xref: /qemu/target/arm/internals.h (revision 720a0e417ef0814d90aa884096a643b02ee854dc)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33 
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC    1
37 #define BANK_ABT    2
38 #define BANK_UND    3
39 #define BANK_IRQ    4
40 #define BANK_FIQ    5
41 #define BANK_HYP    6
42 #define BANK_MON    7
43 
44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48 
49 static inline bool excp_is_internal(int excp)
50 {
51     /* Return true if this exception number represents a QEMU-internal
52      * exception that will not be passed to the guest.
53      */
54     return excp == EXCP_INTERRUPT
55         || excp == EXCP_HLT
56         || excp == EXCP_DEBUG
57         || excp == EXCP_HALTED
58         || excp == EXCP_EXCEPTION_EXIT
59         || excp == EXCP_KERNEL_TRAP
60         || excp == EXCP_SEMIHOST;
61 }
62 
63 /*
64  * Default frequency for the generic timer, in Hz.
65  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67  * which gives a 16ns tick period.
68  *
69  * We will use the back-compat value:
70  *  - for QEMU CPU types added before we standardized on 1GHz
71  *  - for versioned machine types with a version of 9.0 or earlier
72  * In any case, the machine model may override via the cntfrq property.
73  */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76 
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82 
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92 
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96  * when using v8M security extension
97  */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99 
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111 
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116 
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123 
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
129 
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
137 
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
148 
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156 
157 #define MDCR_MTPME    (1U << 28)
158 #define MDCR_TDCC     (1U << 27)
159 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
160 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
161 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
162 #define MDCR_EPMAD    (1U << 21)
163 #define MDCR_EDAD     (1U << 20)
164 #define MDCR_TTRF     (1U << 19)
165 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
166 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
167 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
168 #define MDCR_SDD      (1U << 16)
169 #define MDCR_SPD      (3U << 14)
170 #define MDCR_TDRA     (1U << 11)
171 #define MDCR_TDOSA    (1U << 10)
172 #define MDCR_TDA      (1U << 9)
173 #define MDCR_TDE      (1U << 8)
174 #define MDCR_HPME     (1U << 7)
175 #define MDCR_TPM      (1U << 6)
176 #define MDCR_TPMCR    (1U << 5)
177 #define MDCR_HPMN     (0x1fU)
178 
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182                          MDCR_STE | MDCR_SPME | MDCR_SPD)
183 
184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0    (1U << 4)
187 #define TTBCR_PD1    (1U << 5)
188 #define TTBCR_EPD0   (1U << 7)
189 #define TTBCR_IRGN0  (3U << 8)
190 #define TTBCR_ORGN0  (3U << 10)
191 #define TTBCR_SH0    (3U << 12)
192 #define TTBCR_T1SZ   (3U << 16)
193 #define TTBCR_A1     (1U << 22)
194 #define TTBCR_EPD1   (1U << 23)
195 #define TTBCR_IRGN1  (3U << 24)
196 #define TTBCR_ORGN1  (3U << 26)
197 #define TTBCR_SH1    (1U << 28)
198 #define TTBCR_EAE    (1U << 31)
199 
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218 
219 #define HCRX_ENAS0    (1ULL << 0)
220 #define HCRX_ENALS    (1ULL << 1)
221 #define HCRX_ENASR    (1ULL << 2)
222 #define HCRX_FNXS     (1ULL << 3)
223 #define HCRX_FGTNXS   (1ULL << 4)
224 #define HCRX_SMPME    (1ULL << 5)
225 #define HCRX_TALLINT  (1ULL << 6)
226 #define HCRX_VINMI    (1ULL << 7)
227 #define HCRX_VFNMI    (1ULL << 8)
228 #define HCRX_CMOW     (1ULL << 9)
229 #define HCRX_MCE2     (1ULL << 10)
230 #define HCRX_MSCEN    (1ULL << 11)
231 
232 #define HPFAR_NS      (1ULL << 63)
233 
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236 
237 /*
238  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239  * have different bit definitions, and EL1PCTEN might be
240  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241  * disambiguate if necessary.
242  */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262 
263 /* We use a few fake FSR values for internal purposes in M profile.
264  * M profile cores don't have A/R format FSRs, but currently our
265  * get_phys_addr() code assumes A/R profile and reports failures via
266  * an A/R format FSR value. We then translate that into the proper
267  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268  * Mostly the FSR values we use for this are those defined for v7PMSA,
269  * since we share some of that codepath. A few kinds of fault are
270  * only for M profile and have no A/R equivalent, though, so we have
271  * to pick a value from the reserved range (which we never otherwise
272  * generate) to use for these.
273  * These values will never be visible to the guest.
274  */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277 
278 /**
279  * raise_exception: Raise the specified exception.
280  * Raise a guest exception with the specified value, syndrome register
281  * and target exception level. This should be called from helper functions,
282  * and never returns because we will longjump back up to the CPU main loop.
283  */
284 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
285                                 uint32_t syndrome, uint32_t target_el);
286 
287 /*
288  * Similarly, but also use unwinding to restore cpu state.
289  */
290 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
291                                       uint32_t syndrome, uint32_t target_el,
292                                       uintptr_t ra);
293 
294 /*
295  * For AArch64, map a given EL to an index in the banked_spsr array.
296  * Note that this mapping and the AArch32 mapping defined in bank_number()
297  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
298  * mandated mapping between each other.
299  */
300 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
301 {
302     static const unsigned int map[4] = {
303         [1] = BANK_SVC, /* EL1.  */
304         [2] = BANK_HYP, /* EL2.  */
305         [3] = BANK_MON, /* EL3.  */
306     };
307     assert(el >= 1 && el <= 3);
308     return map[el];
309 }
310 
311 /* Map CPU modes onto saved register banks.  */
312 static inline int bank_number(int mode)
313 {
314     switch (mode) {
315     case ARM_CPU_MODE_USR:
316     case ARM_CPU_MODE_SYS:
317         return BANK_USRSYS;
318     case ARM_CPU_MODE_SVC:
319         return BANK_SVC;
320     case ARM_CPU_MODE_ABT:
321         return BANK_ABT;
322     case ARM_CPU_MODE_UND:
323         return BANK_UND;
324     case ARM_CPU_MODE_IRQ:
325         return BANK_IRQ;
326     case ARM_CPU_MODE_FIQ:
327         return BANK_FIQ;
328     case ARM_CPU_MODE_HYP:
329         return BANK_HYP;
330     case ARM_CPU_MODE_MON:
331         return BANK_MON;
332     }
333     g_assert_not_reached();
334 }
335 
336 /**
337  * r14_bank_number: Map CPU mode onto register bank for r14
338  *
339  * Given an AArch32 CPU mode, return the index into the saved register
340  * banks to use for the R14 (LR) in that mode. This is the same as
341  * bank_number(), except for the special case of Hyp mode, where
342  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
343  * This should be used as the index into env->banked_r14[], and
344  * bank_number() used for the index into env->banked_r13[] and
345  * env->banked_spsr[].
