xref: /qemu/target/arm/internals.h (revision 4759aae43235cd00e1c9b67ff5bd920db89fddc5)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/hwaddr.h"
29 #include "exec/vaddr.h"
30 #include "exec/breakpoint.h"
31 #include "hw/registerfields.h"
32 #include "tcg/tcg-gvec-desc.h"
33 #include "system/memory.h"
34 #include "syndrome.h"
35 #include "cpu-features.h"
36 
37 /* register banks for CPU modes */
38 #define BANK_USRSYS 0
39 #define BANK_SVC    1
40 #define BANK_ABT    2
41 #define BANK_UND    3
42 #define BANK_IRQ    4
43 #define BANK_FIQ    5
44 #define BANK_HYP    6
45 #define BANK_MON    7
46 
47 static inline int arm_env_mmu_index(CPUARMState *env)
48 {
49     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
50 }
51 
52 static inline bool excp_is_internal(int excp)
53 {
54     /* Return true if this exception number represents a QEMU-internal
55      * exception that will not be passed to the guest.
56      */
57     return excp == EXCP_INTERRUPT
58         || excp == EXCP_HLT
59         || excp == EXCP_DEBUG
60         || excp == EXCP_HALTED
61         || excp == EXCP_EXCEPTION_EXIT
62         || excp == EXCP_KERNEL_TRAP
63         || excp == EXCP_SEMIHOST;
64 }
65 
66 /*
67  * Default frequency for the generic timer, in Hz.
68  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
69  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
70  * which gives a 16ns tick period.
71  *
72  * We will use the back-compat value:
73  *  - for QEMU CPU types added before we standardized on 1GHz
74  *  - for versioned machine types with a version of 9.0 or earlier
75  * In any case, the machine model may override via the cntfrq property.
76  */
77 #define GTIMER_DEFAULT_HZ 1000000000
78 #define GTIMER_BACKCOMPAT_HZ 62500000
79 
80 /* Bit definitions for the v7M CONTROL register */
81 FIELD(V7M_CONTROL, NPRIV, 0, 1)
82 FIELD(V7M_CONTROL, SPSEL, 1, 1)
83 FIELD(V7M_CONTROL, FPCA, 2, 1)
84 FIELD(V7M_CONTROL, SFPA, 3, 1)
85 
86 /* Bit definitions for v7M exception return payload */
87 FIELD(V7M_EXCRET, ES, 0, 1)
88 FIELD(V7M_EXCRET, RES0, 1, 1)
89 FIELD(V7M_EXCRET, SPSEL, 2, 1)
90 FIELD(V7M_EXCRET, MODE, 3, 1)
91 FIELD(V7M_EXCRET, FTYPE, 4, 1)
92 FIELD(V7M_EXCRET, DCRS, 5, 1)
93 FIELD(V7M_EXCRET, S, 6, 1)
94 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
95 
96 /* Minimum value which is a magic number for exception return */
97 #define EXC_RETURN_MIN_MAGIC 0xff000000
98 /* Minimum number which is a magic number for function or exception return
99  * when using v8M security extension
100  */
101 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
102 
103 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
104 FIELD(DBGWCR, E, 0, 1)
105 FIELD(DBGWCR, PAC, 1, 2)
106 FIELD(DBGWCR, LSC, 3, 2)
107 FIELD(DBGWCR, BAS, 5, 8)
108 FIELD(DBGWCR, HMC, 13, 1)
109 FIELD(DBGWCR, SSC, 14, 2)
110 FIELD(DBGWCR, LBN, 16, 4)
111 FIELD(DBGWCR, WT, 20, 1)
112 FIELD(DBGWCR, MASK, 24, 5)
113 FIELD(DBGWCR, SSCE, 29, 1)
114 
115 #define VTCR_NSW (1u << 29)
116 #define VTCR_NSA (1u << 30)
117 #define VSTCR_SW VTCR_NSW
118 #define VSTCR_SA VTCR_NSA
119 
120 /* Bit definitions for CPACR (AArch32 only) */
121 FIELD(CPACR, CP10, 20, 2)
122 FIELD(CPACR, CP11, 22, 2)
123 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
124 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
125 FIELD(CPACR, ASEDIS, 31, 1)
126 
127 /* Bit definitions for CPACR_EL1 (AArch64 only) */
128 FIELD(CPACR_EL1, ZEN, 16, 2)
129 FIELD(CPACR_EL1, FPEN, 20, 2)
130 FIELD(CPACR_EL1, SMEN, 24, 2)
131 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
132 
133 /* Bit definitions for HCPTR (AArch32 only) */
134 FIELD(HCPTR, TCP10, 10, 1)
135 FIELD(HCPTR, TCP11, 11, 1)
136 FIELD(HCPTR, TASE, 15, 1)
137 FIELD(HCPTR, TTA, 20, 1)
138 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
139 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
140 
141 /* Bit definitions for CPTR_EL2 (AArch64 only) */
142 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
143 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
144 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
145 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
146 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
147 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
148 FIELD(CPTR_EL2, TTA, 28, 1)
149 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
150 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
151 
152 /* Bit definitions for CPTR_EL3 (AArch64 only) */
153 FIELD(CPTR_EL3, EZ, 8, 1)
154 FIELD(CPTR_EL3, TFP, 10, 1)
155 FIELD(CPTR_EL3, ESM, 12, 1)
156 FIELD(CPTR_EL3, TTA, 20, 1)
157 FIELD(CPTR_EL3, TAM, 30, 1)
158 FIELD(CPTR_EL3, TCPAC, 31, 1)
159 
160 #define MDCR_MTPME    (1U << 28)
161 #define MDCR_TDCC     (1U << 27)
162 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
163 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
164 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
165 #define MDCR_EPMAD    (1U << 21)
166 #define MDCR_EDAD     (1U << 20)
167 #define MDCR_TTRF     (1U << 19)
168 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
169 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
170 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
171 #define MDCR_SDD      (1U << 16)
172 #define MDCR_SPD      (3U << 14)
173 #define MDCR_TDRA     (1U << 11)
174 #define MDCR_TDOSA    (1U << 10)
175 #define MDCR_TDA      (1U << 9)
176 #define MDCR_TDE      (1U << 8)
177 #define MDCR_HPME     (1U << 7)
178 #define MDCR_TPM      (1U << 6)
179 #define MDCR_TPMCR    (1U << 5)
180 #define MDCR_HPMN     (0x1fU)
181 
182 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
183 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
184                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
185                          MDCR_STE | MDCR_SPME | MDCR_SPD)
186 
187 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
188 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
189 #define TTBCR_PD0    (1U << 4)
190 #define TTBCR_PD1    (1U << 5)
191 #define TTBCR_EPD0   (1U << 7)
192 #define TTBCR_IRGN0  (3U << 8)
193 #define TTBCR_ORGN0  (3U << 10)
194 #define TTBCR_SH0    (3U << 12)
195 #define TTBCR_T1SZ   (3U << 16)
196 #define TTBCR_A1     (1U << 22)
197 #define TTBCR_EPD1   (1U << 23)
198 #define TTBCR_IRGN1  (3U << 24)
199 #define TTBCR_ORGN1  (3U << 26)
200 #define TTBCR_SH1    (1U << 28)
201 #define TTBCR_EAE    (1U << 31)
202 
203 FIELD(VTCR, T0SZ, 0, 6)
204 FIELD(VTCR, SL0, 6, 2)
205 FIELD(VTCR, IRGN0, 8, 2)
206 FIELD(VTCR, ORGN0, 10, 2)
207 FIELD(VTCR, SH0, 12, 2)
208 FIELD(VTCR, TG0, 14, 2)
209 FIELD(VTCR, PS, 16, 3)
210 FIELD(VTCR, VS, 19, 1)
211 FIELD(VTCR, HA, 21, 1)
212 FIELD(VTCR, HD, 22, 1)
213 FIELD(VTCR, HWU59, 25, 1)
214 FIELD(VTCR, HWU60, 26, 1)
215 FIELD(VTCR, HWU61, 27, 1)
216 FIELD(VTCR, HWU62, 28, 1)
217 FIELD(VTCR, NSW, 29, 1)
218 FIELD(VTCR, NSA, 30, 1)
219 FIELD(VTCR, DS, 32, 1)
220 FIELD(VTCR, SL2, 33, 1)
221 
222 #define HCRX_ENAS0    (1ULL << 0)
223 #define HCRX_ENALS    (1ULL << 1)
224 #define HCRX_ENASR    (1ULL << 2)
225 #define HCRX_FNXS     (1ULL << 3)
226 #define HCRX_FGTNXS   (1ULL << 4)
227 #define HCRX_SMPME    (1ULL << 5)
228 #define HCRX_TALLINT  (1ULL << 6)
229 #define HCRX_VINMI    (1ULL << 7)
230 #define HCRX_VFNMI    (1ULL << 8)
231 #define HCRX_CMOW     (1ULL << 9)
232 #define HCRX_MCE2     (1ULL << 10)
233 #define HCRX_MSCEN    (1ULL << 11)
234 
235 #define HPFAR_NS      (1ULL << 63)
236 
237 #define HSTR_TTEE (1 << 16)
238 #define HSTR_TJDBX (1 << 17)
239 
240 /*
241  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
242  * have different bit definitions, and EL1PCTEN might be
243  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
244  * disambiguate if necessary.
