xref: /qemu/target/arm/ptw.c (revision cc944932ecef3b7a56ae62d89dd92fb9e56c5cc8)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "exec/tlb-flags.h"
16 #include "cpu.h"
17 #include "internals.h"
18 #include "cpu-features.h"
19 #include "idau.h"
20 
21 typedef struct S1Translate {
22     /*
23      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
24      * Together with in_space, specifies the architectural translation regime.
25      */
26     ARMMMUIdx in_mmu_idx;
27     /*
28      * in_ptw_idx: specifies which mmuidx to use for the actual
29      * page table descriptor load operations. This will be one of the
30      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
31      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
32      * this field is updated accordingly.
33      */
34     ARMMMUIdx in_ptw_idx;
35     /*
36      * in_space: the security space for this walk. This plus
37      * the in_mmu_idx specify the architectural translation regime.
38      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
39      * this field is updated accordingly.
40      *
41      * Note that the security space for the in_ptw_idx may be different
42      * from that for the in_mmu_idx. We do not need to explicitly track
43      * the in_ptw_idx security space because:
44      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
45      *    itself specifies the security space
46      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
47      *    space used for ptw reads is the same as that of the security
48      *    space of the stage 1 translation for all cases except where
49      *    stage 1 is Secure; in that case the only possibilities for
50      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
51      *    value being Stage2 vs Stage2_S distinguishes those.
52      */
53     ARMSecuritySpace in_space;
54     /*
55      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
56      * accesses will not update the guest page table access flags
57      * and will not change the state of the softmmu TLBs.
58      */
59     bool in_debug;
60     /*
61      * If this is stage 2 of a stage 1+2 page table walk, then this must
62      * be true if stage 1 is an EL0 access; otherwise this is ignored.
63      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
64      */
65     bool in_s1_is_el0;
66     bool out_rw;
67     bool out_be;
68     ARMSecuritySpace out_space;
69     hwaddr out_virt;
70     hwaddr out_phys;
71     void *out_host;
72 } S1Translate;
73 
74 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
75                                 vaddr address,
76                                 MMUAccessType access_type, MemOp memop,
77                                 GetPhysAddrResult *result,
78                                 ARMMMUFaultInfo *fi);
79 
80 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
81                               vaddr address,
82                               MMUAccessType access_type, MemOp memop,
83                               GetPhysAddrResult *result,
84                               ARMMMUFaultInfo *fi);
85 
86 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
87                       int user_rw, int prot_rw, int xn, int pxn,
88                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
89 
90 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
91 static const uint8_t pamax_map[] = {
92     [0] = 32,
93     [1] = 36,
94     [2] = 40,
95     [3] = 42,
96     [4] = 44,
97     [5] = 48,
98     [6] = 52,
99 };
100 
101 uint8_t round_down_to_parange_index(uint8_t bit_size)
102 {
103     for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
104         if (pamax_map[i] <= bit_size) {
105             return i;
106         }
107     }
108     g_assert_not_reached();
109 }
110 
111 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
112 {
113     return pamax_map[round_down_to_parange_index(bit_size)];
114 }
115 
116 /*
117  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
118  * Note that machvirt_init calls this on a CPU that is inited but not realized!
119  */
120 unsigned int arm_pamax(ARMCPU *cpu)
121 {
122     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
123         unsigned int parange =
124             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
125 
126         /*
127          * id_aa64mmfr0 is a read-only register so values outside of the
128          * supported mappings can be considered an implementation error.
129          */
130         assert(parange < ARRAY_SIZE(pamax_map));
131         return pamax_map[parange];
132     }
133 
134     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
135         /* v7 or v8 with LPAE */
136         return 40;
137     }
138     /* Anything else */
139     return 32;
140 }
141 
142 /*
143  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
144  */
145 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
146 {
147     switch (mmu_idx) {
148     case ARMMMUIdx_E10_0:
149         return ARMMMUIdx_Stage1_E0;
150     case ARMMMUIdx_E10_1:
151         return ARMMMUIdx_Stage1_E1;
152     case ARMMMUIdx_E10_1_PAN:
153         return ARMMMUIdx_Stage1_E1_PAN;
154     default:
155         return mmu_idx;
156     }
157 }
158 
159 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
160 {
161     return stage_1_mmu_idx(arm_mmu_idx(env));
162 }
163 
164 /*
165  * Return where we should do ptw loads from for a stage 2 walk.
166  * This depends on whether the address we are looking up is a
167  * Secure IPA or a NonSecure IPA, which we know from whether this is
168  * Stage2 or Stage2_S.
169  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
170  */
171 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
172 {
173     bool s2walk_secure;
174 
175     /*
176      * We're OK to check the current state of the CPU here because
177      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
178      * changes.
179      * (2) there's no way to do a lookup that cares about Stage 2 for a
180      * different security state to the current one for AArch64, and AArch32
181      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
182      * an NS stage 1+2 lookup while the NS bit is 0.)
183      */
184     if (!arm_el_is_aa64(env, 3)) {
185         return ARMMMUIdx_Phys_NS;
186     }
187 
188     switch (arm_security_space_below_el3(env)) {
189     case ARMSS_NonSecure:
190         return ARMMMUIdx_Phys_NS;
191     case ARMSS_Realm:
192         return ARMMMUIdx_Phys_Realm;
193     case ARMSS_Secure:
194         if (stage2idx == ARMMMUIdx_Stage2_S) {
195             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
196         } else {
197             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
198         }
199         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
200     default:
201         g_assert_not_reached();
202     }
203 }
204 
205 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
206 {
207     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
208 }
209 
210 /* Return the TTBR associated with this translation regime */
211 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
212 {
213     if (mmu_idx == ARMMMUIdx_Stage2) {
214         return env->cp15.vttbr_el2;
215     }
216     if (mmu_idx == ARMMMUIdx_Stage2_S) {
217         return env->cp15.vsttbr_el2;
218     }
219     if (ttbrn == 0) {
220         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
221     } else {
222         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
223     }
224 }
225 
226 /* Return true if the specified stage of address translation is disabled */
227 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
228                                         ARMSecuritySpace space)
229 {
230     uint64_t hcr_el2;
231 
232     if (arm_feature(env, ARM_FEATURE_M)) {
233         bool is_secure = arm_space_is_secure(space);
234         switch (env->v7m.mpu_ctrl[is_secure] &
235                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
236         case R_V7M_MPU_CTRL_ENABLE_MASK:
237             /* Enabled, but not for HardFault and NMI */
238             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
239         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
240             /* Enabled for all cases */
241             return false;
242         case 0:
243         default:
244             /*
245              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
246              * we warned about that in armv7m_nvic.c when the guest set it.
247              */
248             return true;
249         }
250     }
251 
252 
253     switch (mmu_idx) {
254     case ARMMMUIdx_Stage2:
255     case ARMMMUIdx_Stage2_S:
256         /* HCR.DC means HCR.VM behaves as 1 */
257         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
258         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
259 
260     case ARMMMUIdx_E10_0:
261     case ARMMMUIdx_E10_1:
262     case ARMMMUIdx_E10_1_PAN:
263         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
264         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
265         if (hcr_el2 & HCR_TGE) {
266             return true;
267         }
268         break;
269 
270     case ARMMMUIdx_Stage1_E0:
271     case ARMMMUIdx_Stage1_E1:
272     case ARMMMUIdx_Stage1_E1_PAN:
273         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
274         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
275         if (hcr_el2 & HCR_DC) {
276             return true;
277         }
278         break;
279 
280     case ARMMMUIdx_E20_0:
281     case ARMMMUIdx_E20_2:
282     case ARMMMUIdx_E20_2_PAN:
283     case ARMMMUIdx_E2:
284     case ARMMMUIdx_E3:
285     case ARMMMUIdx_E30_0:
286     case ARMMMUIdx_E30_3_PAN:
287         break;
288 
289     case ARMMMUIdx_Phys_S:
290     case ARMMMUIdx_Phys_NS:
291     case ARMMMUIdx_Phys_Root:
292     case ARMMMUIdx_Phys_Realm:
293         /* No translation for physical address spaces. */
294         return true;
295 
296     default:
297         g_assert_not_reached();
298     }
299 
300     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
301 }
302 
303 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
304                                      ARMSecuritySpace pspace,
305                                      ARMMMUFaultInfo *fi)
306 {
307     MemTxAttrs attrs = {
308         .secure = true,
309         .space = ARMSS_Root,
310     };
311     ARMCPU *cpu = env_archcpu(env);
312     uint64_t gpccr = env->cp15.gpccr_el3;
313     unsigned pps, pgs, l0gptsz, level = 0;
314     uint64_t tableaddr, pps_mask, align, entry, index;
315     AddressSpace *as;
316     MemTxResult result;
317     int gpi;
318 
319     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
320         return true;
321     }
322 
323     /*
324      * GPC Priority 1 (R_GMGRR):
325      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
326      * the access fails as GPT walk fault at level 0.
327      */
328 
329     /*
330      * Configuration of PPS to a value exceeding the implemented
331      * physical address size is invalid.
332      */
333     pps = FIELD_EX64(gpccr, GPCCR, PPS);
334     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
335         goto fault_walk;
336     }
337     pps = pamax_map[pps];
338     pps_mask = MAKE_64BIT_MASK(0, pps);
339 
340     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
341     case 0b10: /* outer shareable */
342         break;
343     case 0b00: /* non-shareable */
344     case 0b11: /* inner shareable */
345         /* Inner and Outer non-cacheable requires Outer shareable. */
346         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
347             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
348             goto fault_walk;
349         }
350         break;
351     default:   /* reserved */
352         goto fault_walk;
353     }
354 
355     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
356     case 0b00: /* 4KB */
357         pgs = 12;
358         break;
359     case 0b01: /* 64KB */
360         pgs = 16;
361         break;
362     case 0b10: /* 16KB */
363         pgs = 14;
364         break;
365     default: /* reserved */
366         goto fault_walk;
367     }
368 
369     /* Note this field is read-only and fixed at reset. */
370     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
371 
372     /*
373      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
374      * R_CPDSB: A NonSecure physical address input exceeding PPS
375      * does not experience any fault.
376      */
377     if (paddress & ~pps_mask) {
378         if (pspace == ARMSS_NonSecure) {
379             return true;
380         }
381         goto fault_size;
382     }
383 
384     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
385     tableaddr = env->cp15.gptbr_el3 << 12;
386     if (tableaddr & ~pps_mask) {
387         goto fault_size;
388     }
389 
390     /*
391      * BADDR is aligned per a function of PPS and L0GPTSZ.
392      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
393      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
394      */
395     align = MAX(pps - l0gptsz + 3, 12);
396     align = MAKE_64BIT_MASK(0, align);
397     tableaddr &= ~align;
398 
399     as = arm_addressspace(env_cpu(env), attrs);
400 
401     /* Level 0 lookup. */
402     index = extract64(paddress, l0gptsz, pps - l0gptsz);
403     tableaddr += index * 8;
404     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
405     if (result != MEMTX_OK) {
406         goto fault_eabt;
407     }
408 
409     switch (extract32(entry, 0, 4)) {
410     case 1: /* block descriptor */
411         if (entry >> 8) {
412             goto fault_walk; /* RES0 bits not 0 */
413         }
414         gpi = extract32(entry, 4, 4);
415         goto found;
416     case 3: /* table descriptor */
417         tableaddr = entry & ~0xf;
418         align = MAX(l0gptsz - pgs - 1, 12);
419         align = MAKE_64BIT_MASK(0, align);
420         if (tableaddr & (~pps_mask | align)) {
421             goto fault_walk; /* RES0 bits not 0 */
422         }
423         break;
424     default: /* invalid */
425         goto fault_walk;
426     }
427 
428     /* Level 1 lookup */
429     level = 1;
430     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
431     tableaddr += index * 8;
432     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
433     if (result != MEMTX_OK) {
434         goto fault_eabt;
435     }
436 
437     switch (extract32(entry, 0, 4)) {
438     case 1: /* contiguous descriptor */
439         if (entry >> 10) {
440             goto fault_walk; /* RES0 bits not 0 */
441         }
442         /*
443          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
444          * and because we cannot invalidate by pa, and thus will always
445          * flush entire tlbs, we don't actually care about the range here
446          * and can simply extract the GPI as the result.
447          */
448         if (extract32(entry, 8, 2) == 0) {
449             goto fault_walk; /* reserved contig */
450         }
451         gpi = extract32(entry, 4, 4);
452         break;
453     default:
454         index = extract64(paddress, pgs, 4);
455         gpi = extract64(entry, index * 4, 4);
456         break;
457     }
458 
459  found:
460     switch (gpi) {
461     case 0b0000: /* no access */
462         break;
463     case 0b1111: /* all access */
464         return true;
465     case 0b1000:
466     case 0b1001:
467     case 0b1010:
468     case 0b1011:
469         if (pspace == (gpi & 3)) {
470             return true;
471         }
472         break;
473     default:
474         goto fault_walk; /* reserved */
475     }
476 
477     fi->gpcf = GPCF_Fail;
478     goto fault_common;
479  fault_eabt:
480     fi->gpcf = GPCF_EABT;
481     goto fault_common;
482  fault_size:
483     fi->gpcf = GPCF_AddressSize;
484     goto fault_common;
485  fault_walk:
486     fi->gpcf = GPCF_Walk;
487  fault_common:
488     fi->level = level;
489     fi->paddr = paddress;
490     fi->paddr_space = pspace;
491     return false;
492 }
493 
494 static bool S1_attrs_are_device(uint8_t attrs)
495 {
496     /*
497      * This slightly under-decodes the MAIR_ELx field:
498      * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
499      * 0b0000dd1x is UNPREDICTABLE.
500      */
501     return (attrs & 0xf0) == 0;
502 }
503 
504 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
505 {
506     /*
507      * For an S1 page table walk, the stage 1 attributes are always
508      * some form of "this is Normal memory". The combined S1+S2
509      * attributes are therefore only Device if stage 2 specifies Device.