346  */
347 static inline int r14_bank_number(int mode)
348 {
349     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
350 }
351 
352 void arm_cpu_register(const ARMCPUInfo *info);
353 void aarch64_cpu_register(const ARMCPUInfo *info);
354 
355 void register_cp_regs_for_features(ARMCPU *cpu);
356 void init_cpreg_list(ARMCPU *cpu);
357 
358 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
359 void arm_translate_init(void);
360 void arm_translate_code(CPUState *cs, TranslationBlock *tb,
361                         int *max_insns, vaddr pc, void *host_pc);
362 
363 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
364 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
365                                        GPtrArray *, GPtrArray *);
366 
367 void arm_restore_state_to_opc(CPUState *cs,
368                               const TranslationBlock *tb,
369                               const uint64_t *data);
370 
371 #ifdef CONFIG_TCG
372 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
373 
374 /* Our implementation of TCGCPUOps::cpu_exec_halt */
375 bool arm_cpu_exec_halt(CPUState *cs);
376 #endif /* CONFIG_TCG */
377 
378 typedef enum ARMFPRounding {
379     FPROUNDING_TIEEVEN,
380     FPROUNDING_POSINF,
381     FPROUNDING_NEGINF,
382     FPROUNDING_ZERO,
383     FPROUNDING_TIEAWAY,
384     FPROUNDING_ODD
385 } ARMFPRounding;
386 
387 extern const FloatRoundMode arm_rmode_to_sf_map[6];
388 
389 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
390 {
391     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
392     return arm_rmode_to_sf_map[rmode];
393 }
394 
395 /* Return the effective value of SCR_EL3.RW */
396 static inline bool arm_scr_rw_eff(CPUARMState *env)
397 {
398     /*
399      * SCR_EL3.RW has an effective value of 1 if:
400      *  - we are NS and EL2 is implemented but doesn't support AArch32
401      *  - we are S and EL2 is enabled (in which case it must be AArch64)
402      */
403     ARMCPU *cpu = env_archcpu(env);
404 
405     if (env->cp15.scr_el3 & SCR_RW) {
406         return true;
407     }
408     if (env->cp15.scr_el3 & SCR_NS) {
409         return arm_feature(env, ARM_FEATURE_EL2) &&
410             !cpu_isar_feature(aa64_aa32_el2, cpu);
411     } else {
412         return env->cp15.scr_el3 & SCR_EEL2;
413     }
414 }
415 
416 /* Return true if the specified exception level is running in AArch64 state. */
417 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
418 {
419     /*
420      * This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
421      * and if we're not in EL0 then the state of EL0 isn't well defined.)
422      */
423     assert(el >= 1 && el <= 3);
424     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
425 
426     /*
427      * The highest exception level is always at the maximum supported
428      * register width, and then lower levels have a register width controlled
429      * by bits in the SCR or HCR registers.
430      */
431     if (el == 3) {
432         return aa64;
433     }
434 
435     if (arm_feature(env, ARM_FEATURE_EL3)) {
436         aa64 = aa64 && arm_scr_rw_eff(env);
437     }
438 
439     if (el == 2) {
440         return aa64;
441     }
442 
443     if (arm_is_el2_enabled(env)) {
444         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
445     }
446 
447     return aa64;
448 }
449 
450 /*
451  * Return the current Exception Level (as per ARMv8; note that this differs
452  * from the ARMv7 Privilege Level).
453  */
454 static inline int arm_current_el(CPUARMState *env)
455 {
456     if (arm_feature(env, ARM_FEATURE_M)) {
457         return arm_v7m_is_handler_mode(env) ||
458             !(env->v7m.control[env->v7m.secure] & 1);
459     }
460 
461     if (is_a64(env)) {
462         return extract32(env->pstate, 2, 2);
463     }
464 
465     switch (env->uncached_cpsr & 0x1f) {
466     case ARM_CPU_MODE_USR:
467         return 0;
468     case ARM_CPU_MODE_HYP:
469         return 2;
470     case ARM_CPU_MODE_MON:
471         return 3;
472     default:
473         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
474             /* If EL3 is 32-bit then all secure privileged modes run in EL3 */
475             return 3;
476         }
477 
478         return 1;
479     }
480 }
481 
482 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
483                                                   bool sctlr_b)
484 {
485 #ifdef CONFIG_USER_ONLY
486     /*
487      * In system mode, BE32 is modelled in line with the
488      * architecture (as word-invariant big-endianness), where loads
489      * and stores are done little endian but from addresses which
490      * are adjusted by XORing with the appropriate constant. So the
491      * endianness to use for the raw data access is not affected by
492      * SCTLR.B.
493      * In user mode, however, we model BE32 as byte-invariant
494      * big-endianness (because user-only code cannot tell the
495      * difference), and so we need to use a data access endianness
496      * that depends on SCTLR.B.
497      */
498     if (sctlr_b) {
499         return true;
500     }
501 #endif
502     /* In 32bit endianness is determined by looking at CPSR's E bit */
503     return env->uncached_cpsr & CPSR_E;
504 }
505 
506 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
507 {
508     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
509 }
510 
511 /* Return true if the processor is in big-endian mode. */
512 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
513 {
514     if (!is_a64(env)) {
515         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
516     } else {
517         int cur_el = arm_current_el(env);
518         uint64_t sctlr = arm_sctlr(env, cur_el);
519         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
520     }
521 }
522 
523 #ifdef CONFIG_USER_ONLY
524 static inline bool arm_cpu_bswap_data(CPUARMState *env)
525 {
526     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
527 }
528 #endif
529 
530 static inline void aarch64_save_sp(CPUARMState *env, int el)
531 {
532     if (env->pstate & PSTATE_SP) {
533         env->sp_el[el] = env->xregs[31];
534     } else {
535         env->sp_el[0] = env->xregs[31];
536     }
537 }
538 
539 static inline void aarch64_restore_sp(CPUARMState *env, int el)
540 {
541     if (env->pstate & PSTATE_SP) {
542         env->xregs[31] = env->sp_el[el];
543     } else {
544         env->xregs[31] = env->sp_el[0];
545     }
546 }
547 
548 static inline void update_spsel(CPUARMState *env, uint32_t imm)
549 {
550     unsigned int cur_el = arm_current_el(env);
551     /* Update PSTATE SPSel bit; this requires us to update the
552      * working stack pointer in xregs[31].
553      */
554     if (!((imm ^ env->pstate) & PSTATE_SP)) {
555         return;
556     }
557     aarch64_save_sp(env, cur_el);
558     env->pstate = deposit32(env->pstate, 0, 1, imm);
559 
560     /* We rely on illegal updates to SPsel from EL0 to get trapped
561      * at translation time.
562      */
563     assert(cur_el >= 1 && cur_el <= 3);
564     aarch64_restore_sp(env, cur_el);
565 }
566 
567 /*
568  * arm_pamax
569  * @cpu: ARMCPU
570  *
571  * Returns the implementation defined bit-width of physical addresses.
572  * The ARMv8 reference manuals refer to this as PAMax().
573  */
574 unsigned int arm_pamax(ARMCPU *cpu);
575 
576 /*
577  * round_down_to_parange_index
578  * @bit_size: uint8_t
579  *
580  * Rounds down the bit_size supplied to the first supported ARM physical
581  * address range and returns the index for this. The index is intended to
582  * be used to set ID_AA64MMFR0_EL1's PARANGE bits.
583  */
584 uint8_t round_down_to_parange_index(uint8_t bit_size);
585 
586 /*
587  * round_down_to_parange_bit_size
588  * @bit_size: uint8_t
589  *
590  * Rounds down the bit_size supplied to the first supported ARM physical
591  * address range bit size and returns this.
