1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* for crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 369 { 370 ARMCPU *cpu = env_archcpu(env); 371 372 raw_write(env, ri, value); 373 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 374 } 375 376 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 377 { 378 ARMCPU *cpu = env_archcpu(env); 379 380 if (raw_read(env, ri) != value) { 381 /* 382 * Unlike real hardware the qemu TLB uses virtual addresses, 383 * not modified virtual addresses, so this causes a TLB flush. 384 */ 385 tlb_flush(CPU(cpu)); 386 raw_write(env, ri, value); 387 } 388 } 389 390 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 391 uint64_t value) 392 { 393 ARMCPU *cpu = env_archcpu(env); 394 395 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 396 && !extended_addresses_enabled(env)) { 397 /* 398 * For VMSA (when not using the LPAE long descriptor page table 399 * format) this register includes the ASID, so do a TLB flush. 400 * For PMSA it is purely a process ID and no action is needed. 401 */ 402 tlb_flush(CPU(cpu)); 403 } 404 raw_write(env, ri, value); 405 } 406 407 int alle1_tlbmask(CPUARMState *env) 408 { 409 /* 410 * Note that the 'ALL' scope must invalidate both stage 1 and 411 * stage 2 translations, whereas most other scopes only invalidate 412 * stage 1 translations. 413 * 414 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 415 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 416 */ 417 return (ARMMMUIdxBit_E10_1 | 418 ARMMMUIdxBit_E10_1_PAN | 419 ARMMMUIdxBit_E10_0 | 420 ARMMMUIdxBit_Stage2 | 421 ARMMMUIdxBit_Stage2_S); 422 } 423 424 static const ARMCPRegInfo cp_reginfo[] = { 425 /* 426 * Define the secure and non-secure FCSE identifier CP registers 427 * separately because there is no secure bank in V8 (no _EL3). This allows 428 * the secure register to be properly reset and migrated. There is also no 429 * v8 EL1 version of the register so the non-secure instance stands alone. 430 */ 431 { .name = "FCSEIDR", 432 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 433 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 434 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 435 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 436 { .name = "FCSEIDR_S", 437 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 438 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 439 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 440 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 441 /* 442 * Define the secure and non-secure context identifier CP registers 443 * separately because there is no secure bank in V8 (no _EL3). This allows 444 * the secure register to be properly reset and migrated. In the 445 * non-secure case, the 32-bit register will have reset and migration 446 * disabled during registration as it is handled by the 64-bit instance. 447 */ 448 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 449 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 450 .access = PL1_RW, .accessfn = access_tvm_trvm, 451 .fgt = FGT_CONTEXTIDR_EL1, 452 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 453 .secure = ARM_CP_SECSTATE_NS, 454 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 455 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 456 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 457 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 458 .access = PL1_RW, .accessfn = access_tvm_trvm, 459 .secure = ARM_CP_SECSTATE_S, 460 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 461 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 462 }; 463 464 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 465 /* 466 * NB: Some of these registers exist in v8 but with more precise 467 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 468 */ 469 /* MMU Domain access control / MPU write buffer control */ 470 { .name = "DACR", 471 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 472 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 473 .writefn = dacr_write, .raw_writefn = raw_write, 474 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 475 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 476 /* 477 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 478 * For v6 and v5, these mappings are overly broad. 479 */ 480 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 481 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 482 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 483 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 484 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 485 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 486 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 488 /* Cache maintenance ops; some of this space may be overridden later. */ 489 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 490 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 491 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 492 }; 493 494 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 495 /* 496 * Not all pre-v6 cores implemented this WFI, so this is slightly 497 * over-broad. 