245  */
246 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
247 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
248 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
249 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
250 FIELD(CNTHCTL, EVNTEN, 2, 1)
251 FIELD(CNTHCTL, EVNTDIR, 3, 1)
252 FIELD(CNTHCTL, EVNTI, 4, 4)
253 FIELD(CNTHCTL, EL0VTEN, 8, 1)
254 FIELD(CNTHCTL, EL0PTEN, 9, 1)
255 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
256 FIELD(CNTHCTL, EL1PTEN, 11, 1)
257 FIELD(CNTHCTL, ECV, 12, 1)
258 FIELD(CNTHCTL, EL1TVT, 13, 1)
259 FIELD(CNTHCTL, EL1TVCT, 14, 1)
260 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
261 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
262 FIELD(CNTHCTL, EVNTIS, 17, 1)
263 FIELD(CNTHCTL, CNTVMASK, 18, 1)
264 FIELD(CNTHCTL, CNTPMASK, 19, 1)
265 
266 /* We use a few fake FSR values for internal purposes in M profile.
267  * M profile cores don't have A/R format FSRs, but currently our
268  * get_phys_addr() code assumes A/R profile and reports failures via
269  * an A/R format FSR value. We then translate that into the proper
270  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
271  * Mostly the FSR values we use for this are those defined for v7PMSA,
272  * since we share some of that codepath. A few kinds of fault are
273  * only for M profile and have no A/R equivalent, though, so we have
274  * to pick a value from the reserved range (which we never otherwise
275  * generate) to use for these.
276  * These values will never be visible to the guest.
277  */
278 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
279 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
280 
281 /**
282  * raise_exception: Raise the specified exception.
283  * Raise a guest exception with the specified value, syndrome register
284  * and target exception level. This should be called from helper functions,
285  * and never returns because we will longjump back up to the CPU main loop.
286  */
287 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
288                                 uint32_t syndrome, uint32_t target_el);
289 
290 /*
291  * Similarly, but also use unwinding to restore cpu state.
292  */
293 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
294                                       uint32_t syndrome, uint32_t target_el,
295                                       uintptr_t ra);
296 
297 /*
298  * For AArch64, map a given EL to an index in the banked_spsr array.
299  * Note that this mapping and the AArch32 mapping defined in bank_number()
300  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
301  * mandated mapping between each other.
302  */
303 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
304 {
305     static const unsigned int map[4] = {
306         [1] = BANK_SVC, /* EL1.  */
307         [2] = BANK_HYP, /* EL2.  */
308         [3] = BANK_MON, /* EL3.  */
309     };
310     assert(el >= 1 && el <= 3);
311     return map[el];
312 }
313 
314 /* Map CPU modes onto saved register banks.  */
315 static inline int bank_number(int mode)
316 {
317     switch (mode) {
318     case ARM_CPU_MODE_USR:
319     case ARM_CPU_MODE_SYS:
320         return BANK_USRSYS;
321     case ARM_CPU_MODE_SVC:
322         return BANK_SVC;
323     case ARM_CPU_MODE_ABT:
324         return BANK_ABT;
325     case ARM_CPU_MODE_UND:
326         return BANK_UND;
327     case ARM_CPU_MODE_IRQ:
328         return BANK_IRQ;
329     case ARM_CPU_MODE_FIQ:
330         return BANK_FIQ;
331     case ARM_CPU_MODE_HYP:
332         return BANK_HYP;
333     case ARM_CPU_MODE_MON:
334         return BANK_MON;
335     }
336     g_assert_not_reached();
337 }
338 
339 /**
340  * r14_bank_number: Map CPU mode onto register bank for r14
341  *
342  * Given an AArch32 CPU mode, return the index into the saved register
343  * banks to use for the R14 (LR) in that mode. This is the same as
344  * bank_number(), except for the special case of Hyp mode, where
345  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
346  * This should be used as the index into env->banked_r14[], and
347  * bank_number() used for the index into env->banked_r13[] and
348  * env->banked_spsr[].
349  */
350 static inline int r14_bank_number(int mode)
351 {
352     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
353 }
354 
355 void arm_cpu_register(const ARMCPUInfo *info);
356 void aarch64_cpu_register(const ARMCPUInfo *info);
357 
358 void register_cp_regs_for_features(ARMCPU *cpu);
359 void init_cpreg_list(ARMCPU *cpu);
360 
361 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
362 void arm_translate_init(void);
363 void arm_translate_code(CPUState *cs, TranslationBlock *tb,
364                         int *max_insns, vaddr pc, void *host_pc);
365 
366 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
367 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
368                                        GPtrArray *, GPtrArray *);
369 
370 void arm_restore_state_to_opc(CPUState *cs,
371                               const TranslationBlock *tb,
372                               const uint64_t *data);
373 
374 #ifdef CONFIG_TCG
375 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
376 
377 /* Our implementation of TCGCPUOps::cpu_exec_halt */
378 bool arm_cpu_exec_halt(CPUState *cs);
379 int arm_cpu_mmu_index(CPUState *cs, bool ifetch);
380 #endif /* CONFIG_TCG */
381 
382 typedef enum ARMFPRounding {
383     FPROUNDING_TIEEVEN,
384     FPROUNDING_POSINF,
385     FPROUNDING_NEGINF,
386     FPROUNDING_ZERO,
387     FPROUNDING_TIEAWAY,
388     FPROUNDING_ODD
389 } ARMFPRounding;
390 
391 extern const FloatRoundMode arm_rmode_to_sf_map[6];
392 
393 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
394 {
395     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
396     return arm_rmode_to_sf_map[rmode];
397 }
398 
399 /* Return the effective value of SCR_EL3.RW */
400 static inline bool arm_scr_rw_eff(CPUARMState *env)
401 {
402     /*
403      * SCR_EL3.RW has an effective value of 1 if:
404      *  - we are NS and EL2 is implemented but doesn't support AArch32
405      *  - we are S and EL2 is enabled (in which case it must be AArch64)
406      */
407     ARMCPU *cpu = env_archcpu(env);
408 
409     if (env->cp15.scr_el3 & SCR_RW) {
410         return true;
411     }
412     if (env->cp15.scr_el3 & SCR_NS) {
413         return arm_feature(env, ARM_FEATURE_EL2) &&
414             !cpu_isar_feature(aa64_aa32_el2, cpu);
415     } else {
416         return env->cp15.scr_el3 & SCR_EEL2;
417     }
418 }
419 
420 /* Return true if the specified exception level is running in AArch64 state. */
421 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
422 {
423     /*
424      * This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
425      * and if we're not in EL0 then the state of EL0 isn't well defined.)
426      */
427     assert(el >= 1 && el <= 3);
428     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
429 
430     /*
431      * The highest exception level is always at the maximum supported
432      * register width, and then lower levels have a register width controlled
433      * by bits in the SCR or HCR registers.
