1 /* 2 * ARM page table walking. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/range.h" 12 #include "qemu/main-loop.h" 13 #include "exec/exec-all.h" 14 #include "exec/page-protection.h" 15 #include "cpu.h" 16 #include "internals.h" 17 #include "cpu-features.h" 18 #include "idau.h" 19 20 typedef struct S1Translate { 21 /* 22 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk. 23 * Together with in_space, specifies the architectural translation regime. 24 */ 25 ARMMMUIdx in_mmu_idx; 26 /* 27 * in_ptw_idx: specifies which mmuidx to use for the actual 28 * page table descriptor load operations. This will be one of the 29 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes. 30 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 31 * this field is updated accordingly. 32 */ 33 ARMMMUIdx in_ptw_idx; 34 /* 35 * in_space: the security space for this walk. This plus 36 * the in_mmu_idx specify the architectural translation regime. 37 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit, 38 * this field is updated accordingly. 39 * 40 * Note that the security space for the in_ptw_idx may be different 41 * from that for the in_mmu_idx. We do not need to explicitly track 42 * the in_ptw_idx security space because: 43 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx 44 * itself specifies the security space 45 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security 46 * space used for ptw reads is the same as that of the security 47 * space of the stage 1 translation for all cases except where 48 * stage 1 is Secure; in that case the only possibilities for 49 * the ptw read are Secure and NonSecure, and the in_ptw_idx 50 * value being Stage2 vs Stage2_S distinguishes those. 51 */ 52 ARMSecuritySpace in_space; 53 /* 54 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug 55 * accesses will not update the guest page table access flags 56 * and will not change the state of the softmmu TLBs. 57 */ 58 bool in_debug; 59 /* 60 * If this is stage 2 of a stage 1+2 page table walk, then this must 61 * be true if stage 1 is an EL0 access; otherwise this is ignored. 62 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}. 63 */ 64 bool in_s1_is_el0; 65 bool out_rw; 66 bool out_be; 67 ARMSecuritySpace out_space; 68 hwaddr out_virt; 69 hwaddr out_phys; 70 void *out_host; 71 } S1Translate; 72 73 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 74 vaddr address, 75 MMUAccessType access_type, MemOp memop, 76 GetPhysAddrResult *result, 77 ARMMMUFaultInfo *fi); 78 79 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 80 vaddr address, 81 MMUAccessType access_type, MemOp memop, 82 GetPhysAddrResult *result, 83 ARMMMUFaultInfo *fi); 84 85 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 86 int user_rw, int prot_rw, int xn, int pxn, 87 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa); 88 89 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 90 static const uint8_t pamax_map[] = { 91 [0] = 32, 92 [1] = 36, 93 [2] = 40, 94 [3] = 42, 95 [4] = 44, 96 [5] = 48, 97 [6] = 52, 98 }; 99 100 uint8_t round_down_to_parange_index(uint8_t bit_size) 101 { 102 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) { 103 if (pamax_map[i] <= bit_size) { 104 return i; 105 } 106 } 107 g_assert_not_reached(); 108 } 109 110 uint8_t round_down_to_parange_bit_size(uint8_t bit_size) 111 { 112 return pamax_map[round_down_to_parange_index(bit_size)]; 113 } 114 115 /* 116 * The cpu-specific constant value of PAMax; also used by hw/arm/virt. 117 * Note that machvirt_init calls this on a CPU that is inited but not realized! 118 */ 119 unsigned int arm_pamax(ARMCPU *cpu) 120 { 121 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 122 unsigned int parange = 123 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 124 125 /* 126 * id_aa64mmfr0 is a read-only register so values outside of the 127 * supported mappings can be considered an implementation error. 128 */ 129 assert(parange < ARRAY_SIZE(pamax_map)); 130 return pamax_map[parange]; 131 } 132 133 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 134 /* v7 or v8 with LPAE */ 135 return 40; 136 } 137 /* Anything else */ 138 return 32; 139 } 140 141 /* 142 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index 143 */ 144 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 145 { 146 switch (mmu_idx) { 147 case ARMMMUIdx_E10_0: 148 return ARMMMUIdx_Stage1_E0; 149 case ARMMMUIdx_E10_1: 150 return ARMMMUIdx_Stage1_E1; 151 case ARMMMUIdx_E10_1_PAN: 152 return ARMMMUIdx_Stage1_E1_PAN; 153 default: 154 return mmu_idx; 155 } 156 } 157 158 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 159 { 160 return stage_1_mmu_idx(arm_mmu_idx(env)); 161 } 162 163 /* 164 * Return where we should do ptw loads from for a stage 2 walk. 165 * This depends on whether the address we are looking up is a 166 * Secure IPA or a NonSecure IPA, which we know from whether this is 167 * Stage2 or Stage2_S. 168 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits. 169 */ 170 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx) 171 { 172 bool s2walk_secure; 173 174 /* 175 * We're OK to check the current state of the CPU here because 176 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit 177 * changes. 178 * (2) there's no way to do a lookup that cares about Stage 2 for a 179 * different security state to the current one for AArch64, and AArch32 180 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do 181 * an NS stage 1+2 lookup while the NS bit is 0.) 182 */ 183 if (!arm_el_is_aa64(env, 3)) { 184 return ARMMMUIdx_Phys_NS; 185 } 186 187 switch (arm_security_space_below_el3(env)) { 188 case ARMSS_NonSecure: 189 return ARMMMUIdx_Phys_NS; 190 case ARMSS_Realm: 191 return ARMMMUIdx_Phys_Realm; 192 case ARMSS_Secure: 193 if (stage2idx == ARMMMUIdx_Stage2_S) { 194 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW); 195 } else { 196 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW); 197 } 198 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS; 199 default: 200 g_assert_not_reached(); 201 } 202 } 203 204 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) 205 { 206 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 207 } 208 209 /* Return the TTBR associated with this translation regime */ 210 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) 211 { 212 if (mmu_idx == ARMMMUIdx_Stage2) { 213 return env->cp15.vttbr_el2; 214 } 215 if (mmu_idx == ARMMMUIdx_Stage2_S) { 216 return env->cp15.vsttbr_el2; 217 } 218 if (ttbrn == 0) { 219 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 220 } else { 221 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 222 } 223 } 224 225 /* Return true if the specified stage of address translation is disabled */ 226 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx, 227 ARMSecuritySpace space) 228 { 229 uint64_t hcr_el2; 230 231 if (arm_feature(env, ARM_FEATURE_M)) { 232 bool is_secure = arm_space_is_secure(space); 233 switch (env->v7m.mpu_ctrl[is_secure] & 234 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 235 case R_V7M_MPU_CTRL_ENABLE_MASK: 236 /* Enabled, but not for HardFault and NMI */ 237 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 238 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 239 /* Enabled for all cases */ 240 return false; 241 case 0: 242 default: 243 /* 244 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 245 * we warned about that in armv7m_nvic.c when the guest set it. 246 */ 247 return true; 248 } 249 } 250 251 252 switch (mmu_idx) { 253 case ARMMMUIdx_Stage2: 254 case ARMMMUIdx_Stage2_S: 255 /* HCR.DC means HCR.VM behaves as 1 */ 256 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 257 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 258 259 case ARMMMUIdx_E10_0: 260 case ARMMMUIdx_E10_1: 261 case ARMMMUIdx_E10_1_PAN: 262 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */ 263 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 264 if (hcr_el2 & HCR_TGE) { 265 return true; 266 } 267 break; 268 269 case ARMMMUIdx_Stage1_E0: 270 case ARMMMUIdx_Stage1_E1: 271 case ARMMMUIdx_Stage1_E1_PAN: 272 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 273 hcr_el2 = arm_hcr_el2_eff_secstate(env, space); 274 if (hcr_el2 & HCR_DC) { 275 return true; 276 } 277 break; 278 279 case ARMMMUIdx_E20_0: 280 case ARMMMUIdx_E20_2: 281 case ARMMMUIdx_E20_2_PAN: 282 case ARMMMUIdx_E2: 283 case ARMMMUIdx_E3: 284 case ARMMMUIdx_E30_0: 285 case ARMMMUIdx_E30_3_PAN: 286 break; 287 288 case ARMMMUIdx_Phys_S: 289 case ARMMMUIdx_Phys_NS: 290 case ARMMMUIdx_Phys_Root: 291 case ARMMMUIdx_Phys_Realm: 292 /* No translation for physical address spaces. */ 293 return true; 294 295 default: 296 g_assert_not_reached(); 297 } 298 299 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 300 } 301 302 static bool granule_protection_check(CPUARMState *env, uint64_t paddress, 303 ARMSecuritySpace pspace, 304 ARMMMUFaultInfo *fi) 305 { 306 MemTxAttrs attrs = { 307 .secure = true, 308 .space = ARMSS_Root, 309 }; 310 ARMCPU *cpu = env_archcpu(env); 311 uint64_t gpccr = env->cp15.gpccr_el3; 312 unsigned pps, pgs, l0gptsz, level = 0; 313 uint64_t tableaddr, pps_mask, align, entry, index; 314 AddressSpace *as; 315 MemTxResult result; 316 int gpi; 317 318 if (!FIELD_EX64(gpccr, GPCCR, GPC)) { 319 return true; 320 } 321 322 /* 323 * GPC Priority 1 (R_GMGRR): 324 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid, 325 * the access fails as GPT walk fault at level 0. 326 */ 327 328 /* 329 * Configuration of PPS to a value exceeding the implemented 330 * physical address size is invalid. 331 */ 332 pps = FIELD_EX64(gpccr, GPCCR, PPS); 333 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) { 334 goto fault_walk; 335 } 336 pps = pamax_map[pps]; 337 pps_mask = MAKE_64BIT_MASK(0, pps); 338 339 switch (FIELD_EX64(gpccr, GPCCR, SH)) { 340 case 0b10: /* outer shareable */ 341 break; 342 case 0b00: /* non-shareable */ 343 case 0b11: /* inner shareable */ 344 /* Inner and Outer non-cacheable requires Outer shareable. */ 345 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 && 346 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) { 347 goto fault_walk; 348 } 349 break; 350 default: /* reserved */ 351 goto fault_walk; 352 } 353 354 switch (FIELD_EX64(gpccr, GPCCR, PGS)) { 355 case 0b00: /* 4KB */ 356 pgs = 12; 357 break; 358 case 0b01: /* 64KB */ 359 pgs = 16; 360 break; 361 case 0b10: /* 16KB */ 362 pgs = 14; 363 break; 364 default: /* reserved */ 365 goto fault_walk; 366 } 367 368 /* Note this field is read-only and fixed at reset. */ 369 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ); 370 371 /* 372 * GPC Priority 2: Secure, Realm or Root address exceeds PPS. 373 * R_CPDSB: A NonSecure physical address input exceeding PPS 374 * does not experience any fault. 375 */ 376 if (paddress & ~pps_mask) { 377 if (pspace == ARMSS_NonSecure) { 378 return true; 379 } 380 goto fault_size; 381 } 382 383 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */ 384 tableaddr = env->cp15.gptbr_el3 << 12; 385 if (tableaddr & ~pps_mask) { 386 goto fault_size; 387 } 388 389 /* 390 * BADDR is aligned per a function of PPS and L0GPTSZ. 391 * These bits of GPTBR_EL3 are RES0, but are not a configuration error, 392 * unlike the RES0 bits of the GPT entries (R_XNKFZ). 393 */ 394 align = MAX(pps - l0gptsz + 3, 12); 395 align = MAKE_64BIT_MASK(0, align); 396 tableaddr &= ~align; 397 398 as = arm_addressspace(env_cpu(env), attrs); 399 400 /* Level 0 lookup. */ 401 index = extract64(paddress, l0gptsz, pps - l0gptsz); 402 tableaddr += index * 8; 403 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 404 if (result != MEMTX_OK) { 405 goto fault_eabt; 406 } 407 408 switch (extract32(entry, 0, 4)) { 409 case 1: /* block descriptor */ 410 if (entry >> 8) { 411 goto fault_walk; /* RES0 bits not 0 */ 412 } 413 gpi = extract32(entry, 4, 4); 414 goto found; 415 case 3: /* table descriptor */ 416 tableaddr = entry & ~0xf; 417 align = MAX(l0gptsz - pgs - 1, 12); 418 align = MAKE_64BIT_MASK(0, align); 419 if (tableaddr & (~pps_mask | align)) { 420 goto fault_walk; /* RES0 bits not 0 */ 421 } 422 break; 423 default: /* invalid */ 424 goto fault_walk; 425 } 426 427 /* Level 1 lookup */ 428 level = 1; 429 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4); 430 tableaddr += index * 8; 431 entry = address_space_ldq_le(as, tableaddr, attrs, &result); 432 if (result != MEMTX_OK) { 433 goto fault_eabt; 434 } 435 436 switch (extract32(entry, 0, 4)) { 437 case 1: /* contiguous descriptor */ 438 if (entry >> 10) { 439 goto fault_walk; /* RES0 bits not 0 */ 440 } 441 /* 442 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE, 443 * and because we cannot invalidate by pa, and thus will always 444 * flush entire tlbs, we don't actually care about the range here 445 * and can simply extract the GPI as the result. 446 */ 447 if (extract32(entry, 8, 2) == 0) { 448 goto fault_walk; /* reserved contig */ 449 } 450 gpi = extract32(entry, 4, 4); 451 break; 452 default: 453 index = extract64(paddress, pgs, 4); 454 gpi = extract64(entry, index * 4, 4); 455 break; 456 } 457 458 found: 459 switch (gpi) { 460 case 0b0000: /* no access */ 461 break; 462 case 0b1111: /* all access */ 463 return true; 464 case 0b1000: 465 case 0b1001: 466 case 0b1010: 467 case 0b1011: 468 if (pspace == (gpi & 3)) { 469 return true; 470 } 471 break; 472 default: 473 goto fault_walk; /* reserved */ 474 } 475 476 fi->gpcf = GPCF_Fail; 477 goto fault_common; 478 fault_eabt: 479 fi->gpcf = GPCF_EABT; 480 goto fault_common; 481 fault_size: 482 fi->gpcf = GPCF_AddressSize; 483 goto fault_common; 484 fault_walk: 485 fi->gpcf = GPCF_Walk; 486 fault_common: 487 fi->level = level; 488 fi->paddr = paddress; 489 fi->paddr_space = pspace; 490 return false; 491 } 492 493 static bool S1_attrs_are_device(uint8_t attrs) 494 { 495 /* 496 * This slightly under-decodes the MAIR_ELx field: 497 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE; 498 * 0b0000dd1x is UNPREDICTABLE. 