xref: /qemu/target/arm/tcg/mte_helper.c (revision 009cd8665095a04115940704d680a52dcc49d489)
1  /*
2   * ARM v8.5-MemTag Operations
3   *
4   * Copyright (c) 2020 Linaro, Ltd.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu/log.h"
22  #include "cpu.h"
23  #include "internals.h"
24  #include "exec/exec-all.h"
25  #include "exec/ram_addr.h"
26  #include "exec/cpu_ldst.h"
27  #include "exec/helper-proto.h"
28  #include "hw/core/tcg-cpu-ops.h"
29  #include "qapi/error.h"
30  #include "qemu/guest-random.h"
31  
32  
33  static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
34  {
35      if (exclude == 0xffff) {
36          return 0;
37      }
38      if (offset == 0) {
39          while (exclude & (1 << tag)) {
40              tag = (tag + 1) & 15;
41          }
42      } else {
43          do {
44              do {
45                  tag = (tag + 1) & 15;
46              } while (exclude & (1 << tag));
47          } while (--offset > 0);
48      }
49      return tag;
50  }
51  
52  /**
53   * allocation_tag_mem_probe:
54   * @env: the cpu environment
55   * @ptr_mmu_idx: the addressing regime to use for the virtual address
56   * @ptr: the virtual address for which to look up tag memory
57   * @ptr_access: the access to use for the virtual address
58   * @ptr_size: the number of bytes in the normal memory access
59   * @tag_access: the access to use for the tag memory
60   * @probe: true to merely probe, never taking an exception
61   * @ra: the return address for exception handling
62   *
63   * Our tag memory is formatted as a sequence of little-endian nibbles.
64   * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
65   * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
66   * for the higher addr.
67   *
68   * Here, resolve the physical address from the virtual address, and return
69   * a pointer to the corresponding tag byte.
70   *
71   * If there is no tag storage corresponding to @ptr, return NULL.
72   *
73   * If the page is inaccessible for @ptr_access, or has a watchpoint, there are
74   * three options:
75   * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not
76   *     accessible, and do not take watchpoint traps. The calling code must
77   *     handle those cases in the right priority compared to MTE traps.
78   * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees
79   *     that the page is going to be accessible. We will take watchpoint traps.
80   * (3) probe = false, ra != 0 : non-probe -- we will take both memory access
81   *     traps and watchpoint traps.
82   * (probe = true, ra != 0 is invalid and will assert.)
83   */
84  static uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
85                                           uint64_t ptr, MMUAccessType ptr_access,
86                                           int ptr_size, MMUAccessType tag_access,
87                                           bool probe, uintptr_t ra)
88  {
89  #ifdef CONFIG_USER_ONLY
90      uint64_t clean_ptr = useronly_clean_ptr(ptr);
91      int flags = page_get_flags(clean_ptr);
92      uint8_t *tags;
93      uintptr_t index;
94  
95      assert(!(probe && ra));
96  
97      if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
98          cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
99                                !(flags & PAGE_VALID), ra);
100      }
101  
102      /* Require both MAP_ANON and PROT_MTE for the page. */
103      if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
104          return NULL;
105      }
106  
107      tags = page_get_target_data(clean_ptr);
108  
109      index = extract32(ptr, LOG2_TAG_GRANULE + 1,
110                        TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
111      return tags + index;
112  #else
113      CPUTLBEntryFull *full;
114      MemTxAttrs attrs;
115      int in_page, flags;
116      hwaddr ptr_paddr, tag_paddr, xlat;
117      MemoryRegion *mr;
118      ARMASIdx tag_asi;
119      AddressSpace *tag_as;
120      void *host;
121  
122      /*
123       * Probe the first byte of the virtual address.  This raises an
124       * exception for inaccessible pages, and resolves the virtual address
125       * into the softmmu tlb.
126       *
127       * When RA == 0, this is either a pure probe or a no-fault-expected probe.
128       * Indicate to probe_access_flags no-fault, then either return NULL
129       * for the pure probe, or assert that we received a valid page for the
130       * no-fault-expected probe.
131       */
132      flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
133                                ra == 0, &host, &full, ra);
134      if (probe && (flags & TLB_INVALID_MASK)) {
135          return NULL;
136      }
137      assert(!(flags & TLB_INVALID_MASK));
138  
139      /* If the virtual page MemAttr != Tagged, access unchecked. */
140      if (full->extra.arm.pte_attrs != 0xf0) {
141          return NULL;
142      }
143  
144      /*
145       * If not backed by host ram, there is no tag storage: access unchecked.
