xref: /qemu/target/arm/internals.h (revision 342e313d6c1a8e6da758bd642777b85af1a0fc37)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "system/memory.h"
32 #include "syndrome.h"
33 #include "cpu-features.h"
34 
35 /* register banks for CPU modes */
36 #define BANK_USRSYS 0
37 #define BANK_SVC    1
38 #define BANK_ABT    2
39 #define BANK_UND    3
40 #define BANK_IRQ    4
41 #define BANK_FIQ    5
42 #define BANK_HYP    6
43 #define BANK_MON    7
44 
45 static inline int arm_env_mmu_index(CPUARMState *env)
46 {
47     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
48 }
49 
50 static inline bool excp_is_internal(int excp)
51 {
52     /* Return true if this exception number represents a QEMU-internal
53      * exception that will not be passed to the guest.
54      */
55     return excp == EXCP_INTERRUPT
56         || excp == EXCP_HLT
57         || excp == EXCP_DEBUG
58         || excp == EXCP_HALTED
59         || excp == EXCP_EXCEPTION_EXIT
60         || excp == EXCP_KERNEL_TRAP
61         || excp == EXCP_SEMIHOST;
62 }
63 
64 /*
65  * Default frequency for the generic timer, in Hz.
66  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
67  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
68  * which gives a 16ns tick period.
69  *
70  * We will use the back-compat value:
71  *  - for QEMU CPU types added before we standardized on 1GHz
72  *  - for versioned machine types with a version of 9.0 or earlier
73  * In any case, the machine model may override via the cntfrq property.
74  */
75 #define GTIMER_DEFAULT_HZ 1000000000
76 #define GTIMER_BACKCOMPAT_HZ 62500000
77 
78 /* Bit definitions for the v7M CONTROL register */
79 FIELD(V7M_CONTROL, NPRIV, 0, 1)
80 FIELD(V7M_CONTROL, SPSEL, 1, 1)
81 FIELD(V7M_CONTROL, FPCA, 2, 1)
82 FIELD(V7M_CONTROL, SFPA, 3, 1)
83 
84 /* Bit definitions for v7M exception return payload */
85 FIELD(V7M_EXCRET, ES, 0, 1)
86 FIELD(V7M_EXCRET, RES0, 1, 1)
87 FIELD(V7M_EXCRET, SPSEL, 2, 1)
88 FIELD(V7M_EXCRET, MODE, 3, 1)
89 FIELD(V7M_EXCRET, FTYPE, 4, 1)
90 FIELD(V7M_EXCRET, DCRS, 5, 1)
91 FIELD(V7M_EXCRET, S, 6, 1)
92 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
93 
94 /* Minimum value which is a magic number for exception return */
95 #define EXC_RETURN_MIN_MAGIC 0xff000000
96 /* Minimum number which is a magic number for function or exception return
97  * when using v8M security extension
98  */
99 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
100 
101 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
102 FIELD(DBGWCR, E, 0, 1)
103 FIELD(DBGWCR, PAC, 1, 2)
104 FIELD(DBGWCR, LSC, 3, 2)
105 FIELD(DBGWCR, BAS, 5, 8)
106 FIELD(DBGWCR, HMC, 13, 1)
107 FIELD(DBGWCR, SSC, 14, 2)
108 FIELD(DBGWCR, LBN, 16, 4)
109 FIELD(DBGWCR, WT, 20, 1)
110 FIELD(DBGWCR, MASK, 24, 5)
111 FIELD(DBGWCR, SSCE, 29, 1)
112 
113 #define VTCR_NSW (1u << 29)
114 #define VTCR_NSA (1u << 30)
115 #define VSTCR_SW VTCR_NSW
116 #define VSTCR_SA VTCR_NSA
117 
118 /* Bit definitions for CPACR (AArch32 only) */
119 FIELD(CPACR, CP10, 20, 2)
120 FIELD(CPACR, CP11, 22, 2)
121 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
122 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
123 FIELD(CPACR, ASEDIS, 31, 1)
124 
125 /* Bit definitions for CPACR_EL1 (AArch64 only) */
126 FIELD(CPACR_EL1, ZEN, 16, 2)
127 FIELD(CPACR_EL1, FPEN, 20, 2)
128 FIELD(CPACR_EL1, SMEN, 24, 2)
129 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
130 
131 /* Bit definitions for HCPTR (AArch32 only) */
132 FIELD(HCPTR, TCP10, 10, 1)
133 FIELD(HCPTR, TCP11, 11, 1)
134 FIELD(HCPTR, TASE, 15, 1)
135 FIELD(HCPTR, TTA, 20, 1)
136 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
137 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
138 
139 /* Bit definitions for CPTR_EL2 (AArch64 only) */
140 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
141 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
142 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
143 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
144 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
145 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
146 FIELD(CPTR_EL2, TTA, 28, 1)
147 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
148 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
149 
150 /* Bit definitions for CPTR_EL3 (AArch64 only) */
151 FIELD(CPTR_EL3, EZ, 8, 1)
152 FIELD(CPTR_EL3, TFP, 10, 1)
153 FIELD(CPTR_EL3, ESM, 12, 1)
154 FIELD(CPTR_EL3, TTA, 20, 1)
155 FIELD(CPTR_EL3, TAM, 30, 1)
156 FIELD(CPTR_EL3, TCPAC, 31, 1)
157 
158 #define MDCR_MTPME    (1U << 28)
159 #define MDCR_TDCC     (1U << 27)
160 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
161 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
162 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
163 #define MDCR_EPMAD    (1U << 21)
164 #define MDCR_EDAD     (1U << 20)
165 #define MDCR_TTRF     (1U << 19)
166 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
167 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
168 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
169 #define MDCR_SDD      (1U << 16)
170 #define MDCR_SPD      (3U << 14)
171 #define MDCR_TDRA     (1U << 11)
172 #define MDCR_TDOSA    (1U << 10)
173 #define MDCR_TDA      (1U << 9)
174 #define MDCR_TDE      (1U << 8)
175 #define MDCR_HPME     (1U << 7)
176 #define MDCR_TPM      (1U << 6)
177 #define MDCR_TPMCR    (1U << 5)
178 #define MDCR_HPMN     (0x1fU)
179 
180 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
181 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
182                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
183                          MDCR_STE | MDCR_SPME | MDCR_SPD)
184 
185 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
186 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
187 #define TTBCR_PD0    (1U << 4)
188 #define TTBCR_PD1    (1U << 5)
189 #define TTBCR_EPD0   (1U << 7)
190 #define TTBCR_IRGN0  (3U << 8)
191 #define TTBCR_ORGN0  (3U << 10)
192 #define TTBCR_SH0    (3U << 12)
193 #define TTBCR_T1SZ   (3U << 16)
194 #define TTBCR_A1     (1U << 22)
195 #define TTBCR_EPD1   (1U << 23)
196 #define TTBCR_IRGN1  (3U << 24)
197 #define TTBCR_ORGN1  (3U << 26)
198 #define TTBCR_SH1    (1U << 28)
199 #define TTBCR_EAE    (1U << 31)
200 
201 FIELD(VTCR, T0SZ, 0, 6)
202 FIELD(VTCR, SL0, 6, 2)
203 FIELD(VTCR, IRGN0, 8, 2)
204 FIELD(VTCR, ORGN0, 10, 2)
205 FIELD(VTCR, SH0, 12, 2)
206 FIELD(VTCR, TG0, 14, 2)
207 FIELD(VTCR, PS, 16, 3)
208 FIELD(VTCR, VS, 19, 1)
209 FIELD(VTCR, HA, 21, 1)
210 FIELD(VTCR, HD, 22, 1)
211 FIELD(VTCR, HWU59, 25, 1)
212 FIELD(VTCR, HWU60, 26, 1)
213 FIELD(VTCR, HWU61, 27, 1)
214 FIELD(VTCR, HWU62, 28, 1)
215 FIELD(VTCR, NSW, 29, 1)
216 FIELD(VTCR, NSA, 30, 1)
217 FIELD(VTCR, DS, 32, 1)
218 FIELD(VTCR, SL2, 33, 1)
219 
220 #define HCRX_ENAS0    (1ULL << 0)
221 #define HCRX_ENALS    (1ULL << 1)
222 #define HCRX_ENASR    (1ULL << 2)
223 #define HCRX_FNXS     (1ULL << 3)
224 #define HCRX_FGTNXS   (1ULL << 4)
225 #define HCRX_SMPME    (1ULL << 5)
226 #define HCRX_TALLINT  (1ULL << 6)
227 #define HCRX_VINMI    (1ULL << 7)
228 #define HCRX_VFNMI    (1ULL << 8)
229 #define HCRX_CMOW     (1ULL << 9)
230 #define HCRX_MCE2     (1ULL << 10)
231 #define HCRX_MSCEN    (1ULL << 11)
232 
233 #define HPFAR_NS      (1ULL << 63)
234 
235 #define HSTR_TTEE (1 << 16)
236 #define HSTR_TJDBX (1 << 17)
237 
238 /*
239  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
240  * have different bit definitions, and EL1PCTEN might be
241  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
242  * disambiguate if necessary.