499 */ 500 return (attrs & 0xf0) == 0; 501 } 502 503 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs) 504 { 505 /* 506 * For an S1 page table walk, the stage 1 attributes are always 507 * some form of "this is Normal memory". The combined S1+S2 508 * attributes are therefore only Device if stage 2 specifies Device. 509 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 510 * ie when cacheattrs.attrs bits [3:2] are 0b00. 511 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 512 * when cacheattrs.attrs bit [2] is 0. 513 */ 514 if (hcr & HCR_FWB) { 515 return (attrs & 0x4) == 0; 516 } else { 517 return (attrs & 0xc) == 0; 518 } 519 } 520 521 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space, 522 ARMMMUIdx s2_mmu_idx) 523 { 524 /* 525 * Return the security space to use for stage 2 when doing 526 * the S1 page table descriptor load. 527 */ 528 if (regime_is_stage2(s2_mmu_idx)) { 529 /* 530 * The security space for ptw reads is almost always the same 531 * as that of the security space of the stage 1 translation. 532 * The only exception is when stage 1 is Secure; in that case 533 * the ptw read might be to the Secure or the NonSecure space 534 * (but never Realm or Root), and the s2_mmu_idx tells us which. 535 * Root translations are always single-stage. 536 */ 537 if (s1_space == ARMSS_Secure) { 538 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S); 539 } else { 540 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S); 541 assert(s1_space != ARMSS_Root); 542 return s1_space; 543 } 544 } else { 545 /* ptw loads are from phys: the mmu idx itself says which space */ 546 return arm_phys_to_space(s2_mmu_idx); 547 } 548 } 549 550 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx) 551 { 552 /* 553 * For stage 2 faults in Secure EL22, S1NS indicates 554 * whether the faulting IPA is in the Secure or NonSecure 555 * IPA space. For all other kinds of fault, it is false. 556 */ 557 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx) 558 && s2_mmu_idx == ARMMMUIdx_Stage2_S; 559 } 560 561 /* Translate a S1 pagetable walk through S2 if needed. */ 562 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw, 563 hwaddr addr, ARMMMUFaultInfo *fi) 564 { 565 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 566 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx; 567 uint8_t pte_attrs; 568 569 ptw->out_virt = addr; 570 571 if (unlikely(ptw->in_debug)) { 572 /* 573 * From gdbstub, do not use softmmu so that we don't modify the 574 * state of the cpu at all, including softmmu tlb contents. 575 */ 576 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx); 577 S1Translate s2ptw = { 578 .in_mmu_idx = s2_mmu_idx, 579 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx), 580 .in_space = s2_space, 581 .in_debug = true, 582 }; 583 GetPhysAddrResult s2 = { }; 584 585 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) { 586 goto fail; 587 } 588 589 ptw->out_phys = s2.f.phys_addr; 590 pte_attrs = s2.cacheattrs.attrs; 591 ptw->out_host = NULL; 592 ptw->out_rw = false; 593 ptw->out_space = s2.f.attrs.space; 594 } else { 595 #ifdef CONFIG_TCG 596 CPUTLBEntryFull *full; 597 int flags; 598 599 env->tlb_fi = fi; 600 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD, 601 arm_to_core_mmu_idx(s2_mmu_idx), 602 &ptw->out_host, &full); 603 env->tlb_fi = NULL; 604 605 if (unlikely(flags & TLB_INVALID_MASK)) { 606 goto fail; 607 } 608 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 609 ptw->out_rw = full->prot & PAGE_WRITE; 610 pte_attrs = full->extra.arm.pte_attrs; 611 ptw->out_space = full->attrs.space; 612 #else 613 g_assert_not_reached(); 614 #endif 615 } 616 617 if (regime_is_stage2(s2_mmu_idx)) { 618 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 619 620 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) { 621 /* 622 * PTW set and S1 walk touched S2 Device memory: 623 * generate Permission fault. 624 */ 625 fi->type = ARMFault_Permission; 626 fi->s2addr = addr; 627 fi->stage2 = true; 628 fi->s1ptw = true; 629 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 630 return false; 631 } 632 } 633 634 ptw->out_be = regime_translation_big_endian(env, mmu_idx); 635 return true; 636 637 fail: 638 assert(fi->type != ARMFault_None); 639 if (fi->type == ARMFault_GPCFOnOutput) { 640 fi->type = ARMFault_GPCFOnWalk; 641 } 642 fi->s2addr = addr; 643 fi->stage2 = regime_is_stage2(s2_mmu_idx); 644 fi->s1ptw = fi->stage2; 645 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx); 646 return false; 647 } 648 649 /* All loads done in the course of a page table walk go through here. */ 650 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, 651 ARMMMUFaultInfo *fi) 652 { 653 CPUState *cs = env_cpu(env); 654 void *host = ptw->out_host; 655 uint32_t data; 656 657 if (likely(host)) { 658 /* Page tables are in RAM, and we have the host address. */ 659 data = qatomic_read((uint32_t *)host); 660 if (ptw->out_be) { 661 data = be32_to_cpu(data); 662 } else { 663 data = le32_to_cpu(data); 664 } 665 } else { 666 /* Page tables are in MMIO. */ 667 MemTxAttrs attrs = { 668 .space = ptw->out_space, 669 .secure = arm_space_is_secure(ptw->out_space), 670 }; 671 AddressSpace *as = arm_addressspace(cs, attrs); 672 MemTxResult result = MEMTX_OK; 673 674 if (ptw->out_be) { 675 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result); 676 } else { 677 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result); 678 } 679 if (unlikely(result != MEMTX_OK)) { 680 fi->type = ARMFault_SyncExternalOnWalk; 681 fi->ea = arm_extabort_type(result); 682 return 0; 683 } 684 } 685 return data; 686 } 687 688 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, 689 ARMMMUFaultInfo *fi) 690 { 691 CPUState *cs = env_cpu(env); 692 void *host = ptw->out_host; 693 uint64_t data; 694 695 if (likely(host)) { 696 /* Page tables are in RAM, and we have the host address. */ 697 #ifdef CONFIG_ATOMIC64 698 data = qatomic_read__nocheck((uint64_t *)host); 699 if (ptw->out_be) { 700 data = be64_to_cpu(data); 701 } else { 702 data = le64_to_cpu(data); 703 } 704 #else 705 if (ptw->out_be) { 706 data = ldq_be_p(host); 707 } else { 708 data = ldq_le_p(host); 709 } 710 #endif 711 } else { 712 /* Page tables are in MMIO. */ 713 MemTxAttrs attrs = { 714 .space = ptw->out_space, 715 .secure = arm_space_is_secure(ptw->out_space), 716 }; 717 AddressSpace *as = arm_addressspace(cs, attrs); 718 MemTxResult result = MEMTX_OK; 719 720 if (ptw->out_be) { 721 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 722 } else { 723 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 724 } 725 if (unlikely(result != MEMTX_OK)) { 726 fi->type = ARMFault_SyncExternalOnWalk; 727 fi->ea = arm_extabort_type(result); 728 return 0; 729 } 730 } 731 return data; 732 } 733 734 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val, 735 uint64_t new_val, S1Translate *ptw, 736 ARMMMUFaultInfo *fi) 737 { 738 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG) 739 uint64_t cur_val; 740 void *host = ptw->out_host; 741 742 if (unlikely(!host)) { 743 /* Page table in MMIO Memory Region */ 744 CPUState *cs = env_cpu(env); 745 MemTxAttrs attrs = { 746 .space = ptw->out_space, 747 .secure = arm_space_is_secure(ptw->out_space), 748 }; 749 AddressSpace *as = arm_addressspace(cs, attrs); 750 MemTxResult result = MEMTX_OK; 751 bool need_lock = !bql_locked(); 752 753 if (need_lock) { 754 bql_lock(); 755 } 756 if (ptw->out_be) { 757 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result); 758 if (unlikely(result != MEMTX_OK)) { 759 fi->type = ARMFault_SyncExternalOnWalk; 760 fi->ea = arm_extabort_type(result); 761 if (need_lock) { 762 bql_unlock(); 763 } 764 return old_val; 765 } 766 if (cur_val == old_val) { 767 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result); 768 if (unlikely(result != MEMTX_OK)) { 769 fi->type = ARMFault_SyncExternalOnWalk; 770 fi->ea = arm_extabort_type(result); 771 if (need_lock) { 772 bql_unlock(); 773 } 774 return old_val; 775 } 776 cur_val = new_val; 777 } 778 } else { 779 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result); 780 if (unlikely(result != MEMTX_OK)) { 781 fi->type = ARMFault_SyncExternalOnWalk; 782 fi->ea = arm_extabort_type(result); 783 if (need_lock) { 784 bql_unlock(); 785 } 786 return old_val; 787 } 788 if (cur_val == old_val) { 789 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result); 790 if (unlikely(result != MEMTX_OK)) { 791 fi->type = ARMFault_SyncExternalOnWalk; 792 fi->ea = arm_extabort_type(result); 793 if (need_lock) { 794 bql_unlock(); 795 } 796 return old_val; 797 } 798 cur_val = new_val; 799 } 800 } 801 if (need_lock) { 802 bql_unlock(); 803 } 804 return cur_val; 805 } 806 807 /* 808 * Raising a stage2 Protection fault for an atomic update to a read-only 809 * page is delayed until it is certain that there is a change to make. 810 */ 811 if (unlikely(!ptw->out_rw)) { 812 int flags; 813 814 env->tlb_fi = fi; 815 flags = probe_access_full_mmu(env, ptw->out_virt, 0, 816 MMU_DATA_STORE, 817 arm_to_core_mmu_idx(ptw->in_ptw_idx), 818 NULL, NULL); 819 env->tlb_fi = NULL; 820 821 if (unlikely(flags & TLB_INVALID_MASK)) { 822 /* 823 * We know this must be a stage 2 fault because the granule 824 * protection table does not separately track read and write 825 * permission, so all GPC faults are caught in S1_ptw_translate(): 826 * we only get here for "readable but not writeable". 827 */ 828 assert(fi->type != ARMFault_None); 829 fi->s2addr = ptw->out_virt; 830 fi->stage2 = true; 831 fi->s1ptw = true; 832 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx); 833 return 0; 834 } 835 836 /* In case CAS mismatches and we loop, remember writability. */ 837 ptw->out_rw = true; 838 } 839 840 if (ptw->out_be) { 841 old_val = cpu_to_be64(old_val); 842 new_val = cpu_to_be64(new_val); 843 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 844 cur_val = be64_to_cpu(cur_val); 845 } else { 846 old_val = cpu_to_le64(old_val); 847 new_val = cpu_to_le64(new_val); 848 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val); 849 cur_val = le64_to_cpu(cur_val); 850 } 851 return cur_val; 852 #else 853 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */ 854 g_assert_not_reached(); 855 #endif 856 } 857 858 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 859 uint32_t *table, uint32_t address) 860 { 861 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 862 uint64_t tcr = regime_tcr(env, mmu_idx); 863 int maskshift = extract32(tcr, 0, 3); 864 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift); 865 uint32_t base_mask; 866 867 if (address & mask) { 868 if (tcr & TTBCR_PD1) { 869 /* Translation table walk disabled for TTBR1 */ 870 return false; 871 } 872 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 873 } else { 874 if (tcr & TTBCR_PD0) { 875 /* Translation table walk disabled for TTBR0 */ 876 return false; 877 } 878 base_mask = ~((uint32_t)0x3fffu >> maskshift); 879 *table = regime_ttbr(env, mmu_idx, 0) & base_mask; 880 } 881 *table |= (address >> 18) & 0x3ffc; 882 return true; 883 } 884 885 /* 886 * Translate section/page access permissions to page R/W protection flags 887 * @env: CPUARMState 888 * @mmu_idx: MMU index indicating required translation regime 889 * @ap: The 3-bit access permissions (AP[2:0]) 890 * @domain_prot: The 2-bit domain access permissions 891 * @is_user: TRUE if accessing from PL0 892 */ 893 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx, 894 int ap, int domain_prot, bool is_user) 895 { 896 if (domain_prot == 3) { 897 return PAGE_READ | PAGE_WRITE; 898 } 899 900 switch (ap) { 901 case 0: 902 if (arm_feature(env, ARM_FEATURE_V7)) { 903 return 0; 904 } 905 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 906 case SCTLR_S: 907 return is_user ? 0 : PAGE_READ; 908 case SCTLR_R: 909 return PAGE_READ; 910 default: 911 return 0; 912 } 913 case 1: 914 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 915 case 2: 916 if (is_user) { 917 return PAGE_READ; 918 } else { 919 return PAGE_READ | PAGE_WRITE; 920 } 921 case 3: 922 return PAGE_READ | PAGE_WRITE; 923 case 4: /* Reserved. */ 924 return 0; 925 case 5: 926 return is_user ? 0 : PAGE_READ; 927 case 6: 928 return PAGE_READ; 929 case 7: 930 if (!arm_feature(env, ARM_FEATURE_V6K)) { 931 return 0; 932 } 933 return PAGE_READ; 934 default: 935 g_assert_not_reached(); 936 } 937 } 938 939 /* 940 * Translate section/page access permissions to page R/W protection flags 941 * @env: CPUARMState 942 * @mmu_idx: MMU index indicating required translation regime 943 * @ap: The 3-bit access permissions (AP[2:0]) 944 * @domain_prot: The 2-bit domain access permissions 945 */ 946 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 947 int ap, int domain_prot) 948 { 949 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 950 regime_is_user(env, mmu_idx)); 951 } 952 953 /* 954 * Translate section/page access permissions to page R/W protection flags. 955 * @ap: The 2-bit simple AP (AP[2:1]) 956 * @is_user: TRUE if accessing from PL0 957 */ 958 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 959 { 960 switch (ap) { 961 case 0: 962 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 963 case 1: 964 return PAGE_READ | PAGE_WRITE; 965 case 2: 966 return is_user ? 