1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "exec/target_page.h" 16 #include "exec/tlb-flags.h" 17 #include "cpu.h" 18 #include "internals.h" 19 #include "cpu-features.h" 20 #include "idau.h" 21 22 typedef struct S1Translate { 23 /* 24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 25 * Together with in_space, specifies the architectural translation regime. 26 */ 27 ARMMMUIdx in_mmu_idx; 28 /* 29 * in_ptw_idx: specifies which mmuidx to use for the actual 30 * page table descriptor load operations. This will be one of the 31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 33 * this field is updated accordingly. 34 */ 35 ARMMMUIdx in_ptw_idx; 36 /* 37 * in_space: the security space for this walk. This plus 38 * the in_mmu_idx specify the architectural translation regime. 39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 40 * this field is updated accordingly. 41 * 42 * Note that the security space for the in_ptw_idx may be different 43 * from that for the in_mmu_idx. We do not need to explicitly track 44 * the in_ptw_idx security space because: 45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 46 * itself specifies the security space 47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 48 * space used for ptw reads is the same as that of the security 49 * space of the stage 1 translation for all cases except where 50 * stage 1 is Secure; in that case the only possibilities for 51 * the ptw read are Secure and NonSecure, and the in_ptw_idx 52 * value being Stage2 vs Stage2_S distinguishes those. 53 */ 54 ARMSecuritySpace in_space; 55 /* 56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 57 * accesses will not update the guest page table access flags 58 * and will not change the state of the softmmu TLBs. 59 */ 60 bool in_debug; 61 /* 62 * If this is stage 2 of a stage 1+2 page table walk, then this must 63 * be true if stage 1 is an EL0 access; otherwise this is ignored. 64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 65 */ 66 bool in_s1_is_el0; 67 bool out_rw; 68 bool out_be; 69 ARMSecuritySpace out_space; 70 hwaddr out_virt; 71 hwaddr out_phys; 72 void *out_host; 73 } S1Translate; 74 75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 76 vaddr address, 77 MMUAccessType access_type, MemOp memop, 78 GetPhysAddrResult *result, 79 ARMMMUFaultInfo *fi); 80 81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 82 vaddr address, 83 MMUAccessType access_type, MemOp memop, 84 GetPhysAddrResult *result, 85 ARMMMUFaultInfo *fi); 86 87 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 88 int user_rw, int prot_rw, int xn, int pxn, 89 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa); 90 91 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 92 static const uint8_t pamax_map[] = { 93 [0] = 32, 94 [1] = 36, 95 [2] = 40, 96 [3] = 42, 97 [4] = 44, 98 [5] = 48, 99 [6] = 52, 100 }; 101 102 uint8_t round_down_to_parange_index(uint8_t bit_size) 103 { 104 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) { 105 if (pamax_map[i] <= bit_size) { 106 return i; 107 } 108 } 109 g_assert_not_reached(); 110 } 111 112 uint8_t round_down_to_parange_bit_size(uint8_t bit_size) 113 { 114 return pamax_map[round_down_to_parange_index(bit_size)]; 115 } 116 117 /* 118 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 119 * Note that machvirt_init calls this on a CPU that is inited but not realized! 120 */ 121 unsigned int arm_pamax(ARMCPU *cpu) 122 { 123 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 124 unsigned int parange = 125 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 126 127 /* 128 * id_aa64mmfr0 is a read-only register so values outside of the 129 * supported mappings can be considered an implementation error. 130 */ 131 assert(parange < ARRAY_SIZE(pamax_map)); 132 return pamax_map[parange]; 133 } 134 135 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 136 /* v7 or v8 with LPAE */ 137 return 40; 138 } 139 /* Anything else */ 140 return 32; 141 } 142 143 /* 144 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 145 */ 146 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 147 { 148 switch (mmu_idx) { 149 case ARMMMUIdx_E10_0: 150 return ARMMMUIdx_Stage1_E0; 151 case ARMMMUIdx_E10_1: 152 return ARMMMUIdx_Stage1_E1; 153 case ARMMMUIdx_E10_1_PAN: 154 return ARMMMUIdx_Stage1_E1_PAN; 155 default: 156 return mmu_idx; 157 } 158 } 159 160 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 161 { 162 return stage_1_mmu_idx(arm_mmu_idx(env)); 163 } 164 165 /* 166 * Return where we should do ptw loads from for a stage 2 walk. 167 * This depends on whether the address we are looking up is a 168 * Secure IPA or a NonSecure IPA, which we know from whether this is 169 * Stage2 or Stage2_S. 170 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 171 */ 172 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 173 { 174 bool s2walk_secure; 175 176 /* 177 * We're OK to check the current state of the CPU here because 178 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 179 * changes. 180 * (2) there's no way to do a lookup that cares about Stage 2 for a 181 * different security state to the current one for AArch64, and AArch32 182 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 183 * an NS stage 1+2 lookup while the NS bit is 0.) 184 */ 185 if (!arm_el_is_aa64(env, 3)) { 186 return ARMMMUIdx_Phys_NS; 187 } 188 189 switch (arm_security_space_below_el3(env)) { 190 case ARMSS_NonSecure: 191 return ARMMMUIdx_Phys_NS; 192 case ARMSS_Realm: 193 return ARMMMUIdx_Phys_Realm; 194 case ARMSS_Secure: 195 if (stage2idx == ARMMMUIdx_Stage2_S) { 196 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 197 } else { 198 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 199 } 200 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 201 default: 202 g_assert_not_reached(); 203 } 204 } 205 206 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 207 { 208 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 209 } 210 211 /* Return the TTBR associated with this translation regime */ 212 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 213 { 214 if (mmu_idx == ARMMMUIdx_Stage2) { 215 return env->cp15.vttbr_el2; 216 } 217 if (mmu_idx == ARMMMUIdx_Stage2_S) { 218 return env->cp15.vsttbr_el2; 219 } 220 if (ttbrn == 0) { 221 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 222 } else { 223 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 224 } 225 } 226 227 /* Return true if the specified stage of address translation is disabled */ 228 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 229 ARMSecuritySpace space) 230 { 231 uint64_t hcr_el2; 232 233 if (arm_feature(env, ARM_FEATURE_M)) { 234 bool is_secure = arm_space_is_secure(space); 235 switch (env->v7m.mpu_ctrl[is_secure] & 236 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 237 case R_V7M_MPU_CTRL_ENABLE_MASK: 238 /* Enabled, but not for HardFault and NMI */ 239 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 240 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 241 /* Enabled for all cases */ 242 return false; 243 case 0: 244 default: 245 /* 246 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 247 * we warned about that in armv7m_nvic.c when the guest set it. 248 */ 249 return true; 250 } 251 } 252 253 254 switch (mmu_idx) { 255 case ARMMMUIdx_Stage2: 256 case ARMMMUIdx_Stage2_S: 257 /* HCR.DC means HCR.VM behaves as 1 */ 258 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 259 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 260 261 case ARMMMUIdx_E10_0: 262 case ARMMMUIdx_E10_1: 263 case ARMMMUIdx_E10_1_PAN: 264 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 265 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 266 if (hcr_el2 & HCR_TGE) { 267 return true; 268 } 269 break; 270 271 case ARMMMUIdx_Stage1_E0: 272 case ARMMMUIdx_Stage1_E1: 273 case ARMMMUIdx_Stage1_E1_PAN: 274 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 275 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 276 if (hcr_el2 & HCR_DC) { 277 return true; 278 } 279 break; 280 281 case ARMMMUIdx_E20_0: 282 case ARMMMUIdx_E20_2: 283 case ARMMMUIdx_E20_2_PAN: 284 case ARMMMUIdx_E2: 285 case ARMMMUIdx_E3: 286 case ARMMMUIdx_E30_0: 287 case ARMMMUIdx_E30_3_PAN: 288 break; 289 290 case ARMMMUIdx_Phys_S: 291 case ARMMMUIdx_Phys_NS: 292 case ARMMMUIdx_Phys_Root: 293 case ARMMMUIdx_Phys_Realm: 294 /* No translation for physical address spaces. */ 295 return true; 296 297 default: 298 g_assert_not_reached(); 299 } 300 301 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 302 } 303 304 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 305 ARMSecuritySpace pspace, 306 ARMMMUFaultInfo *fi) 307 { 308 MemTxAttrs attrs = { 309 .secure = true, 310 .space = ARMSS_Root, 311 }; 312 ARMCPU *cpu = env_archcpu(env); 313 uint64_t gpccr = env->cp15.gpccr_el3; 314 unsigned pps, pgs, l0gptsz, level = 0; 315 uint64_t tableaddr, pps_mask, align, entry, index; 316 AddressSpace *as; 317 MemTxResult result; 318 int gpi; 319 320 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 321 return true; 322 } 323 324 /* 325 * GPC Priority 1 (R_GMGRR): 326 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 327 * the access fails as GPT walk fault at level 0. 328 */ 329 330 /* 331 * Configuration of PPS to a value exceeding the implemented 332 * physical address size is invalid. 333 */ 334 pps = FIELD_EX64(gpccr, GPCCR, PPS); 335 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 336 goto fault_walk; 337 } 338 pps = pamax_map[pps]; 339 pps_mask = MAKE_64BIT_MASK(0, pps); 340 341 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 342 case 0b10: /* outer shareable */ 343 break; 344 case 0b00: /* non-shareable */ 345 case 0b11: /* inner shareable */ 346 /* Inner and Outer non-cacheable requires Outer shareable. */ 347 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 348 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 349 goto fault_walk; 350 } 351 break; 352 default: /* reserved */ 353 goto fault_walk; 354 } 355 356 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 357 case 0b00: /* 4KB */ 358 pgs = 12; 359 break; 360 case 0b01: /* 64KB */ 361 pgs = 16; 362 break; 363 case 0b10: /* 16KB */ 364 pgs = 14; 365 break; 366 default: /* reserved */ 367 goto fault_walk; 368 } 369 370 /* Note this field is read-only and fixed at reset. */ 371 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 372 373 /* 374 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 375 * R_CPDSB: A NonSecure physical address input exceeding PPS 376 * does not experience any fault. 377 */ 378 if (paddress & ~pps_mask) { 379 if (pspace == ARMSS_NonSecure) { 380 return true; 381 } 382 goto fault_size; 383 } 384 385 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 386 tableaddr = env->cp15.gptbr_el3 << 12; 387 if (tableaddr & ~pps_mask) { 388 goto fault_size; 389 } 390 391 /* 392 * BADDR is aligned per a function of PPS and L0GPTSZ. 393 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 394 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 395 */ 396 align = MAX(pps - l0gptsz + 3, 12); 397 align = MAKE_64BIT_MASK(0, align); 398 tableaddr &= ~align; 399 400 as = arm_addressspace(env_cpu(env), attrs); 401 402 /* Level 0 lookup. */ 403 index = extract64(paddress, l0gptsz, pps - l0gptsz); 404 tableaddr += index * 8; 405 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 406 if (result != MEMTX_OK) { 407 goto fault_eabt; 408 } 409 410 switch (extract32(entry, 0, 4)) { 411 case 1: /* block descriptor */ 412 if (entry >> 8) { 413 goto fault_walk; /* RES0 bits not 0 */ 414 } 415 gpi = extract32(entry, 4, 4); 416 goto found; 417 case 3: /* table descriptor */ 418 tableaddr = entry & ~0xf; 419 align = MAX(l0gptsz - pgs - 1, 12); 420 align = MAKE_64BIT_MASK(0, align); 421 if (tableaddr & (~pps_mask | align)) { 422 goto fault_walk; /* RES0 bits not 0 */ 423 } 424 break; 425 default: /* invalid */ 426 goto fault_walk; 427 } 428 429 /* Level 1 lookup */ 430 level = 1; 431 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 432 tableaddr += index * 8; 433 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 434 if (result != MEMTX_OK) { 435 goto fault_eabt; 436 } 437 438 switch (extract32(entry, 0, 4)) { 439 case 1: /* contiguous descriptor */ 440 if (entry >> 10) { 441 goto fault_walk; /* RES0 bits not 0 */ 442 } 443 /* 444 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 445 * and because we cannot invalidate by pa, and thus will always 446 * flush entire tlbs, we don't actually care about the range here 447 * and can simply extract the GPI as the result. 448 */ 449 if (extract32(entry, 8, 2) == 0) { 450 goto fault_walk; /* reserved contig */ 451 } 452 gpi = extract32(entry, 4, 4); 453 break; 454 default: 455 index = extract64(paddress, pgs, 4); 456 gpi = extract64(entry, index * 4, 4); 457 break; 458 } 459 460 found: 461 switch (gpi) { 462 case 0b0000: /* no access */ 463 break; 464 case 0b1111: /* all access */ 465 return true; 466 case 0b1000: 467 case 0b1001: 468 case 0b1010: 469 case 0b1011: 470 if (pspace == (gpi & 3)) { 471 return true; 472 } 473 break; 474 default: 475 goto fault_walk; /* reserved */ 476 } 477 478 fi->gpcf = GPCF_Fail; 479 goto fault_common; 480 fault_eabt: 481 fi->gpcf = GPCF_EABT; 482 goto fault_common; 483 fault_size: 484 fi->gpcf = GPCF_AddressSize; 485 goto fault_common; 486 fault_walk: 487 fi->gpcf = GPCF_Walk; 488 fault_common: 489 fi->level = level; 490 fi->paddr = paddress; 491 fi->paddr_space = pspace; 492 return false; 493 } 494 495 static bool S1_attrs_are_device(uint8_t attrs) 496 { 497 /* 498 * This slightly under-decodes the MAIR_ELx field: 499 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 500 * 0b0000dd1x is UNPREDICTABLE. 