243  */
244 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
245 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
246 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
247 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
248 FIELD(CNTHCTL, EVNTEN, 2, 1)
249 FIELD(CNTHCTL, EVNTDIR, 3, 1)
250 FIELD(CNTHCTL, EVNTI, 4, 4)
251 FIELD(CNTHCTL, EL0VTEN, 8, 1)
252 FIELD(CNTHCTL, EL0PTEN, 9, 1)
253 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
254 FIELD(CNTHCTL, EL1PTEN, 11, 1)
255 FIELD(CNTHCTL, ECV, 12, 1)
256 FIELD(CNTHCTL, EL1TVT, 13, 1)
257 FIELD(CNTHCTL, EL1TVCT, 14, 1)
258 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
259 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
260 FIELD(CNTHCTL, EVNTIS, 17, 1)
261 FIELD(CNTHCTL, CNTVMASK, 18, 1)
262 FIELD(CNTHCTL, CNTPMASK, 19, 1)
263 
264 /* We use a few fake FSR values for internal purposes in M profile.
265  * M profile cores don't have A/R format FSRs, but currently our
266  * get_phys_addr() code assumes A/R profile and reports failures via
267  * an A/R format FSR value. We then translate that into the proper
268  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
269  * Mostly the FSR values we use for this are those defined for v7PMSA,
270  * since we share some of that codepath. A few kinds of fault are
271  * only for M profile and have no A/R equivalent, though, so we have
272  * to pick a value from the reserved range (which we never otherwise
273  * generate) to use for these.
274  * These values will never be visible to the guest.
275  */
276 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
277 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
278 
279 /**
280  * raise_exception: Raise the specified exception.
281  * Raise a guest exception with the specified value, syndrome register
282  * and target exception level. This should be called from helper functions,
283  * and never returns because we will longjump back up to the CPU main loop.
284  */
285 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
286                                 uint32_t syndrome, uint32_t target_el);
287 
288 /*
289  * Similarly, but also use unwinding to restore cpu state.
290  */
291 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
292                                       uint32_t syndrome, uint32_t target_el,
293                                       uintptr_t ra);
294 
295 /*
296  * For AArch64, map a given EL to an index in the banked_spsr array.
297  * Note that this mapping and the AArch32 mapping defined in bank_number()
298  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
299  * mandated mapping between each other.
300  */
301 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
302 {
303     static const unsigned int map[4] = {
304         [1] = BANK_SVC, /* EL1.  */
305         [2] = BANK_HYP, /* EL2.  */
306         [3] = BANK_MON, /* EL3.  */
307     };
308     assert(el >= 1 && el <= 3);
309     return map[el];
310 }
311 
312 /* Map CPU modes onto saved register banks.  */
313 static inline int bank_number(int mode)
314 {
315     switch (mode) {
316     case ARM_CPU_MODE_USR:
317     case ARM_CPU_MODE_SYS:
318         return BANK_USRSYS;
319     case ARM_CPU_MODE_SVC:
320         return BANK_SVC;
321     case ARM_CPU_MODE_ABT:
322         return BANK_ABT;
323     case ARM_CPU_MODE_UND:
324         return BANK_UND;
325     case ARM_CPU_MODE_IRQ:
326         return BANK_IRQ;
327     case ARM_CPU_MODE_FIQ:
328         return BANK_FIQ;
329     case ARM_CPU_MODE_HYP:
330         return BANK_HYP;
331     case ARM_CPU_MODE_MON:
332         return BANK_MON;
333     }
334     g_assert_not_reached();
335 }
336 
337 /**
338  * r14_bank_number: Map CPU mode onto register bank for r14
339  *
340  * Given an AArch32 CPU mode, return the index into the saved register
341  * banks to use for the R14 (LR) in that mode. This is the same as
342  * bank_number(), except for the special case of Hyp mode, where
343  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
344  * This should be used as the index into env->banked_r14[], and
345  * bank_number() used for the index into env->banked_r13[] and
346  * env->banked_spsr[].
347  */
348 static inline int r14_bank_number(int mode)
349 {
350     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
351 }
352 
353 void arm_cpu_register(const ARMCPUInfo *info);
354 void aarch64_cpu_register(const ARMCPUInfo *info);
355 
356 void register_cp_regs_for_features(ARMCPU *cpu);
357 void init_cpreg_list(ARMCPU *cpu);
358 
359 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
360 void arm_translate_init(void);
361 void arm_translate_code(CPUState *cs, TranslationBlock *tb,
362                         int *max_insns, vaddr pc, void *host_pc);
363 
364 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
365 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
366                                        GPtrArray *, GPtrArray *);
367 
368 void arm_restore_state_to_opc(CPUState *cs,
369                               const TranslationBlock *tb,
370                               const uint64_t *data);
371 
372 #ifdef CONFIG_TCG
373 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
374 
375 /* Our implementation of TCGCPUOps::cpu_exec_halt */
376 bool arm_cpu_exec_halt(CPUState *cs);
377 int arm_cpu_mmu_index(CPUState *cs, bool ifetch);
378 #endif /* CONFIG_TCG */
379 
380 typedef enum ARMFPRounding {
381     FPROUNDING_TIEEVEN,
382     FPROUNDING_POSINF,
383     FPROUNDING_NEGINF,
384     FPROUNDING_ZERO,
385     FPROUNDING_TIEAWAY,
386     FPROUNDING_ODD
387 } ARMFPRounding;
388 
389 extern const FloatRoundMode arm_rmode_to_sf_map[6];
390 
391 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
392 {
393     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
394     return arm_rmode_to_sf_map[rmode];
395 }
396 
397 /* Return the effective value of SCR_EL3.RW */
398 static inline bool arm_scr_rw_eff(CPUARMState *env)
399 {
400     /*
401      * SCR_EL3.RW has an effective value of 1 if:
402      *  - we are NS and EL2 is implemented but doesn't support AArch32
403      *  - we are S and EL2 is enabled (in which case it must be AArch64)
404      */
405     ARMCPU *cpu = env_archcpu(env);
406 
407     if (env->cp15.scr_el3 & SCR_RW) {
408         return true;
409     }
410     if (env->cp15.scr_el3 & SCR_NS) {
411         return arm_feature(env, ARM_FEATURE_EL2) &&
412             !cpu_isar_feature(aa64_aa32_el2, cpu);
413     } else {
414         return env->cp15.scr_el3 & SCR_EEL2;
415     }
416 }
417 
418 /* Return true if the specified exception level is running in AArch64 state. */
419 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
420 {
421     /*
422      * This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
423      * and if we're not in EL0 then the state of EL0 isn't well defined.)
424      */
425     assert(el >= 1 && el <= 3);
426     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
427 
428     /*
429      * The highest exception level is always at the maximum supported
430      * register width, and then lower levels have a register width controlled
431      * by bits in the SCR or HCR registers.