0 : PAGE_READ; 967 case 3: 968 return PAGE_READ; 969 default: 970 g_assert_not_reached(); 971 } 972 } 973 974 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 975 { 976 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 977 } 978 979 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw, 980 uint32_t address, MMUAccessType access_type, 981 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 982 { 983 int level = 1; 984 uint32_t table; 985 uint32_t desc; 986 int type; 987 int ap; 988 int domain = 0; 989 int domain_prot; 990 hwaddr phys_addr; 991 uint32_t dacr; 992 993 /* Pagetable walk. */ 994 /* Lookup l1 descriptor. */ 995 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) { 996 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 997 fi->type = ARMFault_Translation; 998 goto do_fault; 999 } 1000 if (!S1_ptw_translate(env, ptw, table, fi)) { 1001 goto do_fault; 1002 } 1003 desc = arm_ldl_ptw(env, ptw, fi); 1004 if (fi->type != ARMFault_None) { 1005 goto do_fault; 1006 } 1007 type = (desc & 3); 1008 domain = (desc >> 5) & 0x0f; 1009 if (regime_el(env, ptw->in_mmu_idx) == 1) { 1010 dacr = env->cp15.dacr_ns; 1011 } else { 1012 dacr = env->cp15.dacr_s; 1013 } 1014 domain_prot = (dacr >> (domain * 2)) & 3; 1015 if (type == 0) { 1016 /* Section translation fault. */ 1017 fi->type = ARMFault_Translation; 1018 goto do_fault; 1019 } 1020 if (type != 2) { 1021 level = 2; 1022 } 1023 if (domain_prot == 0 || domain_prot == 2) { 1024 fi->type = ARMFault_Domain; 1025 goto do_fault; 1026 } 1027 if (type == 2) { 1028 /* 1Mb section. */ 1029 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1030 ap = (desc >> 10) & 3; 1031 result->f.lg_page_size = 20; /* 1MB */ 1032 } else { 1033 /* Lookup l2 entry. */ 1034 if (type == 1) { 1035 /* Coarse pagetable. */ 1036 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1037 } else { 1038 /* Fine pagetable. */ 1039 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 1040 } 1041 if (!S1_ptw_translate(env, ptw, table, fi)) { 1042 goto do_fault; 1043 } 1044 desc = arm_ldl_ptw(env, ptw, fi); 1045 if (fi->type != ARMFault_None) { 1046 goto do_fault; 1047 } 1048 switch (desc & 3) { 1049 case 0: /* Page translation fault. */ 1050 fi->type = ARMFault_Translation; 1051 goto do_fault; 1052 case 1: /* 64k page. */ 1053 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1054 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 1055 result->f.lg_page_size = 16; 1056 break; 1057 case 2: /* 4k page. */ 1058 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1059 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 1060 result->f.lg_page_size = 12; 1061 break; 1062 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 1063 if (type == 1) { 1064 /* ARMv6/XScale extended small page format */ 1065 if (arm_feature(env, ARM_FEATURE_XSCALE) 1066 || arm_feature(env, ARM_FEATURE_V6)) { 1067 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1068 result->f.lg_page_size = 12; 1069 } else { 1070 /* 1071 * UNPREDICTABLE in ARMv5; we choose to take a 1072 * page translation fault. 1073 */ 1074 fi->type = ARMFault_Translation; 1075 goto do_fault; 1076 } 1077 } else { 1078 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 1079 result->f.lg_page_size = 10; 1080 } 1081 ap = (desc >> 4) & 3; 1082 break; 1083 default: 1084 /* Never happens, but compiler isn't smart enough to tell. */ 1085 g_assert_not_reached(); 1086 } 1087 } 1088 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot); 1089 result->f.prot |= result->f.prot ? PAGE_EXEC : 0; 1090 if (!(result->f.prot & (1 << access_type))) { 1091 /* Access permission fault. */ 1092 fi->type = ARMFault_Permission; 1093 goto do_fault; 1094 } 1095 result->f.phys_addr = phys_addr; 1096 return false; 1097 do_fault: 1098 fi->domain = domain; 1099 fi->level = level; 1100 return true; 1101 } 1102 1103 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw, 1104 uint32_t address, MMUAccessType access_type, 1105 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1106 { 1107 ARMCPU *cpu = env_archcpu(env); 1108 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1109 int level = 1; 1110 uint32_t table; 1111 uint32_t desc; 1112 uint32_t xn; 1113 uint32_t pxn = 0; 1114 int type; 1115 int ap; 1116 int domain = 0; 1117 int domain_prot; 1118 hwaddr phys_addr; 1119 uint32_t dacr; 1120 bool ns; 1121 ARMSecuritySpace out_space; 1122 1123 /* Pagetable walk. */ 1124 /* Lookup l1 descriptor. */ 1125 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 1126 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 1127 fi->type = ARMFault_Translation; 1128 goto do_fault; 1129 } 1130 if (!S1_ptw_translate(env, ptw, table, fi)) { 1131 goto do_fault; 1132 } 1133 desc = arm_ldl_ptw(env, ptw, fi); 1134 if (fi->type != ARMFault_None) { 1135 goto do_fault; 1136 } 1137 type = (desc & 3); 1138 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 1139 /* Section translation fault, or attempt to use the encoding 1140 * which is Reserved on implementations without PXN. 1141 */ 1142 fi->type = ARMFault_Translation; 1143 goto do_fault; 1144 } 1145 if ((type == 1) || !(desc & (1 << 18))) { 1146 /* Page or Section. */ 1147 domain = (desc >> 5) & 0x0f; 1148 } 1149 if (regime_el(env, mmu_idx) == 1) { 1150 dacr = env->cp15.dacr_ns; 1151 } else { 1152 dacr = env->cp15.dacr_s; 1153 } 1154 if (type == 1) { 1155 level = 2; 1156 } 1157 domain_prot = (dacr >> (domain * 2)) & 3; 1158 if (domain_prot == 0 || domain_prot == 2) { 1159 /* Section or Page domain fault */ 1160 fi->type = ARMFault_Domain; 1161 goto do_fault; 1162 } 1163 if (type != 1) { 1164 if (desc & (1 << 18)) { 1165 /* Supersection. */ 1166 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 1167 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 1168 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 1169 result->f.lg_page_size = 24; /* 16MB */ 1170 } else { 1171 /* Section. */ 1172 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 1173 result->f.lg_page_size = 20; /* 1MB */ 1174 } 1175 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 1176 xn = desc & (1 << 4); 1177 pxn = desc & 1; 1178 ns = extract32(desc, 19, 1); 1179 } else { 1180 if (cpu_isar_feature(aa32_pxn, cpu)) { 1181 pxn = (desc >> 2) & 1; 1182 } 1183 ns = extract32(desc, 3, 1); 1184 /* Lookup l2 entry. */ 1185 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 1186 if (!S1_ptw_translate(env, ptw, table, fi)) { 1187 goto do_fault; 1188 } 1189 desc = arm_ldl_ptw(env, ptw, fi); 1190 if (fi->type != ARMFault_None) { 1191 goto do_fault; 1192 } 1193 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 1194 switch (desc & 3) { 1195 case 0: /* Page translation fault. */ 1196 fi->type = ARMFault_Translation; 1197 goto do_fault; 1198 case 1: /* 64k page. */ 1199 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 1200 xn = desc & (1 << 15); 1201 result->f.lg_page_size = 16; 1202 break; 1203 case 2: case 3: /* 4k page. */ 1204 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 1205 xn = desc & 1; 1206 result->f.lg_page_size = 12; 1207 break; 1208 default: 1209 /* Never happens, but compiler isn't smart enough to tell. */ 1210 g_assert_not_reached(); 1211 } 1212 } 1213 out_space = ptw->in_space; 1214 if (ns) { 1215 /* 1216 * The NS bit will (as required by the architecture) have no effect if 1217 * the CPU doesn't support TZ or this is a non-secure translation 1218 * regime, because the output space will already be non-secure. 1219 */ 1220 out_space = ARMSS_NonSecure; 1221 } 1222 if (domain_prot == 3) { 1223 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1224 } else { 1225 int user_rw, prot_rw; 1226 1227 if (arm_feature(env, ARM_FEATURE_V6K) && 1228 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 1229 /* The simplified model uses AP[0] as an access control bit. */ 1230 if ((ap & 1) == 0) { 1231 /* Access flag fault. */ 1232 fi->type = ARMFault_AccessFlag; 1233 goto do_fault; 1234 } 1235 prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 1236 user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1); 1237 } else { 1238 prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 1239 user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1); 1240 } 1241 1242 result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw, 1243 xn, pxn, result->f.attrs.space, out_space); 1244 if (!(result->f.prot & (1 << access_type))) { 1245 /* Access permission fault. */ 1246 fi->type = ARMFault_Permission; 1247 goto do_fault; 1248 } 1249 } 1250 result->f.attrs.space = out_space; 1251 result->f.attrs.secure = arm_space_is_secure(out_space); 1252 result->f.phys_addr = phys_addr; 1253 return false; 1254 do_fault: 1255 fi->domain = domain; 1256 fi->level = level; 1257 return true; 1258 } 1259 1260 /* 1261 * Translate S2 section/page access permissions to protection flags 1262 * @env: CPUARMState 1263 * @s2ap: The 2-bit stage2 access permissions (S2AP) 1264 * @xn: XN (execute-never) bits 1265 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 1266 */ 1267 static int get_S2prot_noexecute(int s2ap) 1268 { 1269 int prot = 0; 1270 1271 if (s2ap & 1) { 1272 prot |= PAGE_READ; 1273 } 1274 if (s2ap & 2) { 1275 prot |= PAGE_WRITE; 1276 } 1277 return prot; 1278 } 1279 1280 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 1281 { 1282 int prot = get_S2prot_noexecute(s2ap); 1283 1284 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 1285 switch (xn) { 1286 case 0: 1287 prot |= PAGE_EXEC; 1288 break; 1289 case 1: 1290 if (s1_is_el0) { 1291 prot |= PAGE_EXEC; 1292 } 1293 break; 1294 case 2: 1295 break; 1296 case 3: 1297 if (!s1_is_el0) { 1298 prot |= PAGE_EXEC; 1299 } 1300 break; 1301 default: 1302 g_assert_not_reached(); 1303 } 1304 } else { 1305 if (!extract32(xn, 1, 1)) { 1306 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 1307 prot |= PAGE_EXEC; 1308 } 1309 } 1310 } 1311 return prot; 1312 } 1313 1314 /* 1315 * Translate section/page access permissions to protection flags 1316 * @env: CPUARMState 1317 * @mmu_idx: MMU index indicating required translation regime 1318 * @is_aa64: TRUE if AArch64 1319 * @user_rw: Translated AP for user access 1320 * @prot_rw: Translated AP for privileged access 1321 * @xn: XN (execute-never) bit 1322 * @pxn: PXN (privileged execute-never) bit 1323 * @in_pa: The original input pa space 1324 * @out_pa: The output pa space, modified by NSTable, NS, and NSE 1325 */ 1326 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 1327 int user_rw, int prot_rw, int xn, int pxn, 1328 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa) 1329 { 1330 ARMCPU *cpu = env_archcpu(env); 1331 bool is_user = regime_is_user(env, mmu_idx); 1332 bool have_wxn; 1333 int wxn = 0; 1334 1335 assert(!regime_is_stage2(mmu_idx)); 1336 1337 if (is_user) { 1338 prot_rw = user_rw; 1339 } else { 1340 /* 1341 * PAN controls can forbid data accesses but don't affect insn fetch. 1342 * Plain PAN forbids data accesses if EL0 has data permissions; 1343 * PAN3 forbids data accesses if EL0 has either data or exec perms. 1344 * Note that for AArch64 the 'user can exec' case is exactly !xn. 1345 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0 1346 * do not affect EPAN. 1347 */ 1348 if (user_rw && regime_is_pan(env, mmu_idx)) { 1349 prot_rw = 0; 1350 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 && 1351 regime_is_pan(env, mmu_idx) && 1352 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) { 1353 prot_rw = 0; 1354 } 1355 } 1356 1357 if (in_pa != out_pa) { 1358 switch (in_pa) { 1359 case ARMSS_Root: 1360 /* 1361 * R_ZWRVD: permission fault for insn fetched from non-Root, 1362 * I_WWBFB: SIF has no effect in EL3. 1363 */ 1364 return prot_rw; 1365 case ARMSS_Realm: 1366 /* 1367 * R_PKTDS: permission fault for insn fetched from non-Realm, 1368 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0 1369 * happens during any stage2 translation. 1370 */ 1371 switch (mmu_idx) { 1372 case ARMMMUIdx_E2: 1373 case ARMMMUIdx_E20_0: 1374 case ARMMMUIdx_E20_2: 1375 case ARMMMUIdx_E20_2_PAN: 1376 return prot_rw; 1377 default: 1378 break; 1379 } 1380 break; 1381 case ARMSS_Secure: 1382 if (env->cp15.scr_el3 & SCR_SIF) { 1383 return prot_rw; 1384 } 1385 break; 1386 default: 1387 /* Input NonSecure must have output NonSecure. */ 1388 g_assert_not_reached(); 1389 } 1390 } 1391 1392 /* TODO have_wxn should be replaced with 1393 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 1394 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 1395 * compatible processors have EL2, which is required for [U]WXN. 1396 */ 1397 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 1398 1399 if (have_wxn) { 1400 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 1401 } 1402 1403 if (is_aa64) { 1404 if (regime_has_2_ranges(mmu_idx) && !is_user) { 1405 xn = pxn || (user_rw & PAGE_WRITE); 1406 } 1407 } else if (arm_feature(env, ARM_FEATURE_V7)) { 1408 switch (regime_el(env, mmu_idx)) { 1409 case 1: 1410 case 3: 1411 if (is_user) { 1412 xn = xn || !(user_rw & PAGE_READ); 1413 } else { 1414 int uwxn = 0; 1415 if (have_wxn) { 1416 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 1417 } 1418 xn = xn || !(prot_rw & PAGE_READ) || pxn || 1419 (uwxn && (user_rw & PAGE_WRITE)); 1420 } 1421 break; 1422 case 2: 1423 break; 1424 } 1425 } else { 1426 xn = wxn = 0; 1427 } 1428 1429 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 1430 return prot_rw; 1431 } 1432 return prot_rw | PAGE_EXEC; 1433 } 1434 1435 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 1436 ARMMMUIdx mmu_idx) 1437 { 1438 uint64_t tcr = regime_tcr(env, mmu_idx); 1439 uint32_t el = regime_el(env, mmu_idx); 1440 int select, tsz; 1441 bool epd, hpd; 1442 1443 assert(mmu_idx != ARMMMUIdx_Stage2_S); 1444 1445 if (mmu_idx == ARMMMUIdx_Stage2) { 1446 /* VTCR */ 1447 bool sext = extract32(tcr, 4, 1); 1448 bool sign = extract32(tcr, 3, 1); 1449 1450 /* 1451 * If the sign-extend bit is not the same as t0sz[3], the result 1452 * is unpredictable. Flag this as a guest error. 