xref: /qemu/target/arm/tcg/crypto_helper.c (revision 552d892494d36d37451dc7538daae03060011b8b)
1 /*
2  * crypto_helper.c - emulate v8 Crypto Extensions instructions
3  *
4  * Copyright (C) 2013 - 2018 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 
14 #include "cpu.h"
15 #include "exec/helper-proto.h"
16 #include "tcg/tcg-gvec-desc.h"
17 #include "crypto/aes.h"
18 #include "crypto/aes-round.h"
19 #include "crypto/sm4.h"
20 #include "vec_internal.h"
21 
22 union CRYPTO_STATE {
23     uint8_t    bytes[16];
24     uint32_t   words[4];
25     uint64_t   l[2];
26 };
27 
28 #if HOST_BIG_ENDIAN
29 #define CR_ST_BYTE(state, i)   ((state).bytes[(15 - (i)) ^ 8])
30 #define CR_ST_WORD(state, i)   ((state).words[(3 - (i)) ^ 2])
31 #else
32 #define CR_ST_BYTE(state, i)   ((state).bytes[i])
33 #define CR_ST_WORD(state, i)   ((state).words[i])
34 #endif
35 
36 /*
37  * The caller has not been converted to full gvec, and so only
38  * modifies the low 16 bytes of the vector register.
39  */
40 static void clear_tail_16(void *vd, uint32_t desc)
41 {
42     int opr_sz = simd_oprsz(desc);
43     int max_sz = simd_maxsz(desc);
44 
45     assert(opr_sz == 16);
46     clear_tail(vd, opr_sz, max_sz);
47 }
48 
49 static const AESState aes_zero = { };
50 
51 static void do_crypto_aese(uint64_t *rd, uint64_t *rn, uint64_t *rm,
52                            const uint8_t *sbox, const uint8_t *shift)
53 {
54     union CRYPTO_STATE rk = { .l = { rm[0], rm[1] } };
55     union CRYPTO_STATE st = { .l = { rn[0], rn[1] } };
56     int i;
57 
58     /* xor state vector with round key */
59     rk.l[0] ^= st.l[0];
60     rk.l[1] ^= st.l[1];
61 
62     /* combine ShiftRows operation and sbox substitution */
63     for (i = 0; i < 16; i++) {
64         CR_ST_BYTE(st, i) = sbox[CR_ST_BYTE(rk, shift[i])];
65     }
66 
67     rd[0] = st.l[0];
68     rd[1] = st.l[1];
69 }
70 
71 void HELPER(crypto_aese)(void *vd, void *vn, void *vm, uint32_t desc)
72 {
73     intptr_t i, opr_sz = simd_oprsz(desc);
74 
75     for (i = 0; i < opr_sz; i += 16) {
76         AESState *ad = (AESState *)(vd + i);
77         AESState *st = (AESState *)(vn + i);
78         AESState *rk = (AESState *)(vm + i);
79         AESState t;
80 
81         /*
82          * Our uint64_t are in the wrong order for big-endian.
83          * The Arm AddRoundKey comes first, while the API AddRoundKey
84          * comes last: perform the xor here, and provide zero to API.