501 */ 502 return (attrs & 0xf0) == 0; 503 } 504 505 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 506 { 507 /* 508 * For an S1 page table walk, the stage 1 attributes are always 509 * some form of "this is Normal memory". The combined S1+S2 510 * attributes are therefore only Device if stage 2 specifies Device. 511 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 512 * ie when cacheattrs.attrs bits [3:2] are 0b00. 513 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 514 * when cacheattrs.attrs bit [2] is 0. 515 */ 516 if (hcr & HCR_FWB) { 517 return (attrs & 0x4) == 0; 518 } else { 519 return (attrs & 0xc) == 0; 520 } 521 } 522 523 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 524 ARMMMUIdx s2_mmu_idx) 525 { 526 /* 527 * Return the security space to use for stage 2 when doing 528 * the S1 page table descriptor load. 529 */ 530 if (regime_is_stage2(s2_mmu_idx)) { 531 /* 532 * The security space for ptw reads is almost always the same 533 * as that of the security space of the stage 1 translation. 534 * The only exception is when stage 1 is Secure; in that case 535 * the ptw read might be to the Secure or the NonSecure space 536 * (but never Realm or Root), and the s2_mmu_idx tells us which. 537 * Root translations are always single-stage. 538 */ 539 if (s1_space == ARMSS_Secure) { 540 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 541 } else { 542 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 543 assert(s1_space != ARMSS_Root); 544 return s1_space; 545 } 546 } else { 547 /* ptw loads are from phys: the mmu idx itself says which space */ 548 return arm_phys_to_space(s2_mmu_idx); 549 } 550 } 551 552 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 553 { 554 /* 555 * For stage 2 faults in Secure EL22, S1NS indicates 556 * whether the faulting IPA is in the Secure or NonSecure 557 * IPA space. For all other kinds of fault, it is false. 558 */ 559 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 560 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 561 } 562 563 /* Translate a S1 pagetable walk through S2 if needed. */ 564 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 565 hwaddr addr, ARMMMUFaultInfo *fi) 566 { 567 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 568 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 569 uint8_t pte_attrs; 570 571 ptw->out_virt = addr; 572 573 if (unlikely(ptw->in_debug)) { 574 /* 575 * From gdbstub, do not use softmmu so that we don't modify the 576 * state of the cpu at all, including softmmu tlb contents. 577 */ 578 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 579 S1Translate s2ptw = { 580 .in_mmu_idx = s2_mmu_idx, 581 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 582 .in_space = s2_space, 583 .in_debug = true, 584 }; 585 GetPhysAddrResult s2 = { }; 586 587 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) { 588 goto fail; 589 } 590 591 ptw->out_phys = s2.f.phys_addr; 592 pte_attrs = s2.cacheattrs.attrs; 593 ptw->out_host = NULL; 594 ptw->out_rw = false; 595 ptw->out_space = s2.f.attrs.space; 596 } else { 597 #ifdef CONFIG_TCG 598 CPUTLBEntryFull *full; 599 int flags; 600 601 env->tlb_fi = fi; 602 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 603 arm_to_core_mmu_idx(s2_mmu_idx), 604 &ptw->out_host, &full); 605 env->tlb_fi = NULL; 606 607 if (unlikely(flags & TLB_INVALID_MASK)) { 608 goto fail; 609 } 610 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 611 ptw->out_rw = full->prot & PAGE_WRITE; 612 pte_attrs = full->extra.arm.pte_attrs; 613 ptw->out_space = full->attrs.space; 614 #else 615 g_assert_not_reached(); 616 #endif 617 } 618 619 if (regime_is_stage2(s2_mmu_idx)) { 620 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 621 622 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 623 /* 624 * PTW set and S1 walk touched S2 Device memory: 625 * generate Permission fault. 626 */ 627 fi->type = ARMFault_Permission; 628 fi->s2addr = addr; 629 fi->stage2 = true; 630 fi->s1ptw = true; 631 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 632 return false; 633 } 634 } 635 636 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 637 return true; 638 639 fail: 640 assert(fi->type != ARMFault_None); 641 if (fi->type == ARMFault_GPCFOnOutput) { 642 fi->type = ARMFault_GPCFOnWalk; 643 } 644 fi->s2addr = addr; 645 fi->stage2 = regime_is_stage2(s2_mmu_idx); 646 fi->s1ptw = fi->stage2; 647 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 648 return false; 649 } 650 651 /* All loads done in the course of a page table walk go through here. */ 652 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 653 ARMMMUFaultInfo *fi) 654 { 655 CPUState *cs = env_cpu(env); 656 void *host = ptw->out_host; 657 uint32_t data; 658 659 if (likely(host)) { 660 /* Page tables are in RAM, and we have the host address. */ 661 data = qatomic_read((uint32_t *)host); 662 if (ptw->out_be) { 663 data = be32_to_cpu(data); 664 } else { 665 data = le32_to_cpu(data); 666 } 667 } else { 668 /* Page tables are in MMIO. */ 669 MemTxAttrs attrs = { 670 .space = ptw->out_space, 671 .secure = arm_space_is_secure(ptw->out_space), 672 }; 673 AddressSpace *as = arm_addressspace(cs, attrs); 674 MemTxResult result = MEMTX_OK; 675 676 if (ptw->out_be) { 677 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 678 } else { 679 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 680 } 681 if (unlikely(result != MEMTX_OK)) { 682 fi->type = ARMFault_SyncExternalOnWalk; 683 fi->ea = arm_extabort_type(result); 684 return 0; 685 } 686 } 687 return data; 688 } 689 690 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 691 ARMMMUFaultInfo *fi) 692 { 693 CPUState *cs = env_cpu(env); 694 void *host = ptw->out_host; 695 uint64_t data; 696 697 if (likely(host)) { 698 /* Page tables are in RAM, and we have the host address. */ 699 #ifdef CONFIG_ATOMIC64 700 data = qatomic_read__nocheck((uint64_t *)host); 701 if (ptw->out_be) { 702 data = be64_to_cpu(data); 703 } else { 704 data = le64_to_cpu(data); 705 } 706 #else 707 if (ptw->out_be) { 708 data = ldq_be_p(host); 709 } else { 710 data = ldq_le_p(host); 711 } 712 #endif 713 } else { 714 /* Page tables are in MMIO. */ 715 MemTxAttrs attrs = { 716 .space = ptw->out_space, 717 .secure = arm_space_is_secure(ptw->out_space), 718 }; 719 AddressSpace *as = arm_addressspace(cs, attrs); 720 MemTxResult result = MEMTX_OK; 721 722 if (ptw->out_be) { 723 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 724 } else { 725 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 726 } 727 if (unlikely(result != MEMTX_OK)) { 728 fi->type = ARMFault_SyncExternalOnWalk; 729 fi->ea = arm_extabort_type(result); 730 return 0; 731 } 732 } 733 return data; 734 } 735 736 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 737 uint64_t new_val, S1Translate *ptw, 738 ARMMMUFaultInfo *fi) 739 { 740 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 741 uint64_t cur_val; 742 void *host = ptw->out_host; 743 744 if (unlikely(!host)) { 745 /* Page table in MMIO Memory Region */ 746 CPUState *cs = env_cpu(env); 747 MemTxAttrs attrs = { 748 .space = ptw->out_space, 749 .secure = arm_space_is_secure(ptw->out_space), 750 }; 751 AddressSpace *as = arm_addressspace(cs, attrs); 752 MemTxResult result = MEMTX_OK; 753 bool need_lock = !bql_locked(); 754 755 if (need_lock) { 756 bql_lock(); 757 } 758 if (ptw->out_be) { 759 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 760 if (unlikely(result != MEMTX_OK)) { 761 fi->type = ARMFault_SyncExternalOnWalk; 762 fi->ea = arm_extabort_type(result); 763 if (need_lock) { 764 bql_unlock(); 765 } 766 return old_val; 767 } 768 if (cur_val == old_val) { 769 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 770 if (unlikely(result != MEMTX_OK)) { 771 fi->type = ARMFault_SyncExternalOnWalk; 772 fi->ea = arm_extabort_type(result); 773 if (need_lock) { 774 bql_unlock(); 775 } 776 return old_val; 777 } 778 cur_val = new_val; 779 } 780 } else { 781 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 782 if (unlikely(result != MEMTX_OK)) { 783 fi->type = ARMFault_SyncExternalOnWalk; 784 fi->ea = arm_extabort_type(result); 785 if (need_lock) { 786 bql_unlock(); 787 } 788 return old_val; 789 } 790 if (cur_val == old_val) { 791 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 792 if (unlikely(result != MEMTX_OK)) { 793 fi->type = ARMFault_SyncExternalOnWalk; 794 fi->ea = arm_extabort_type(result); 795 if (need_lock) { 796 bql_unlock(); 797 } 798 return old_val; 799 } 800 cur_val = new_val; 801 } 802 } 803 if (need_lock) { 804 bql_unlock(); 805 } 806 return cur_val; 807 } 808 809 /* 810 * Raising a stage2 Protection fault for an atomic update to a read-only 811 * page is delayed until it is certain that there is a change to make. 812 */ 813 if (unlikely(!ptw->out_rw)) { 814 int flags; 815 816 env->tlb_fi = fi; 817 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 818 MMU_DATA_STORE, 819 arm_to_core_mmu_idx(ptw->in_ptw_idx), 820 NULL, NULL); 821 env->tlb_fi = NULL; 822 823 if (unlikely(flags & TLB_INVALID_MASK)) { 824 /* 825 * We know this must be a stage 2 fault because the granule 826 * protection table does not separately track read and write 827 * permission, so all GPC faults are caught in S1_ptw_translate(): 828 * we only get here for "readable but not writeable". 829 */ 830 assert(fi->type != ARMFault_None); 831 fi->s2addr = ptw->out_virt; 832 fi->stage2 = true; 833 fi->s1ptw = true; 834 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 835 return 0; 836 } 837 838 /* In case CAS mismatches and we loop, remember writability. */ 839 ptw->out_rw = true; 840 } 841 842 if (ptw->out_be) { 843 old_val = cpu_to_be64(old_val); 844 new_val = cpu_to_be64(new_val); 845 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 846 cur_val = be64_to_cpu(cur_val); 847 } else { 848 old_val = cpu_to_le64(old_val); 849 new_val = cpu_to_le64(new_val); 850 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 851 cur_val = le64_to_cpu(cur_val); 852 } 853 return cur_val; 854 #else 855 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 856 g_assert_not_reached(); 857 #endif 858 } 859 860 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 861 uint32_t *table, uint32_t address) 862 { 863 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 864 uint64_t tcr = regime_tcr(env, mmu_idx); 865 int maskshift = extract32(tcr, 0, 3); 866 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 867 uint32_t base_mask; 868 869 if (address & mask) { 870 if (tcr & TTBCR_PD1) { 871 /* Translation table walk disabled for TTBR1 */ 872 return false; 873 } 874 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 875 } else { 876 if (tcr & TTBCR_PD0) { 877 /* Translation table walk disabled for TTBR0 */ 878 return false; 879 } 880 base_mask = ~((uint32_t)0x3fffu >> maskshift); 881 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 882 } 883 *table |= (address >> 18) & 0x3ffc; 884 return true; 885 } 886 887 /* 888 * Translate section/page access permissions to page R/W protection flags 889 * @env: CPUARMState 890 * @mmu_idx: MMU index indicating required translation regime 891 * @ap: The 3-bit access permissions (AP[2:0]) 892 * @domain_prot: The 2-bit domain access permissions 893 * @is_user: TRUE if accessing from PL0 894 */ 895 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 896 int ap, int domain_prot, bool is_user) 897 { 898 if (domain_prot == 3) { 899 return PAGE_READ | PAGE_WRITE; 900 } 901 902 switch (ap) { 903 case 0: 904 if (arm_feature(env, ARM_FEATURE_V7)) { 905 return 0; 906 } 907 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 908 case SCTLR_S: 909 return is_user ? 0 : PAGE_READ; 910 case SCTLR_R: 911 return PAGE_READ; 912 default: 913 return 0; 914 } 915 case 1: 916 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 917 case 2: 918 if (is_user) { 919 return PAGE_READ; 920 } else { 921 return PAGE_READ | PAGE_WRITE; 922 } 923 case 3: 924 return PAGE_READ | PAGE_WRITE; 925 case 4: /* Reserved. */ 926 return 0; 927 case 5: 928 return is_user ? 0 : PAGE_READ; 929 case 6: 930 return PAGE_READ; 931 case 7: 932 if (!arm_feature(env, ARM_FEATURE_V6K)) { 933 return 0; 934 } 935 return PAGE_READ; 936 default: 937 g_assert_not_reached(); 938 } 939 } 940 941 /* 942 * Translate section/page access permissions to page R/W protection flags 943 * @env: CPUARMState 944 * @mmu_idx: MMU index indicating required translation regime 945 * @ap: The 3-bit access permissions (AP[2:0]) 946 * @domain_prot: The 2-bit domain access permissions 947 */ 948 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 949 int ap, int domain_prot) 950 { 951 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 952 regime_is_user(env, mmu_idx)); 953 } 954 955 /* 956 * Translate section/page access permissions to page R/W protection flags. 957 * @ap: The 2-bit simple AP (AP[2:1]) 958 * @is_user: TRUE if accessing from PL0 959 */ 960 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 961 { 962 switch (ap) { 963 case 0: 964 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 965 case 1: 966 return PAGE_READ | PAGE_WRITE; 967 case 2: 968 return is_user ? 