592  */
593 uint8_t round_down_to_parange_bit_size(uint8_t bit_size);
594 
595 /* Return true if extended addresses are enabled.
596  * This is always the case if our translation regime is 64 bit,
597  * but depends on TTBCR.EAE for 32 bit.
598  */
599 static inline bool extended_addresses_enabled(CPUARMState *env)
600 {
601     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
602     if (arm_feature(env, ARM_FEATURE_PMSA) &&
603         arm_feature(env, ARM_FEATURE_V8)) {
604         return true;
605     }
606     return arm_el_is_aa64(env, 1) ||
607            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
608 }
609 
610 /* Update a QEMU watchpoint based on the information the guest has set in the
611  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
612  */
613 void hw_watchpoint_update(ARMCPU *cpu, int n);
614 /* Update the QEMU watchpoints for every guest watchpoint. This does a
615  * complete delete-and-reinstate of the QEMU watchpoint list and so is
616  * suitable for use after migration or on reset.
617  */
618 void hw_watchpoint_update_all(ARMCPU *cpu);
619 /* Update a QEMU breakpoint based on the information the guest has set in the
620  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
621  */
622 void hw_breakpoint_update(ARMCPU *cpu, int n);
623 /* Update the QEMU breakpoints for every guest breakpoint. This does a
624  * complete delete-and-reinstate of the QEMU breakpoint list and so is
625  * suitable for use after migration or on reset.
626  */
627 void hw_breakpoint_update_all(ARMCPU *cpu);
628 
629 /* Callback function for checking if a breakpoint should trigger. */
630 bool arm_debug_check_breakpoint(CPUState *cs);
631 
632 /* Callback function for checking if a watchpoint should trigger. */
633 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
634 
635 /* Adjust addresses (in BE32 mode) before testing against watchpoint
636  * addresses.
637  */
638 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
639 
640 /* Callback function for when a watchpoint or breakpoint triggers. */
641 void arm_debug_excp_handler(CPUState *cs);
642 
643 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
644 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
645 {
646     return false;
647 }
648 static inline void arm_handle_psci_call(ARMCPU *cpu)
649 {
650     g_assert_not_reached();
651 }
652 #else
653 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
654 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
655 /* Actually handle a PSCI call */
656 void arm_handle_psci_call(ARMCPU *cpu);
657 #endif
658 
659 /**
660  * arm_clear_exclusive: clear the exclusive monitor
661  * @env: CPU env
662  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
663  */
664 static inline void arm_clear_exclusive(CPUARMState *env)
665 {
666     env->exclusive_addr = -1;
667 }
668 
669 /**
670  * ARMFaultType: type of an ARM MMU fault
671  * This corresponds to the v8A pseudocode's Fault enumeration,
672  * with extensions for QEMU internal conditions.
673  */
674 typedef enum ARMFaultType {
675     ARMFault_None,
676     ARMFault_AccessFlag,
677     ARMFault_Alignment,
678     ARMFault_Background,
679     ARMFault_Domain,
680     ARMFault_Permission,
681     ARMFault_Translation,
682     ARMFault_AddressSize,
683     ARMFault_SyncExternal,
684     ARMFault_SyncExternalOnWalk,
685     ARMFault_SyncParity,
686     ARMFault_SyncParityOnWalk,
687     ARMFault_AsyncParity,
688     ARMFault_AsyncExternal,
689     ARMFault_Debug,
690     ARMFault_TLBConflict,
691     ARMFault_UnsuppAtomicUpdate,
692     ARMFault_Lockdown,
693     ARMFault_Exclusive,
694     ARMFault_ICacheMaint,
695     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
696     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
697     ARMFault_GPCFOnWalk,
698     ARMFault_GPCFOnOutput,
699 } ARMFaultType;
700 
701 typedef enum ARMGPCF {
702     GPCF_None,
703     GPCF_AddressSize,
704     GPCF_Walk,
705     GPCF_EABT,
706     GPCF_Fail,
707 } ARMGPCF;
708 
709 /**
710  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
711  * @type: Type of fault
712  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
713  * @level: Table walk level (for translation, access flag and permission faults)
714  * @domain: Domain of the fault address (for non-LPAE CPUs only)
715  * @s2addr: Address that caused a fault at stage 2
716  * @paddr: physical address that caused a fault for gpc
717  * @paddr_space: physical address space that caused a fault for gpc
718  * @stage2: True if we faulted at stage 2
719  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
720  * @s1ns: True if we faulted on a non-secure IPA while in secure state
721  * @ea: True if we should set the EA (external abort type) bit in syndrome
722  */
723 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
724 struct ARMMMUFaultInfo {
725     ARMFaultType type;
726     ARMGPCF gpcf;
727     target_ulong s2addr;
728     target_ulong paddr;
729     ARMSecuritySpace paddr_space;
730     int level;
731     int domain;
732     bool stage2;
733     bool s1ptw;
734     bool s1ns;
735     bool ea;
736 };
737 
738 /**
739  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
740  * Compare pseudocode EncodeSDFSC(), though unlike that function
741  * we set up a whole FSR-format code including domain field and
742  * putting the high bit of the FSC into bit 10.
743  */
744 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
745 {
746     uint32_t fsc;
747 
748     switch (fi->type) {
749     case ARMFault_None:
750         return 0;
751     case ARMFault_AccessFlag:
752         fsc = fi->level == 1 ? 0x3 : 0x6;
753         break;
754     case ARMFault_Alignment:
755         fsc = 0x1;
756         break;
757     case ARMFault_Permission:
758         fsc = fi->level == 1 ? 0xd : 0xf;
759         break;
760     case ARMFault_Domain:
761         fsc = fi->level == 1 ? 0x9 : 0xb;
762         break;
763     case ARMFault_Translation:
764         fsc = fi->level == 1 ? 0x5 : 0x7;
765         break;
766     case ARMFault_SyncExternal:
767         fsc = 0x8 | (fi->ea << 12);
768         break;
769     case ARMFault_SyncExternalOnWalk:
770         fsc = fi->level == 1 ? 0xc : 0xe;
771         fsc |= (fi->ea << 12);
772         break;
773     case ARMFault_SyncParity:
774         fsc = 0x409;
775         break;
776     case ARMFault_SyncParityOnWalk:
777         fsc = fi->level == 1 ? 0x40c : 0x40e;
778         break;
779     case ARMFault_AsyncParity:
780         fsc = 0x408;
781         break;
782     case ARMFault_AsyncExternal:
783         fsc = 0x406 | (fi->ea << 12);
784         break;
785     case ARMFault_Debug:
786         fsc = 0x2;
787         break;
788     case ARMFault_TLBConflict:
789         fsc = 0x400;
790         break;
791     case ARMFault_Lockdown:
792         fsc = 0x404;
793         break;
794     case ARMFault_Exclusive:
795         fsc = 0x405;
796         break;
797     case ARMFault_ICacheMaint:
798         fsc = 0x4;
799         break;
800     case ARMFault_Background:
801         fsc = 0x0;
802         break;
803     case ARMFault_QEMU_NSCExec:
804         fsc = M_FAKE_FSR_NSC_EXEC;
805         break;
806     case ARMFault_QEMU_SFault:
807         fsc = M_FAKE_FSR_SFAULT;
808         break;
809     default:
810         /* Other faults can't occur in a context that requires a
811          * short-format status code.
