xref: /qemu/target/arm/hvf/hvf.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * QEMU Hypervisor.framework support for Apple Silicon
3 
4  * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5  * Copyright 2020 Google LLC
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 #include "qemu/log.h"
15 
16 #include "system/runstate.h"
17 #include "system/hvf.h"
18 #include "system/hvf_int.h"
19 #include "system/hw_accel.h"
20 #include "hvf_arm.h"
21 #include "cpregs.h"
22 
23 #include <mach/mach_time.h>
24 
25 #include "exec/address-spaces.h"
26 #include "hw/boards.h"
27 #include "hw/irq.h"
28 #include "qemu/main-loop.h"
29 #include "system/cpus.h"
30 #include "arm-powerctl.h"
31 #include "target/arm/cpu.h"
32 #include "target/arm/internals.h"
33 #include "target/arm/multiprocessing.h"
34 #include "target/arm/gtimer.h"
35 #include "trace.h"
36 #include "migration/vmstate.h"
37 
38 #include "gdbstub/enums.h"
39 
40 #define MDSCR_EL1_SS_SHIFT  0
41 #define MDSCR_EL1_MDE_SHIFT 15
42 
43 static const uint16_t dbgbcr_regs[] = {
44     HV_SYS_REG_DBGBCR0_EL1,
45     HV_SYS_REG_DBGBCR1_EL1,
46     HV_SYS_REG_DBGBCR2_EL1,
47     HV_SYS_REG_DBGBCR3_EL1,
48     HV_SYS_REG_DBGBCR4_EL1,
49     HV_SYS_REG_DBGBCR5_EL1,
50     HV_SYS_REG_DBGBCR6_EL1,
51     HV_SYS_REG_DBGBCR7_EL1,
52     HV_SYS_REG_DBGBCR8_EL1,
53     HV_SYS_REG_DBGBCR9_EL1,
54     HV_SYS_REG_DBGBCR10_EL1,
55     HV_SYS_REG_DBGBCR11_EL1,
56     HV_SYS_REG_DBGBCR12_EL1,
57     HV_SYS_REG_DBGBCR13_EL1,
58     HV_SYS_REG_DBGBCR14_EL1,
59     HV_SYS_REG_DBGBCR15_EL1,
60 };
61 
62 static const uint16_t dbgbvr_regs[] = {
63     HV_SYS_REG_DBGBVR0_EL1,
64     HV_SYS_REG_DBGBVR1_EL1,
65     HV_SYS_REG_DBGBVR2_EL1,
66     HV_SYS_REG_DBGBVR3_EL1,
67     HV_SYS_REG_DBGBVR4_EL1,
68     HV_SYS_REG_DBGBVR5_EL1,
69     HV_SYS_REG_DBGBVR6_EL1,
70     HV_SYS_REG_DBGBVR7_EL1,
71     HV_SYS_REG_DBGBVR8_EL1,
72     HV_SYS_REG_DBGBVR9_EL1,
73     HV_SYS_REG_DBGBVR10_EL1,
74     HV_SYS_REG_DBGBVR11_EL1,
75     HV_SYS_REG_DBGBVR12_EL1,
76     HV_SYS_REG_DBGBVR13_EL1,
77     HV_SYS_REG_DBGBVR14_EL1,
78     HV_SYS_REG_DBGBVR15_EL1,
79 };
80 
81 static const uint16_t dbgwcr_regs[] = {
82     HV_SYS_REG_DBGWCR0_EL1,
83     HV_SYS_REG_DBGWCR1_EL1,
84     HV_SYS_REG_DBGWCR2_EL1,
85     HV_SYS_REG_DBGWCR3_EL1,
86     HV_SYS_REG_DBGWCR4_EL1,
87     HV_SYS_REG_DBGWCR5_EL1,
88     HV_SYS_REG_DBGWCR6_EL1,
89     HV_SYS_REG_DBGWCR7_EL1,
90     HV_SYS_REG_DBGWCR8_EL1,
91     HV_SYS_REG_DBGWCR9_EL1,
92     HV_SYS_REG_DBGWCR10_EL1,
93     HV_SYS_REG_DBGWCR11_EL1,
94     HV_SYS_REG_DBGWCR12_EL1,
95     HV_SYS_REG_DBGWCR13_EL1,
96     HV_SYS_REG_DBGWCR14_EL1,
97     HV_SYS_REG_DBGWCR15_EL1,
98 };
99 
100 static const uint16_t dbgwvr_regs[] = {
101     HV_SYS_REG_DBGWVR0_EL1,
102     HV_SYS_REG_DBGWVR1_EL1,
103     HV_SYS_REG_DBGWVR2_EL1,
104     HV_SYS_REG_DBGWVR3_EL1,
105     HV_SYS_REG_DBGWVR4_EL1,
106     HV_SYS_REG_DBGWVR5_EL1,
107     HV_SYS_REG_DBGWVR6_EL1,
108     HV_SYS_REG_DBGWVR7_EL1,
109     HV_SYS_REG_DBGWVR8_EL1,
110     HV_SYS_REG_DBGWVR9_EL1,
111     HV_SYS_REG_DBGWVR10_EL1,
112     HV_SYS_REG_DBGWVR11_EL1,
113     HV_SYS_REG_DBGWVR12_EL1,
114     HV_SYS_REG_DBGWVR13_EL1,
115     HV_SYS_REG_DBGWVR14_EL1,
116     HV_SYS_REG_DBGWVR15_EL1,
117 };
118 
119 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
120 {
121     uint64_t val;
122     hv_return_t ret;
123     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
124                                          &val);
125     assert_hvf_ok(ret);
126     return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
127 }
128 
129 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
130 {
131     uint64_t val;
132     hv_return_t ret;
133     ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
134                                          &val);
135     assert_hvf_ok(ret);
136     return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
137 }
138 
139 void hvf_arm_init_debug(void)
140 {
141     hv_vcpu_config_t config;
142     config = hv_vcpu_config_create();
143 
144     max_hw_bps = hvf_arm_num_brps(config);
145     hw_breakpoints =
146         g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
147 
148     max_hw_wps = hvf_arm_num_wrps(config);
149     hw_watchpoints =
150         g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
151 }
152 
153 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
154         ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
155 
156 #define SYSREG_OP0_SHIFT      20
157 #define SYSREG_OP0_MASK       0x3
158 #define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
159 #define SYSREG_OP1_SHIFT      14
160 #define SYSREG_OP1_MASK       0x7
161 #define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
162 #define SYSREG_CRN_SHIFT      10
163 #define SYSREG_CRN_MASK       0xf
164 #define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
165 #define SYSREG_CRM_SHIFT      1
166 #define SYSREG_CRM_MASK       0xf
167 #define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
168 #define SYSREG_OP2_SHIFT      17
169 #define SYSREG_OP2_MASK       0x7
170 #define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
171 
172 #define SYSREG(op0, op1, crn, crm, op2) \
173     ((op0 << SYSREG_OP0_SHIFT) | \
174      (op1 << SYSREG_OP1_SHIFT) | \
175      (crn << SYSREG_CRN_SHIFT) | \
176      (crm << SYSREG_CRM_SHIFT) | \
177      (op2 << SYSREG_OP2_SHIFT))
178 #define SYSREG_MASK \
179     SYSREG(SYSREG_OP0_MASK, \
180            SYSREG_OP1_MASK, \
181            SYSREG_CRN_MASK, \
182            SYSREG_CRM_MASK, \
183            SYSREG_OP2_MASK)
184 #define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
185 #define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
186 #define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
187 #define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
188 #define SYSREG_CNTP_CTL_EL0   SYSREG(3, 3, 14, 2, 1)
189 #define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
190 #define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
191 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
192 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
193 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
194 #define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
195 #define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
196 #define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
197 #define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
198 #define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
199 #define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
200 #define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)
201 
202 #define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
203 #define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
204 #define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
205 #define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
206 #define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
207 #define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
208 #define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
209 #define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
210 #define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
211 #define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
212 #define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
213 #define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
214 #define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
215 #define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
216 #define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
217 #define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
218 #define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
219 #define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
220 #define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
221 #define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
222 #define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
223 #define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
224 #define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
225 #define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
226 #define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
227 #define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)
228 
229 #define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
230 #define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
231 #define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
232 #define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
233 #define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
234 #define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
235 #define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
236 #define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
237 #define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
238 #define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
239 #define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
240 #define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
241 #define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
242 #define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
243 #define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
244 #define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
245 #define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
246 #define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
247 #define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
248 #define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
249 #define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
250 #define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
251 #define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
252 #define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
253 #define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
254 #define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
255 #define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
256 #define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
257 #define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
258 #define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
259 #define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
260 #define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
261 #define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
262 #define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
263 #define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
264 #define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
265 #define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
266 #define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
267 #define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
268 #define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
269 #define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
270 #define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
271 #define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
272 #define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
273 #define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
274 #define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
275 #define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
276 #define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
277 #define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
278 #define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
279 #define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
280 #define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
281 #define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
282 #define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
283 #define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
284 #define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
285 #define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
286 #define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
287 #define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
288 #define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
289 #define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
290 #define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
291 #define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
292 #define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
293 #define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)
294 
295 #define WFX_IS_WFE (1 << 0)
296 
297 #define TMR_CTL_ENABLE  (1 << 0)
298 #define TMR_CTL_IMASK   (1 << 1)
299 #define TMR_CTL_ISTATUS (1 << 2)
300 
301 static void hvf_wfi(CPUState *cpu);
302 
303 static uint32_t chosen_ipa_bit_size;
304 
305 typedef struct HVFVTimer {
306     /* Vtimer value during migration and paused state */
307     uint64_t vtimer_val;
308 } HVFVTimer;
309 
310 static HVFVTimer vtimer;
311 
312 typedef struct ARMHostCPUFeatures {
313     ARMISARegisters isar;
314     uint64_t features;
315     uint64_t midr;
316     uint32_t reset_sctlr;
317     const char *dtb_compatible;
318 } ARMHostCPUFeatures;
319 
320 static ARMHostCPUFeatures arm_host_cpu_features;
321 
322 struct hvf_reg_match {
323     int reg;
324     uint64_t offset;
325 };
326 
327 static const struct hvf_reg_match hvf_reg_match[] = {
328     { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
329     { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
330     { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
331     { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
332     { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
333     { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
334     { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
335     { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
336     { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
337     { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
338     { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
339     { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
340     { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
341     { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
342     { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
343     { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
344     { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
345     { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
346     { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
347     { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
348     { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
349     { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
350     { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
351     { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
352     { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
353     { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