0 : PAGE_READ; 969 case 3: 970 return PAGE_READ; 971 default: 972 g_assert_not_reached(); 973 } 974 } 975 976 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 977 { 978 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 979 } 980 981 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 982 uint32_t address, MMUAccessType access_type, 983 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 984 { 985 int level = 1; 986 uint32_t table; 987 uint32_t desc; 988 int type; 989 int ap; 990 int domain = 0; 991 int domain_prot; 992 hwaddr phys_addr; 993 uint32_t dacr; 994 995 /* Pagetable walk. */ 996 /* Lookup l1 descriptor. */ 997 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 998 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 999 fi->type = ARMFault_Translation; 1000 goto do_fault; 1001 } 1002 if (!S1_ptw_translate(env, ptw, table, fi)) { 1003 goto do_fault; 1004 } 1005 desc = arm_ldl_ptw(env, ptw, fi); 1006 if (fi->type != ARMFault_None) { 1007 goto do_fault; 1008 } 1009 type = (desc & 3); 1010 domain = (desc >> 5) & 0x0f; 1011 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1012 dacr = env->cp15.dacr_ns; 1013 } else { 1014 dacr = env->cp15.dacr_s; 1015 } 1016 domain_prot = (dacr >> (domain * 2)) & 3; 1017 if (type == 0) { 1018 /* Section translation fault. */ 1019 fi->type = ARMFault_Translation; 1020 goto do_fault; 1021 } 1022 if (type != 2) { 1023 level = 2; 1024 } 1025 if (domain_prot == 0 || domain_prot == 2) { 1026 fi->type = ARMFault_Domain; 1027 goto do_fault; 1028 } 1029 if (type == 2) { 1030 /* 1Mb section. */ 1031 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1032 ap = (desc >> 10) & 3; 1033 result->f.lg_page_size = 20; /* 1MB */ 1034 } else { 1035 /* Lookup l2 entry. */ 1036 if (type == 1) { 1037 /* Coarse pagetable. */ 1038 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1039 } else { 1040 /* Fine pagetable. */ 1041 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1042 } 1043 if (!S1_ptw_translate(env, ptw, table, fi)) { 1044 goto do_fault; 1045 } 1046 desc = arm_ldl_ptw(env, ptw, fi); 1047 if (fi->type != ARMFault_None) { 1048 goto do_fault; 1049 } 1050 switch (desc & 3) { 1051 case 0: /* Page translation fault. */ 1052 fi->type = ARMFault_Translation; 1053 goto do_fault; 1054 case 1: /* 64k page. */ 1055 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1056 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1057 result->f.lg_page_size = 16; 1058 break; 1059 case 2: /* 4k page. */ 1060 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1061 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1062 result->f.lg_page_size = 12; 1063 break; 1064 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1065 if (type == 1) { 1066 /* ARMv6/XScale extended small page format */ 1067 if (arm_feature(env, ARM_FEATURE_XSCALE) 1068 || arm_feature(env, ARM_FEATURE_V6)) { 1069 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1070 result->f.lg_page_size = 12; 1071 } else { 1072 /* 1073 * UNPREDICTABLE in ARMv5; we choose to take a 1074 * page translation fault. 1075 */ 1076 fi->type = ARMFault_Translation; 1077 goto do_fault; 1078 } 1079 } else { 1080 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1081 result->f.lg_page_size = 10; 1082 } 1083 ap = (desc >> 4) & 3; 1084 break; 1085 default: 1086 /* Never happens, but compiler isn't smart enough to tell. */ 1087 g_assert_not_reached(); 1088 } 1089 } 1090 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1091 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1092 if (!(result->f.prot & (1 << access_type))) { 1093 /* Access permission fault. */ 1094 fi->type = ARMFault_Permission; 1095 goto do_fault; 1096 } 1097 result->f.phys_addr = phys_addr; 1098 return false; 1099 do_fault: 1100 fi->domain = domain; 1101 fi->level = level; 1102 return true; 1103 } 1104 1105 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1106 uint32_t address, MMUAccessType access_type, 1107 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1108 { 1109 ARMCPU *cpu = env_archcpu(env); 1110 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1111 int level = 1; 1112 uint32_t table; 1113 uint32_t desc; 1114 uint32_t xn; 1115 uint32_t pxn = 0; 1116 int type; 1117 int ap; 1118 int domain = 0; 1119 int domain_prot; 1120 hwaddr phys_addr; 1121 uint32_t dacr; 1122 bool ns; 1123 ARMSecuritySpace out_space; 1124 1125 /* Pagetable walk. */ 1126 /* Lookup l1 descriptor. */ 1127 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1128 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1129 fi->type = ARMFault_Translation; 1130 goto do_fault; 1131 } 1132 if (!S1_ptw_translate(env, ptw, table, fi)) { 1133 goto do_fault; 1134 } 1135 desc = arm_ldl_ptw(env, ptw, fi); 1136 if (fi->type != ARMFault_None) { 1137 goto do_fault; 1138 } 1139 type = (desc & 3); 1140 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1141 /* Section translation fault, or attempt to use the encoding 1142 * which is Reserved on implementations without PXN. 1143 */ 1144 fi->type = ARMFault_Translation; 1145 goto do_fault; 1146 } 1147 if ((type == 1) || !(desc & (1 << 18))) { 1148 /* Page or Section. */ 1149 domain = (desc >> 5) & 0x0f; 1150 } 1151 if (regime_el(env, mmu_idx) == 1) { 1152 dacr = env->cp15.dacr_ns; 1153 } else { 1154 dacr = env->cp15.dacr_s; 1155 } 1156 if (type == 1) { 1157 level = 2; 1158 } 1159 domain_prot = (dacr >> (domain * 2)) & 3; 1160 if (domain_prot == 0 || domain_prot == 2) { 1161 /* Section or Page domain fault */ 1162 fi->type = ARMFault_Domain; 1163 goto do_fault; 1164 } 1165 if (type != 1) { 1166 if (desc & (1 << 18)) { 1167 /* Supersection. */ 1168 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1169 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1170 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1171 result->f.lg_page_size = 24; /* 16MB */ 1172 } else { 1173 /* Section. */ 1174 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1175 result->f.lg_page_size = 20; /* 1MB */ 1176 } 1177 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1178 xn = desc & (1 << 4); 1179 pxn = desc & 1; 1180 ns = extract32(desc, 19, 1); 1181 } else { 1182 if (cpu_isar_feature(aa32_pxn, cpu)) { 1183 pxn = (desc >> 2) & 1; 1184 } 1185 ns = extract32(desc, 3, 1); 1186 /* Lookup l2 entry. */ 1187 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1188 if (!S1_ptw_translate(env, ptw, table, fi)) { 1189 goto do_fault; 1190 } 1191 desc = arm_ldl_ptw(env, ptw, fi); 1192 if (fi->type != ARMFault_None) { 1193 goto do_fault; 1194 } 1195 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1196 switch (desc & 3) { 1197 case 0: /* Page translation fault. */ 1198 fi->type = ARMFault_Translation; 1199 goto do_fault; 1200 case 1: /* 64k page. */ 1201 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1202 xn = desc & (1 << 15); 1203 result->f.lg_page_size = 16; 1204 break; 1205 case 2: case 3: /* 4k page. */ 1206 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1207 xn = desc & 1; 1208 result->f.lg_page_size = 12; 1209 break; 1210 default: 1211 /* Never happens, but compiler isn't smart enough to tell. */ 1212 g_assert_not_reached(); 1213 } 1214 } 1215 out_space = ptw->in_space; 1216 if (ns) { 1217 /* 1218 * The NS bit will (as required by the architecture) have no effect if 1219 * the CPU doesn't support TZ or this is a non-secure translation 1220 * regime, because the output space will already be non-secure. 1221 */ 1222 out_space = ARMSS_NonSecure; 1223 } 1224 if (domain_prot == 3) { 1225 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1226 } else { 1227 int user_rw, prot_rw; 1228 1229 if (arm_feature(env, ARM_FEATURE_V6K) && 1230 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1231 /* The simplified model uses AP[0] as an access control bit. */ 1232 if ((ap & 1) == 0) { 1233 /* Access flag fault. */ 1234 fi->type = ARMFault_AccessFlag; 1235 goto do_fault; 1236 } 1237 prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1238 user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1239 } else { 1240 prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1241 user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1242 } 1243 1244 result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw, 1245 xn, pxn, result->f.attrs.space, out_space); 1246 if (!(result->f.prot & (1 << access_type))) { 1247 /* Access permission fault. */ 1248 fi->type = ARMFault_Permission; 1249 goto do_fault; 1250 } 1251 } 1252 result->f.attrs.space = out_space; 1253 result->f.attrs.secure = arm_space_is_secure(out_space); 1254 result->f.phys_addr = phys_addr; 1255 return false; 1256 do_fault: 1257 fi->domain = domain; 1258 fi->level = level; 1259 return true; 1260 } 1261 1262 /* 1263 * Translate S2 section/page access permissions to protection flags 1264 * @env: CPUARMState 1265 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1266 * @xn: XN (execute-never) bits 1267 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1268 */ 1269 static int get_S2prot_noexecute(int s2ap) 1270 { 1271 int prot = 0; 1272 1273 if (s2ap & 1) { 1274 prot |= PAGE_READ; 1275 } 1276 if (s2ap & 2) { 1277 prot |= PAGE_WRITE; 1278 } 1279 return prot; 1280 } 1281 1282 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1283 { 1284 int prot = get_S2prot_noexecute(s2ap); 1285 1286 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1287 switch (xn) { 1288 case 0: 1289 prot |= PAGE_EXEC; 1290 break; 1291 case 1: 1292 if (s1_is_el0) { 1293 prot |= PAGE_EXEC; 1294 } 1295 break; 1296 case 2: 1297 break; 1298 case 3: 1299 if (!s1_is_el0) { 1300 prot |= PAGE_EXEC; 1301 } 1302 break; 1303 default: 1304 g_assert_not_reached(); 1305 } 1306 } else { 1307 if (!extract32(xn, 1, 1)) { 1308 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1309 prot |= PAGE_EXEC; 1310 } 1311 } 1312 } 1313 return prot; 1314 } 1315 1316 /* 1317 * Translate section/page access permissions to protection flags 1318 * @env: CPUARMState 1319 * @mmu_idx: MMU index indicating required translation regime 1320 * @is_aa64: TRUE if AArch64 1321 * @user_rw: Translated AP for user access 1322 * @prot_rw: Translated AP for privileged access 1323 * @xn: XN (execute-never) bit 1324 * @pxn: PXN (privileged execute-never) bit 1325 * @in_pa: The original input pa space 1326 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1327 */ 1328 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1329 int user_rw, int prot_rw, int xn, int pxn, 1330 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1331 { 1332 ARMCPU *cpu = env_archcpu(env); 1333 bool is_user = regime_is_user(env, mmu_idx); 1334 bool have_wxn; 1335 int wxn = 0; 1336 1337 assert(!regime_is_stage2(mmu_idx)); 1338 1339 if (is_user) { 1340 prot_rw = user_rw; 1341 } else { 1342 /* 1343 * PAN controls can forbid data accesses but don't affect insn fetch. 1344 * Plain PAN forbids data accesses if EL0 has data permissions; 1345 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1346 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1347 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1348 * do not affect EPAN. 1349 */ 1350 if (user_rw && regime_is_pan(env, mmu_idx)) { 1351 prot_rw = 0; 1352 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1353 regime_is_pan(env, mmu_idx) && 1354 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1355 prot_rw = 0; 1356 } 1357 } 1358 1359 if (in_pa != out_pa) { 1360 switch (in_pa) { 1361 case ARMSS_Root: 1362 /* 1363 * R_ZWRVD: permission fault for insn fetched from non-Root, 1364 * I_WWBFB: SIF has no effect in EL3. 1365 */ 1366 return prot_rw; 1367 case ARMSS_Realm: 1368 /* 1369 * R_PKTDS: permission fault for insn fetched from non-Realm, 1370 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1371 * happens during any stage2 translation. 1372 */ 1373 switch (mmu_idx) { 1374 case ARMMMUIdx_E2: 1375 case ARMMMUIdx_E20_0: 1376 case ARMMMUIdx_E20_2: 1377 case ARMMMUIdx_E20_2_PAN: 1378 return prot_rw; 1379 default: 1380 break; 1381 } 1382 break; 1383 case ARMSS_Secure: 1384 if (env->cp15.scr_el3 & SCR_SIF) { 1385 return prot_rw; 1386 } 1387 break; 1388 default: 1389 /* Input NonSecure must have output NonSecure. */ 1390 g_assert_not_reached(); 1391 } 1392 } 1393 1394 /* TODO have_wxn should be replaced with 1395 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1396 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1397 * compatible processors have EL2, which is required for [U]WXN. 1398 */ 1399 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1400 1401 if (have_wxn) { 1402 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1403 } 1404 1405 if (is_aa64) { 1406 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1407 xn = pxn || (user_rw & PAGE_WRITE); 1408 } 1409 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1410 switch (regime_el(env, mmu_idx)) { 1411 case 1: 1412 case 3: 1413 if (is_user) { 1414 xn = xn || !(user_rw & PAGE_READ); 1415 } else { 1416 int uwxn = 0; 1417 if (have_wxn) { 1418 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1419 } 1420 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1421 (uwxn && (user_rw & PAGE_WRITE)); 1422 } 1423 break; 1424 case 2: 1425 break; 1426 } 1427 } else { 1428 xn = wxn = 0; 1429 } 1430 1431 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1432 return prot_rw; 1433 } 1434 return prot_rw | PAGE_EXEC; 1435 } 1436 1437 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1438 ARMMMUIdx mmu_idx) 1439 { 1440 uint64_t tcr = regime_tcr(env, mmu_idx); 1441 uint32_t el = regime_el(env, mmu_idx); 1442 int select, tsz; 1443 bool epd, hpd; 1444 1445 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1446 1447 if (mmu_idx == ARMMMUIdx_Stage2) { 1448 /* VTCR */ 1449 bool sext = extract32(tcr, 4, 1); 1450 bool sign = extract32(tcr, 3, 1); 1451 1452 /* 1453 * If the sign-extend bit is not the same as t0sz[3], the result 1454 * is unpredictable. Flag this as a guest error. 