146       * This is probably a guest os bug though, so log it.
147       */
148      if (unlikely(flags & TLB_MMIO)) {
149          qemu_log_mask(LOG_GUEST_ERROR,
150                        "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
151                        "but is not backed by host ram\n", ptr);
152          return NULL;
153      }
154  
155      /*
156       * Remember these values across the second lookup below,
157       * which may invalidate this pointer via tlb resize.
158       */
159      ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
160      attrs = full->attrs;
161      full = NULL;
162  
163      /*
164       * The Normal memory access can extend to the next page.  E.g. a single
165       * 8-byte access to the last byte of a page will check only the last
166       * tag on the first page.
167       * Any page access exception has priority over tag check exception.
168       */
169      in_page = -(ptr | TARGET_PAGE_MASK);
170      if (unlikely(ptr_size > in_page)) {
171          flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
172                                     ptr_mmu_idx, ra == 0, &host, &full, ra);
173          assert(!(flags & TLB_INVALID_MASK));
174      }
175  
176      /* Any debug exception has priority over a tag check exception. */
177      if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
178          int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
179          assert(ra != 0);
180          cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
181      }
182  
183      /* Convert to the physical address in tag space.  */
184      tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
185  
186      /* Look up the address in tag space. */
187      tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
188      tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
189      mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
190                                   tag_access == MMU_DATA_STORE, attrs);
191  
192      /*
193       * Note that @mr will never be NULL.  If there is nothing in the address
194       * space at @tag_paddr, the translation will return the unallocated memory
195       * region.  For our purposes, the result must be ram.
196       */
197      if (unlikely(!memory_region_is_ram(mr))) {
198          /* ??? Failure is a board configuration error. */
199          qemu_log_mask(LOG_UNIMP,
200                        "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
201                        "Normal Memory @ 0x%" HWADDR_PRIx "\n",
202                        tag_paddr, ptr_paddr);
203          return NULL;
204      }
205  
206      /*
207       * Ensure the tag memory is dirty on write, for migration.
208       * Tag memory can never contain code or display memory (vga).
209       */
210      if (tag_access == MMU_DATA_STORE) {
211          ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
212          cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
213      }
214  
215      return memory_region_get_ram_ptr(mr) + xlat;
216  #endif
217  }
218  
219  static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
220                                     uint64_t ptr, MMUAccessType ptr_access,
221                                     int ptr_size, MMUAccessType tag_access,
222                                     uintptr_t ra)
223  {
224      return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
225                                      ptr_size, tag_access, false, ra);
226  }
227  
228  uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
229  {
230      uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
231      int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
232      int start = extract32(env->cp15.rgsr_el1, 0, 4);
233      int seed = extract32(env->cp15.rgsr_el1, 8, 16);
234      int offset, i, rtag;
235  
236      /*
237       * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
238       * deterministic algorithm.  Except that with RRND==1 the kernel is
239       * not required to have set RGSR_EL1.SEED != 0, which is required for
240       * the deterministic algorithm to function.  So we force a non-zero
241       * SEED for that case.
242       */
243      if (unlikely(seed == 0) && rrnd) {
244          do {
245              Error *err = NULL;
246              uint16_t two;
247  
248              if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
249                  /*
250                   * Failed, for unknown reasons in the crypto subsystem.
251                   * Best we can do is log the reason and use a constant seed.