1453 */ 1454 if (sign != sext) { 1455 qemu_log_mask(LOG_GUEST_ERROR, 1456 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 1457 } 1458 tsz = sextract32(tcr, 0, 4) + 8; 1459 select = 0; 1460 hpd = false; 1461 epd = false; 1462 } else if (el == 2) { 1463 /* HTCR */ 1464 tsz = extract32(tcr, 0, 3); 1465 select = 0; 1466 hpd = extract64(tcr, 24, 1); 1467 epd = false; 1468 } else { 1469 int t0sz = extract32(tcr, 0, 3); 1470 int t1sz = extract32(tcr, 16, 3); 1471 1472 if (t1sz == 0) { 1473 select = va > (0xffffffffu >> t0sz); 1474 } else { 1475 /* Note that we will detect errors later. */ 1476 select = va >= ~(0xffffffffu >> t1sz); 1477 } 1478 if (!select) { 1479 tsz = t0sz; 1480 epd = extract32(tcr, 7, 1); 1481 hpd = extract64(tcr, 41, 1); 1482 } else { 1483 tsz = t1sz; 1484 epd = extract32(tcr, 23, 1); 1485 hpd = extract64(tcr, 42, 1); 1486 } 1487 /* For aarch32, hpd0 is not enabled without t2e as well. */ 1488 hpd &= extract32(tcr, 6, 1); 1489 } 1490 1491 return (ARMVAParameters) { 1492 .tsz = tsz, 1493 .select = select, 1494 .epd = epd, 1495 .hpd = hpd, 1496 }; 1497 } 1498 1499 /* 1500 * check_s2_mmu_setup 1501 * @cpu: ARMCPU 1502 * @is_aa64: True if the translation regime is in AArch64 state 1503 * @tcr: VTCR_EL2 or VSTCR_EL2 1504 * @ds: Effective value of TCR.DS. 1505 * @iasize: Bitsize of IPAs 1506 * @stride: Page-table stride (See the ARM ARM) 1507 * 1508 * Decode the starting level of the S2 lookup, returning INT_MIN if 1509 * the configuration is invalid. 1510 */ 1511 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr, 1512 bool ds, int iasize, int stride) 1513 { 1514 int sl0, sl2, startlevel, granulebits, levels; 1515 int s1_min_iasize, s1_max_iasize; 1516 1517 sl0 = extract32(tcr, 6, 2); 1518 if (is_aa64) { 1519 /* 1520 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size, 1521 * so interleave AArch64.S2StartLevel. 1522 */ 1523 switch (stride) { 1524 case 9: /* 4KB */ 1525 /* SL2 is RES0 unless DS=1 & 4KB granule. */ 1526 sl2 = extract64(tcr, 33, 1); 1527 if (ds && sl2) { 1528 if (sl0 != 0) { 1529 goto fail; 1530 } 1531 startlevel = -1; 1532 } else { 1533 startlevel = 2 - sl0; 1534 switch (sl0) { 1535 case 2: 1536 if (arm_pamax(cpu) < 44) { 1537 goto fail; 1538 } 1539 break; 1540 case 3: 1541 if (!cpu_isar_feature(aa64_st, cpu)) { 1542 goto fail; 1543 } 1544 startlevel = 3; 1545 break; 1546 } 1547 } 1548 break; 1549 case 11: /* 16KB */ 1550 switch (sl0) { 1551 case 2: 1552 if (arm_pamax(cpu) < 42) { 1553 goto fail; 1554 } 1555 break; 1556 case 3: 1557 if (!ds) { 1558 goto fail; 1559 } 1560 break; 1561 } 1562 startlevel = 3 - sl0; 1563 break; 1564 case 13: /* 64KB */ 1565 switch (sl0) { 1566 case 2: 1567 if (arm_pamax(cpu) < 44) { 1568 goto fail; 1569 } 1570 break; 1571 case 3: 1572 goto fail; 1573 } 1574 startlevel = 3 - sl0; 1575 break; 1576 default: 1577 g_assert_not_reached(); 1578 } 1579 } else { 1580 /* 1581 * Things are simpler for AArch32 EL2, with only 4k pages. 1582 * There is no separate S2InvalidSL function, but AArch32.S2Walk 1583 * begins with walkparms.sl0 in {'1x'}. 1584 */ 1585 assert(stride == 9); 1586 if (sl0 >= 2) { 1587 goto fail; 1588 } 1589 startlevel = 2 - sl0; 1590 } 1591 1592 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */ 1593 levels = 3 - startlevel; 1594 granulebits = stride + 3; 1595 1596 s1_min_iasize = levels * stride + granulebits + 1; 1597 s1_max_iasize = s1_min_iasize + (stride - 1) + 4; 1598 1599 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) { 1600 return startlevel; 1601 } 1602 1603 fail: 1604 return INT_MIN; 1605 } 1606 1607 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds, 1608 ARMGranuleSize gran, int level) 1609 { 1610 /* 1611 * See pseudocode AArch46.BlockDescSupported(): block descriptors 1612 * are not valid at all levels, depending on the page size. 1613 */ 1614 switch (gran) { 1615 case Gran4K: 1616 return (level == 0 && ds) || level == 1 || level == 2; 1617 case Gran16K: 1618 return (level == 1 && ds) || level == 2; 1619 case Gran64K: 1620 return (level == 1 && arm_pamax(cpu) == 52) || level == 2; 1621 default: 1622 g_assert_not_reached(); 1623 } 1624 } 1625 1626 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw) 1627 { 1628 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 1629 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1); 1630 } 1631 1632 /** 1633 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 1634 * 1635 * Returns false if the translation was successful. Otherwise, phys_ptr, 1636 * attrs, prot and page_size may not be filled in, and the populated fsr 1637 * value provides information on why the translation aborted, in the format 1638 * of a long-format DFSR/IFSR fault register, with the following caveat: 1639 * the WnR bit is never set (the caller must do this). 1640 * 1641 * @env: CPUARMState 1642 * @ptw: Current and next stage parameters for the walk. 1643 * @address: virtual address to get physical address for 1644 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 1645 * @memop: memory operation feeding this access, or 0 for none 1646 * @result: set on translation success, 1647 * @fi: set to fault info if the translation fails 1648 */ 1649 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw, 1650 uint64_t address, 1651 MMUAccessType access_type, MemOp memop, 1652 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 1653 { 1654 ARMCPU *cpu = env_archcpu(env); 1655 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 1656 int32_t level; 1657 ARMVAParameters param; 1658 uint64_t ttbr; 1659 hwaddr descaddr, indexmask, indexmask_grainsize; 1660 uint32_t tableattrs; 1661 target_ulong page_size; 1662 uint64_t attrs; 1663 int32_t stride; 1664 int addrsize, inputsize, outputsize; 1665 uint64_t tcr = regime_tcr(env, mmu_idx); 1666 int ap, xn, pxn; 1667 uint32_t el = regime_el(env, mmu_idx); 1668 uint64_t descaddrmask; 1669 bool aarch64 = arm_el_is_aa64(env, el); 1670 uint64_t descriptor, new_descriptor; 1671 ARMSecuritySpace out_space; 1672 bool device; 1673 1674 /* TODO: This code does not support shareability levels. */ 1675 if (aarch64) { 1676 int ps; 1677 1678 param = aa64_va_parameters(env, address, mmu_idx, 1679 access_type != MMU_INST_FETCH, 1680 !arm_el_is_aa64(env, 1)); 1681 level = 0; 1682 1683 /* 1684 * If TxSZ is programmed to a value larger than the maximum, 1685 * or smaller than the effective minimum, it is IMPLEMENTATION 1686 * DEFINED whether we behave as if the field were programmed 1687 * within bounds, or if a level 0 Translation fault is generated. 1688 * 1689 * With FEAT_LVA, fault on less than minimum becomes required, 1690 * so our choice is to always raise the fault. 1691 */ 1692 if (param.tsz_oob) { 1693 goto do_translation_fault; 1694 } 1695 1696 addrsize = 64 - 8 * param.tbi; 1697 inputsize = 64 - param.tsz; 1698 1699 /* 1700 * Bound PS by PARANGE to find the effective output address size. 1701 * ID_AA64MMFR0 is a read-only register so values outside of the 1702 * supported mappings can be considered an implementation error. 1703 */ 1704 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 1705 ps = MIN(ps, param.ps); 1706 assert(ps < ARRAY_SIZE(pamax_map)); 1707 outputsize = pamax_map[ps]; 1708 1709 /* 1710 * With LPA2, the effective output address (OA) size is at most 48 bits 1711 * unless TCR.DS == 1 1712 */ 1713 if (!param.ds && param.gran != Gran64K) { 1714 outputsize = MIN(outputsize, 48); 1715 } 1716 } else { 1717 param = aa32_va_parameters(env, address, mmu_idx); 1718 level = 1; 1719 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 1720 inputsize = addrsize - param.tsz; 1721 outputsize = 40; 1722 } 1723 1724 /* 1725 * We determined the region when collecting the parameters, but we 1726 * have not yet validated that the address is valid for the region. 1727 * Extract the top bits and verify that they all match select. 1728 * 1729 * For aa32, if inputsize == addrsize, then we have selected the 1730 * region by exclusion in aa32_va_parameters and there is no more 1731 * validation to do here. 1732 */ 1733 if (inputsize < addrsize) { 1734 target_ulong top_bits = sextract64(address, inputsize, 1735 addrsize - inputsize); 1736 if (-top_bits != param.select) { 1737 /* The gap between the two regions is a Translation fault */ 1738 goto do_translation_fault; 1739 } 1740 } 1741 1742 stride = arm_granule_bits(param.gran) - 3; 1743 1744 /* 1745 * Note that QEMU ignores shareability and cacheability attributes, 1746 * so we don't need to do anything with the SH, ORGN, IRGN fields 1747 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 1748 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 1749 * implement any ASID-like capability so we can ignore it (instead 1750 * we will always flush the TLB any time the ASID is changed). 1751 */ 1752 ttbr = regime_ttbr(env, mmu_idx, param.select); 1753 1754 /* 1755 * Here we should have set up all the parameters for the translation: 1756 * inputsize, ttbr, epd, stride, tbi 1757 */ 1758 1759 if (param.epd) { 1760 /* 1761 * Translation table walk disabled => Translation fault on TLB miss 1762 * Note: This is always 0 on 64-bit EL2 and EL3. 1763 */ 1764 goto do_translation_fault; 1765 } 1766 1767 if (!regime_is_stage2(mmu_idx)) { 1768 /* 1769 * The starting level depends on the virtual address size (which can 1770 * be up to 48 bits) and the translation granule size. It indicates 1771 * the number of strides (stride bits at a time) needed to 1772 * consume the bits of the input address. In the pseudocode this is: 1773 * level = 4 - RoundUp((inputsize - grainsize) / stride) 1774 * where their 'inputsize' is our 'inputsize', 'grainsize' is 1775 * our 'stride + 3' and 'stride' is our 'stride'. 1776 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 1777 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 1778 * = 4 - (inputsize - 4) / stride; 1779 */ 1780 level = 4 - (inputsize - 4) / stride; 1781 } else { 1782 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds, 1783 inputsize, stride); 1784 if (startlevel == INT_MIN) { 1785 level = 0; 1786 goto do_translation_fault; 1787 } 1788 level = startlevel; 1789 } 1790 1791 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 1792 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 1793 1794 /* Now we can extract the actual base address from the TTBR */ 1795 descaddr = extract64(ttbr, 0, 48); 1796 1797 /* 1798 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 1799 * 1800 * Otherwise, if the base address is out of range, raise AddressSizeFault. 1801 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 1802 * but we've just cleared the bits above 47, so simplify the test. 1803 */ 1804 if (outputsize > 48) { 1805 descaddr |= extract64(ttbr, 2, 4) << 48; 1806 } else if (descaddr >> outputsize) { 1807 level = 0; 1808 fi->type = ARMFault_AddressSize; 1809 goto do_fault; 1810 } 1811 1812 /* 1813 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 1814 * and also to mask out CnP (bit 0) which could validly be non-zero. 1815 */ 1816 descaddr &= ~indexmask; 1817 1818 /* 1819 * For AArch32, the address field in the descriptor goes up to bit 39 1820 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 1821 * or an AddressSize fault is raised. So for v8 we extract those SBZ 1822 * bits as part of the address, which will be checked via outputsize. 1823 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 1824 * the highest bits of a 52-bit output are placed elsewhere. 1825 */ 1826 if (param.ds) { 1827 descaddrmask = MAKE_64BIT_MASK(0, 50); 1828 } else if (arm_feature(env, ARM_FEATURE_V8)) { 1829 descaddrmask = MAKE_64BIT_MASK(0, 48); 1830 } else { 1831 descaddrmask = MAKE_64BIT_MASK(0, 40); 1832 } 1833 descaddrmask &= ~indexmask_grainsize; 1834 tableattrs = 0; 1835 1836 next_level: 1837 descaddr |= (address >> (stride * (4 - level))) & indexmask; 1838 descaddr &= ~7ULL; 1839 1840 /* 1841 * Process the NSTable bit from the previous level. This changes 1842 * the table address space and the output space from Secure to 1843 * NonSecure. With RME, the EL3 translation regime does not change 1844 * from Root to NonSecure. 1845 */ 1846 if (ptw->in_space == ARMSS_Secure 1847 && !regime_is_stage2(mmu_idx) 1848 && extract32(tableattrs, 4, 1)) { 1849 /* 1850 * Stage2_S -> Stage2 or Phys_S -> Phys_NS 1851 * Assert the relative order of the secure/non-secure indexes. 1852 */ 1853 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS); 1854 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2); 1855 ptw->in_ptw_idx += 1; 1856 ptw->in_space = ARMSS_NonSecure; 1857 } 1858 1859 if (!S1_ptw_translate(env, ptw, descaddr, fi)) { 1860 goto do_fault; 1861 } 1862 descriptor = arm_ldq_ptw(env, ptw, fi); 1863 if (fi->type != ARMFault_None) { 1864 goto do_fault; 1865 } 1866 new_descriptor = descriptor; 1867 1868 restart_atomic_update: 1869 if (!(descriptor & 1) || 1870 (!(descriptor & 2) && 1871 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) { 1872 /* Invalid, or a block descriptor at an invalid level */ 1873 goto do_translation_fault; 1874 } 1875 1876 descaddr = descriptor & descaddrmask; 1877 1878 /* 1879 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 1880 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 1881 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 1882 * raise AddressSizeFault. 