85          */
86         if (HOST_BIG_ENDIAN) {
87             t.d[0] = st->d[1] ^ rk->d[1];
88             t.d[1] = st->d[0] ^ rk->d[0];
89             aesenc_SB_SR_AK(&t, &t, &aes_zero, false);
90             ad->d[0] = t.d[1];
91             ad->d[1] = t.d[0];
92         } else {
93             t.v = st->v ^ rk->v;
94             aesenc_SB_SR_AK(ad, &t, &aes_zero, false);
95         }
96     }
97     clear_tail(vd, opr_sz, simd_maxsz(desc));
98 }
99 
100 void HELPER(crypto_aesd)(void *vd, void *vn, void *vm, uint32_t desc)
101 {
102     intptr_t i, opr_sz = simd_oprsz(desc);
103 
104     for (i = 0; i < opr_sz; i += 16) {
105         do_crypto_aese(vd + i, vn + i, vm + i, AES_isbox, AES_ishifts);
106     }
107     clear_tail(vd, opr_sz, simd_maxsz(desc));
108 }
109 
110 static void do_crypto_aesmc(uint64_t *rd, uint64_t *rm, const uint32_t *mc)
111 {
112     union CRYPTO_STATE st = { .l = { rm[0], rm[1] } };
113     int i;
114 
115     for (i = 0; i < 16; i += 4) {
116         CR_ST_WORD(st, i >> 2) =
117             mc[CR_ST_BYTE(st, i)] ^
118             rol32(mc[CR_ST_BYTE(st, i + 1)], 8) ^
119             rol32(mc[CR_ST_BYTE(st, i + 2)], 16) ^
120             rol32(mc[CR_ST_BYTE(st, i + 3)], 24);
121     }
122 
123     rd[0] = st.l[0];
124     rd[1] = st.l[1];
125 }
126 
127 void HELPER(crypto_aesmc)(void *vd, void *vm, uint32_t desc)
128 {
129     intptr_t i, opr_sz = simd_oprsz(desc);
130 
131     for (i = 0; i < opr_sz; i += 16) {
132         do_crypto_aesmc(vd + i, vm + i, AES_mc_rot);
133     }
134     clear_tail(vd, opr_sz, simd_maxsz(desc));
135 }
136 
137 void HELPER(crypto_aesimc)(void *vd, void *vm, uint32_t desc)
138 {
139     intptr_t i, opr_sz = simd_oprsz(desc);
140 
141     for (i = 0; i < opr_sz; i += 16) {
142         do_crypto_aesmc(vd + i, vm + i, AES_imc_rot);
143     }
144     clear_tail(vd, opr_sz, simd_maxsz(desc));
145 }
146 
147 /*
148  * SHA-1 logical functions
149  */
150 
151 static uint32_t cho(uint32_t x, uint32_t y, uint32_t z)
152 {
153     return (x & (y ^ z)) ^ z;
154 }
155 
156 static uint32_t par(uint32_t x, uint32_t y, uint32_t z)
157 {
158     return x ^ y ^ z;
159 }
160 
161 static uint32_t maj(uint32_t x, uint32_t y, uint32_t z)
162 {
163     return (x & y) | ((x | y) & z);
164 }
165 
166 void HELPER(crypto_sha1su0)(void *vd, void *vn, void *vm, uint32_t desc)
167 {
168     uint64_t *d = vd, *n = vn, *m = vm;
169     uint64_t d0, d1;
170 
171     d0 = d[1] ^ d[0] ^ m[0];
172     d1 = n[0] ^ d[1] ^ m[1];
173     d[0] = d0;
174     d[1] = d1;
175 
176     clear_tail_16(vd, desc);
177 }
178 
179 static inline void crypto_sha1_3reg(uint64_t *rd, uint64_t *rn,
180                                     uint64_t *rm, uint32_t desc,
181                                     uint32_t (*fn)(union CRYPTO_STATE *d))
182 {
183     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
184     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
185     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
186     int i;
187 
188     for (i = 0; i < 4; i++) {
189         uint32_t t = fn(&d);
190 
191         t += rol32(CR_ST_WORD(d, 0), 5) + CR_ST_WORD(n, 0)
192              + CR_ST_WORD(m, i);
193 
194         CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3);
195         CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
196         CR_ST_WORD(d, 2) = ror32(CR_ST_WORD(d, 1), 2);
197         CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
198         CR_ST_WORD(d, 0) = t;
199     }
200     rd[0] = d.l[0];
201     rd[1] = d.l[1];
202 
203     clear_tail_16(rd, desc);
204 }
205 
206 static uint32_t do_sha1c(union CRYPTO_STATE *d)
207 {
208     return cho(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
209 }
210 