812          */
813         g_assert_not_reached();
814     }
815 
816     fsc |= (fi->domain << 4);
817     return fsc;
818 }
819 
820 /**
821  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
822  * Compare pseudocode EncodeLDFSC(), though unlike that function
823  * we fill in also the LPAE bit 9 of a DFSR format.
824  */
825 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
826 {
827     uint32_t fsc;
828 
829     switch (fi->type) {
830     case ARMFault_None:
831         return 0;
832     case ARMFault_AddressSize:
833         assert(fi->level >= -1 && fi->level <= 3);
834         if (fi->level < 0) {
835             fsc = 0b101001;
836         } else {
837             fsc = fi->level;
838         }
839         break;
840     case ARMFault_AccessFlag:
841         assert(fi->level >= 0 && fi->level <= 3);
842         fsc = 0b001000 | fi->level;
843         break;
844     case ARMFault_Permission:
845         assert(fi->level >= 0 && fi->level <= 3);
846         fsc = 0b001100 | fi->level;
847         break;
848     case ARMFault_Translation:
849         assert(fi->level >= -1 && fi->level <= 3);
850         if (fi->level < 0) {
851             fsc = 0b101011;
852         } else {
853             fsc = 0b000100 | fi->level;
854         }
855         break;
856     case ARMFault_SyncExternal:
857         fsc = 0x10 | (fi->ea << 12);
858         break;
859     case ARMFault_SyncExternalOnWalk:
860         assert(fi->level >= -1 && fi->level <= 3);
861         if (fi->level < 0) {
862             fsc = 0b010011;
863         } else {
864             fsc = 0b010100 | fi->level;
865         }
866         fsc |= fi->ea << 12;
867         break;
868     case ARMFault_SyncParity:
869         fsc = 0x18;
870         break;
871     case ARMFault_SyncParityOnWalk:
872         assert(fi->level >= -1 && fi->level <= 3);
873         if (fi->level < 0) {
874             fsc = 0b011011;
875         } else {
876             fsc = 0b011100 | fi->level;
877         }
878         break;
879     case ARMFault_AsyncParity:
880         fsc = 0x19;
881         break;
882     case ARMFault_AsyncExternal:
883         fsc = 0x11 | (fi->ea << 12);
884         break;
885     case ARMFault_Alignment:
886         fsc = 0x21;
887         break;
888     case ARMFault_Debug:
889         fsc = 0x22;
890         break;
891     case ARMFault_TLBConflict:
892         fsc = 0x30;
893         break;
894     case ARMFault_UnsuppAtomicUpdate:
895         fsc = 0x31;
896         break;
897     case ARMFault_Lockdown:
898         fsc = 0x34;
899         break;
900     case ARMFault_Exclusive:
901         fsc = 0x35;
902         break;
903     case ARMFault_GPCFOnWalk:
904         assert(fi->level >= -1 && fi->level <= 3);
905         if (fi->level < 0) {
906             fsc = 0b100011;
907         } else {
908             fsc = 0b100100 | fi->level;
909         }
910         break;
911     case ARMFault_GPCFOnOutput:
912         fsc = 0b101000;
913         break;
914     default:
915         /* Other faults can't occur in a context that requires a
916          * long-format status code.
917          */
918         g_assert_not_reached();
919     }
920 
921     fsc |= 1 << 9;
922     return fsc;
923 }
924 
925 static inline bool arm_extabort_type(MemTxResult result)
926 {
927     /* The EA bit in syndromes and fault status registers is an
928      * IMPDEF classification of external aborts. ARM implementations
929      * usually use this to indicate AXI bus Decode error (0) or
930      * Slave error (1); in QEMU we follow that.
931      */
932     return result != MEMTX_DECODE_ERROR;
933 }
934 
935 #ifdef CONFIG_USER_ONLY
936 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
937                             MMUAccessType access_type,
938                             bool maperr, uintptr_t ra);
939 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
940                            MMUAccessType access_type, uintptr_t ra);
941 #else
942 bool arm_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
943                             MMUAccessType access_type, int mmu_idx,
944                             MemOp memop, int size, bool probe, uintptr_t ra);
945 #endif
946 
947 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
948 {
949     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
950 }
951 
952 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
953 {
954     if (arm_feature(env, ARM_FEATURE_M)) {
955         return mmu_idx | ARM_MMU_IDX_M;
956     } else {
957         return mmu_idx | ARM_MMU_IDX_A;
958     }
959 }
960 
961 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
962 {
963     /* AArch64 is always a-profile. */
964     return mmu_idx | ARM_MMU_IDX_A;
965 }
966 
967 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
968 
969 /* Return the MMU index for a v7M CPU in the specified security state */
970 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
971 
972 /*
973  * Return true if the stage 1 translation regime is using LPAE
974  * format page tables
975  */
976 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
977 
978 /* Raise a data fault alignment exception for the specified virtual address */
979 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
980                                             MMUAccessType access_type,
981                                             int mmu_idx, uintptr_t retaddr);
982 
983 #ifndef CONFIG_USER_ONLY
984 /* arm_cpu_do_transaction_failed: handle a memory system error response
985  * (eg "no device/memory present at address") by raising an external abort
986  * exception
987  */
988 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
989                                    vaddr addr, unsigned size,
990                                    MMUAccessType access_type,
991                                    int mmu_idx, MemTxAttrs attrs,
992                                    MemTxResult response, uintptr_t retaddr);
993 #endif
994 
995 /* Call any registered EL change hooks */
996 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
997 {
998     ARMELChangeHook *hook, *next;
999     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1000         hook->hook(cpu, hook->opaque);
1001     }
1002 }
1003 static inline void arm_call_el_change_hook(ARMCPU *cpu)
1004 {
1005     ARMELChangeHook *hook, *next;
1006     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1007         hook->hook(cpu, hook->opaque);
1008     }
1009 }
1010 
1011 /*
1012  * Return true if this address translation regime has two ranges.
1013  * Note that this will not return the correct answer for AArch32
1014  * Secure PL1&0 (i.e. mmu indexes E3, E30_0, E30_3_PAN), but it is
1015  * never called from a context where EL3 can be AArch32. (The
1016  * correct return value for ARMMMUIdx_E3 would be different for
1017  * that case, so we can't just make the function return the
1018  * correct value anyway; we would need an extra "bool e3_is_aarch32"
1019  * argument which all the current callsites would pass as 'false'.)