432      */
433     if (el == 3) {
434         return aa64;
435     }
436 
437     if (arm_feature(env, ARM_FEATURE_EL3)) {
438         aa64 = aa64 && arm_scr_rw_eff(env);
439     }
440 
441     if (el == 2) {
442         return aa64;
443     }
444 
445     if (arm_is_el2_enabled(env)) {
446         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
447     }
448 
449     return aa64;
450 }
451 
452 /*
453  * Return the current Exception Level (as per ARMv8; note that this differs
454  * from the ARMv7 Privilege Level).
455  */
456 static inline int arm_current_el(CPUARMState *env)
457 {
458     if (arm_feature(env, ARM_FEATURE_M)) {
459         return arm_v7m_is_handler_mode(env) ||
460             !(env->v7m.control[env->v7m.secure] & 1);
461     }
462 
463     if (is_a64(env)) {
464         return extract32(env->pstate, 2, 2);
465     }
466 
467     switch (env->uncached_cpsr & 0x1f) {
468     case ARM_CPU_MODE_USR:
469         return 0;
470     case ARM_CPU_MODE_HYP:
471         return 2;
472     case ARM_CPU_MODE_MON:
473         return 3;
474     default:
475         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
476             /* If EL3 is 32-bit then all secure privileged modes run in EL3 */
477             return 3;
478         }
479 
480         return 1;
481     }
482 }
483 
484 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
485                                                   bool sctlr_b)
486 {
487 #ifdef CONFIG_USER_ONLY
488     /*
489      * In system mode, BE32 is modelled in line with the
490      * architecture (as word-invariant big-endianness), where loads
491      * and stores are done little endian but from addresses which
492      * are adjusted by XORing with the appropriate constant. So the
493      * endianness to use for the raw data access is not affected by
494      * SCTLR.B.
495      * In user mode, however, we model BE32 as byte-invariant
496      * big-endianness (because user-only code cannot tell the
497      * difference), and so we need to use a data access endianness
498      * that depends on SCTLR.B.
499      */
500     if (sctlr_b) {
501         return true;
502     }
503 #endif
504     /* In 32bit endianness is determined by looking at CPSR's E bit */
505     return env->uncached_cpsr & CPSR_E;
506 }
507 
508 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
509 {
510     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
511 }
512 
513 /* Return true if the processor is in big-endian mode. */
514 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
515 {
516     if (!is_a64(env)) {
517         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
518     } else {
519         int cur_el = arm_current_el(env);
520         uint64_t sctlr = arm_sctlr(env, cur_el);
521         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
522     }
523 }
524 
525 #ifdef CONFIG_USER_ONLY
526 static inline bool arm_cpu_bswap_data(CPUARMState *env)
527 {
528     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
529 }
530 #endif
531 
532 static inline void aarch64_save_sp(CPUARMState *env, int el)
533 {
534     if (env->pstate & PSTATE_SP) {
535         env->sp_el[el] = env->xregs[31];
536     } else {
537         env->sp_el[0] = env->xregs[31];
538     }
539 }
540 
541 static inline void aarch64_restore_sp(CPUARMState *env, int el)
542 {
543     if (env->pstate & PSTATE_SP) {
544         env->xregs[31] = env->sp_el[el];
545     } else {
546         env->xregs[31] = env->sp_el[0];
547     }
548 }
549 
550 static inline void update_spsel(CPUARMState *env, uint32_t imm)
551 {
552     unsigned int cur_el = arm_current_el(env);
553     /* Update PSTATE SPSel bit; this requires us to update the
554      * working stack pointer in xregs[31].
555      */
556     if (!((imm ^ env->pstate) & PSTATE_SP)) {
557         return;
558     }
559     aarch64_save_sp(env, cur_el);
560     env->pstate = deposit32(env->pstate, 0, 1, imm);
561 
562     /* We rely on illegal updates to SPsel from EL0 to get trapped
563      * at translation time.
564      */
565     assert(cur_el >= 1 && cur_el <= 3);
566     aarch64_restore_sp(env, cur_el);
567 }
568 
569 /*
570  * arm_pamax
571  * @cpu: ARMCPU
572  *
573  * Returns the implementation defined bit-width of physical addresses.
574  * The ARMv8 reference manuals refer to this as PAMax().
575  */
576 unsigned int arm_pamax(ARMCPU *cpu);
577 
578 /*
579  * round_down_to_parange_index
580  * @bit_size: uint8_t
581  *
582  * Rounds down the bit_size supplied to the first supported ARM physical
583  * address range and returns the index for this. The index is intended to
584  * be used to set ID_AA64MMFR0_EL1's PARANGE bits.
585  */
586 uint8_t round_down_to_parange_index(uint8_t bit_size);
587 
588 /*
589  * round_down_to_parange_bit_size
590  * @bit_size: uint8_t
591  *
592  * Rounds down the bit_size supplied to the first supported ARM physical
593  * address range bit size and returns this.
594  */
595 uint8_t round_down_to_parange_bit_size(uint8_t bit_size);
596 
597 /* Return true if extended addresses are enabled.
598  * This is always the case if our translation regime is 64 bit,
599  * but depends on TTBCR.EAE for 32 bit.
600  */
601 static inline bool extended_addresses_enabled(CPUARMState *env)
602 {
603     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
604     if (arm_feature(env, ARM_FEATURE_PMSA) &&
605         arm_feature(env, ARM_FEATURE_V8)) {
606         return true;
607     }
608     return arm_el_is_aa64(env, 1) ||
609            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
610 }
611 
612 /* Update a QEMU watchpoint based on the information the guest has set in the
613  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
614  */
615 void hw_watchpoint_update(ARMCPU *cpu, int n);
616 /* Update the QEMU watchpoints for every guest watchpoint. This does a
617  * complete delete-and-reinstate of the QEMU watchpoint list and so is
618  * suitable for use after migration or on reset.
619  */
620 void hw_watchpoint_update_all(ARMCPU *cpu);
621 /* Update a QEMU breakpoint based on the information the guest has set in the
622  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
623  */
624 void hw_breakpoint_update(ARMCPU *cpu, int n);
625 /* Update the QEMU breakpoints for every guest breakpoint. This does a
626  * complete delete-and-reinstate of the QEMU breakpoint list and so is
627  * suitable for use after migration or on reset.
628  */
629 void hw_breakpoint_update_all(ARMCPU *cpu);
630 
631 /* Callback function for checking if a breakpoint should trigger. */
632 bool arm_debug_check_breakpoint(CPUState *cs);
633 
634 /* Callback function for checking if a watchpoint should trigger. */
635 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
636 
637 /* Adjust addresses (in BE32 mode) before testing against watchpoint
638  * addresses.
639  */
640 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
641 
642 /* Callback function for when a watchpoint or breakpoint triggers. */
643 void arm_debug_excp_handler(CPUState *cs);
644 
645 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
646 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
647 {
648     return false;
649 }
650 static inline void arm_handle_psci_call(ARMCPU *cpu)
651 {
652     g_assert_not_reached();
653 }
654 #else
655 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
656 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
657 /* Actually handle a PSCI call */
658 void arm_handle_psci_call(ARMCPU *cpu);
659 #endif
660 
661 /**
662  * arm_clear_exclusive: clear the exclusive monitor
663  * @env: CPU env
664  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
665  */
666 static inline void arm_clear_exclusive(CPUARMState *env)
667 {
668     env->exclusive_addr = -1;
669 }
670 
671 /**
672  * ARMFaultType: type of an ARM MMU fault
673  * This corresponds to the v8A pseudocode's Fault enumeration,
674  * with extensions for QEMU internal conditions.