434      */
435     if (el == 3) {
436         return aa64;
437     }
438 
439     if (arm_feature(env, ARM_FEATURE_EL3)) {
440         aa64 = aa64 && arm_scr_rw_eff(env);
441     }
442 
443     if (el == 2) {
444         return aa64;
445     }
446 
447     if (arm_is_el2_enabled(env)) {
448         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
449     }
450 
451     return aa64;
452 }
453 
454 /*
455  * Return the current Exception Level (as per ARMv8; note that this differs
456  * from the ARMv7 Privilege Level).
457  */
458 static inline int arm_current_el(CPUARMState *env)
459 {
460     if (arm_feature(env, ARM_FEATURE_M)) {
461         return arm_v7m_is_handler_mode(env) ||
462             !(env->v7m.control[env->v7m.secure] & 1);
463     }
464 
465     if (is_a64(env)) {
466         return extract32(env->pstate, 2, 2);
467     }
468 
469     switch (env->uncached_cpsr & 0x1f) {
470     case ARM_CPU_MODE_USR:
471         return 0;
472     case ARM_CPU_MODE_HYP:
473         return 2;
474     case ARM_CPU_MODE_MON:
475         return 3;
476     default:
477         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
478             /* If EL3 is 32-bit then all secure privileged modes run in EL3 */
479             return 3;
480         }
481 
482         return 1;
483     }
484 }
485 
486 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
487                                                   bool sctlr_b)
488 {
489 #ifdef CONFIG_USER_ONLY
490     /*
491      * In system mode, BE32 is modelled in line with the
492      * architecture (as word-invariant big-endianness), where loads
493      * and stores are done little endian but from addresses which
494      * are adjusted by XORing with the appropriate constant. So the
495      * endianness to use for the raw data access is not affected by
496      * SCTLR.B.
497      * In user mode, however, we model BE32 as byte-invariant
498      * big-endianness (because user-only code cannot tell the
499      * difference), and so we need to use a data access endianness
500      * that depends on SCTLR.B.
501      */
502     if (sctlr_b) {
503         return true;
504     }
505 #endif
506     /* In 32bit endianness is determined by looking at CPSR's E bit */
507     return env->uncached_cpsr & CPSR_E;
508 }
509 
510 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
511 {
512     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
513 }
514 
515 /* Return true if the processor is in big-endian mode. */
516 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
517 {
518     if (!is_a64(env)) {
519         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
520     } else {
521         int cur_el = arm_current_el(env);
522         uint64_t sctlr = arm_sctlr(env, cur_el);
523         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
524     }
525 }
526 
527 #ifdef CONFIG_USER_ONLY
528 static inline bool arm_cpu_bswap_data(CPUARMState *env)
529 {
530     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
531 }
532 #endif
533 
534 static inline void aarch64_save_sp(CPUARMState *env, int el)
535 {
536     if (env->pstate & PSTATE_SP) {
537         env->sp_el[el] = env->xregs[31];
538     } else {
539         env->sp_el[0] = env->xregs[31];
540     }
541 }
542 
543 static inline void aarch64_restore_sp(CPUARMState *env, int el)
544 {
545     if (env->pstate & PSTATE_SP) {
546         env->xregs[31] = env->sp_el[el];
547     } else {
548         env->xregs[31] = env->sp_el[0];
549     }
550 }
551 
552 static inline void update_spsel(CPUARMState *env, uint32_t imm)
553 {
554     unsigned int cur_el = arm_current_el(env);
555     /* Update PSTATE SPSel bit; this requires us to update the
556      * working stack pointer in xregs[31].
557      */
558     if (!((imm ^ env->pstate) & PSTATE_SP)) {
559         return;
560     }
561     aarch64_save_sp(env, cur_el);
562     env->pstate = deposit32(env->pstate, 0, 1, imm);
563 
564     /* We rely on illegal updates to SPsel from EL0 to get trapped
565      * at translation time.
566      */
567     assert(cur_el >= 1 && cur_el <= 3);
568     aarch64_restore_sp(env, cur_el);
569 }
570 
571 /*
572  * arm_pamax
573  * @cpu: ARMCPU
574  *
575  * Returns the implementation defined bit-width of physical addresses.
576  * The ARMv8 reference manuals refer to this as PAMax().
577  */
578 unsigned int arm_pamax(ARMCPU *cpu);
579 
580 /*
581  * round_down_to_parange_index
582  * @bit_size: uint8_t
583  *
584  * Rounds down the bit_size supplied to the first supported ARM physical
585  * address range and returns the index for this. The index is intended to
586  * be used to set ID_AA64MMFR0_EL1's PARANGE bits.
587  */
588 uint8_t round_down_to_parange_index(uint8_t bit_size);
589 
590 /*
591  * round_down_to_parange_bit_size
592  * @bit_size: uint8_t
593  *
594  * Rounds down the bit_size supplied to the first supported ARM physical
595  * address range bit size and returns this.
596  */
597 uint8_t round_down_to_parange_bit_size(uint8_t bit_size);
598 
599 /* Return true if extended addresses are enabled.
600  * This is always the case if our translation regime is 64 bit,
601  * but depends on TTBCR.EAE for 32 bit.
602  */
603 static inline bool extended_addresses_enabled(CPUARMState *env)
604 {
605     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
606     if (arm_feature(env, ARM_FEATURE_PMSA) &&
607         arm_feature(env, ARM_FEATURE_V8)) {
608         return true;
609     }
610     return arm_el_is_aa64(env, 1) ||
611            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
612 }
613 
614 /* Update a QEMU watchpoint based on the information the guest has set in the
615  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
616  */
617 void hw_watchpoint_update(ARMCPU *cpu, int n);
618 /* Update the QEMU watchpoints for every guest watchpoint. This does a
619  * complete delete-and-reinstate of the QEMU watchpoint list and so is
620  * suitable for use after migration or on reset.
621  */
622 void hw_watchpoint_update_all(ARMCPU *cpu);
623 /* Update a QEMU breakpoint based on the information the guest has set in the
624  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
625  */
626 void hw_breakpoint_update(ARMCPU *cpu, int n);
627 /* Update the QEMU breakpoints for every guest breakpoint. This does a
628  * complete delete-and-reinstate of the QEMU breakpoint list and so is
629  * suitable for use after migration or on reset.
630  */
631 void hw_breakpoint_update_all(ARMCPU *cpu);
632 
633 /* Callback function for checking if a breakpoint should trigger. */
634 bool arm_debug_check_breakpoint(CPUState *cs);
635 
636 /* Callback function for checking if a watchpoint should trigger. */
637 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
638 
639 /* Adjust addresses (in BE32 mode) before testing against watchpoint
640  * addresses.
641  */
642 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
643 
644 /* Callback function for when a watchpoint or breakpoint triggers. */
645 void arm_debug_excp_handler(CPUState *cs);
646 
647 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
648 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
649 {
650     return false;
651 }
652 static inline void arm_handle_psci_call(ARMCPU *cpu)
653 {
654     g_assert_not_reached();
655 }
656 #else
657 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
658 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
659 /* Actually handle a PSCI call */
660 void arm_handle_psci_call(ARMCPU *cpu);
661 #endif
662 
663 /**
664  * arm_clear_exclusive: clear the exclusive monitor
665  * @env: CPU env
666  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
667  */
668 static inline void arm_clear_exclusive(CPUARMState *env)
669 {
670     env->exclusive_addr = -1;
671 }
672 
673 /**
674  * ARMFaultType: type of an ARM MMU fault
675  * This corresponds to the v8A pseudocode's Fault enumeration,
676  * with extensions for QEMU internal conditions.