354     { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
355     { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
356     { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
357     { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
358     { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
359     { HV_REG_PC,   offsetof(CPUARMState, pc) },
360 };
361 
362 static const struct hvf_reg_match hvf_fpreg_match[] = {
363     { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
364     { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
365     { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
366     { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
367     { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
368     { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
369     { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
370     { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
371     { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
372     { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
373     { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
374     { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
375     { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
376     { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
377     { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
378     { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
379     { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
380     { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
381     { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
382     { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
383     { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
384     { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
385     { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
386     { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
387     { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
388     { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
389     { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
390     { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
391     { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
392     { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
393     { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
394     { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
395 };
396 
397 struct hvf_sreg_match {
398     int reg;
399     uint32_t key;
400     uint32_t cp_idx;
401 };
402 
403 static struct hvf_sreg_match hvf_sreg_match[] = {
404     { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
405     { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
406     { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
407     { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
408 
409     { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
410     { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
411     { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
412     { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
413 
414     { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
415     { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
416     { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
417     { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
418 
419     { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
420     { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
421     { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
422     { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
423 
424     { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
425     { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
426     { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
427     { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
428 
429     { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
430     { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
431     { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
432     { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
433 
434     { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
435     { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
436     { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
437     { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
438 
439     { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
440     { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
441     { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
442     { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
443 
444     { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
445     { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
446     { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
447     { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
448 
449     { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
450     { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
451     { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
452     { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
453 
454     { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
455     { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
456     { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
457     { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
458 
459     { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
460     { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
461     { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
462     { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
463 
464     { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
465     { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
466     { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
467     { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
468 
469     { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
470     { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
471     { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
472     { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
473 
474     { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
475     { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
476     { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
477     { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
478 
479     { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
480     { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
481     { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
482     { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
483 
484 #ifdef SYNC_NO_RAW_REGS
485     /*
486      * The registers below are manually synced on init because they are
487      * marked as NO_RAW. We still list them to make number space sync easier.
488      */
489     { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
490     { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
491     { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
492     { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
493 #endif
494     { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
495     { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
496     { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
497     { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
498     { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
499 #ifdef SYNC_NO_MMFR0
500     /* We keep the hardware MMFR0 around. HW limits are there anyway */
501     { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
502 #endif
503     { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
504     { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
505     /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
506 
507     { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
508     { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
509     { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
510     { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
511     { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
512     { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
513 
514     { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
515     { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
516     { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
517     { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
518     { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
519     { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
520     { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
521     { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
522     { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
523     { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
524 
525     { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
526     { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
527     { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
528     { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
529     { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
530     { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
531     { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
532     { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
533     { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
534     { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
535     { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
536     { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
537     { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
538     { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
539     { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
540     { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
541     { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
542     { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
543     { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
544     { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
545 };
546 
547 int hvf_get_registers(CPUState *cpu)
548 {
549     ARMCPU *arm_cpu = ARM_CPU(cpu);
550     CPUARMState *env = &arm_cpu->env;
551     hv_return_t ret;
552     uint64_t val;
553     hv_simd_fp_uchar16_t fpval;
554     int i;
555 
556     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
557         ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
558         *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
559         assert_hvf_ok(ret);
560     }
561 
562     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
563         ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
564                                       &fpval);
565         memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
566         assert_hvf_ok(ret);
567     }
568 
569     val = 0;
570     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
571     assert_hvf_ok(ret);
572     vfp_set_fpcr(env, val);
573 
574     val = 0;
575     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
576     assert_hvf_ok(ret);
577     vfp_set_fpsr(env, val);
578 
579     ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
580     assert_hvf_ok(ret);
581     pstate_write(env, val);
582 
583     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
584         if (hvf_sreg_match[i].cp_idx == -1) {
585             continue;
586         }
587 
588         if (cpu->accel->guest_debug_enabled) {
589             /* Handle debug registers */
590             switch (hvf_sreg_match[i].reg) {
591             case HV_SYS_REG_DBGBVR0_EL1:
592             case HV_SYS_REG_DBGBCR0_EL1:
593             case HV_SYS_REG_DBGWVR0_EL1:
594             case HV_SYS_REG_DBGWCR0_EL1:
595             case HV_SYS_REG_DBGBVR1_EL1:
596             case HV_SYS_REG_DBGBCR1_EL1:
597             case HV_SYS_REG_DBGWVR1_EL1:
598             case HV_SYS_REG_DBGWCR1_EL1:
599             case HV_SYS_REG_DBGBVR2_EL1:
600             case HV_SYS_REG_DBGBCR2_EL1:
601             case HV_SYS_REG_DBGWVR2_EL1:
602             case HV_SYS_REG_DBGWCR2_EL1:
603             case HV_SYS_REG_DBGBVR3_EL1:
604             case HV_SYS_REG_DBGBCR3_EL1:
605             case HV_SYS_REG_DBGWVR3_EL1:
606             case HV_SYS_REG_DBGWCR3_EL1:
607             case HV_SYS_REG_DBGBVR4_EL1:
608             case HV_SYS_REG_DBGBCR4_EL1:
609             case HV_SYS_REG_DBGWVR4_EL1:
610             case HV_SYS_REG_DBGWCR4_EL1:
611             case HV_SYS_REG_DBGBVR5_EL1:
612             case HV_SYS_REG_DBGBCR5_EL1:
613             case HV_SYS_REG_DBGWVR5_EL1:
614             case HV_SYS_REG_DBGWCR5_EL1:
615             case HV_SYS_REG_DBGBVR6_EL1:
616             case HV_SYS_REG_DBGBCR6_EL1:
617             case HV_SYS_REG_DBGWVR6_EL1:
618             case HV_SYS_REG_DBGWCR6_EL1:
619             case HV_SYS_REG_DBGBVR7_EL1:
620             case HV_SYS_REG_DBGBCR7_EL1:
621             case HV_SYS_REG_DBGWVR7_EL1:
622             case HV_SYS_REG_DBGWCR7_EL1:
623             case HV_SYS_REG_DBGBVR8_EL1:
624             case HV_SYS_REG_DBGBCR8_EL1:
625             case HV_SYS_REG_DBGWVR8_EL1:
626             case HV_SYS_REG_DBGWCR8_EL1:
627             case HV_SYS_REG_DBGBVR9_EL1:
628             case HV_SYS_REG_DBGBCR9_EL1:
629             case HV_SYS_REG_DBGWVR9_EL1:
630             case HV_SYS_REG_DBGWCR9_EL1:
631             case HV_SYS_REG_DBGBVR10_EL1:
632             case HV_SYS_REG_DBGBCR10_EL1:
633             case HV_SYS_REG_DBGWVR10_EL1:
634             case HV_SYS_REG_DBGWCR10_EL1:
635             case HV_SYS_REG_DBGBVR11_EL1:
636             case HV_SYS_REG_DBGBCR11_EL1:
637             case HV_SYS_REG_DBGWVR11_EL1:
638             case HV_SYS_REG_DBGWCR11_EL1:
639             case HV_SYS_REG_DBGBVR12_EL1:
640             case HV_SYS_REG_DBGBCR12_EL1:
641             case HV_SYS_REG_DBGWVR12_EL1:
642             case HV_SYS_REG_DBGWCR12_EL1:
643             case HV_SYS_REG_DBGBVR13_EL1:
644             case HV_SYS_REG_DBGBCR13_EL1:
645             case HV_SYS_REG_DBGWVR13_EL1:
646             case HV_SYS_REG_DBGWCR13_EL1:
647             case HV_SYS_REG_DBGBVR14_EL1:
648             case HV_SYS_REG_DBGBCR14_EL1:
649             case HV_SYS_REG_DBGWVR14_EL1:
650             case HV_SYS_REG_DBGWCR14_EL1:
651             case HV_SYS_REG_DBGBVR15_EL1:
652             case HV_SYS_REG_DBGBCR15_EL1:
653             case HV_SYS_REG_DBGWVR15_EL1:
654             case HV_SYS_REG_DBGWCR15_EL1: {
655                 /*
656                  * If the guest is being debugged, the vCPU's debug registers
657                  * are holding the gdbstub's view of the registers (set in
658                  * hvf_arch_update_guest_debug()).
659                  * Since the environment is used to store only the guest's view
660                  * of the registers, don't update it with the values from the
661                  * vCPU but simply keep the values from the previous
662                  * environment.