1883 */ 1884 if (outputsize > 48) { 1885 if (param.ds) { 1886 descaddr |= extract64(descriptor, 8, 2) << 50; 1887 } else { 1888 descaddr |= extract64(descriptor, 12, 4) << 48; 1889 } 1890 } else if (descaddr >> outputsize) { 1891 fi->type = ARMFault_AddressSize; 1892 goto do_fault; 1893 } 1894 1895 if ((descriptor & 2) && (level < 3)) { 1896 /* 1897 * Table entry. The top five bits are attributes which may 1898 * propagate down through lower levels of the table (and 1899 * which are all arranged so that 0 means "no effect", so 1900 * we can gather them up by ORing in the bits at each level). 1901 */ 1902 tableattrs |= extract64(descriptor, 59, 5); 1903 level++; 1904 indexmask = indexmask_grainsize; 1905 goto next_level; 1906 } 1907 1908 /* 1909 * Block entry at level 1 or 2, or page entry at level 3. 1910 * These are basically the same thing, although the number 1911 * of bits we pull in from the vaddr varies. Note that although 1912 * descaddrmask masks enough of the low bits of the descriptor 1913 * to give a correct page or table address, the address field 1914 * in a block descriptor is smaller; so we need to explicitly 1915 * clear the lower bits here before ORing in the low vaddr bits. 1916 * 1917 * Afterward, descaddr is the final physical address. 1918 */ 1919 page_size = (1ULL << ((stride * (4 - level)) + 3)); 1920 descaddr &= ~(hwaddr)(page_size - 1); 1921 descaddr |= (address & (page_size - 1)); 1922 1923 if (likely(!ptw->in_debug)) { 1924 /* 1925 * Access flag. 1926 * If HA is enabled, prepare to update the descriptor below. 1927 * Otherwise, pass the access fault on to software. 1928 */ 1929 if (!(descriptor & (1 << 10))) { 1930 if (param.ha) { 1931 new_descriptor |= 1 << 10; /* AF */ 1932 } else { 1933 fi->type = ARMFault_AccessFlag; 1934 goto do_fault; 1935 } 1936 } 1937 1938 /* 1939 * Dirty Bit. 1940 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP 1941 * bit for writeback. The actual write protection test may still be 1942 * overridden by tableattrs, to be merged below. 1943 */ 1944 if (param.hd 1945 && extract64(descriptor, 51, 1) /* DBM */ 1946 && access_type == MMU_DATA_STORE) { 1947 if (regime_is_stage2(mmu_idx)) { 1948 new_descriptor |= 1ull << 7; /* set S2AP[1] */ 1949 } else { 1950 new_descriptor &= ~(1ull << 7); /* clear AP[2] */ 1951 } 1952 } 1953 } 1954 1955 /* 1956 * Extract attributes from the (modified) descriptor, and apply 1957 * table descriptors. Stage 2 table descriptors do not include 1958 * any attribute fields. HPD disables all the table attributes 1959 * except NSTable (which we have already handled). 1960 */ 1961 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14)); 1962 if (!regime_is_stage2(mmu_idx)) { 1963 if (!param.hpd) { 1964 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */ 1965 /* 1966 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 1967 * means "force PL1 access only", which means forcing AP[1] to 0. 1968 */ 1969 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */ 1970 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */ 1971 } 1972 } 1973 1974 ap = extract32(attrs, 6, 2); 1975 out_space = ptw->in_space; 1976 if (regime_is_stage2(mmu_idx)) { 1977 /* 1978 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS. 1979 * The bit remains ignored for other security states. 1980 * R_YMCSL: Executing an insn fetched from non-Realm causes 1981 * a stage2 permission fault. 1982 */ 1983 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) { 1984 out_space = ARMSS_NonSecure; 1985 result->f.prot = get_S2prot_noexecute(ap); 1986 } else { 1987 xn = extract64(attrs, 53, 2); 1988 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0); 1989 } 1990 1991 result->cacheattrs.is_s2_format = true; 1992 result->cacheattrs.attrs = extract32(attrs, 2, 4); 1993 /* 1994 * Security state does not really affect HCR_EL2.FWB; 1995 * we only need to filter FWB for aa32 or other FEAT. 1996 */ 1997 device = S2_attrs_are_device(arm_hcr_el2_eff(env), 1998 result->cacheattrs.attrs); 1999 } else { 2000 int nse, ns = extract32(attrs, 5, 1); 2001 uint8_t attrindx; 2002 uint64_t mair; 2003 int user_rw, prot_rw; 2004 2005 switch (out_space) { 2006 case ARMSS_Root: 2007 /* 2008 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime. 2009 * R_XTYPW: NSE and NS together select the output pa space. 2010 */ 2011 nse = extract32(attrs, 11, 1); 2012 out_space = (nse << 1) | ns; 2013 if (out_space == ARMSS_Secure && 2014 !cpu_isar_feature(aa64_sel2, cpu)) { 2015 out_space = ARMSS_NonSecure; 2016 } 2017 break; 2018 case ARMSS_Secure: 2019 if (ns) { 2020 out_space = ARMSS_NonSecure; 2021 } 2022 break; 2023 case ARMSS_Realm: 2024 switch (mmu_idx) { 2025 case ARMMMUIdx_Stage1_E0: 2026 case ARMMMUIdx_Stage1_E1: 2027 case ARMMMUIdx_Stage1_E1_PAN: 2028 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */ 2029 break; 2030 case ARMMMUIdx_E2: 2031 case ARMMMUIdx_E20_0: 2032 case ARMMMUIdx_E20_2: 2033 case ARMMMUIdx_E20_2_PAN: 2034 /* 2035 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1, 2036 * NS changes the output to non-secure space. 2037 */ 2038 if (ns) { 2039 out_space = ARMSS_NonSecure; 2040 } 2041 break; 2042 default: 2043 g_assert_not_reached(); 2044 } 2045 break; 2046 case ARMSS_NonSecure: 2047 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */ 2048 break; 2049 default: 2050 g_assert_not_reached(); 2051 } 2052 xn = extract64(attrs, 54, 1); 2053 pxn = extract64(attrs, 53, 1); 2054 2055 if (el == 1 && nv_nv1_enabled(env, ptw)) { 2056 /* 2057 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page 2058 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value 2059 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors 2060 * (which we have already folded into bits 53 and 54 of attrs). 2061 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0. 2062 * Similarly, APTable[0] from the table descriptor is treated as 0; 2063 * we already folded this into AP[1] and squashing that to 0 does 2064 * the right thing. 2065 */ 2066 pxn = xn; 2067 xn = 0; 2068 ap &= ~1; 2069 } 2070 2071 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 2072 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 2073 /* 2074 * Note that we modified ptw->in_space earlier for NSTable, but 2075 * result->f.attrs retains a copy of the original security space. 2076 */ 2077 result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw, 2078 xn, pxn, result->f.attrs.space, out_space); 2079 2080 /* Index into MAIR registers for cache attributes */ 2081 attrindx = extract32(attrs, 2, 3); 2082 mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2083 assert(attrindx <= 7); 2084 result->cacheattrs.is_s2_format = false; 2085 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2086 2087 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */ 2088 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) { 2089 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */ 2090 } 2091 device = S1_attrs_are_device(result->cacheattrs.attrs); 2092 } 2093 2094 /* 2095 * Enable alignment checks on Device memory. 2096 * 2097 * Per R_XCHFJ, the correct ordering for alignment, permission, 2098 * and stage 2 faults is: 2099 * - Alignment fault caused by the memory type 2100 * - Permission fault 2101 * - A stage 2 fault on the memory access 2102 * Perform the alignment check now, so that we recognize it in 2103 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent 2104 * softmmu tlb hit will also check the alignment; clear along the 2105 * non-device path so that tlb_fill_flags is consistent in the 2106 * event of restart_atomic_update. 2107 * 2108 * In v7, for a CPU without the Virtualization Extensions this 2109 * access is UNPREDICTABLE; we choose to make it take the alignment 2110 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any 2111 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.) 2112 */ 2113 if (device) { 2114 unsigned a_bits = memop_atomicity_bits(memop); 2115 if (address & ((1 << a_bits) - 1)) { 2116 fi->type = ARMFault_Alignment; 2117 goto do_fault; 2118 } 2119 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED; 2120 } else { 2121 result->f.tlb_fill_flags = 0; 2122 } 2123 2124 if (!(result->f.prot & (1 << access_type))) { 2125 fi->type = ARMFault_Permission; 2126 goto do_fault; 2127 } 2128 2129 /* If FEAT_HAFDBS has made changes, update the PTE. */ 2130 if (new_descriptor != descriptor) { 2131 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi); 2132 if (fi->type != ARMFault_None) { 2133 goto do_fault; 2134 } 2135 /* 2136 * I_YZSVV says that if the in-memory descriptor has changed, 2137 * then we must use the information in that new value 2138 * (which might include a different output address, different 2139 * attributes, or generate a fault). 2140 * Restart the handling of the descriptor value from scratch. 2141 */ 2142 if (new_descriptor != descriptor) { 2143 descriptor = new_descriptor; 2144 goto restart_atomic_update; 2145 } 2146 } 2147 2148 result->f.attrs.space = out_space; 2149 result->f.attrs.secure = arm_space_is_secure(out_space); 2150 2151 /* 2152 * For FEAT_LPA2 and effective DS, the SH field in the attributes 2153 * was re-purposed for output address bits. The SH attribute in 2154 * that case comes from TCR_ELx, which we extracted earlier. 2155 */ 2156 if (param.ds) { 2157 result->cacheattrs.shareability = param.sh; 2158 } else { 2159 result->cacheattrs.shareability = extract32(attrs, 8, 2); 2160 } 2161 2162 result->f.phys_addr = descaddr; 2163 result->f.lg_page_size = ctz64(page_size); 2164 return false; 2165 2166 do_translation_fault: 2167 fi->type = ARMFault_Translation; 2168 do_fault: 2169 if (fi->s1ptw) { 2170 /* Retain the existing stage 2 fi->level */ 2171 assert(fi->stage2); 2172 } else { 2173 fi->level = level; 2174 fi->stage2 = regime_is_stage2(mmu_idx); 2175 } 2176 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx); 2177 return true; 2178 } 2179 2180 static bool get_phys_addr_pmsav5(CPUARMState *env, 2181 S1Translate *ptw, 2182 uint32_t address, 2183 MMUAccessType access_type, 2184 GetPhysAddrResult *result, 2185 ARMMMUFaultInfo *fi) 2186 { 2187 int n; 2188 uint32_t mask; 2189 uint32_t base; 2190 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2191 bool is_user = regime_is_user(env, mmu_idx); 2192 2193 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 2194 /* MPU disabled. */ 2195 result->f.phys_addr = address; 2196 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2197 return false; 2198 } 2199 2200 result->f.phys_addr = address; 2201 for (n = 7; n >= 0; n--) { 2202 base = env->cp15.c6_region[n]; 2203 if ((base & 1) == 0) { 2204 continue; 2205 } 2206 mask = 1 << ((base >> 1) & 0x1f); 2207 /* Keep this shift separate from the above to avoid an 2208 (undefined) << 32. */ 2209 mask = (mask << 1) - 1; 2210 if (((base ^ address) & ~mask) == 0) { 2211 break; 2212 } 2213 } 2214 if (n < 0) { 2215 fi->type = ARMFault_Background; 2216 return true; 2217 } 2218 2219 if (access_type == MMU_INST_FETCH) { 2220 mask = env->cp15.pmsav5_insn_ap; 2221 } else { 2222 mask = env->cp15.pmsav5_data_ap; 2223 } 2224 mask = (mask >> (n * 4)) & 0xf; 2225 switch (mask) { 2226 case 0: 2227 fi->type = ARMFault_Permission; 2228 fi->level = 1; 2229 return true; 2230 case 1: 2231 if (is_user) { 2232 fi->type = ARMFault_Permission; 2233 fi->level = 1; 2234 return true; 2235 } 2236 result->f.prot = PAGE_READ | PAGE_WRITE; 2237 break; 2238 case 2: 2239 result->f.prot = PAGE_READ; 2240 if (!is_user) { 2241 result->f.prot |= PAGE_WRITE; 2242 } 2243 break; 2244 case 3: 2245 result->f.prot = PAGE_READ | PAGE_WRITE; 2246 break; 2247 case 5: 2248 if (is_user) { 2249 fi->type = ARMFault_Permission; 2250 fi->level = 1; 2251 return true; 2252 } 2253 result->f.prot = PAGE_READ; 2254 break; 2255 case 6: 2256 result->f.prot = PAGE_READ; 2257 break; 2258 default: 2259 /* Bad permission. */ 2260 fi->type = ARMFault_Permission; 2261 fi->level = 1; 2262 return true; 2263 } 2264 result->f.prot |= PAGE_EXEC; 2265 return false; 2266 } 2267 2268 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, 2269 int32_t address, uint8_t *prot) 2270 { 2271 if (!arm_feature(env, ARM_FEATURE_M)) { 2272 *prot = PAGE_READ | PAGE_WRITE; 2273 switch (address) { 2274 case 0xF0000000 ... 0xFFFFFFFF: 2275 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 2276 /* hivecs execing is ok */ 2277 *prot |= PAGE_EXEC; 2278 } 2279 break; 2280 case 0x00000000 ... 0x7FFFFFFF: 2281 *prot |= PAGE_EXEC; 2282 break; 2283 } 2284 } else { 2285 /* Default system address map for M profile cores. 2286 * The architecture specifies which regions are execute-never; 2287 * at the MPU level no other checks are defined. 2288 */ 2289 switch (address) { 2290 case 0x00000000 ... 0x1fffffff: /* ROM */ 2291 case 0x20000000 ... 0x3fffffff: /* SRAM */ 2292 case 0x60000000 ... 0x7fffffff: /* RAM */ 2293 case 0x80000000 ... 0x9fffffff: /* RAM */ 2294 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 2295 break; 2296 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 2297 case 0xa0000000 ... 0xbfffffff: /* Device */ 2298 case 0xc0000000 ... 0xdfffffff: /* Device */ 2299 case 0xe0000000 ... 0xffffffff: /* System */ 2300 *prot = PAGE_READ | PAGE_WRITE; 2301 break; 2302 default: 2303 g_assert_not_reached(); 2304 } 2305 } 2306 } 2307 2308 static bool m_is_ppb_region(CPUARMState *env, uint32_t address) 2309 { 2310 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 2311 return arm_feature(env, ARM_FEATURE_M) && 2312 extract32(address, 20, 12) == 0xe00; 2313 } 2314 2315 static bool m_is_system_region(CPUARMState *env, uint32_t address) 2316 { 2317 /* 2318 * True if address is in the M profile system region 2319 * 0xe0000000 - 0xffffffff 2320 */ 2321 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 2322 } 2323 2324 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, 2325 bool is_secure, bool is_user) 2326 { 2327 /* 2328 * Return true if we should use the default memory map as a 2329 * "background" region if there are no hits against any MPU regions. 