1020  */
1021 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
1022 {
1023     switch (mmu_idx) {
1024     case ARMMMUIdx_Stage1_E0:
1025     case ARMMMUIdx_Stage1_E1:
1026     case ARMMMUIdx_Stage1_E1_PAN:
1027     case ARMMMUIdx_E10_0:
1028     case ARMMMUIdx_E10_1:
1029     case ARMMMUIdx_E10_1_PAN:
1030     case ARMMMUIdx_E20_0:
1031     case ARMMMUIdx_E20_2:
1032     case ARMMMUIdx_E20_2_PAN:
1033         return true;
1034     default:
1035         return false;
1036     }
1037 }
1038 
1039 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
1040 {
1041     switch (mmu_idx) {
1042     case ARMMMUIdx_Stage1_E1_PAN:
1043     case ARMMMUIdx_E10_1_PAN:
1044     case ARMMMUIdx_E20_2_PAN:
1045     case ARMMMUIdx_E30_3_PAN:
1046         return true;
1047     default:
1048         return false;
1049     }
1050 }
1051 
1052 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
1053 {
1054     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
1055 }
1056 
1057 /* Return the exception level which controls this address translation regime */
1058 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
1059 {
1060     switch (mmu_idx) {
1061     case ARMMMUIdx_E20_0:
1062     case ARMMMUIdx_E20_2:
1063     case ARMMMUIdx_E20_2_PAN:
1064     case ARMMMUIdx_Stage2:
1065     case ARMMMUIdx_Stage2_S:
1066     case ARMMMUIdx_E2:
1067         return 2;
1068     case ARMMMUIdx_E3:
1069     case ARMMMUIdx_E30_0:
1070     case ARMMMUIdx_E30_3_PAN:
1071         return 3;
1072     case ARMMMUIdx_E10_0:
1073     case ARMMMUIdx_Stage1_E0:
1074     case ARMMMUIdx_Stage1_E1:
1075     case ARMMMUIdx_Stage1_E1_PAN:
1076     case ARMMMUIdx_E10_1:
1077     case ARMMMUIdx_E10_1_PAN:
1078     case ARMMMUIdx_MPrivNegPri:
1079     case ARMMMUIdx_MUserNegPri:
1080     case ARMMMUIdx_MPriv:
1081     case ARMMMUIdx_MUser:
1082     case ARMMMUIdx_MSPrivNegPri:
1083     case ARMMMUIdx_MSUserNegPri:
1084     case ARMMMUIdx_MSPriv:
1085     case ARMMMUIdx_MSUser:
1086         return 1;
1087     default:
1088         g_assert_not_reached();
1089     }
1090 }
1091 
1092 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
1093 {
1094     switch (mmu_idx) {
1095     case ARMMMUIdx_E10_0:
1096     case ARMMMUIdx_E20_0:
1097     case ARMMMUIdx_E30_0:
1098     case ARMMMUIdx_Stage1_E0:
1099     case ARMMMUIdx_MUser:
1100     case ARMMMUIdx_MSUser:
1101     case ARMMMUIdx_MUserNegPri:
1102     case ARMMMUIdx_MSUserNegPri:
1103         return true;
1104     default:
1105         return false;
1106     }
1107 }
1108 
1109 /* Return the SCTLR value which controls this address translation regime */
1110 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
1111 {
1112     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
1113 }
1114 
1115 /*
1116  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
1117  * and the Non-Secure stage 2 translation regimes (and hence which are
1118  * not present in VSTCR_EL2).
1119  */
1120 #define VTCR_SHARED_FIELD_MASK \
1121     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
1122      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
1123      R_VTCR_DS_MASK)
1124 
1125 /* Return the value of the TCR controlling this translation regime */
1126 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
1127 {
1128     if (mmu_idx == ARMMMUIdx_Stage2) {
1129         return env->cp15.vtcr_el2;
1130     }
1131     if (mmu_idx == ARMMMUIdx_Stage2_S) {
1132         /*
1133          * Secure stage 2 shares fields from VTCR_EL2. We merge those
1134          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
1135          * value so the callers don't need to special case this.
1136          *
1137          * If a future architecture change defines bits in VSTCR_EL2 that
1138          * overlap with these VTCR_EL2 fields we may need to revisit this.
1139          */
1140         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
1141         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
1142         return v;
1143     }
1144     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
1145 }
1146 
1147 /* Return true if the translation regime is using LPAE format page tables */
1148 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
1149 {
1150     int el = regime_el(env, mmu_idx);
1151     if (el == 2 || arm_el_is_aa64(env, el)) {
1152         return true;
1153     }
1154     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1155         arm_feature(env, ARM_FEATURE_V8)) {
1156         return true;
1157     }
1158     if (arm_feature(env, ARM_FEATURE_LPAE)
1159         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1160         return true;
1161     }
1162     return false;
1163 }
1164 
1165 /**
1166  * arm_num_brps: Return number of implemented breakpoints.
1167  * Note that the ID register BRPS field is "number of bps - 1",
1168  * and we return the actual number of breakpoints.
1169  */
1170 static inline int arm_num_brps(ARMCPU *cpu)
1171 {
1172     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1173         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1174     } else {
1175         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1176     }
1177 }
1178 
1179 /**
1180  * arm_num_wrps: Return number of implemented watchpoints.
1181  * Note that the ID register WRPS field is "number of wps - 1",
1182  * and we return the actual number of watchpoints.
1183  */
1184 static inline int arm_num_wrps(ARMCPU *cpu)
1185 {
1186     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1187         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1188     } else {
1189         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1190     }
1191 }
1192 
1193 /**
1194  * arm_num_ctx_cmps: Return number of implemented context comparators.
1195  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1196  * and we return the actual number of comparators.
1197  */
1198 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1199 {
1200     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1201         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1202     } else {
1203         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1204     }
1205 }
1206 
1207 /**
1208  * v7m_using_psp: Return true if using process stack pointer
1209  * Return true if the CPU is currently using the process stack
1210  * pointer, or false if it is using the main stack pointer.
1211  */
1212 static inline bool v7m_using_psp(CPUARMState *env)
1213 {
1214     /* Handler mode always uses the main stack; for thread mode
1215      * the CONTROL.SPSEL bit determines the answer.
1216      * Note that in v7M it is not possible to be in Handler mode with
1217      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1218      */
1219     return !arm_v7m_is_handler_mode(env) &&
1220         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1221 }
1222 
1223 /**
1224  * v7m_sp_limit: Return SP limit for current CPU state
1225  * Return the SP limit value for the current CPU security state
1226  * and stack pointer.
1227  */
1228 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1229 {
1230     if (v7m_using_psp(env)) {
1231         return env->v7m.psplim[env->v7m.secure];
1232     } else {
1233         return env->v7m.msplim[env->v7m.secure];
1234     }
1235 }
1236 
1237 /**
1238  * v7m_cpacr_pass:
1239  * Return true if the v7M CPACR permits access to the FPU for the specified
1240  * security state and privilege level.
1241  */
1242 static inline bool v7m_cpacr_pass(CPUARMState *env,
1243                                   bool is_secure, bool is_priv)
1244 {
1245     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1246     case 0:
1247     case 2: /* UNPREDICTABLE: we treat like 0 */
1248         return false;
1249     case 1:
1250         return is_priv;
1251     case 3:
1252         return true;
1253     default:
1254         g_assert_not_reached();
1255     }
1256 }
1257 
1258 /**
1259  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1260  * @psr: Program Status Register indicating CPU mode
1261  *
1262  * Returns, for debug logging purposes, a printable representation
1263  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1264  * the low bits of the specified PSR.
1265  */
1266 static inline const char *aarch32_mode_name(uint32_t psr)
1267 {
1268     static const char cpu_mode_names[16][4] = {
1269         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1270         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1271     };
1272 
1273     return cpu_mode_names[psr & 0xf];
1274 }
1275 
1276 /**
1277  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1278  *
1279  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1280  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1281  * Must be called with the BQL held.