510      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
511      * ie when cacheattrs.attrs bits [3:2] are 0b00.
512      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
513      * when cacheattrs.attrs bit [2] is 0.
514      */
515     if (hcr & HCR_FWB) {
516         return (attrs & 0x4) == 0;
517     } else {
518         return (attrs & 0xc) == 0;
519     }
520 }
521 
522 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
523                                           ARMMMUIdx s2_mmu_idx)
524 {
525     /*
526      * Return the security space to use for stage 2 when doing
527      * the S1 page table descriptor load.
528      */
529     if (regime_is_stage2(s2_mmu_idx)) {
530         /*
531          * The security space for ptw reads is almost always the same
532          * as that of the security space of the stage 1 translation.
533          * The only exception is when stage 1 is Secure; in that case
534          * the ptw read might be to the Secure or the NonSecure space
535          * (but never Realm or Root), and the s2_mmu_idx tells us which.
536          * Root translations are always single-stage.
537          */
538         if (s1_space == ARMSS_Secure) {
539             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
540         } else {
541             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
542             assert(s1_space != ARMSS_Root);
543             return s1_space;
544         }
545     } else {
546         /* ptw loads are from phys: the mmu idx itself says which space */
547         return arm_phys_to_space(s2_mmu_idx);
548     }
549 }
550 
551 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
552 {
553     /*
554      * For stage 2 faults in Secure EL22, S1NS indicates
555      * whether the faulting IPA is in the Secure or NonSecure
556      * IPA space. For all other kinds of fault, it is false.
557      */
558     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
559         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
560 }
561 
562 /* Translate a S1 pagetable walk through S2 if needed.  */
563 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
564                              hwaddr addr, ARMMMUFaultInfo *fi)
565 {
566     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
567     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
568     uint8_t pte_attrs;
569 
570     ptw->out_virt = addr;
571 
572     if (unlikely(ptw->in_debug)) {
573         /*
574          * From gdbstub, do not use softmmu so that we don't modify the
575          * state of the cpu at all, including softmmu tlb contents.
576          */
577         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
578         S1Translate s2ptw = {
579             .in_mmu_idx = s2_mmu_idx,
580             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
581             .in_space = s2_space,
582             .in_debug = true,
583         };
584         GetPhysAddrResult s2 = { };
585 
586         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
587             goto fail;
588         }
589 
590         ptw->out_phys = s2.f.phys_addr;
591         pte_attrs = s2.cacheattrs.attrs;
592         ptw->out_host = NULL;
593         ptw->out_rw = false;
594         ptw->out_space = s2.f.attrs.space;
595     } else {
596 #ifdef CONFIG_TCG
597         CPUTLBEntryFull *full;
598         int flags;
599 
600         env->tlb_fi = fi;
601         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
602                                       arm_to_core_mmu_idx(s2_mmu_idx),
603                                       &ptw->out_host, &full);
604         env->tlb_fi = NULL;
605 
606         if (unlikely(flags & TLB_INVALID_MASK)) {
607             goto fail;
608         }
609         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
610         ptw->out_rw = full->prot & PAGE_WRITE;
611         pte_attrs = full->extra.arm.pte_attrs;
612         ptw->out_space = full->attrs.space;
613 #else
614         g_assert_not_reached();
615 #endif
616     }
617 
618     if (regime_is_stage2(s2_mmu_idx)) {
619         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
620 
621         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
622             /*
623              * PTW set and S1 walk touched S2 Device memory:
624              * generate Permission fault.
625              */
626             fi->type = ARMFault_Permission;
627             fi->s2addr = addr;
628             fi->stage2 = true;
629             fi->s1ptw = true;
630             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
631             return false;
632         }
633     }
634 
635     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
636     return true;
637 
638  fail:
639     assert(fi->type != ARMFault_None);
640     if (fi->type == ARMFault_GPCFOnOutput) {
641         fi->type = ARMFault_GPCFOnWalk;
642     }
643     fi->s2addr = addr;
644     fi->stage2 = regime_is_stage2(s2_mmu_idx);
645     fi->s1ptw = fi->stage2;
646     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
647     return false;
648 }
649 
650 /* All loads done in the course of a page table walk go through here. */
651 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
652                             ARMMMUFaultInfo *fi)
653 {
654     CPUState *cs = env_cpu(env);
655     void *host = ptw->out_host;
656     uint32_t data;
657 
658     if (likely(host)) {
659         /* Page tables are in RAM, and we have the host address. */
660         data = qatomic_read((uint32_t *)host);
661         if (ptw->out_be) {
662             data = be32_to_cpu(data);
663         } else {
664             data = le32_to_cpu(data);
665         }
666     } else {
667         /* Page tables are in MMIO. */
668         MemTxAttrs attrs = {
669             .space = ptw->out_space,
670             .secure = arm_space_is_secure(ptw->out_space),
671         };
672         AddressSpace *as = arm_addressspace(cs, attrs);
673         MemTxResult result = MEMTX_OK;
674 
675         if (ptw->out_be) {
676             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
677         } else {
678             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
679         }
680         if (unlikely(result != MEMTX_OK)) {
681             fi->type = ARMFault_SyncExternalOnWalk;
682             fi->ea = arm_extabort_type(result);
683             return 0;
684         }
685     }
686     return data;
687 }
688 
689 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
690                             ARMMMUFaultInfo *fi)
691 {
692     CPUState *cs = env_cpu(env);
693     void *host = ptw->out_host;
694     uint64_t data;
695 
696     if (likely(host)) {
697         /* Page tables are in RAM, and we have the host address. */
698 #ifdef CONFIG_ATOMIC64
699         data = qatomic_read__nocheck((uint64_t *)host);
700         if (ptw->out_be) {
701             data = be64_to_cpu(data);
702         } else {
703             data = le64_to_cpu(data);
704         }
705 #else
706         if (ptw->out_be) {
707             data = ldq_be_p(host);
708         } else {
709             data = ldq_le_p(host);
710         }
711 #endif
712     } else {
713         /* Page tables are in MMIO. */
714         MemTxAttrs attrs = {
715             .space = ptw->out_space,
716             .secure = arm_space_is_secure(ptw->out_space),
717         };
718         AddressSpace *as = arm_addressspace(cs, attrs);
719         MemTxResult result = MEMTX_OK;
720 
721         if (ptw->out_be) {
722             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
723         } else {
724             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
725         }
726         if (unlikely(result != MEMTX_OK)) {
727             fi->type = ARMFault_SyncExternalOnWalk;
728             fi->ea = arm_extabort_type(result);
729             return 0;
730         }
731     }
732     return data;
733 }
734 
735 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
736                              uint64_t new_val, S1Translate *ptw,
737                              ARMMMUFaultInfo *fi)
738 {
739 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
740     uint64_t cur_val;
741     void *host = ptw->out_host;
742 
743     if (unlikely(!host)) {
744         /* Page table in MMIO Memory Region */
745         CPUState *cs = env_cpu(env);
746         MemTxAttrs attrs = {
747             .space = ptw->out_space,
748             .secure = arm_space_is_secure(ptw->out_space),
749         };
750         AddressSpace *as = arm_addressspace(cs, attrs);
751         MemTxResult result = MEMTX_OK;
752         bool need_lock = !bql_locked();
753 
754         if (need_lock) {
755             bql_lock();
756         }
757         if (ptw->out_be) {
758             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
759             if (unlikely(result != MEMTX_OK)) {
760                 fi->type = ARMFault_SyncExternalOnWalk;
761                 fi->ea = arm_extabort_type(result);
762                 if (need_lock) {
763                     bql_unlock();
764                 }
765                 return old_val;
766             }
767             if (cur_val == old_val) {
768                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
769                 if (unlikely(result != MEMTX_OK)) {
770                     fi->type = ARMFault_SyncExternalOnWalk;
771                     fi->ea = arm_extabort_type(result);
772                     if (need_lock) {
773                         bql_unlock();
774                     }
775                     return old_val;
776                 }
777                 cur_val = new_val;
778             }
779         } else {
780             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
781             if (unlikely(result != MEMTX_OK)) {
782                 fi->type = ARMFault_SyncExternalOnWalk;
783                 fi->ea = arm_extabort_type(result);
784                 if (need_lock) {
785                     bql_unlock();
786                 }
787                 return old_val;
788             }
789             if (cur_val == old_val) {
790                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
791                 if (unlikely(result != MEMTX_OK)) {
792                     fi->type = ARMFault_SyncExternalOnWalk;
793                     fi->ea = arm_extabort_type(result);
794                     if (need_lock) {
795                         bql_unlock();
796                     }
797                     return old_val;
798                 }
799                 cur_val = new_val;
800             }
801         }
802         if (need_lock) {
803             bql_unlock();
804         }
805         return cur_val;
806     }
807 
808     /*
809      * Raising a stage2 Protection fault for an atomic update to a read-only
810      * page is delayed until it is certain that there is a change to make.
811      */
812     if (unlikely(!ptw->out_rw)) {
813         int flags;
814 
815         env->tlb_fi = fi;
816         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
817                                       MMU_DATA_STORE,
818                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
819                                       NULL, NULL);
820         env->tlb_fi = NULL;
821 
822         if (unlikely(flags & TLB_INVALID_MASK)) {
823             /*
824              * We know this must be a stage 2 fault because the granule
825              * protection table does not separately track read and write
826              * permission, so all GPC faults are caught in S1_ptw_translate():
827              * we only get here for "readable but not writeable".
828              */
829             assert(fi->type != ARMFault_None);
830             fi->s2addr = ptw->out_virt;
831             fi->stage2 = true;
832             fi->s1ptw = true;
833             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
834             return 0;
835         }
836 
837         /* In case CAS mismatches and we loop, remember writability. */
838         ptw->out_rw = true;
839     }
840 
841     if (ptw->out_be) {
842         old_val = cpu_to_be64(old_val);
843         new_val = cpu_to_be64(new_val);
844         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
845         cur_val = be64_to_cpu(cur_val);
846     } else {
847         old_val = cpu_to_le64(old_val);
848         new_val = cpu_to_le64(new_val);
849         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
850         cur_val = le64_to_cpu(cur_val);
851     }
852     return cur_val;
853 #else
854     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
855     g_assert_not_reached();
856 #endif
857 }
858 
859 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
860                                      uint32_t *table, uint32_t address)
861 {
862     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
863     uint64_t tcr = regime_tcr(env, mmu_idx);
864     int maskshift = extract32(tcr, 0, 3);
865     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
866     uint32_t base_mask;
867 
868     if (address & mask) {
869         if (tcr & TTBCR_PD1) {
870             /* Translation table walk disabled for TTBR1 */
871             return false;
872         }
873         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
874     } else {
875         if (tcr & TTBCR_PD0) {
876             /* Translation table walk disabled for TTBR0 */
877             return false;
878         }
879         base_mask = ~((uint32_t)0x3fffu >> maskshift);
880         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
881     }
882     *table |= (address >> 18) & 0x3ffc;
883     return true;
884 }
885 
886 /*
887  * Translate section/page access permissions to page R/W protection flags
888  * @env:         CPUARMState
889  * @mmu_idx:     MMU index indicating required translation regime
890  * @ap:          The 3-bit access permissions (AP[2:0])
891  * @domain_prot: The 2-bit domain access permissions
892  * @is_user: TRUE if accessing from PL0
893  */
894 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
895                          int ap, int domain_prot, bool is_user)
896 {
897     if (domain_prot == 3) {
898         return PAGE_READ | PAGE_WRITE;
899     }
900 
901     switch (ap) {
902     case 0:
903         if (arm_feature(env, ARM_FEATURE_V7)) {
904             return 0;
905         }
906         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
907         case SCTLR_S:
908             return is_user ? 0 : PAGE_READ;
909         case SCTLR_R:
910             return PAGE_READ;
911         default:
912             return 0;
913         }
914     case 1:
915         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
916     case 2:
917         if (is_user) {
918             return PAGE_READ;
919         } else {
920             return PAGE_READ | PAGE_WRITE;
921         }
922     case 3:
923         return PAGE_READ | PAGE_WRITE;
924     case 4: /* Reserved.  */
925         return 0;
926     case 5:
927         return is_user ? 0 : PAGE_READ;
928     case 6:
929         return PAGE_READ;
930     case 7:
931         if (!arm_feature(env, ARM_FEATURE_V6K)) {
932             return 0;
933         }
934         return PAGE_READ;
935     default:
936         g_assert_not_reached();
937     }
938 }
939 
940 /*
941  * Translate section/page access permissions to page R/W protection flags
942  * @env:         CPUARMState
943  * @mmu_idx:     MMU index indicating required translation regime
944  * @ap:          The 3-bit access permissions (AP[2:0])
945  * @domain_prot: The 2-bit domain access permissions
946  */
947 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
948                          int ap, int domain_prot)
949 {
950    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
951                                 regime_is_user(env, mmu_idx));
952 }
953 
954 /*
955  * Translate section/page access permissions to page R/W protection flags.