677  */
678 typedef enum ARMFaultType {
679     ARMFault_None,
680     ARMFault_AccessFlag,
681     ARMFault_Alignment,
682     ARMFault_Background,
683     ARMFault_Domain,
684     ARMFault_Permission,
685     ARMFault_Translation,
686     ARMFault_AddressSize,
687     ARMFault_SyncExternal,
688     ARMFault_SyncExternalOnWalk,
689     ARMFault_SyncParity,
690     ARMFault_SyncParityOnWalk,
691     ARMFault_AsyncParity,
692     ARMFault_AsyncExternal,
693     ARMFault_Debug,
694     ARMFault_TLBConflict,
695     ARMFault_UnsuppAtomicUpdate,
696     ARMFault_Lockdown,
697     ARMFault_Exclusive,
698     ARMFault_ICacheMaint,
699     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
700     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
701     ARMFault_GPCFOnWalk,
702     ARMFault_GPCFOnOutput,
703 } ARMFaultType;
704 
705 typedef enum ARMGPCF {
706     GPCF_None,
707     GPCF_AddressSize,
708     GPCF_Walk,
709     GPCF_EABT,
710     GPCF_Fail,
711 } ARMGPCF;
712 
713 /**
714  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
715  * @type: Type of fault
716  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
717  * @level: Table walk level (for translation, access flag and permission faults)
718  * @domain: Domain of the fault address (for non-LPAE CPUs only)
719  * @s2addr: Address that caused a fault at stage 2
720  * @paddr: physical address that caused a fault for gpc
721  * @paddr_space: physical address space that caused a fault for gpc
722  * @stage2: True if we faulted at stage 2
723  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
724  * @s1ns: True if we faulted on a non-secure IPA while in secure state
725  * @ea: True if we should set the EA (external abort type) bit in syndrome
726  */
727 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
728 struct ARMMMUFaultInfo {
729     ARMFaultType type;
730     ARMGPCF gpcf;
731     hwaddr s2addr;
732     hwaddr paddr;
733     ARMSecuritySpace paddr_space;
734     int level;
735     int domain;
736     bool stage2;
737     bool s1ptw;
738     bool s1ns;
739     bool ea;
740 };
741 
742 /**
743  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
744  * Compare pseudocode EncodeSDFSC(), though unlike that function
745  * we set up a whole FSR-format code including domain field and
746  * putting the high bit of the FSC into bit 10.
747  */
748 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
749 {
750     uint32_t fsc;
751 
752     switch (fi->type) {
753     case ARMFault_None:
754         return 0;
755     case ARMFault_AccessFlag:
756         fsc = fi->level == 1 ? 0x3 : 0x6;
757         break;
758     case ARMFault_Alignment:
759         fsc = 0x1;
760         break;
761     case ARMFault_Permission:
762         fsc = fi->level == 1 ? 0xd : 0xf;
763         break;
764     case ARMFault_Domain:
765         fsc = fi->level == 1 ? 0x9 : 0xb;
766         break;
767     case ARMFault_Translation:
768         fsc = fi->level == 1 ? 0x5 : 0x7;
769         break;
770     case ARMFault_SyncExternal:
771         fsc = 0x8 | (fi->ea << 12);
772         break;
773     case ARMFault_SyncExternalOnWalk:
774         fsc = fi->level == 1 ? 0xc : 0xe;
775         fsc |= (fi->ea << 12);
776         break;
777     case ARMFault_SyncParity:
778         fsc = 0x409;
779         break;
780     case ARMFault_SyncParityOnWalk:
781         fsc = fi->level == 1 ? 0x40c : 0x40e;
782         break;
783     case ARMFault_AsyncParity:
784         fsc = 0x408;
785         break;
786     case ARMFault_AsyncExternal:
787         fsc = 0x406 | (fi->ea << 12);
788         break;
789     case ARMFault_Debug:
790         fsc = 0x2;
791         break;
792     case ARMFault_TLBConflict:
793         fsc = 0x400;
794         break;
795     case ARMFault_Lockdown:
796         fsc = 0x404;
797         break;
798     case ARMFault_Exclusive:
799         fsc = 0x405;
800         break;
801     case ARMFault_ICacheMaint:
802         fsc = 0x4;
803         break;
804     case ARMFault_Background:
805         fsc = 0x0;
806         break;
807     case ARMFault_QEMU_NSCExec:
808         fsc = M_FAKE_FSR_NSC_EXEC;
809         break;
810     case ARMFault_QEMU_SFault:
811         fsc = M_FAKE_FSR_SFAULT;
812         break;
813     default:
814         /* Other faults can't occur in a context that requires a
815          * short-format status code.
816          */
817         g_assert_not_reached();
818     }
819 
820     fsc |= (fi->domain << 4);
821     return fsc;
822 }
823 
824 /**
825  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
826  * Compare pseudocode EncodeLDFSC(), though unlike that function
827  * we fill in also the LPAE bit 9 of a DFSR format.
828  */
829 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
830 {
831     uint32_t fsc;
832 
833     switch (fi->type) {
834     case ARMFault_None:
835         return 0;
836     case ARMFault_AddressSize:
837         assert(fi->level >= -1 && fi->level <= 3);
838         if (fi->level < 0) {
839             fsc = 0b101001;
840         } else {
841             fsc = fi->level;
842         }
843         break;
844     case ARMFault_AccessFlag:
845         assert(fi->level >= 0 && fi->level <= 3);
846         fsc = 0b001000 | fi->level;
847         break;
848     case ARMFault_Permission:
849         assert(fi->level >= 0 && fi->level <= 3);
850         fsc = 0b001100 | fi->level;
851         break;
852     case ARMFault_Translation:
853         assert(fi->level >= -1 && fi->level <= 3);
854         if (fi->level < 0) {
855             fsc = 0b101011;
856         } else {
857             fsc = 0b000100 | fi->level;
858         }
859         break;
860     case ARMFault_SyncExternal:
861         fsc = 0x10 | (fi->ea << 12);
862         break;
863     case ARMFault_SyncExternalOnWalk:
864         assert(fi->level >= -1 && fi->level <= 3);
865         if (fi->level < 0) {
866             fsc = 0b010011;
867         } else {
868             fsc = 0b010100 | fi->level;
869         }
870         fsc |= fi->ea << 12;
871         break;
872     case ARMFault_SyncParity:
873         fsc = 0x18;
874         break;
875     case ARMFault_SyncParityOnWalk:
876         assert(fi->level >= -1 && fi->level <= 3);
877         if (fi->level < 0) {
878             fsc = 0b011011;
879         } else {
880             fsc = 0b011100 | fi->level;
881         }
882         break;
883     case ARMFault_AsyncParity:
884         fsc = 0x19;
885         break;
886     case ARMFault_AsyncExternal:
887         fsc = 0x11 | (fi->ea << 12);
888         break;
889     case ARMFault_Alignment:
890         fsc = 0x21;
891         break;
892     case ARMFault_Debug:
893         fsc = 0x22;
894         break;
895     case ARMFault_TLBConflict:
896         fsc = 0x30;
897         break;
898     case ARMFault_UnsuppAtomicUpdate:
899         fsc = 0x31;
900         break;
901     case ARMFault_Lockdown:
902         fsc = 0x34;
903         break;
904     case ARMFault_Exclusive:
905         fsc = 0x35;
906         break;
907     case ARMFault_GPCFOnWalk:
908         assert(fi->level >= -1 && fi->level <= 3);
909         if (fi->level < 0) {
910             fsc = 0b100011;
911         } else {
912             fsc = 0b100100 | fi->level;
913         }
914         break;
915     case ARMFault_GPCFOnOutput:
916         fsc = 0b101000;
917         break;
918     default:
919         /* Other faults can't occur in a context that requires a
920          * long-format status code.
921          */
922         g_assert_not_reached();
923     }
924 
925     fsc |= 1 << 9;
926     return fsc;
927 }
928 
929 static inline bool arm_extabort_type(MemTxResult result)
930 {
931     /* The EA bit in syndromes and fault status registers is an
932      * IMPDEF classification of external aborts. ARM implementations
933      * usually use this to indicate AXI bus Decode error (0) or
934      * Slave error (1); in QEMU we follow that.