1282  */
1283 void arm_cpu_update_virq(ARMCPU *cpu);
1284 
1285 /**
1286  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1287  *
1288  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1289  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1290  * Must be called with the BQL held.
1291  */
1292 void arm_cpu_update_vfiq(ARMCPU *cpu);
1293 
1294 /**
1295  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1296  *
1297  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1298  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1299  * Must be called with the BQL held.
1300  */
1301 void arm_cpu_update_vinmi(ARMCPU *cpu);
1302 
1303 /**
1304  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1305  *
1306  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1307  * a change to the HCRX_EL2.VFNMI.
1308  * Must be called with the BQL held.
1309  */
1310 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1311 
1312 /**
1313  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1314  *
1315  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1316  * following a change to the HCR_EL2.VSE bit.
1317  */
1318 void arm_cpu_update_vserr(ARMCPU *cpu);
1319 
1320 /**
1321  * arm_mmu_idx_el:
1322  * @env: The cpu environment
1323  * @el: The EL to use.
1324  *
1325  * Return the full ARMMMUIdx for the translation regime for EL.
1326  */
1327 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1328 
1329 /**
1330  * arm_mmu_idx:
1331  * @env: The cpu environment
1332  *
1333  * Return the full ARMMMUIdx for the current translation regime.
1334  */
1335 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1336 
1337 /**
1338  * arm_stage1_mmu_idx:
1339  * @env: The cpu environment
1340  *
1341  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1342  */
1343 #ifdef CONFIG_USER_ONLY
1344 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1345 {
1346     return ARMMMUIdx_Stage1_E0;
1347 }
1348 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1349 {
1350     return ARMMMUIdx_Stage1_E0;
1351 }
1352 #else
1353 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1354 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1355 #endif
1356 
1357 /**
1358  * arm_mmu_idx_is_stage1_of_2:
1359  * @mmu_idx: The ARMMMUIdx to test
1360  *
1361  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1362  * first stage of a two stage regime.
1363  */
1364 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1365 {
1366     switch (mmu_idx) {
1367     case ARMMMUIdx_Stage1_E0:
1368     case ARMMMUIdx_Stage1_E1:
1369     case ARMMMUIdx_Stage1_E1_PAN:
1370         return true;
1371     default:
1372         return false;
1373     }
1374 }
1375 
1376 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1377                                                const ARMISARegisters *id)
1378 {
1379     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1380 
1381     if ((features >> ARM_FEATURE_V4T) & 1) {
1382         valid |= CPSR_T;
1383     }
1384     if ((features >> ARM_FEATURE_V5) & 1) {
1385         valid |= CPSR_Q; /* V5TE in reality*/
1386     }
1387     if ((features >> ARM_FEATURE_V6) & 1) {
1388         valid |= CPSR_E | CPSR_GE;
1389     }
1390     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1391         valid |= CPSR_IT;
1392     }
1393     if (isar_feature_aa32_jazelle(id)) {
1394         valid |= CPSR_J;
1395     }
1396     if (isar_feature_aa32_pan(id)) {
1397         valid |= CPSR_PAN;
1398     }
1399     if (isar_feature_aa32_dit(id)) {
1400         valid |= CPSR_DIT;
1401     }
1402     if (isar_feature_aa32_ssbs(id)) {
1403         valid |= CPSR_SSBS;
1404     }
1405 
1406     return valid;
1407 }
1408 
1409 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1410 {
1411     uint32_t valid;
1412 
1413     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1414     if (isar_feature_aa64_bti(id)) {
1415         valid |= PSTATE_BTYPE;
1416     }
1417     if (isar_feature_aa64_pan(id)) {
1418         valid |= PSTATE_PAN;
1419     }
1420     if (isar_feature_aa64_uao(id)) {
1421         valid |= PSTATE_UAO;
1422     }
1423     if (isar_feature_aa64_dit(id)) {
1424         valid |= PSTATE_DIT;
1425     }
1426     if (isar_feature_aa64_ssbs(id)) {
1427         valid |= PSTATE_SSBS;
1428     }
1429     if (isar_feature_aa64_mte(id)) {
1430         valid |= PSTATE_TCO;
1431     }
1432     if (isar_feature_aa64_nmi(id)) {
1433         valid |= PSTATE_ALLINT;
1434     }
1435 
1436     return valid;
1437 }
1438 
1439 /* Granule size (i.e. page size) */
1440 typedef enum ARMGranuleSize {
1441     /* Same order as TG0 encoding */
1442     Gran4K,
1443     Gran64K,
1444     Gran16K,
1445     GranInvalid,
1446 } ARMGranuleSize;
1447 
1448 /**
1449  * arm_granule_bits: Return address size of the granule in bits
1450  *
1451  * Return the address size of the granule in bits. This corresponds
1452  * to the pseudocode TGxGranuleBits().
1453  */
1454 static inline int arm_granule_bits(ARMGranuleSize gran)
1455 {
1456     switch (gran) {
1457     case Gran64K:
1458         return 16;
1459     case Gran16K:
1460         return 14;
1461     case Gran4K:
1462         return 12;
1463     default:
1464         g_assert_not_reached();
1465     }
1466 }
1467 
1468 /*
1469  * Parameters of a given virtual address, as extracted from the
1470  * translation control register (TCR) for a given regime.
1471  */
1472 typedef struct ARMVAParameters {
1473     unsigned tsz    : 8;
1474     unsigned ps     : 3;
1475     unsigned sh     : 2;
1476     unsigned select : 1;
1477     bool tbi        : 1;
1478     bool epd        : 1;
1479     bool hpd        : 1;
1480     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1481     bool ds         : 1;
1482     bool ha         : 1;
1483     bool hd         : 1;
1484     ARMGranuleSize gran : 2;
1485 } ARMVAParameters;
1486 
1487 /**
1488  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1489  * @env: CPU
1490  * @va: virtual address to look up
1491  * @mmu_idx: determines translation regime to use
1492  * @data: true if this is a data access
1493  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1494  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1495  */
1496 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1497                                    ARMMMUIdx mmu_idx, bool data,
1498                                    bool el1_is_aa32);
1499 
1500 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1501 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1502 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1503 
1504 /* Determine if allocation tags are available.  */
1505 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1506                                                  uint64_t sctlr)
1507 {
1508     if (el < 3
1509         && arm_feature(env, ARM_FEATURE_EL3)
1510         && !(env->cp15.scr_el3 & SCR_ATA)) {
1511         return false;
1512     }
1513     if (el < 2 && arm_is_el2_enabled(env)) {
1514         uint64_t hcr = arm_hcr_el2_eff(env);
1515         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1516             return false;
1517         }
1518     }
1519     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1520     return sctlr != 0;
1521 }
1522 
1523 #ifndef CONFIG_USER_ONLY
1524 
1525 /* Security attributes for an address, as returned by v8m_security_lookup. */
1526 typedef struct V8M_SAttributes {
1527     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1528     bool ns;
1529     bool nsc;
1530     uint8_t sregion;
1531     bool srvalid;
1532     uint8_t iregion;
1533     bool irvalid;
1534 } V8M_SAttributes;
1535 
1536 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1537                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1538                          bool secure, V8M_SAttributes *sattrs);
1539 
1540 /* Cacheability and shareability attributes for a memory access */
1541 typedef struct ARMCacheAttrs {
1542     /*
1543      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1544      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1545      */
1546     unsigned int attrs:8;
1547     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1548     bool is_s2_format:1;
1549 } ARMCacheAttrs;
1550 
1551 /* Fields that are valid upon success. */
1552 typedef struct GetPhysAddrResult {
1553     CPUTLBEntryFull f;
1554     ARMCacheAttrs cacheattrs;
1555 } GetPhysAddrResult;
1556 
1557 /**
1558  * get_phys_addr: get the physical address for a virtual address
1559  * @env: CPUARMState
1560  * @address: virtual address to get physical address for
1561  * @access_type: 0 for read, 1 for write, 2 for execute
1562  * @memop: memory operation feeding this access, or 0 for none
1563  * @mmu_idx: MMU index indicating required translation regime
1564  * @result: set on translation success.