252                   */
253                  qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
254                                error_get_pretty(err));
255                  error_free(err);
256                  two = 1;
257              }
258              seed = two;
259          } while (seed == 0);
260      }
261  
262      /* RandomTag */
263      for (i = offset = 0; i < 4; ++i) {
264          /* NextRandomTagBit */
265          int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
266                     extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
267          seed = (top << 15) | (seed >> 1);
268          offset |= top << i;
269      }
270      rtag = choose_nonexcluded_tag(start, offset, exclude);
271      env->cp15.rgsr_el1 = rtag | (seed << 8);
272  
273      return address_with_allocation_tag(rn, rtag);
274  }
275  
276  uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
277                           int32_t offset, uint32_t tag_offset)
278  {
279      int start_tag = allocation_tag_from_addr(ptr);
280      uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
281      int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
282  
283      return address_with_allocation_tag(ptr + offset, rtag);
284  }
285  
286  static int load_tag1(uint64_t ptr, uint8_t *mem)
287  {
288      int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
289      return extract32(*mem, ofs, 4);
290  }
291  
292  uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
293  {
294      int mmu_idx = cpu_mmu_index(env, false);
295      uint8_t *mem;
296      int rtag = 0;
297  
298      /* Trap if accessing an invalid page.  */
299      mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
300                               MMU_DATA_LOAD, GETPC());
301  
302      /* Load if page supports tags. */
303      if (mem) {
304          rtag = load_tag1(ptr, mem);
305      }
306  
307      return address_with_allocation_tag(xt, rtag);
308  }
309  
310  static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
311  {
312      if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
313          arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
314                                      cpu_mmu_index(env, false), ra);
315          g_assert_not_reached();
316      }
317  }
318  
319  /* For use in a non-parallel context, store to the given nibble.  */
320  static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
321  {
322      int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
323      *mem = deposit32(*mem, ofs, 4, tag);
324  }
325  
326  /* For use in a parallel context, atomically store to the given nibble.  */
327  static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
328  {
329      int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
330      uint8_t old = qatomic_read(mem);
331  
332      while (1) {
333          uint8_t new = deposit32(old, ofs, 4, tag);
334          uint8_t cmp = qatomic_cmpxchg(mem, old, new);
335          if (likely(cmp == old)) {
336              return;
337          }
338          old = cmp;
339      }
340  }
341  
342  typedef void stg_store1(uint64_t, uint8_t *, int);
343  
344  static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
345                            uintptr_t ra, stg_store1 store1)
346  {
347      int mmu_idx = cpu_mmu_index(env, false);
348      uint8_t *mem;
349  
350      check_tag_aligned(env, ptr, ra);
351  
352      /* Trap if accessing an invalid page.  */
353      mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
354                               MMU_DATA_STORE, ra);
355  
356      /* Store if page supports tags. */
357      if (mem) {
358          store1(ptr, mem, allocation_tag_from_addr(xt));
359      }
360  }
361  
362  void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
363  {
364      do_stg(env, ptr, xt, GETPC(), store_tag1);
365  }
366  
367  void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
368  {
369      do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
370  }
371  
372  void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
373  {
374      int mmu_idx = cpu_mmu_index(env, false);
375      uintptr_t ra = GETPC();
376  
377      check_tag_aligned(env, ptr, ra);
378      probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
379  }
380  
381  static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
382                             uintptr_t ra, stg_store1 store1)
383  {
384      int mmu_idx = cpu_mmu_index(env, false);
385      int tag = allocation_tag_from_addr(xt);
386      uint8_t *mem1, *mem2;
387  
388      check_tag_aligned(env, ptr, ra);
389  
390      /*
391       * Trap if accessing an invalid page(s).
392       * This takes priority over !allocation_tag_access_enabled.
393       */
394      if (ptr & TAG_GRANULE) {
395          /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
396          mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
397                                    TAG_GRANULE, MMU_DATA_STORE, ra);
398          mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
399                                    MMU_DATA_STORE, TAG_GRANULE,
400                                    MMU_DATA_STORE, ra);
401  
402          /* Store if page(s) support tags. */
403          if (mem1) {
404              store1(TAG_GRANULE, mem1, tag);
405          }
406          if (mem2) {
407              store1(0, mem2, tag);
408          }
409      } else {
410          /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
411          mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
412                                    2 * TAG_GRANULE, MMU_DATA_STORE, ra);
413          if (mem1) {
414              tag |= tag << 4;
415              qatomic_set(mem1, tag);
416          }
417      }
418  }
419  
420  void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
421  {
422      do_st2g(env, ptr, xt, GETPC(), store_tag1);
423  }
424  
425  void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
426  {
427      do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
428  }
429  
430  void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
431  {
432      int mmu_idx = cpu_mmu_index(env, false);
433      uintptr_t ra = GETPC();
434      int in_page = -(ptr | TARGET_PAGE_MASK);
435  
436      check_tag_aligned(env, ptr, ra);
437  
438      if (likely(in_page >= 2 * TAG_GRANULE)) {
439          probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
440      } else {
441          probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
442          probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
443      }
444  }
445  
446  uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
447  {
448      int mmu_idx = cpu_mmu_index(env, false);
449      uintptr_t ra = GETPC();
450      int gm_bs = env_archcpu(env)->gm_blocksize;
451      int gm_bs_bytes = 4 << gm_bs;
452      void *tag_mem;
453      uint64_t ret;
454      int shift;
455  
456      ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
457  
458      /* Trap if accessing an invalid page.  */
459      tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
460                                   gm_bs_bytes, MMU_DATA_LOAD, ra);
461  
462      /* The tag is squashed to zero if the page does not support tags.  */
463      if (!tag_mem) {
464          return 0;
465      }
466  
467      /*
468       * The ordering of elements within the word corresponds to
469       * a little-endian operation.  Computation of shift comes from
470       *
471       *     index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
472       *     data<index*4+3:index*4> = tag
473       *
474       * Because of the alignment of ptr above, BS=6 has shift=0.