211 void HELPER(crypto_sha1c)(void *vd, void *vn, void *vm, uint32_t desc)
212 {
213     crypto_sha1_3reg(vd, vn, vm, desc, do_sha1c);
214 }
215 
216 static uint32_t do_sha1p(union CRYPTO_STATE *d)
217 {
218     return par(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
219 }
220 
221 void HELPER(crypto_sha1p)(void *vd, void *vn, void *vm, uint32_t desc)
222 {
223     crypto_sha1_3reg(vd, vn, vm, desc, do_sha1p);
224 }
225 
226 static uint32_t do_sha1m(union CRYPTO_STATE *d)
227 {
228     return maj(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
229 }
230 
231 void HELPER(crypto_sha1m)(void *vd, void *vn, void *vm, uint32_t desc)
232 {
233     crypto_sha1_3reg(vd, vn, vm, desc, do_sha1m);
234 }
235 
236 void HELPER(crypto_sha1h)(void *vd, void *vm, uint32_t desc)
237 {
238     uint64_t *rd = vd;
239     uint64_t *rm = vm;
240     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
241 
242     CR_ST_WORD(m, 0) = ror32(CR_ST_WORD(m, 0), 2);
243     CR_ST_WORD(m, 1) = CR_ST_WORD(m, 2) = CR_ST_WORD(m, 3) = 0;
244 
245     rd[0] = m.l[0];
246     rd[1] = m.l[1];
247 
248     clear_tail_16(vd, desc);
249 }
250 
251 void HELPER(crypto_sha1su1)(void *vd, void *vm, uint32_t desc)
252 {
253     uint64_t *rd = vd;
254     uint64_t *rm = vm;
255     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
256     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
257 
258     CR_ST_WORD(d, 0) = rol32(CR_ST_WORD(d, 0) ^ CR_ST_WORD(m, 1), 1);
259     CR_ST_WORD(d, 1) = rol32(CR_ST_WORD(d, 1) ^ CR_ST_WORD(m, 2), 1);
260     CR_ST_WORD(d, 2) = rol32(CR_ST_WORD(d, 2) ^ CR_ST_WORD(m, 3), 1);
261     CR_ST_WORD(d, 3) = rol32(CR_ST_WORD(d, 3) ^ CR_ST_WORD(d, 0), 1);
262 
263     rd[0] = d.l[0];
264     rd[1] = d.l[1];
265 
266     clear_tail_16(vd, desc);
267 }
268 
269 /*
270  * The SHA-256 logical functions, according to
271  * http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
272  */
273 
274 static uint32_t S0(uint32_t x)
275 {
276     return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22);
277 }
278 
279 static uint32_t S1(uint32_t x)
280 {
281     return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25);
282 }
283 
284 static uint32_t s0(uint32_t x)
285 {
286     return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3);
287 }
288 
289 static uint32_t s1(uint32_t x)
290 {
291     return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10);
292 }
293 
294 void HELPER(crypto_sha256h)(void *vd, void *vn, void *vm, uint32_t desc)
295 {
296     uint64_t *rd = vd;
297     uint64_t *rn = vn;
298     uint64_t *rm = vm;
299     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
300     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
301     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
302     int i;
303 
304     for (i = 0; i < 4; i++) {
305         uint32_t t = cho(CR_ST_WORD(n, 0), CR_ST_WORD(n, 1), CR_ST_WORD(n, 2))
306                      + CR_ST_WORD(n, 3) + S1(CR_ST_WORD(n, 0))
307                      + CR_ST_WORD(m, i);
308 
309         CR_ST_WORD(n, 3) = CR_ST_WORD(n, 2);
310         CR_ST_WORD(n, 2) = CR_ST_WORD(n, 1);
311         CR_ST_WORD(n, 1) = CR_ST_WORD(n, 0);
312         CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3) + t;
313 
314         t += maj(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
315              + S0(CR_ST_WORD(d, 0));
316 
317         CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
318         CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
319         CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
320         CR_ST_WORD(d, 0) = t;
321     }
322 
323     rd[0] = d.l[0];
324     rd[1] = d.l[1];
325 
326     clear_tail_16(vd, desc);
327 }
328 