498 */ 499 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 500 .access = PL1_W, .type = ARM_CP_WFI }, 501 }; 502 503 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 504 /* 505 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 506 * is UNPREDICTABLE; we choose to NOP as most implementations do). 507 */ 508 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 509 .access = PL1_W, .type = ARM_CP_WFI }, 510 /* 511 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 512 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 513 * OMAPCP will override this space. 514 */ 515 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 516 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 517 .resetvalue = 0 }, 518 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 519 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 520 .resetvalue = 0 }, 521 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 522 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 523 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 524 .resetvalue = 0 }, 525 /* 526 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 527 * implementing it as RAZ means the "debug architecture version" bits 528 * will read as a reserved value, which should cause Linux to not try 529 * to use the debug hardware. 530 */ 531 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 532 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 533 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 534 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 535 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 536 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 537 }; 538 539 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 uint32_t mask = 0; 543 544 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 545 if (!arm_feature(env, ARM_FEATURE_V8)) { 546 /* 547 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 548 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 549 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 550 */ 551 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 552 /* VFP coprocessor: cp10 & cp11 [23:20] */ 553 mask |= R_CPACR_ASEDIS_MASK | 554 R_CPACR_D32DIS_MASK | 555 R_CPACR_CP11_MASK | 556 R_CPACR_CP10_MASK; 557 558 if (!arm_feature(env, ARM_FEATURE_NEON)) { 559 /* ASEDIS [31] bit is RAO/WI */ 560 value |= R_CPACR_ASEDIS_MASK; 561 } 562 563 /* 564 * VFPv3 and upwards with NEON implement 32 double precision 565 * registers (D0-D31). 566 */ 567 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 568 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 569 value |= R_CPACR_D32DIS_MASK; 570 } 571 } 572 value &= mask; 573 } 574 575 /* 576 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 577 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 578 */ 579 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 580 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 581 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 582 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 583 } 584 585 env->cp15.cpacr_el1 = value; 586 } 587 588 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 589 { 590 /* 591 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 592 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 593 */ 594 uint64_t value = env->cp15.cpacr_el1; 595 596 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 597 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 598 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 599 } 600 return value; 601 } 602 603 604 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 605 { 606 /* 607 * Call cpacr_write() so that we reset with the correct RAO bits set 608 * for our CPU features. 609 */ 610 cpacr_write(env, ri, 0); 611 } 612 613 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 614 bool isread) 615 { 616 if (arm_feature(env, ARM_FEATURE_V8)) { 617 /* Check if CPACR accesses are to be trapped to EL2 */ 618 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 619 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 620 return CP_ACCESS_TRAP_EL2; 621 /* Check if CPACR accesses are to be trapped to EL3 */ 622 } else if (arm_current_el(env) < 3 && 623 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 } 627 628 return CP_ACCESS_OK; 629 } 630 631 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 632 bool isread) 633 { 634 /* Check if CPTR accesses are set to trap to EL3 */ 635 if (arm_current_el(env) == 2 && 636 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 637 return CP_ACCESS_TRAP_EL3; 638 } 639 640 return CP_ACCESS_OK; 641 } 642 643 static const ARMCPRegInfo v6_cp_reginfo[] = { 644 /* prefetch by MVA in v6, NOP in v7 */ 645 { .name = "MVA_prefetch", 646 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 647 .access = PL1_W, .type = ARM_CP_NOP }, 648 /* 649 * We need to break the TB after ISB to execute self-modifying code 650 * correctly and also to take any pending interrupts immediately. 