675  */
676 typedef enum ARMFaultType {
677     ARMFault_None,
678     ARMFault_AccessFlag,
679     ARMFault_Alignment,
680     ARMFault_Background,
681     ARMFault_Domain,
682     ARMFault_Permission,
683     ARMFault_Translation,
684     ARMFault_AddressSize,
685     ARMFault_SyncExternal,
686     ARMFault_SyncExternalOnWalk,
687     ARMFault_SyncParity,
688     ARMFault_SyncParityOnWalk,
689     ARMFault_AsyncParity,
690     ARMFault_AsyncExternal,
691     ARMFault_Debug,
692     ARMFault_TLBConflict,
693     ARMFault_UnsuppAtomicUpdate,
694     ARMFault_Lockdown,
695     ARMFault_Exclusive,
696     ARMFault_ICacheMaint,
697     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
698     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
699     ARMFault_GPCFOnWalk,
700     ARMFault_GPCFOnOutput,
701 } ARMFaultType;
702 
703 typedef enum ARMGPCF {
704     GPCF_None,
705     GPCF_AddressSize,
706     GPCF_Walk,
707     GPCF_EABT,
708     GPCF_Fail,
709 } ARMGPCF;
710 
711 /**
712  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
713  * @type: Type of fault
714  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
715  * @level: Table walk level (for translation, access flag and permission faults)
716  * @domain: Domain of the fault address (for non-LPAE CPUs only)
717  * @s2addr: Address that caused a fault at stage 2
718  * @paddr: physical address that caused a fault for gpc
719  * @paddr_space: physical address space that caused a fault for gpc
720  * @stage2: True if we faulted at stage 2
721  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
722  * @s1ns: True if we faulted on a non-secure IPA while in secure state
723  * @ea: True if we should set the EA (external abort type) bit in syndrome
724  */
725 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
726 struct ARMMMUFaultInfo {
727     ARMFaultType type;
728     ARMGPCF gpcf;
729     target_ulong s2addr;
730     target_ulong paddr;
731     ARMSecuritySpace paddr_space;
732     int level;
733     int domain;
734     bool stage2;
735     bool s1ptw;
736     bool s1ns;
737     bool ea;
738 };
739 
740 /**
741  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
742  * Compare pseudocode EncodeSDFSC(), though unlike that function
743  * we set up a whole FSR-format code including domain field and
744  * putting the high bit of the FSC into bit 10.
745  */
746 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
747 {
748     uint32_t fsc;
749 
750     switch (fi->type) {
751     case ARMFault_None:
752         return 0;
753     case ARMFault_AccessFlag:
754         fsc = fi->level == 1 ? 0x3 : 0x6;
755         break;
756     case ARMFault_Alignment:
757         fsc = 0x1;
758         break;
759     case ARMFault_Permission:
760         fsc = fi->level == 1 ? 0xd : 0xf;
761         break;
762     case ARMFault_Domain:
763         fsc = fi->level == 1 ? 0x9 : 0xb;
764         break;
765     case ARMFault_Translation:
766         fsc = fi->level == 1 ? 0x5 : 0x7;
767         break;
768     case ARMFault_SyncExternal:
769         fsc = 0x8 | (fi->ea << 12);
770         break;
771     case ARMFault_SyncExternalOnWalk:
772         fsc = fi->level == 1 ? 0xc : 0xe;
773         fsc |= (fi->ea << 12);
774         break;
775     case ARMFault_SyncParity:
776         fsc = 0x409;
777         break;
778     case ARMFault_SyncParityOnWalk:
779         fsc = fi->level == 1 ? 0x40c : 0x40e;
780         break;
781     case ARMFault_AsyncParity:
782         fsc = 0x408;
783         break;
784     case ARMFault_AsyncExternal:
785         fsc = 0x406 | (fi->ea << 12);
786         break;
787     case ARMFault_Debug:
788         fsc = 0x2;
789         break;
790     case ARMFault_TLBConflict:
791         fsc = 0x400;
792         break;
793     case ARMFault_Lockdown:
794         fsc = 0x404;
795         break;
796     case ARMFault_Exclusive:
797         fsc = 0x405;
798         break;
799     case ARMFault_ICacheMaint:
800         fsc = 0x4;
801         break;
802     case ARMFault_Background:
803         fsc = 0x0;
804         break;
805     case ARMFault_QEMU_NSCExec:
806         fsc = M_FAKE_FSR_NSC_EXEC;
807         break;
808     case ARMFault_QEMU_SFault:
809         fsc = M_FAKE_FSR_SFAULT;
810         break;
811     default:
812         /* Other faults can't occur in a context that requires a
813          * short-format status code.
814          */
815         g_assert_not_reached();
816     }
817 
818     fsc |= (fi->domain << 4);
819     return fsc;
820 }
821 
822 /**
823  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
824  * Compare pseudocode EncodeLDFSC(), though unlike that function
825  * we fill in also the LPAE bit 9 of a DFSR format.
826  */
827 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
828 {
829     uint32_t fsc;
830 
831     switch (fi->type) {
832     case ARMFault_None:
833         return 0;
834     case ARMFault_AddressSize:
835         assert(fi->level >= -1 && fi->level <= 3);
836         if (fi->level < 0) {
837             fsc = 0b101001;
838         } else {
839             fsc = fi->level;
840         }
841         break;
842     case ARMFault_AccessFlag:
843         assert(fi->level >= 0 && fi->level <= 3);
844         fsc = 0b001000 | fi->level;
845         break;
846     case ARMFault_Permission:
847         assert(fi->level >= 0 && fi->level <= 3);
848         fsc = 0b001100 | fi->level;
849         break;
850     case ARMFault_Translation:
851         assert(fi->level >= -1 && fi->level <= 3);
852         if (fi->level < 0) {
853             fsc = 0b101011;
854         } else {
855             fsc = 0b000100 | fi->level;
856         }
857         break;
858     case ARMFault_SyncExternal:
859         fsc = 0x10 | (fi->ea << 12);
860         break;
861     case ARMFault_SyncExternalOnWalk:
862         assert(fi->level >= -1 && fi->level <= 3);
863         if (fi->level < 0) {
864             fsc = 0b010011;
865         } else {
866             fsc = 0b010100 | fi->level;
867         }
868         fsc |= fi->ea << 12;
869         break;
870     case ARMFault_SyncParity:
871         fsc = 0x18;
872         break;
873     case ARMFault_SyncParityOnWalk:
874         assert(fi->level >= -1 && fi->level <= 3);
875         if (fi->level < 0) {
876             fsc = 0b011011;
877         } else {
878             fsc = 0b011100 | fi->level;
879         }
880         break;
881     case ARMFault_AsyncParity:
882         fsc = 0x19;
883         break;
884     case ARMFault_AsyncExternal:
885         fsc = 0x11 | (fi->ea << 12);
886         break;
887     case ARMFault_Alignment:
888         fsc = 0x21;
889         break;
890     case ARMFault_Debug:
891         fsc = 0x22;
892         break;
893     case ARMFault_TLBConflict:
894         fsc = 0x30;
895         break;
896     case ARMFault_UnsuppAtomicUpdate:
897         fsc = 0x31;
898         break;
899     case ARMFault_Lockdown:
900         fsc = 0x34;
901         break;
902     case ARMFault_Exclusive:
903         fsc = 0x35;
904         break;
905     case ARMFault_GPCFOnWalk:
906         assert(fi->level >= -1 && fi->level <= 3);
907         if (fi->level < 0) {
908             fsc = 0b100011;
909         } else {
910             fsc = 0b100100 | fi->level;
911         }
912         break;
913     case ARMFault_GPCFOnOutput:
914         fsc = 0b101000;
915         break;
916     default:
917         /* Other faults can't occur in a context that requires a
918          * long-format status code.
919          */
920         g_assert_not_reached();
921     }
922 
923     fsc |= 1 << 9;
924     return fsc;
925 }
926 
927 static inline bool arm_extabort_type(MemTxResult result)
928 {
929     /* The EA bit in syndromes and fault status registers is an
930      * IMPDEF classification of external aborts. ARM implementations
931      * usually use this to indicate AXI bus Decode error (0) or
932      * Slave error (1); in QEMU we follow that.