475       * All memory operations are aligned.  Defer support for BS=2,
476       * requiring insertion or extraction of a nibble, until we
477       * support a cpu that requires it.
478       */
479      switch (gm_bs) {
480      case 3:
481          /* 32 bytes -> 2 tags -> 8 result bits */
482          ret = *(uint8_t *)tag_mem;
483          break;
484      case 4:
485          /* 64 bytes -> 4 tags -> 16 result bits */
486          ret = cpu_to_le16(*(uint16_t *)tag_mem);
487          break;
488      case 5:
489          /* 128 bytes -> 8 tags -> 32 result bits */
490          ret = cpu_to_le32(*(uint32_t *)tag_mem);
491          break;
492      case 6:
493          /* 256 bytes -> 16 tags -> 64 result bits */
494          return cpu_to_le64(*(uint64_t *)tag_mem);
495      default:
496          /*
497           * CPU configured with unsupported/invalid gm blocksize.
498           * This is detected early in arm_cpu_realizefn.
499           */
500          g_assert_not_reached();
501      }
502      shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
503      return ret << shift;
504  }
505  
506  void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
507  {
508      int mmu_idx = cpu_mmu_index(env, false);
509      uintptr_t ra = GETPC();
510      int gm_bs = env_archcpu(env)->gm_blocksize;
511      int gm_bs_bytes = 4 << gm_bs;
512      void *tag_mem;
513      int shift;
514  
515      ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
516  
517      /* Trap if accessing an invalid page.  */
518      tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
519                                   gm_bs_bytes, MMU_DATA_LOAD, ra);
520  
521      /*
522       * Tag store only happens if the page support tags,
523       * and if the OS has enabled access to the tags.
524       */
525      if (!tag_mem) {
526          return;
527      }
528  
529      /* See LDGM for comments on BS and on shift.  */
530      shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
531      val >>= shift;
532      switch (gm_bs) {
533      case 3:
534          /* 32 bytes -> 2 tags -> 8 result bits */
535          *(uint8_t *)tag_mem = val;
536          break;
537      case 4:
538          /* 64 bytes -> 4 tags -> 16 result bits */
539          *(uint16_t *)tag_mem = cpu_to_le16(val);
540          break;
541      case 5:
542          /* 128 bytes -> 8 tags -> 32 result bits */
543          *(uint32_t *)tag_mem = cpu_to_le32(val);
544          break;
545      case 6:
546          /* 256 bytes -> 16 tags -> 64 result bits */
547          *(uint64_t *)tag_mem = cpu_to_le64(val);
548          break;
549      default:
550          /* cpu configured with unsupported gm blocksize. */
551          g_assert_not_reached();
552      }
553  }
554  
555  void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
556  {
557      uintptr_t ra = GETPC();
558      int mmu_idx = cpu_mmu_index(env, false);
559      int log2_dcz_bytes, log2_tag_bytes;
560      intptr_t dcz_bytes, tag_bytes;
561      uint8_t *mem;
562  
563      /*
564       * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
565       * i.e. 32 bytes, which is an unreasonably small dcz anyway,
566       * to make sure that we can access one complete tag byte here.
567       */
568      log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
569      log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
570      dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
571      tag_bytes = (intptr_t)1 << log2_tag_bytes;
572      ptr &= -dcz_bytes;
573  
574      mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
575                               MMU_DATA_STORE, ra);
576      if (mem) {
577          int tag_pair = (val & 0xf) * 0x11;
578          memset(mem, tag_pair, tag_bytes);
579      }
580  }
581  
582  static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
583                                  uint64_t dirty_ptr, uintptr_t ra)
584  {
585      int is_write, syn;
586  
587      env->exception.vaddress = dirty_ptr;
588  
589      is_write = FIELD_EX32(desc, MTEDESC, WRITE);
590      syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
591                                  0x11);
592      raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
593      g_assert_not_reached();
594  }
595  
596  static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
597                                   uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
598  {
599      int select;
600  
601      if (regime_has_2_ranges(arm_mmu_idx)) {
602          select = extract64(dirty_ptr, 55, 1);
603      } else {
604          select = 0;
605      }
606      env->cp15.tfsr_el[el] |= 1 << select;
607  #ifdef CONFIG_USER_ONLY
608      /*
609       * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
610       * which then sends a SIGSEGV when the thread is next scheduled.