1455 */ 1456 if (sign != sext) { 1457 qemu_log_mask(LOG_GUEST_ERROR, 1458 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1459 } 1460 tsz = sextract32(tcr, 0, 4) + 8; 1461 select = 0; 1462 hpd = false; 1463 epd = false; 1464 } else if (el == 2) { 1465 /* HTCR */ 1466 tsz = extract32(tcr, 0, 3); 1467 select = 0; 1468 hpd = extract64(tcr, 24, 1); 1469 epd = false; 1470 } else { 1471 int t0sz = extract32(tcr, 0, 3); 1472 int t1sz = extract32(tcr, 16, 3); 1473 1474 if (t1sz == 0) { 1475 select = va > (0xffffffffu >> t0sz); 1476 } else { 1477 /* Note that we will detect errors later. */ 1478 select = va >= ~(0xffffffffu >> t1sz); 1479 } 1480 if (!select) { 1481 tsz = t0sz; 1482 epd = extract32(tcr, 7, 1); 1483 hpd = extract64(tcr, 41, 1); 1484 } else { 1485 tsz = t1sz; 1486 epd = extract32(tcr, 23, 1); 1487 hpd = extract64(tcr, 42, 1); 1488 } 1489 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1490 hpd &= extract32(tcr, 6, 1); 1491 } 1492 1493 return (ARMVAParameters) { 1494 .tsz = tsz, 1495 .select = select, 1496 .epd = epd, 1497 .hpd = hpd, 1498 }; 1499 } 1500 1501 /* 1502 * check_s2_mmu_setup 1503 * @cpu: ARMCPU 1504 * @is_aa64: True if the translation regime is in AArch64 state 1505 * @tcr: VTCR_EL2 or VSTCR_EL2 1506 * @ds: Effective value of TCR.DS. 1507 * @iasize: Bitsize of IPAs 1508 * @stride: Page-table stride (See the ARM ARM) 1509 * 1510 * Decode the starting level of the S2 lookup, returning INT_MIN if 1511 * the configuration is invalid. 1512 */ 1513 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1514 bool ds, int iasize, int stride) 1515 { 1516 int sl0, sl2, startlevel, granulebits, levels; 1517 int s1_min_iasize, s1_max_iasize; 1518 1519 sl0 = extract32(tcr, 6, 2); 1520 if (is_aa64) { 1521 /* 1522 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1523 * so interleave AArch64.S2StartLevel. 1524 */ 1525 switch (stride) { 1526 case 9: /* 4KB */ 1527 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1528 sl2 = extract64(tcr, 33, 1); 1529 if (ds && sl2) { 1530 if (sl0 != 0) { 1531 goto fail; 1532 } 1533 startlevel = -1; 1534 } else { 1535 startlevel = 2 - sl0; 1536 switch (sl0) { 1537 case 2: 1538 if (arm_pamax(cpu) < 44) { 1539 goto fail; 1540 } 1541 break; 1542 case 3: 1543 if (!cpu_isar_feature(aa64_st, cpu)) { 1544 goto fail; 1545 } 1546 startlevel = 3; 1547 break; 1548 } 1549 } 1550 break; 1551 case 11: /* 16KB */ 1552 switch (sl0) { 1553 case 2: 1554 if (arm_pamax(cpu) < 42) { 1555 goto fail; 1556 } 1557 break; 1558 case 3: 1559 if (!ds) { 1560 goto fail; 1561 } 1562 break; 1563 } 1564 startlevel = 3 - sl0; 1565 break; 1566 case 13: /* 64KB */ 1567 switch (sl0) { 1568 case 2: 1569 if (arm_pamax(cpu) < 44) { 1570 goto fail; 1571 } 1572 break; 1573 case 3: 1574 goto fail; 1575 } 1576 startlevel = 3 - sl0; 1577 break; 1578 default: 1579 g_assert_not_reached(); 1580 } 1581 } else { 1582 /* 1583 * Things are simpler for AArch32 EL2, with only 4k pages. 1584 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1585 * begins with walkparms.sl0 in {'1x'}. 1586 */ 1587 assert(stride == 9); 1588 if (sl0 >= 2) { 1589 goto fail; 1590 } 1591 startlevel = 2 - sl0; 1592 } 1593 1594 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1595 levels = 3 - startlevel; 1596 granulebits = stride + 3; 1597 1598 s1_min_iasize = levels * stride + granulebits + 1; 1599 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1600 1601 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1602 return startlevel; 1603 } 1604 1605 fail: 1606 return INT_MIN; 1607 } 1608 1609 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1610 ARMGranuleSize gran, int level) 1611 { 1612 /* 1613 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1614 * are not valid at all levels, depending on the page size. 1615 */ 1616 switch (gran) { 1617 case Gran4K: 1618 return (level == 0 && ds) || level == 1 || level == 2; 1619 case Gran16K: 1620 return (level == 1 && ds) || level == 2; 1621 case Gran64K: 1622 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1623 default: 1624 g_assert_not_reached(); 1625 } 1626 } 1627 1628 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1629 { 1630 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1631 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1632 } 1633 1634 /** 1635 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1636 * 1637 * Returns false if the translation was successful. Otherwise, phys_ptr, 1638 * attrs, prot and page_size may not be filled in, and the populated fsr 1639 * value provides information on why the translation aborted, in the format 1640 * of a long-format DFSR/IFSR fault register, with the following caveat: 1641 * the WnR bit is never set (the caller must do this). 1642 * 1643 * @env: CPUARMState 1644 * @ptw: Current and next stage parameters for the walk. 1645 * @address: virtual address to get physical address for 1646 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1647 * @memop: memory operation feeding this access, or 0 for none 1648 * @result: set on translation success, 1649 * @fi: set to fault info if the translation fails 1650 */ 1651 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1652 uint64_t address, 1653 MMUAccessType access_type, MemOp memop, 1654 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1655 { 1656 ARMCPU *cpu = env_archcpu(env); 1657 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1658 int32_t level; 1659 ARMVAParameters param; 1660 uint64_t ttbr; 1661 hwaddr descaddr, indexmask, indexmask_grainsize; 1662 uint32_t tableattrs; 1663 target_ulong page_size; 1664 uint64_t attrs; 1665 int32_t stride; 1666 int addrsize, inputsize, outputsize; 1667 uint64_t tcr = regime_tcr(env, mmu_idx); 1668 int ap, xn, pxn; 1669 uint32_t el = regime_el(env, mmu_idx); 1670 uint64_t descaddrmask; 1671 bool aarch64 = arm_el_is_aa64(env, el); 1672 uint64_t descriptor, new_descriptor; 1673 ARMSecuritySpace out_space; 1674 bool device; 1675 1676 /* TODO: This code does not support shareability levels. */ 1677 if (aarch64) { 1678 int ps; 1679 1680 param = aa64_va_parameters(env, address, mmu_idx, 1681 access_type != MMU_INST_FETCH, 1682 !arm_el_is_aa64(env, 1)); 1683 level = 0; 1684 1685 /* 1686 * If TxSZ is programmed to a value larger than the maximum, 1687 * or smaller than the effective minimum, it is IMPLEMENTATION 1688 * DEFINED whether we behave as if the field were programmed 1689 * within bounds, or if a level 0 Translation fault is generated. 1690 * 1691 * With FEAT_LVA, fault on less than minimum becomes required, 1692 * so our choice is to always raise the fault. 1693 */ 1694 if (param.tsz_oob) { 1695 goto do_translation_fault; 1696 } 1697 1698 addrsize = 64 - 8 * param.tbi; 1699 inputsize = 64 - param.tsz; 1700 1701 /* 1702 * Bound PS by PARANGE to find the effective output address size. 1703 * ID_AA64MMFR0 is a read-only register so values outside of the 1704 * supported mappings can be considered an implementation error. 1705 */ 1706 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1707 ps = MIN(ps, param.ps); 1708 assert(ps < ARRAY_SIZE(pamax_map)); 1709 outputsize = pamax_map[ps]; 1710 1711 /* 1712 * With LPA2, the effective output address (OA) size is at most 48 bits 1713 * unless TCR.DS == 1 1714 */ 1715 if (!param.ds && param.gran != Gran64K) { 1716 outputsize = MIN(outputsize, 48); 1717 } 1718 } else { 1719 param = aa32_va_parameters(env, address, mmu_idx); 1720 level = 1; 1721 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1722 inputsize = addrsize - param.tsz; 1723 outputsize = 40; 1724 } 1725 1726 /* 1727 * We determined the region when collecting the parameters, but we 1728 * have not yet validated that the address is valid for the region. 1729 * Extract the top bits and verify that they all match select. 1730 * 1731 * For aa32, if inputsize == addrsize, then we have selected the 1732 * region by exclusion in aa32_va_parameters and there is no more 1733 * validation to do here. 1734 */ 1735 if (inputsize < addrsize) { 1736 target_ulong top_bits = sextract64(address, inputsize, 1737 addrsize - inputsize); 1738 if (-top_bits != param.select) { 1739 /* The gap between the two regions is a Translation fault */ 1740 goto do_translation_fault; 1741 } 1742 } 1743 1744 stride = arm_granule_bits(param.gran) - 3; 1745 1746 /* 1747 * Note that QEMU ignores shareability and cacheability attributes, 1748 * so we don't need to do anything with the SH, ORGN, IRGN fields 1749 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1750 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1751 * implement any ASID-like capability so we can ignore it (instead 1752 * we will always flush the TLB any time the ASID is changed). 1753 */ 1754 ttbr = regime_ttbr(env, mmu_idx, param.select); 1755 1756 /* 1757 * Here we should have set up all the parameters for the translation: 1758 * inputsize, ttbr, epd, stride, tbi 1759 */ 1760 1761 if (param.epd) { 1762 /* 1763 * Translation table walk disabled => Translation fault on TLB miss 1764 * Note: This is always 0 on 64-bit EL2 and EL3. 1765 */ 1766 goto do_translation_fault; 1767 } 1768 1769 if (!regime_is_stage2(mmu_idx)) { 1770 /* 1771 * The starting level depends on the virtual address size (which can 1772 * be up to 48 bits) and the translation granule size. It indicates 1773 * the number of strides (stride bits at a time) needed to 1774 * consume the bits of the input address. In the pseudocode this is: 1775 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1776 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1777 * our 'stride + 3' and 'stride' is our 'stride'. 1778 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1779 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1780 * = 4 - (inputsize - 4) / stride; 1781 */ 1782 level = 4 - (inputsize - 4) / stride; 1783 } else { 1784 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1785 inputsize, stride); 1786 if (startlevel == INT_MIN) { 1787 level = 0; 1788 goto do_translation_fault; 1789 } 1790 level = startlevel; 1791 } 1792 1793 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1794 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1795 1796 /* Now we can extract the actual base address from the TTBR */ 1797 descaddr = extract64(ttbr, 0, 48); 1798 1799 /* 1800 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1801 * 1802 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1803 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1804 * but we've just cleared the bits above 47, so simplify the test. 1805 */ 1806 if (outputsize > 48) { 1807 descaddr |= extract64(ttbr, 2, 4) << 48; 1808 } else if (descaddr >> outputsize) { 1809 level = 0; 1810 fi->type = ARMFault_AddressSize; 1811 goto do_fault; 1812 } 1813 1814 /* 1815 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1816 * and also to mask out CnP (bit 0) which could validly be non-zero. 1817 */ 1818 descaddr &= ~indexmask; 1819 1820 /* 1821 * For AArch32, the address field in the descriptor goes up to bit 39 1822 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1823 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1824 * bits as part of the address, which will be checked via outputsize. 1825 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1826 * the highest bits of a 52-bit output are placed elsewhere. 1827 */ 1828 if (param.ds) { 1829 descaddrmask = MAKE_64BIT_MASK(0, 50); 1830 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1831 descaddrmask = MAKE_64BIT_MASK(0, 48); 1832 } else { 1833 descaddrmask = MAKE_64BIT_MASK(0, 40); 1834 } 1835 descaddrmask &= ~indexmask_grainsize; 1836 tableattrs = 0; 1837 1838 next_level: 1839 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1840 descaddr &= ~7ULL; 1841 1842 /* 1843 * Process the NSTable bit from the previous level. This changes 1844 * the table address space and the output space from Secure to 1845 * NonSecure. With RME, the EL3 translation regime does not change 1846 * from Root to NonSecure. 1847 */ 1848 if (ptw->in_space == ARMSS_Secure 1849 && !regime_is_stage2(mmu_idx) 1850 && extract32(tableattrs, 4, 1)) { 1851 /* 1852 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1853 * Assert the relative order of the secure/non-secure indexes. 1854 */ 1855 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1856 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1857 ptw->in_ptw_idx += 1; 1858 ptw->in_space = ARMSS_NonSecure; 1859 } 1860 1861 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1862 goto do_fault; 1863 } 1864 descriptor = arm_ldq_ptw(env, ptw, fi); 1865 if (fi->type != ARMFault_None) { 1866 goto do_fault; 1867 } 1868 new_descriptor = descriptor; 1869 1870 restart_atomic_update: 1871 if (!(descriptor & 1) || 1872 (!(descriptor & 2) && 1873 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1874 /* Invalid, or a block descriptor at an invalid level */ 1875 goto do_translation_fault; 1876 } 1877 1878 descaddr = descriptor & descaddrmask; 1879 1880 /* 1881 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1882 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1883 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1884 * raise AddressSizeFault. 1885 */ 1886 if (outputsize > 48) { 1887 if (param.ds) { 1888 descaddr |= extract64(descriptor, 8, 2) << 50; 1889 } else { 1890 descaddr |= extract64(descriptor, 12, 4) << 48; 1891 } 1892 } else if (descaddr >> outputsize) { 1893 fi->type = ARMFault_AddressSize; 1894 goto do_fault; 1895 } 1896 1897 if ((descriptor & 2) && (level < 3)) { 1898 /* 1899 * Table entry. The top five bits are attributes which may 1900 * propagate down through lower levels of the table (and 1901 * which are all arranged so that 0 means "no effect", so 1902 * we can gather them up by ORing in the bits at each level). 