933      */
934     return result != MEMTX_DECODE_ERROR;
935 }
936 
937 #ifdef CONFIG_USER_ONLY
938 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
939                             MMUAccessType access_type,
940                             bool maperr, uintptr_t ra);
941 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
942                            MMUAccessType access_type, uintptr_t ra);
943 #else
944 bool arm_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
945                             MMUAccessType access_type, int mmu_idx,
946                             MemOp memop, int size, bool probe, uintptr_t ra);
947 #endif
948 
949 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
950 {
951     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
952 }
953 
954 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
955 {
956     if (arm_feature(env, ARM_FEATURE_M)) {
957         return mmu_idx | ARM_MMU_IDX_M;
958     } else {
959         return mmu_idx | ARM_MMU_IDX_A;
960     }
961 }
962 
963 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
964 {
965     /* AArch64 is always a-profile. */
966     return mmu_idx | ARM_MMU_IDX_A;
967 }
968 
969 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
970 
971 /* Return the MMU index for a v7M CPU in the specified security state */
972 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
973 
974 /*
975  * Return true if the stage 1 translation regime is using LPAE
976  * format page tables
977  */
978 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
979 
980 /* Raise a data fault alignment exception for the specified virtual address */
981 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
982                                             MMUAccessType access_type,
983                                             int mmu_idx, uintptr_t retaddr);
984 
985 #ifndef CONFIG_USER_ONLY
986 /* arm_cpu_do_transaction_failed: handle a memory system error response
987  * (eg "no device/memory present at address") by raising an external abort
988  * exception
989  */
990 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
991                                    vaddr addr, unsigned size,
992                                    MMUAccessType access_type,
993                                    int mmu_idx, MemTxAttrs attrs,
994                                    MemTxResult response, uintptr_t retaddr);
995 #endif
996 
997 /* Call any registered EL change hooks */
998 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
999 {
1000     ARMELChangeHook *hook, *next;
1001     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1002         hook->hook(cpu, hook->opaque);
1003     }
1004 }
1005 static inline void arm_call_el_change_hook(ARMCPU *cpu)
1006 {
1007     ARMELChangeHook *hook, *next;
1008     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1009         hook->hook(cpu, hook->opaque);
1010     }
1011 }
1012 
1013 /*
1014  * Return true if this address translation regime has two ranges.
1015  * Note that this will not return the correct answer for AArch32
1016  * Secure PL1&0 (i.e. mmu indexes E3, E30_0, E30_3_PAN), but it is
1017  * never called from a context where EL3 can be AArch32. (The
1018  * correct return value for ARMMMUIdx_E3 would be different for
1019  * that case, so we can't just make the function return the
1020  * correct value anyway; we would need an extra "bool e3_is_aarch32"
1021  * argument which all the current callsites would pass as 'false'.)
1022  */
1023 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
1024 {
1025     switch (mmu_idx) {
1026     case ARMMMUIdx_Stage1_E0:
1027     case ARMMMUIdx_Stage1_E1:
1028     case ARMMMUIdx_Stage1_E1_PAN:
1029     case ARMMMUIdx_E10_0:
1030     case ARMMMUIdx_E10_1:
1031     case ARMMMUIdx_E10_1_PAN:
1032     case ARMMMUIdx_E20_0:
1033     case ARMMMUIdx_E20_2:
1034     case ARMMMUIdx_E20_2_PAN:
1035         return true;
1036     default:
1037         return false;
1038     }
1039 }
1040 
1041 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
1042 {
1043     switch (mmu_idx) {
1044     case ARMMMUIdx_Stage1_E1_PAN:
1045     case ARMMMUIdx_E10_1_PAN:
1046     case ARMMMUIdx_E20_2_PAN:
1047     case ARMMMUIdx_E30_3_PAN:
1048         return true;
1049     default:
1050         return false;
1051     }
1052 }
1053 
1054 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
1055 {
1056     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
1057 }
1058 
1059 /* Return the exception level which controls this address translation regime */
1060 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
1061 {
1062     switch (mmu_idx) {
1063     case ARMMMUIdx_E20_0:
1064     case ARMMMUIdx_E20_2:
1065     case ARMMMUIdx_E20_2_PAN:
1066     case ARMMMUIdx_Stage2:
1067     case ARMMMUIdx_Stage2_S:
1068     case ARMMMUIdx_E2:
1069         return 2;
1070     case ARMMMUIdx_E3:
1071     case ARMMMUIdx_E30_0:
1072     case ARMMMUIdx_E30_3_PAN:
1073         return 3;
1074     case ARMMMUIdx_E10_0:
1075     case ARMMMUIdx_Stage1_E0:
1076     case ARMMMUIdx_Stage1_E1:
1077     case ARMMMUIdx_Stage1_E1_PAN:
1078     case ARMMMUIdx_E10_1:
1079     case ARMMMUIdx_E10_1_PAN:
1080     case ARMMMUIdx_MPrivNegPri:
1081     case ARMMMUIdx_MUserNegPri:
1082     case ARMMMUIdx_MPriv:
1083     case ARMMMUIdx_MUser:
1084     case ARMMMUIdx_MSPrivNegPri:
1085     case ARMMMUIdx_MSUserNegPri:
1086     case ARMMMUIdx_MSPriv:
1087     case ARMMMUIdx_MSUser:
1088         return 1;
1089     default:
1090         g_assert_not_reached();
1091     }
1092 }
1093 
1094 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
1095 {
1096     switch (mmu_idx) {
1097     case ARMMMUIdx_E10_0:
1098     case ARMMMUIdx_E20_0:
1099     case ARMMMUIdx_E30_0:
1100     case ARMMMUIdx_Stage1_E0:
1101     case ARMMMUIdx_MUser:
1102     case ARMMMUIdx_MSUser:
1103     case ARMMMUIdx_MUserNegPri:
1104     case ARMMMUIdx_MSUserNegPri:
1105         return true;
1106     default:
1107         return false;
1108     }
1109 }
1110 
1111 /* Return the SCTLR value which controls this address translation regime */
1112 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
1113 {
1114     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
1115 }
1116 
1117 /*
1118  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
1119  * and the Non-Secure stage 2 translation regimes (and hence which are
1120  * not present in VSTCR_EL2).
1121  */
1122 #define VTCR_SHARED_FIELD_MASK \
1123     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
1124      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
1125      R_VTCR_DS_MASK)
1126 
1127 /* Return the value of the TCR controlling this translation regime */
1128 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
1129 {
1130     if (mmu_idx == ARMMMUIdx_Stage2) {
1131         return env->cp15.vtcr_el2;
1132     }
1133     if (mmu_idx == ARMMMUIdx_Stage2_S) {
1134         /*
1135          * Secure stage 2 shares fields from VTCR_EL2. We merge those
1136          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
1137          * value so the callers don't need to special case this.
1138          *
1139          * If a future architecture change defines bits in VSTCR_EL2 that
1140          * overlap with these VTCR_EL2 fields we may need to revisit this.
1141          */
1142         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
1143         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
1144         return v;
1145     }
1146     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
1147 }
1148 
1149 /* Return true if the translation regime is using LPAE format page tables */
1150 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
1151 {
1152     int el = regime_el(env, mmu_idx);
1153     if (el == 2 || arm_el_is_aa64(env, el)) {
1154         return true;
1155     }
1156     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1157         arm_feature(env, ARM_FEATURE_V8)) {
1158         return true;
1159     }
1160     if (arm_feature(env, ARM_FEATURE_LPAE)
1161         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1162         return true;
1163     }
1164     return false;
1165 }
1166 
1167 /**
1168  * arm_num_brps: Return number of implemented breakpoints.
1169  * Note that the ID register BRPS field is "number of bps - 1",
1170  * and we return the actual number of breakpoints.
1171  */
1172 static inline int arm_num_brps(ARMCPU *cpu)
1173 {
1174     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1175         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1176     } else {
1177         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1178     }
1179 }
1180 
1181 /**
1182  * arm_num_wrps: Return number of implemented watchpoints.
1183  * Note that the ID register WRPS field is "number of wps - 1",
1184  * and we return the actual number of watchpoints.
1185  */
1186 static inline int arm_num_wrps(ARMCPU *cpu)
1187 {
1188     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1189         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1190     } else {
1191         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1192     }
1193 }
1194 
1195 /**
1196  * arm_num_ctx_cmps: Return number of implemented context comparators.
1197  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1198  * and we return the actual number of comparators.
