_idx = cpu_mmu_index(env, false); 423 uintptr_t ra = GETPC(); 424 int gm_bs = env_archcpu(env)->gm_blocksize; 425 int gm_bs_bytes = 4 << gm_bs; 426 void *tag_mem; 427 uint64_t ret; 428 int shift; 429 430 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 431 432 /* Trap if accessing an invalid page. */ 433 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 434 gm_bs_bytes, MMU_DATA_LOAD, ra); 435 436 /* The tag is squashed to zero if the page does not support tags. */ 437 if (!tag_mem) { 438 return 0; 439 } 440 441 /* 442 * The ordering of elements within the word corresponds to 443 * a little-endian operation. Computation of shift comes from 444 * 445 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE> 446 * data<index*4+3:index*4> = tag 447 * 448 * Because of the alignment of ptr above, BS=6 has shift=0. 449 * All memory operations are aligned. Defer support for BS=2, 450 * requiring insertion or extraction of a nibble, until we 451 * support a cpu that requires it. 452 */ 453 switch (gm_bs) { 454 case 3: 455 /* 32 bytes -> 2 tags -> 8 result bits */ 456 ret = *(uint8_t *)tag_mem; 457 break; 458 case 4: 459 /* 64 bytes -> 4 tags -> 16 result bits */ 460 ret = cpu_to_le16(*(uint16_t *)tag_mem); 461 break; 462 case 5: 463 /* 128 bytes -> 8 tags -> 32 result bits */ 464 ret = cpu_to_le32(*(uint32_t *)tag_mem); 465 break; 466 case 6: 467 /* 256 bytes -> 16 tags -> 64 result bits */ 468 return cpu_to_le64(*(uint64_t *)tag_mem); 469 default: 470 /* 471 * CPU configured with unsupported/invalid gm blocksize. 472 * This is detected early in arm_cpu_realizefn. 473 */ 474 g_assert_not_reached(); 475 } 476 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 477 return ret << shift; 478 } 479 480 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) 481 { 482 int mmu_idx = cpu_mmu_index(env, false); 483 uintptr_t ra = GETPC(); 484 int gm_bs = env_archcpu(env)->gm_blocksize; 485 int gm_bs_bytes = 4 << gm_bs; 486 void *tag_mem; 487 int shift; 488 489 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes); 490 491 /* Trap if accessing an invalid page. */ 492 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, 493 gm_bs_bytes, MMU_DATA_LOAD, ra); 494 495 /* 496 * Tag store only happens if the page support tags, 497 * and if the OS has enabled access to the tags. 498 */ 499 if (!tag_mem) { 500 return; 501 } 502 503 /* See LDGM for comments on BS and on shift. */ 504 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4; 505 val >>= shift; 506 switch (gm_bs) { 507 case 3: 508 /* 32 bytes -> 2 tags -> 8 result bits */ 509 *(uint8_t *)tag_mem = val; 510 break; 511 case 4: 512 /* 64 bytes -> 4 tags -> 16 result bits */ 513 *(uint16_t *)tag_mem = cpu_to_le16(val); 514 break; 515 case 5: 516 /* 128 bytes -> 8 tags -> 32 result bits */ 517 *(uint32_t *)tag_mem = cpu_to_le32(val); 518 break; 519 case 6: 520 /* 256 bytes -> 16 tags -> 64 result bits */ 521 *(uint64_t *)tag_mem = cpu_to_le64(val); 522 break; 523 default: 524 /* cpu configured with unsupported gm blocksize. */ 525 g_assert_not_reached(); 526 } 527 } 528 529 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) 530 { 531 uintptr_t ra = GETPC(); 532 int mmu_idx = cpu_mmu_index(env, false); 533 int log2_dcz_bytes, log2_tag_bytes; 534 intptr_t dcz_bytes, tag_bytes; 535 uint8_t *mem; 536 537 /* 538 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, 539 * i.e. 32 bytes, which is an unreasonably small dcz anyway, 540 * to make sure that we can access one complete tag byte here. 541 */ 542 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 543 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 544 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 545 tag_bytes = (intptr_t)1 << log2_tag_bytes; 546 ptr &= -dcz_bytes; 547 548 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, 549 MMU_DATA_STORE, ra); 550 if (mem) { 551 int tag_pair = (val & 0xf) * 0x11; 552 memset(mem, tag_pair, tag_bytes); 553 } 554 } 555 556 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc, 557 uint64_t