956  * @ap:      The 2-bit simple AP (AP[2:1])
957  * @is_user: TRUE if accessing from PL0
958  */
959 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
960 {
961     switch (ap) {
962     case 0:
963         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
964     case 1:
965         return PAGE_READ | PAGE_WRITE;
966     case 2:
967         return is_user ? 0 : PAGE_READ;
968     case 3:
969         return PAGE_READ;
970     default:
971         g_assert_not_reached();
972     }
973 }
974 
975 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
976 {
977     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
978 }
979 
980 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
981                              uint32_t address, MMUAccessType access_type,
982                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
983 {
984     int level = 1;
985     uint32_t table;
986     uint32_t desc;
987     int type;
988     int ap;
989     int domain = 0;
990     int domain_prot;
991     hwaddr phys_addr;
992     uint32_t dacr;
993 
994     /* Pagetable walk.  */
995     /* Lookup l1 descriptor.  */
996     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
997         /* Section translation fault if page walk is disabled by PD0 or PD1 */
998         fi->type = ARMFault_Translation;
999         goto do_fault;
1000     }
1001     if (!S1_ptw_translate(env, ptw, table, fi)) {
1002         goto do_fault;
1003     }
1004     desc = arm_ldl_ptw(env, ptw, fi);
1005     if (fi->type != ARMFault_None) {
1006         goto do_fault;
1007     }
1008     type = (desc & 3);
1009     domain = (desc >> 5) & 0x0f;
1010     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1011         dacr = env->cp15.dacr_ns;
1012     } else {
1013         dacr = env->cp15.dacr_s;
1014     }
1015     domain_prot = (dacr >> (domain * 2)) & 3;
1016     if (type == 0) {
1017         /* Section translation fault.  */
1018         fi->type = ARMFault_Translation;
1019         goto do_fault;
1020     }
1021     if (type != 2) {
1022         level = 2;
1023     }
1024     if (domain_prot == 0 || domain_prot == 2) {
1025         fi->type = ARMFault_Domain;
1026         goto do_fault;
1027     }
1028     if (type == 2) {
1029         /* 1Mb section.  */
1030         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1031         ap = (desc >> 10) & 3;
1032         result->f.lg_page_size = 20; /* 1MB */
1033     } else {
1034         /* Lookup l2 entry.  */
1035         if (type == 1) {
1036             /* Coarse pagetable.  */
1037             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1038         } else {
1039             /* Fine pagetable.  */
1040             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1041         }
1042         if (!S1_ptw_translate(env, ptw, table, fi)) {
1043             goto do_fault;
1044         }
1045         desc = arm_ldl_ptw(env, ptw, fi);
1046         if (fi->type != ARMFault_None) {
1047             goto do_fault;
1048         }
1049         switch (desc & 3) {
1050         case 0: /* Page translation fault.  */
1051             fi->type = ARMFault_Translation;
1052             goto do_fault;
1053         case 1: /* 64k page.  */
1054             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1055             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1056             result->f.lg_page_size = 16;
1057             break;
1058         case 2: /* 4k page.  */
1059             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1060             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1061             result->f.lg_page_size = 12;
1062             break;
1063         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1064             if (type == 1) {
1065                 /* ARMv6/XScale extended small page format */
1066                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1067                     || arm_feature(env, ARM_FEATURE_V6)) {
1068                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1069                     result->f.lg_page_size = 12;
1070                 } else {
1071                     /*
1072                      * UNPREDICTABLE in ARMv5; we choose to take a
1073                      * page translation fault.
1074                      */
1075                     fi->type = ARMFault_Translation;
1076                     goto do_fault;
1077                 }
1078             } else {
1079                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1080                 result->f.lg_page_size = 10;
1081             }
1082             ap = (desc >> 4) & 3;
1083             break;
1084         default:
1085             /* Never happens, but compiler isn't smart enough to tell.  */
1086             g_assert_not_reached();
1087         }
1088     }
1089     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1090     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1091     if (!(result->f.prot & (1 << access_type))) {
1092         /* Access permission fault.  */
1093         fi->type = ARMFault_Permission;
1094         goto do_fault;
1095     }
1096     result->f.phys_addr = phys_addr;
1097     return false;
1098 do_fault:
1099     fi->domain = domain;
1100     fi->level = level;
1101     return true;
1102 }
1103 
1104 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1105                              uint32_t address, MMUAccessType access_type,
1106                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1107 {
1108     ARMCPU *cpu = env_archcpu(env);
1109     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1110     int level = 1;
1111     uint32_t table;
1112     uint32_t desc;
1113     uint32_t xn;
1114     uint32_t pxn = 0;
1115     int type;
1116     int ap;
1117     int domain = 0;
1118     int domain_prot;
1119     hwaddr phys_addr;
1120     uint32_t dacr;
1121     bool ns;
1122     ARMSecuritySpace out_space;
1123 
1124     /* Pagetable walk.  */
1125     /* Lookup l1 descriptor.  */
1126     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1127         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1128         fi->type = ARMFault_Translation;
1129         goto do_fault;
1130     }
1131     if (!S1_ptw_translate(env, ptw, table, fi)) {
1132         goto do_fault;
1133     }
1134     desc = arm_ldl_ptw(env, ptw, fi);
1135     if (fi->type != ARMFault_None) {
1136         goto do_fault;
1137     }
1138     type = (desc & 3);
1139     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1140         /* Section translation fault, or attempt to use the encoding
1141          * which is Reserved on implementations without PXN.
1142          */
1143         fi->type = ARMFault_Translation;
1144         goto do_fault;
1145     }
1146     if ((type == 1) || !(desc & (1 << 18))) {
1147         /* Page or Section.  */
1148         domain = (desc >> 5) & 0x0f;
1149     }
1150     if (regime_el(env, mmu_idx) == 1) {
1151         dacr = env->cp15.dacr_ns;
1152     } else {
1153         dacr = env->cp15.dacr_s;
1154     }
1155     if (type == 1) {
1156         level = 2;
1157     }
1158     domain_prot = (dacr >> (domain * 2)) & 3;
1159     if (domain_prot == 0 || domain_prot == 2) {
1160         /* Section or Page domain fault */
1161         fi->type = ARMFault_Domain;
1162         goto do_fault;
1163     }
1164     if (type != 1) {
1165         if (desc & (1 << 18)) {
1166             /* Supersection.  */
1167             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1168             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1169             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1170             result->f.lg_page_size = 24;  /* 16MB */
1171         } else {
1172             /* Section.  */
1173             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1174             result->f.lg_page_size = 20;  /* 1MB */
1175         }
1176         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1177         xn = desc & (1 << 4);
1178         pxn = desc & 1;
1179         ns = extract32(desc, 19, 1);
1180     } else {
1181         if (cpu_isar_feature(aa32_pxn, cpu)) {
1182             pxn = (desc >> 2) & 1;
1183         }
1184         ns = extract32(desc, 3, 1);
1185         /* Lookup l2 entry.  */
1186         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1187         if (!S1_ptw_translate(env, ptw, table, fi)) {
1188             goto do_fault;
1189         }
1190         desc = arm_ldl_ptw(env, ptw, fi);
1191         if (fi->type != ARMFault_None) {
1192             goto do_fault;
1193         }
1194         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1195         switch (desc & 3) {
1196         case 0: /* Page translation fault.  */
1197             fi->type = ARMFault_Translation;
1198             goto do_fault;
1199         case 1: /* 64k page.  */
1200             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1201             xn = desc & (1 << 15);
1202             result->f.lg_page_size = 16;
1203             break;
1204         case 2: case 3: /* 4k page.  */
1205             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1206             xn = desc & 1;
1207             result->f.lg_page_size = 12;
1208             break;
1209         default:
1210             /* Never happens, but compiler isn't smart enough to tell.  */
1211             g_assert_not_reached();
1212         }
1213     }
1214     out_space = ptw->in_space;
1215     if (ns) {
1216         /*
1217          * The NS bit will (as required by the architecture) have no effect if
1218          * the CPU doesn't support TZ or this is a non-secure translation
1219          * regime, because the output space will already be non-secure.
1220          */
1221         out_space = ARMSS_NonSecure;
1222     }
1223     if (domain_prot == 3) {
1224         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1225     } else {
1226         int user_rw, prot_rw;
1227 
1228         if (arm_feature(env, ARM_FEATURE_V6K) &&
1229                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1230             /* The simplified model uses AP[0] as an access control bit.  */
1231             if ((ap & 1) == 0) {
1232                 /* Access flag fault.  */
1233                 fi->type = ARMFault_AccessFlag;
1234                 goto do_fault;
1235             }
1236             prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1237             user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1238         } else {
1239             prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1240             user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1241         }
1242 
1243         result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1244                                     xn, pxn, result->f.attrs.space, out_space);
1245         if (!(result->f.prot & (1 << access_type))) {
1246             /* Access permission fault.  */
1247             fi->type = ARMFault_Permission;
1248             goto do_fault;
1249         }
1250     }
1251     result->f.attrs.space = out_space;
1252     result->f.attrs.secure = arm_space_is_secure(out_space);
1253     result->f.phys_addr = phys_addr;
1254     return false;
1255 do_fault:
1256     fi->domain = domain;
1257     fi->level = level;
1258     return true;
1259 }
1260 
1261 /*
1262  * Translate S2 section/page access permissions to protection flags
1263  * @env:     CPUARMState
1264  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1265  * @xn:      XN (execute-never) bits
1266  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1267  */
1268 static int get_S2prot_noexecute(int s2ap)
1269 {
1270     int prot = 0;
1271 
1272     if (s2ap & 1) {
1273         prot |= PAGE_READ;
1274     }
1275     if (s2ap & 2) {
1276         prot |= PAGE_WRITE;
1277     }
1278     return prot;
1279 }
1280 
1281 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1282 {
1283     int prot = get_S2prot_noexecute(s2ap);
1284 
1285     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1286         switch (xn) {
1287         case 0:
1288             prot |= PAGE_EXEC;
1289             break;
1290         case 1:
1291             if (s1_is_el0) {
1292                 prot |= PAGE_EXEC;
1293             }
1294             break;
1295         case 2:
1296             break;
1297         case 3:
1298             if (!s1_is_el0) {
1299                 prot |= PAGE_EXEC;
1300             }
1301             break;
1302         default:
1303             g_assert_not_reached();
1304         }
1305     } else {
1306         if (!extract32(xn, 1, 1)) {
1307             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1308                 prot |= PAGE_EXEC;
1309             }
1310         }
1311     }
1312     return prot;
1313 }
1314 
1315 /*
1316  * Translate section/page access permissions to protection flags
1317  * @env:     CPUARMState
1318  * @mmu_idx: MMU index indicating required translation regime
1319  * @is_aa64: TRUE if AArch64
1320  * @user_rw: Translated AP for user access
1321  * @prot_rw: Translated AP for privileged access
1322  * @xn:      XN (execute-never) bit
1323  * @pxn:     PXN (privileged execute-never) bit
1324  * @in_pa:   The original input pa space
1325  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1326  */
1327 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1328                       int user_rw, int prot_rw, int xn, int pxn,
1329                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1330 {
1331     ARMCPU *cpu = env_archcpu(env);
1332     bool is_user = regime_is_user(env, mmu_idx);
1333     bool have_wxn;
1334     int wxn = 0;
1335 
1336     assert(!regime_is_stage2(mmu_idx));
1337 
1338     if (is_user) {
1339         prot_rw = user_rw;
1340     } else {
1341         /*
1342          * PAN controls can forbid data accesses but don't affect insn fetch.
1343          * Plain PAN forbids data accesses if EL0 has data permissions;
1344          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1345          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1346          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1347          * do not affect EPAN.
1348          */
1349         if (user_rw && regime_is_pan(env, mmu_idx)) {
1350             prot_rw = 0;
1351         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1352                    regime_is_pan(env, mmu_idx) &&
1353                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1354             prot_rw = 0;
1355         }
1356     }
1357 
1358     if (in_pa != out_pa) {
1359         switch (in_pa) {
1360         case ARMSS_Root:
1361             /*
1362              * R_ZWRVD: permission fault for insn fetched from non-Root,
1363              * I_WWBFB: SIF has no effect in EL3.
1364              */
1365             return prot_rw;
1366         case ARMSS_Realm:
1367             /*
1368              * R_PKTDS: permission fault for insn fetched from non-Realm,
1369              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1370              * happens during any stage2 translation.
1371              */
1372             switch (mmu_idx) {
1373             case ARMMMUIdx_E2:
1374             case ARMMMUIdx_E20_0:
1375             case ARMMMUIdx_E20_2:
1376             case ARMMMUIdx_E20_2_PAN:
1377                 return prot_rw;
1378             default:
1379                 break;
1380             }
1381             break;
1382         case ARMSS_Secure:
1383             if (env->cp15.scr_el3 & SCR_SIF) {
1384                 return prot_rw;
1385             }
1386             break;
1387         default:
1388             /* Input NonSecure must have output NonSecure. */
1389             g_assert_not_reached();
1390         }
1391     }
1392 
1393     /* TODO have_wxn should be replaced with
1394      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1395      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1396      * compatible processors have EL2, which is required for [U]WXN.
1397      */
1398     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1399 
1400     if (have_wxn) {
1401         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1402     }
1403 
1404     if (is_aa64) {
1405         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1406             xn = pxn || (user_rw & PAGE_WRITE);
1407         }
1408     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1409         switch (regime_el(env, mmu_idx)) {
1410         case 1:
1411         case 3:
1412             if (is_user) {
1413                 xn = xn || !(user_rw & PAGE_READ);
1414             } else {
1415                 int uwxn = 0;
1416                 if (have_wxn) {
1417                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1418                 }
1419                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1420                      (uwxn && (user_rw & PAGE_WRITE));
1421             }
1422             break;
1423         case 2:
1424             break;
1425         }
1426     } else {
1427         xn = wxn = 0;
1428     }
1429 
1430     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1431         return prot_rw;
1432     }
1433     return prot_rw | PAGE_EXEC;
1434 }
1435 
1436 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1437                                           ARMMMUIdx mmu_idx)
1438 {
1439     uint64_t tcr = regime_tcr(env, mmu_idx);
1440     uint32_t el = regime_el(env, mmu_idx);
1441     int select, tsz;
1442     bool epd, hpd;
1443 
1444     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1445 
1446     if (mmu_idx == ARMMMUIdx_Stage2) {
1447         /* VTCR */
1448         bool sext = extract32(tcr, 4, 1);
1449         bool sign = extract32(tcr, 3, 1);
1450 
1451         /*
1452          * If the sign-extend bit is not the same as t0sz[3], the result
1453          * is unpredictable. Flag this as a guest error.