663                  */
664                 const ARMCPRegInfo *ri;
665                 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
666                 val = read_raw_cp_reg(env, ri);
667 
668                 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
669                 continue;
670             }
671             }
672         }
673 
674         ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
675         assert_hvf_ok(ret);
676 
677         arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
678     }
679     assert(write_list_to_cpustate(arm_cpu));
680 
681     aarch64_restore_sp(env, arm_current_el(env));
682 
683     return 0;
684 }
685 
686 int hvf_put_registers(CPUState *cpu)
687 {
688     ARMCPU *arm_cpu = ARM_CPU(cpu);
689     CPUARMState *env = &arm_cpu->env;
690     hv_return_t ret;
691     uint64_t val;
692     hv_simd_fp_uchar16_t fpval;
693     int i;
694 
695     for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
696         val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
697         ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
698         assert_hvf_ok(ret);
699     }
700 
701     for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
702         memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
703         ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
704                                       fpval);
705         assert_hvf_ok(ret);
706     }
707 
708     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
709     assert_hvf_ok(ret);
710 
711     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
712     assert_hvf_ok(ret);
713 
714     ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
715     assert_hvf_ok(ret);
716 
717     aarch64_save_sp(env, arm_current_el(env));
718 
719     assert(write_cpustate_to_list(arm_cpu, false));
720     for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
721         if (hvf_sreg_match[i].cp_idx == -1) {
722             continue;
723         }
724 
725         if (cpu->accel->guest_debug_enabled) {
726             /* Handle debug registers */
727             switch (hvf_sreg_match[i].reg) {
728             case HV_SYS_REG_DBGBVR0_EL1:
729             case HV_SYS_REG_DBGBCR0_EL1:
730             case HV_SYS_REG_DBGWVR0_EL1:
731             case HV_SYS_REG_DBGWCR0_EL1:
732             case HV_SYS_REG_DBGBVR1_EL1:
733             case HV_SYS_REG_DBGBCR1_EL1:
734             case HV_SYS_REG_DBGWVR1_EL1:
735             case HV_SYS_REG_DBGWCR1_EL1:
736             case HV_SYS_REG_DBGBVR2_EL1:
737             case HV_SYS_REG_DBGBCR2_EL1:
738             case HV_SYS_REG_DBGWVR2_EL1:
739             case HV_SYS_REG_DBGWCR2_EL1:
740             case HV_SYS_REG_DBGBVR3_EL1:
741             case HV_SYS_REG_DBGBCR3_EL1:
742             case HV_SYS_REG_DBGWVR3_EL1:
743             case HV_SYS_REG_DBGWCR3_EL1:
744             case HV_SYS_REG_DBGBVR4_EL1:
745             case HV_SYS_REG_DBGBCR4_EL1:
746             case HV_SYS_REG_DBGWVR4_EL1:
747             case HV_SYS_REG_DBGWCR4_EL1:
748             case HV_SYS_REG_DBGBVR5_EL1:
749             case HV_SYS_REG_DBGBCR5_EL1:
750             case HV_SYS_REG_DBGWVR5_EL1:
751             case HV_SYS_REG_DBGWCR5_EL1:
752             case HV_SYS_REG_DBGBVR6_EL1:
753             case HV_SYS_REG_DBGBCR6_EL1:
754             case HV_SYS_REG_DBGWVR6_EL1:
755             case HV_SYS_REG_DBGWCR6_EL1:
756             case HV_SYS_REG_DBGBVR7_EL1:
757             case HV_SYS_REG_DBGBCR7_EL1:
758             case HV_SYS_REG_DBGWVR7_EL1:
759             case HV_SYS_REG_DBGWCR7_EL1:
760             case HV_SYS_REG_DBGBVR8_EL1:
761             case HV_SYS_REG_DBGBCR8_EL1:
762             case HV_SYS_REG_DBGWVR8_EL1:
763             case HV_SYS_REG_DBGWCR8_EL1:
764             case HV_SYS_REG_DBGBVR9_EL1:
765             case HV_SYS_REG_DBGBCR9_EL1:
766             case HV_SYS_REG_DBGWVR9_EL1:
767             case HV_SYS_REG_DBGWCR9_EL1:
768             case HV_SYS_REG_DBGBVR10_EL1:
769             case HV_SYS_REG_DBGBCR10_EL1:
770             case HV_SYS_REG_DBGWVR10_EL1:
771             case HV_SYS_REG_DBGWCR10_EL1:
772             case HV_SYS_REG_DBGBVR11_EL1:
773             case HV_SYS_REG_DBGBCR11_EL1:
774             case HV_SYS_REG_DBGWVR11_EL1:
775             case HV_SYS_REG_DBGWCR11_EL1:
776             case HV_SYS_REG_DBGBVR12_EL1:
777             case HV_SYS_REG_DBGBCR12_EL1:
778             case HV_SYS_REG_DBGWVR12_EL1:
779             case HV_SYS_REG_DBGWCR12_EL1:
780             case HV_SYS_REG_DBGBVR13_EL1:
781             case HV_SYS_REG_DBGBCR13_EL1:
782             case HV_SYS_REG_DBGWVR13_EL1:
783             case HV_SYS_REG_DBGWCR13_EL1:
784             case HV_SYS_REG_DBGBVR14_EL1:
785             case HV_SYS_REG_DBGBCR14_EL1:
786             case HV_SYS_REG_DBGWVR14_EL1:
787             case HV_SYS_REG_DBGWCR14_EL1:
788             case HV_SYS_REG_DBGBVR15_EL1:
789             case HV_SYS_REG_DBGBCR15_EL1:
790             case HV_SYS_REG_DBGWVR15_EL1:
791             case HV_SYS_REG_DBGWCR15_EL1:
792                 /*
793                  * If the guest is being debugged, the vCPU's debug registers
794                  * are already holding the gdbstub's view of the registers (set
795                  * in hvf_arch_update_guest_debug()).
796                  */
797                 continue;
798             }
799         }
800 
801         val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
802         ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
803         assert_hvf_ok(ret);
804     }
805 
806     ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
807     assert_hvf_ok(ret);
808 
809     return 0;
810 }
811 
812 static void flush_cpu_state(CPUState *cpu)
813 {
814     if (cpu->accel->dirty) {
815         hvf_put_registers(cpu);
816         cpu->accel->dirty = false;
817     }
818 }
819 
820 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
821 {
822     hv_return_t r;
823 
824     flush_cpu_state(cpu);
825 
826     if (rt < 31) {
827         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
828         assert_hvf_ok(r);
829     }
830 }
831 
832 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
833 {
834     uint64_t val = 0;
835     hv_return_t r;
836 
837     flush_cpu_state(cpu);
838 
839     if (rt < 31) {
840         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
841         assert_hvf_ok(r);
842     }
843 
844     return val;
845 }
846 
847 static void clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t *id_aa64mmfr0)
848 {
849     uint32_t ipa_size = chosen_ipa_bit_size ?
850             chosen_ipa_bit_size : hvf_arm_get_max_ipa_bit_size();
851 
852     /* Clamp down the PARange to the IPA size the kernel supports. */
853     uint8_t index = round_down_to_parange_index(ipa_size);
854     *id_aa64mmfr0 = (*id_aa64mmfr0 & ~R_ID_AA64MMFR0_PARANGE_MASK) | index;
855 }
856 
857 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
858 {
859     ARMISARegisters host_isar = {};
860     const struct isar_regs {
861         int reg;
862         uint64_t *val;
863     } regs[] = {
864         { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
865         { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
866         { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
867         { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
868         { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
869         { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
870         /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
871         { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
872         { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
873         { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
874         /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
875     };
876     hv_vcpu_t fd;
877     hv_return_t r = HV_SUCCESS;
878     hv_vcpu_exit_t *exit;
879     int i;
880 
881     ahcf->dtb_compatible = "arm,arm-v8";
882     ahcf->features = (1ULL << ARM_FEATURE_V8) |
883                      (1ULL << ARM_FEATURE_NEON) |
884                      (1ULL << ARM_FEATURE_AARCH64) |
885                      (1ULL << ARM_FEATURE_PMU) |
886                      (1ULL << ARM_FEATURE_GENERIC_TIMER);
887 
888     /* We set up a small vcpu to extract host registers */
889 
890     if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
891         return false;
892     }
893 
894     for (i = 0; i < ARRAY_SIZE(regs); i++) {
895         r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
896     }
897     r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
898     r |= hv_vcpu_destroy(fd);
899 
900     clamp_id_aa64mmfr0_parange_to_ipa_size(&host_isar.id_aa64mmfr0);
901 
902     ahcf->isar = host_isar;
903 
904     /*
905      * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
906      * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
907      */
908     ahcf->reset_sctlr = 0x30100180;
909     /*
910      * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
911      * let's disable it on boot and then allow guest software to turn it on by
912      * setting it to 0.
913      */
914     ahcf->reset_sctlr |= 0x00800000;
915 
916     /* Make sure we don't advertise AArch32 support for EL0/EL1 */
917     if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
918         return false;
919     }
920 
921     return r == HV_SUCCESS;
922 }
923 
924 uint32_t hvf_arm_get_default_ipa_bit_size(void)
925 {
926     uint32_t default_ipa_size;
927     hv_return_t ret = hv_vm_config_get_default_ipa_size(&default_ipa_size);
928     assert_hvf_ok(ret);
929 
930     return default_ipa_size;
931 }
932 
933 uint32_t hvf_arm_get_max_ipa_bit_size(void)
934 {
935     uint32_t max_ipa_size;
936     hv_return_t ret = hv_vm_config_get_max_ipa_size(&max_ipa_size);
937     assert_hvf_ok(ret);
938 
939     /*
940      * We clamp any IPA size we want to back the VM with to a valid PARange
941      * value so the guest doesn't try and map memory outside of the valid range.
942      * This logic just clamps the passed in IPA bit size to the first valid
943      * PARange value <= to it.