1903 */ 1904 tableattrs |= extract64(descriptor, 59, 5); 1905 level++; 1906 indexmask = indexmask_grainsize; 1907 goto next_level; 1908 } 1909 1910 /* 1911 * Block entry at level 1 or 2, or page entry at level 3. 1912 * These are basically the same thing, although the number 1913 * of bits we pull in from the vaddr varies. Note that although 1914 * descaddrmask masks enough of the low bits of the descriptor 1915 * to give a correct page or table address, the address field 1916 * in a block descriptor is smaller; so we need to explicitly 1917 * clear the lower bits here before ORing in the low vaddr bits. 1918 * 1919 * Afterward, descaddr is the final physical address. 1920 */ 1921 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1922 descaddr &= ~(hwaddr)(page_size - 1); 1923 descaddr |= (address & (page_size - 1)); 1924 1925 if (likely(!ptw->in_debug)) { 1926 /* 1927 * Access flag. 1928 * If HA is enabled, prepare to update the descriptor below. 1929 * Otherwise, pass the access fault on to software. 1930 */ 1931 if (!(descriptor & (1 << 10))) { 1932 if (param.ha) { 1933 new_descriptor |= 1 << 10; /* AF */ 1934 } else { 1935 fi->type = ARMFault_AccessFlag; 1936 goto do_fault; 1937 } 1938 } 1939 1940 /* 1941 * Dirty Bit. 1942 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1943 * bit for writeback. The actual write protection test may still be 1944 * overridden by tableattrs, to be merged below. 1945 */ 1946 if (param.hd 1947 && extract64(descriptor, 51, 1) /* DBM */ 1948 && access_type == MMU_DATA_STORE) { 1949 if (regime_is_stage2(mmu_idx)) { 1950 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1951 } else { 1952 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1953 } 1954 } 1955 } 1956 1957 /* 1958 * Extract attributes from the (modified) descriptor, and apply 1959 * table descriptors. Stage 2 table descriptors do not include 1960 * any attribute fields. HPD disables all the table attributes 1961 * except NSTable (which we have already handled). 1962 */ 1963 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1964 if (!regime_is_stage2(mmu_idx)) { 1965 if (!param.hpd) { 1966 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1967 /* 1968 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1969 * means "force PL1 access only", which means forcing AP[1] to 0. 1970 */ 1971 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1972 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1973 } 1974 } 1975 1976 ap = extract32(attrs, 6, 2); 1977 out_space = ptw->in_space; 1978 if (regime_is_stage2(mmu_idx)) { 1979 /* 1980 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1981 * The bit remains ignored for other security states. 1982 * R_YMCSL: Executing an insn fetched from non-Realm causes 1983 * a stage2 permission fault. 1984 */ 1985 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1986 out_space = ARMSS_NonSecure; 1987 result->f.prot = get_S2prot_noexecute(ap); 1988 } else { 1989 xn = extract64(attrs, 53, 2); 1990 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1991 } 1992 1993 result->cacheattrs.is_s2_format = true; 1994 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1995 /* 1996 * Security state does not really affect HCR_EL2.FWB; 1997 * we only need to filter FWB for aa32 or other FEAT. 1998 */ 1999 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 2000 result->cacheattrs.attrs); 2001 } else { 2002 int nse, ns = extract32(attrs, 5, 1); 2003 uint8_t attrindx; 2004 uint64_t mair; 2005 int user_rw, prot_rw; 2006 2007 switch (out_space) { 2008 case ARMSS_Root: 2009 /* 2010 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2011 * R_XTYPW: NSE and NS together select the output pa space. 2012 */ 2013 nse = extract32(attrs, 11, 1); 2014 out_space = (nse << 1) | ns; 2015 if (out_space == ARMSS_Secure && 2016 !cpu_isar_feature(aa64_sel2, cpu)) { 2017 out_space = ARMSS_NonSecure; 2018 } 2019 break; 2020 case ARMSS_Secure: 2021 if (ns) { 2022 out_space = ARMSS_NonSecure; 2023 } 2024 break; 2025 case ARMSS_Realm: 2026 switch (mmu_idx) { 2027 case ARMMMUIdx_Stage1_E0: 2028 case ARMMMUIdx_Stage1_E1: 2029 case ARMMMUIdx_Stage1_E1_PAN: 2030 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2031 break; 2032 case ARMMMUIdx_E2: 2033 case ARMMMUIdx_E20_0: 2034 case ARMMMUIdx_E20_2: 2035 case ARMMMUIdx_E20_2_PAN: 2036 /* 2037 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2038 * NS changes the output to non-secure space. 2039 */ 2040 if (ns) { 2041 out_space = ARMSS_NonSecure; 2042 } 2043 break; 2044 default: 2045 g_assert_not_reached(); 2046 } 2047 break; 2048 case ARMSS_NonSecure: 2049 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2050 break; 2051 default: 2052 g_assert_not_reached(); 2053 } 2054 xn = extract64(attrs, 54, 1); 2055 pxn = extract64(attrs, 53, 1); 2056 2057 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2058 /* 2059 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2060 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2061 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2062 * (which we have already folded into bits 53 and 54 of attrs). 2063 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2064 * Similarly, APTable[0] from the table descriptor is treated as 0; 2065 * we already folded this into AP[1] and squashing that to 0 does 2066 * the right thing. 2067 */ 2068 pxn = xn; 2069 xn = 0; 2070 ap &= ~1; 2071 } 2072 2073 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 2074 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 2075 /* 2076 * Note that we modified ptw->in_space earlier for NSTable, but 2077 * result->f.attrs retains a copy of the original security space. 2078 */ 2079 result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw, 2080 xn, pxn, result->f.attrs.space, out_space); 2081 2082 /* Index into MAIR registers for cache attributes */ 2083 attrindx = extract32(attrs, 2, 3); 2084 mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2085 assert(attrindx <= 7); 2086 result->cacheattrs.is_s2_format = false; 2087 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2088 2089 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2090 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2091 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2092 } 2093 device = S1_attrs_are_device(result->cacheattrs.attrs); 2094 } 2095 2096 /* 2097 * Enable alignment checks on Device memory. 2098 * 2099 * Per R_XCHFJ, the correct ordering for alignment, permission, 2100 * and stage 2 faults is: 2101 * - Alignment fault caused by the memory type 2102 * - Permission fault 2103 * - A stage 2 fault on the memory access 2104 * Perform the alignment check now, so that we recognize it in 2105 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent 2106 * softmmu tlb hit will also check the alignment; clear along the 2107 * non-device path so that tlb_fill_flags is consistent in the 2108 * event of restart_atomic_update. 2109 * 2110 * In v7, for a CPU without the Virtualization Extensions this 2111 * access is UNPREDICTABLE; we choose to make it take the alignment 2112 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2113 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2114 */ 2115 if (device) { 2116 unsigned a_bits = memop_atomicity_bits(memop); 2117 if (address & ((1 << a_bits) - 1)) { 2118 fi->type = ARMFault_Alignment; 2119 goto do_fault; 2120 } 2121 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED; 2122 } else { 2123 result->f.tlb_fill_flags = 0; 2124 } 2125 2126 if (!(result->f.prot & (1 << access_type))) { 2127 fi->type = ARMFault_Permission; 2128 goto do_fault; 2129 } 2130 2131 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2132 if (new_descriptor != descriptor) { 2133 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2134 if (fi->type != ARMFault_None) { 2135 goto do_fault; 2136 } 2137 /* 2138 * I_YZSVV says that if the in-memory descriptor has changed, 2139 * then we must use the information in that new value 2140 * (which might include a different output address, different 2141 * attributes, or generate a fault). 2142 * Restart the handling of the descriptor value from scratch. 2143 */ 2144 if (new_descriptor != descriptor) { 2145 descriptor = new_descriptor; 2146 goto restart_atomic_update; 2147 } 2148 } 2149 2150 result->f.attrs.space = out_space; 2151 result->f.attrs.secure = arm_space_is_secure(out_space); 2152 2153 /* 2154 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2155 * was re-purposed for output address bits. The SH attribute in 2156 * that case comes from TCR_ELx, which we extracted earlier. 2157 */ 2158 if (param.ds) { 2159 result->cacheattrs.shareability = param.sh; 2160 } else { 2161 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2162 } 2163 2164 result->f.phys_addr = descaddr; 2165 result->f.lg_page_size = ctz64(page_size); 2166 return false; 2167 2168 do_translation_fault: 2169 fi->type = ARMFault_Translation; 2170 do_fault: 2171 if (fi->s1ptw) { 2172 /* Retain the existing stage 2 fi->level */ 2173 assert(fi->stage2); 2174 } else { 2175 fi->level = level; 2176 fi->stage2 = regime_is_stage2(mmu_idx); 2177 } 2178 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2179 return true; 2180 } 2181 2182 static bool get_phys_addr_pmsav5(CPUARMState *env, 2183 S1Translate *ptw, 2184 uint32_t address, 2185 MMUAccessType access_type, 2186 GetPhysAddrResult *result, 2187 ARMMMUFaultInfo *fi) 2188 { 2189 int n; 2190 uint32_t mask; 2191 uint32_t base; 2192 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2193 bool is_user = regime_is_user(env, mmu_idx); 2194 2195 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2196 /* MPU disabled. */ 2197 result->f.phys_addr = address; 2198 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2199 return false; 2200 } 2201 2202 result->f.phys_addr = address; 2203 for (n = 7; n >= 0; n--) { 2204 base = env->cp15.c6_region[n]; 2205 if ((base & 1) == 0) { 2206 continue; 2207 } 2208 mask = 1 << ((base >> 1) & 0x1f); 2209 /* Keep this shift separate from the above to avoid an 2210 (undefined) << 32. */ 2211 mask = (mask << 1) - 1; 2212 if (((base ^ address) & ~mask) == 0) { 2213 break; 2214 } 2215 } 2216 if (n < 0) { 2217 fi->type = ARMFault_Background; 2218 return true; 2219 } 2220 2221 if (access_type == MMU_INST_FETCH) { 2222 mask = env->cp15.pmsav5_insn_ap; 2223 } else { 2224 mask = env->cp15.pmsav5_data_ap; 2225 } 2226 mask = (mask >> (n * 4)) & 0xf; 2227 switch (mask) { 2228 case 0: 2229 fi->type = ARMFault_Permission; 2230 fi->level = 1; 2231 return true; 2232 case 1: 2233 if (is_user) { 2234 fi->type = ARMFault_Permission; 2235 fi->level = 1; 2236 return true; 2237 } 2238 result->f.prot = PAGE_READ | PAGE_WRITE; 2239 break; 2240 case 2: 2241 result->f.prot = PAGE_READ; 2242 if (!is_user) { 2243 result->f.prot |= PAGE_WRITE; 2244 } 2245 break; 2246 case 3: 2247 result->f.prot = PAGE_READ | PAGE_WRITE; 2248 break; 2249 case 5: 2250 if (is_user) { 2251 fi->type = ARMFault_Permission; 2252 fi->level = 1; 2253 return true; 2254 } 2255 result->f.prot = PAGE_READ; 2256 break; 2257 case 6: 2258 result->f.prot = PAGE_READ; 2259 break; 2260 default: 2261 /* Bad permission. */ 2262 fi->type = ARMFault_Permission; 2263 fi->level = 1; 2264 return true; 2265 } 2266 result->f.prot |= PAGE_EXEC; 2267 return false; 2268 } 2269 2270 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2271 int32_t address, uint8_t *prot) 2272 { 2273 if (!arm_feature(env, ARM_FEATURE_M)) { 2274 *prot = PAGE_READ | PAGE_WRITE; 2275 switch (address) { 2276 case 0xF0000000 ... 0xFFFFFFFF: 2277 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2278 /* hivecs execing is ok */ 2279 *prot |= PAGE_EXEC; 2280 } 2281 break; 2282 case 0x00000000 ... 0x7FFFFFFF: 2283 *prot |= PAGE_EXEC; 2284 break; 2285 } 2286 } else { 2287 /* Default system address map for M profile cores. 2288 * The architecture specifies which regions are execute-never; 2289 * at the MPU level no other checks are defined. 2290 */ 2291 switch (address) { 2292 case 0x00000000 ... 0x1fffffff: /* ROM */ 2293 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2294 case 0x60000000 ... 0x7fffffff: /* RAM */ 2295 case 0x80000000 ... 0x9fffffff: /* RAM */ 2296 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2297 break; 2298 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2299 case 0xa0000000 ... 0xbfffffff: /* Device */ 2300 case 0xc0000000 ... 0xdfffffff: /* Device */ 2301 case 0xe0000000 ... 0xffffffff: /* System */ 2302 *prot = PAGE_READ | PAGE_WRITE; 2303 break; 2304 default: 2305 g_assert_not_reached(); 2306 } 2307 } 2308 } 2309 2310 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2311 { 2312 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2313 return arm_feature(env, ARM_FEATURE_M) && 2314 extract32(address, 20, 12) == 0xe00; 2315 } 2316 2317 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2318 { 2319 /* 2320 * True if address is in the M profile system region 2321 * 0xe0000000 - 0xffffffff 2322 */ 2323 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2324 } 2325 2326 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2327 bool is_secure, bool is_user) 2328 { 2329 /* 2330 * Return true if we should use the default memory map as a 2331 * "background" region if there are no hits against any MPU regions. 