1454          */
1455         if (sign != sext) {
1456             qemu_log_mask(LOG_GUEST_ERROR,
1457                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1458         }
1459         tsz = sextract32(tcr, 0, 4) + 8;
1460         select = 0;
1461         hpd = false;
1462         epd = false;
1463     } else if (el == 2) {
1464         /* HTCR */
1465         tsz = extract32(tcr, 0, 3);
1466         select = 0;
1467         hpd = extract64(tcr, 24, 1);
1468         epd = false;
1469     } else {
1470         int t0sz = extract32(tcr, 0, 3);
1471         int t1sz = extract32(tcr, 16, 3);
1472 
1473         if (t1sz == 0) {
1474             select = va > (0xffffffffu >> t0sz);
1475         } else {
1476             /* Note that we will detect errors later.  */
1477             select = va >= ~(0xffffffffu >> t1sz);
1478         }
1479         if (!select) {
1480             tsz = t0sz;
1481             epd = extract32(tcr, 7, 1);
1482             hpd = extract64(tcr, 41, 1);
1483         } else {
1484             tsz = t1sz;
1485             epd = extract32(tcr, 23, 1);
1486             hpd = extract64(tcr, 42, 1);
1487         }
1488         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1489         hpd &= extract32(tcr, 6, 1);
1490     }
1491 
1492     return (ARMVAParameters) {
1493         .tsz = tsz,
1494         .select = select,
1495         .epd = epd,
1496         .hpd = hpd,
1497     };
1498 }
1499 
1500 /*
1501  * check_s2_mmu_setup
1502  * @cpu:        ARMCPU
1503  * @is_aa64:    True if the translation regime is in AArch64 state
1504  * @tcr:        VTCR_EL2 or VSTCR_EL2
1505  * @ds:         Effective value of TCR.DS.
1506  * @iasize:     Bitsize of IPAs
1507  * @stride:     Page-table stride (See the ARM ARM)
1508  *
1509  * Decode the starting level of the S2 lookup, returning INT_MIN if
1510  * the configuration is invalid.
1511  */
1512 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1513                               bool ds, int iasize, int stride)
1514 {
1515     int sl0, sl2, startlevel, granulebits, levels;
1516     int s1_min_iasize, s1_max_iasize;
1517 
1518     sl0 = extract32(tcr, 6, 2);
1519     if (is_aa64) {
1520         /*
1521          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1522          * so interleave AArch64.S2StartLevel.
1523          */
1524         switch (stride) {
1525         case 9: /* 4KB */
1526             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1527             sl2 = extract64(tcr, 33, 1);
1528             if (ds && sl2) {
1529                 if (sl0 != 0) {
1530                     goto fail;
1531                 }
1532                 startlevel = -1;
1533             } else {
1534                 startlevel = 2 - sl0;
1535                 switch (sl0) {
1536                 case 2:
1537                     if (arm_pamax(cpu) < 44) {
1538                         goto fail;
1539                     }
1540                     break;
1541                 case 3:
1542                     if (!cpu_isar_feature(aa64_st, cpu)) {
1543                         goto fail;
1544                     }
1545                     startlevel = 3;
1546                     break;
1547                 }
1548             }
1549             break;
1550         case 11: /* 16KB */
1551             switch (sl0) {
1552             case 2:
1553                 if (arm_pamax(cpu) < 42) {
1554                     goto fail;
1555                 }
1556                 break;
1557             case 3:
1558                 if (!ds) {
1559                     goto fail;
1560                 }
1561                 break;
1562             }
1563             startlevel = 3 - sl0;
1564             break;
1565         case 13: /* 64KB */
1566             switch (sl0) {
1567             case 2:
1568                 if (arm_pamax(cpu) < 44) {
1569                     goto fail;
1570                 }
1571                 break;
1572             case 3:
1573                 goto fail;
1574             }
1575             startlevel = 3 - sl0;
1576             break;
1577         default:
1578             g_assert_not_reached();
1579         }
1580     } else {
1581         /*
1582          * Things are simpler for AArch32 EL2, with only 4k pages.
1583          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1584          * begins with walkparms.sl0 in {'1x'}.
1585          */
1586         assert(stride == 9);
1587         if (sl0 >= 2) {
1588             goto fail;
1589         }
1590         startlevel = 2 - sl0;
1591     }
1592 
1593     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1594     levels = 3 - startlevel;
1595     granulebits = stride + 3;
1596 
1597     s1_min_iasize = levels * stride + granulebits + 1;
1598     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1599 
1600     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1601         return startlevel;
1602     }
1603 
1604  fail:
1605     return INT_MIN;
1606 }
1607 
1608 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1609                                   ARMGranuleSize gran, int level)
1610 {
1611     /*
1612      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1613      * are not valid at all levels, depending on the page size.
1614      */
1615     switch (gran) {
1616     case Gran4K:
1617         return (level == 0 && ds) || level == 1 || level == 2;
1618     case Gran16K:
1619         return (level == 1 && ds) || level == 2;
1620     case Gran64K:
1621         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1622     default:
1623         g_assert_not_reached();
1624     }
1625 }
1626 
1627 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1628 {
1629     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1630     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1631 }
1632 
1633 /**
1634  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1635  *
1636  * Returns false if the translation was successful. Otherwise, phys_ptr,
1637  * attrs, prot and page_size may not be filled in, and the populated fsr
1638  * value provides information on why the translation aborted, in the format
1639  * of a long-format DFSR/IFSR fault register, with the following caveat:
1640  * the WnR bit is never set (the caller must do this).
1641  *
1642  * @env: CPUARMState
1643  * @ptw: Current and next stage parameters for the walk.
1644  * @address: virtual address to get physical address for
1645  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1646  * @memop: memory operation feeding this access, or 0 for none
1647  * @result: set on translation success,
1648  * @fi: set to fault info if the translation fails
1649  */
1650 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1651                                uint64_t address,
1652                                MMUAccessType access_type, MemOp memop,
1653                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1654 {
1655     ARMCPU *cpu = env_archcpu(env);
1656     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1657     int32_t level;
1658     ARMVAParameters param;
1659     uint64_t ttbr;
1660     hwaddr descaddr, indexmask, indexmask_grainsize;
1661     uint32_t tableattrs;
1662     target_ulong page_size;
1663     uint64_t attrs;
1664     int32_t stride;
1665     int addrsize, inputsize, outputsize;
1666     uint64_t tcr = regime_tcr(env, mmu_idx);
1667     int ap, xn, pxn;
1668     uint32_t el = regime_el(env, mmu_idx);
1669     uint64_t descaddrmask;
1670     bool aarch64 = arm_el_is_aa64(env, el);
1671     uint64_t descriptor, new_descriptor;
1672     ARMSecuritySpace out_space;
1673     bool device;
1674 
1675     /* TODO: This code does not support shareability levels. */
1676     if (aarch64) {
1677         int ps;
1678 
1679         param = aa64_va_parameters(env, address, mmu_idx,
1680                                    access_type != MMU_INST_FETCH,
1681                                    !arm_el_is_aa64(env, 1));
1682         level = 0;
1683 
1684         /*
1685          * If TxSZ is programmed to a value larger than the maximum,
1686          * or smaller than the effective minimum, it is IMPLEMENTATION
1687          * DEFINED whether we behave as if the field were programmed
1688          * within bounds, or if a level 0 Translation fault is generated.
1689          *
1690          * With FEAT_LVA, fault on less than minimum becomes required,
1691          * so our choice is to always raise the fault.
1692          */
1693         if (param.tsz_oob) {
1694             goto do_translation_fault;
1695         }
1696 
1697         addrsize = 64 - 8 * param.tbi;
1698         inputsize = 64 - param.tsz;
1699 
1700         /*
1701          * Bound PS by PARANGE to find the effective output address size.
1702          * ID_AA64MMFR0 is a read-only register so values outside of the
1703          * supported mappings can be considered an implementation error.
1704          */
1705         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1706         ps = MIN(ps, param.ps);
1707         assert(ps < ARRAY_SIZE(pamax_map));
1708         outputsize = pamax_map[ps];
1709 
1710         /*
1711          * With LPA2, the effective output address (OA) size is at most 48 bits
1712          * unless TCR.DS == 1
1713          */
1714         if (!param.ds && param.gran != Gran64K) {
1715             outputsize = MIN(outputsize, 48);
1716         }
1717     } else {
1718         param = aa32_va_parameters(env, address, mmu_idx);
1719         level = 1;
1720         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1721         inputsize = addrsize - param.tsz;
1722         outputsize = 40;
1723     }
1724 
1725     /*
1726      * We determined the region when collecting the parameters, but we
1727      * have not yet validated that the address is valid for the region.
1728      * Extract the top bits and verify that they all match select.
1729      *
1730      * For aa32, if inputsize == addrsize, then we have selected the
1731      * region by exclusion in aa32_va_parameters and there is no more
1732      * validation to do here.
1733      */
1734     if (inputsize < addrsize) {
1735         target_ulong top_bits = sextract64(address, inputsize,
1736                                            addrsize - inputsize);
1737         if (-top_bits != param.select) {
1738             /* The gap between the two regions is a Translation fault */
1739             goto do_translation_fault;
1740         }
1741     }
1742 
1743     stride = arm_granule_bits(param.gran) - 3;
1744 
1745     /*
1746      * Note that QEMU ignores shareability and cacheability attributes,
1747      * so we don't need to do anything with the SH, ORGN, IRGN fields
1748      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1749      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1750      * implement any ASID-like capability so we can ignore it (instead
1751      * we will always flush the TLB any time the ASID is changed).
1752      */
1753     ttbr = regime_ttbr(env, mmu_idx, param.select);
1754 
1755     /*
1756      * Here we should have set up all the parameters for the translation:
1757      * inputsize, ttbr, epd, stride, tbi
1758      */
1759 
1760     if (param.epd) {
1761         /*
1762          * Translation table walk disabled => Translation fault on TLB miss
1763          * Note: This is always 0 on 64-bit EL2 and EL3.
1764          */
1765         goto do_translation_fault;
1766     }
1767 
1768     if (!regime_is_stage2(mmu_idx)) {
1769         /*
1770          * The starting level depends on the virtual address size (which can
1771          * be up to 48 bits) and the translation granule size. It indicates
1772          * the number of strides (stride bits at a time) needed to
1773          * consume the bits of the input address. In the pseudocode this is:
1774          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1775          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1776          * our 'stride + 3' and 'stride' is our 'stride'.
1777          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1778          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1779          * = 4 - (inputsize - 4) / stride;
1780          */
1781         level = 4 - (inputsize - 4) / stride;
1782     } else {
1783         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1784                                             inputsize, stride);
1785         if (startlevel == INT_MIN) {
1786             level = 0;
1787             goto do_translation_fault;
1788         }
1789         level = startlevel;
1790     }
1791 
1792     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1793     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1794 
1795     /* Now we can extract the actual base address from the TTBR */
1796     descaddr = extract64(ttbr, 0, 48);
1797 
1798     /*
1799      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1800      *
1801      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1802      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1803      * but we've just cleared the bits above 47, so simplify the test.
1804      */
1805     if (outputsize > 48) {
1806         descaddr |= extract64(ttbr, 2, 4) << 48;
1807     } else if (descaddr >> outputsize) {
1808         level = 0;
1809         fi->type = ARMFault_AddressSize;
1810         goto do_fault;
1811     }
1812 
1813     /*
1814      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1815      * and also to mask out CnP (bit 0) which could validly be non-zero.
1816      */
1817     descaddr &= ~indexmask;
1818 
1819     /*
1820      * For AArch32, the address field in the descriptor goes up to bit 39
1821      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1822      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1823      * bits as part of the address, which will be checked via outputsize.
1824      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1825      * the highest bits of a 52-bit output are placed elsewhere.
1826      */
1827     if (param.ds) {
1828         descaddrmask = MAKE_64BIT_MASK(0, 50);
1829     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1830         descaddrmask = MAKE_64BIT_MASK(0, 48);
1831     } else {
1832         descaddrmask = MAKE_64BIT_MASK(0, 40);
1833     }
1834     descaddrmask &= ~indexmask_grainsize;
1835     tableattrs = 0;
1836 
1837  next_level:
1838     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1839     descaddr &= ~7ULL;
1840 
1841     /*
1842      * Process the NSTable bit from the previous level.  This changes
1843      * the table address space and the output space from Secure to
1844      * NonSecure.  With RME, the EL3 translation regime does not change
1845      * from Root to NonSecure.
1846      */
1847     if (ptw->in_space == ARMSS_Secure
1848         && !regime_is_stage2(mmu_idx)
1849         && extract32(tableattrs, 4, 1)) {
1850         /*
1851          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1852          * Assert the relative order of the secure/non-secure indexes.
1853          */
1854         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1855         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1856         ptw->in_ptw_idx += 1;
1857         ptw->in_space = ARMSS_NonSecure;
1858     }
1859 
1860     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1861         goto do_fault;
1862     }
1863     descriptor = arm_ldq_ptw(env, ptw, fi);
1864     if (fi->type != ARMFault_None) {
1865         goto do_fault;
1866     }
1867     new_descriptor = descriptor;
1868 
1869  restart_atomic_update:
1870     if (!(descriptor & 1) ||
1871         (!(descriptor & 2) &&
1872          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1873         /* Invalid, or a block descriptor at an invalid level */
1874         goto do_translation_fault;
1875     }
1876 
1877     descaddr = descriptor & descaddrmask;
1878 
1879     /*
1880      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1881      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1882      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1883      * raise AddressSizeFault.
1884      */
1885     if (outputsize > 48) {
1886         if (param.ds) {
1887             descaddr |= extract64(descriptor, 8, 2) << 50;
1888         } else {
1889             descaddr |= extract64(descriptor, 12, 4) << 48;
1890         }
1891     } else if (descaddr >> outputsize) {
1892         fi->type = ARMFault_AddressSize;
1893         goto do_fault;
1894     }
1895 
1896     if ((descriptor & 2) && (level < 3)) {
1897         /*
1898          * Table entry. The top five bits are attributes which may
1899          * propagate down through lower levels of the table (and
1900          * which are all arranged so that 0 means "no effect", so
1901          * we can gather them up by ORing in the bits at each level).