944      */
945     return round_down_to_parange_bit_size(max_ipa_size);
946 }
947 
948 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
949 {
950     if (!arm_host_cpu_features.dtb_compatible) {
951         if (!hvf_enabled() ||
952             !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
953             /*
954              * We can't report this error yet, so flag that we need to
955              * in arm_cpu_realizefn().
956              */
957             cpu->host_cpu_probe_failed = true;
958             return;
959         }
960     }
961 
962     cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
963     cpu->isar = arm_host_cpu_features.isar;
964     cpu->env.features = arm_host_cpu_features.features;
965     cpu->midr = arm_host_cpu_features.midr;
966     cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
967 }
968 
969 void hvf_arch_vcpu_destroy(CPUState *cpu)
970 {
971 }
972 
973 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
974 {
975     hv_return_t ret;
976     hv_vm_config_t config = hv_vm_config_create();
977 
978     ret = hv_vm_config_set_ipa_size(config, pa_range);
979     if (ret != HV_SUCCESS) {
980         goto cleanup;
981     }
982     chosen_ipa_bit_size = pa_range;
983 
984     ret = hv_vm_create(config);
985 
986 cleanup:
987     os_release(config);
988 
989     return ret;
990 }
991 
992 int hvf_arch_init_vcpu(CPUState *cpu)
993 {
994     ARMCPU *arm_cpu = ARM_CPU(cpu);
995     CPUARMState *env = &arm_cpu->env;
996     uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
997     uint32_t sregs_cnt = 0;
998     uint64_t pfr;
999     hv_return_t ret;
1000     int i;
1001 
1002     env->aarch64 = true;
1003     asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
1004 
1005     /* Allocate enough space for our sysreg sync */
1006     arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
1007                                      sregs_match_len);
1008     arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
1009                                     sregs_match_len);
1010     arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
1011                                              arm_cpu->cpreg_vmstate_indexes,
1012                                              sregs_match_len);
1013     arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
1014                                             arm_cpu->cpreg_vmstate_values,
1015                                             sregs_match_len);
1016 
1017     memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
1018 
1019     /* Populate cp list for all known sysregs */
1020     for (i = 0; i < sregs_match_len; i++) {
1021         const ARMCPRegInfo *ri;
1022         uint32_t key = hvf_sreg_match[i].key;
1023 
1024         ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
1025         if (ri) {
1026             assert(!(ri->type & ARM_CP_NO_RAW));
1027             hvf_sreg_match[i].cp_idx = sregs_cnt;
1028             arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
1029         } else {
1030             hvf_sreg_match[i].cp_idx = -1;
1031         }
1032     }
1033     arm_cpu->cpreg_array_len = sregs_cnt;
1034     arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
1035 
1036     assert(write_cpustate_to_list(arm_cpu, false));
1037 
1038     /* Set CP_NO_RAW system registers on init */
1039     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
1040                               arm_cpu->midr);
1041     assert_hvf_ok(ret);
1042 
1043     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
1044                               arm_cpu->mp_affinity);
1045     assert_hvf_ok(ret);
1046 
1047     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
1048     assert_hvf_ok(ret);
1049     pfr |= env->gicv3state ? (1 << 24) : 0;
1050     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
1051     assert_hvf_ok(ret);
1052 
1053     /* We're limited to underlying hardware caps, override internal versions */
1054     ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1055                               &arm_cpu->isar.id_aa64mmfr0);
1056     assert_hvf_ok(ret);
1057 
1058     clamp_id_aa64mmfr0_parange_to_ipa_size(&arm_cpu->isar.id_aa64mmfr0);
1059     ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1060                               arm_cpu->isar.id_aa64mmfr0);
1061     assert_hvf_ok(ret);
1062 
1063     return 0;
1064 }
1065 
1066 void hvf_kick_vcpu_thread(CPUState *cpu)
1067 {
1068     cpus_kick_thread(cpu);
1069     hv_vcpus_exit(&cpu->accel->fd, 1);
1070 }
1071 
1072 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1073                                 uint32_t syndrome)
1074 {
1075     ARMCPU *arm_cpu = ARM_CPU(cpu);
1076     CPUARMState *env = &arm_cpu->env;
1077 
1078     cpu->exception_index = excp;
1079     env->exception.target_el = 1;
1080     env->exception.syndrome = syndrome;
1081 
1082     arm_cpu_do_interrupt(cpu);
1083 }
1084 
1085 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1086 {
1087     int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1088     assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1089 }
1090 
1091 /*
1092  * Handle a PSCI call.
1093  *
1094  * Returns 0 on success
1095  *         -1 when the PSCI call is unknown,
1096  */
1097 static bool hvf_handle_psci_call(CPUState *cpu)
1098 {
1099     ARMCPU *arm_cpu = ARM_CPU(cpu);
1100     CPUARMState *env = &arm_cpu->env;
1101     uint64_t param[4] = {
1102         env->xregs[0],
1103         env->xregs[1],
1104         env->xregs[2],
1105         env->xregs[3]
1106     };
1107     uint64_t context_id, mpidr;
1108     bool target_aarch64 = true;
1109     CPUState *target_cpu_state;
1110     ARMCPU *target_cpu;
1111     target_ulong entry;
1112     int target_el = 1;
1113     int32_t ret = 0;
1114 
1115     trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1116                         arm_cpu_mp_affinity(arm_cpu));
1117 
1118     switch (param[0]) {
1119     case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1120         ret = QEMU_PSCI_VERSION_1_1;
1121         break;
1122     case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1123         ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1124         break;
1125     case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1126     case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1127         mpidr = param[1];
1128 
1129         switch (param[2]) {
1130         case 0:
1131             target_cpu_state = arm_get_cpu_by_id(mpidr);
1132             if (!target_cpu_state) {
1133                 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1134                 break;
1135             }
1136             target_cpu = ARM_CPU(target_cpu_state);
1137 
1138             ret = target_cpu->power_state;
1139             break;
1140         default:
1141             /* Everything above affinity level 0 is always on. */
1142             ret = 0;
1143         }
1144         break;
1145     case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1146         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1147         /*
1148          * QEMU reset and shutdown are async requests, but PSCI
1149          * mandates that we never return from the reset/shutdown
1150          * call, so power the CPU off now so it doesn't execute
1151          * anything further.
1152          */
1153         hvf_psci_cpu_off(arm_cpu);
1154         break;
1155     case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1156         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1157         hvf_psci_cpu_off(arm_cpu);
1158         break;
1159     case QEMU_PSCI_0_1_FN_CPU_ON:
1160     case QEMU_PSCI_0_2_FN_CPU_ON:
1161     case QEMU_PSCI_0_2_FN64_CPU_ON:
1162         mpidr = param[1];
1163         entry = param[2];
1164         context_id = param[3];
1165         ret = arm_set_cpu_on(mpidr, entry, context_id,
1166                              target_el, target_aarch64);
1167         break;
1168     case QEMU_PSCI_0_1_FN_CPU_OFF:
1169     case QEMU_PSCI_0_2_FN_CPU_OFF:
1170         hvf_psci_cpu_off(arm_cpu);
1171         break;
1172     case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1173     case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1174     case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1175         /* Affinity levels are not supported in QEMU */
1176         if (param[1] & 0xfffe0000) {
1177             ret = QEMU_PSCI_RET_INVALID_PARAMS;
1178             break;
1179         }
1180         /* Powerdown is not supported, we always go into WFI */
1181         env->xregs[0] = 0;
1182         hvf_wfi(cpu);
1183         break;
1184     case QEMU_PSCI_0_1_FN_MIGRATE:
1185     case QEMU_PSCI_0_2_FN_MIGRATE:
1186         ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1187         break;
1188     case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1189         switch (param[1]) {
1190         case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1191         case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1192         case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1193         case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1194         case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1195         case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1196         case QEMU_PSCI_0_1_FN_CPU_ON:
1197         case QEMU_PSCI_0_2_FN_CPU_ON:
1198         case QEMU_PSCI_0_2_FN64_CPU_ON:
1199         case QEMU_PSCI_0_1_FN_CPU_OFF:
1200         case QEMU_PSCI_0_2_FN_CPU_OFF:
1201         case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1202         case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1203         case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1204         case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1205             ret = 0;
1206             break;
1207         case QEMU_PSCI_0_1_FN_MIGRATE:
1208         case QEMU_PSCI_0_2_FN_MIGRATE:
1209         default:
1210             ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1211         }
1212         break;
1213     default:
1214         return false;
1215     }
1216 
1217     env->xregs[0] = ret;
1218     return true;
1219 }
1220 
1221 static bool is_id_sysreg(uint32_t reg)
1222 {
1223     return SYSREG_OP0(reg) == 3 &&
1224            SYSREG_OP1(reg) == 0 &&
1225            SYSREG_CRN(reg) == 0 &&
1226            SYSREG_CRM(reg) >= 1 &&
1227            SYSREG_CRM(reg) < 8;
1228 }
1229 
1230 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1231 {
1232     return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1233                               (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1234                               (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1235                               (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1236                               (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1237                               (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1238 }
1239 
1240 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1241 {
1242     ARMCPU *arm_cpu = ARM_CPU(cpu);
1243     CPUARMState *env = &arm_cpu->env;
1244     const ARMCPRegInfo *ri;
1245 
1246     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1247     if (ri) {
1248         if (ri->accessfn) {
1249             if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1250                 return false;
1251             }
1252         }
1253         if (ri->type & ARM_CP_CONST) {
1254             *val = ri->resetvalue;
1255         } else if (ri->readfn) {
1256             *val = ri->readfn(env, ri);
1257         } else {
1258             *val = CPREG_FIELD64(env, ri);
1259         }
1260         trace_hvf_vgic_read(ri->name, *val);
1261         return true;
1262     }
1263 
1264     return false;
1265 }
1266 
1267 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val)
1268 {
1269     ARMCPU *arm_cpu = ARM_CPU(cpu);
1270     CPUARMState *env = &arm_cpu->env;
1271 
1272     if (arm_feature(env, ARM_FEATURE_PMU)) {
1273         switch (reg) {
1274         case SYSREG_PMCR_EL0:
1275             *val = env->cp15.c9_pmcr;
1276             return 0;
1277         case SYSREG_PMCCNTR_EL0:
1278             pmu_op_start(env);
1279             *val = env->cp15.c15_ccnt;
1280             pmu_op_finish(env);
1281             return 0;
1282         case SYSREG_PMCNTENCLR_EL0:
1283             *val = env->cp15.c9_pmcnten;
1284             return 0;
1285         case SYSREG_PMOVSCLR_EL0:
1286             *val = env->cp15.c9_pmovsr;
1287             return 0;
1288         case SYSREG_PMSELR_EL0:
1289             *val = env->cp15.c9_pmselr;
1290             return 0;
1291         case SYSREG_PMINTENCLR_EL1:
1292             *val = env->cp15.c9_pminten;
1293             return 0;
1294         case SYSREG_PMCCFILTR_EL0:
1295             *val = env->cp15.pmccfiltr_el0;
1296             return 0;
1297         case SYSREG_PMCNTENSET_EL0:
1298             *val = env->cp15.c9_pmcnten;
1299             return 0;
1300         case SYSREG_PMUSERENR_EL0:
1301             *val = env->cp15.c9_pmuserenr;
1302             return 0;
1303         case SYSREG_PMCEID0_EL0:
1304         case SYSREG_PMCEID1_EL0:
1305             /* We can't really count anything yet, declare all events invalid */
1306             *val = 0;
1307             return 0;
1308         }
1309     }
1310 
1311     switch (reg) {
1312     case SYSREG_CNTPCT_EL0:
1313         *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1314               gt_cntfrq_period_ns(arm_cpu);
1315         return 0;
1316     case SYSREG_OSLSR_EL1:
1317         *val = env->cp15.oslsr_el1;
1318         return 0;
1319     case SYSREG_OSDLR_EL1:
1320         /* Dummy register */
1321         return 0;
1322     case SYSREG_ICC_AP0R0_EL1:
1323     case SYSREG_ICC_AP0R1_EL1:
1324     case SYSREG_ICC_AP0R2_EL1:
1325     case SYSREG_ICC_AP0R3_EL1:
1326     case SYSREG_ICC_AP1R0_EL1:
1327     case SYSREG_ICC_AP1R1_EL1:
1328     case SYSREG_ICC_AP1R2_EL1:
1329     case SYSREG_ICC_AP1R3_EL1:
1330     case SYSREG_ICC_ASGI1R_EL1:
1331     case SYSREG_ICC_BPR0_EL1:
1332     case SYSREG_ICC_BPR1_EL1:
1333     case SYSREG_ICC_DIR_EL1:
1334     case SYSREG_ICC_EOIR0_EL1:
1335     case SYSREG_ICC_EOIR1_EL1:
1336     case SYSREG_ICC_HPPIR0_EL1:
1337     case SYSREG_ICC_HPPIR1_EL1:
1338     case SYSREG_ICC_IAR0_EL1:
1339     case SYSREG_ICC_IAR1_EL1:
1340     case SYSREG_ICC_IGRPEN0_EL1:
1341     case SYSREG_ICC_IGRPEN1_EL1:
1342     case SYSREG_ICC_PMR_EL1:
1343     case SYSREG_ICC_SGI0R_EL1:
1344     case SYSREG_ICC_SGI1R_EL1:
1345     case SYSREG_ICC_SRE_EL1:
1346     case SYSREG_ICC_CTLR_EL1:
1347         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1348         if (hvf_sysreg_read_cp(cpu, reg, val)) {
1349             return 0;
1350         }
1351         break;
1352     case SYSREG_DBGBVR0_EL1:
1353     case SYSREG_DBGBVR1_EL1:
1354     case SYSREG_DBGBVR2_EL1:
1355     case SYSREG_DBGBVR3_EL1:
1356     case SYSREG_DBGBVR4_EL1:
1357     case SYSREG_DBGBVR5_EL1:
1358     case SYSREG_DBGBVR6_EL1:
1359     case SYSREG_DBGBVR7_EL1:
1360     case SYSREG_DBGBVR8_EL1:
1361     case SYSREG_DBGBVR9_EL1:
1362     case SYSREG_DBGBVR10_EL1:
1363     case SYSREG_DBGBVR11_EL1:
1364     case SYSREG_DBGBVR12_EL1:
1365     case SYSREG_DBGBVR13_EL1:
1366     case SYSREG_DBGBVR14_EL1:
1367     case SYSREG_DBGBVR15_EL1:
1368         *val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1369         return 0;
1370     case SYSREG_DBGBCR0_EL1:
1371     case SYSREG_DBGBCR1_EL1:
1372     case SYSREG_DBGBCR2_EL1:
1373     case SYSREG_DBGBCR3_EL1:
1374     case SYSREG_DBGBCR4_EL1:
1375     case SYSREG_DBGBCR5_EL1:
1376     case SYSREG_DBGBCR6_EL1:
1377     case SYSREG_DBGBCR7_EL1:
1378     case SYSREG_DBGBCR8_EL1:
1379     case SYSREG_DBGBCR9_EL1:
1380     case SYSREG_DBGBCR10_EL1:
1381     case SYSREG_DBGBCR11_EL1:
1382     case SYSREG_DBGBCR12_EL1:
1383     case SYSREG_DBGBCR13_EL1:
1384     case SYSREG_DBGBCR14_EL1:
1385     case SYSREG_DBGBCR15_EL1:
1386         *val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1387         return 0;
1388     case SYSREG_DBGWVR0_EL1:
1389     case SYSREG_DBGWVR1_EL1:
1390     case SYSREG_DBGWVR2_EL1:
1391     case SYSREG_DBGWVR3_EL1:
1392     case SYSREG_DBGWVR4_EL1:
1393     case SYSREG_DBGWVR5_EL1:
1394     case SYSREG_DBGWVR6_EL1:
1395     case SYSREG_DBGWVR7_EL1:
1396     case SYSREG_DBGWVR8_EL1:
1397     case SYSREG_DBGWVR9_EL1:
1398     case SYSREG_DBGWVR10_EL1:
1399     case SYSREG_DBGWVR11_EL1:
1400     case SYSREG_DBGWVR12_EL1:
1401     case SYSREG_DBGWVR13_EL1:
1402     case SYSREG_DBGWVR14_EL1:
1403     case SYSREG_DBGWVR15_EL1:
1404         *val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1405         return 0;
1406     case SYSREG_DBGWCR0_EL1:
1407     case SYSREG_DBGWCR1_EL1:
1408     case SYSREG_DBGWCR2_EL1:
1409     case SYSREG_DBGWCR3_EL1:
1410     case SYSREG_DBGWCR4_EL1:
1411     case SYSREG_DBGWCR5_EL1:
1412     case SYSREG_DBGWCR6_EL1:
1413     case SYSREG_DBGWCR7_EL1:
1414     case SYSREG_DBGWCR8_EL1:
1415     case SYSREG_DBGWCR9_EL1:
1416     case SYSREG_DBGWCR10_EL1:
1417     case SYSREG_DBGWCR11_EL1:
1418     case SYSREG_DBGWCR12_EL1:
1419     case SYSREG_DBGWCR13_EL1:
1420     case SYSREG_DBGWCR14_EL1:
1421     case SYSREG_DBGWCR15_EL1:
1422         *val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1423         return 0;
1424     default:
1425         if (is_id_sysreg(reg)) {
1426             /* ID system registers read as RES0 */
1427             *val = 0;
1428             return 0;
1429         }
1430     }
1431 
1432     cpu_synchronize_state(cpu);
1433     trace_hvf_unhandled_sysreg_read(env->pc, reg,
1434                                     SYSREG_OP0(reg),
1435                                     SYSREG_OP1(reg),
1436                                     SYSREG_CRN(reg),
1437                                     SYSREG_CRM(reg),
1438                                     SYSREG_OP2(reg));
1439     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1440     return 1;
1441 }
1442 
1443 static void pmu_update_irq(CPUARMState *env)
1444 {
1445     ARMCPU *cpu = env_archcpu(env);
1446     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1447             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1448 }
1449 
1450 static bool pmu_event_supported(uint16_t number)
1451 {
1452     return false;
1453 }
1454 
1455 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1456  * the current EL, security state, and register configuration.