651 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 652 */ 653 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 654 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 655 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 656 .access = PL0_W, .type = ARM_CP_NOP }, 657 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 658 .access = PL0_W, .type = ARM_CP_NOP }, 659 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 660 .access = PL1_RW, .accessfn = access_tvm_trvm, 661 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 662 offsetof(CPUARMState, cp15.ifar_ns) }, 663 .resetvalue = 0, }, 664 /* 665 * Watchpoint Fault Address Register : should actually only be present 666 * for 1136, 1176, 11MPCore. 667 */ 668 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 669 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 670 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 671 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 672 .fgt = FGT_CPACR_EL1, 673 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 674 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 675 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 676 }; 677 678 typedef struct pm_event { 679 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 680 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 681 bool (*supported)(CPUARMState *); 682 /* 683 * Retrieve the current count of the underlying event. The programmed 684 * counters hold a difference from the return value from this function 685 */ 686 uint64_t (*get_count)(CPUARMState *); 687 /* 688 * Return how many nanoseconds it will take (at a minimum) for count events 689 * to occur. A negative value indicates the counter will never overflow, or 690 * that the counter has otherwise arranged for the overflow bit to be set 691 * and the PMU interrupt to be raised on overflow. 692 */ 693 int64_t (*ns_per_count)(uint64_t); 694 } pm_event; 695 696 static bool event_always_supported(CPUARMState *env) 697 { 698 return true; 699 } 700 701 static uint64_t swinc_get_count(CPUARMState *env) 702 { 703 /* 704 * SW_INCR events are written directly to the pmevcntr's by writes to 705 * PMSWINC, so there is no underlying count maintained by the PMU itself 706 */ 707 return 0; 708 } 709 710 static int64_t swinc_ns_per(uint64_t ignored) 711 { 712 return -1; 713 } 714 715 /* 716 * Return the underlying cycle count for the PMU cycle counters. If we're in 717 * usermode, simply return 0. 718 */ 719 static uint64_t cycles_get_count(CPUARMState *env) 720 { 721 #ifndef CONFIG_USER_ONLY 722 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 723 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 724 #else 725 return cpu_get_host_ticks(); 726 #endif 727 } 728 729 #ifndef CONFIG_USER_ONLY 730 static int64_t cycles_ns_per(uint64_t cycles) 731 { 732 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 733 } 734 735 static bool instructions_supported(CPUARMState *env) 736 { 737 /* Precise instruction counting */ 738 return icount_enabled() == ICOUNT_PRECISE; 739 } 740 741 static uint64_t instructions_get_count(CPUARMState *env) 742 { 743 assert(icount_enabled() == ICOUNT_PRECISE); 744 return (uint64_t)icount_get_raw(); 745 } 746 747 static int64_t instructions_ns_per(uint64_t icount) 748 { 749 assert(icount_enabled() == ICOUNT_PRECISE); 750 return icount_to_ns((int64_t)icount); 751 } 752 #endif 753 754 static bool pmuv3p1_events_supported(CPUARMState *env) 755 { 756 /* For events which are supported in any v8.1 PMU */ 757 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 758 } 759 760 static bool pmuv3p4_events_supported(CPUARMState *env) 761 { 762 /* For events which are supported in any v8.1 PMU */ 763 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 764 } 765 766 static uint64_t zero_event_get_count(CPUARMState *env) 767 { 768 /* For events which on QEMU never fire, so their count is always zero */ 769 return 0; 770 } 771 772 static int64_t zero_event_ns_per(uint64_t cycles) 773 { 774 /* An event which never fires can never overflow */ 775 return -1; 776 } 777 778 static const pm_event pm_events[] = { 779 { .number = 0x000, /* SW_INCR */ 780 .supported = event_always_supported, 781 .get_count = swinc_get_count, 782 .ns_per_count = swinc_ns_per, 783 }, 784 #ifndef CONFIG_USER_ONLY 785 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 786 .supported = instructions_supported, 787 .get_count = instructions_get_count, 788 .ns_per_count = instructions_ns_per, 789 }, 790 { .number = 0x011, /* CPU_CYCLES, Cycle */ 791 .supported = event_always_supported, 792 .get_count = cycles_get_count, 793 .ns_per_count = cycles_ns_per, 794 }, 795 #endif 796 { .number = 0x023, /* STALL_FRONTEND */ 797 .supported = pmuv3p1_events_supported, 798 .get_count = zero_event_get_count, 799 .ns_per_count = zero_event_ns_per, 800 }, 801 { .number = 0x024, /* STALL_BACKEND */ 802 .supported = pmuv3p1_events_supported, 803 .get_count = zero_event_get_count, 804 .ns_per_count = zero_event_ns_per, 805 }, 806 { .number = 0x03c, /* STALL */ 807 .supported = pmuv3p4_events_supported, 808 .get_count = zero_event_get_count, 809 .ns_per_count = zero_event_ns_per, 810 }, 811 }; 812 813 /* 814 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 815 * events (i.e. the statistical profiling extension), this implementation 816 * should first be updated to something sparse instead of the current 817 * supported_event_map[] array. 