1902          */
1903         tableattrs |= extract64(descriptor, 59, 5);
1904         level++;
1905         indexmask = indexmask_grainsize;
1906         goto next_level;
1907     }
1908 
1909     /*
1910      * Block entry at level 1 or 2, or page entry at level 3.
1911      * These are basically the same thing, although the number
1912      * of bits we pull in from the vaddr varies. Note that although
1913      * descaddrmask masks enough of the low bits of the descriptor
1914      * to give a correct page or table address, the address field
1915      * in a block descriptor is smaller; so we need to explicitly
1916      * clear the lower bits here before ORing in the low vaddr bits.
1917      *
1918      * Afterward, descaddr is the final physical address.
1919      */
1920     page_size = (1ULL << ((stride * (4 - level)) + 3));
1921     descaddr &= ~(hwaddr)(page_size - 1);
1922     descaddr |= (address & (page_size - 1));
1923 
1924     if (likely(!ptw->in_debug)) {
1925         /*
1926          * Access flag.
1927          * If HA is enabled, prepare to update the descriptor below.
1928          * Otherwise, pass the access fault on to software.
1929          */
1930         if (!(descriptor & (1 << 10))) {
1931             if (param.ha) {
1932                 new_descriptor |= 1 << 10; /* AF */
1933             } else {
1934                 fi->type = ARMFault_AccessFlag;
1935                 goto do_fault;
1936             }
1937         }
1938 
1939         /*
1940          * Dirty Bit.
1941          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1942          * bit for writeback. The actual write protection test may still be
1943          * overridden by tableattrs, to be merged below.
1944          */
1945         if (param.hd
1946             && extract64(descriptor, 51, 1)  /* DBM */
1947             && access_type == MMU_DATA_STORE) {
1948             if (regime_is_stage2(mmu_idx)) {
1949                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1950             } else {
1951                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1952             }
1953         }
1954     }
1955 
1956     /*
1957      * Extract attributes from the (modified) descriptor, and apply
1958      * table descriptors. Stage 2 table descriptors do not include
1959      * any attribute fields. HPD disables all the table attributes
1960      * except NSTable (which we have already handled).
1961      */
1962     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1963     if (!regime_is_stage2(mmu_idx)) {
1964         if (!param.hpd) {
1965             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1966             /*
1967              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1968              * means "force PL1 access only", which means forcing AP[1] to 0.
1969              */
1970             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1971             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1972         }
1973     }
1974 
1975     ap = extract32(attrs, 6, 2);
1976     out_space = ptw->in_space;
1977     if (regime_is_stage2(mmu_idx)) {
1978         /*
1979          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1980          * The bit remains ignored for other security states.
1981          * R_YMCSL: Executing an insn fetched from non-Realm causes
1982          * a stage2 permission fault.
1983          */
1984         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1985             out_space = ARMSS_NonSecure;
1986             result->f.prot = get_S2prot_noexecute(ap);
1987         } else {
1988             xn = extract64(attrs, 53, 2);
1989             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1990         }
1991 
1992         result->cacheattrs.is_s2_format = true;
1993         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1994         /*
1995          * Security state does not really affect HCR_EL2.FWB;
1996          * we only need to filter FWB for aa32 or other FEAT.
1997          */
1998         device = S2_attrs_are_device(arm_hcr_el2_eff(env),
1999                                      result->cacheattrs.attrs);
2000     } else {
2001         int nse, ns = extract32(attrs, 5, 1);
2002         uint8_t attrindx;
2003         uint64_t mair;
2004         int user_rw, prot_rw;
2005 
2006         switch (out_space) {
2007         case ARMSS_Root:
2008             /*
2009              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2010              * R_XTYPW: NSE and NS together select the output pa space.
2011              */
2012             nse = extract32(attrs, 11, 1);
2013             out_space = (nse << 1) | ns;
2014             if (out_space == ARMSS_Secure &&
2015                 !cpu_isar_feature(aa64_sel2, cpu)) {
2016                 out_space = ARMSS_NonSecure;
2017             }
2018             break;
2019         case ARMSS_Secure:
2020             if (ns) {
2021                 out_space = ARMSS_NonSecure;
2022             }
2023             break;
2024         case ARMSS_Realm:
2025             switch (mmu_idx) {
2026             case ARMMMUIdx_Stage1_E0:
2027             case ARMMMUIdx_Stage1_E1:
2028             case ARMMMUIdx_Stage1_E1_PAN:
2029                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2030                 break;
2031             case ARMMMUIdx_E2:
2032             case ARMMMUIdx_E20_0:
2033             case ARMMMUIdx_E20_2:
2034             case ARMMMUIdx_E20_2_PAN:
2035                 /*
2036                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2037                  * NS changes the output to non-secure space.
2038                  */
2039                 if (ns) {
2040                     out_space = ARMSS_NonSecure;
2041                 }
2042                 break;
2043             default:
2044                 g_assert_not_reached();
2045             }
2046             break;
2047         case ARMSS_NonSecure:
2048             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2049             break;
2050         default:
2051             g_assert_not_reached();
2052         }
2053         xn = extract64(attrs, 54, 1);
2054         pxn = extract64(attrs, 53, 1);
2055 
2056         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2057             /*
2058              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2059              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2060              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2061              * (which we have already folded into bits 53 and 54 of attrs).
2062              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2063              * Similarly, APTable[0] from the table descriptor is treated as 0;
2064              * we already folded this into AP[1] and squashing that to 0 does
2065              * the right thing.
2066              */
2067             pxn = xn;
2068             xn = 0;
2069             ap &= ~1;
2070         }
2071 
2072         user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2073         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2074         /*
2075          * Note that we modified ptw->in_space earlier for NSTable, but
2076          * result->f.attrs retains a copy of the original security space.
2077          */
2078         result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2079                                     xn, pxn, result->f.attrs.space, out_space);
2080 
2081         /* Index into MAIR registers for cache attributes */
2082         attrindx = extract32(attrs, 2, 3);
2083         mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2084         assert(attrindx <= 7);
2085         result->cacheattrs.is_s2_format = false;
2086         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2087 
2088         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2089         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2090             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2091         }
2092         device = S1_attrs_are_device(result->cacheattrs.attrs);
2093     }
2094 
2095     /*
2096      * Enable alignment checks on Device memory.
2097      *
2098      * Per R_XCHFJ, the correct ordering for alignment, permission,
2099      * and stage 2 faults is:
2100      *    - Alignment fault caused by the memory type
2101      *    - Permission fault
2102      *    - A stage 2 fault on the memory access
2103      * Perform the alignment check now, so that we recognize it in
2104      * the correct order.  Set TLB_CHECK_ALIGNED so that any subsequent
2105      * softmmu tlb hit will also check the alignment; clear along the
2106      * non-device path so that tlb_fill_flags is consistent in the
2107      * event of restart_atomic_update.
2108      *
2109      * In v7, for a CPU without the Virtualization Extensions this
2110      * access is UNPREDICTABLE; we choose to make it take the alignment
2111      * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2112      * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2113      */
2114     if (device) {
2115         unsigned a_bits = memop_atomicity_bits(memop);
2116         if (address & ((1 << a_bits) - 1)) {
2117             fi->type = ARMFault_Alignment;
2118             goto do_fault;
2119         }
2120         result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2121     } else {
2122         result->f.tlb_fill_flags = 0;
2123     }
2124 
2125     if (!(result->f.prot & (1 << access_type))) {
2126         fi->type = ARMFault_Permission;
2127         goto do_fault;
2128     }
2129 
2130     /* If FEAT_HAFDBS has made changes, update the PTE. */
2131     if (new_descriptor != descriptor) {
2132         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2133         if (fi->type != ARMFault_None) {
2134             goto do_fault;
2135         }
2136         /*
2137          * I_YZSVV says that if the in-memory descriptor has changed,
2138          * then we must use the information in that new value
2139          * (which might include a different output address, different
2140          * attributes, or generate a fault).
2141          * Restart the handling of the descriptor value from scratch.
2142          */
2143         if (new_descriptor != descriptor) {
2144             descriptor = new_descriptor;
2145             goto restart_atomic_update;
2146         }
2147     }
2148 
2149     result->f.attrs.space = out_space;
2150     result->f.attrs.secure = arm_space_is_secure(out_space);
2151 
2152     /*
2153      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2154      * was re-purposed for output address bits.  The SH attribute in
2155      * that case comes from TCR_ELx, which we extracted earlier.
2156      */
2157     if (param.ds) {
2158         result->cacheattrs.shareability = param.sh;
2159     } else {
2160         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2161     }
2162 
2163     result->f.phys_addr = descaddr;
2164     result->f.lg_page_size = ctz64(page_size);
2165     return false;
2166 
2167  do_translation_fault:
2168     fi->type = ARMFault_Translation;
2169  do_fault:
2170     if (fi->s1ptw) {
2171         /* Retain the existing stage 2 fi->level */
2172         assert(fi->stage2);
2173     } else {
2174         fi->level = level;
2175         fi->stage2 = regime_is_stage2(mmu_idx);
2176     }
2177     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2178     return true;
2179 }
2180 
2181 static bool get_phys_addr_pmsav5(CPUARMState *env,
2182                                  S1Translate *ptw,
2183                                  uint32_t address,
2184                                  MMUAccessType access_type,
2185                                  GetPhysAddrResult *result,
2186                                  ARMMMUFaultInfo *fi)
2187 {
2188     int n;
2189     uint32_t mask;
2190     uint32_t base;
2191     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2192     bool is_user = regime_is_user(env, mmu_idx);
2193 
2194     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2195         /* MPU disabled.  */
2196         result->f.phys_addr = address;
2197         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2198         return false;
2199     }
2200 
2201     result->f.phys_addr = address;
2202     for (n = 7; n >= 0; n--) {
2203         base = env->cp15.c6_region[n];
2204         if ((base & 1) == 0) {
2205             continue;
2206         }
2207         mask = 1 << ((base >> 1) & 0x1f);
2208         /* Keep this shift separate from the above to avoid an
2209            (undefined) << 32.  */
2210         mask = (mask << 1) - 1;
2211         if (((base ^ address) & ~mask) == 0) {
2212             break;
2213         }
2214     }
2215     if (n < 0) {
2216         fi->type = ARMFault_Background;
2217         return true;
2218     }
2219 
2220     if (access_type == MMU_INST_FETCH) {
2221         mask = env->cp15.pmsav5_insn_ap;
2222     } else {
2223         mask = env->cp15.pmsav5_data_ap;
2224     }
2225     mask = (mask >> (n * 4)) & 0xf;
2226     switch (mask) {
2227     case 0:
2228         fi->type = ARMFault_Permission;
2229         fi->level = 1;
2230         return true;
2231     case 1:
2232         if (is_user) {
2233             fi->type = ARMFault_Permission;
2234             fi->level = 1;
2235             return true;
2236         }
2237         result->f.prot = PAGE_READ | PAGE_WRITE;
2238         break;
2239     case 2:
2240         result->f.prot = PAGE_READ;
2241         if (!is_user) {
2242             result->f.prot |= PAGE_WRITE;
2243         }
2244         break;
2245     case 3:
2246         result->f.prot = PAGE_READ | PAGE_WRITE;
2247         break;
2248     case 5:
2249         if (is_user) {
2250             fi->type = ARMFault_Permission;
2251             fi->level = 1;
2252             return true;
2253         }
2254         result->f.prot = PAGE_READ;
2255         break;
2256     case 6:
2257         result->f.prot = PAGE_READ;
2258         break;
2259     default:
2260         /* Bad permission.  */
2261         fi->type = ARMFault_Permission;
2262         fi->level = 1;
2263         return true;
2264     }
2265     result->f.prot |= PAGE_EXEC;
2266     return false;
2267 }
2268 
2269 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2270                                          int32_t address, uint8_t *prot)
2271 {
2272     if (!arm_feature(env, ARM_FEATURE_M)) {
2273         *prot = PAGE_READ | PAGE_WRITE;
2274         switch (address) {
2275         case 0xF0000000 ... 0xFFFFFFFF:
2276             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2277                 /* hivecs execing is ok */
2278                 *prot |= PAGE_EXEC;
2279             }
2280             break;
2281         case 0x00000000 ... 0x7FFFFFFF:
2282             *prot |= PAGE_EXEC;
2283             break;
2284         }
2285     } else {
2286         /* Default system address map for M profile cores.
2287          * The architecture specifies which regions are execute-never;
2288          * at the MPU level no other checks are defined.
2289          */
2290         switch (address) {
2291         case 0x00000000 ... 0x1fffffff: /* ROM */
2292         case 0x20000000 ... 0x3fffffff: /* SRAM */
2293         case 0x60000000 ... 0x7fffffff: /* RAM */
2294         case 0x80000000 ... 0x9fffffff: /* RAM */
2295             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2296             break;
2297         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2298         case 0xa0000000 ... 0xbfffffff: /* Device */
2299         case 0xc0000000 ... 0xdfffffff: /* Device */
2300         case 0xe0000000 ... 0xffffffff: /* System */
2301             *prot = PAGE_READ | PAGE_WRITE;
2302             break;
2303         default:
2304             g_assert_not_reached();
2305         }
2306     }
2307 }
2308 
2309 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2310 {
2311     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2312     return arm_feature(env, ARM_FEATURE_M) &&
2313         extract32(address, 20, 12) == 0xe00;
2314 }
2315 
2316 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2317 {
2318     /*
2319      * True if address is in the M profile system region
2320      * 0xe0000000 - 0xffffffff
2321      */
2322     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2323 }
2324 
2325 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2326                                          bool is_secure, bool is_user)
2327 {
2328     /*
2329      * Return true if we should use the default memory map as a
2330      * "background" region if there are no hits against any MPU regions.