2330 */ 2331 CPUARMState *env = &cpu->env; 2332 2333 if (is_user) { 2334 return false; 2335 } 2336 2337 if (arm_feature(env, ARM_FEATURE_M)) { 2338 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 2339 } 2340 2341 if (mmu_idx == ARMMMUIdx_Stage2) { 2342 return false; 2343 } 2344 2345 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 2346 } 2347 2348 static bool get_phys_addr_pmsav7(CPUARMState *env, 2349 S1Translate *ptw, 2350 uint32_t address, 2351 MMUAccessType access_type, 2352 GetPhysAddrResult *result, 2353 ARMMMUFaultInfo *fi) 2354 { 2355 ARMCPU *cpu = env_archcpu(env); 2356 int n; 2357 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2358 bool is_user = regime_is_user(env, mmu_idx); 2359 bool secure = arm_space_is_secure(ptw->in_space); 2360 2361 result->f.phys_addr = address; 2362 result->f.lg_page_size = TARGET_PAGE_BITS; 2363 result->f.prot = 0; 2364 2365 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) || 2366 m_is_ppb_region(env, address)) { 2367 /* 2368 * MPU disabled or M profile PPB access: use default memory map. 2369 * The other case which uses the default memory map in the 2370 * v7M ARM ARM pseudocode is exception vector reads from the vector 2371 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 2372 * which always does a direct read using address_space_ldl(), rather 2373 * than going via this function, so we don't need to check that here. 2374 */ 2375 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2376 } else { /* MPU enabled */ 2377 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 2378 /* region search */ 2379 uint32_t base = env->pmsav7.drbar[n]; 2380 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 2381 uint32_t rmask; 2382 bool srdis = false; 2383 2384 if (!(env->pmsav7.drsr[n] & 0x1)) { 2385 continue; 2386 } 2387 2388 if (!rsize) { 2389 qemu_log_mask(LOG_GUEST_ERROR, 2390 "DRSR[%d]: Rsize field cannot be 0\n", n); 2391 continue; 2392 } 2393 rsize++; 2394 rmask = (1ull << rsize) - 1; 2395 2396 if (base & rmask) { 2397 qemu_log_mask(LOG_GUEST_ERROR, 2398 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 2399 "to DRSR region size, mask = 0x%" PRIx32 "\n", 2400 n, base, rmask); 2401 continue; 2402 } 2403 2404 if (address < base || address > base + rmask) { 2405 /* 2406 * Address not in this region. We must check whether the 2407 * region covers addresses in the same page as our address. 2408 * In that case we must not report a size that covers the 2409 * whole page for a subsequent hit against a different MPU 2410 * region or the background region, because it would result in 2411 * incorrect TLB hits for subsequent accesses to addresses that 2412 * are in this MPU region. 2413 */ 2414 if (ranges_overlap(base, rmask, 2415 address & TARGET_PAGE_MASK, 2416 TARGET_PAGE_SIZE)) { 2417 result->f.lg_page_size = 0; 2418 } 2419 continue; 2420 } 2421 2422 /* Region matched */ 2423 2424 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 2425 int i, snd; 2426 uint32_t srdis_mask; 2427 2428 rsize -= 3; /* sub region size (power of 2) */ 2429 snd = ((address - base) >> rsize) & 0x7; 2430 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 2431 2432 srdis_mask = srdis ? 0x3 : 0x0; 2433 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 2434 /* 2435 * This will check in groups of 2, 4 and then 8, whether 2436 * the subregion bits are consistent. rsize is incremented 2437 * back up to give the region size, considering consistent 2438 * adjacent subregions as one region. Stop testing if rsize 2439 * is already big enough for an entire QEMU page. 2440 */ 2441 int snd_rounded = snd & ~(i - 1); 2442 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 2443 snd_rounded + 8, i); 2444 if (srdis_mask ^ srdis_multi) { 2445 break; 2446 } 2447 srdis_mask = (srdis_mask << i) | srdis_mask; 2448 rsize++; 2449 } 2450 } 2451 if (srdis) { 2452 continue; 2453 } 2454 if (rsize < TARGET_PAGE_BITS) { 2455 result->f.lg_page_size = rsize; 2456 } 2457 break; 2458 } 2459 2460 if (n == -1) { /* no hits */ 2461 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2462 /* background fault */ 2463 fi->type = ARMFault_Background; 2464 return true; 2465 } 2466 get_phys_addr_pmsav7_default(env, mmu_idx, address, 2467 &result->f.prot); 2468 } else { /* a MPU hit! */ 2469 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 2470 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 2471 2472 if (m_is_system_region(env, address)) { 2473 /* System space is always execute never */ 2474 xn = 1; 2475 } 2476 2477 if (is_user) { /* User mode AP bit decoding */ 2478 switch (ap) { 2479 case 0: 2480 case 1: 2481 case 5: 2482 break; /* no access */ 2483 case 3: 2484 result->f.prot |= PAGE_WRITE; 2485 /* fall through */ 2486 case 2: 2487 case 6: 2488 result->f.prot |= PAGE_READ | PAGE_EXEC; 2489 break; 2490 case 7: 2491 /* for v7M, same as 6; for R profile a reserved value */ 2492 if (arm_feature(env, ARM_FEATURE_M)) { 2493 result->f.prot |= PAGE_READ | PAGE_EXEC; 2494 break; 2495 } 2496 /* fall through */ 2497 default: 2498 qemu_log_mask(LOG_GUEST_ERROR, 2499 "DRACR[%d]: Bad value for AP bits: 0x%" 2500 PRIx32 "\n", n, ap); 2501 } 2502 } else { /* Priv. mode AP bits decoding */ 2503 switch (ap) { 2504 case 0: 2505 break; /* no access */ 2506 case 1: 2507 case 2: 2508 case 3: 2509 result->f.prot |= PAGE_WRITE; 2510 /* fall through */ 2511 case 5: 2512 case 6: 2513 result->f.prot |= PAGE_READ | PAGE_EXEC; 2514 break; 2515 case 7: 2516 /* for v7M, same as 6; for R profile a reserved value */ 2517 if (arm_feature(env, ARM_FEATURE_M)) { 2518 result->f.prot |= PAGE_READ | PAGE_EXEC; 2519 break; 2520 } 2521 /* fall through */ 2522 default: 2523 qemu_log_mask(LOG_GUEST_ERROR, 2524 "DRACR[%d]: Bad value for AP bits: 0x%" 2525 PRIx32 "\n", n, ap); 2526 } 2527 } 2528 2529 /* execute never */ 2530 if (xn) { 2531 result->f.prot &= ~PAGE_EXEC; 2532 } 2533 } 2534 } 2535 2536 fi->type = ARMFault_Permission; 2537 fi->level = 1; 2538 return !(result->f.prot & (1 << access_type)); 2539 } 2540 2541 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx, 2542 uint32_t secure) 2543 { 2544 if (regime_el(env, mmu_idx) == 2) { 2545 return env->pmsav8.hprbar; 2546 } else { 2547 return env->pmsav8.rbar[secure]; 2548 } 2549 } 2550 2551 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx, 2552 uint32_t secure) 2553 { 2554 if (regime_el(env, mmu_idx) == 2) { 2555 return env->pmsav8.hprlar; 2556 } else { 2557 return env->pmsav8.rlar[secure]; 2558 } 2559 } 2560 2561 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 2562 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2563 bool secure, GetPhysAddrResult *result, 2564 ARMMMUFaultInfo *fi, uint32_t *mregion) 2565 { 2566 /* 2567 * Perform a PMSAv8 MPU lookup (without also doing the SAU check 2568 * that a full phys-to-virt translation does). 2569 * mregion is (if not NULL) set to the region number which matched, 2570 * or -1 if no region number is returned (MPU off, address did not 2571 * hit a region, address hit in multiple regions). 2572 * If the region hit doesn't cover the entire TARGET_PAGE the address 2573 * is within, then we set the result page_size to 1 to force the 2574 * memory system to use a subpage. 2575 */ 2576 ARMCPU *cpu = env_archcpu(env); 2577 bool is_user = regime_is_user(env, mmu_idx); 2578 int n; 2579 int matchregion = -1; 2580 bool hit = false; 2581 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2582 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2583 int region_counter; 2584 2585 if (regime_el(env, mmu_idx) == 2) { 2586 region_counter = cpu->pmsav8r_hdregion; 2587 } else { 2588 region_counter = cpu->pmsav7_dregion; 2589 } 2590 2591 result->f.lg_page_size = TARGET_PAGE_BITS; 2592 result->f.phys_addr = address; 2593 result->f.prot = 0; 2594 if (mregion) { 2595 *mregion = -1; 2596 } 2597 2598 if (mmu_idx == ARMMMUIdx_Stage2) { 2599 fi->stage2 = true; 2600 } 2601 2602 /* 2603 * Unlike the ARM ARM pseudocode, we don't need to check whether this 2604 * was an exception vector read from the vector table (which is always 2605 * done using the default system address map), because those accesses 2606 * are done in arm_v7m_load_vector(), which always does a direct 2607 * read using address_space_ldl(), rather than going via this function. 2608 */ 2609 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) { 2610 /* MPU disabled */ 2611 hit = true; 2612 } else if (m_is_ppb_region(env, address)) { 2613 hit = true; 2614 } else { 2615 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) { 2616 hit = true; 2617 } 2618 2619 uint32_t bitmask; 2620 if (arm_feature(env, ARM_FEATURE_M)) { 2621 bitmask = 0x1f; 2622 } else { 2623 bitmask = 0x3f; 2624 fi->level = 0; 2625 } 2626 2627 for (n = region_counter - 1; n >= 0; n--) { 2628 /* region search */ 2629 /* 2630 * Note that the base address is bits [31:x] from the register 2631 * with bits [x-1:0] all zeroes, but the limit address is bits 2632 * [31:x] from the register with bits [x:0] all ones. Where x is 2633 * 5 for Cortex-M and 6 for Cortex-R 2634 */ 2635 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask; 2636 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask; 2637 2638 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) { 2639 /* Region disabled */ 2640 continue; 2641 } 2642 2643 if (address < base || address > limit) { 2644 /* 2645 * Address not in this region. We must check whether the 2646 * region covers addresses in the same page as our address. 2647 * In that case we must not report a size that covers the 2648 * whole page for a subsequent hit against a different MPU 2649 * region or the background region, because it would result in 2650 * incorrect TLB hits for subsequent accesses to addresses that 2651 * are in this MPU region. 2652 */ 2653 if (limit >= base && 2654 ranges_overlap(base, limit - base + 1, 2655 addr_page_base, 2656 TARGET_PAGE_SIZE)) { 2657 result->f.lg_page_size = 0; 2658 } 2659 continue; 2660 } 2661 2662 if (base > addr_page_base || limit < addr_page_limit) { 2663 result->f.lg_page_size = 0; 2664 } 2665 2666 if (matchregion != -1) { 2667 /* 2668 * Multiple regions match -- always a failure (unlike 2669 * PMSAv7 where highest-numbered-region wins) 2670 */ 2671 fi->type = ARMFault_Permission; 2672 if (arm_feature(env, ARM_FEATURE_M)) { 2673 fi->level = 1; 2674 } 2675 return true; 2676 } 2677 2678 matchregion = n; 2679 hit = true; 2680 } 2681 } 2682 2683 if (!hit) { 2684 if (arm_feature(env, ARM_FEATURE_M)) { 2685 fi->type = ARMFault_Background; 2686 } else { 2687 fi->type = ARMFault_Permission; 2688 } 2689 return true; 2690 } 2691 2692 if (matchregion == -1) { 2693 /* hit using the background region */ 2694 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot); 2695 } else { 2696 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion]; 2697 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion]; 2698 uint32_t ap = extract32(matched_rbar, 1, 2); 2699 uint32_t xn = extract32(matched_rbar, 0, 1); 2700 bool pxn = false; 2701 2702 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 2703 pxn = extract32(matched_rlar, 4, 1); 2704 } 2705 2706 if (m_is_system_region(env, address)) { 2707 /* System space is always execute never */ 2708 xn = 1; 2709 } 2710 2711 if (regime_el(env, mmu_idx) == 2) { 2712 result->f.prot = simple_ap_to_rw_prot_is_user(ap, 2713 mmu_idx != ARMMMUIdx_E2); 2714 } else { 2715 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 2716 } 2717 2718 if (!arm_feature(env, ARM_FEATURE_M)) { 2719 uint8_t attrindx = extract32(matched_rlar, 1, 3); 2720 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 2721 uint8_t sh = extract32(matched_rlar, 3, 2); 2722 2723 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN && 2724 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) { 2725 xn = 0x1; 2726 } 2727 2728 if ((regime_el(env, mmu_idx) == 1) && 2729 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) { 2730 pxn = 0x1; 2731 } 2732 2733 result->cacheattrs.is_s2_format = false; 2734 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8); 2735 result->cacheattrs.shareability = sh; 2736 } 2737 2738 if (result->f.prot && !xn && !(pxn && !is_user)) { 2739 result->f.prot |= PAGE_EXEC; 2740 } 2741 2742 if (mregion) { 2743 *mregion = matchregion; 2744 } 2745 } 2746 2747 fi->type = ARMFault_Permission; 2748 if (arm_feature(env, ARM_FEATURE_M)) { 2749 fi->level = 1; 2750 } 2751 return !(result->f.prot & (1 << access_type)); 2752 } 2753 2754 static bool v8m_is_sau_exempt(CPUARMState *env, 2755 uint32_t address, MMUAccessType access_type) 2756 { 2757 /* 2758 * The architecture specifies that certain address ranges are 2759 * exempt from v8M SAU/IDAU checks. 2760 */ 2761 return 2762 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 2763 (address >= 0xe0000000 && address <= 0xe0002fff) || 2764 (address >= 0xe000e000 && address <= 0xe000efff) || 2765 (address >= 0xe002e000 && address <= 0xe002efff) || 2766 (address >= 0xe0040000 && address <= 0xe0041fff) || 2767 (address >= 0xe00ff000 && address <= 0xe00fffff); 2768 } 2769 2770 void v8m_security_lookup(CPUARMState *env, uint32_t address, 2771 MMUAccessType access_type, ARMMMUIdx mmu_idx, 2772 bool is_secure, V8M_SAttributes *sattrs) 2773 { 2774 /* 2775 * Look up the security attributes for this address. Compare the 2776 * pseudocode SecurityCheck() function. 