935      */
936     return result != MEMTX_DECODE_ERROR;
937 }
938 
939 #ifdef CONFIG_USER_ONLY
940 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
941                             MMUAccessType access_type,
942                             bool maperr, uintptr_t ra);
943 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
944                            MMUAccessType access_type, uintptr_t ra);
945 #else
946 bool arm_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
947                             MMUAccessType access_type, int mmu_idx,
948                             MemOp memop, int size, bool probe, uintptr_t ra);
949 #endif
950 
951 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
952 {
953     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
954 }
955 
956 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
957 {
958     if (arm_feature(env, ARM_FEATURE_M)) {
959         return mmu_idx | ARM_MMU_IDX_M;
960     } else {
961         return mmu_idx | ARM_MMU_IDX_A;
962     }
963 }
964 
965 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
966 {
967     /* AArch64 is always a-profile. */
968     return mmu_idx | ARM_MMU_IDX_A;
969 }
970 
971 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
972 
973 /* Return the MMU index for a v7M CPU in the specified security state */
974 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
975 
976 /*
977  * Return true if the stage 1 translation regime is using LPAE
978  * format page tables
979  */
980 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
981 
982 /* Raise a data fault alignment exception for the specified virtual address */
983 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
984                                             MMUAccessType access_type,
985                                             int mmu_idx, uintptr_t retaddr);
986 
987 #ifndef CONFIG_USER_ONLY
988 /* arm_cpu_do_transaction_failed: handle a memory system error response
989  * (eg "no device/memory present at address") by raising an external abort
990  * exception
991  */
992 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
993                                    vaddr addr, unsigned size,
994                                    MMUAccessType access_type,
995                                    int mmu_idx, MemTxAttrs attrs,
996                                    MemTxResult response, uintptr_t retaddr);
997 #endif
998 
999 /* Call any registered EL change hooks */
1000 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
1001 {
1002     ARMELChangeHook *hook, *next;
1003     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1004         hook->hook(cpu, hook->opaque);
1005     }
1006 }
1007 static inline void arm_call_el_change_hook(ARMCPU *cpu)
1008 {
1009     ARMELChangeHook *hook, *next;
1010     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1011         hook->hook(cpu, hook->opaque);
1012     }
1013 }
1014 
1015 /*
1016  * Return true if this address translation regime has two ranges.
1017  * Note that this will not return the correct answer for AArch32
1018  * Secure PL1&0 (i.e. mmu indexes E3, E30_0, E30_3_PAN), but it is
1019  * never called from a context where EL3 can be AArch32. (The
1020  * correct return value for ARMMMUIdx_E3 would be different for
1021  * that case, so we can't just make the function return the
1022  * correct value anyway; we would need an extra "bool e3_is_aarch32"
1023  * argument which all the current callsites would pass as 'false'.)
1024  */
1025 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
1026 {
1027     switch (mmu_idx) {
1028     case ARMMMUIdx_Stage1_E0:
1029     case ARMMMUIdx_Stage1_E1:
1030     case ARMMMUIdx_Stage1_E1_PAN:
1031     case ARMMMUIdx_E10_0:
1032     case ARMMMUIdx_E10_1:
1033     case ARMMMUIdx_E10_1_PAN:
1034     case ARMMMUIdx_E20_0:
1035     case ARMMMUIdx_E20_2:
1036     case ARMMMUIdx_E20_2_PAN:
1037         return true;
1038     default:
1039         return false;
1040     }
1041 }
1042 
1043 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
1044 {
1045     switch (mmu_idx) {
1046     case ARMMMUIdx_Stage1_E1_PAN:
1047     case ARMMMUIdx_E10_1_PAN:
1048     case ARMMMUIdx_E20_2_PAN:
1049     case ARMMMUIdx_E30_3_PAN:
1050         return true;
1051     default:
1052         return false;
1053     }
1054 }
1055 
1056 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
1057 {
1058     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
1059 }
1060 
1061 /* Return the exception level which controls this address translation regime */
1062 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
1063 {
1064     switch (mmu_idx) {
1065     case ARMMMUIdx_E20_0:
1066     case ARMMMUIdx_E20_2:
1067     case ARMMMUIdx_E20_2_PAN:
1068     case ARMMMUIdx_Stage2:
1069     case ARMMMUIdx_Stage2_S:
1070     case ARMMMUIdx_E2:
1071         return 2;
1072     case ARMMMUIdx_E3:
1073     case ARMMMUIdx_E30_0:
1074     case ARMMMUIdx_E30_3_PAN:
1075         return 3;
1076     case ARMMMUIdx_E10_0:
1077     case ARMMMUIdx_Stage1_E0:
1078     case ARMMMUIdx_Stage1_E1:
1079     case ARMMMUIdx_Stage1_E1_PAN:
1080     case ARMMMUIdx_E10_1:
1081     case ARMMMUIdx_E10_1_PAN:
1082     case ARMMMUIdx_MPrivNegPri:
1083     case ARMMMUIdx_MUserNegPri:
1084     case ARMMMUIdx_MPriv:
1085     case ARMMMUIdx_MUser:
1086     case ARMMMUIdx_MSPrivNegPri:
1087     case ARMMMUIdx_MSUserNegPri:
1088     case ARMMMUIdx_MSPriv:
1089     case ARMMMUIdx_MSUser:
1090         return 1;
1091     default:
1092         g_assert_not_reached();
1093     }
1094 }
1095 
1096 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
1097 {
1098     switch (mmu_idx) {
1099     case ARMMMUIdx_E10_0:
1100     case ARMMMUIdx_E20_0:
1101     case ARMMMUIdx_E30_0:
1102     case ARMMMUIdx_Stage1_E0:
1103     case ARMMMUIdx_MUser:
1104     case ARMMMUIdx_MSUser:
1105     case ARMMMUIdx_MUserNegPri:
1106     case ARMMMUIdx_MSUserNegPri:
1107         return true;
1108     default:
1109         return false;
1110     }
1111 }
1112 
1113 /* Return the SCTLR value which controls this address translation regime */
1114 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
1115 {
1116     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
1117 }
1118 
1119 /*
1120  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
1121  * and the Non-Secure stage 2 translation regimes (and hence which are
1122  * not present in VSTCR_EL2).
1123  */
1124 #define VTCR_SHARED_FIELD_MASK \
1125     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
1126      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
1127      R_VTCR_DS_MASK)
1128 
1129 /* Return the value of the TCR controlling this translation regime */
1130 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
1131 {
1132     if (mmu_idx == ARMMMUIdx_Stage2) {
1133         return env->cp15.vtcr_el2;
1134     }
1135     if (mmu_idx == ARMMMUIdx_Stage2_S) {
1136         /*
1137          * Secure stage 2 shares fields from VTCR_EL2. We merge those
1138          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
1139          * value so the callers don't need to special case this.
1140          *
1141          * If a future architecture change defines bits in VSTCR_EL2 that
1142          * overlap with these VTCR_EL2 fields we may need to revisit this.
1143          */
1144         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
1145         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
1146         return v;
1147     }
1148     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
1149 }
1150 
1151 /* Return true if the translation regime is using LPAE format page tables */
1152 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
1153 {
1154     int el = regime_el(env, mmu_idx);
1155     if (el == 2 || arm_el_is_aa64(env, el)) {
1156         return true;
1157     }
1158     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1159         arm_feature(env, ARM_FEATURE_V8)) {
1160         return true;
1161     }
1162     if (arm_feature(env, ARM_FEATURE_LPAE)
1163         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1164         return true;
1165     }
1166     return false;
1167 }
1168 
1169 /**
1170  * arm_num_brps: Return number of implemented breakpoints.
1171  * Note that the ID register BRPS field is "number of bps - 1",
1172  * and we return the actual number of breakpoints.
1173  */
1174 static inline int arm_num_brps(ARMCPU *cpu)
1175 {
1176     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1177         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1178     } else {
1179         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1180     }
1181 }
1182 
1183 /**
1184  * arm_num_wrps: Return number of implemented watchpoints.
1185  * Note that the ID register WRPS field is "number of wps - 1",
1186  * and we return the actual number of watchpoints.
1187  */
1188 static inline int arm_num_wrps(ARMCPU *cpu)
1189 {
1190     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1191         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1192     } else {
1193         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1194     }
1195 }
1196 
1197 /**
1198  * arm_num_ctx_cmps: Return number of implemented context comparators.
1199  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1200  * and we return the actual number of comparators.