2331      */
2332     CPUARMState *env = &cpu->env;
2333 
2334     if (is_user) {
2335         return false;
2336     }
2337 
2338     if (arm_feature(env, ARM_FEATURE_M)) {
2339         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2340     }
2341 
2342     if (mmu_idx == ARMMMUIdx_Stage2) {
2343         return false;
2344     }
2345 
2346     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2347 }
2348 
2349 static bool get_phys_addr_pmsav7(CPUARMState *env,
2350                                  S1Translate *ptw,
2351                                  uint32_t address,
2352                                  MMUAccessType access_type,
2353                                  GetPhysAddrResult *result,
2354                                  ARMMMUFaultInfo *fi)
2355 {
2356     ARMCPU *cpu = env_archcpu(env);
2357     int n;
2358     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2359     bool is_user = regime_is_user(env, mmu_idx);
2360     bool secure = arm_space_is_secure(ptw->in_space);
2361 
2362     result->f.phys_addr = address;
2363     result->f.lg_page_size = TARGET_PAGE_BITS;
2364     result->f.prot = 0;
2365 
2366     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2367         m_is_ppb_region(env, address)) {
2368         /*
2369          * MPU disabled or M profile PPB access: use default memory map.
2370          * The other case which uses the default memory map in the
2371          * v7M ARM ARM pseudocode is exception vector reads from the vector
2372          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2373          * which always does a direct read using address_space_ldl(), rather
2374          * than going via this function, so we don't need to check that here.
2375          */
2376         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2377     } else { /* MPU enabled */
2378         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2379             /* region search */
2380             uint32_t base = env->pmsav7.drbar[n];
2381             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2382             uint32_t rmask;
2383             bool srdis = false;
2384 
2385             if (!(env->pmsav7.drsr[n] & 0x1)) {
2386                 continue;
2387             }
2388 
2389             if (!rsize) {
2390                 qemu_log_mask(LOG_GUEST_ERROR,
2391                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2392                 continue;
2393             }
2394             rsize++;
2395             rmask = (1ull << rsize) - 1;
2396 
2397             if (base & rmask) {
2398                 qemu_log_mask(LOG_GUEST_ERROR,
2399                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2400                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2401                               n, base, rmask);
2402                 continue;
2403             }
2404 
2405             if (address < base || address > base + rmask) {
2406                 /*
2407                  * Address not in this region. We must check whether the
2408                  * region covers addresses in the same page as our address.
2409                  * In that case we must not report a size that covers the
2410                  * whole page for a subsequent hit against a different MPU
2411                  * region or the background region, because it would result in
2412                  * incorrect TLB hits for subsequent accesses to addresses that
2413                  * are in this MPU region.
2414                  */
2415                 if (ranges_overlap(base, rmask,
2416                                    address & TARGET_PAGE_MASK,
2417                                    TARGET_PAGE_SIZE)) {
2418                     result->f.lg_page_size = 0;
2419                 }
2420                 continue;
2421             }
2422 
2423             /* Region matched */
2424 
2425             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2426                 int i, snd;
2427                 uint32_t srdis_mask;
2428 
2429                 rsize -= 3; /* sub region size (power of 2) */
2430                 snd = ((address - base) >> rsize) & 0x7;
2431                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2432 
2433                 srdis_mask = srdis ? 0x3 : 0x0;
2434                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2435                     /*
2436                      * This will check in groups of 2, 4 and then 8, whether
2437                      * the subregion bits are consistent. rsize is incremented
2438                      * back up to give the region size, considering consistent
2439                      * adjacent subregions as one region. Stop testing if rsize
2440                      * is already big enough for an entire QEMU page.
2441                      */
2442                     int snd_rounded = snd & ~(i - 1);
2443                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2444                                                      snd_rounded + 8, i);
2445                     if (srdis_mask ^ srdis_multi) {
2446                         break;
2447                     }
2448                     srdis_mask = (srdis_mask << i) | srdis_mask;
2449                     rsize++;
2450                 }
2451             }
2452             if (srdis) {
2453                 continue;
2454             }
2455             if (rsize < TARGET_PAGE_BITS) {
2456                 result->f.lg_page_size = rsize;
2457             }
2458             break;
2459         }
2460 
2461         if (n == -1) { /* no hits */
2462             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2463                 /* background fault */
2464                 fi->type = ARMFault_Background;
2465                 return true;
2466             }
2467             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2468                                          &result->f.prot);
2469         } else { /* a MPU hit! */
2470             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2471             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2472 
2473             if (m_is_system_region(env, address)) {
2474                 /* System space is always execute never */
2475                 xn = 1;
2476             }
2477 
2478             if (is_user) { /* User mode AP bit decoding */
2479                 switch (ap) {
2480                 case 0:
2481                 case 1:
2482                 case 5:
2483                     break; /* no access */
2484                 case 3:
2485                     result->f.prot |= PAGE_WRITE;
2486                     /* fall through */
2487                 case 2:
2488                 case 6:
2489                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2490                     break;
2491                 case 7:
2492                     /* for v7M, same as 6; for R profile a reserved value */
2493                     if (arm_feature(env, ARM_FEATURE_M)) {
2494                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2495                         break;
2496                     }
2497                     /* fall through */
2498                 default:
2499                     qemu_log_mask(LOG_GUEST_ERROR,
2500                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2501                                   PRIx32 "\n", n, ap);
2502                 }
2503             } else { /* Priv. mode AP bits decoding */
2504                 switch (ap) {
2505                 case 0:
2506                     break; /* no access */
2507                 case 1:
2508                 case 2:
2509                 case 3:
2510                     result->f.prot |= PAGE_WRITE;
2511                     /* fall through */
2512                 case 5:
2513                 case 6:
2514                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2515                     break;
2516                 case 7:
2517                     /* for v7M, same as 6; for R profile a reserved value */
2518                     if (arm_feature(env, ARM_FEATURE_M)) {
2519                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2520                         break;
2521                     }
2522                     /* fall through */
2523                 default:
2524                     qemu_log_mask(LOG_GUEST_ERROR,
2525                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2526                                   PRIx32 "\n", n, ap);
2527                 }
2528             }
2529 
2530             /* execute never */
2531             if (xn) {
2532                 result->f.prot &= ~PAGE_EXEC;
2533             }
2534         }
2535     }
2536 
2537     fi->type = ARMFault_Permission;
2538     fi->level = 1;
2539     return !(result->f.prot & (1 << access_type));
2540 }
2541 
2542 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2543                              uint32_t secure)
2544 {
2545     if (regime_el(env, mmu_idx) == 2) {
2546         return env->pmsav8.hprbar;
2547     } else {
2548         return env->pmsav8.rbar[secure];
2549     }
2550 }
2551 
2552 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2553                              uint32_t secure)
2554 {
2555     if (regime_el(env, mmu_idx) == 2) {
2556         return env->pmsav8.hprlar;
2557     } else {
2558         return env->pmsav8.rlar[secure];
2559     }
2560 }
2561 
2562 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2563                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2564                        bool secure, GetPhysAddrResult *result,
2565                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2566 {
2567     /*
2568      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2569      * that a full phys-to-virt translation does).
2570      * mregion is (if not NULL) set to the region number which matched,
2571      * or -1 if no region number is returned (MPU off, address did not
2572      * hit a region, address hit in multiple regions).
2573      * If the region hit doesn't cover the entire TARGET_PAGE the address
2574      * is within, then we set the result page_size to 1 to force the
2575      * memory system to use a subpage.
2576      */
2577     ARMCPU *cpu = env_archcpu(env);
2578     bool is_user = regime_is_user(env, mmu_idx);
2579     int n;
2580     int matchregion = -1;
2581     bool hit = false;
2582     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2583     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2584     int region_counter;
2585 
2586     if (regime_el(env, mmu_idx) == 2) {
2587         region_counter = cpu->pmsav8r_hdregion;
2588     } else {
2589         region_counter = cpu->pmsav7_dregion;
2590     }
2591 
2592     result->f.lg_page_size = TARGET_PAGE_BITS;
2593     result->f.phys_addr = address;
2594     result->f.prot = 0;
2595     if (mregion) {
2596         *mregion = -1;
2597     }
2598 
2599     if (mmu_idx == ARMMMUIdx_Stage2) {
2600         fi->stage2 = true;
2601     }
2602 
2603     /*
2604      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2605      * was an exception vector read from the vector table (which is always
2606      * done using the default system address map), because those accesses
2607      * are done in arm_v7m_load_vector(), which always does a direct
2608      * read using address_space_ldl(), rather than going via this function.
2609      */
2610     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2611         /* MPU disabled */
2612         hit = true;
2613     } else if (m_is_ppb_region(env, address)) {
2614         hit = true;
2615     } else {
2616         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2617             hit = true;
2618         }
2619 
2620         uint32_t bitmask;
2621         if (arm_feature(env, ARM_FEATURE_M)) {
2622             bitmask = 0x1f;
2623         } else {
2624             bitmask = 0x3f;
2625             fi->level = 0;
2626         }
2627 
2628         for (n = region_counter - 1; n >= 0; n--) {
2629             /* region search */
2630             /*
2631              * Note that the base address is bits [31:x] from the register
2632              * with bits [x-1:0] all zeroes, but the limit address is bits
2633              * [31:x] from the register with bits [x:0] all ones. Where x is
2634              * 5 for Cortex-M and 6 for Cortex-R
2635              */
2636             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2637             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2638 
2639             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2640                 /* Region disabled */
2641                 continue;
2642             }
2643 
2644             if (address < base || address > limit) {
2645                 /*
2646                  * Address not in this region. We must check whether the
2647                  * region covers addresses in the same page as our address.
2648                  * In that case we must not report a size that covers the
2649                  * whole page for a subsequent hit against a different MPU
2650                  * region or the background region, because it would result in
2651                  * incorrect TLB hits for subsequent accesses to addresses that
2652                  * are in this MPU region.
2653                  */
2654                 if (limit >= base &&
2655                     ranges_overlap(base, limit - base + 1,
2656                                    addr_page_base,
2657                                    TARGET_PAGE_SIZE)) {
2658                     result->f.lg_page_size = 0;
2659                 }
2660                 continue;
2661             }
2662 
2663             if (base > addr_page_base || limit < addr_page_limit) {
2664                 result->f.lg_page_size = 0;
2665             }
2666 
2667             if (matchregion != -1) {
2668                 /*
2669                  * Multiple regions match -- always a failure (unlike
2670                  * PMSAv7 where highest-numbered-region wins)
2671                  */
2672                 fi->type = ARMFault_Permission;
2673                 if (arm_feature(env, ARM_FEATURE_M)) {
2674                     fi->level = 1;
2675                 }
2676                 return true;
2677             }
2678 
2679             matchregion = n;
2680             hit = true;
2681         }
2682     }
2683 
2684     if (!hit) {
2685         if (arm_feature(env, ARM_FEATURE_M)) {
2686             fi->type = ARMFault_Background;
2687         } else {
2688             fi->type = ARMFault_Permission;
2689         }
2690         return true;
2691     }
2692 
2693     if (matchregion == -1) {
2694         /* hit using the background region */
2695         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2696     } else {
2697         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2698         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2699         uint32_t ap = extract32(matched_rbar, 1, 2);
2700         uint32_t xn = extract32(matched_rbar, 0, 1);
2701         bool pxn = false;
2702 
2703         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2704             pxn = extract32(matched_rlar, 4, 1);
2705         }
2706 
2707         if (m_is_system_region(env, address)) {
2708             /* System space is always execute never */
2709             xn = 1;
2710         }
2711 
2712         if (regime_el(env, mmu_idx) == 2) {
2713             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2714                                             mmu_idx != ARMMMUIdx_E2);
2715         } else {
2716             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2717         }
2718 
2719         if (!arm_feature(env, ARM_FEATURE_M)) {
2720             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2721             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2722             uint8_t sh = extract32(matched_rlar, 3, 2);
2723 
2724             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2725                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2726                 xn = 0x1;
2727             }
2728 
2729             if ((regime_el(env, mmu_idx) == 1) &&
2730                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2731                 pxn = 0x1;
2732             }
2733 
2734             result->cacheattrs.is_s2_format = false;
2735             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2736             result->cacheattrs.shareability = sh;
2737         }
2738 
2739         if (result->f.prot && !xn && !(pxn && !is_user)) {
2740             result->f.prot |= PAGE_EXEC;
2741         }
2742 
2743         if (mregion) {
2744             *mregion = matchregion;
2745         }
2746     }
2747 
2748     fi->type = ARMFault_Permission;
2749     if (arm_feature(env, ARM_FEATURE_M)) {
2750         fi->level = 1;
2751     }
2752     return !(result->f.prot & (1 << access_type));
2753 }
2754 
2755 static bool v8m_is_sau_exempt(CPUARMState *env,
2756                               uint32_t address, MMUAccessType access_type)
2757 {
2758     /*
2759      * The architecture specifies that certain address ranges are
2760      * exempt from v8M SAU/IDAU checks.
2761      */
2762     return
2763         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2764         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2765         (address >= 0xe000e000 && address <= 0xe000efff) ||
2766         (address >= 0xe002e000 && address <= 0xe002efff) ||
2767         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2768         (address >= 0xe00ff000 && address <= 0xe00fffff);
2769 }
2770 
2771 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2772                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2773                          bool is_secure, V8M_SAttributes *sattrs)
2774 {
2775     /*
2776      * Look up the security attributes for this address. Compare the
2777      * pseudocode SecurityCheck() function.
2778      * We assume the caller has zero-initialized *sattrs.