dirty_ptr, uintptr_t ra) 558 { 559 int is_write, syn; 560 561 env->exception.vaddress = dirty_ptr; 562 563 is_write = FIELD_EX32(desc, MTEDESC, WRITE); 564 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write, 565 0x11); 566 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra); 567 g_assert_not_reached(); 568 } 569 570 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr, 571 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el) 572 { 573 int select; 574 575 if (regime_has_2_ranges(arm_mmu_idx)) { 576 select = extract64(dirty_ptr, 55, 1); 577 } else { 578 select = 0; 579 } 580 env->cp15.tfsr_el[el] |= 1 << select; 581 #ifdef CONFIG_USER_ONLY 582 /* 583 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT, 584 * which then sends a SIGSEGV when the thread is next scheduled. 585 * This cpu will return to the main loop at the end of the TB, 586 * which is rather sooner than "normal". But the alternative 587 * is waiting until the next syscall. 588 */ 589 qemu_cpu_kick(env_cpu(env)); 590 #endif 591 } 592 593 /* Record a tag check failure. */ 594 static void mte_check_fail(CPUARMState *env, uint32_t desc, 595 uint64_t dirty_ptr, uintptr_t ra) 596 { 597 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 598 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx); 599 int el, reg_el, tcf; 600 uint64_t sctlr; 601 602 reg_el = regime_el(env, arm_mmu_idx); 603 sctlr = env->cp15.sctlr_el[reg_el]; 604 605 switch (arm_mmu_idx) { 606 case ARMMMUIdx_E10_0: 607 case ARMMMUIdx_E20_0: 608 el = 0; 609 tcf = extract64(sctlr, 38, 2); 610 break; 611 default: 612 el = reg_el; 613 tcf = extract64(sctlr, 40, 2); 614 } 615 616 switch (tcf) { 617 case 1: 618 /* Tag check fail causes a synchronous exception. */ 619 mte_sync_check_fail(env, desc, dirty_ptr, ra); 620 break; 621 622 case 0: 623 /* 624 * Tag check fail does not affect the PE. 625 * We eliminate this case by not setting MTE_ACTIVE 626 * in tb_flags, so that we never make this runtime call. 627 */ 628 g_assert_not_reached(); 629 630 case 2: 631 /* Tag check fail causes asynchronous flag set. */ 632 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 633 break; 634 635 case 3: 636 /* 637 * Tag check fail causes asynchronous flag set for stores, or 638 * a synchronous exception for loads. 639 */ 640 if (FIELD_EX32(desc, MTEDESC, WRITE)) { 641 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el); 642 } else { 643 mte_sync_check_fail(env, desc, dirty_ptr, ra); 644 } 645 break; 646 } 647 } 648 649 /** 650 * checkN: 651 * @tag: tag memory to test 652 * @odd: true to begin testing at tags at odd nibble 653 * @cmp: the tag to compare against 654 * @count: number of tags to test 655 * 656 * Return the number of successful tests. 657 * Thus a return value < @count indicates a failure. 658 * 659 * A note about sizes: count is expected to be small. 660 * 661 * The most common use will be LDP/STP of two integer registers, 662 * which means 16 bytes of memory touching at most 2 tags, but 663 * often the access is aligned and thus just 1 tag. 664 * 665 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory, 666 * touching at most 5 tags. SVE LDR/STR (vector) with the default 667 * vector length is also 64 bytes; the maximum architectural length 668 * is 256 bytes touching at most 9 tags. 669 * 670 * The loop below uses 7 logical operations and 1 memory operation 671 * per tag pair. An implementation that loads an aligned word and 672 * uses masking to ignore adjacent tags requires 18 logical operations 673 * and thus does not begin to pay off until 6 tags. 674 * Which, according to the survey above, is unlikely to be common. 