2777 * We assume the caller has zero-initialized *sattrs. 2778 */ 2779 ARMCPU *cpu = env_archcpu(env); 2780 int r; 2781 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 2782 int idau_region = IREGION_NOTVALID; 2783 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 2784 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 2785 2786 if (cpu->idau) { 2787 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 2788 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 2789 2790 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 2791 &idau_nsc); 2792 } 2793 2794 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 2795 /* 0xf0000000..0xffffffff is always S for insn fetches */ 2796 return; 2797 } 2798 2799 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 2800 sattrs->ns = !is_secure; 2801 return; 2802 } 2803 2804 if (idau_region != IREGION_NOTVALID) { 2805 sattrs->irvalid = true; 2806 sattrs->iregion = idau_region; 2807 } 2808 2809 switch (env->sau.ctrl & 3) { 2810 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 2811 break; 2812 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 2813 sattrs->ns = true; 2814 break; 2815 default: /* SAU.ENABLE == 1 */ 2816 for (r = 0; r < cpu->sau_sregion; r++) { 2817 if (env->sau.rlar[r] & 1) { 2818 uint32_t base = env->sau.rbar[r] & ~0x1f; 2819 uint32_t limit = env->sau.rlar[r] | 0x1f; 2820 2821 if (base <= address && limit >= address) { 2822 if (base > addr_page_base || limit < addr_page_limit) { 2823 sattrs->subpage = true; 2824 } 2825 if (sattrs->srvalid) { 2826 /* 2827 * If we hit in more than one region then we must report 2828 * as Secure, not NS-Callable, with no valid region 2829 * number info. 2830 */ 2831 sattrs->ns = false; 2832 sattrs->nsc = false; 2833 sattrs->sregion = 0; 2834 sattrs->srvalid = false; 2835 break; 2836 } else { 2837 if (env->sau.rlar[r] & 2) { 2838 sattrs->nsc = true; 2839 } else { 2840 sattrs->ns = true; 2841 } 2842 sattrs->srvalid = true; 2843 sattrs->sregion = r; 2844 } 2845 } else { 2846 /* 2847 * Address not in this region. We must check whether the 2848 * region covers addresses in the same page as our address. 2849 * In that case we must not report a size that covers the 2850 * whole page for a subsequent hit against a different MPU 2851 * region or the background region, because it would result 2852 * in incorrect TLB hits for subsequent accesses to 2853 * addresses that are in this MPU region. 2854 */ 2855 if (limit >= base && 2856 ranges_overlap(base, limit - base + 1, 2857 addr_page_base, 2858 TARGET_PAGE_SIZE)) { 2859 sattrs->subpage = true; 2860 } 2861 } 2862 } 2863 } 2864 break; 2865 } 2866 2867 /* 2868 * The IDAU will override the SAU lookup results if it specifies 2869 * higher security than the SAU does. 2870 */ 2871 if (!idau_ns) { 2872 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 2873 sattrs->ns = false; 2874 sattrs->nsc = idau_nsc; 2875 } 2876 } 2877 } 2878 2879 static bool get_phys_addr_pmsav8(CPUARMState *env, 2880 S1Translate *ptw, 2881 uint32_t address, 2882 MMUAccessType access_type, 2883 GetPhysAddrResult *result, 2884 ARMMMUFaultInfo *fi) 2885 { 2886 V8M_SAttributes sattrs = {}; 2887 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 2888 bool secure = arm_space_is_secure(ptw->in_space); 2889 bool ret; 2890 2891 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2892 v8m_security_lookup(env, address, access_type, mmu_idx, 2893 secure, &sattrs); 2894 if (access_type == MMU_INST_FETCH) { 2895 /* 2896 * Instruction fetches always use the MMU bank and the 2897 * transaction attribute determined by the fetch address, 2898 * regardless of CPU state. This is painful for QEMU 2899 * to handle, because it would mean we need to encode 2900 * into the mmu_idx not just the (user, negpri) information 2901 * for the current security state but also that for the 2902 * other security state, which would balloon the number 2903 * of mmu_idx values needed alarmingly. 2904 * Fortunately we can avoid this because it's not actually 2905 * possible to arbitrarily execute code from memory with 2906 * the wrong security attribute: it will always generate 2907 * an exception of some kind or another, apart from the 2908 * special case of an NS CPU executing an SG instruction 2909 * in S&NSC memory. So we always just fail the translation 2910 * here and sort things out in the exception handler 2911 * (including possibly emulating an SG instruction). 2912 */ 2913 if (sattrs.ns != !secure) { 2914 if (sattrs.nsc) { 2915 fi->type = ARMFault_QEMU_NSCExec; 2916 } else { 2917 fi->type = ARMFault_QEMU_SFault; 2918 } 2919 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2920 result->f.phys_addr = address; 2921 result->f.prot = 0; 2922 return true; 2923 } 2924 } else { 2925 /* 2926 * For data accesses we always use the MMU bank indicated 2927 * by the current CPU state, but the security attributes 2928 * might downgrade a secure access to nonsecure. 2929 */ 2930 if (sattrs.ns) { 2931 result->f.attrs.secure = false; 2932 result->f.attrs.space = ARMSS_NonSecure; 2933 } else if (!secure) { 2934 /* 2935 * NS access to S memory must fault. 2936 * Architecturally we should first check whether the 2937 * MPU information for this address indicates that we 2938 * are doing an unaligned access to Device memory, which 2939 * should generate a UsageFault instead. QEMU does not 2940 * currently check for that kind of unaligned access though. 2941 * If we added it we would need to do so as a special case 2942 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 2943 */ 2944 fi->type = ARMFault_QEMU_SFault; 2945 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS; 2946 result->f.phys_addr = address; 2947 result->f.prot = 0; 2948 return true; 2949 } 2950 } 2951 } 2952 2953 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure, 2954 result, fi, NULL); 2955 if (sattrs.subpage) { 2956 result->f.lg_page_size = 0; 2957 } 2958 return ret; 2959 } 2960 2961 /* 2962 * Translate from the 4-bit stage 2 representation of 2963 * memory attributes (without cache-allocation hints) to 2964 * the 8-bit representation of the stage 1 MAIR registers 2965 * (which includes allocation hints). 2966 * 2967 * ref: shared/translation/attrs/S2AttrDecode() 2968 * .../S2ConvertAttrsHints() 2969 */ 2970 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs) 2971 { 2972 uint8_t hiattr = extract32(s2attrs, 2, 2); 2973 uint8_t loattr = extract32(s2attrs, 0, 2); 2974 uint8_t hihint = 0, lohint = 0; 2975 2976 if (hiattr != 0) { /* normal memory */ 2977 if (hcr & HCR_CD) { /* cache disabled */ 2978 hiattr = loattr = 1; /* non-cacheable */ 2979 } else { 2980 if (hiattr != 1) { /* Write-through or write-back */ 2981 hihint = 3; /* RW allocate */ 2982 } 2983 if (loattr != 1) { /* Write-through or write-back */ 2984 lohint = 3; /* RW allocate */ 2985 } 2986 } 2987 } 2988 2989 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 2990 } 2991 2992 /* 2993 * Combine either inner or outer cacheability attributes for normal 2994 * memory, according to table D4-42 and pseudocode procedure 2995 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 2996 * 2997 * NB: only stage 1 includes allocation hints (RW bits), leading to 2998 * some asymmetry. 2999 */ 3000 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 3001 { 3002 if (s1 == 4 || s2 == 4) { 3003 /* non-cacheable has precedence */ 3004 return 4; 3005 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 3006 /* stage 1 write-through takes precedence */ 3007 return s1; 3008 } else if (extract32(s2, 2, 2) == 2) { 3009 /* stage 2 write-through takes precedence, but the allocation hint 3010 * is still taken from stage 1 3011 */ 3012 return (2 << 2) | extract32(s1, 0, 2); 3013 } else { /* write-back */ 3014 return s1; 3015 } 3016 } 3017 3018 /* 3019 * Combine the memory type and cacheability attributes of 3020 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 3021 * combined attributes in MAIR_EL1 format. 3022 */ 3023 static uint8_t combined_attrs_nofwb(uint64_t hcr, 3024 ARMCacheAttrs s1, ARMCacheAttrs s2) 3025 { 3026 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 3027 3028 if (s2.is_s2_format) { 3029 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs); 3030 } else { 3031 s2_mair_attrs = s2.attrs; 3032 } 3033 3034 s1lo = extract32(s1.attrs, 0, 4); 3035 s2lo = extract32(s2_mair_attrs, 0, 4); 3036 s1hi = extract32(s1.attrs, 4, 4); 3037 s2hi = extract32(s2_mair_attrs, 4, 4); 3038 3039 /* Combine memory type and cacheability attributes */ 3040 if (s1hi == 0 || s2hi == 0) { 3041 /* Device has precedence over normal */ 3042 if (s1lo == 0 || s2lo == 0) { 3043 /* nGnRnE has precedence over anything */ 3044 ret_attrs = 0; 3045 } else if (s1lo == 4 || s2lo == 4) { 3046 /* non-Reordering has precedence over Reordering */ 3047 ret_attrs = 4; /* nGnRE */ 3048 } else if (s1lo == 8 || s2lo == 8) { 3049 /* non-Gathering has precedence over Gathering */ 3050 ret_attrs = 8; /* nGRE */ 3051 } else { 3052 ret_attrs = 0xc; /* GRE */ 3053 } 3054 } else { /* Normal memory */ 3055 /* Outer/inner cacheability combine independently */ 3056 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 3057 | combine_cacheattr_nibble(s1lo, s2lo); 3058 } 3059 return ret_attrs; 3060 } 3061 3062 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 3063 { 3064 /* 3065 * Given the 4 bits specifying the outer or inner cacheability 3066 * in MAIR format, return a value specifying Normal Write-Back, 3067 * with the allocation and transient hints taken from the input 3068 * if the input specified some kind of cacheable attribute. 3069 */ 3070 if (attr == 0 || attr == 4) { 3071 /* 3072 * 0 == an UNPREDICTABLE encoding 3073 * 4 == Non-cacheable 3074 * Either way, force Write-Back RW allocate non-transient 3075 */ 3076 return 0xf; 3077 } 3078 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 3079 return attr | 4; 3080 } 3081 3082 /* 3083 * Combine the memory type and cacheability attributes of 3084 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 3085 * combined attributes in MAIR_EL1 format. 3086 */ 3087 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2) 3088 { 3089 assert(s2.is_s2_format && !s1.is_s2_format); 3090 3091 switch (s2.attrs) { 3092 case 7: 3093 /* Use stage 1 attributes */ 3094 return s1.attrs; 3095 case 6: 3096 /* 3097 * Force Normal Write-Back. Note that if S1 is Normal cacheable 3098 * then we take the allocation hints from it; otherwise it is 3099 * RW allocate, non-transient. 3100 */ 3101 if ((s1.attrs & 0xf0) == 0) { 3102 /* S1 is Device */ 3103 return 0xff; 3104 } 3105 /* Need to check the Inner and Outer nibbles separately */ 3106 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 3107 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 3108 case 5: 3109 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 3110 if ((s1.attrs & 0xf0) == 0) { 3111 return s1.attrs; 3112 } 3113 return 0x44; 3114 case 0 ... 3: 3115 /* Force Device, of subtype specified by S2 */ 3116 return s2.attrs << 2; 3117 default: 3118 /* 3119 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 3120 * arbitrarily force Device. 3121 */ 3122 return 0; 3123 } 3124 } 3125 3126 /* 3127 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 3128 * and CombineS1S2Desc() 3129 * 3130 * @env: CPUARMState 3131 * @s1: Attributes from stage 1 walk 3132 * @s2: Attributes from stage 2 walk 3133 */ 3134 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr, 3135 ARMCacheAttrs s1, ARMCacheAttrs s2) 3136 { 3137 ARMCacheAttrs ret; 3138 bool tagged = false; 3139 3140 assert(!s1.is_s2_format); 3141 ret.is_s2_format = false; 3142 3143 if (s1.attrs == 0xf0) { 3144 tagged = true; 3145 s1.attrs = 0xff; 3146 } 3147 3148 /* Combine shareability attributes (table D4-43) */ 3149 if (s1.shareability == 2 || s2.shareability == 2) { 3150 /* if either are outer-shareable, the result is outer-shareable */ 3151 ret.shareability = 2; 3152 } else if (s1.shareability == 3 || s2.shareability == 3) { 3153 /* if either are inner-shareable, the result is inner-shareable */ 3154 ret.shareability = 3; 3155 } else { 3156 /* both non-shareable */ 3157 ret.shareability = 0; 3158 } 3159 3160 /* Combine memory type and cacheability attributes */ 3161 if (hcr & HCR_FWB) { 3162 ret.attrs = combined_attrs_fwb(s1, s2); 3163 } else { 3164 ret.attrs = combined_attrs_nofwb(hcr, s1, s2); 3165 } 3166 3167 /* 3168 * Any location for which the resultant memory type is any 3169 * type of Device memory is always treated as Outer Shareable. 3170 * Any location for which the resultant memory type is Normal 3171 * Inner Non-cacheable, Outer Non-cacheable is always treated 3172 * as Outer Shareable. 3173 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 3174 */ 3175 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 3176 ret.shareability = 2; 3177 } 3178 3179 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 3180 if (tagged && ret.attrs == 0xff) { 3181 ret.attrs = 0xf0; 3182 } 3183 3184 return ret; 3185 } 3186 3187 /* 3188 * MMU disabled. S1 addresses within aa64 translation regimes are 3189 * still checked for bounds -- see AArch64.S1DisabledOutput(). 