2779      */
2780     ARMCPU *cpu = env_archcpu(env);
2781     int r;
2782     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2783     int idau_region = IREGION_NOTVALID;
2784     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2785     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2786 
2787     if (cpu->idau) {
2788         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2789         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2790 
2791         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2792                    &idau_nsc);
2793     }
2794 
2795     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2796         /* 0xf0000000..0xffffffff is always S for insn fetches */
2797         return;
2798     }
2799 
2800     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2801         sattrs->ns = !is_secure;
2802         return;
2803     }
2804 
2805     if (idau_region != IREGION_NOTVALID) {
2806         sattrs->irvalid = true;
2807         sattrs->iregion = idau_region;
2808     }
2809 
2810     switch (env->sau.ctrl & 3) {
2811     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2812         break;
2813     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2814         sattrs->ns = true;
2815         break;
2816     default: /* SAU.ENABLE == 1 */
2817         for (r = 0; r < cpu->sau_sregion; r++) {
2818             if (env->sau.rlar[r] & 1) {
2819                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2820                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2821 
2822                 if (base <= address && limit >= address) {
2823                     if (base > addr_page_base || limit < addr_page_limit) {
2824                         sattrs->subpage = true;
2825                     }
2826                     if (sattrs->srvalid) {
2827                         /*
2828                          * If we hit in more than one region then we must report
2829                          * as Secure, not NS-Callable, with no valid region
2830                          * number info.
2831                          */
2832                         sattrs->ns = false;
2833                         sattrs->nsc = false;
2834                         sattrs->sregion = 0;
2835                         sattrs->srvalid = false;
2836                         break;
2837                     } else {
2838                         if (env->sau.rlar[r] & 2) {
2839                             sattrs->nsc = true;
2840                         } else {
2841                             sattrs->ns = true;
2842                         }
2843                         sattrs->srvalid = true;
2844                         sattrs->sregion = r;
2845                     }
2846                 } else {
2847                     /*
2848                      * Address not in this region. We must check whether the
2849                      * region covers addresses in the same page as our address.
2850                      * In that case we must not report a size that covers the
2851                      * whole page for a subsequent hit against a different MPU
2852                      * region or the background region, because it would result
2853                      * in incorrect TLB hits for subsequent accesses to
2854                      * addresses that are in this MPU region.
2855                      */
2856                     if (limit >= base &&
2857                         ranges_overlap(base, limit - base + 1,
2858                                        addr_page_base,
2859                                        TARGET_PAGE_SIZE)) {
2860                         sattrs->subpage = true;
2861                     }
2862                 }
2863             }
2864         }
2865         break;
2866     }
2867 
2868     /*
2869      * The IDAU will override the SAU lookup results if it specifies
2870      * higher security than the SAU does.
2871      */
2872     if (!idau_ns) {
2873         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2874             sattrs->ns = false;
2875             sattrs->nsc = idau_nsc;
2876         }
2877     }
2878 }
2879 
2880 static bool get_phys_addr_pmsav8(CPUARMState *env,
2881                                  S1Translate *ptw,
2882                                  uint32_t address,
2883                                  MMUAccessType access_type,
2884                                  GetPhysAddrResult *result,
2885                                  ARMMMUFaultInfo *fi)
2886 {
2887     V8M_SAttributes sattrs = {};
2888     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2889     bool secure = arm_space_is_secure(ptw->in_space);
2890     bool ret;
2891 
2892     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2893         v8m_security_lookup(env, address, access_type, mmu_idx,
2894                             secure, &sattrs);
2895         if (access_type == MMU_INST_FETCH) {
2896             /*
2897              * Instruction fetches always use the MMU bank and the
2898              * transaction attribute determined by the fetch address,
2899              * regardless of CPU state. This is painful for QEMU
2900              * to handle, because it would mean we need to encode
2901              * into the mmu_idx not just the (user, negpri) information
2902              * for the current security state but also that for the
2903              * other security state, which would balloon the number
2904              * of mmu_idx values needed alarmingly.
2905              * Fortunately we can avoid this because it's not actually
2906              * possible to arbitrarily execute code from memory with
2907              * the wrong security attribute: it will always generate
2908              * an exception of some kind or another, apart from the
2909              * special case of an NS CPU executing an SG instruction
2910              * in S&NSC memory. So we always just fail the translation
2911              * here and sort things out in the exception handler
2912              * (including possibly emulating an SG instruction).
2913              */
2914             if (sattrs.ns != !secure) {
2915                 if (sattrs.nsc) {
2916                     fi->type = ARMFault_QEMU_NSCExec;
2917                 } else {
2918                     fi->type = ARMFault_QEMU_SFault;
2919                 }
2920                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2921                 result->f.phys_addr = address;
2922                 result->f.prot = 0;
2923                 return true;
2924             }
2925         } else {
2926             /*
2927              * For data accesses we always use the MMU bank indicated
2928              * by the current CPU state, but the security attributes
2929              * might downgrade a secure access to nonsecure.
2930              */
2931             if (sattrs.ns) {
2932                 result->f.attrs.secure = false;
2933                 result->f.attrs.space = ARMSS_NonSecure;
2934             } else if (!secure) {
2935                 /*
2936                  * NS access to S memory must fault.
2937                  * Architecturally we should first check whether the
2938                  * MPU information for this address indicates that we
2939                  * are doing an unaligned access to Device memory, which
2940                  * should generate a UsageFault instead. QEMU does not
2941                  * currently check for that kind of unaligned access though.
2942                  * If we added it we would need to do so as a special case
2943                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2944                  */
2945                 fi->type = ARMFault_QEMU_SFault;
2946                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2947                 result->f.phys_addr = address;
2948                 result->f.prot = 0;
2949                 return true;
2950             }
2951         }
2952     }
2953 
2954     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2955                             result, fi, NULL);
2956     if (sattrs.subpage) {
2957         result->f.lg_page_size = 0;
2958     }
2959     return ret;
2960 }
2961 
2962 /*
2963  * Translate from the 4-bit stage 2 representation of
2964  * memory attributes (without cache-allocation hints) to
2965  * the 8-bit representation of the stage 1 MAIR registers
2966  * (which includes allocation hints).
2967  *
2968  * ref: shared/translation/attrs/S2AttrDecode()
2969  *      .../S2ConvertAttrsHints()
2970  */
2971 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2972 {
2973     uint8_t hiattr = extract32(s2attrs, 2, 2);
2974     uint8_t loattr = extract32(s2attrs, 0, 2);
2975     uint8_t hihint = 0, lohint = 0;
2976 
2977     if (hiattr != 0) { /* normal memory */
2978         if (hcr & HCR_CD) { /* cache disabled */
2979             hiattr = loattr = 1; /* non-cacheable */
2980         } else {
2981             if (hiattr != 1) { /* Write-through or write-back */
2982                 hihint = 3; /* RW allocate */
2983             }
2984             if (loattr != 1) { /* Write-through or write-back */
2985                 lohint = 3; /* RW allocate */
2986             }
2987         }
2988     }
2989 
2990     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2991 }
2992 
2993 /*
2994  * Combine either inner or outer cacheability attributes for normal
2995  * memory, according to table D4-42 and pseudocode procedure
2996  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2997  *
2998  * NB: only stage 1 includes allocation hints (RW bits), leading to
2999  * some asymmetry.
3000  */
3001 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3002 {
3003     if (s1 == 4 || s2 == 4) {
3004         /* non-cacheable has precedence */
3005         return 4;
3006     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3007         /* stage 1 write-through takes precedence */
3008         return s1;
3009     } else if (extract32(s2, 2, 2) == 2) {
3010         /* stage 2 write-through takes precedence, but the allocation hint
3011          * is still taken from stage 1
3012          */
3013         return (2 << 2) | extract32(s1, 0, 2);
3014     } else { /* write-back */
3015         return s1;
3016     }
3017 }
3018 
3019 /*
3020  * Combine the memory type and cacheability attributes of
3021  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3022  * combined attributes in MAIR_EL1 format.
3023  */
3024 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3025                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
3026 {
3027     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3028 
3029     if (s2.is_s2_format) {
3030         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3031     } else {
3032         s2_mair_attrs = s2.attrs;
3033     }
3034 
3035     s1lo = extract32(s1.attrs, 0, 4);
3036     s2lo = extract32(s2_mair_attrs, 0, 4);
3037     s1hi = extract32(s1.attrs, 4, 4);
3038     s2hi = extract32(s2_mair_attrs, 4, 4);
3039 
3040     /* Combine memory type and cacheability attributes */
3041     if (s1hi == 0 || s2hi == 0) {
3042         /* Device has precedence over normal */
3043         if (s1lo == 0 || s2lo == 0) {
3044             /* nGnRnE has precedence over anything */
3045             ret_attrs = 0;
3046         } else if (s1lo == 4 || s2lo == 4) {
3047             /* non-Reordering has precedence over Reordering */
3048             ret_attrs = 4;  /* nGnRE */
3049         } else if (s1lo == 8 || s2lo == 8) {
3050             /* non-Gathering has precedence over Gathering */
3051             ret_attrs = 8;  /* nGRE */
3052         } else {
3053             ret_attrs = 0xc; /* GRE */
3054         }
3055     } else { /* Normal memory */
3056         /* Outer/inner cacheability combine independently */
3057         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3058                   | combine_cacheattr_nibble(s1lo, s2lo);
3059     }
3060     return ret_attrs;
3061 }
3062 
3063 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3064 {
3065     /*
3066      * Given the 4 bits specifying the outer or inner cacheability
3067      * in MAIR format, return a value specifying Normal Write-Back,
3068      * with the allocation and transient hints taken from the input
3069      * if the input specified some kind of cacheable attribute.
3070      */
3071     if (attr == 0 || attr == 4) {
3072         /*
3073          * 0 == an UNPREDICTABLE encoding
3074          * 4 == Non-cacheable
3075          * Either way, force Write-Back RW allocate non-transient
3076          */
3077         return 0xf;
3078     }
3079     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3080     return attr | 4;
3081 }
3082 
3083 /*
3084  * Combine the memory type and cacheability attributes of
3085  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3086  * combined attributes in MAIR_EL1 format.
3087  */
3088 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3089 {
3090     assert(s2.is_s2_format && !s1.is_s2_format);
3091 
3092     switch (s2.attrs) {
3093     case 7:
3094         /* Use stage 1 attributes */
3095         return s1.attrs;
3096     case 6:
3097         /*
3098          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3099          * then we take the allocation hints from it; otherwise it is
3100          * RW allocate, non-transient.
3101          */
3102         if ((s1.attrs & 0xf0) == 0) {
3103             /* S1 is Device */
3104             return 0xff;
3105         }
3106         /* Need to check the Inner and Outer nibbles separately */
3107         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3108             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3109     case 5:
3110         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3111         if ((s1.attrs & 0xf0) == 0) {
3112             return s1.attrs;
3113         }
3114         return 0x44;
3115     case 0 ... 3:
3116         /* Force Device, of subtype specified by S2 */
3117         return s2.attrs << 2;
3118     default:
3119         /*
3120          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3121          * arbitrarily force Device.
3122          */
3123         return 0;
3124     }
3125 }
3126 
3127 /*
3128  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3129  * and CombineS1S2Desc()
3130  *
3131  * @env:     CPUARMState
3132  * @s1:      Attributes from stage 1 walk
3133  * @s2:      Attributes from stage 2 walk
3134  */
3135 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3136                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3137 {
3138     ARMCacheAttrs ret;
3139     bool tagged = false;
3140 
3141     assert(!s1.is_s2_format);
3142     ret.is_s2_format = false;
3143 
3144     if (s1.attrs == 0xf0) {
3145         tagged = true;
3146         s1.attrs = 0xff;
3147     }
3148 
3149     /* Combine shareability attributes (table D4-43) */
3150     if (s1.shareability == 2 || s2.shareability == 2) {
3151         /* if either are outer-shareable, the result is outer-shareable */
3152         ret.shareability = 2;
3153     } else if (s1.shareability == 3 || s2.shareability == 3) {
3154         /* if either are inner-shareable, the result is inner-shareable */
3155         ret.shareability = 3;
3156     } else {
3157         /* both non-shareable */
3158         ret.shareability = 0;
3159     }
3160 
3161     /* Combine memory type and cacheability attributes */
3162     if (hcr & HCR_FWB) {
3163         ret.attrs = combined_attrs_fwb(s1, s2);
3164     } else {
3165         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3166     }
3167 
3168     /*
3169      * Any location for which the resultant memory type is any
3170      * type of Device memory is always treated as Outer Shareable.
3171      * Any location for which the resultant memory type is Normal
3172      * Inner Non-cacheable, Outer Non-cacheable is always treated
3173      * as Outer Shareable.
3174      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3175      */
3176     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3177         ret.shareability = 2;
3178     }
3179 
3180     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3181     if (tagged && ret.attrs == 0xff) {
3182         ret.attrs = 0xf0;
3183     }
3184 
3185     return ret;
3186 }
3187 
3188 /*
3189  * MMU disabled.  S1 addresses within aa64 translation regimes are
3190  * still checked for bounds -- see AArch64.S1DisabledOutput().
3191  */
3192 static bool get_phys_addr_disabled(CPUARMState *env,
3193                                    S1Translate *ptw,
3194                                    vaddr address,
3195                                    MMUAccessType access_type,
3196                                    GetPhysAddrResult *result,
3197                                    ARMMMUFaultInfo *fi)
3198 {
3199     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3200     uint8_t memattr = 0x00;    /* Device nGnRnE */
3201     uint8_t shareability = 0;  /* non-shareable */
3202     int r_el;
3203 
3204     switch (mmu_idx) {
3205     case ARMMMUIdx_Stage2:
3206     case ARMMMUIdx_Stage2_S:
3207     case ARMMMUIdx_Phys_S:
3208     case ARMMMUIdx_Phys_NS:
3209     case ARMMMUIdx_Phys_Root:
3210     case ARMMMUIdx_Phys_Realm:
3211         break;
3212 
3213     default:
3214         r_el = regime_el(env, mmu_idx);
3215         if (arm_el_is_aa64(env, r_el)) {
3216             int pamax = arm_pamax(env_archcpu(env));
3217             uint64_t tcr = env->cp15.tcr_el[r_el];
3218             int addrtop, tbi;
3219 
3220             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3221             if (access_type == MMU_INST_FETCH) {
3222                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3223             }
3224             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3225             addrtop = (tbi ? 55 : 63);
3226 
3227             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3228                 fi->type = ARMFault_AddressSize;
3229                 fi->level = 0;
3230                 fi->stage2 = false;
3231                 return 1;
3232             }
3233 
3234             /*
3235              * When TBI is disabled, we've just validated that all of the
3236              * bits above PAMax are zero, so logically we only need to
3237              * clear the top byte for TBI.  But it's clearer to follow
3238              * the pseudocode set of addrdesc.paddress.