818 */ 819 #define MAX_EVENT_ID 0x3c 820 #define UNSUPPORTED_EVENT UINT16_MAX 821 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 822 823 /* 824 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 825 * of ARM event numbers to indices in our pm_events array. 826 * 827 * Note: Events in the 0x40XX range are not currently supported. 828 */ 829 void pmu_init(ARMCPU *cpu) 830 { 831 unsigned int i; 832 833 /* 834 * Empty supported_event_map and cpu->pmceid[01] before adding supported 835 * events to them 836 */ 837 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 838 supported_event_map[i] = UNSUPPORTED_EVENT; 839 } 840 cpu->pmceid0 = 0; 841 cpu->pmceid1 = 0; 842 843 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 844 const pm_event *cnt = &pm_events[i]; 845 assert(cnt->number <= MAX_EVENT_ID); 846 /* We do not currently support events in the 0x40xx range */ 847 assert(cnt->number <= 0x3f); 848 849 if (cnt->supported(&cpu->env)) { 850 supported_event_map[cnt->number] = i; 851 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 852 if (cnt->number & 0x20) { 853 cpu->pmceid1 |= event_mask; 854 } else { 855 cpu->pmceid0 |= event_mask; 856 } 857 } 858 } 859 } 860 861 /* 862 * Check at runtime whether a PMU event is supported for the current machine 863 */ 864 static bool event_supported(uint16_t number) 865 { 866 if (number > MAX_EVENT_ID) { 867 return false; 868 } 869 return supported_event_map[number] != UNSUPPORTED_EVENT; 870 } 871 872 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 873 bool isread) 874 { 875 /* 876 * Performance monitor registers user accessibility is controlled 877 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 878 * trapping to EL2 or EL3 for other accesses. 879 */ 880 int el = arm_current_el(env); 881 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 882 883 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 884 return CP_ACCESS_TRAP; 885 } 886 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 887 return CP_ACCESS_TRAP_EL2; 888 } 889 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 890 return CP_ACCESS_TRAP_EL3; 891 } 892 893 return CP_ACCESS_OK; 894 } 895 896 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 897 const ARMCPRegInfo *ri, 898 bool isread) 899 { 900 /* ER: event counter read trap control */ 901 if (arm_feature(env, ARM_FEATURE_V8) 902 && arm_current_el(env) == 0 903 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 904 && isread) { 905 return CP_ACCESS_OK; 906 } 907 908 return pmreg_access(env, ri, isread); 909 } 910 911 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 912 const ARMCPRegInfo *ri, 913 bool isread) 914 { 915 /* SW: software increment write trap control */ 916 if (arm_feature(env, ARM_FEATURE_V8) 917 && arm_current_el(env) == 0 918 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 919 && !isread) { 920 return CP_ACCESS_OK; 921 } 922 923 return pmreg_access(env, ri, isread); 924 } 925 926 static CPAccessResult pmreg_access_selr(CPUARMState *env, 927 const ARMCPRegInfo *ri, 928 bool isread) 929 { 930 /* ER: event counter read trap control */ 931 if (arm_feature(env, ARM_FEATURE_V8) 932 && arm_current_el(env) == 0 933 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 934 return CP_ACCESS_OK; 935 } 936 937 return pmreg_access(env, ri, isread); 938 } 939 940 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 941 const ARMCPRegInfo *ri, 942 bool isread) 943 { 944 /* CR: cycle counter read trap control */ 945 if (arm_feature(env, ARM_FEATURE_V8) 946 && arm_current_el(env) == 0 947 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 948 && isread) { 949 return CP_ACCESS_OK; 950 } 951 952 return pmreg_access(env, ri, isread); 953 } 954 955 /* 956 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 957 * We use these to decide whether we need to wrap a write to MDCR_EL2 958 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 959 */ 960 #define MDCR_EL2_PMU_ENABLE_BITS \ 961 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 962 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 963 964 /* 965 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 966 * the current EL, security state, and register configuration. 967 */ 968 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 969 { 970 uint64_t filter; 971 bool e, p, u, nsk, nsu, nsh, m; 972 bool enabled, prohibited = false, filtered; 973 bool secure = arm_is_secure(env); 974 int el = arm_current_el(env); 975 uint64_t mdcr_el2; 976 uint8_t hpmn; 977 978 /* 979 * We might be called for M-profile cores where MDCR_EL2 doesn't 980 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 981 * must be before we read that value. 