611       * This cpu will return to the main loop at the end of the TB,
612       * which is rather sooner than "normal".  But the alternative
613       * is waiting until the next syscall.
614       */
615      qemu_cpu_kick(env_cpu(env));
616  #endif
617  }
618  
619  /* Record a tag check failure.  */
620  void mte_check_fail(CPUARMState *env, uint32_t desc,
621                      uint64_t dirty_ptr, uintptr_t ra)
622  {
623      int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
624      ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
625      int el, reg_el, tcf;
626      uint64_t sctlr;
627  
628      reg_el = regime_el(env, arm_mmu_idx);
629      sctlr = env->cp15.sctlr_el[reg_el];
630  
631      switch (arm_mmu_idx) {
632      case ARMMMUIdx_E10_0:
633      case ARMMMUIdx_E20_0:
634          el = 0;
635          tcf = extract64(sctlr, 38, 2);
636          break;
637      default:
638          el = reg_el;
639          tcf = extract64(sctlr, 40, 2);
640      }
641  
642      switch (tcf) {
643      case 1:
644          /* Tag check fail causes a synchronous exception. */
645          mte_sync_check_fail(env, desc, dirty_ptr, ra);
646          break;
647  
648      case 0:
649          /*
650           * Tag check fail does not affect the PE.
651           * We eliminate this case by not setting MTE_ACTIVE
652           * in tb_flags, so that we never make this runtime call.
653           */
654          g_assert_not_reached();
655  
656      case 2:
657          /* Tag check fail causes asynchronous flag set.  */
658          mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
659          break;
660  
661      case 3:
662          /*
663           * Tag check fail causes asynchronous flag set for stores, or
664           * a synchronous exception for loads.
665           */
666          if (FIELD_EX32(desc, MTEDESC, WRITE)) {
667              mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
668          } else {
669              mte_sync_check_fail(env, desc, dirty_ptr, ra);
670          }
671          break;
672      }
673  }
674  
675  /**
676   * checkN:
677   * @tag: tag memory to test
678   * @odd: true to begin testing at tags at odd nibble
679   * @cmp: the tag to compare against
680   * @count: number of tags to test
681   *
682   * Return the number of successful tests.
683   * Thus a return value < @count indicates a failure.
684   *
685   * A note about sizes: count is expected to be small.
686   *
687   * The most common use will be LDP/STP of two integer registers,
688   * which means 16 bytes of memory touching at most 2 tags, but
689   * often the access is aligned and thus just 1 tag.
690   *
691   * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
692   * touching at most 5 tags.  SVE LDR/STR (vector) with the default
693   * vector length is also 64 bytes; the maximum architectural length
694   * is 256 bytes touching at most 9 tags.
695   *
696   * The loop below uses 7 logical operations and 1 memory operation
697   * per tag pair.  An implementation that loads an aligned word and
698   * uses masking to ignore adjacent tags requires 18 logical operations
699   * and thus does not begin to pay off until 6 tags.
700   * Which, according to the survey above, is unlikely to be common.
701   */
702  static int checkN(uint8_t *mem, int odd, int cmp, int count)
703  {
704      int n = 0, diff;
705  
706      /* Replicate the test tag and compare.  */
707      cmp *= 0x11;
708      diff = *mem++ ^ cmp;
709  
710      if (odd) {
711          goto start_odd;
712      }
713  
714      while (1) {
715          /* Test even tag. */
716          if (unlikely((diff) & 0x0f)) {
717              break;
718          }
719          if (++n == count) {
720              break;
721          }
722  
723      start_odd:
724          /* Test odd tag. */
725          if (unlikely((diff) & 0xf0)) {
726              break;
727          }
728          if (++n == count) {
729              break;
730          }
731  
732          diff = *mem++ ^ cmp;
733      }
734      return n;
735  }
736  
737  /**
738   * checkNrev:
739   * @tag: tag memory to test
740   * @odd: true to begin testing at tags at odd nibble
741   * @cmp: the tag to compare against
742   * @count: number of tags to test
743   *
744   * Return the number of successful tests.