1199  */
1200 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1201 {
1202     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1203         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1204     } else {
1205         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1206     }
1207 }
1208 
1209 /**
1210  * v7m_using_psp: Return true if using process stack pointer
1211  * Return true if the CPU is currently using the process stack
1212  * pointer, or false if it is using the main stack pointer.
1213  */
1214 static inline bool v7m_using_psp(CPUARMState *env)
1215 {
1216     /* Handler mode always uses the main stack; for thread mode
1217      * the CONTROL.SPSEL bit determines the answer.
1218      * Note that in v7M it is not possible to be in Handler mode with
1219      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1220      */
1221     return !arm_v7m_is_handler_mode(env) &&
1222         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1223 }
1224 
1225 /**
1226  * v7m_sp_limit: Return SP limit for current CPU state
1227  * Return the SP limit value for the current CPU security state
1228  * and stack pointer.
1229  */
1230 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1231 {
1232     if (v7m_using_psp(env)) {
1233         return env->v7m.psplim[env->v7m.secure];
1234     } else {
1235         return env->v7m.msplim[env->v7m.secure];
1236     }
1237 }
1238 
1239 /**
1240  * v7m_cpacr_pass:
1241  * Return true if the v7M CPACR permits access to the FPU for the specified
1242  * security state and privilege level.
1243  */
1244 static inline bool v7m_cpacr_pass(CPUARMState *env,
1245                                   bool is_secure, bool is_priv)
1246 {
1247     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1248     case 0:
1249     case 2: /* UNPREDICTABLE: we treat like 0 */
1250         return false;
1251     case 1:
1252         return is_priv;
1253     case 3:
1254         return true;
1255     default:
1256         g_assert_not_reached();
1257     }
1258 }
1259 
1260 /**
1261  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1262  * @psr: Program Status Register indicating CPU mode
1263  *
1264  * Returns, for debug logging purposes, a printable representation
1265  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1266  * the low bits of the specified PSR.
1267  */
1268 static inline const char *aarch32_mode_name(uint32_t psr)
1269 {
1270     static const char cpu_mode_names[16][4] = {
1271         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1272         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1273     };
1274 
1275     return cpu_mode_names[psr & 0xf];
1276 }
1277 
1278 /**
1279  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1280  *
1281  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1282  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1283  * Must be called with the BQL held.
1284  */
1285 void arm_cpu_update_virq(ARMCPU *cpu);
1286 
1287 /**
1288  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1289  *
1290  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1291  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1292  * Must be called with the BQL held.
1293  */
1294 void arm_cpu_update_vfiq(ARMCPU *cpu);
1295 
1296 /**
1297  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1298  *
1299  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1300  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1301  * Must be called with the BQL held.
1302  */
1303 void arm_cpu_update_vinmi(ARMCPU *cpu);
1304 
1305 /**
1306  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1307  *
1308  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1309  * a change to the HCRX_EL2.VFNMI.
1310  * Must be called with the BQL held.
1311  */
1312 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1313 
1314 /**
1315  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1316  *
1317  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1318  * following a change to the HCR_EL2.VSE bit.
1319  */
1320 void arm_cpu_update_vserr(ARMCPU *cpu);
1321 
1322 /**
1323  * arm_mmu_idx_el:
1324  * @env: The cpu environment
1325  * @el: The EL to use.
1326  *
1327  * Return the full ARMMMUIdx for the translation regime for EL.
1328  */
1329 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1330 
1331 /**
1332  * arm_mmu_idx:
1333  * @env: The cpu environment
1334  *
1335  * Return the full ARMMMUIdx for the current translation regime.
1336  */
1337 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1338 
1339 /**
1340  * arm_stage1_mmu_idx:
1341  * @env: The cpu environment
1342  *
1343  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1344  */
1345 #ifdef CONFIG_USER_ONLY
1346 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1347 {
1348     return ARMMMUIdx_Stage1_E0;
1349 }
1350 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1351 {
1352     return ARMMMUIdx_Stage1_E0;
1353 }
1354 #else
1355 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1356 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1357 #endif
1358 
1359 /**
1360  * arm_mmu_idx_is_stage1_of_2:
1361  * @mmu_idx: The ARMMMUIdx to test
1362  *
1363  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1364  * first stage of a two stage regime.
1365  */
1366 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1367 {
1368     switch (mmu_idx) {
1369     case ARMMMUIdx_Stage1_E0:
1370     case ARMMMUIdx_Stage1_E1:
1371     case ARMMMUIdx_Stage1_E1_PAN:
1372         return true;
1373     default:
1374         return false;
1375     }
1376 }
1377 
1378 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1379                                                const ARMISARegisters *id)
1380 {
1381     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1382 
1383     if ((features >> ARM_FEATURE_V4T) & 1) {
1384         valid |= CPSR_T;
1385     }
1386     if ((features >> ARM_FEATURE_V5) & 1) {
1387         valid |= CPSR_Q; /* V5TE in reality*/
1388     }
1389     if ((features >> ARM_FEATURE_V6) & 1) {
1390         valid |= CPSR_E | CPSR_GE;
1391     }
1392     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1393         valid |= CPSR_IT;
1394     }
1395     if (isar_feature_aa32_jazelle(id)) {
1396         valid |= CPSR_J;
1397     }
1398     if (isar_feature_aa32_pan(id)) {
1399         valid |= CPSR_PAN;
1400     }
1401     if (isar_feature_aa32_dit(id)) {
1402         valid |= CPSR_DIT;
1403     }
1404     if (isar_feature_aa32_ssbs(id)) {
1405         valid |= CPSR_SSBS;
1406     }
1407 
1408     return valid;
1409 }
1410 
1411 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1412 {
1413     uint32_t valid;
1414 
1415     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1416     if (isar_feature_aa64_bti(id)) {
1417         valid |= PSTATE_BTYPE;
1418     }
1419     if (isar_feature_aa64_pan(id)) {
1420         valid |= PSTATE_PAN;
1421     }
1422     if (isar_feature_aa64_uao(id)) {
1423         valid |= PSTATE_UAO;
1424     }
1425     if (isar_feature_aa64_dit(id)) {
1426         valid |= PSTATE_DIT;
1427     }
1428     if (isar_feature_aa64_ssbs(id)) {
1429         valid |= PSTATE_SSBS;
1430     }
1431     if (isar_feature_aa64_mte(id)) {
1432         valid |= PSTATE_TCO;
1433     }
1434     if (isar_feature_aa64_nmi(id)) {
1435         valid |= PSTATE_ALLINT;
1436     }
1437 
1438     return valid;
1439 }
1440 
1441 /* Granule size (i.e. page size) */
1442 typedef enum ARMGranuleSize {
1443     /* Same order as TG0 encoding */
1444     Gran4K,
1445     Gran64K,
1446     Gran16K,
1447     GranInvalid,
1448 } ARMGranuleSize;
1449 
1450 /**
1451  * arm_granule_bits: Return address size of the granule in bits
1452  *
1453  * Return the address size of the granule in bits. This corresponds
1454  * to the pseudocode TGxGranuleBits().
1455  */
1456 static inline int arm_granule_bits(ARMGranuleSize gran)
1457 {
1458     switch (gran) {
1459     case Gran64K:
1460         return 16;
1461     case Gran16K:
1462         return 14;
1463     case Gran4K:
1464         return 12;
1465     default:
1466         g_assert_not_reached();
1467     }
1468 }
1469 
1470 /*
1471  * Parameters of a given virtual address, as extracted from the
1472  * translation control register (TCR) for a given regime.