982 */ 983 if (!arm_feature(env, ARM_FEATURE_PMU)) { 984 return false; 985 } 986 987 mdcr_el2 = arm_mdcr_el2_eff(env); 988 hpmn = mdcr_el2 & MDCR_HPMN; 989 990 if (!arm_feature(env, ARM_FEATURE_EL2) || 991 (counter < hpmn || counter == 31)) { 992 e = env->cp15.c9_pmcr & PMCRE; 993 } else { 994 e = mdcr_el2 & MDCR_HPME; 995 } 996 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 997 998 /* Is event counting prohibited? */ 999 if (el == 2 && (counter < hpmn || counter == 31)) { 1000 prohibited = mdcr_el2 & MDCR_HPMD; 1001 } 1002 if (secure) { 1003 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1004 } 1005 1006 if (counter == 31) { 1007 /* 1008 * The cycle counter defaults to running. PMCR.DP says "disable 1009 * the cycle counter when event counting is prohibited". 1010 * Some MDCR bits disable the cycle counter specifically. 1011 */ 1012 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1013 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1014 if (secure) { 1015 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1016 } 1017 if (el == 2) { 1018 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1019 } 1020 } 1021 } 1022 1023 if (counter == 31) { 1024 filter = env->cp15.pmccfiltr_el0; 1025 } else { 1026 filter = env->cp15.c14_pmevtyper[counter]; 1027 } 1028 1029 p = filter & PMXEVTYPER_P; 1030 u = filter & PMXEVTYPER_U; 1031 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1032 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1033 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1034 m = arm_el_is_aa64(env, 1) && 1035 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1036 1037 if (el == 0) { 1038 filtered = secure ? u : u != nsu; 1039 } else if (el == 1) { 1040 filtered = secure ? p : p != nsk; 1041 } else if (el == 2) { 1042 filtered = !nsh; 1043 } else { /* EL3 */ 1044 filtered = m != p; 1045 } 1046 1047 if (counter != 31) { 1048 /* 1049 * If not checking PMCCNTR, ensure the counter is setup to an event we 1050 * support 1051 */ 1052 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1053 if (!event_supported(event)) { 1054 return false; 1055 } 1056 } 1057 1058 return enabled && !prohibited && !filtered; 1059 } 1060 1061 static void pmu_update_irq(CPUARMState *env) 1062 { 1063 ARMCPU *cpu = env_archcpu(env); 1064 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1065 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1066 } 1067 1068 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1069 { 1070 /* 1071 * Return true if the clock divider is enabled and the cycle counter 1072 * is supposed to tick only once every 64 clock cycles. This is 1073 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1074 * (64-bit) cycle counter PMCR.D has no effect. 1075 */ 1076 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1077 } 1078 1079 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1080 { 1081 /* Return true if the specified event counter is configured to be 64 bit */ 1082 1083 /* This isn't intended to be used with the cycle counter */ 1084 assert(counter < 31); 1085 1086 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1087 return false; 1088 } 1089 1090 if (arm_feature(env, ARM_FEATURE_EL2)) { 1091 /* 1092 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1093 * current security state, so we don't use arm_mdcr_el2_eff() here. 1094 */ 1095 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1096 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1097 1098 if (counter >= hpmn) { 1099 return hlp; 1100 } 1101 } 1102 return env->cp15.c9_pmcr & PMCRLP; 1103 } 1104 1105 /* 1106 * Ensure c15_ccnt is the guest-visible count so that operations such as 1107 * enabling/disabling the counter or filtering, modifying the count itself, 1108 * etc. can be done logically. This is essentially a no-op if the counter is 1109 * not enabled at the time of the call. 1110 */ 1111 static void pmccntr_op_start(CPUARMState *env) 1112 { 1113 uint64_t cycles = cycles_get_count(env); 1114 1115 if (pmu_counter_enabled(env, 31)) { 1116 uint64_t eff_cycles = cycles; 1117 if (pmccntr_clockdiv_enabled(env)) { 1118 eff_cycles /= 64; 1119 } 1120 1121 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1122 1123 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1124 1ull << 63 : 1ull << 31; 1125 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1126 env->cp15.c9_pmovsr |= (1ULL << 31); 1127 pmu_update_irq(env); 1128 } 1129 1130 env->cp15.c15_ccnt = new_pmccntr; 1131 } 1132 env->cp15.c15_ccnt_delta = cycles; 1133 } 1134 1135 /* 1136 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1137 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1138 * pmccntr_op_start. 