745   * Thus a return value < @count indicates a failure.
746   *
747   * This is like checkN, but it runs backwards, checking the
748   * tags starting with @tag and then the tags preceding it.
749   * This is needed by the backwards-memory-copying operations.
750   */
751  static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
752  {
753      int n = 0, diff;
754  
755      /* Replicate the test tag and compare.  */
756      cmp *= 0x11;
757      diff = *mem-- ^ cmp;
758  
759      if (!odd) {
760          goto start_even;
761      }
762  
763      while (1) {
764          /* Test odd tag. */
765          if (unlikely((diff) & 0xf0)) {
766              break;
767          }
768          if (++n == count) {
769              break;
770          }
771  
772      start_even:
773          /* Test even tag. */
774          if (unlikely((diff) & 0x0f)) {
775              break;
776          }
777          if (++n == count) {
778              break;
779          }
780  
781          diff = *mem-- ^ cmp;
782      }
783      return n;
784  }
785  
786  /**
787   * mte_probe_int() - helper for mte_probe and mte_check
788   * @env: CPU environment
789   * @desc: MTEDESC descriptor
790   * @ptr: virtual address of the base of the access
791   * @fault: return virtual address of the first check failure
792   *
793   * Internal routine for both mte_probe and mte_check.
794   * Return zero on failure, filling in *fault.
795   * Return negative on trivial success for tbi disabled.
796   * Return positive on success with tbi enabled.
797   */
798  static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
799                           uintptr_t ra, uint64_t *fault)
800  {
801      int mmu_idx, ptr_tag, bit55;
802      uint64_t ptr_last, prev_page, next_page;
803      uint64_t tag_first, tag_last;
804      uint32_t sizem1, tag_count, n, c;
805      uint8_t *mem1, *mem2;
806      MMUAccessType type;
807  
808      bit55 = extract64(ptr, 55, 1);
809      *fault = ptr;
810  
811      /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
812      if (unlikely(!tbi_check(desc, bit55))) {
813          return -1;
814      }
815  
816      ptr_tag = allocation_tag_from_addr(ptr);
817  
818      if (tcma_check(desc, bit55, ptr_tag)) {
819          return 1;
820      }
821  
822      mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
823      type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
824      sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
825  
826      /* Find the addr of the end of the access */
827      ptr_last = ptr + sizem1;
828  
829      /* Round the bounds to the tag granule, and compute the number of tags. */
830      tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
831      tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
832      tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
833  
834      /* Locate the page boundaries. */
835      prev_page = ptr & TARGET_PAGE_MASK;
836      next_page = prev_page + TARGET_PAGE_SIZE;
837  
838      if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
839          /* Memory access stays on one page. */
840          mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
841                                    MMU_DATA_LOAD, ra);
842          if (!mem1) {
843              return 1;
844          }
845          /* Perform all of the comparisons. */
846          n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
847      } else {
848          /* Memory access crosses to next page. */
849          mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
850                                    MMU_DATA_LOAD, ra);
851  
852          mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
853                                    ptr_last - next_page + 1,
854                                    MMU_DATA_LOAD, ra);
855  
856          /*
857           * Perform all of the comparisons.
858           * Note the possible but unlikely case of the operation spanning
859           * two pages that do not both have tagging enabled.
860           */
861          n = c = (next_page - tag_first) / TAG_GRANULE;
862          if (mem1) {
863              n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
864          }
865          if (n == c) {
866              if (!mem2) {
867                  return 1;
868              }
869              n += checkN(mem2, 0, ptr_tag, tag_count - c);
870          }
871      }
872  
873      if (likely(n == tag_count)) {
874          return 1;
875      }
876  
877      /*
878       * If we failed, we know which granule.  For the first granule, the
879       * failure address is @ptr, the first byte accessed.  Otherwise the
880       * failure address is the first byte of the nth granule.