1457  */
1458 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1459 {
1460     uint64_t filter;
1461     bool enabled, filtered = true;
1462     int el = arm_current_el(env);
1463 
1464     enabled = (env->cp15.c9_pmcr & PMCRE) &&
1465               (env->cp15.c9_pmcnten & (1 << counter));
1466 
1467     if (counter == 31) {
1468         filter = env->cp15.pmccfiltr_el0;
1469     } else {
1470         filter = env->cp15.c14_pmevtyper[counter];
1471     }
1472 
1473     if (el == 0) {
1474         filtered = filter & PMXEVTYPER_U;
1475     } else if (el == 1) {
1476         filtered = filter & PMXEVTYPER_P;
1477     }
1478 
1479     if (counter != 31) {
1480         /*
1481          * If not checking PMCCNTR, ensure the counter is setup to an event we
1482          * support
1483          */
1484         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1485         if (!pmu_event_supported(event)) {
1486             return false;
1487         }
1488     }
1489 
1490     return enabled && !filtered;
1491 }
1492 
1493 static void pmswinc_write(CPUARMState *env, uint64_t value)
1494 {
1495     unsigned int i;
1496     for (i = 0; i < pmu_num_counters(env); i++) {
1497         /* Increment a counter's count iff: */
1498         if ((value & (1 << i)) && /* counter's bit is set */
1499                 /* counter is enabled and not filtered */
1500                 pmu_counter_enabled(env, i) &&
1501                 /* counter is SW_INCR */
1502                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1503             /*
1504              * Detect if this write causes an overflow since we can't predict
1505              * PMSWINC overflows like we can for other events
1506              */
1507             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1508 
1509             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1510                 env->cp15.c9_pmovsr |= (1 << i);
1511                 pmu_update_irq(env);
1512             }
1513 
1514             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1515         }
1516     }
1517 }
1518 
1519 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1520 {
1521     ARMCPU *arm_cpu = ARM_CPU(cpu);
1522     CPUARMState *env = &arm_cpu->env;
1523     const ARMCPRegInfo *ri;
1524 
1525     ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1526 
1527     if (ri) {
1528         if (ri->accessfn) {
1529             if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1530                 return false;
1531             }
1532         }
1533         if (ri->writefn) {
1534             ri->writefn(env, ri, val);
1535         } else {
1536             CPREG_FIELD64(env, ri) = val;
1537         }
1538 
1539         trace_hvf_vgic_write(ri->name, val);
1540         return true;
1541     }
1542 
1543     return false;
1544 }
1545 
1546 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1547 {
1548     ARMCPU *arm_cpu = ARM_CPU(cpu);
1549     CPUARMState *env = &arm_cpu->env;
1550 
1551     trace_hvf_sysreg_write(reg,
1552                            SYSREG_OP0(reg),
1553                            SYSREG_OP1(reg),
1554                            SYSREG_CRN(reg),
1555                            SYSREG_CRM(reg),
1556                            SYSREG_OP2(reg),
1557                            val);
1558 
1559     if (arm_feature(env, ARM_FEATURE_PMU)) {
1560         switch (reg) {
1561         case SYSREG_PMCCNTR_EL0:
1562             pmu_op_start(env);
1563             env->cp15.c15_ccnt = val;
1564             pmu_op_finish(env);
1565             return 0;
1566         case SYSREG_PMCR_EL0:
1567             pmu_op_start(env);
1568 
1569             if (val & PMCRC) {
1570                 /* The counter has been reset */
1571                 env->cp15.c15_ccnt = 0;
1572             }
1573 
1574             if (val & PMCRP) {
1575                 unsigned int i;
1576                 for (i = 0; i < pmu_num_counters(env); i++) {
1577                     env->cp15.c14_pmevcntr[i] = 0;
1578                 }
1579             }
1580 
1581             env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1582             env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1583 
1584             pmu_op_finish(env);
1585             return 0;
1586         case SYSREG_PMUSERENR_EL0:
1587             env->cp15.c9_pmuserenr = val & 0xf;
1588             return 0;
1589         case SYSREG_PMCNTENSET_EL0:
1590             env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1591             return 0;
1592         case SYSREG_PMCNTENCLR_EL0:
1593             env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1594             return 0;
1595         case SYSREG_PMINTENCLR_EL1:
1596             pmu_op_start(env);
1597             env->cp15.c9_pminten |= val;
1598             pmu_op_finish(env);
1599             return 0;
1600         case SYSREG_PMOVSCLR_EL0:
1601             pmu_op_start(env);
1602             env->cp15.c9_pmovsr &= ~val;
1603             pmu_op_finish(env);
1604             return 0;
1605         case SYSREG_PMSWINC_EL0:
1606             pmu_op_start(env);
1607             pmswinc_write(env, val);
1608             pmu_op_finish(env);
1609             return 0;
1610         case SYSREG_PMSELR_EL0:
1611             env->cp15.c9_pmselr = val & 0x1f;
1612             return 0;
1613         case SYSREG_PMCCFILTR_EL0:
1614             pmu_op_start(env);
1615             env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1616             pmu_op_finish(env);
1617             return 0;
1618         }
1619     }
1620 
1621     switch (reg) {
1622     case SYSREG_OSLAR_EL1:
1623         env->cp15.oslsr_el1 = val & 1;
1624         return 0;
1625     case SYSREG_CNTP_CTL_EL0:
1626         /*
1627          * Guests should not rely on the physical counter, but macOS emits
1628          * disable writes to it. Let it do so, but ignore the requests.
1629          */
1630         qemu_log_mask(LOG_UNIMP, "Unsupported write to CNTP_CTL_EL0\n");
1631         return 0;
1632     case SYSREG_OSDLR_EL1:
1633         /* Dummy register */
1634         return 0;
1635     case SYSREG_ICC_AP0R0_EL1:
1636     case SYSREG_ICC_AP0R1_EL1:
1637     case SYSREG_ICC_AP0R2_EL1:
1638     case SYSREG_ICC_AP0R3_EL1:
1639     case SYSREG_ICC_AP1R0_EL1:
1640     case SYSREG_ICC_AP1R1_EL1:
1641     case SYSREG_ICC_AP1R2_EL1:
1642     case SYSREG_ICC_AP1R3_EL1:
1643     case SYSREG_ICC_ASGI1R_EL1:
1644     case SYSREG_ICC_BPR0_EL1:
1645     case SYSREG_ICC_BPR1_EL1:
1646     case SYSREG_ICC_CTLR_EL1:
1647     case SYSREG_ICC_DIR_EL1:
1648     case SYSREG_ICC_EOIR0_EL1:
1649     case SYSREG_ICC_EOIR1_EL1:
1650     case SYSREG_ICC_HPPIR0_EL1:
1651     case SYSREG_ICC_HPPIR1_EL1:
1652     case SYSREG_ICC_IAR0_EL1:
1653     case SYSREG_ICC_IAR1_EL1:
1654     case SYSREG_ICC_IGRPEN0_EL1:
1655     case SYSREG_ICC_IGRPEN1_EL1:
1656     case SYSREG_ICC_PMR_EL1:
1657     case SYSREG_ICC_SGI0R_EL1:
1658     case SYSREG_ICC_SGI1R_EL1:
1659     case SYSREG_ICC_SRE_EL1:
1660         /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1661         if (hvf_sysreg_write_cp(cpu, reg, val)) {
1662             return 0;
1663         }
1664         break;
1665     case SYSREG_MDSCR_EL1:
1666         env->cp15.mdscr_el1 = val;
1667         return 0;
1668     case SYSREG_DBGBVR0_EL1:
1669     case SYSREG_DBGBVR1_EL1:
1670     case SYSREG_DBGBVR2_EL1:
1671     case SYSREG_DBGBVR3_EL1:
1672     case SYSREG_DBGBVR4_EL1:
1673     case SYSREG_DBGBVR5_EL1:
1674     case SYSREG_DBGBVR6_EL1:
1675     case SYSREG_DBGBVR7_EL1:
1676     case SYSREG_DBGBVR8_EL1:
1677     case SYSREG_DBGBVR9_EL1:
1678     case SYSREG_DBGBVR10_EL1:
1679     case SYSREG_DBGBVR11_EL1:
1680     case SYSREG_DBGBVR12_EL1:
1681     case SYSREG_DBGBVR13_EL1:
1682     case SYSREG_DBGBVR14_EL1:
1683     case SYSREG_DBGBVR15_EL1:
1684         env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1685         return 0;
1686     case SYSREG_DBGBCR0_EL1:
1687     case SYSREG_DBGBCR1_EL1:
1688     case SYSREG_DBGBCR2_EL1:
1689     case SYSREG_DBGBCR3_EL1:
1690     case SYSREG_DBGBCR4_EL1:
1691     case SYSREG_DBGBCR5_EL1:
1692     case SYSREG_DBGBCR6_EL1:
1693     case SYSREG_DBGBCR7_EL1:
1694     case SYSREG_DBGBCR8_EL1:
1695     case SYSREG_DBGBCR9_EL1:
1696     case SYSREG_DBGBCR10_EL1:
1697     case SYSREG_DBGBCR11_EL1:
1698     case SYSREG_DBGBCR12_EL1:
1699     case SYSREG_DBGBCR13_EL1:
1700     case SYSREG_DBGBCR14_EL1:
1701     case SYSREG_DBGBCR15_EL1:
1702         env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1703         return 0;
1704     case SYSREG_DBGWVR0_EL1:
1705     case SYSREG_DBGWVR1_EL1:
1706     case SYSREG_DBGWVR2_EL1:
1707     case SYSREG_DBGWVR3_EL1:
1708     case SYSREG_DBGWVR4_EL1:
1709     case SYSREG_DBGWVR5_EL1:
1710     case SYSREG_DBGWVR6_EL1:
1711     case SYSREG_DBGWVR7_EL1:
1712     case SYSREG_DBGWVR8_EL1:
1713     case SYSREG_DBGWVR9_EL1:
1714     case SYSREG_DBGWVR10_EL1:
1715     case SYSREG_DBGWVR11_EL1:
1716     case SYSREG_DBGWVR12_EL1:
1717     case SYSREG_DBGWVR13_EL1:
1718     case SYSREG_DBGWVR14_EL1:
1719     case SYSREG_DBGWVR15_EL1:
1720         env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1721         return 0;
1722     case SYSREG_DBGWCR0_EL1:
1723     case SYSREG_DBGWCR1_EL1:
1724     case SYSREG_DBGWCR2_EL1:
1725     case SYSREG_DBGWCR3_EL1:
1726     case SYSREG_DBGWCR4_EL1:
1727     case SYSREG_DBGWCR5_EL1:
1728     case SYSREG_DBGWCR6_EL1:
1729     case SYSREG_DBGWCR7_EL1:
1730     case SYSREG_DBGWCR8_EL1:
1731     case SYSREG_DBGWCR9_EL1:
1732     case SYSREG_DBGWCR10_EL1:
1733     case SYSREG_DBGWCR11_EL1:
1734     case SYSREG_DBGWCR12_EL1:
1735     case SYSREG_DBGWCR13_EL1:
1736     case SYSREG_DBGWCR14_EL1:
1737     case SYSREG_DBGWCR15_EL1:
1738         env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1739         return 0;
1740     }
1741 
1742     cpu_synchronize_state(cpu);
1743     trace_hvf_unhandled_sysreg_write(env->pc, reg,
1744                                      SYSREG_OP0(reg),
1745                                      SYSREG_OP1(reg),
1746                                      SYSREG_CRN(reg),
1747                                      SYSREG_CRM(reg),
1748                                      SYSREG_OP2(reg));
1749     hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1750     return 1;
1751 }
1752 
1753 static int hvf_inject_interrupts(CPUState *cpu)
1754 {
1755     if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1756         trace_hvf_inject_fiq();
1757         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1758                                       true);
1759     }
1760 
1761     if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1762         trace_hvf_inject_irq();
1763         hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1764                                       true);
1765     }
1766 
1767     return 0;
1768 }
1769 
1770 static uint64_t hvf_vtimer_val_raw(void)
1771 {
1772     /*
1773      * mach_absolute_time() returns the vtimer value without the VM
1774      * offset that we define. Add our own offset on top.