2332 */ 2333 CPUARMState *env = &cpu->env; 2334 2335 if (is_user) { 2336 return false; 2337 } 2338 2339 if (arm_feature(env, ARM_FEATURE_M)) { 2340 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2341 } 2342 2343 if (mmu_idx == ARMMMUIdx_Stage2) { 2344 return false; 2345 } 2346 2347 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2348 } 2349 2350 static bool get_phys_addr_pmsav7(CPUARMState *env, 2351 S1Translate *ptw, 2352 uint32_t address, 2353 MMUAccessType access_type, 2354 GetPhysAddrResult *result, 2355 ARMMMUFaultInfo *fi) 2356 { 2357 ARMCPU *cpu = env_archcpu(env); 2358 int n; 2359 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2360 bool is_user = regime_is_user(env, mmu_idx); 2361 bool secure = arm_space_is_secure(ptw->in_space); 2362 2363 result->f.phys_addr = address; 2364 result->f.lg_page_size = TARGET_PAGE_BITS; 2365 result->f.prot = 0; 2366 2367 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2368 m_is_ppb_region(env, address)) { 2369 /* 2370 * MPU disabled or M profile PPB access: use default memory map. 2371 * The other case which uses the default memory map in the 2372 * v7M ARM ARM pseudocode is exception vector reads from the vector 2373 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2374 * which always does a direct read using address_space_ldl(), rather 2375 * than going via this function, so we don't need to check that here. 2376 */ 2377 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2378 } else { /* MPU enabled */ 2379 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2380 /* region search */ 2381 uint32_t base = env->pmsav7.drbar[n]; 2382 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2383 uint32_t rmask; 2384 bool srdis = false; 2385 2386 if (!(env->pmsav7.drsr[n] & 0x1)) { 2387 continue; 2388 } 2389 2390 if (!rsize) { 2391 qemu_log_mask(LOG_GUEST_ERROR, 2392 "DRSR[%d]: Rsize field cannot be 0\n", n); 2393 continue; 2394 } 2395 rsize++; 2396 rmask = (1ull << rsize) - 1; 2397 2398 if (base & rmask) { 2399 qemu_log_mask(LOG_GUEST_ERROR, 2400 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2401 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2402 n, base, rmask); 2403 continue; 2404 } 2405 2406 if (address < base || address > base + rmask) { 2407 /* 2408 * Address not in this region. We must check whether the 2409 * region covers addresses in the same page as our address. 2410 * In that case we must not report a size that covers the 2411 * whole page for a subsequent hit against a different MPU 2412 * region or the background region, because it would result in 2413 * incorrect TLB hits for subsequent accesses to addresses that 2414 * are in this MPU region. 2415 */ 2416 if (ranges_overlap(base, rmask, 2417 address & TARGET_PAGE_MASK, 2418 TARGET_PAGE_SIZE)) { 2419 result->f.lg_page_size = 0; 2420 } 2421 continue; 2422 } 2423 2424 /* Region matched */ 2425 2426 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2427 int i, snd; 2428 uint32_t srdis_mask; 2429 2430 rsize -= 3; /* sub region size (power of 2) */ 2431 snd = ((address - base) >> rsize) & 0x7; 2432 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2433 2434 srdis_mask = srdis ? 0x3 : 0x0; 2435 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2436 /* 2437 * This will check in groups of 2, 4 and then 8, whether 2438 * the subregion bits are consistent. rsize is incremented 2439 * back up to give the region size, considering consistent 2440 * adjacent subregions as one region. Stop testing if rsize 2441 * is already big enough for an entire QEMU page. 2442 */ 2443 int snd_rounded = snd & ~(i - 1); 2444 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2445 snd_rounded + 8, i); 2446 if (srdis_mask ^ srdis_multi) { 2447 break; 2448 } 2449 srdis_mask = (srdis_mask << i) | srdis_mask; 2450 rsize++; 2451 } 2452 } 2453 if (srdis) { 2454 continue; 2455 } 2456 if (rsize < TARGET_PAGE_BITS) { 2457 result->f.lg_page_size = rsize; 2458 } 2459 break; 2460 } 2461 2462 if (n == -1) { /* no hits */ 2463 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2464 /* background fault */ 2465 fi->type = ARMFault_Background; 2466 return true; 2467 } 2468 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2469 &result->f.prot); 2470 } else { /* a MPU hit! */ 2471 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2472 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2473 2474 if (m_is_system_region(env, address)) { 2475 /* System space is always execute never */ 2476 xn = 1; 2477 } 2478 2479 if (is_user) { /* User mode AP bit decoding */ 2480 switch (ap) { 2481 case 0: 2482 case 1: 2483 case 5: 2484 break; /* no access */ 2485 case 3: 2486 result->f.prot |= PAGE_WRITE; 2487 /* fall through */ 2488 case 2: 2489 case 6: 2490 result->f.prot |= PAGE_READ | PAGE_EXEC; 2491 break; 2492 case 7: 2493 /* for v7M, same as 6; for R profile a reserved value */ 2494 if (arm_feature(env, ARM_FEATURE_M)) { 2495 result->f.prot |= PAGE_READ | PAGE_EXEC; 2496 break; 2497 } 2498 /* fall through */ 2499 default: 2500 qemu_log_mask(LOG_GUEST_ERROR, 2501 "DRACR[%d]: Bad value for AP bits: 0x%" 2502 PRIx32 "\n", n, ap); 2503 } 2504 } else { /* Priv. mode AP bits decoding */ 2505 switch (ap) { 2506 case 0: 2507 break; /* no access */ 2508 case 1: 2509 case 2: 2510 case 3: 2511 result->f.prot |= PAGE_WRITE; 2512 /* fall through */ 2513 case 5: 2514 case 6: 2515 result->f.prot |= PAGE_READ | PAGE_EXEC; 2516 break; 2517 case 7: 2518 /* for v7M, same as 6; for R profile a reserved value */ 2519 if (arm_feature(env, ARM_FEATURE_M)) { 2520 result->f.prot |= PAGE_READ | PAGE_EXEC; 2521 break; 2522 } 2523 /* fall through */ 2524 default: 2525 qemu_log_mask(LOG_GUEST_ERROR, 2526 "DRACR[%d]: Bad value for AP bits: 0x%" 2527 PRIx32 "\n", n, ap); 2528 } 2529 } 2530 2531 /* execute never */ 2532 if (xn) { 2533 result->f.prot &= ~PAGE_EXEC; 2534 } 2535 } 2536 } 2537 2538 fi->type = ARMFault_Permission; 2539 fi->level = 1; 2540 return !(result->f.prot & (1 << access_type)); 2541 } 2542 2543 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2544 uint32_t secure) 2545 { 2546 if (regime_el(env, mmu_idx) == 2) { 2547 return env->pmsav8.hprbar; 2548 } else { 2549 return env->pmsav8.rbar[secure]; 2550 } 2551 } 2552 2553 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2554 uint32_t secure) 2555 { 2556 if (regime_el(env, mmu_idx) == 2) { 2557 return env->pmsav8.hprlar; 2558 } else { 2559 return env->pmsav8.rlar[secure]; 2560 } 2561 } 2562 2563 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2564 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2565 bool secure, GetPhysAddrResult *result, 2566 ARMMMUFaultInfo *fi, uint32_t *mregion) 2567 { 2568 /* 2569 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2570 * that a full phys-to-virt translation does). 2571 * mregion is (if not NULL) set to the region number which matched, 2572 * or -1 if no region number is returned (MPU off, address did not 2573 * hit a region, address hit in multiple regions). 2574 * If the region hit doesn't cover the entire TARGET_PAGE the address 2575 * is within, then we set the result page_size to 1 to force the 2576 * memory system to use a subpage. 2577 */ 2578 ARMCPU *cpu = env_archcpu(env); 2579 bool is_user = regime_is_user(env, mmu_idx); 2580 int n; 2581 int matchregion = -1; 2582 bool hit = false; 2583 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2584 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2585 int region_counter; 2586 2587 if (regime_el(env, mmu_idx) == 2) { 2588 region_counter = cpu->pmsav8r_hdregion; 2589 } else { 2590 region_counter = cpu->pmsav7_dregion; 2591 } 2592 2593 result->f.lg_page_size = TARGET_PAGE_BITS; 2594 result->f.phys_addr = address; 2595 result->f.prot = 0; 2596 if (mregion) { 2597 *mregion = -1; 2598 } 2599 2600 if (mmu_idx == ARMMMUIdx_Stage2) { 2601 fi->stage2 = true; 2602 } 2603 2604 /* 2605 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2606 * was an exception vector read from the vector table (which is always 2607 * done using the default system address map), because those accesses 2608 * are done in arm_v7m_load_vector(), which always does a direct 2609 * read using address_space_ldl(), rather than going via this function. 2610 */ 2611 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2612 /* MPU disabled */ 2613 hit = true; 2614 } else if (m_is_ppb_region(env, address)) { 2615 hit = true; 2616 } else { 2617 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2618 hit = true; 2619 } 2620 2621 uint32_t bitmask; 2622 if (arm_feature(env, ARM_FEATURE_M)) { 2623 bitmask = 0x1f; 2624 } else { 2625 bitmask = 0x3f; 2626 fi->level = 0; 2627 } 2628 2629 for (n = region_counter - 1; n >= 0; n--) { 2630 /* region search */ 2631 /* 2632 * Note that the base address is bits [31:x] from the register 2633 * with bits [x-1:0] all zeroes, but the limit address is bits 2634 * [31:x] from the register with bits [x:0] all ones. Where x is 2635 * 5 for Cortex-M and 6 for Cortex-R 2636 */ 2637 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2638 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2639 2640 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2641 /* Region disabled */ 2642 continue; 2643 } 2644 2645 if (address < base || address > limit) { 2646 /* 2647 * Address not in this region. We must check whether the 2648 * region covers addresses in the same page as our address. 2649 * In that case we must not report a size that covers the 2650 * whole page for a subsequent hit against a different MPU 2651 * region or the background region, because it would result in 2652 * incorrect TLB hits for subsequent accesses to addresses that 2653 * are in this MPU region. 2654 */ 2655 if (limit >= base && 2656 ranges_overlap(base, limit - base + 1, 2657 addr_page_base, 2658 TARGET_PAGE_SIZE)) { 2659 result->f.lg_page_size = 0; 2660 } 2661 continue; 2662 } 2663 2664 if (base > addr_page_base || limit < addr_page_limit) { 2665 result->f.lg_page_size = 0; 2666 } 2667 2668 if (matchregion != -1) { 2669 /* 2670 * Multiple regions match -- always a failure (unlike 2671 * PMSAv7 where highest-numbered-region wins) 2672 */ 2673 fi->type = ARMFault_Permission; 2674 if (arm_feature(env, ARM_FEATURE_M)) { 2675 fi->level = 1; 2676 } 2677 return true; 2678 } 2679 2680 matchregion = n; 2681 hit = true; 2682 } 2683 } 2684 2685 if (!hit) { 2686 if (arm_feature(env, ARM_FEATURE_M)) { 2687 fi->type = ARMFault_Background; 2688 } else { 2689 fi->type = ARMFault_Permission; 2690 } 2691 return true; 2692 } 2693 2694 if (matchregion == -1) { 2695 /* hit using the background region */ 2696 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2697 } else { 2698 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2699 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2700 uint32_t ap = extract32(matched_rbar, 1, 2); 2701 uint32_t xn = extract32(matched_rbar, 0, 1); 2702 bool pxn = false; 2703 2704 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2705 pxn = extract32(matched_rlar, 4, 1); 2706 } 2707 2708 if (m_is_system_region(env, address)) { 2709 /* System space is always execute never */ 2710 xn = 1; 2711 } 2712 2713 if (regime_el(env, mmu_idx) == 2) { 2714 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2715 mmu_idx != ARMMMUIdx_E2); 2716 } else { 2717 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2718 } 2719 2720 if (!arm_feature(env, ARM_FEATURE_M)) { 2721 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2722 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2723 uint8_t sh = extract32(matched_rlar, 3, 2); 2724 2725 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2726 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2727 xn = 0x1; 2728 } 2729 2730 if ((regime_el(env, mmu_idx) == 1) && 2731 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2732 pxn = 0x1; 2733 } 2734 2735 result->cacheattrs.is_s2_format = false; 2736 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2737 result->cacheattrs.shareability = sh; 2738 } 2739 2740 if (result->f.prot && !xn && !(pxn && !is_user)) { 2741 result->f.prot |= PAGE_EXEC; 2742 } 2743 2744 if (mregion) { 2745 *mregion = matchregion; 2746 } 2747 } 2748 2749 fi->type = ARMFault_Permission; 2750 if (arm_feature(env, ARM_FEATURE_M)) { 2751 fi->level = 1; 2752 } 2753 return !(result->f.prot & (1 << access_type)); 2754 } 2755 2756 static bool v8m_is_sau_exempt(CPUARMState *env, 2757 uint32_t address, MMUAccessType access_type) 2758 { 2759 /* 2760 * The architecture specifies that certain address ranges are 2761 * exempt from v8M SAU/IDAU checks. 2762 */ 2763 return 2764 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2765 (address >= 0xe0000000 && address <= 0xe0002fff) || 2766 (address >= 0xe000e000 && address <= 0xe000efff) || 2767 (address >= 0xe002e000 && address <= 0xe002efff) || 2768 (address >= 0xe0040000 && address <= 0xe0041fff) || 2769 (address >= 0xe00ff000 && address <= 0xe00fffff); 2770 } 2771 2772 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2773 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2774 bool is_secure, V8M_SAttributes *sattrs) 2775 { 2776 /* 2777 * Look up the security attributes for this address. Compare the 2778 * pseudocode SecurityCheck() function. 2779 * We assume the caller has zero-initialized *sattrs. 