329 void HELPER(crypto_sha256h2)(void *vd, void *vn, void *vm, uint32_t desc)
330 {
331     uint64_t *rd = vd;
332     uint64_t *rn = vn;
333     uint64_t *rm = vm;
334     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
335     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
336     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
337     int i;
338 
339     for (i = 0; i < 4; i++) {
340         uint32_t t = cho(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
341                      + CR_ST_WORD(d, 3) + S1(CR_ST_WORD(d, 0))
342                      + CR_ST_WORD(m, i);
343 
344         CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
345         CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
346         CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
347         CR_ST_WORD(d, 0) = CR_ST_WORD(n, 3 - i) + t;
348     }
349 
350     rd[0] = d.l[0];
351     rd[1] = d.l[1];
352 
353     clear_tail_16(vd, desc);
354 }
355 
356 void HELPER(crypto_sha256su0)(void *vd, void *vm, uint32_t desc)
357 {
358     uint64_t *rd = vd;
359     uint64_t *rm = vm;
360     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
361     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
362 
363     CR_ST_WORD(d, 0) += s0(CR_ST_WORD(d, 1));
364     CR_ST_WORD(d, 1) += s0(CR_ST_WORD(d, 2));
365     CR_ST_WORD(d, 2) += s0(CR_ST_WORD(d, 3));
366     CR_ST_WORD(d, 3) += s0(CR_ST_WORD(m, 0));
367 
368     rd[0] = d.l[0];
369     rd[1] = d.l[1];
370 
371     clear_tail_16(vd, desc);
372 }
373 
374 void HELPER(crypto_sha256su1)(void *vd, void *vn, void *vm, uint32_t desc)
375 {
376     uint64_t *rd = vd;
377     uint64_t *rn = vn;
378     uint64_t *rm = vm;
379     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
380     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
381     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
382 
383     CR_ST_WORD(d, 0) += s1(CR_ST_WORD(m, 2)) + CR_ST_WORD(n, 1);
384     CR_ST_WORD(d, 1) += s1(CR_ST_WORD(m, 3)) + CR_ST_WORD(n, 2);
385     CR_ST_WORD(d, 2) += s1(CR_ST_WORD(d, 0)) + CR_ST_WORD(n, 3);
386     CR_ST_WORD(d, 3) += s1(CR_ST_WORD(d, 1)) + CR_ST_WORD(m, 0);
387 
388     rd[0] = d.l[0];
389     rd[1] = d.l[1];
390 
391     clear_tail_16(vd, desc);
392 }
393 
394 /*
395  * The SHA-512 logical functions (same as above but using 64-bit operands)
396  */
397 
398 static uint64_t cho512(uint64_t x, uint64_t y, uint64_t z)
399 {
400     return (x & (y ^ z)) ^ z;
401 }
402 
403 static uint64_t maj512(uint64_t x, uint64_t y, uint64_t z)
404 {
405     return (x & y) | ((x | y) & z);
406 }
407 
408 static uint64_t S0_512(uint64_t x)
409 {
410     return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
411 }
412 
413 static uint64_t S1_512(uint64_t x)
414 {
415     return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
416 }
417 
418 static uint64_t s0_512(uint64_t x)
419 {
420     return ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7);
421 }
422 
423 static uint64_t s1_512(uint64_t x)
424 {
425     return ror64(x, 19) ^ ror64(x, 61) ^ (x >> 6);
426 }
427 
428 void HELPER(crypto_sha512h)(void *vd, void *vn, void *vm, uint32_t desc)
429 {
430     uint64_t *rd = vd;
431     uint64_t *rn = vn;
432     uint64_t *rm = vm;
433     uint64_t d0 = rd[0];
434     uint64_t d1 = rd[1];
435 
436     d1 += S1_512(rm[1]) + cho512(rm[1], rn[0], rn[1]);
437     d0 += S1_512(d1 + rm[0]) + cho512(d1 + rm[0], rm[1], rn[0]);
438 
439     rd[0] = d0;
440     rd[1] = d1;
441 
442     clear_tail_16(vd, desc);
443 }
444 
445 void HELPER(crypto_sha512h2)(void *vd, void *vn, void *vm, uint32_t desc)
446 {
447     uint64_t *rd = vd;
448     uint64_t *rn = vn;
449     uint64_t *rm = vm;
450     uint64_t d0 = rd[0];