675 */ 676 static int checkN(uint8_t *mem, int odd, int cmp, int count) 677 { 678 int n = 0, diff; 679 680 /* Replicate the test tag and compare. */ 681 cmp *= 0x11; 682 diff = *mem++ ^ cmp; 683 684 if (odd) { 685 goto start_odd; 686 } 687 688 while (1) { 689 /* Test even tag. */ 690 if (unlikely((diff) & 0x0f)) { 691 break; 692 } 693 if (++n == count) { 694 break; 695 } 696 697 start_odd: 698 /* Test odd tag. */ 699 if (unlikely((diff) & 0xf0)) { 700 break; 701 } 702 if (++n == count) { 703 break; 704 } 705 706 diff = *mem++ ^ cmp; 707 } 708 return n; 709 } 710 711 /** 712 * mte_probe_int() - helper for mte_probe and mte_check 713 * @env: CPU environment 714 * @desc: MTEDESC descriptor 715 * @ptr: virtual address of the base of the access 716 * @fault: return virtual address of the first check failure 717 * 718 * Internal routine for both mte_probe and mte_check. 719 * Return zero on failure, filling in *fault. 720 * Return negative on trivial success for tbi disabled. 721 * Return positive on success with tbi enabled. 722 */ 723 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr, 724 uintptr_t ra, uint64_t *fault) 725 { 726 int mmu_idx, ptr_tag, bit55; 727 uint64_t ptr_last, prev_page, next_page; 728 uint64_t tag_first, tag_last; 729 uint32_t sizem1, tag_count, n, c; 730 uint8_t *mem1, *mem2; 731 MMUAccessType type; 732 733 bit55 = extract64(ptr, 55, 1); 734 *fault = ptr; 735 736 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 737 if (unlikely(!tbi_check(desc, bit55))) { 738 return -1; 739 } 740 741 ptr_tag = allocation_tag_from_addr(ptr); 742 743 if (tcma_check(desc, bit55, ptr_tag)) { 744 return 1; 745 } 746 747 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 748 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD; 749 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1); 750 751 /* Find the addr of the end of the access */ 752 ptr_last = ptr + sizem1; 753 754 /* Round the bounds to the tag granule, and compute the number of tags. */ 755 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE); 756 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE); 757 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1; 758 759 /* Locate the page boundaries. */ 760 prev_page = ptr & TARGET_PAGE_MASK; 761 next_page = prev_page + TARGET_PAGE_SIZE; 762 763 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) { 764 /* Memory access stays on one page. */ 765 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1, 766 MMU_DATA_LOAD, ra); 767 if (!mem1) { 768 return 1; 769 } 770 /* Perform all of the comparisons. */ 771 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count); 772 } else { 773 /* Memory access crosses to next page. */ 774 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr, 775 MMU_DATA_LOAD, ra); 776 777 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type, 778 ptr_last - next_page + 1, 779 MMU_DATA_LOAD, ra); 780 781 /* 782 * Perform all of the comparisons. 783 * Note the possible but unlikely case of the operation spanning 784 * two pages that do not both have tagging enabled. 785 */ 786 n = c = (next_page - tag_first) / TAG_GRANULE; 787 if (mem1) { 788 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c); 789 } 790 if (n == c) { 791 if (!mem2) { 792 return 1; 793 } 794 n += checkN(mem2, 0, ptr_tag, tag_count - c); 795 } 796 } 797 798 if (likely(n == tag_count)) { 799 return 1; 800 } 801 802 /* 803 * If we failed, we know which granule. For the first granule, the 804 * failure address is @ptr, the first byte accessed. Otherwise the 805 * failure address is the first byte of the nth granule. 806 */ 807 if (n > 0) { 808 *fault = tag_first + n * TAG_GRANULE; 809 } 810 return 0; 811 } 812 813 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra) 814 { 815 uint64_t fault; 816 int ret = mte_probe_int(env, desc, ptr, ra, &fault); 817 818 if (unlikely(ret == 0)) { 819 mte_check_fail(env, desc, fault, ra); 820 } else if (ret < 0) { 821 return ptr; 822 } 823 return useronly_clean_ptr(ptr); 824 } 825 826 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr) 827 { 828 /* 829 * R_XCHFJ: Alignment check not caused by memory type is priority 1, 830 * higher than any translation fault. When MTE is disabled, tcg 831 * performs the alignment check during the code generated for the 832 * memory access. With MTE enabled, we must check this here before 833 * raising any translation fault in allocation_tag_mem. 834 */ 835 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN); 836 if (unlikely(align)) { 837 align = (1u << align) - 1; 838 if (unlikely(ptr & align)) { 839 int idx = FIELD_EX32(desc, MTEDESC, MIDX); 840 bool w = FIELD_EX32(desc, MTEDESC, WRITE); 841 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD; 842 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC()); 843 } 844 } 845 846 return mte_check(env, desc, ptr, GETPC()); 847 } 848 849 /* 850 * No-fault version of mte_check, to be used by SVE for MemSingleNF. 