3190 */ 3191 static bool get_phys_addr_disabled(CPUARMState *env, 3192 S1Translate *ptw, 3193 vaddr address, 3194 MMUAccessType access_type, 3195 GetPhysAddrResult *result, 3196 ARMMMUFaultInfo *fi) 3197 { 3198 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3199 uint8_t memattr = 0x00; /* Device nGnRnE */ 3200 uint8_t shareability = 0; /* non-shareable */ 3201 int r_el; 3202 3203 switch (mmu_idx) { 3204 case ARMMMUIdx_Stage2: 3205 case ARMMMUIdx_Stage2_S: 3206 case ARMMMUIdx_Phys_S: 3207 case ARMMMUIdx_Phys_NS: 3208 case ARMMMUIdx_Phys_Root: 3209 case ARMMMUIdx_Phys_Realm: 3210 break; 3211 3212 default: 3213 r_el = regime_el(env, mmu_idx); 3214 if (arm_el_is_aa64(env, r_el)) { 3215 int pamax = arm_pamax(env_archcpu(env)); 3216 uint64_t tcr = env->cp15.tcr_el[r_el]; 3217 int addrtop, tbi; 3218 3219 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 3220 if (access_type == MMU_INST_FETCH) { 3221 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 3222 } 3223 tbi = (tbi >> extract64(address, 55, 1)) & 1; 3224 addrtop = (tbi ? 55 : 63); 3225 3226 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 3227 fi->type = ARMFault_AddressSize; 3228 fi->level = 0; 3229 fi->stage2 = false; 3230 return 1; 3231 } 3232 3233 /* 3234 * When TBI is disabled, we've just validated that all of the 3235 * bits above PAMax are zero, so logically we only need to 3236 * clear the top byte for TBI. But it's clearer to follow 3237 * the pseudocode set of addrdesc.paddress. 3238 */ 3239 address = extract64(address, 0, 52); 3240 } 3241 3242 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 3243 if (r_el == 1) { 3244 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space); 3245 if (hcr & HCR_DC) { 3246 if (hcr & HCR_DCT) { 3247 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 3248 } else { 3249 memattr = 0xff; /* Normal, WB, RWA */ 3250 } 3251 } 3252 } 3253 if (memattr == 0) { 3254 if (access_type == MMU_INST_FETCH) { 3255 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 3256 memattr = 0xee; /* Normal, WT, RA, NT */ 3257 } else { 3258 memattr = 0x44; /* Normal, NC, No */ 3259 } 3260 } 3261 shareability = 2; /* outer shareable */ 3262 } 3263 result->cacheattrs.is_s2_format = false; 3264 break; 3265 } 3266 3267 result->f.phys_addr = address; 3268 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 3269 result->f.lg_page_size = TARGET_PAGE_BITS; 3270 result->cacheattrs.shareability = shareability; 3271 result->cacheattrs.attrs = memattr; 3272 return false; 3273 } 3274 3275 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw, 3276 vaddr address, 3277 MMUAccessType access_type, MemOp memop, 3278 GetPhysAddrResult *result, 3279 ARMMMUFaultInfo *fi) 3280 { 3281 hwaddr ipa; 3282 int s1_prot, s1_lgpgsz; 3283 ARMSecuritySpace in_space = ptw->in_space; 3284 bool ret, ipa_secure, s1_guarded; 3285 ARMCacheAttrs cacheattrs1; 3286 ARMSecuritySpace ipa_space; 3287 uint64_t hcr; 3288 3289 ret = get_phys_addr_nogpc(env, ptw, address, access_type, 3290 memop, result, fi); 3291 3292 /* If S1 fails, return early. */ 3293 if (ret) { 3294 return ret; 3295 } 3296 3297 ipa = result->f.phys_addr; 3298 ipa_secure = result->f.attrs.secure; 3299 ipa_space = result->f.attrs.space; 3300 3301 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0; 3302 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3303 ptw->in_space = ipa_space; 3304 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx); 3305 3306 /* 3307 * S1 is done, now do S2 translation. 3308 * Save the stage1 results so that we may merge prot and cacheattrs later. 3309 */ 3310 s1_prot = result->f.prot; 3311 s1_lgpgsz = result->f.lg_page_size; 3312 s1_guarded = result->f.extra.arm.guarded; 3313 cacheattrs1 = result->cacheattrs; 3314 memset(result, 0, sizeof(*result)); 3315 3316 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, 3317 memop, result, fi); 3318 fi->s2addr = ipa; 3319 3320 /* Combine the S1 and S2 perms. */ 3321 result->f.prot &= s1_prot; 3322 3323 /* If S2 fails, return early. */ 3324 if (ret) { 3325 return ret; 3326 } 3327 3328 /* 3329 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE, 3330 * this means "don't put this in the TLB"; in this case, return a 3331 * result with lg_page_size == 0 to achieve that. Otherwise, 3332 * use the maximum of the S1 & S2 page size, so that invalidation 3333 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though 3334 * we know the combined result permissions etc only cover the minimum 3335 * of the S1 and S2 page size, because we know that the common TLB code 3336 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE, 3337 * and passing a larger page size value only affects invalidations.) 3338 */ 3339 if (result->f.lg_page_size < TARGET_PAGE_BITS || 3340 s1_lgpgsz < TARGET_PAGE_BITS) { 3341 result->f.lg_page_size = 0; 3342 } else if (result->f.lg_page_size < s1_lgpgsz) { 3343 result->f.lg_page_size = s1_lgpgsz; 3344 } 3345 3346 /* Combine the S1 and S2 cache attributes. */ 3347 hcr = arm_hcr_el2_eff_secstate(env, in_space); 3348 if (hcr & HCR_DC) { 3349 /* 3350 * HCR.DC forces the first stage attributes to 3351 * Normal Non-Shareable, 3352 * Inner Write-Back Read-Allocate Write-Allocate, 3353 * Outer Write-Back Read-Allocate Write-Allocate. 3354 * Do not overwrite Tagged within attrs. 3355 */ 3356 if (cacheattrs1.attrs != 0xf0) { 3357 cacheattrs1.attrs = 0xff; 3358 } 3359 cacheattrs1.shareability = 0; 3360 } 3361 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1, 3362 result->cacheattrs); 3363 3364 /* No BTI GP information in stage 2, we just use the S1 value */ 3365 result->f.extra.arm.guarded = s1_guarded; 3366 3367 /* 3368 * Check if IPA translates to secure or non-secure PA space. 3369 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA. 3370 */ 3371 if (in_space == ARMSS_Secure) { 3372 result->f.attrs.secure = 3373 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)) 3374 && (ipa_secure 3375 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))); 3376 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure); 3377 } 3378 3379 return false; 3380 } 3381 3382 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw, 3383 vaddr address, 3384 MMUAccessType access_type, MemOp memop, 3385 GetPhysAddrResult *result, 3386 ARMMMUFaultInfo *fi) 3387 { 3388 ARMMMUIdx mmu_idx = ptw->in_mmu_idx; 3389 ARMMMUIdx s1_mmu_idx; 3390 3391 /* 3392 * The page table entries may downgrade Secure to NonSecure, but 3393 * cannot upgrade a NonSecure translation regime's attributes 3394 * to Secure or Realm. 3395 */ 3396 result->f.attrs.space = ptw->in_space; 3397 result->f.attrs.secure = arm_space_is_secure(ptw->in_space); 3398 3399 switch (mmu_idx) { 3400 case ARMMMUIdx_Phys_S: 3401 case ARMMMUIdx_Phys_NS: 3402 case ARMMMUIdx_Phys_Root: 3403 case ARMMMUIdx_Phys_Realm: 3404 /* Checking Phys early avoids special casing later vs regime_el. */ 3405 return get_phys_addr_disabled(env, ptw, address, access_type, 3406 result, fi); 3407 3408 case ARMMMUIdx_Stage1_E0: 3409 case ARMMMUIdx_Stage1_E1: 3410 case ARMMMUIdx_Stage1_E1_PAN: 3411 /* 3412 * First stage lookup uses second stage for ptw; only 3413 * Secure has both S and NS IPA and starts with Stage2_S. 3414 */ 3415 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ? 3416 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 3417 break; 3418 3419 case ARMMMUIdx_Stage2: 3420 case ARMMMUIdx_Stage2_S: 3421 /* 3422 * Second stage lookup uses physical for ptw; whether this is S or 3423 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for 3424 * the Secure EL2&0 regime. 3425 */ 3426 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx); 3427 break; 3428 3429 case ARMMMUIdx_E10_0: 3430 s1_mmu_idx = ARMMMUIdx_Stage1_E0; 3431 goto do_twostage; 3432 case ARMMMUIdx_E10_1: 3433 s1_mmu_idx = ARMMMUIdx_Stage1_E1; 3434 goto do_twostage; 3435 case ARMMMUIdx_E10_1_PAN: 3436 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3437 do_twostage: 3438 /* 3439 * Call ourselves recursively to do the stage 1 and then stage 2 3440 * translations if mmu_idx is a two-stage regime, and EL2 present. 3441 * Otherwise, a stage1+stage2 translation is just stage 1. 3442 */ 3443 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx; 3444 if (arm_feature(env, ARM_FEATURE_EL2) && 3445 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) { 3446 return get_phys_addr_twostage(env, ptw, address, access_type, 3447 memop, result, fi); 3448 } 3449 /* fall through */ 3450 3451 default: 3452 /* Single stage uses physical for ptw. */ 3453 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space); 3454 break; 3455 } 3456 3457 result->f.attrs.user = regime_is_user(env, mmu_idx); 3458 3459 /* 3460 * Fast Context Switch Extension. This doesn't exist at all in v8. 3461 * In v7 and earlier it affects all stage 1 translations. 3462 */ 3463 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 3464 && !arm_feature(env, ARM_FEATURE_V8)) { 3465 if (regime_el(env, mmu_idx) == 3) { 3466 address += env->cp15.fcseidr_s; 3467 } else { 3468 address += env->cp15.fcseidr_ns; 3469 } 3470 } 3471 3472 if (arm_feature(env, ARM_FEATURE_PMSA)) { 3473 bool ret; 3474 result->f.lg_page_size = TARGET_PAGE_BITS; 3475 3476 if (arm_feature(env, ARM_FEATURE_V8)) { 3477 /* PMSAv8 */ 3478 ret = get_phys_addr_pmsav8(env, ptw, address, access_type, 3479 result, fi); 3480 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3481 /* PMSAv7 */ 3482 ret = get_phys_addr_pmsav7(env, ptw, address, access_type, 3483 result, fi); 3484 } else { 3485 /* Pre-v7 MPU */ 3486 ret = get_phys_addr_pmsav5(env, ptw, address, access_type, 3487 result, fi); 3488 } 3489 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 3490 " mmu_idx %u -> %s (prot %c%c%c)\n", 3491 access_type == MMU_DATA_LOAD ? "reading" : 3492 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 3493 (uint32_t)address, mmu_idx, 3494 ret ? "Miss" : "Hit", 3495 result->f.prot & PAGE_READ ? 'r' : '-', 3496 result->f.prot & PAGE_WRITE ? 'w' : '-', 3497 result->f.prot & PAGE_EXEC ? 'x' : '-'); 3498 3499 return ret; 3500 } 3501 3502 /* Definitely a real MMU, not an MPU */ 3503 3504 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) { 3505 return get_phys_addr_disabled(env, ptw, address, access_type, 3506 result, fi); 3507 } 3508 3509 if (regime_using_lpae_format(env, mmu_idx)) { 3510 return get_phys_addr_lpae(env, ptw, address, access_type, 3511 memop, result, fi); 3512 } else if (arm_feature(env, ARM_FEATURE_V7) || 3513 regime_sctlr(env, mmu_idx) & SCTLR_XP) { 3514 return get_phys_addr_v6(env, ptw, address, access_type, result, fi); 3515 } else { 3516 return get_phys_addr_v5(env, ptw, address, access_type, result, fi); 3517 } 3518 } 3519 3520 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw, 3521 vaddr address, 3522 MMUAccessType access_type, MemOp memop, 3523 GetPhysAddrResult *result, 3524 ARMMMUFaultInfo *fi) 3525 { 3526 if (get_phys_addr_nogpc(env, ptw, address, access_type, 3527 memop, result, fi)) { 3528 return true; 3529 } 3530 if (!granule_protection_check(env, result->f.phys_addr, 3531 result->f.attrs.space, fi)) { 3532 fi->type = ARMFault_GPCFOnOutput; 3533 return true; 3534 } 3535 return false; 3536 } 3537 3538 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address, 3539 MMUAccessType access_type, MemOp memop, 3540 ARMMMUIdx mmu_idx, ARMSecuritySpace space, 3541 GetPhysAddrResult *result, 3542 ARMMMUFaultInfo *fi) 3543 { 3544 S1Translate ptw = { 3545 .in_mmu_idx = mmu_idx, 3546 .in_space = space, 3547 }; 3548 return get_phys_addr_nogpc(env, &ptw, address, access_type, 3549 memop, result, fi); 3550 } 3551 3552 bool get_phys_addr(CPUARMState *env, vaddr address, 3553 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx, 3554 GetPhysAddrResult *result, ARMMMUFaultInfo *fi) 3555 { 3556 S1Translate ptw = { 3557 .in_mmu_idx = mmu_idx, 3558 }; 3559 ARMSecuritySpace ss; 3560 3561 switch (mmu_idx) { 3562 case ARMMMUIdx_E10_0: 3563 case ARMMMUIdx_E10_1: 3564 case ARMMMUIdx_E10_1_PAN: 3565 case ARMMMUIdx_E20_0: 3566 case ARMMMUIdx_E20_2: 3567 case ARMMMUIdx_E20_2_PAN: 3568 case ARMMMUIdx_Stage1_E0: 3569 case ARMMMUIdx_Stage1_E1: 3570 case ARMMMUIdx_Stage1_E1_PAN: 3571 case ARMMMUIdx_E2: 3572 ss = arm_security_space_below_el3(env); 3573 break; 3574 case ARMMMUIdx_Stage2: 3575 /* 3576 * For Secure EL2, we need this index to be NonSecure; 3577 * otherwise this will already be NonSecure or Realm. 3578 */ 3579 ss = arm_security_space_below_el3(env); 3580 if (ss == ARMSS_Secure) { 3581 ss = ARMSS_NonSecure; 3582 } 3583 break; 3584 case ARMMMUIdx_Phys_NS: 3585 case ARMMMUIdx_MPrivNegPri: 3586 case ARMMMUIdx_MUserNegPri: 3587 case ARMMMUIdx_MPriv: 3588 case ARMMMUIdx_MUser: 3589 ss = ARMSS_NonSecure; 3590 break; 3591 case ARMMMUIdx_Stage2_S: 3592 case ARMMMUIdx_Phys_S: 3593 case ARMMMUIdx_MSPrivNegPri: 3594 case ARMMMUIdx_MSUserNegPri: 3595 case ARMMMUIdx_MSPriv: 3596 case ARMMMUIdx_MSUser: 3597 ss = ARMSS_Secure; 3598 break; 3599 case ARMMMUIdx_E3: 3600 case ARMMMUIdx_E30_0: 3601 case ARMMMUIdx_E30_3_PAN: 3602 if (arm_feature(env, ARM_FEATURE_AARCH64) && 3603 cpu_isar_feature(aa64_rme, env_archcpu(env))) { 3604 ss = ARMSS_Root; 3605 } else { 3606 ss = ARMSS_Secure; 3607 } 3608 break; 3609 case ARMMMUIdx_Phys_Root: 3610 ss = ARMSS_Root; 3611 break; 3612 case ARMMMUIdx_Phys_Realm: 3613 ss = ARMSS_Realm; 3614 break; 3615 default: 3616 g_assert_not_reached(); 3617 } 3618 3619 ptw.in_space = ss; 3620 return get_phys_addr_gpc(env, &ptw, address, access_type, 3621 memop, result, fi); 3622 } 3623 3624 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 3625 MemTxAttrs *attrs) 3626 { 3627 ARMCPU *cpu = ARM_CPU(cs); 3628 CPUARMState *env = &cpu->env; 3629 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 3630 ARMSecuritySpace ss = arm_security_space(env); 3631 S1Translate ptw = { 3632 .in_mmu_idx = mmu_idx, 3633 .in_space = ss, 3634 .in_debug = true, 3635 }; 3636 GetPhysAddrResult res = {}; 3637 ARMMMUFaultInfo fi = {}; 3638 bool ret; 3639 3640 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi); 3641 *attrs = res.f.attrs; 3642 3643 if (ret) { 3644 return -1; 3645 } 3646 return res.f.phys_addr; 3647 } 3648