1139 */ 1140 static void pmccntr_op_finish(CPUARMState *env) 1141 { 1142 if (pmu_counter_enabled(env, 31)) { 1143 #ifndef CONFIG_USER_ONLY 1144 /* Calculate when the counter will next overflow */ 1145 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1146 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1147 remaining_cycles = (uint32_t)remaining_cycles; 1148 } 1149 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1150 1151 if (overflow_in > 0) { 1152 int64_t overflow_at; 1153 1154 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1155 overflow_in, &overflow_at)) { 1156 ARMCPU *cpu = env_archcpu(env); 1157 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1158 } 1159 } 1160 #endif 1161 1162 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1163 if (pmccntr_clockdiv_enabled(env)) { 1164 prev_cycles /= 64; 1165 } 1166 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1167 } 1168 } 1169 1170 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1171 { 1172 1173 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1174 uint64_t count = 0; 1175 if (event_supported(event)) { 1176 uint16_t event_idx = supported_event_map[event]; 1177 count = pm_events[event_idx].get_count(env); 1178 } 1179 1180 if (pmu_counter_enabled(env, counter)) { 1181 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1182 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1183 1ULL << 63 : 1ULL << 31; 1184 1185 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1186 env->cp15.c9_pmovsr |= (1 << counter); 1187 pmu_update_irq(env); 1188 } 1189 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1190 } 1191 env->cp15.c14_pmevcntr_delta[counter] = count; 1192 } 1193 1194 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1195 { 1196 if (pmu_counter_enabled(env, counter)) { 1197 #ifndef CONFIG_USER_ONLY 1198 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1199 uint16_t event_idx = supported_event_map[event]; 1200 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1201 int64_t overflow_in; 1202 1203 if (!pmevcntr_is_64_bit(env, counter)) { 1204 delta = (uint32_t)delta; 1205 } 1206 overflow_in = pm_events[event_idx].ns_per_count(delta); 1207 1208 if (overflow_in > 0) { 1209 int64_t overflow_at; 1210 1211 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1212 overflow_in, &overflow_at)) { 1213 ARMCPU *cpu = env_archcpu(env); 1214 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1215 } 1216 } 1217 #endif 1218 1219 env->cp15.c14_pmevcntr_delta[counter] -= 1220 env->cp15.c14_pmevcntr[counter]; 1221 } 1222 } 1223 1224 void pmu_op_start(CPUARMState *env) 1225 { 1226 unsigned int i; 1227 pmccntr_op_start(env); 1228 for (i = 0; i < pmu_num_counters(env); i++) { 1229 pmevcntr_op_start(env, i); 1230 } 1231 } 1232 1233 void pmu_op_finish(CPUARMState *env) 1234 { 1235 unsigned int i; 1236 pmccntr_op_finish(env); 1237 for (i = 0; i < pmu_num_counters(env); i++) { 1238 pmevcntr_op_finish(env, i); 1239 } 1240 } 1241 1242 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1243 { 1244 pmu_op_start(&cpu->env); 1245 } 1246 1247 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1248 { 1249 pmu_op_finish(&cpu->env); 1250 } 1251 1252 void arm_pmu_timer_cb(void *opaque) 1253 { 1254 ARMCPU *cpu = opaque; 1255 1256 /* 1257 * Update all the counter values based on the current underlying counts, 1258 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1259 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1260 * counter may expire. 1261 */ 1262 pmu_op_start(&cpu->env); 1263 pmu_op_finish(&cpu->env); 1264 } 1265 1266 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1267 uint64_t value) 1268 { 1269 pmu_op_start(env); 1270 1271 if (value & PMCRC) { 1272 /* The counter has been reset */ 1273 env->cp15.c15_ccnt = 0; 1274 } 1275 1276 if (value & PMCRP) { 1277 unsigned int i; 1278 for (i = 0; i < pmu_num_counters(env); i++) { 1279 env->cp15.c14_pmevcntr[i] = 0; 1280 } 1281 } 1282 1283 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1284 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1285 1286 pmu_op_finish(env); 1287 } 1288 1289 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1290 { 1291 uint64_t pmcr = env->cp15.c9_pmcr; 1292 1293 /* 1294 * If EL2 is implemented and enabled for the current security state, reads 1295 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1296 */ 1297 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1298 pmcr &= ~PMCRN_MASK; 1299 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1300 } 1301 1302 return pmcr; 1303 } 1304 1305 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1306 uint64_t value) 1307 { 1308 unsigned int i; 1309 uint64_t overflow_mask, new_pmswinc; 1310 1311 for (i = 0; i < pmu_num_counters(env); i++) { 1312 /* Increment a counter's count iff: */ 1313 if ((value & (1 << i)) && /* counter's bit is set */ 1314 /* counter is enabled and not filtered */ 1315 pmu_counter_enabled(env, i) && 1316 /* counter is SW_INCR */ 1317 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1318 pmevcntr_op_start(env, i); 1319 1320 /* 1321 * Detect if this write causes an overflow since we can't predict 1322 * PMSWINC overflows like we can for other events 1323 */ 1324 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1325 1326 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1327 1ULL << 63 : 1ULL << 31; 1328 1329 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1330 env->cp15.c9_pmovsr |= (1 << i); 1331 pmu_update_irq(env); 1332 } 1333 1334 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1335 1336 pmevcntr_op_finish(env, i); 1337 } 1338 } 1339 } 1340 1341 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1342 { 1343 uint64_t ret; 1344 pmccntr_op_start(env); 1345 ret = env->cp15.c15_ccnt; 1346 pmccntr_op_finish(env); 1347 return ret; 1348 } 1349 1350 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1351 uint64_t value) 1352 { 1353 /* 1354 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1355 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1356 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1357 * accessed. 