1201  */
1202 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1203 {
1204     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1205         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1206     } else {
1207         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1208     }
1209 }
1210 
1211 /**
1212  * v7m_using_psp: Return true if using process stack pointer
1213  * Return true if the CPU is currently using the process stack
1214  * pointer, or false if it is using the main stack pointer.
1215  */
1216 static inline bool v7m_using_psp(CPUARMState *env)
1217 {
1218     /* Handler mode always uses the main stack; for thread mode
1219      * the CONTROL.SPSEL bit determines the answer.
1220      * Note that in v7M it is not possible to be in Handler mode with
1221      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1222      */
1223     return !arm_v7m_is_handler_mode(env) &&
1224         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1225 }
1226 
1227 /**
1228  * v7m_sp_limit: Return SP limit for current CPU state
1229  * Return the SP limit value for the current CPU security state
1230  * and stack pointer.
1231  */
1232 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1233 {
1234     if (v7m_using_psp(env)) {
1235         return env->v7m.psplim[env->v7m.secure];
1236     } else {
1237         return env->v7m.msplim[env->v7m.secure];
1238     }
1239 }
1240 
1241 /**
1242  * v7m_cpacr_pass:
1243  * Return true if the v7M CPACR permits access to the FPU for the specified
1244  * security state and privilege level.
1245  */
1246 static inline bool v7m_cpacr_pass(CPUARMState *env,
1247                                   bool is_secure, bool is_priv)
1248 {
1249     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1250     case 0:
1251     case 2: /* UNPREDICTABLE: we treat like 0 */
1252         return false;
1253     case 1:
1254         return is_priv;
1255     case 3:
1256         return true;
1257     default:
1258         g_assert_not_reached();
1259     }
1260 }
1261 
1262 /**
1263  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1264  * @psr: Program Status Register indicating CPU mode
1265  *
1266  * Returns, for debug logging purposes, a printable representation
1267  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1268  * the low bits of the specified PSR.
1269  */
1270 static inline const char *aarch32_mode_name(uint32_t psr)
1271 {
1272     static const char cpu_mode_names[16][4] = {
1273         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1274         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1275     };
1276 
1277     return cpu_mode_names[psr & 0xf];
1278 }
1279 
1280 /**
1281  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1282  *
1283  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1284  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1285  * Must be called with the BQL held.
1286  */
1287 void arm_cpu_update_virq(ARMCPU *cpu);
1288 
1289 /**
1290  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1291  *
1292  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1293  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1294  * Must be called with the BQL held.
1295  */
1296 void arm_cpu_update_vfiq(ARMCPU *cpu);
1297 
1298 /**
1299  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1300  *
1301  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1302  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1303  * Must be called with the BQL held.
1304  */
1305 void arm_cpu_update_vinmi(ARMCPU *cpu);
1306 
1307 /**
1308  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1309  *
1310  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1311  * a change to the HCRX_EL2.VFNMI.
1312  * Must be called with the BQL held.
1313  */
1314 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1315 
1316 /**
1317  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1318  *
1319  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1320  * following a change to the HCR_EL2.VSE bit.
1321  */
1322 void arm_cpu_update_vserr(ARMCPU *cpu);
1323 
1324 /**
1325  * arm_mmu_idx_el:
1326  * @env: The cpu environment
1327  * @el: The EL to use.
1328  *
1329  * Return the full ARMMMUIdx for the translation regime for EL.
1330  */
1331 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1332 
1333 /**
1334  * arm_mmu_idx:
1335  * @env: The cpu environment
1336  *
1337  * Return the full ARMMMUIdx for the current translation regime.
1338  */
1339 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1340 
1341 /**
1342  * arm_stage1_mmu_idx:
1343  * @env: The cpu environment
1344  *
1345  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1346  */
1347 #ifdef CONFIG_USER_ONLY
1348 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1349 {
1350     return ARMMMUIdx_Stage1_E0;
1351 }
1352 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1353 {
1354     return ARMMMUIdx_Stage1_E0;
1355 }
1356 #else
1357 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1358 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1359 #endif
1360 
1361 /**
1362  * arm_mmu_idx_is_stage1_of_2:
1363  * @mmu_idx: The ARMMMUIdx to test
1364  *
1365  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1366  * first stage of a two stage regime.
1367  */
1368 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1369 {
1370     switch (mmu_idx) {
1371     case ARMMMUIdx_Stage1_E0:
1372     case ARMMMUIdx_Stage1_E1:
1373     case ARMMMUIdx_Stage1_E1_PAN:
1374         return true;
1375     default:
1376         return false;
1377     }
1378 }
1379 
1380 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1381                                                const ARMISARegisters *id)
1382 {
1383     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1384 
1385     if ((features >> ARM_FEATURE_V4T) & 1) {
1386         valid |= CPSR_T;
1387     }
1388     if ((features >> ARM_FEATURE_V5) & 1) {
1389         valid |= CPSR_Q; /* V5TE in reality*/
1390     }
1391     if ((features >> ARM_FEATURE_V6) & 1) {
1392         valid |= CPSR_E | CPSR_GE;
1393     }
1394     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1395         valid |= CPSR_IT;
1396     }
1397     if (isar_feature_aa32_jazelle(id)) {
1398         valid |= CPSR_J;
1399     }
1400     if (isar_feature_aa32_pan(id)) {
1401         valid |= CPSR_PAN;
1402     }
1403     if (isar_feature_aa32_dit(id)) {
1404         valid |= CPSR_DIT;
1405     }
1406     if (isar_feature_aa32_ssbs(id)) {
1407         valid |= CPSR_SSBS;
1408     }
1409 
1410     return valid;
1411 }
1412 
1413 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1414 {
1415     uint32_t valid;
1416 
1417     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1418     if (isar_feature_aa64_bti(id)) {
1419         valid |= PSTATE_BTYPE;
1420     }
1421     if (isar_feature_aa64_pan(id)) {
1422         valid |= PSTATE_PAN;
1423     }
1424     if (isar_feature_aa64_uao(id)) {
1425         valid |= PSTATE_UAO;
1426     }
1427     if (isar_feature_aa64_dit(id)) {
1428         valid |= PSTATE_DIT;
1429     }
1430     if (isar_feature_aa64_ssbs(id)) {
1431         valid |= PSTATE_SSBS;
1432     }
1433     if (isar_feature_aa64_mte(id)) {
1434         valid |= PSTATE_TCO;
1435     }
1436     if (isar_feature_aa64_nmi(id)) {
1437         valid |= PSTATE_ALLINT;
1438     }
1439 
1440     return valid;
1441 }
1442 
1443 /* Granule size (i.e. page size) */
1444 typedef enum ARMGranuleSize {
1445     /* Same order as TG0 encoding */
1446     Gran4K,
1447     Gran64K,
1448     Gran16K,
1449     GranInvalid,
1450 } ARMGranuleSize;
1451 
1452 /**
1453  * arm_granule_bits: Return address size of the granule in bits
1454  *
1455  * Return the address size of the granule in bits. This corresponds
1456  * to the pseudocode TGxGranuleBits().
1457  */
1458 static inline int arm_granule_bits(ARMGranuleSize gran)
1459 {
1460     switch (gran) {
1461     case Gran64K:
1462         return 16;
1463     case Gran16K:
1464         return 14;
1465     case Gran4K:
1466         return 12;
1467     default:
1468         g_assert_not_reached();
1469     }
1470 }
1471 
1472 /*
1473  * Parameters of a given virtual address, as extracted from the
1474  * translation control register (TCR) for a given regime.