451     uint64_t d1 = rd[1];
452 
453     d1 += S0_512(rm[0]) + maj512(rn[0], rm[1], rm[0]);
454     d0 += S0_512(d1) + maj512(d1, rm[0], rm[1]);
455 
456     rd[0] = d0;
457     rd[1] = d1;
458 
459     clear_tail_16(vd, desc);
460 }
461 
462 void HELPER(crypto_sha512su0)(void *vd, void *vn, uint32_t desc)
463 {
464     uint64_t *rd = vd;
465     uint64_t *rn = vn;
466     uint64_t d0 = rd[0];
467     uint64_t d1 = rd[1];
468 
469     d0 += s0_512(rd[1]);
470     d1 += s0_512(rn[0]);
471 
472     rd[0] = d0;
473     rd[1] = d1;
474 
475     clear_tail_16(vd, desc);
476 }
477 
478 void HELPER(crypto_sha512su1)(void *vd, void *vn, void *vm, uint32_t desc)
479 {
480     uint64_t *rd = vd;
481     uint64_t *rn = vn;
482     uint64_t *rm = vm;
483 
484     rd[0] += s1_512(rn[0]) + rm[0];
485     rd[1] += s1_512(rn[1]) + rm[1];
486 
487     clear_tail_16(vd, desc);
488 }
489 
490 void HELPER(crypto_sm3partw1)(void *vd, void *vn, void *vm, uint32_t desc)
491 {
492     uint64_t *rd = vd;
493     uint64_t *rn = vn;
494     uint64_t *rm = vm;
495     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
496     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
497     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
498     uint32_t t;
499 
500     t = CR_ST_WORD(d, 0) ^ CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 1), 17);
501     CR_ST_WORD(d, 0) = t ^ ror32(t, 17) ^ ror32(t, 9);
502 
503     t = CR_ST_WORD(d, 1) ^ CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 2), 17);
504     CR_ST_WORD(d, 1) = t ^ ror32(t, 17) ^ ror32(t, 9);
505 
506     t = CR_ST_WORD(d, 2) ^ CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 3), 17);
507     CR_ST_WORD(d, 2) = t ^ ror32(t, 17) ^ ror32(t, 9);
508 
509     t = CR_ST_WORD(d, 3) ^ CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 0), 17);
510     CR_ST_WORD(d, 3) = t ^ ror32(t, 17) ^ ror32(t, 9);
511 
512     rd[0] = d.l[0];
513     rd[1] = d.l[1];
514 
515     clear_tail_16(vd, desc);
516 }
517 
518 void HELPER(crypto_sm3partw2)(void *vd, void *vn, void *vm, uint32_t desc)
519 {
520     uint64_t *rd = vd;
521     uint64_t *rn = vn;
522     uint64_t *rm = vm;
523     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
524     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
525     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
526     uint32_t t = CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 0), 25);
527 
528     CR_ST_WORD(d, 0) ^= t;
529     CR_ST_WORD(d, 1) ^= CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 1), 25);
530     CR_ST_WORD(d, 2) ^= CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 2), 25);
531     CR_ST_WORD(d, 3) ^= CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(m, 3), 25) ^
532                         ror32(t, 17) ^ ror32(t, 2) ^ ror32(t, 26);
533 
534     rd[0] = d.l[0];
535     rd[1] = d.l[1];
536 
537     clear_tail_16(vd, desc);
538 }
539 
540 static inline void QEMU_ALWAYS_INLINE
541 crypto_sm3tt(uint64_t *rd, uint64_t *rn, uint64_t *rm,
542              uint32_t desc, uint32_t opcode)
543 {
544     union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
545     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
546     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
547     uint32_t imm2 = simd_data(desc);
548     uint32_t t;
549 
550     assert(imm2 < 4);
551 
552     if (opcode == 0 || opcode == 2) {
553         /* SM3TT1A, SM3TT2A */
554         t = par(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
555     } else if (opcode == 1) {
556         /* SM3TT1B */
557         t = maj(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
558     } else if (opcode == 3) {
559         /* SM3TT2B */
560         t = cho(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