3239              */
3240             address = extract64(address, 0, 52);
3241         }
3242 
3243         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3244         if (r_el == 1) {
3245             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3246             if (hcr & HCR_DC) {
3247                 if (hcr & HCR_DCT) {
3248                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3249                 } else {
3250                     memattr = 0xff;  /* Normal, WB, RWA */
3251                 }
3252             }
3253         }
3254         if (memattr == 0) {
3255             if (access_type == MMU_INST_FETCH) {
3256                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3257                     memattr = 0xee;  /* Normal, WT, RA, NT */
3258                 } else {
3259                     memattr = 0x44;  /* Normal, NC, No */
3260                 }
3261             }
3262             shareability = 2; /* outer shareable */
3263         }
3264         result->cacheattrs.is_s2_format = false;
3265         break;
3266     }
3267 
3268     result->f.phys_addr = address;
3269     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3270     result->f.lg_page_size = TARGET_PAGE_BITS;
3271     result->cacheattrs.shareability = shareability;
3272     result->cacheattrs.attrs = memattr;
3273     return false;
3274 }
3275 
3276 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3277                                    vaddr address,
3278                                    MMUAccessType access_type, MemOp memop,
3279                                    GetPhysAddrResult *result,
3280                                    ARMMMUFaultInfo *fi)
3281 {
3282     hwaddr ipa;
3283     int s1_prot, s1_lgpgsz;
3284     ARMSecuritySpace in_space = ptw->in_space;
3285     bool ret, ipa_secure, s1_guarded;
3286     ARMCacheAttrs cacheattrs1;
3287     ARMSecuritySpace ipa_space;
3288     uint64_t hcr;
3289 
3290     ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3291                               memop, result, fi);
3292 
3293     /* If S1 fails, return early.  */
3294     if (ret) {
3295         return ret;
3296     }
3297 
3298     ipa = result->f.phys_addr;
3299     ipa_secure = result->f.attrs.secure;
3300     ipa_space = result->f.attrs.space;
3301 
3302     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3303     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3304     ptw->in_space = ipa_space;
3305     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3306 
3307     /*
3308      * S1 is done, now do S2 translation.
3309      * Save the stage1 results so that we may merge prot and cacheattrs later.
3310      */
3311     s1_prot = result->f.prot;
3312     s1_lgpgsz = result->f.lg_page_size;
3313     s1_guarded = result->f.extra.arm.guarded;
3314     cacheattrs1 = result->cacheattrs;
3315     memset(result, 0, sizeof(*result));
3316 
3317     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3318                               memop, result, fi);
3319     fi->s2addr = ipa;
3320 
3321     /* Combine the S1 and S2 perms.  */
3322     result->f.prot &= s1_prot;
3323 
3324     /* If S2 fails, return early.  */
3325     if (ret) {
3326         return ret;
3327     }
3328 
3329     /*
3330      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3331      * this means "don't put this in the TLB"; in this case, return a
3332      * result with lg_page_size == 0 to achieve that. Otherwise,
3333      * use the maximum of the S1 & S2 page size, so that invalidation
3334      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3335      * we know the combined result permissions etc only cover the minimum
3336      * of the S1 and S2 page size, because we know that the common TLB code
3337      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3338      * and passing a larger page size value only affects invalidations.)
3339      */
3340     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3341         s1_lgpgsz < TARGET_PAGE_BITS) {
3342         result->f.lg_page_size = 0;
3343     } else if (result->f.lg_page_size < s1_lgpgsz) {
3344         result->f.lg_page_size = s1_lgpgsz;
3345     }
3346 
3347     /* Combine the S1 and S2 cache attributes. */
3348     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3349     if (hcr & HCR_DC) {
3350         /*
3351          * HCR.DC forces the first stage attributes to
3352          *  Normal Non-Shareable,
3353          *  Inner Write-Back Read-Allocate Write-Allocate,
3354          *  Outer Write-Back Read-Allocate Write-Allocate.
3355          * Do not overwrite Tagged within attrs.
3356          */
3357         if (cacheattrs1.attrs != 0xf0) {
3358             cacheattrs1.attrs = 0xff;
3359         }
3360         cacheattrs1.shareability = 0;
3361     }
3362     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3363                                             result->cacheattrs);
3364 
3365     /* No BTI GP information in stage 2, we just use the S1 value */
3366     result->f.extra.arm.guarded = s1_guarded;
3367 
3368     /*
3369      * Check if IPA translates to secure or non-secure PA space.
3370      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3371      */
3372     if (in_space == ARMSS_Secure) {
3373         result->f.attrs.secure =
3374             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3375             && (ipa_secure
3376                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3377         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3378     }
3379 
3380     return false;
3381 }
3382 
3383 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3384                                       vaddr address,
3385                                       MMUAccessType access_type, MemOp memop,
3386                                       GetPhysAddrResult *result,
3387                                       ARMMMUFaultInfo *fi)
3388 {
3389     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3390     ARMMMUIdx s1_mmu_idx;
3391 
3392     /*
3393      * The page table entries may downgrade Secure to NonSecure, but
3394      * cannot upgrade a NonSecure translation regime's attributes
3395      * to Secure or Realm.
3396      */
3397     result->f.attrs.space = ptw->in_space;
3398     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3399 
3400     switch (mmu_idx) {
3401     case ARMMMUIdx_Phys_S:
3402     case ARMMMUIdx_Phys_NS:
3403     case ARMMMUIdx_Phys_Root:
3404     case ARMMMUIdx_Phys_Realm:
3405         /* Checking Phys early avoids special casing later vs regime_el. */
3406         return get_phys_addr_disabled(env, ptw, address, access_type,
3407                                       result, fi);
3408 
3409     case ARMMMUIdx_Stage1_E0:
3410     case ARMMMUIdx_Stage1_E1:
3411     case ARMMMUIdx_Stage1_E1_PAN:
3412         /*
3413          * First stage lookup uses second stage for ptw; only
3414          * Secure has both S and NS IPA and starts with Stage2_S.
3415          */
3416         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3417             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3418         break;
3419 
3420     case ARMMMUIdx_Stage2:
3421     case ARMMMUIdx_Stage2_S:
3422         /*
3423          * Second stage lookup uses physical for ptw; whether this is S or
3424          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3425          * the Secure EL2&0 regime.
3426          */
3427         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3428         break;
3429 
3430     case ARMMMUIdx_E10_0:
3431         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3432         goto do_twostage;
3433     case ARMMMUIdx_E10_1:
3434         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3435         goto do_twostage;
3436     case ARMMMUIdx_E10_1_PAN:
3437         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3438     do_twostage:
3439         /*
3440          * Call ourselves recursively to do the stage 1 and then stage 2
3441          * translations if mmu_idx is a two-stage regime, and EL2 present.
3442          * Otherwise, a stage1+stage2 translation is just stage 1.
3443          */
3444         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3445         if (arm_feature(env, ARM_FEATURE_EL2) &&
3446             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3447             return get_phys_addr_twostage(env, ptw, address, access_type,
3448                                           memop, result, fi);
3449         }
3450         /* fall through */
3451 
3452     default:
3453         /* Single stage uses physical for ptw. */
3454         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3455         break;
3456     }
3457 
3458     result->f.attrs.user = regime_is_user(env, mmu_idx);
3459 
3460     /*
3461      * Fast Context Switch Extension. This doesn't exist at all in v8.
3462      * In v7 and earlier it affects all stage 1 translations.
3463      */
3464     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3465         && !arm_feature(env, ARM_FEATURE_V8)) {
3466         if (regime_el(env, mmu_idx) == 3) {
3467             address += env->cp15.fcseidr_s;
3468         } else {
3469             address += env->cp15.fcseidr_ns;
3470         }
3471     }
3472 
3473     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3474         bool ret;
3475         result->f.lg_page_size = TARGET_PAGE_BITS;
3476 
3477         if (arm_feature(env, ARM_FEATURE_V8)) {
3478             /* PMSAv8 */
3479             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3480                                        result, fi);
3481         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3482             /* PMSAv7 */
3483             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3484                                        result, fi);
3485         } else {
3486             /* Pre-v7 MPU */
3487             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3488                                        result, fi);
3489         }
3490         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3491                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3492                       access_type == MMU_DATA_LOAD ? "reading" :
3493                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3494                       (uint32_t)address, mmu_idx,
3495                       ret ? "Miss" : "Hit",
3496                       result->f.prot & PAGE_READ ? 'r' : '-',
3497                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3498                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3499 
3500         return ret;
3501     }
3502 
3503     /* Definitely a real MMU, not an MPU */
3504 
3505     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3506         return get_phys_addr_disabled(env, ptw, address, access_type,
3507                                       result, fi);
3508     }
3509 
3510     if (regime_using_lpae_format(env, mmu_idx)) {
3511         return get_phys_addr_lpae(env, ptw, address, access_type,
3512                                   memop, result, fi);
3513     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3514                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3515         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3516     } else {
3517         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3518     }
3519 }
3520 
3521 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3522                               vaddr address,
3523                               MMUAccessType access_type, MemOp memop,
3524                               GetPhysAddrResult *result,
3525                               ARMMMUFaultInfo *fi)
3526 {
3527     if (get_phys_addr_nogpc(env, ptw, address, access_type,
3528                             memop, result, fi)) {
3529         return true;
3530     }
3531     if (!granule_protection_check(env, result->f.phys_addr,
3532                                   result->f.attrs.space, fi)) {
3533         fi->type = ARMFault_GPCFOnOutput;
3534         return true;
3535     }
3536     return false;
3537 }
3538 
3539 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3540                                     MMUAccessType access_type, MemOp memop,
3541                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3542                                     GetPhysAddrResult *result,
3543                                     ARMMMUFaultInfo *fi)
3544 {
3545     S1Translate ptw = {
3546         .in_mmu_idx = mmu_idx,
3547         .in_space = space,
3548     };
3549     return get_phys_addr_nogpc(env, &ptw, address, access_type,
3550                                memop, result, fi);
3551 }
3552 
3553 bool get_phys_addr(CPUARMState *env, vaddr address,
3554                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3555                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3556 {
3557     S1Translate ptw = {
3558         .in_mmu_idx = mmu_idx,
3559     };
3560     ARMSecuritySpace ss;
3561 
3562     switch (mmu_idx) {
3563     case ARMMMUIdx_E10_0:
3564     case ARMMMUIdx_E10_1:
3565     case ARMMMUIdx_E10_1_PAN:
3566     case ARMMMUIdx_E20_0:
3567     case ARMMMUIdx_E20_2:
3568     case ARMMMUIdx_E20_2_PAN:
3569     case ARMMMUIdx_Stage1_E0:
3570     case ARMMMUIdx_Stage1_E1:
3571     case ARMMMUIdx_Stage1_E1_PAN:
3572     case ARMMMUIdx_E2:
3573         ss = arm_security_space_below_el3(env);
3574         break;
3575     case ARMMMUIdx_Stage2:
3576         /*
3577          * For Secure EL2, we need this index to be NonSecure;
3578          * otherwise this will already be NonSecure or Realm.
3579          */
3580         ss = arm_security_space_below_el3(env);
3581         if (ss == ARMSS_Secure) {
3582             ss = ARMSS_NonSecure;
3583         }
3584         break;
3585     case ARMMMUIdx_Phys_NS:
3586     case ARMMMUIdx_MPrivNegPri:
3587     case ARMMMUIdx_MUserNegPri:
3588     case ARMMMUIdx_MPriv:
3589     case ARMMMUIdx_MUser:
3590         ss = ARMSS_NonSecure;
3591         break;
3592     case ARMMMUIdx_Stage2_S:
3593     case ARMMMUIdx_Phys_S:
3594     case ARMMMUIdx_MSPrivNegPri:
3595     case ARMMMUIdx_MSUserNegPri:
3596     case ARMMMUIdx_MSPriv:
3597     case ARMMMUIdx_MSUser:
3598         ss = ARMSS_Secure;
3599         break;
3600     case ARMMMUIdx_E3:
3601     case ARMMMUIdx_E30_0:
3602     case ARMMMUIdx_E30_3_PAN:
3603         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3604             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3605             ss = ARMSS_Root;
3606         } else {
3607             ss = ARMSS_Secure;
3608         }
3609         break;
3610     case ARMMMUIdx_Phys_Root:
3611         ss = ARMSS_Root;
3612         break;
3613     case ARMMMUIdx_Phys_Realm:
3614         ss = ARMSS_Realm;
3615         break;
3616     default:
3617         g_assert_not_reached();
3618     }
3619 
3620     ptw.in_space = ss;
3621     return get_phys_addr_gpc(env, &ptw, address, access_type,
3622                              memop, result, fi);
3623 }
3624 
3625 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3626                                          MemTxAttrs *attrs)
3627 {
3628     ARMCPU *cpu = ARM_CPU(cs);
3629     CPUARMState *env = &cpu->env;
3630     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3631     ARMSecuritySpace ss = arm_security_space(env);
3632     S1Translate ptw = {
3633         .in_mmu_idx = mmu_idx,
3634         .in_space = ss,
3635         .in_debug = true,
3636     };
3637     GetPhysAddrResult res = {};
3638     ARMMMUFaultInfo fi = {};
3639     bool ret;
3640 
3641     ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3642     *attrs = res.f.attrs;
3643 
3644     if (ret) {
3645         return -1;
3646     }
3647     return res.f.phys_addr;
3648 }
3649