1475  */
1476 typedef struct ARMVAParameters {
1477     unsigned tsz    : 8;
1478     unsigned ps     : 3;
1479     unsigned sh     : 2;
1480     unsigned select : 1;
1481     bool tbi        : 1;
1482     bool epd        : 1;
1483     bool hpd        : 1;
1484     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1485     bool ds         : 1;
1486     bool ha         : 1;
1487     bool hd         : 1;
1488     ARMGranuleSize gran : 2;
1489 } ARMVAParameters;
1490 
1491 /**
1492  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1493  * @env: CPU
1494  * @va: virtual address to look up
1495  * @mmu_idx: determines translation regime to use
1496  * @data: true if this is a data access
1497  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1498  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1499  */
1500 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1501                                    ARMMMUIdx mmu_idx, bool data,
1502                                    bool el1_is_aa32);
1503 
1504 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1505 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1506 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1507 
1508 /* Determine if allocation tags are available.  */
1509 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1510                                                  uint64_t sctlr)
1511 {
1512     if (el < 3
1513         && arm_feature(env, ARM_FEATURE_EL3)
1514         && !(env->cp15.scr_el3 & SCR_ATA)) {
1515         return false;
1516     }
1517     if (el < 2 && arm_is_el2_enabled(env)) {
1518         uint64_t hcr = arm_hcr_el2_eff(env);
1519         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1520             return false;
1521         }
1522     }
1523     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1524     return sctlr != 0;
1525 }
1526 
1527 #ifndef CONFIG_USER_ONLY
1528 
1529 /* Security attributes for an address, as returned by v8m_security_lookup. */
1530 typedef struct V8M_SAttributes {
1531     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1532     bool ns;
1533     bool nsc;
1534     uint8_t sregion;
1535     bool srvalid;
1536     uint8_t iregion;
1537     bool irvalid;
1538 } V8M_SAttributes;
1539 
1540 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1541                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1542                          bool secure, V8M_SAttributes *sattrs);
1543 
1544 /* Cacheability and shareability attributes for a memory access */
1545 typedef struct ARMCacheAttrs {
1546     /*
1547      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1548      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1549      */
1550     unsigned int attrs:8;
1551     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1552     bool is_s2_format:1;
1553 } ARMCacheAttrs;
1554 
1555 /* Fields that are valid upon success. */
1556 typedef struct GetPhysAddrResult {
1557     CPUTLBEntryFull f;
1558     ARMCacheAttrs cacheattrs;
1559 } GetPhysAddrResult;
1560 
1561 /**
1562  * get_phys_addr: get the physical address for a virtual address
1563  * @env: CPUARMState
1564  * @address: virtual address to get physical address for
1565  * @access_type: 0 for read, 1 for write, 2 for execute
1566  * @memop: memory operation feeding this access, or 0 for none
1567  * @mmu_idx: MMU index indicating required translation regime
1568  * @result: set on translation success.
1569  * @fi: set to fault info if the translation fails
1570  *
1571  * Find the physical address corresponding to the given virtual address,
1572  * by doing a translation table walk on MMU based systems or using the
1573  * MPU state on MPU based systems.
1574  *
1575  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1576  * prot and page_size may not be filled in, and the populated fsr value provides
1577  * information on why the translation aborted, in the format of a
1578  * DFSR/IFSR fault register, with the following caveats:
1579  *  * we honour the short vs long DFSR format differences.
1580  *  * the WnR bit is never set (the caller must do this).
1581  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1582  *    value.
1583  */
1584 bool get_phys_addr(CPUARMState *env, vaddr address,
1585                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
1586                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1587     __attribute__((nonnull));
1588 
1589 /**
1590  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1591  *                                 address
1592  * @env: CPUARMState
1593  * @address: virtual address to get physical address for
1594  * @access_type: 0 for read, 1 for write, 2 for execute
1595  * @memop: memory operation feeding this access, or 0 for none
1596  * @mmu_idx: MMU index indicating required translation regime
1597  * @space: security space for the access
1598  * @result: set on translation success.
1599  * @fi: set to fault info if the translation fails
1600  *
1601  * Similar to get_phys_addr, but use the given security space and don't perform
1602  * a Granule Protection Check on the resulting address.
1603  */
1604 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1605                                     MMUAccessType access_type, MemOp memop,
1606                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1607                                     GetPhysAddrResult *result,
1608                                     ARMMMUFaultInfo *fi)
1609     __attribute__((nonnull));
1610 
1611 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1612                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1613                        bool is_secure, GetPhysAddrResult *result,
1614                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1615 
1616 void arm_log_exception(CPUState *cs);
1617 
1618 #endif /* !CONFIG_USER_ONLY */
1619 
1620 /*
1621  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1622  * the same simd_desc() encoding due to restrictions on size.
1623  * Use these instead.
1624  */
1625 FIELD(PREDDESC, OPRSZ, 0, 6)
1626 FIELD(PREDDESC, ESZ, 6, 2)
1627 FIELD(PREDDESC, DATA, 8, 24)
1628 
1629 /*
1630  * The SVE simd_data field, for memory ops, contains either
1631  * rd (5 bits) or a shift count (2 bits).
1632  */
1633 #define SVE_MTEDESC_SHIFT 5
1634 
1635 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1636 FIELD(MTEDESC, MIDX,  0, 4)
1637 FIELD(MTEDESC, TBI,   4, 2)
1638 FIELD(MTEDESC, TCMA,  6, 2)
1639 FIELD(MTEDESC, WRITE, 8, 1)
1640 FIELD(MTEDESC, ALIGN, 9, 3)
1641 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1642 
1643 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1644 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1645 
1646 /**
1647  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1648  * @env: CPU env
1649  * @ptr: start address of memory region (dirty pointer)
1650  * @size: length of region (guaranteed not to cross a page boundary)
1651  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1652  * Returns: the size of the region that can be copied without hitting
1653  *          an MTE tag failure
1654  *
1655  * Note that we assume that the caller has already checked the TBI
1656  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1657  * required.
1658  */
1659 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1660                         uint32_t desc);
1661 
1662 /**
1663  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1664  *                     operation going in the reverse direction
1665  * @env: CPU env
1666  * @ptr: *end* address of memory region (dirty pointer)
1667  * @size: length of region (guaranteed not to cross a page boundary)
1668  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1669  * Returns: the size of the region that can be copied without hitting
1670  *          an MTE tag failure
1671  *
1672  * Note that we assume that the caller has already checked the TBI
1673  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1674  * required.
1675  */
1676 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1677                             uint32_t desc);
1678 
1679 /**
1680  * mte_check_fail: Record an MTE tag check failure
1681  * @env: CPU env
1682  * @desc: MTEDESC descriptor word
1683  * @dirty_ptr: Failing dirty address
1684  * @ra: TCG retaddr
1685  *
1686  * This may never return (if the MTE tag checks are configured to fault).
1687  */
1688 void mte_check_fail(CPUARMState *env, uint32_t desc,
1689                     uint64_t dirty_ptr, uintptr_t ra);
1690 
1691 /**
1692  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1693  * @env: CPU env
1694  * @dirty_ptr: Start address of memory region (dirty pointer)
1695  * @size: length of region (guaranteed not to cross page boundary)
1696  * @desc: MTEDESC descriptor word
1697  */
1698 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1699                        uint32_t desc);
1700 
1701 static inline int allocation_tag_from_addr(uint64_t ptr)
1702 {
1703     return extract64(ptr, 56, 4);
1704 }
1705 
1706 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1707 {
1708     return deposit64(ptr, 56, 4, rtag);
1709 }
1710 
1711 /* Return true if tbi bits mean that the access is checked.  */
1712 static inline bool tbi_check(uint32_t desc, int bit55)
1713 {
1714     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1715 }
1716 
1717 /* Return true if tcma bits mean that the access is unchecked.  */
1718 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1719 {
1720     /*
1721      * We had extracted bit55 and ptr_tag for other reasons, so fold
1722      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1723      */
1724     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1725     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1726     return tcma && match;
1727 }
1728 
1729 /*
1730  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1731  * for the tag to be present in the FAR_ELx register.  But for user-only
1732  * mode, we do not have a TLB with which to implement this, so we must
1733  * remove the top byte.