561     } else {
562         qemu_build_not_reached();
563     }
564 
565     t += CR_ST_WORD(d, 0) + CR_ST_WORD(m, imm2);
566 
567     CR_ST_WORD(d, 0) = CR_ST_WORD(d, 1);
568 
569     if (opcode < 2) {
570         /* SM3TT1A, SM3TT1B */
571         t += CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 3), 20);
572 
573         CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 23);
574     } else {
575         /* SM3TT2A, SM3TT2B */
576         t += CR_ST_WORD(n, 3);
577         t ^= rol32(t, 9) ^ rol32(t, 17);
578 
579         CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 13);
580     }
581 
582     CR_ST_WORD(d, 2) = CR_ST_WORD(d, 3);
583     CR_ST_WORD(d, 3) = t;
584 
585     rd[0] = d.l[0];
586     rd[1] = d.l[1];
587 
588     clear_tail_16(rd, desc);
589 }
590 
591 #define DO_SM3TT(NAME, OPCODE) \
592     void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
593     { crypto_sm3tt(vd, vn, vm, desc, OPCODE); }
594 
595 DO_SM3TT(crypto_sm3tt1a, 0)
596 DO_SM3TT(crypto_sm3tt1b, 1)
597 DO_SM3TT(crypto_sm3tt2a, 2)
598 DO_SM3TT(crypto_sm3tt2b, 3)
599 
600 #undef DO_SM3TT
601 
602 static void do_crypto_sm4e(uint64_t *rd, uint64_t *rn, uint64_t *rm)
603 {
604     union CRYPTO_STATE d = { .l = { rn[0], rn[1] } };
605     union CRYPTO_STATE n = { .l = { rm[0], rm[1] } };
606     uint32_t t, i;
607 
608     for (i = 0; i < 4; i++) {
609         t = CR_ST_WORD(d, (i + 1) % 4) ^
610             CR_ST_WORD(d, (i + 2) % 4) ^
611             CR_ST_WORD(d, (i + 3) % 4) ^
612             CR_ST_WORD(n, i);
613 
614         t = sm4_sbox[t & 0xff] |
615             sm4_sbox[(t >> 8) & 0xff] << 8 |
616             sm4_sbox[(t >> 16) & 0xff] << 16 |
617             sm4_sbox[(t >> 24) & 0xff] << 24;
618 
619         CR_ST_WORD(d, i) ^= t ^ rol32(t, 2) ^ rol32(t, 10) ^ rol32(t, 18) ^
620                             rol32(t, 24);
621     }
622 
623     rd[0] = d.l[0];
624     rd[1] = d.l[1];
625 }
626 
627 void HELPER(crypto_sm4e)(void *vd, void *vn, void *vm, uint32_t desc)
628 {
629     intptr_t i, opr_sz = simd_oprsz(desc);
630 
631     for (i = 0; i < opr_sz; i += 16) {
632         do_crypto_sm4e(vd + i, vn + i, vm + i);
633     }
634     clear_tail(vd, opr_sz, simd_maxsz(desc));
635 }
636 
637 static void do_crypto_sm4ekey(uint64_t *rd, uint64_t *rn, uint64_t *rm)
638 {
639     union CRYPTO_STATE d;
640     union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
641     union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
642     uint32_t t, i;
643 
644     d = n;
645     for (i = 0; i < 4; i++) {
646         t = CR_ST_WORD(d, (i + 1) % 4) ^
647             CR_ST_WORD(d, (i + 2) % 4) ^
648             CR_ST_WORD(d, (i + 3) % 4) ^
649             CR_ST_WORD(m, i);
650 
651         t = sm4_sbox[t & 0xff] |
652             sm4_sbox[(t >> 8) & 0xff] << 8 |
653             sm4_sbox[(t >> 16) & 0xff] << 16 |
654             sm4_sbox[(t >> 24) & 0xff] << 24;
655 
656         CR_ST_WORD(d, i) ^= t ^ rol32(t, 13) ^ rol32(t, 23);
657     }
658 
659     rd[0] = d.l[0];
660     rd[1] = d.l[1];
661 }
662 
663 void HELPER(crypto_sm4ekey)(void *vd, void *vn, void* vm, uint32_t desc)
664 {
665     intptr_t i, opr_sz = simd_oprsz(desc);
666 
667     for (i = 0; i < opr_sz; i += 16) {
668         do_crypto_sm4ekey(vd + i, vn + i, vm + i);
669     }
670     clear_tail(vd, opr_sz, simd_maxsz(desc));
671 }
672 
673 void HELPER(crypto_rax1)(void *vd, void *vn, void *vm, uint32_t desc)
674 {
675     intptr_t i, opr_sz = simd_oprsz(desc);
676     uint64_t *d = vd, *n = vn, *m = vm;
677 
678     for (i = 0; i < opr_sz / 8; ++i) {
679         d[i] = n[i] ^ rol64(m[i], 1);
680     }
681     clear_tail(vd, opr_sz, simd_maxsz(desc));
682 }
683