1775      */
1776     return mach_absolute_time() - hvf_state->vtimer_offset;
1777 }
1778 
1779 static uint64_t hvf_vtimer_val(void)
1780 {
1781     if (!runstate_is_running()) {
1782         /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1783         return vtimer.vtimer_val;
1784     }
1785 
1786     return hvf_vtimer_val_raw();
1787 }
1788 
1789 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1790 {
1791     /*
1792      * Use pselect to sleep so that other threads can IPI us while we're
1793      * sleeping.
1794      */
1795     qatomic_set_mb(&cpu->thread_kicked, false);
1796     bql_unlock();
1797     pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1798     bql_lock();
1799 }
1800 
1801 static void hvf_wfi(CPUState *cpu)
1802 {
1803     ARMCPU *arm_cpu = ARM_CPU(cpu);
1804     struct timespec ts;
1805     hv_return_t r;
1806     uint64_t ctl;
1807     uint64_t cval;
1808     int64_t ticks_to_sleep;
1809     uint64_t seconds;
1810     uint64_t nanos;
1811     uint32_t cntfrq;
1812 
1813     if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1814         /* Interrupt pending, no need to wait */
1815         return;
1816     }
1817 
1818     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1819     assert_hvf_ok(r);
1820 
1821     if (!(ctl & 1) || (ctl & 2)) {
1822         /* Timer disabled or masked, just wait for an IPI. */
1823         hvf_wait_for_ipi(cpu, NULL);
1824         return;
1825     }
1826 
1827     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1828     assert_hvf_ok(r);
1829 
1830     ticks_to_sleep = cval - hvf_vtimer_val();
1831     if (ticks_to_sleep < 0) {
1832         return;
1833     }
1834 
1835     cntfrq = gt_cntfrq_period_ns(arm_cpu);
1836     seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1837     ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1838     nanos = ticks_to_sleep * cntfrq;
1839 
1840     /*
1841      * Don't sleep for less than the time a context switch would take,
1842      * so that we can satisfy fast timer requests on the same CPU.
1843      * Measurements on M1 show the sweet spot to be ~2ms.
1844      */
1845     if (!seconds && nanos < (2 * SCALE_MS)) {
1846         return;
1847     }
1848 
1849     ts = (struct timespec) { seconds, nanos };
1850     hvf_wait_for_ipi(cpu, &ts);
1851 }
1852 
1853 static void hvf_sync_vtimer(CPUState *cpu)
1854 {
1855     ARMCPU *arm_cpu = ARM_CPU(cpu);
1856     hv_return_t r;
1857     uint64_t ctl;
1858     bool irq_state;
1859 
1860     if (!cpu->accel->vtimer_masked) {
1861         /* We will get notified on vtimer changes by hvf, nothing to do */
1862         return;
1863     }
1864 
1865     r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1866     assert_hvf_ok(r);
1867 
1868     irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1869                 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1870     qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1871 
1872     if (!irq_state) {
1873         /* Timer no longer asserting, we can unmask it */
1874         hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1875         cpu->accel->vtimer_masked = false;
1876     }
1877 }
1878 
1879 int hvf_vcpu_exec(CPUState *cpu)
1880 {
1881     ARMCPU *arm_cpu = ARM_CPU(cpu);
1882     CPUARMState *env = &arm_cpu->env;
1883     int ret;
1884     hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1885     hv_return_t r;
1886     bool advance_pc = false;
1887 
1888     if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1889         hvf_inject_interrupts(cpu)) {
1890         return EXCP_INTERRUPT;
1891     }
1892 
1893     if (cpu->halted) {
1894         return EXCP_HLT;
1895     }
1896 
1897     flush_cpu_state(cpu);
1898 
1899     bql_unlock();
1900     assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1901 
1902     /* handle VMEXIT */
1903     uint64_t exit_reason = hvf_exit->reason;
1904     uint64_t syndrome = hvf_exit->exception.syndrome;
1905     uint32_t ec = syn_get_ec(syndrome);
1906 
1907     ret = 0;
1908     bql_lock();
1909     switch (exit_reason) {
1910     case HV_EXIT_REASON_EXCEPTION:
1911         /* This is the main one, handle below. */
1912         break;
1913     case HV_EXIT_REASON_VTIMER_ACTIVATED:
1914         qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1915         cpu->accel->vtimer_masked = true;
1916         return 0;
1917     case HV_EXIT_REASON_CANCELED:
1918         /* we got kicked, no exit to process */
1919         return 0;
1920     default:
1921         g_assert_not_reached();
1922     }
1923 
1924     hvf_sync_vtimer(cpu);
1925 
1926     switch (ec) {
1927     case EC_SOFTWARESTEP: {
1928         ret = EXCP_DEBUG;
1929 
1930         if (!cpu->singlestep_enabled) {
1931             error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1932         }
1933         break;
1934     }
1935     case EC_AA64_BKPT: {
1936         ret = EXCP_DEBUG;
1937 
1938         cpu_synchronize_state(cpu);
1939 
1940         if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1941             /* Re-inject into the guest */
1942             ret = 0;
1943             hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1944         }
1945         break;
1946     }
1947     case EC_BREAKPOINT: {
1948         ret = EXCP_DEBUG;
1949 
1950         cpu_synchronize_state(cpu);
1951 
1952         if (!find_hw_breakpoint(cpu, env->pc)) {
1953             error_report("EC_BREAKPOINT but unknown hw breakpoint");
1954         }
1955         break;
1956     }
1957     case EC_WATCHPOINT: {
1958         ret = EXCP_DEBUG;
1959 
1960         cpu_synchronize_state(cpu);
1961 
1962         CPUWatchpoint *wp =
1963             find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1964         if (!wp) {
1965             error_report("EXCP_DEBUG but unknown hw watchpoint");
1966         }
1967         cpu->watchpoint_hit = wp;
1968         break;
1969     }
1970     case EC_DATAABORT: {
1971         bool isv = syndrome & ARM_EL_ISV;
1972         bool iswrite = (syndrome >> 6) & 1;
1973         bool s1ptw = (syndrome >> 7) & 1;
1974         uint32_t sas = (syndrome >> 22) & 3;
1975         uint32_t len = 1 << sas;
1976         uint32_t srt = (syndrome >> 16) & 0x1f;
1977         uint32_t cm = (syndrome >> 8) & 0x1;
1978         uint64_t val = 0;
1979 
1980         trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1981                              hvf_exit->exception.physical_address, isv,
1982                              iswrite, s1ptw, len, srt);
1983 
1984         if (cm) {
1985             /* We don't cache MMIO regions */
1986             advance_pc = true;
1987             break;
1988         }
1989 
1990         assert(isv);
1991 
1992         if (iswrite) {
1993             val = hvf_get_reg(cpu, srt);
1994             address_space_write(&address_space_memory,
1995                                 hvf_exit->exception.physical_address,
1996                                 MEMTXATTRS_UNSPECIFIED, &val, len);
1997         } else {
1998             address_space_read(&address_space_memory,
1999                                hvf_exit->exception.physical_address,
2000                                MEMTXATTRS_UNSPECIFIED, &val, len);
2001             hvf_set_reg(cpu, srt, val);
2002         }
2003 
2004         advance_pc = true;
2005         break;
2006     }
2007     case EC_SYSTEMREGISTERTRAP: {
2008         bool isread = (syndrome >> 0) & 1;
2009         uint32_t rt = (syndrome >> 5) & 0x1f;
2010         uint32_t reg = syndrome & SYSREG_MASK;
2011         uint64_t val;
2012         int sysreg_ret = 0;
2013 
2014         if (isread) {
2015             sysreg_ret = hvf_sysreg_read(cpu, reg, &val);
2016             if (!sysreg_ret) {
2017                 trace_hvf_sysreg_read(reg,
2018                                       SYSREG_OP0(reg),
2019                                       SYSREG_OP1(reg),
2020                                       SYSREG_CRN(reg),
2021                                       SYSREG_CRM(reg),
2022                                       SYSREG_OP2(reg),
2023                                       val);
2024                 hvf_set_reg(cpu, rt, val);
2025             }
2026         } else {
2027             val = hvf_get_reg(cpu, rt);
2028             sysreg_ret = hvf_sysreg_write(cpu, reg, val);
2029         }
2030 
2031         advance_pc = !sysreg_ret;
2032         break;
2033     }
2034     case EC_WFX_TRAP:
2035         advance_pc = true;
2036         if (!(syndrome & WFX_IS_WFE)) {
2037             hvf_wfi(cpu);
2038         }
2039         break;
2040     case EC_AA64_HVC:
2041         cpu_synchronize_state(cpu);
2042         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
2043             if (!hvf_handle_psci_call(cpu)) {
2044                 trace_hvf_unknown_hvc(env->xregs[0]);
2045                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2046                 env->xregs[0] = -1;
2047             }
2048         } else {
2049             trace_hvf_unknown_hvc(env->xregs[0]);
2050             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2051         }
2052         break;
2053     case EC_AA64_SMC:
2054         cpu_synchronize_state(cpu);