881       */
882      if (n > 0) {
883          *fault = tag_first + n * TAG_GRANULE;
884      }
885      return 0;
886  }
887  
888  uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
889  {
890      uint64_t fault;
891      int ret = mte_probe_int(env, desc, ptr, ra, &fault);
892  
893      if (unlikely(ret == 0)) {
894          mte_check_fail(env, desc, fault, ra);
895      } else if (ret < 0) {
896          return ptr;
897      }
898      return useronly_clean_ptr(ptr);
899  }
900  
901  uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
902  {
903      /*
904       * R_XCHFJ: Alignment check not caused by memory type is priority 1,
905       * higher than any translation fault.  When MTE is disabled, tcg
906       * performs the alignment check during the code generated for the
907       * memory access.  With MTE enabled, we must check this here before
908       * raising any translation fault in allocation_tag_mem.
909       */
910      unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
911      if (unlikely(align)) {
912          align = (1u << align) - 1;
913          if (unlikely(ptr & align)) {
914              int idx = FIELD_EX32(desc, MTEDESC, MIDX);
915              bool w = FIELD_EX32(desc, MTEDESC, WRITE);
916              MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
917              arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
918          }
919      }
920  
921      return mte_check(env, desc, ptr, GETPC());
922  }
923  
924  /*
925   * No-fault version of mte_check, to be used by SVE for MemSingleNF.
926   * Returns false if the access is Checked and the check failed.  This
927   * is only intended to probe the tag -- the validity of the page must
928   * be checked beforehand.
929   */
930  bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
931  {
932      uint64_t fault;
933      int ret = mte_probe_int(env, desc, ptr, 0, &fault);
934  
935      return ret != 0;
936  }
937  
938  /*
939   * Perform an MTE checked access for DC_ZVA.
940   */
941  uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
942  {
943      uintptr_t ra = GETPC();
944      int log2_dcz_bytes, log2_tag_bytes;
945      int mmu_idx, bit55;
946      intptr_t dcz_bytes, tag_bytes, i;
947      void *mem;
948      uint64_t ptr_tag, mem_tag, align_ptr;
949  
950      bit55 = extract64(ptr, 55, 1);
951  
952      /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
953      if (unlikely(!tbi_check(desc, bit55))) {
954          return ptr;
955      }
956  
957      ptr_tag = allocation_tag_from_addr(ptr);
958  
959      if (tcma_check(desc, bit55, ptr_tag)) {
960          goto done;
961      }
962  
963      /*
964       * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
965       * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
966       * sure that we can access one complete tag byte here.
967       */
968      log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
969      log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
970      dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
971      tag_bytes = (intptr_t)1 << log2_tag_bytes;
972      align_ptr = ptr & -dcz_bytes;
973  
974      /*
975       * Trap if accessing an invalid page.  DC_ZVA requires that we supply
976       * the original pointer for an invalid page.  But watchpoints require
977       * that we probe the actual space.  So do both.
978       */
979      mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
980      (void) probe_write(env, ptr, 1, mmu_idx, ra);
981      mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
982                               dcz_bytes, MMU_DATA_LOAD, ra);
983      if (!mem) {
984          goto done;
985      }
986  
987      /*
988       * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
989       * it is quite easy to perform all of the comparisons at once without
990       * any extra masking.
991       *
992       * The most common zva block size is 64; some of the thunderx cpus use
993       * a block size of 128.  For user-only, aarch64_max_initfn will set the
994       * block size to 512.  Fill out the other cases for future-proofing.
995       *
996       * In order to be able to find the first miscompare later, we want the
997       * tag bytes to be in little-endian order.
998       */
999      switch (log2_tag_bytes) {
1000      case 0: /* zva_blocksize 32 */
1001          mem_tag = *(uint8_t *)mem;
1002          ptr_tag *= 0x11u;
1003          break;
1004      case 1: /* zva_blocksize 64 */
1005          mem_tag = cpu_to_le16(*(uint16_t *)mem);
1006          ptr_tag *= 0x1111u;
1007          break;
1008      case 2: /* zva_blocksize 128 */
1009          mem_tag = cpu_to_le32(*(uint32_t *)mem);
1010          ptr_tag *= 0x11111111u;
1011          break;
1012      case 3: /* zva_blocksize 256 */
1013          mem_tag = cpu_to_le64(*(uint64_t *)mem);
1014          ptr_tag *= 0x1111111111111111ull;
1015          break;
1016  
1017      default: /* zva_blocksize 512, 1024, 2048 */
1018          ptr_tag *= 0x1111111111111111ull;
1019          i = 0;
1020          do {
1021              mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
1022              if (unlikely(mem_tag != ptr_tag)) {
1023                  goto fail;
1024              }
1025              i += 8;
1026              align_ptr += 16 * TAG_GRANULE;
1027          } while (i < tag_bytes);
1028          goto done;
1029      }
1030  
1031      if (likely(mem_tag == ptr_tag)) {
1032          goto done;
1033      }
1034  
1035   fail:
1036      /* Locate the first nibble that differs. */
1037      i = ctz64(mem_tag ^ ptr_tag) >> 4;
1038      mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1039  
1040   done:
1041      return useronly_clean_ptr(ptr);
1042  }
1043  
1044  uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1045                          uint32_t desc)
1046  {
1047      int mmu_idx, tag_count;
1048      uint64_t ptr_tag, tag_first, tag_last;
1049      void *mem;
1050      bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1051      uint32_t n;
1052  
1053      mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1054      /* True probe; this will never fault */
1055      mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1056                                     w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1057                                     size, MMU_DATA_LOAD, true, 0);
1058      if (!mem) {
1059          return size;
1060      }
1061  
1062      /*
1063       * TODO: checkN() is not designed for checks of the size we expect
1064       * for FEAT_MOPS operations, so we should implement this differently.