1565  * @fi: set to fault info if the translation fails
1566  *
1567  * Find the physical address corresponding to the given virtual address,
1568  * by doing a translation table walk on MMU based systems or using the
1569  * MPU state on MPU based systems.
1570  *
1571  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1572  * prot and page_size may not be filled in, and the populated fsr value provides
1573  * information on why the translation aborted, in the format of a
1574  * DFSR/IFSR fault register, with the following caveats:
1575  *  * we honour the short vs long DFSR format differences.
1576  *  * the WnR bit is never set (the caller must do this).
1577  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1578  *    value.
1579  */
1580 bool get_phys_addr(CPUARMState *env, vaddr address,
1581                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
1582                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1583     __attribute__((nonnull));
1584 
1585 /**
1586  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1587  *                                 address
1588  * @env: CPUARMState
1589  * @address: virtual address to get physical address for
1590  * @access_type: 0 for read, 1 for write, 2 for execute
1591  * @memop: memory operation feeding this access, or 0 for none
1592  * @mmu_idx: MMU index indicating required translation regime
1593  * @space: security space for the access
1594  * @result: set on translation success.
1595  * @fi: set to fault info if the translation fails
1596  *
1597  * Similar to get_phys_addr, but use the given security space and don't perform
1598  * a Granule Protection Check on the resulting address.
1599  */
1600 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1601                                     MMUAccessType access_type, MemOp memop,
1602                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1603                                     GetPhysAddrResult *result,
1604                                     ARMMMUFaultInfo *fi)
1605     __attribute__((nonnull));
1606 
1607 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1608                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1609                        bool is_secure, GetPhysAddrResult *result,
1610                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1611 
1612 void arm_log_exception(CPUState *cs);
1613 
1614 #endif /* !CONFIG_USER_ONLY */
1615 
1616 /*
1617  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1618  * the same simd_desc() encoding due to restrictions on size.
1619  * Use these instead.
1620  */
1621 FIELD(PREDDESC, OPRSZ, 0, 6)
1622 FIELD(PREDDESC, ESZ, 6, 2)
1623 FIELD(PREDDESC, DATA, 8, 24)
1624 
1625 /*
1626  * The SVE simd_data field, for memory ops, contains either
1627  * rd (5 bits) or a shift count (2 bits).
1628  */
1629 #define SVE_MTEDESC_SHIFT 5
1630 
1631 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1632 FIELD(MTEDESC, MIDX,  0, 4)
1633 FIELD(MTEDESC, TBI,   4, 2)
1634 FIELD(MTEDESC, TCMA,  6, 2)
1635 FIELD(MTEDESC, WRITE, 8, 1)
1636 FIELD(MTEDESC, ALIGN, 9, 3)
1637 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1638 
1639 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1640 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1641 
1642 /**
1643  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1644  * @env: CPU env
1645  * @ptr: start address of memory region (dirty pointer)
1646  * @size: length of region (guaranteed not to cross a page boundary)
1647  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1648  * Returns: the size of the region that can be copied without hitting
1649  *          an MTE tag failure
1650  *
1651  * Note that we assume that the caller has already checked the TBI
1652  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1653  * required.
1654  */
1655 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1656                         uint32_t desc);
1657 
1658 /**
1659  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1660  *                     operation going in the reverse direction
1661  * @env: CPU env
1662  * @ptr: *end* address of memory region (dirty pointer)
1663  * @size: length of region (guaranteed not to cross a page boundary)
1664  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1665  * Returns: the size of the region that can be copied without hitting
1666  *          an MTE tag failure
1667  *
1668  * Note that we assume that the caller has already checked the TBI
1669  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1670  * required.
1671  */
1672 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1673                             uint32_t desc);
1674 
1675 /**
1676  * mte_check_fail: Record an MTE tag check failure
1677  * @env: CPU env
1678  * @desc: MTEDESC descriptor word
1679  * @dirty_ptr: Failing dirty address
1680  * @ra: TCG retaddr
1681  *
1682  * This may never return (if the MTE tag checks are configured to fault).
1683  */
1684 void mte_check_fail(CPUARMState *env, uint32_t desc,
1685                     uint64_t dirty_ptr, uintptr_t ra);
1686 
1687 /**
1688  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1689  * @env: CPU env
1690  * @dirty_ptr: Start address of memory region (dirty pointer)
1691  * @size: length of region (guaranteed not to cross page boundary)
1692  * @desc: MTEDESC descriptor word
1693  */
1694 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1695                        uint32_t desc);
1696 
1697 static inline int allocation_tag_from_addr(uint64_t ptr)
1698 {
1699     return extract64(ptr, 56, 4);
1700 }
1701 
1702 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1703 {
1704     return deposit64(ptr, 56, 4, rtag);
1705 }
1706 
1707 /* Return true if tbi bits mean that the access is checked.  */
1708 static inline bool tbi_check(uint32_t desc, int bit55)
1709 {
1710     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1711 }
1712 
1713 /* Return true if tcma bits mean that the access is unchecked.  */
1714 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1715 {
1716     /*
1717      * We had extracted bit55 and ptr_tag for other reasons, so fold
1718      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1719      */
1720     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1721     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1722     return tcma && match;
1723 }
1724 
1725 /*
1726  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1727  * for the tag to be present in the FAR_ELx register.  But for user-only
1728  * mode, we do not have a TLB with which to implement this, so we must
1729  * remove the top byte.
1730  */
1731 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1732 {
1733 #ifdef CONFIG_USER_ONLY
1734     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1735     ptr &= sextract64(ptr, 0, 56);
1736 #endif
1737     return ptr;
1738 }
1739 
1740 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1741 {
1742 #ifdef CONFIG_USER_ONLY
1743     int64_t clean_ptr = sextract64(ptr, 0, 56);
1744     if (tbi_check(desc, clean_ptr < 0)) {
1745         ptr = clean_ptr;
1746     }
1747 #endif
1748     return ptr;
1749 }
1750 
1751 /* Values for M-profile PSR.ECI for MVE insns */
1752 enum MVEECIState {
1753     ECI_NONE = 0, /* No completed beats */
1754     ECI_A0 = 1, /* Completed: A0 */
1755     ECI_A0A1 = 2, /* Completed: A0, A1 */
1756     /* 3 is reserved */
1757     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1758     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1759     /* All other values reserved */
1760 };
1761 
1762 /* Definitions for the PMU registers */
1763 #define PMCRN_MASK  0xf800
1764 #define PMCRN_SHIFT 11
1765 #define PMCRLP  0x80
1766 #define PMCRLC  0x40
1767 #define PMCRDP  0x20
1768 #define PMCRX   0x10
1769 #define PMCRD   0x8
1770 #define PMCRC   0x4
1771 #define PMCRP   0x2
1772 #define PMCRE   0x1
1773 /*
1774  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1775  * which can be written as 1 to trigger behaviour but which stay RAZ).