1734  */
1735 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1736 {
1737 #ifdef CONFIG_USER_ONLY
1738     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1739     ptr &= sextract64(ptr, 0, 56);
1740 #endif
1741     return ptr;
1742 }
1743 
1744 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1745 {
1746 #ifdef CONFIG_USER_ONLY
1747     int64_t clean_ptr = sextract64(ptr, 0, 56);
1748     if (tbi_check(desc, clean_ptr < 0)) {
1749         ptr = clean_ptr;
1750     }
1751 #endif
1752     return ptr;
1753 }
1754 
1755 /* Values for M-profile PSR.ECI for MVE insns */
1756 enum MVEECIState {
1757     ECI_NONE = 0, /* No completed beats */
1758     ECI_A0 = 1, /* Completed: A0 */
1759     ECI_A0A1 = 2, /* Completed: A0, A1 */
1760     /* 3 is reserved */
1761     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1762     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1763     /* All other values reserved */
1764 };
1765 
1766 /* Definitions for the PMU registers */
1767 #define PMCRN_MASK  0xf800
1768 #define PMCRN_SHIFT 11
1769 #define PMCRLP  0x80
1770 #define PMCRLC  0x40
1771 #define PMCRDP  0x20
1772 #define PMCRX   0x10
1773 #define PMCRD   0x8
1774 #define PMCRC   0x4
1775 #define PMCRP   0x2
1776 #define PMCRE   0x1
1777 /*
1778  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1779  * which can be written as 1 to trigger behaviour but which stay RAZ).
1780  */
1781 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1782 
1783 #define PMXEVTYPER_P          0x80000000
1784 #define PMXEVTYPER_U          0x40000000
1785 #define PMXEVTYPER_NSK        0x20000000
1786 #define PMXEVTYPER_NSU        0x10000000
1787 #define PMXEVTYPER_NSH        0x08000000
1788 #define PMXEVTYPER_M          0x04000000
1789 #define PMXEVTYPER_MT         0x02000000
1790 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1791 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1792                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1793                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1794                                PMXEVTYPER_EVTCOUNT)
1795 
1796 #define PMCCFILTR             0xf8000000
1797 #define PMCCFILTR_M           PMXEVTYPER_M
1798 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1799 
1800 static inline uint32_t pmu_num_counters(CPUARMState *env)
1801 {
1802     ARMCPU *cpu = env_archcpu(env);
1803 
1804     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1805 }
1806 
1807 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1808 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1809 {
1810   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1811 }
1812 
1813 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1814 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1815 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1816 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1817 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1818 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1819 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1820 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1821 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1822 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1823 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1824 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1825 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1826 void aarch64_max_tcg_initfn(Object *obj);
1827 void aarch64_add_pauth_properties(Object *obj);
1828 void aarch64_add_sve_properties(Object *obj);
1829 void aarch64_add_sme_properties(Object *obj);
1830 
1831 /* Return true if the gdbstub is presenting an AArch64 CPU */
1832 static inline bool arm_gdbstub_is_aarch64(ARMCPU *cpu)
1833 {
1834     return object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU);
1835 }
1836 
1837 /* Read the CONTROL register as the MRS instruction would. */
1838 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1839 
1840 /*
1841  * Return a pointer to the location where we currently store the
1842  * stack pointer for the requested security state and thread mode.
1843  * This pointer will become invalid if the CPU state is updated
1844  * such that the stack pointers are switched around (eg changing
1845  * the SPSEL control bit).
1846  */
1847 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1848                              bool threadmode, bool spsel);
1849 
1850 bool el_is_in_host(CPUARMState *env, int el);
1851 
1852 void aa32_max_features(ARMCPU *cpu);
1853 int exception_target_el(CPUARMState *env);
1854 bool arm_singlestep_active(CPUARMState *env);
1855 bool arm_generate_debug_exceptions(CPUARMState *env);
1856 
1857 /**
1858  * pauth_ptr_mask:
1859  * @param: parameters defining the MMU setup
1860  *
1861  * Return a mask of the address bits that contain the authentication code,
1862  * given the MMU config defined by @param.
1863  */
1864 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1865 {
1866     int bot_pac_bit = 64 - param.tsz;
1867     int top_pac_bit = 64 - 8 * param.tbi;
1868 
1869     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1870 }
1871 
1872 /* Add the cpreg definitions for debug related system registers */
1873 void define_debug_regs(ARMCPU *cpu);
1874 
1875 /* Add the cpreg definitions for TLBI instructions */
1876 void define_tlb_insn_regs(ARMCPU *cpu);
1877 
1878 /* Effective value of MDCR_EL2 */
1879 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1880 {
1881     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1882 }
1883 
1884 /* Powers of 2 for sve_vq_map et al. */
1885 #define SVE_VQ_POW2_MAP                                 \
1886     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1887      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1888 
1889 /*
1890  * Return true if it is possible to take a fine-grained-trap to EL2.
1891  */
1892 static inline bool arm_fgt_active(CPUARMState *env, int el)
1893 {
1894     /*
1895      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1896      * that can affect EL0, but it is harmless to do the test also for
1897      * traps on registers that are only accessible at EL1 because if the test
1898      * returns true then we can't be executing at EL1 anyway.
1899      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1900      * traps from AArch32 only happen for the EL0 is AArch32 case.
1901      */
1902     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1903         el < 2 && arm_is_el2_enabled(env) &&
1904         arm_el_is_aa64(env, 1) &&
1905         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1906         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1907 }
1908 
1909 /*
1910  * Although the ARM implementation of hardware assisted debugging
1911  * allows for different breakpoints per-core, the current GDB
1912  * interface treats them as a global pool of registers (which seems to
1913  * be the case for x86, ppc and s390). As a result we store one copy
1914  * of registers which is used for all active cores.
1915  *
1916  * Write access is serialised by virtue of the GDB protocol which
1917  * updates things. Read access (i.e. when the values are copied to the
1918  * vCPU) is also gated by GDB's run control.
1919  *
1920  * This is not unreasonable as most of the time debugging kernels you
1921  * never know which core will eventually execute your function.
1922  */
1923 
1924 typedef struct {
1925     uint64_t bcr;
1926     uint64_t bvr;
1927 } HWBreakpoint;
1928 
1929 /*
1930  * The watchpoint registers can cover more area than the requested
1931  * watchpoint so we need to store the additional information
1932  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1933  * when the watchpoint is hit.
1934  */
1935 typedef struct {
1936     uint64_t wcr;
1937     uint64_t wvr;
1938     CPUWatchpoint details;
1939 } HWWatchpoint;
1940 
1941 /* Maximum and current break/watch point counts */
1942 extern int max_hw_bps, max_hw_wps;
1943 extern GArray *hw_breakpoints, *hw_watchpoints;
1944 
1945 #define cur_hw_wps      (hw_watchpoints->len)
1946 #define cur_hw_bps      (hw_breakpoints->len)
1947 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1948 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1949 
1950 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1951 int insert_hw_breakpoint(target_ulong pc);
1952 int delete_hw_breakpoint(target_ulong pc);
1953 
1954 bool check_watchpoint_in_range(int i, vaddr addr);
1955 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, vaddr addr);
1956 int insert_hw_watchpoint(vaddr addr, vaddr len, int type);
1957 int delete_hw_watchpoint(vaddr addr, vaddr len, int type);
1958 
1959 /* Return the current value of the system counter in ticks */
1960 uint64_t gt_get_countervalue(CPUARMState *env);
1961 /*
1962  * Return the currently applicable offset between the system counter
1963  * and the counter for the specified timer, as used for direct register
1964  * accesses.
1965  */
1966 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx);
1967 
1968 /*
1969  * Return mask of ARMMMUIdxBit values corresponding to an "invalidate
1970  * all EL1" scope; this covers stage 1 and stage 2.
1971  */
1972 int alle1_tlbmask(CPUARMState *env);
1973 
1974 /* Set the float_status behaviour to match the Arm defaults */
1975 void arm_set_default_fp_behaviours(float_status *s);
1976 /* Set the float_status behaviour to match Arm FPCR.AH=1 behaviour */
1977 void arm_set_ah_fp_behaviours(float_status *s);
1978 /* Read the float_status info and return the appropriate FPSR value */
1979 uint32_t vfp_get_fpsr_from_host(CPUARMState *env);
1980 /* Clear the exception status flags from all float_status fields */
1981 void vfp_clear_float_status_exc_flags(CPUARMState *env);
1982 /*
1983  * Update float_status fields to handle the bits of the FPCR
1984  * specified by mask changing to the values in val.
1985  */
1986 void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask);
1987 
1988 #endif
1989