1065       * Maybe we should do something like
1066       *   if (region start and size are aligned nicely) {
1067       *      do direct loads of 64 tag bits at a time;
1068       *   } else {
1069       *      call checkN()
1070       *   }
1071       */
1072      /* Round the bounds to the tag granule, and compute the number of tags. */
1073      ptr_tag = allocation_tag_from_addr(ptr);
1074      tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1075      tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1076      tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1077      n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1078      if (likely(n == tag_count)) {
1079          return size;
1080      }
1081  
1082      /*
1083       * Failure; for the first granule, it's at @ptr. Otherwise
1084       * it's at the first byte of the nth granule. Calculate how
1085       * many bytes we can access without hitting that failure.
1086       */
1087      if (n == 0) {
1088          return 0;
1089      } else {
1090          return n * TAG_GRANULE - (ptr - tag_first);
1091      }
1092  }
1093  
1094  uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1095                              uint32_t desc)
1096  {
1097      int mmu_idx, tag_count;
1098      uint64_t ptr_tag, tag_first, tag_last;
1099      void *mem;
1100      bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1101      uint32_t n;
1102  
1103      mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1104      /* True probe; this will never fault */
1105      mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1106                                     w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1107                                     size, MMU_DATA_LOAD, true, 0);
1108      if (!mem) {
1109          return size;
1110      }
1111  
1112      /*
1113       * TODO: checkNrev() is not designed for checks of the size we expect
1114       * for FEAT_MOPS operations, so we should implement this differently.
1115       * Maybe we should do something like
1116       *   if (region start and size are aligned nicely) {
1117       *      do direct loads of 64 tag bits at a time;
1118       *   } else {
1119       *      call checkN()
1120       *   }
1121       */
1122      /* Round the bounds to the tag granule, and compute the number of tags. */
1123      ptr_tag = allocation_tag_from_addr(ptr);
1124      tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1125      tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1126      tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1127      n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1128      if (likely(n == tag_count)) {
1129          return size;
1130      }
1131  
1132      /*
1133       * Failure; for the first granule, it's at @ptr. Otherwise
1134       * it's at the last byte of the nth granule. Calculate how
1135       * many bytes we can access without hitting that failure.
1136       */
1137      if (n == 0) {
1138          return 0;
1139      } else {
1140          return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1141      }
1142  }
1143  
1144  void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1145                         uint32_t desc)
1146  {
1147      int mmu_idx, tag_count;
1148      uint64_t ptr_tag;
1149      void *mem;
1150  
1151      if (!desc) {
1152          /* Tags not actually enabled */
1153          return;
1154      }
1155  
1156      mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1157      /* True probe: this will never fault */
1158      mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1159                                     MMU_DATA_STORE, true, 0);
1160      if (!mem) {
1161          return;
1162      }
1163  
1164      /*
1165       * We know that ptr and size are both TAG_GRANULE aligned; store
1166       * the tag from the pointer value into the tag memory.
1167       */
1168      ptr_tag = allocation_tag_from_addr(ptr);
1169      tag_count = size / TAG_GRANULE;
1170      if (ptr & TAG_GRANULE) {
1171          /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1172          store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1173          mem++;
1174          tag_count--;
1175      }
1176      memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1177      if (tag_count & 1) {
1178          /* Final trailing unaligned nibble */
1179          mem += tag_count / 2;
1180          store_tag1_parallel(0, mem, ptr_tag);
1181      }
1182  }
1183