1473  */
1474 typedef struct ARMVAParameters {
1475     unsigned tsz    : 8;
1476     unsigned ps     : 3;
1477     unsigned sh     : 2;
1478     unsigned select : 1;
1479     bool tbi        : 1;
1480     bool epd        : 1;
1481     bool hpd        : 1;
1482     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1483     bool ds         : 1;
1484     bool ha         : 1;
1485     bool hd         : 1;
1486     ARMGranuleSize gran : 2;
1487 } ARMVAParameters;
1488 
1489 /**
1490  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1491  * @env: CPU
1492  * @va: virtual address to look up
1493  * @mmu_idx: determines translation regime to use
1494  * @data: true if this is a data access
1495  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1496  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1497  */
1498 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1499                                    ARMMMUIdx mmu_idx, bool data,
1500                                    bool el1_is_aa32);
1501 
1502 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1503 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1504 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1505 
1506 /* Determine if allocation tags are available.  */
1507 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1508                                                  uint64_t sctlr)
1509 {
1510     if (el < 3
1511         && arm_feature(env, ARM_FEATURE_EL3)
1512         && !(env->cp15.scr_el3 & SCR_ATA)) {
1513         return false;
1514     }
1515     if (el < 2 && arm_is_el2_enabled(env)) {
1516         uint64_t hcr = arm_hcr_el2_eff(env);
1517         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1518             return false;
1519         }
1520     }
1521     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1522     return sctlr != 0;
1523 }
1524 
1525 #ifndef CONFIG_USER_ONLY
1526 
1527 /* Security attributes for an address, as returned by v8m_security_lookup. */
1528 typedef struct V8M_SAttributes {
1529     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1530     bool ns;
1531     bool nsc;
1532     uint8_t sregion;
1533     bool srvalid;
1534     uint8_t iregion;
1535     bool irvalid;
1536 } V8M_SAttributes;
1537 
1538 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1539                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1540                          bool secure, V8M_SAttributes *sattrs);
1541 
1542 /* Cacheability and shareability attributes for a memory access */
1543 typedef struct ARMCacheAttrs {
1544     /*
1545      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1546      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1547      */
1548     unsigned int attrs:8;
1549     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1550     bool is_s2_format:1;
1551 } ARMCacheAttrs;
1552 
1553 /* Fields that are valid upon success. */
1554 typedef struct GetPhysAddrResult {
1555     CPUTLBEntryFull f;
1556     ARMCacheAttrs cacheattrs;
1557 } GetPhysAddrResult;
1558 
1559 /**
1560  * get_phys_addr: get the physical address for a virtual address
1561  * @env: CPUARMState
1562  * @address: virtual address to get physical address for
1563  * @access_type: 0 for read, 1 for write, 2 for execute
1564  * @memop: memory operation feeding this access, or 0 for none
1565  * @mmu_idx: MMU index indicating required translation regime
1566  * @result: set on translation success.
1567  * @fi: set to fault info if the translation fails
1568  *
1569  * Find the physical address corresponding to the given virtual address,
1570  * by doing a translation table walk on MMU based systems or using the
1571  * MPU state on MPU based systems.
1572  *
1573  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1574  * prot and page_size may not be filled in, and the populated fsr value provides
1575  * information on why the translation aborted, in the format of a
1576  * DFSR/IFSR fault register, with the following caveats:
1577  *  * we honour the short vs long DFSR format differences.
1578  *  * the WnR bit is never set (the caller must do this).
1579  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1580  *    value.
1581  */
1582 bool get_phys_addr(CPUARMState *env, vaddr address,
1583                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
1584                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1585     __attribute__((nonnull));
1586 
1587 /**
1588  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1589  *                                 address
1590  * @env: CPUARMState
1591  * @address: virtual address to get physical address for
1592  * @access_type: 0 for read, 1 for write, 2 for execute
1593  * @memop: memory operation feeding this access, or 0 for none
1594  * @mmu_idx: MMU index indicating required translation regime
1595  * @space: security space for the access
1596  * @result: set on translation success.
1597  * @fi: set to fault info if the translation fails
1598  *
1599  * Similar to get_phys_addr, but use the given security space and don't perform
1600  * a Granule Protection Check on the resulting address.
1601  */
1602 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1603                                     MMUAccessType access_type, MemOp memop,
1604                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1605                                     GetPhysAddrResult *result,
1606                                     ARMMMUFaultInfo *fi)
1607     __attribute__((nonnull));
1608 
1609 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1610                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1611                        bool is_secure, GetPhysAddrResult *result,
1612                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1613 
1614 void arm_log_exception(CPUState *cs);
1615 
1616 #endif /* !CONFIG_USER_ONLY */
1617 
1618 /*
1619  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1620  * the same simd_desc() encoding due to restrictions on size.
1621  * Use these instead.
1622  */
1623 FIELD(PREDDESC, OPRSZ, 0, 6)
1624 FIELD(PREDDESC, ESZ, 6, 2)
1625 FIELD(PREDDESC, DATA, 8, 24)
1626 
1627 /*
1628  * The SVE simd_data field, for memory ops, contains either
1629  * rd (5 bits) or a shift count (2 bits).
1630  */
1631 #define SVE_MTEDESC_SHIFT 5
1632 
1633 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1634 FIELD(MTEDESC, MIDX,  0, 4)
1635 FIELD(MTEDESC, TBI,   4, 2)
1636 FIELD(MTEDESC, TCMA,  6, 2)
1637 FIELD(MTEDESC, WRITE, 8, 1)
1638 FIELD(MTEDESC, ALIGN, 9, 3)
1639 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1640 
1641 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1642 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1643 
1644 /**
1645  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1646  * @env: CPU env
1647  * @ptr: start address of memory region (dirty pointer)
1648  * @size: length of region (guaranteed not to cross a page boundary)
1649  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1650  * Returns: the size of the region that can be copied without hitting
1651  *          an MTE tag failure
1652  *
1653  * Note that we assume that the caller has already checked the TBI
1654  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1655  * required.
1656  */
1657 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1658                         uint32_t desc);
1659 
1660 /**
1661  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1662  *                     operation going in the reverse direction
1663  * @env: CPU env
1664  * @ptr: *end* address of memory region (dirty pointer)
1665  * @size: length of region (guaranteed not to cross a page boundary)
1666  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1667  * Returns: the size of the region that can be copied without hitting
1668  *          an MTE tag failure
1669  *
1670  * Note that we assume that the caller has already checked the TBI
1671  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1672  * required.
1673  */
1674 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1675                             uint32_t desc);
1676 
1677 /**
1678  * mte_check_fail: Record an MTE tag check failure
1679  * @env: CPU env
1680  * @desc: MTEDESC descriptor word
1681  * @dirty_ptr: Failing dirty address
1682  * @ra: TCG retaddr
1683  *
1684  * This may never return (if the MTE tag checks are configured to fault).
1685  */
1686 void mte_check_fail(CPUARMState *env, uint32_t desc,
1687                     uint64_t dirty_ptr, uintptr_t ra);
1688 
1689 /**
1690  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1691  * @env: CPU env
1692  * @dirty_ptr: Start address of memory region (dirty pointer)
1693  * @size: length of region (guaranteed not to cross page boundary)
1694  * @desc: MTEDESC descriptor word
1695  */
1696 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1697                        uint32_t desc);
1698 
1699 static inline int allocation_tag_from_addr(uint64_t ptr)
1700 {
1701     return extract64(ptr, 56, 4);
1702 }
1703 
1704 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1705 {
1706     return deposit64(ptr, 56, 4, rtag);
1707 }
1708 
1709 /* Return true if tbi bits mean that the access is checked.  */
1710 static inline bool tbi_check(uint32_t desc, int bit55)
1711 {
1712     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1713 }
1714 
1715 /* Return true if tcma bits mean that the access is unchecked.  */
1716 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1717 {
1718     /*
1719      * We had extracted bit55 and ptr_tag for other reasons, so fold
1720      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1721      */
1722     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1723     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1724     return tcma && match;
1725 }
1726 
1727 /*
1728  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1729  * for the tag to be present in the FAR_ELx register.  But for user-only
1730  * mode, we do not have a TLB with which to implement this, so we must
1731  * remove the top byte.