2055         if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
2056             advance_pc = true;
2057 
2058             if (!hvf_handle_psci_call(cpu)) {
2059                 trace_hvf_unknown_smc(env->xregs[0]);
2060                 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2061                 env->xregs[0] = -1;
2062             }
2063         } else {
2064             trace_hvf_unknown_smc(env->xregs[0]);
2065             hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2066         }
2067         break;
2068     default:
2069         cpu_synchronize_state(cpu);
2070         trace_hvf_exit(syndrome, ec, env->pc);
2071         error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
2072     }
2073 
2074     if (advance_pc) {
2075         uint64_t pc;
2076 
2077         flush_cpu_state(cpu);
2078 
2079         r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2080         assert_hvf_ok(r);
2081         pc += 4;
2082         r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2083         assert_hvf_ok(r);
2084 
2085         /* Handle single-stepping over instructions which trigger a VM exit */
2086         if (cpu->singlestep_enabled) {
2087             ret = EXCP_DEBUG;
2088         }
2089     }
2090 
2091     return ret;
2092 }
2093 
2094 static const VMStateDescription vmstate_hvf_vtimer = {
2095     .name = "hvf-vtimer",
2096     .version_id = 1,
2097     .minimum_version_id = 1,
2098     .fields = (const VMStateField[]) {
2099         VMSTATE_UINT64(vtimer_val, HVFVTimer),
2100         VMSTATE_END_OF_LIST()
2101     },
2102 };
2103 
2104 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2105 {
2106     HVFVTimer *s = opaque;
2107 
2108     if (running) {
2109         /* Update vtimer offset on all CPUs */
2110         hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2111         cpu_synchronize_all_states();
2112     } else {
2113         /* Remember vtimer value on every pause */
2114         s->vtimer_val = hvf_vtimer_val_raw();
2115     }
2116 }
2117 
2118 int hvf_arch_init(void)
2119 {
2120     hvf_state->vtimer_offset = mach_absolute_time();
2121     vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2122     qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2123 
2124     hvf_arm_init_debug();
2125 
2126     return 0;
2127 }
2128 
2129 static const uint32_t brk_insn = 0xd4200000;
2130 
2131 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2132 {
2133     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2134         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2135         return -EINVAL;
2136     }
2137     return 0;
2138 }
2139 
2140 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2141 {
2142     static uint32_t brk;
2143 
2144     if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2145         brk != brk_insn ||
2146         cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2147         return -EINVAL;
2148     }
2149     return 0;
2150 }
2151 
2152 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2153 {
2154     switch (type) {
2155     case GDB_BREAKPOINT_HW:
2156         return insert_hw_breakpoint(addr);
2157     case GDB_WATCHPOINT_READ:
2158     case GDB_WATCHPOINT_WRITE:
2159     case GDB_WATCHPOINT_ACCESS:
2160         return insert_hw_watchpoint(addr, len, type);
2161     default:
2162         return -ENOSYS;
2163     }
2164 }
2165 
2166 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2167 {
2168     switch (type) {
2169     case GDB_BREAKPOINT_HW:
2170         return delete_hw_breakpoint(addr);
2171     case GDB_WATCHPOINT_READ:
2172     case GDB_WATCHPOINT_WRITE:
2173     case GDB_WATCHPOINT_ACCESS:
2174         return delete_hw_watchpoint(addr, len, type);
2175     default:
2176         return -ENOSYS;
2177     }
2178 }
2179 
2180 void hvf_arch_remove_all_hw_breakpoints(void)
2181 {
2182     if (cur_hw_wps > 0) {
2183         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2184     }
2185     if (cur_hw_bps > 0) {
2186         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2187     }
2188 }
2189 
2190 /*
2191  * Update the vCPU with the gdbstub's view of debug registers. This view
2192  * consists of all hardware breakpoints and watchpoints inserted so far while
2193  * debugging the guest.
2194  */
2195 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2196 {
2197     hv_return_t r = HV_SUCCESS;
2198     int i;
2199 
2200     for (i = 0; i < cur_hw_bps; i++) {
2201         HWBreakpoint *bp = get_hw_bp(i);
2202         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2203         assert_hvf_ok(r);
2204         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2205         assert_hvf_ok(r);
2206     }
2207     for (i = cur_hw_bps; i < max_hw_bps; i++) {
2208         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2209         assert_hvf_ok(r);
2210         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2211         assert_hvf_ok(r);
2212     }
2213 
2214     for (i = 0; i < cur_hw_wps; i++) {
2215         HWWatchpoint *wp = get_hw_wp(i);
2216         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2217         assert_hvf_ok(r);
2218         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2219         assert_hvf_ok(r);
2220     }
2221     for (i = cur_hw_wps; i < max_hw_wps; i++) {
2222         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2223         assert_hvf_ok(r);
2224         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2225         assert_hvf_ok(r);
2226     }
2227 }
2228 
2229 /*
2230  * Update the vCPU with the guest's view of debug registers. This view is kept
2231  * in the environment at all times.
2232  */
2233 static void hvf_put_guest_debug_registers(CPUState *cpu)
2234 {
2235     ARMCPU *arm_cpu = ARM_CPU(cpu);
2236     CPUARMState *env = &arm_cpu->env;
2237     hv_return_t r = HV_SUCCESS;
2238     int i;
2239 
2240     for (i = 0; i < max_hw_bps; i++) {
2241         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2242                                 env->cp15.dbgbcr[i]);
2243         assert_hvf_ok(r);
2244         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2245                                 env->cp15.dbgbvr[i]);
2246         assert_hvf_ok(r);
2247     }
2248 
2249     for (i = 0; i < max_hw_wps; i++) {
2250         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2251                                 env->cp15.dbgwcr[i]);
2252         assert_hvf_ok(r);
2253         r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2254                                 env->cp15.dbgwvr[i]);
2255         assert_hvf_ok(r);
2256     }
2257 }
2258 
2259 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2260 {
2261     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2262 }
2263 
2264 static void hvf_arch_set_traps(void)
2265 {
2266     CPUState *cpu;
2267     bool should_enable_traps = false;
2268     hv_return_t r = HV_SUCCESS;
2269 
2270     /* Check whether guest debugging is enabled for at least one vCPU; if it
2271      * is, enable exiting the guest on all vCPUs */
2272     CPU_FOREACH(cpu) {
2273         should_enable_traps |= cpu->accel->guest_debug_enabled;
2274     }
2275     CPU_FOREACH(cpu) {
2276         /* Set whether debug exceptions exit the guest */
2277         r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2278                                               should_enable_traps);
2279         assert_hvf_ok(r);
2280 
2281         /* Set whether accesses to debug registers exit the guest */
2282         r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2283                                                 should_enable_traps);
2284         assert_hvf_ok(r);
2285     }
2286 }
2287 
2288 void hvf_arch_update_guest_debug(CPUState *cpu)
2289 {
2290     ARMCPU *arm_cpu = ARM_CPU(cpu);
2291     CPUARMState *env = &arm_cpu->env;
2292 
2293     /* Check whether guest debugging is enabled */
2294     cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2295                                     hvf_sw_breakpoints_active(cpu) ||
2296                                     hvf_arm_hw_debug_active(cpu);
2297 
2298     /* Update debug registers */
2299     if (cpu->accel->guest_debug_enabled) {
2300         hvf_put_gdbstub_debug_registers(cpu);
2301     } else {
2302         hvf_put_guest_debug_registers(cpu);
2303     }
2304 
2305     cpu_synchronize_state(cpu);
2306 
2307     /* Enable/disable single-stepping */
2308     if (cpu->singlestep_enabled) {
2309         env->cp15.mdscr_el1 =
2310             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2311         pstate_write(env, pstate_read(env) | PSTATE_SS);
2312     } else {
2313         env->cp15.mdscr_el1 =
2314             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2315     }
2316 
2317     /* Enable/disable Breakpoint exceptions */
2318     if (hvf_arm_hw_debug_active(cpu)) {
2319         env->cp15.mdscr_el1 =
2320             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2321     } else {
2322         env->cp15.mdscr_el1 =
2323             deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2324     }
2325 
2326     hvf_arch_set_traps();
2327 }
2328 
2329 bool hvf_arch_supports_guest_debug(void)
2330 {
2331     return true;
2332 }
2333