2780 */ 2781 ARMCPU *cpu = env_archcpu(env); 2782 int r; 2783 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2784 int idau_region = IREGION_NOTVALID; 2785 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2786 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2787 2788 if (cpu->idau) { 2789 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2790 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2791 2792 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2793 &idau_nsc); 2794 } 2795 2796 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2797 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2798 return; 2799 } 2800 2801 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2802 sattrs->ns = !is_secure; 2803 return; 2804 } 2805 2806 if (idau_region != IREGION_NOTVALID) { 2807 sattrs->irvalid = true; 2808 sattrs->iregion = idau_region; 2809 } 2810 2811 switch (env->sau.ctrl & 3) { 2812 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2813 break; 2814 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2815 sattrs->ns = true; 2816 break; 2817 default: /* SAU.ENABLE == 1 */ 2818 for (r = 0; r < cpu->sau_sregion; r++) { 2819 if (env->sau.rlar[r] & 1) { 2820 uint32_t base = env->sau.rbar[r] & ~0x1f; 2821 uint32_t limit = env->sau.rlar[r] | 0x1f; 2822 2823 if (base <= address && limit >= address) { 2824 if (base > addr_page_base || limit < addr_page_limit) { 2825 sattrs->subpage = true; 2826 } 2827 if (sattrs->srvalid) { 2828 /* 2829 * If we hit in more than one region then we must report 2830 * as Secure, not NS-Callable, with no valid region 2831 * number info. 2832 */ 2833 sattrs->ns = false; 2834 sattrs->nsc = false; 2835 sattrs->sregion = 0; 2836 sattrs->srvalid = false; 2837 break; 2838 } else { 2839 if (env->sau.rlar[r] & 2) { 2840 sattrs->nsc = true; 2841 } else { 2842 sattrs->ns = true; 2843 } 2844 sattrs->srvalid = true; 2845 sattrs->sregion = r; 2846 } 2847 } else { 2848 /* 2849 * Address not in this region. We must check whether the 2850 * region covers addresses in the same page as our address. 2851 * In that case we must not report a size that covers the 2852 * whole page for a subsequent hit against a different MPU 2853 * region or the background region, because it would result 2854 * in incorrect TLB hits for subsequent accesses to 2855 * addresses that are in this MPU region. 2856 */ 2857 if (limit >= base && 2858 ranges_overlap(base, limit - base + 1, 2859 addr_page_base, 2860 TARGET_PAGE_SIZE)) { 2861 sattrs->subpage = true; 2862 } 2863 } 2864 } 2865 } 2866 break; 2867 } 2868 2869 /* 2870 * The IDAU will override the SAU lookup results if it specifies 2871 * higher security than the SAU does. 2872 */ 2873 if (!idau_ns) { 2874 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2875 sattrs->ns = false; 2876 sattrs->nsc = idau_nsc; 2877 } 2878 } 2879 } 2880 2881 static bool get_phys_addr_pmsav8(CPUARMState *env, 2882 S1Translate *ptw, 2883 uint32_t address, 2884 MMUAccessType access_type, 2885 GetPhysAddrResult *result, 2886 ARMMMUFaultInfo *fi) 2887 { 2888 V8M_SAttributes sattrs = {}; 2889 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2890 bool secure = arm_space_is_secure(ptw->in_space); 2891 bool ret; 2892 2893 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2894 v8m_security_lookup(env, address, access_type, mmu_idx, 2895 secure, &sattrs); 2896 if (access_type == MMU_INST_FETCH) { 2897 /* 2898 * Instruction fetches always use the MMU bank and the 2899 * transaction attribute determined by the fetch address, 2900 * regardless of CPU state. This is painful for QEMU 2901 * to handle, because it would mean we need to encode 2902 * into the mmu_idx not just the (user, negpri) information 2903 * for the current security state but also that for the 2904 * other security state, which would balloon the number 2905 * of mmu_idx values needed alarmingly. 2906 * Fortunately we can avoid this because it's not actually 2907 * possible to arbitrarily execute code from memory with 2908 * the wrong security attribute: it will always generate 2909 * an exception of some kind or another, apart from the 2910 * special case of an NS CPU executing an SG instruction 2911 * in S&NSC memory. So we always just fail the translation 2912 * here and sort things out in the exception handler 2913 * (including possibly emulating an SG instruction). 2914 */ 2915 if (sattrs.ns != !secure) { 2916 if (sattrs.nsc) { 2917 fi->type = ARMFault_QEMU_NSCExec; 2918 } else { 2919 fi->type = ARMFault_QEMU_SFault; 2920 } 2921 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2922 result->f.phys_addr = address; 2923 result->f.prot = 0; 2924 return true; 2925 } 2926 } else { 2927 /* 2928 * For data accesses we always use the MMU bank indicated 2929 * by the current CPU state, but the security attributes 2930 * might downgrade a secure access to nonsecure. 2931 */ 2932 if (sattrs.ns) { 2933 result->f.attrs.secure = false; 2934 result->f.attrs.space = ARMSS_NonSecure; 2935 } else if (!secure) { 2936 /* 2937 * NS access to S memory must fault. 2938 * Architecturally we should first check whether the 2939 * MPU information for this address indicates that we 2940 * are doing an unaligned access to Device memory, which 2941 * should generate a UsageFault instead. QEMU does not 2942 * currently check for that kind of unaligned access though. 2943 * If we added it we would need to do so as a special case 2944 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2945 */ 2946 fi->type = ARMFault_QEMU_SFault; 2947 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2948 result->f.phys_addr = address; 2949 result->f.prot = 0; 2950 return true; 2951 } 2952 } 2953 } 2954 2955 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2956 result, fi, NULL); 2957 if (sattrs.subpage) { 2958 result->f.lg_page_size = 0; 2959 } 2960 return ret; 2961 } 2962 2963 /* 2964 * Translate from the 4-bit stage 2 representation of 2965 * memory attributes (without cache-allocation hints) to 2966 * the 8-bit representation of the stage 1 MAIR registers 2967 * (which includes allocation hints). 2968 * 2969 * ref: shared/translation/attrs/S2AttrDecode() 2970 * .../S2ConvertAttrsHints() 2971 */ 2972 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2973 { 2974 uint8_t hiattr = extract32(s2attrs, 2, 2); 2975 uint8_t loattr = extract32(s2attrs, 0, 2); 2976 uint8_t hihint = 0, lohint = 0; 2977 2978 if (hiattr != 0) { /* normal memory */ 2979 if (hcr & HCR_CD) { /* cache disabled */ 2980 hiattr = loattr = 1; /* non-cacheable */ 2981 } else { 2982 if (hiattr != 1) { /* Write-through or write-back */ 2983 hihint = 3; /* RW allocate */ 2984 } 2985 if (loattr != 1) { /* Write-through or write-back */ 2986 lohint = 3; /* RW allocate */ 2987 } 2988 } 2989 } 2990 2991 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2992 } 2993 2994 /* 2995 * Combine either inner or outer cacheability attributes for normal 2996 * memory, according to table D4-42 and pseudocode procedure 2997 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2998 * 2999 * NB: only stage 1 includes allocation hints (RW bits), leading to 3000 * some asymmetry. 3001 */ 3002 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3003 { 3004 if (s1 == 4 || s2 == 4) { 3005 /* non-cacheable has precedence */ 3006 return 4; 3007 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3008 /* stage 1 write-through takes precedence */ 3009 return s1; 3010 } else if (extract32(s2, 2, 2) == 2) { 3011 /* stage 2 write-through takes precedence, but the allocation hint 3012 * is still taken from stage 1 3013 */ 3014 return (2 << 2) | extract32(s1, 0, 2); 3015 } else { /* write-back */ 3016 return s1; 3017 } 3018 } 3019 3020 /* 3021 * Combine the memory type and cacheability attributes of 3022 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3023 * combined attributes in MAIR_EL1 format. 3024 */ 3025 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3026 ARMCacheAttrs s1, ARMCacheAttrs s2) 3027 { 3028 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3029 3030 if (s2.is_s2_format) { 3031 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3032 } else { 3033 s2_mair_attrs = s2.attrs; 3034 } 3035 3036 s1lo = extract32(s1.attrs, 0, 4); 3037 s2lo = extract32(s2_mair_attrs, 0, 4); 3038 s1hi = extract32(s1.attrs, 4, 4); 3039 s2hi = extract32(s2_mair_attrs, 4, 4); 3040 3041 /* Combine memory type and cacheability attributes */ 3042 if (s1hi == 0 || s2hi == 0) { 3043 /* Device has precedence over normal */ 3044 if (s1lo == 0 || s2lo == 0) { 3045 /* nGnRnE has precedence over anything */ 3046 ret_attrs = 0; 3047 } else if (s1lo == 4 || s2lo == 4) { 3048 /* non-Reordering has precedence over Reordering */ 3049 ret_attrs = 4; /* nGnRE */ 3050 } else if (s1lo == 8 || s2lo == 8) { 3051 /* non-Gathering has precedence over Gathering */ 3052 ret_attrs = 8; /* nGRE */ 3053 } else { 3054 ret_attrs = 0xc; /* GRE */ 3055 } 3056 } else { /* Normal memory */ 3057 /* Outer/inner cacheability combine independently */ 3058 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3059 | combine_cacheattr_nibble(s1lo, s2lo); 3060 } 3061 return ret_attrs; 3062 } 3063 3064 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3065 { 3066 /* 3067 * Given the 4 bits specifying the outer or inner cacheability 3068 * in MAIR format, return a value specifying Normal Write-Back, 3069 * with the allocation and transient hints taken from the input 3070 * if the input specified some kind of cacheable attribute. 3071 */ 3072 if (attr == 0 || attr == 4) { 3073 /* 3074 * 0 == an UNPREDICTABLE encoding 3075 * 4 == Non-cacheable 3076 * Either way, force Write-Back RW allocate non-transient 3077 */ 3078 return 0xf; 3079 } 3080 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3081 return attr | 4; 3082 } 3083 3084 /* 3085 * Combine the memory type and cacheability attributes of 3086 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3087 * combined attributes in MAIR_EL1 format. 3088 */ 3089 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3090 { 3091 assert(s2.is_s2_format && !s1.is_s2_format); 3092 3093 switch (s2.attrs) { 3094 case 7: 3095 /* Use stage 1 attributes */ 3096 return s1.attrs; 3097 case 6: 3098 /* 3099 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3100 * then we take the allocation hints from it; otherwise it is 3101 * RW allocate, non-transient. 3102 */ 3103 if ((s1.attrs & 0xf0) == 0) { 3104 /* S1 is Device */ 3105 return 0xff; 3106 } 3107 /* Need to check the Inner and Outer nibbles separately */ 3108 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3109 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3110 case 5: 3111 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3112 if ((s1.attrs & 0xf0) == 0) { 3113 return s1.attrs; 3114 } 3115 return 0x44; 3116 case 0 ... 3: 3117 /* Force Device, of subtype specified by S2 */ 3118 return s2.attrs << 2; 3119 default: 3120 /* 3121 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3122 * arbitrarily force Device. 3123 */ 3124 return 0; 3125 } 3126 } 3127 3128 /* 3129 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3130 * and CombineS1S2Desc() 3131 * 3132 * @env: CPUARMState 3133 * @s1: Attributes from stage 1 walk 3134 * @s2: Attributes from stage 2 walk 3135 */ 3136 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3137 ARMCacheAttrs s1, ARMCacheAttrs s2) 3138 { 3139 ARMCacheAttrs ret; 3140 bool tagged = false; 3141 3142 assert(!s1.is_s2_format); 3143 ret.is_s2_format = false; 3144 3145 if (s1.attrs == 0xf0) { 3146 tagged = true; 3147 s1.attrs = 0xff; 3148 } 3149 3150 /* Combine shareability attributes (table D4-43) */ 3151 if (s1.shareability == 2 || s2.shareability == 2) { 3152 /* if either are outer-shareable, the result is outer-shareable */ 3153 ret.shareability = 2; 3154 } else if (s1.shareability == 3 || s2.shareability == 3) { 3155 /* if either are inner-shareable, the result is inner-shareable */ 3156 ret.shareability = 3; 3157 } else { 3158 /* both non-shareable */ 3159 ret.shareability = 0; 3160 } 3161 3162 /* Combine memory type and cacheability attributes */ 3163 if (hcr & HCR_FWB) { 3164 ret.attrs = combined_attrs_fwb(s1, s2); 3165 } else { 3166 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3167 } 3168 3169 /* 3170 * Any location for which the resultant memory type is any 3171 * type of Device memory is always treated as Outer Shareable. 3172 * Any location for which the resultant memory type is Normal 3173 * Inner Non-cacheable, Outer Non-cacheable is always treated 3174 * as Outer Shareable. 3175 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3176 */ 3177 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3178 ret.shareability = 2; 3179 } 3180 3181 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3182 if (tagged && ret.attrs == 0xff) { 3183 ret.attrs = 0xf0; 3184 } 3185 3186 return ret; 3187 } 3188 3189 /* 3190 * MMU disabled. S1 addresses within aa64 translation regimes are 3191 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3192 */ 3193 static bool get_phys_addr_disabled(CPUARMState *env, 3194 S1Translate *ptw, 3195 vaddr address, 3196 MMUAccessType access_type, 3197 GetPhysAddrResult *result, 3198 ARMMMUFaultInfo *fi) 3199 { 3200 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3201 uint8_t memattr = 0x00; /* Device nGnRnE */ 3202 uint8_t shareability = 0; /* non-shareable */ 3203 int r_el; 3204 3205 switch (mmu_idx) { 3206 case ARMMMUIdx_Stage2: 3207 case ARMMMUIdx_Stage2_S: 3208 case ARMMMUIdx_Phys_S: 3209 case ARMMMUIdx_Phys_NS: 3210 case ARMMMUIdx_Phys_Root: 3211 case ARMMMUIdx_Phys_Realm: 3212 break; 3213 3214 default: 3215 r_el = regime_el(env, mmu_idx); 3216 if (arm_el_is_aa64(env, r_el)) { 3217 int pamax = arm_pamax(env_archcpu(env)); 3218 uint64_t tcr = env->cp15.tcr_el[r_el]; 3219 int addrtop, tbi; 3220 3221 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3222 if (access_type == MMU_INST_FETCH) { 3223 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3224 } 3225 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3226 addrtop = (tbi ? 55 : 63); 3227 3228 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3229 fi->type = ARMFault_AddressSize; 3230 fi->level = 0; 3231 fi->stage2 = false; 3232 return 1; 3233 } 3234 3235 /* 3236 * When TBI is disabled, we've just validated that all of the 3237 * bits above PAMax are zero, so logically we only need to 3238 * clear the top byte for TBI. But it's clearer to follow 3239 * the pseudocode set of addrdesc.paddress. 