1776  */
1777 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1778 
1779 #define PMXEVTYPER_P          0x80000000
1780 #define PMXEVTYPER_U          0x40000000
1781 #define PMXEVTYPER_NSK        0x20000000
1782 #define PMXEVTYPER_NSU        0x10000000
1783 #define PMXEVTYPER_NSH        0x08000000
1784 #define PMXEVTYPER_M          0x04000000
1785 #define PMXEVTYPER_MT         0x02000000
1786 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1787 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1788                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1789                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1790                                PMXEVTYPER_EVTCOUNT)
1791 
1792 #define PMCCFILTR             0xf8000000
1793 #define PMCCFILTR_M           PMXEVTYPER_M
1794 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1795 
1796 static inline uint32_t pmu_num_counters(CPUARMState *env)
1797 {
1798     ARMCPU *cpu = env_archcpu(env);
1799 
1800     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1801 }
1802 
1803 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1804 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1805 {
1806   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1807 }
1808 
1809 #ifdef TARGET_AARCH64
1810 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1811 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1812 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1813 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1814 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1815 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1816 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1817 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1818 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1819 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1820 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1821 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1822 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1823 void aarch64_max_tcg_initfn(Object *obj);
1824 void aarch64_add_pauth_properties(Object *obj);
1825 void aarch64_add_sve_properties(Object *obj);
1826 void aarch64_add_sme_properties(Object *obj);
1827 #endif
1828 
1829 /* Read the CONTROL register as the MRS instruction would. */
1830 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1831 
1832 /*
1833  * Return a pointer to the location where we currently store the
1834  * stack pointer for the requested security state and thread mode.
1835  * This pointer will become invalid if the CPU state is updated
1836  * such that the stack pointers are switched around (eg changing
1837  * the SPSEL control bit).
1838  */
1839 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1840                              bool threadmode, bool spsel);
1841 
1842 bool el_is_in_host(CPUARMState *env, int el);
1843 
1844 void aa32_max_features(ARMCPU *cpu);
1845 int exception_target_el(CPUARMState *env);
1846 bool arm_singlestep_active(CPUARMState *env);
1847 bool arm_generate_debug_exceptions(CPUARMState *env);
1848 
1849 /**
1850  * pauth_ptr_mask:
1851  * @param: parameters defining the MMU setup
1852  *
1853  * Return a mask of the address bits that contain the authentication code,
1854  * given the MMU config defined by @param.
1855  */
1856 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1857 {
1858     int bot_pac_bit = 64 - param.tsz;
1859     int top_pac_bit = 64 - 8 * param.tbi;
1860 
1861     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1862 }
1863 
1864 /* Add the cpreg definitions for debug related system registers */
1865 void define_debug_regs(ARMCPU *cpu);
1866 
1867 /* Add the cpreg definitions for TLBI instructions */
1868 void define_tlb_insn_regs(ARMCPU *cpu);
1869 
1870 /* Effective value of MDCR_EL2 */
1871 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1872 {
1873     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1874 }
1875 
1876 /* Powers of 2 for sve_vq_map et al. */
1877 #define SVE_VQ_POW2_MAP                                 \
1878     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1879      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1880 
1881 /*
1882  * Return true if it is possible to take a fine-grained-trap to EL2.
1883  */
1884 static inline bool arm_fgt_active(CPUARMState *env, int el)
1885 {
1886     /*
1887      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1888      * that can affect EL0, but it is harmless to do the test also for
1889      * traps on registers that are only accessible at EL1 because if the test
1890      * returns true then we can't be executing at EL1 anyway.
1891      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1892      * traps from AArch32 only happen for the EL0 is AArch32 case.
1893      */
1894     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1895         el < 2 && arm_is_el2_enabled(env) &&
1896         arm_el_is_aa64(env, 1) &&
1897         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1898         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1899 }
1900 
1901 void assert_hflags_rebuild_correctly(CPUARMState *env);
1902 
1903 /*
1904  * Although the ARM implementation of hardware assisted debugging
1905  * allows for different breakpoints per-core, the current GDB
1906  * interface treats them as a global pool of registers (which seems to
1907  * be the case for x86, ppc and s390). As a result we store one copy
1908  * of registers which is used for all active cores.
1909  *
1910  * Write access is serialised by virtue of the GDB protocol which
1911  * updates things. Read access (i.e. when the values are copied to the
1912  * vCPU) is also gated by GDB's run control.
1913  *
1914  * This is not unreasonable as most of the time debugging kernels you
1915  * never know which core will eventually execute your function.
1916  */
1917 
1918 typedef struct {
1919     uint64_t bcr;
1920     uint64_t bvr;
1921 } HWBreakpoint;
1922 
1923 /*
1924  * The watchpoint registers can cover more area than the requested
1925  * watchpoint so we need to store the additional information
1926  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1927  * when the watchpoint is hit.
1928  */
1929 typedef struct {
1930     uint64_t wcr;
1931     uint64_t wvr;
1932     CPUWatchpoint details;
1933 } HWWatchpoint;
1934 
1935 /* Maximum and current break/watch point counts */
1936 extern int max_hw_bps, max_hw_wps;
1937 extern GArray *hw_breakpoints, *hw_watchpoints;
1938 
1939 #define cur_hw_wps      (hw_watchpoints->len)
1940 #define cur_hw_bps      (hw_breakpoints->len)
1941 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1942 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1943 
1944 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1945 int insert_hw_breakpoint(target_ulong pc);
1946 int delete_hw_breakpoint(target_ulong pc);
1947 
1948 bool check_watchpoint_in_range(int i, target_ulong addr);
1949 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1950 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1951 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1952 
1953 /* Return the current value of the system counter in ticks */
1954 uint64_t gt_get_countervalue(CPUARMState *env);
1955 /*
1956  * Return the currently applicable offset between the system counter
1957  * and the counter for the specified timer, as used for direct register
1958  * accesses.
1959  */
1960 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx);
1961 
1962 /*
1963  * Return mask of ARMMMUIdxBit values corresponding to an "invalidate
1964  * all EL1" scope; this covers stage 1 and stage 2.
1965  */
1966 int alle1_tlbmask(CPUARMState *env);
1967 
1968 /* Set the float_status behaviour to match the Arm defaults */
1969 void arm_set_default_fp_behaviours(float_status *s);
1970 /* Set the float_status behaviour to match Arm FPCR.AH=1 behaviour */
1971 void arm_set_ah_fp_behaviours(float_status *s);
1972 /* Read the float_status info and return the appropriate FPSR value */
1973 uint32_t vfp_get_fpsr_from_host(CPUARMState *env);
1974 /* Clear the exception status flags from all float_status fields */
1975 void vfp_clear_float_status_exc_flags(CPUARMState *env);
1976 /*
1977  * Update float_status fields to handle the bits of the FPCR
1978  * specified by mask changing to the values in val.
1979  */
1980 void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask);
1981 
1982 #endif
1983