851 * Returns false if the access is Checked and the check failed. This 852 * is only intended to probe the tag -- the validity of the page must 853 * be checked beforehand. 854 */ 855 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr) 856 { 857 uint64_t fault; 858 int ret = mte_probe_int(env, desc, ptr, 0, &fault); 859 860 return ret != 0; 861 } 862 863 /* 864 * Perform an MTE checked access for DC_ZVA. 865 */ 866 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr) 867 { 868 uintptr_t ra = GETPC(); 869 int log2_dcz_bytes, log2_tag_bytes; 870 int mmu_idx, bit55; 871 intptr_t dcz_bytes, tag_bytes, i; 872 void *mem; 873 uint64_t ptr_tag, mem_tag, align_ptr; 874 875 bit55 = extract64(ptr, 55, 1); 876 877 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */ 878 if (unlikely(!tbi_check(desc, bit55))) { 879 return ptr; 880 } 881 882 ptr_tag = allocation_tag_from_addr(ptr); 883 884 if (tcma_check(desc, bit55, ptr_tag)) { 885 goto done; 886 } 887 888 /* 889 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1, 890 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make 891 * sure that we can access one complete tag byte here. 892 */ 893 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; 894 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); 895 dcz_bytes = (intptr_t)1 << log2_dcz_bytes; 896 tag_bytes = (intptr_t)1 << log2_tag_bytes; 897 align_ptr = ptr & -dcz_bytes; 898 899 /* 900 * Trap if accessing an invalid page. DC_ZVA requires that we supply 901 * the original pointer for an invalid page. But watchpoints require 902 * that we probe the actual space. So do both. 903 */ 904 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX); 905 (void) probe_write(env, ptr, 1, mmu_idx, ra); 906 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE, 907 dcz_bytes, MMU_DATA_LOAD, ra); 908 if (!mem) { 909 goto done; 910 } 911 912 /* 913 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus 914 * it is quite easy to perform all of the comparisons at once without 915 * any extra masking. 916 * 917 * The most common zva block size is 64; some of the thunderx cpus use 918 * a block size of 128. For user-only, aarch64_max_initfn will set the 919 * block size to 512. Fill out the other cases for future-proofing. 920 * 921 * In order to be able to find the first miscompare later, we want the 922 * tag bytes to be in little-endian order. 923 */ 924 switch (log2_tag_bytes) { 925 case 0: /* zva_blocksize 32 */ 926 mem_tag = *(uint8_t *)mem; 927 ptr_tag *= 0x11u; 928 break; 929 case 1: /* zva_blocksize 64 */ 930 mem_tag = cpu_to_le16(*(uint16_t *)mem); 931 ptr_tag *= 0x1111u; 932 break; 933 case 2: /* zva_blocksize 128 */ 934 mem_tag = cpu_to_le32(*(uint32_t *)mem); 935 ptr_tag *= 0x11111111u; 936 break; 937 case 3: /* zva_blocksize 256 */ 938 mem_tag = cpu_to_le64(*(uint64_t *)mem); 939 ptr_tag *= 0x1111111111111111ull; 940 break; 941 942 default: /* zva_blocksize 512, 1024, 2048 */ 943 ptr_tag *= 0x1111111111111111ull; 944 i = 0; 945 do { 946 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i)); 947 if (unlikely(mem_tag != ptr_tag)) { 948 goto fail; 949 } 950 i += 8; 951 align_ptr += 16 * TAG_GRANULE; 952 } while (i < tag_bytes); 953 goto done; 954 } 955 956 if (likely(mem_tag == ptr_tag)) { 957 goto done; 958 } 959 960 fail: 961 /* Locate the first nibble that differs. */ 962 i = ctz64(mem_tag ^ ptr_tag) >> 4; 963 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra); 964 965 done: 966 return useronly_clean_ptr(ptr); 967 } 968