3240 */ 3241 address = extract64(address, 0, 52); 3242 } 3243 3244 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3245 if (r_el == 1) { 3246 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3247 if (hcr & HCR_DC) { 3248 if (hcr & HCR_DCT) { 3249 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3250 } else { 3251 memattr = 0xff; /* Normal, WB, RWA */ 3252 } 3253 } 3254 } 3255 if (memattr == 0) { 3256 if (access_type == MMU_INST_FETCH) { 3257 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3258 memattr = 0xee; /* Normal, WT, RA, NT */ 3259 } else { 3260 memattr = 0x44; /* Normal, NC, No */ 3261 } 3262 } 3263 shareability = 2; /* outer shareable */ 3264 } 3265 result->cacheattrs.is_s2_format = false; 3266 break; 3267 } 3268 3269 result->f.phys_addr = address; 3270 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3271 result->f.lg_page_size = TARGET_PAGE_BITS; 3272 result->cacheattrs.shareability = shareability; 3273 result->cacheattrs.attrs = memattr; 3274 return false; 3275 } 3276 3277 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3278 vaddr address, 3279 MMUAccessType access_type, MemOp memop, 3280 GetPhysAddrResult *result, 3281 ARMMMUFaultInfo *fi) 3282 { 3283 hwaddr ipa; 3284 int s1_prot, s1_lgpgsz; 3285 ARMSecuritySpace in_space = ptw->in_space; 3286 bool ret, ipa_secure, s1_guarded; 3287 ARMCacheAttrs cacheattrs1; 3288 ARMSecuritySpace ipa_space; 3289 uint64_t hcr; 3290 3291 ret = get_phys_addr_nogpc(env, ptw, address, access_type, 3292 memop, result, fi); 3293 3294 /* If S1 fails, return early. */ 3295 if (ret) { 3296 return ret; 3297 } 3298 3299 ipa = result->f.phys_addr; 3300 ipa_secure = result->f.attrs.secure; 3301 ipa_space = result->f.attrs.space; 3302 3303 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3304 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3305 ptw->in_space = ipa_space; 3306 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3307 3308 /* 3309 * S1 is done, now do S2 translation. 3310 * Save the stage1 results so that we may merge prot and cacheattrs later. 3311 */ 3312 s1_prot = result->f.prot; 3313 s1_lgpgsz = result->f.lg_page_size; 3314 s1_guarded = result->f.extra.arm.guarded; 3315 cacheattrs1 = result->cacheattrs; 3316 memset(result, 0, sizeof(*result)); 3317 3318 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, 3319 memop, result, fi); 3320 fi->s2addr = ipa; 3321 3322 /* Combine the S1 and S2 perms. */ 3323 result->f.prot &= s1_prot; 3324 3325 /* If S2 fails, return early. */ 3326 if (ret) { 3327 return ret; 3328 } 3329 3330 /* 3331 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3332 * this means "don't put this in the TLB"; in this case, return a 3333 * result with lg_page_size == 0 to achieve that. Otherwise, 3334 * use the maximum of the S1 & S2 page size, so that invalidation 3335 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3336 * we know the combined result permissions etc only cover the minimum 3337 * of the S1 and S2 page size, because we know that the common TLB code 3338 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3339 * and passing a larger page size value only affects invalidations.) 3340 */ 3341 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3342 s1_lgpgsz < TARGET_PAGE_BITS) { 3343 result->f.lg_page_size = 0; 3344 } else if (result->f.lg_page_size < s1_lgpgsz) { 3345 result->f.lg_page_size = s1_lgpgsz; 3346 } 3347 3348 /* Combine the S1 and S2 cache attributes. */ 3349 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3350 if (hcr & HCR_DC) { 3351 /* 3352 * HCR.DC forces the first stage attributes to 3353 * Normal Non-Shareable, 3354 * Inner Write-Back Read-Allocate Write-Allocate, 3355 * Outer Write-Back Read-Allocate Write-Allocate. 3356 * Do not overwrite Tagged within attrs. 3357 */ 3358 if (cacheattrs1.attrs != 0xf0) { 3359 cacheattrs1.attrs = 0xff; 3360 } 3361 cacheattrs1.shareability = 0; 3362 } 3363 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3364 result->cacheattrs); 3365 3366 /* No BTI GP information in stage 2, we just use the S1 value */ 3367 result->f.extra.arm.guarded = s1_guarded; 3368 3369 /* 3370 * Check if IPA translates to secure or non-secure PA space. 3371 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3372 */ 3373 if (in_space == ARMSS_Secure) { 3374 result->f.attrs.secure = 3375 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3376 && (ipa_secure 3377 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3378 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3379 } 3380 3381 return false; 3382 } 3383 3384 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3385 vaddr address, 3386 MMUAccessType access_type, MemOp memop, 3387 GetPhysAddrResult *result, 3388 ARMMMUFaultInfo *fi) 3389 { 3390 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3391 ARMMMUIdx s1_mmu_idx; 3392 3393 /* 3394 * The page table entries may downgrade Secure to NonSecure, but 3395 * cannot upgrade a NonSecure translation regime's attributes 3396 * to Secure or Realm. 3397 */ 3398 result->f.attrs.space = ptw->in_space; 3399 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3400 3401 switch (mmu_idx) { 3402 case ARMMMUIdx_Phys_S: 3403 case ARMMMUIdx_Phys_NS: 3404 case ARMMMUIdx_Phys_Root: 3405 case ARMMMUIdx_Phys_Realm: 3406 /* Checking Phys early avoids special casing later vs regime_el. */ 3407 return get_phys_addr_disabled(env, ptw, address, access_type, 3408 result, fi); 3409 3410 case ARMMMUIdx_Stage1_E0: 3411 case ARMMMUIdx_Stage1_E1: 3412 case ARMMMUIdx_Stage1_E1_PAN: 3413 /* 3414 * First stage lookup uses second stage for ptw; only 3415 * Secure has both S and NS IPA and starts with Stage2_S. 3416 */ 3417 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3418 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3419 break; 3420 3421 case ARMMMUIdx_Stage2: 3422 case ARMMMUIdx_Stage2_S: 3423 /* 3424 * Second stage lookup uses physical for ptw; whether this is S or 3425 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3426 * the Secure EL2&0 regime. 3427 */ 3428 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3429 break; 3430 3431 case ARMMMUIdx_E10_0: 3432 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3433 goto do_twostage; 3434 case ARMMMUIdx_E10_1: 3435 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3436 goto do_twostage; 3437 case ARMMMUIdx_E10_1_PAN: 3438 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3439 do_twostage: 3440 /* 3441 * Call ourselves recursively to do the stage 1 and then stage 2 3442 * translations if mmu_idx is a two-stage regime, and EL2 present. 3443 * Otherwise, a stage1+stage2 translation is just stage 1. 3444 */ 3445 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3446 if (arm_feature(env, ARM_FEATURE_EL2) && 3447 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3448 return get_phys_addr_twostage(env, ptw, address, access_type, 3449 memop, result, fi); 3450 } 3451 /* fall through */ 3452 3453 default: 3454 /* Single stage uses physical for ptw. */ 3455 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3456 break; 3457 } 3458 3459 result->f.attrs.user = regime_is_user(env, mmu_idx); 3460 3461 /* 3462 * Fast Context Switch Extension. This doesn't exist at all in v8. 3463 * In v7 and earlier it affects all stage 1 translations. 3464 */ 3465 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3466 && !arm_feature(env, ARM_FEATURE_V8)) { 3467 if (regime_el(env, mmu_idx) == 3) { 3468 address += env->cp15.fcseidr_s; 3469 } else { 3470 address += env->cp15.fcseidr_ns; 3471 } 3472 } 3473 3474 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3475 bool ret; 3476 result->f.lg_page_size = TARGET_PAGE_BITS; 3477 3478 if (arm_feature(env, ARM_FEATURE_V8)) { 3479 /* PMSAv8 */ 3480 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3481 result, fi); 3482 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3483 /* PMSAv7 */ 3484 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3485 result, fi); 3486 } else { 3487 /* Pre-v7 MPU */ 3488 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3489 result, fi); 3490 } 3491 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3492 " mmu_idx %u -> %s (prot %c%c%c)\n", 3493 access_type == MMU_DATA_LOAD ? "reading" : 3494 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3495 (uint32_t)address, mmu_idx, 3496 ret ? "Miss" : "Hit", 3497 result->f.prot & PAGE_READ ? 'r' : '-', 3498 result->f.prot & PAGE_WRITE ? 'w' : '-', 3499 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3500 3501 return ret; 3502 } 3503 3504 /* Definitely a real MMU, not an MPU */ 3505 3506 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3507 return get_phys_addr_disabled(env, ptw, address, access_type, 3508 result, fi); 3509 } 3510 3511 if (regime_using_lpae_format(env, mmu_idx)) { 3512 return get_phys_addr_lpae(env, ptw, address, access_type, 3513 memop, result, fi); 3514 } else if (arm_feature(env, ARM_FEATURE_V7) || 3515 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3516 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3517 } else { 3518 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3519 } 3520 } 3521 3522 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3523 vaddr address, 3524 MMUAccessType access_type, MemOp memop, 3525 GetPhysAddrResult *result, 3526 ARMMMUFaultInfo *fi) 3527 { 3528 if (get_phys_addr_nogpc(env, ptw, address, access_type, 3529 memop, result, fi)) { 3530 return true; 3531 } 3532 if (!granule_protection_check(env, result->f.phys_addr, 3533 result->f.attrs.space, fi)) { 3534 fi->type = ARMFault_GPCFOnOutput; 3535 return true; 3536 } 3537 return false; 3538 } 3539 3540 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3541 MMUAccessType access_type, MemOp memop, 3542 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3543 GetPhysAddrResult *result, 3544 ARMMMUFaultInfo *fi) 3545 { 3546 S1Translate ptw = { 3547 .in_mmu_idx = mmu_idx, 3548 .in_space = space, 3549 }; 3550 return get_phys_addr_nogpc(env, &ptw, address, access_type, 3551 memop, result, fi); 3552 } 3553 3554 static ARMSecuritySpace 3555 arm_mmu_idx_to_security_space(CPUARMState *env, ARMMMUIdx mmu_idx) 3556 { 3557 ARMSecuritySpace ss; 3558 3559 switch (mmu_idx) { 3560 case ARMMMUIdx_E10_0: 3561 case ARMMMUIdx_E10_1: 3562 case ARMMMUIdx_E10_1_PAN: 3563 case ARMMMUIdx_E20_0: 3564 case ARMMMUIdx_E20_2: 3565 case ARMMMUIdx_E20_2_PAN: 3566 case ARMMMUIdx_Stage1_E0: 3567 case ARMMMUIdx_Stage1_E1: 3568 case ARMMMUIdx_Stage1_E1_PAN: 3569 case ARMMMUIdx_E2: 3570 ss = arm_security_space_below_el3(env); 3571 break; 3572 case ARMMMUIdx_Stage2: 3573 /* 3574 * For Secure EL2, we need this index to be NonSecure; 3575 * otherwise this will already be NonSecure or Realm. 3576 */ 3577 ss = arm_security_space_below_el3(env); 3578 if (ss == ARMSS_Secure) { 3579 ss = ARMSS_NonSecure; 3580 } 3581 break; 3582 case ARMMMUIdx_Phys_NS: 3583 case ARMMMUIdx_MPrivNegPri: 3584 case ARMMMUIdx_MUserNegPri: 3585 case ARMMMUIdx_MPriv: 3586 case ARMMMUIdx_MUser: 3587 ss = ARMSS_NonSecure; 3588 break; 3589 case ARMMMUIdx_Stage2_S: 3590 case ARMMMUIdx_Phys_S: 3591 case ARMMMUIdx_MSPrivNegPri: 3592 case ARMMMUIdx_MSUserNegPri: 3593 case ARMMMUIdx_MSPriv: 3594 case ARMMMUIdx_MSUser: 3595 ss = ARMSS_Secure; 3596 break; 3597 case ARMMMUIdx_E3: 3598 case ARMMMUIdx_E30_0: 3599 case ARMMMUIdx_E30_3_PAN: 3600 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3601 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3602 ss = ARMSS_Root; 3603 } else { 3604 ss = ARMSS_Secure; 3605 } 3606 break; 3607 case ARMMMUIdx_Phys_Root: 3608 ss = ARMSS_Root; 3609 break; 3610 case ARMMMUIdx_Phys_Realm: 3611 ss = ARMSS_Realm; 3612 break; 3613 default: 3614 g_assert_not_reached(); 3615 } 3616 3617 return ss; 3618 } 3619 3620 bool get_phys_addr(CPUARMState *env, vaddr address, 3621 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx, 3622 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3623 { 3624 S1Translate ptw = { 3625 .in_mmu_idx = mmu_idx, 3626 .in_space = arm_mmu_idx_to_security_space(env, mmu_idx), 3627 }; 3628 3629 return get_phys_addr_gpc(env, &ptw, address, access_type, 3630 memop, result, fi); 3631 } 3632 3633 static hwaddr arm_cpu_get_phys_page(CPUARMState *env, vaddr addr, 3634 MemTxAttrs *attrs, ARMMMUIdx mmu_idx) 3635 { 3636 S1Translate ptw = { 3637 .in_mmu_idx = mmu_idx, 3638 .in_space = arm_mmu_idx_to_security_space(env, mmu_idx), 3639 .in_debug = true, 3640 }; 3641 GetPhysAddrResult res = {}; 3642 ARMMMUFaultInfo fi = {}; 3643 bool ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi); 3644 *attrs = res.f.attrs; 3645 3646 if (ret) { 3647 return -1; 3648 } 3649 return res.f.phys_addr; 3650 } 3651 3652 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3653 MemTxAttrs *attrs) 3654 { 3655 ARMCPU *cpu = ARM_CPU(cs); 3656 CPUARMState *env = &cpu->env; 3657 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3658 3659 hwaddr res = arm_cpu_get_phys_page(env, addr, attrs, mmu_idx); 3660 3661 if (res != -1) { 3662 return res; 3663 } 3664 3665 /* 3666 * Memory may be accessible for an "unprivileged load/store" variant. 3667 * In this case, get_a64_user_mem_index function generates an op using an 3668 * unprivileged mmu idx, so we need to try with it. 3669 */ 3670 switch (mmu_idx) { 3671 case ARMMMUIdx_E10_1: 3672 case ARMMMUIdx_E10_1_PAN: 3673 return arm_cpu_get_phys_page(env, addr, attrs, ARMMMUIdx_E10_0); 3674 case ARMMMUIdx_E20_2: 3675 case ARMMMUIdx_E20_2_PAN: 3676 return arm_cpu_get_phys_page(env, addr, attrs, ARMMMUIdx_E20_0); 3677 default: 3678 return -1; 3679 } 3680 } 3681