1732  */
1733 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1734 {
1735 #ifdef CONFIG_USER_ONLY
1736     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1737     ptr &= sextract64(ptr, 0, 56);
1738 #endif
1739     return ptr;
1740 }
1741 
1742 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1743 {
1744 #ifdef CONFIG_USER_ONLY
1745     int64_t clean_ptr = sextract64(ptr, 0, 56);
1746     if (tbi_check(desc, clean_ptr < 0)) {
1747         ptr = clean_ptr;
1748     }
1749 #endif
1750     return ptr;
1751 }
1752 
1753 /* Values for M-profile PSR.ECI for MVE insns */
1754 enum MVEECIState {
1755     ECI_NONE = 0, /* No completed beats */
1756     ECI_A0 = 1, /* Completed: A0 */
1757     ECI_A0A1 = 2, /* Completed: A0, A1 */
1758     /* 3 is reserved */
1759     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1760     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1761     /* All other values reserved */
1762 };
1763 
1764 /* Definitions for the PMU registers */
1765 #define PMCRN_MASK  0xf800
1766 #define PMCRN_SHIFT 11
1767 #define PMCRLP  0x80
1768 #define PMCRLC  0x40
1769 #define PMCRDP  0x20
1770 #define PMCRX   0x10
1771 #define PMCRD   0x8
1772 #define PMCRC   0x4
1773 #define PMCRP   0x2
1774 #define PMCRE   0x1
1775 /*
1776  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1777  * which can be written as 1 to trigger behaviour but which stay RAZ).
1778  */
1779 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1780 
1781 #define PMXEVTYPER_P          0x80000000
1782 #define PMXEVTYPER_U          0x40000000
1783 #define PMXEVTYPER_NSK        0x20000000
1784 #define PMXEVTYPER_NSU        0x10000000
1785 #define PMXEVTYPER_NSH        0x08000000
1786 #define PMXEVTYPER_M          0x04000000
1787 #define PMXEVTYPER_MT         0x02000000
1788 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1789 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1790                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1791                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1792                                PMXEVTYPER_EVTCOUNT)
1793 
1794 #define PMCCFILTR             0xf8000000
1795 #define PMCCFILTR_M           PMXEVTYPER_M
1796 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1797 
1798 static inline uint32_t pmu_num_counters(CPUARMState *env)
1799 {
1800     ARMCPU *cpu = env_archcpu(env);
1801 
1802     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1803 }
1804 
1805 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1806 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1807 {
1808   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1809 }
1810 
1811 #ifdef TARGET_AARCH64
1812 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1813 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1814 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1815 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1816 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1817 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1818 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1819 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1820 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1821 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1822 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1823 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1824 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1825 void aarch64_max_tcg_initfn(Object *obj);
1826 void aarch64_add_pauth_properties(Object *obj);
1827 void aarch64_add_sve_properties(Object *obj);
1828 void aarch64_add_sme_properties(Object *obj);
1829 #endif
1830 
1831 /* Read the CONTROL register as the MRS instruction would. */
1832 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1833 
1834 /*
1835  * Return a pointer to the location where we currently store the
1836  * stack pointer for the requested security state and thread mode.
1837  * This pointer will become invalid if the CPU state is updated
1838  * such that the stack pointers are switched around (eg changing
1839  * the SPSEL control bit).
1840  */
1841 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1842                              bool threadmode, bool spsel);
1843 
1844 bool el_is_in_host(CPUARMState *env, int el);
1845 
1846 void aa32_max_features(ARMCPU *cpu);
1847 int exception_target_el(CPUARMState *env);
1848 bool arm_singlestep_active(CPUARMState *env);
1849 bool arm_generate_debug_exceptions(CPUARMState *env);
1850 
1851 /**
1852  * pauth_ptr_mask:
1853  * @param: parameters defining the MMU setup
1854  *
1855  * Return a mask of the address bits that contain the authentication code,
1856  * given the MMU config defined by @param.
1857  */
1858 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1859 {
1860     int bot_pac_bit = 64 - param.tsz;
1861     int top_pac_bit = 64 - 8 * param.tbi;
1862 
1863     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1864 }
1865 
1866 /* Add the cpreg definitions for debug related system registers */
1867 void define_debug_regs(ARMCPU *cpu);
1868 
1869 /* Add the cpreg definitions for TLBI instructions */
1870 void define_tlb_insn_regs(ARMCPU *cpu);
1871 
1872 /* Effective value of MDCR_EL2 */
1873 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1874 {
1875     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1876 }
1877 
1878 /* Powers of 2 for sve_vq_map et al. */
1879 #define SVE_VQ_POW2_MAP                                 \
1880     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1881      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1882 
1883 /*
1884  * Return true if it is possible to take a fine-grained-trap to EL2.
1885  */
1886 static inline bool arm_fgt_active(CPUARMState *env, int el)
1887 {
1888     /*
1889      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1890      * that can affect EL0, but it is harmless to do the test also for
1891      * traps on registers that are only accessible at EL1 because if the test
1892      * returns true then we can't be executing at EL1 anyway.
1893      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1894      * traps from AArch32 only happen for the EL0 is AArch32 case.
1895      */
1896     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1897         el < 2 && arm_is_el2_enabled(env) &&
1898         arm_el_is_aa64(env, 1) &&
1899         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1900         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1901 }
1902 
1903 void assert_hflags_rebuild_correctly(CPUARMState *env);
1904 
1905 /*
1906  * Although the ARM implementation of hardware assisted debugging
1907  * allows for different breakpoints per-core, the current GDB
1908  * interface treats them as a global pool of registers (which seems to
1909  * be the case for x86, ppc and s390). As a result we store one copy
1910  * of registers which is used for all active cores.
1911  *
1912  * Write access is serialised by virtue of the GDB protocol which
1913  * updates things. Read access (i.e. when the values are copied to the
1914  * vCPU) is also gated by GDB's run control.
1915  *
1916  * This is not unreasonable as most of the time debugging kernels you
1917  * never know which core will eventually execute your function.
1918  */
1919 
1920 typedef struct {
1921     uint64_t bcr;
1922     uint64_t bvr;
1923 } HWBreakpoint;
1924 
1925 /*
1926  * The watchpoint registers can cover more area than the requested
1927  * watchpoint so we need to store the additional information
1928  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1929  * when the watchpoint is hit.
1930  */
1931 typedef struct {
1932     uint64_t wcr;
1933     uint64_t wvr;
1934     CPUWatchpoint details;
1935 } HWWatchpoint;
1936 
1937 /* Maximum and current break/watch point counts */
1938 extern int max_hw_bps, max_hw_wps;
1939 extern GArray *hw_breakpoints, *hw_watchpoints;
1940 
1941 #define cur_hw_wps      (hw_watchpoints->len)
1942 #define cur_hw_bps      (hw_breakpoints->len)
1943 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1944 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1945 
1946 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1947 int insert_hw_breakpoint(target_ulong pc);
1948 int delete_hw_breakpoint(target_ulong pc);
1949 
1950 bool check_watchpoint_in_range(int i, target_ulong addr);
1951 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1952 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1953 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1954 
1955 /* Return the current value of the system counter in ticks */
1956 uint64_t gt_get_countervalue(CPUARMState *env);
1957 /*
1958  * Return the currently applicable offset between the system counter
1959  * and the counter for the specified timer, as used for direct register
1960  * accesses.
1961  */
1962 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx);
1963 
1964 /*
1965  * Return mask of ARMMMUIdxBit values corresponding to an "invalidate
1966  * all EL1" scope; this covers stage 1 and stage 2.
1967  */
1968 int alle1_tlbmask(CPUARMState *env);
1969 
1970 /* Set the float_status behaviour to match the Arm defaults */
1971 void arm_set_default_fp_behaviours(float_status *s);
1972 /* Set the float_status behaviour to match Arm FPCR.AH=1 behaviour */
1973 void arm_set_ah_fp_behaviours(float_status *s);
1974 /* Read the float_status info and return the appropriate FPSR value */
1975 uint32_t vfp_get_fpsr_from_host(CPUARMState *env);
1976 /* Clear the exception status flags from all float_status fields */
1977 void vfp_clear_float_status_exc_flags(CPUARMState *env);
1978 /*
1979  * Update float_status fields to handle the bits of the FPCR
1980  * specified by mask changing to the values in val.
1981  */
1982 void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask);
1983 
1984 #endif
1985