1358 */ 1359 env->cp15.c9_pmselr = value & 0x1f; 1360 } 1361 1362 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1363 uint64_t value) 1364 { 1365 pmccntr_op_start(env); 1366 env->cp15.c15_ccnt = value; 1367 pmccntr_op_finish(env); 1368 } 1369 1370 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1371 uint64_t value) 1372 { 1373 uint64_t cur_val = pmccntr_read(env, NULL); 1374 1375 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1376 } 1377 1378 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1379 uint64_t value) 1380 { 1381 pmccntr_op_start(env); 1382 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1383 pmccntr_op_finish(env); 1384 } 1385 1386 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1387 uint64_t value) 1388 { 1389 pmccntr_op_start(env); 1390 /* M is not accessible from AArch32 */ 1391 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1392 (value & PMCCFILTR); 1393 pmccntr_op_finish(env); 1394 } 1395 1396 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1397 { 1398 /* M is not visible in AArch32 */ 1399 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1400 } 1401 1402 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1403 uint64_t value) 1404 { 1405 pmu_op_start(env); 1406 value &= pmu_counter_mask(env); 1407 env->cp15.c9_pmcnten |= value; 1408 pmu_op_finish(env); 1409 } 1410 1411 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1412 uint64_t value) 1413 { 1414 pmu_op_start(env); 1415 value &= pmu_counter_mask(env); 1416 env->cp15.c9_pmcnten &= ~value; 1417 pmu_op_finish(env); 1418 } 1419 1420 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1421 uint64_t value) 1422 { 1423 value &= pmu_counter_mask(env); 1424 env->cp15.c9_pmovsr &= ~value; 1425 pmu_update_irq(env); 1426 } 1427 1428 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1429 uint64_t value) 1430 { 1431 value &= pmu_counter_mask(env); 1432 env->cp15.c9_pmovsr |= value; 1433 pmu_update_irq(env); 1434 } 1435 1436 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1437 uint64_t value, const uint8_t counter) 1438 { 1439 if (counter == 31) { 1440 pmccfiltr_write(env, ri, value); 1441 } else if (counter < pmu_num_counters(env)) { 1442 pmevcntr_op_start(env, counter); 1443 1444 /* 1445 * If this counter's event type is changing, store the current 1446 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1447 * pmevcntr_op_finish has the correct baseline when it converts back to 1448 * a delta. 1449 */ 1450 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1451 PMXEVTYPER_EVTCOUNT; 1452 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1453 if (old_event != new_event) { 1454 uint64_t count = 0; 1455 if (event_supported(new_event)) { 1456 uint16_t event_idx = supported_event_map[new_event]; 1457 count = pm_events[event_idx].get_count(env); 1458 } 1459 env->cp15.c14_pmevcntr_delta[counter] = count; 1460 } 1461 1462 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1463 pmevcntr_op_finish(env, counter); 1464 } 1465 /* 1466 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1467 * PMSELR value is equal to or greater than the number of implemented 1468 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1469 */ 1470 } 1471 1472 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1473 const uint8_t counter) 1474 { 1475 if (counter == 31) { 1476 return env->cp15.pmccfiltr_el0; 1477 } else if (counter < pmu_num_counters(env)) { 1478 return env->cp15.c14_pmevtyper[counter]; 1479 } else { 1480 /* 1481 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1482 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1483 */ 1484 return 0; 1485 } 1486 } 1487 1488 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1489 uint64_t value) 1490 { 1491 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1492 pmevtyper_write(env, ri, value, counter); 1493 } 1494 1495 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1496 uint64_t value) 1497 { 1498 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1499 env->cp15.c14_pmevtyper[counter] = value; 1500 1501 /* 1502 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1503 * pmu_op_finish calls when loading saved state for a migration. Because 1504 * we're potentially updating the type of event here, the value written to 1505 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1506 * different counter type. Therefore, we need to set this value to the 1507 * current count for the counter type we're writing so that pmu_op_finish 1508 * has the correct count for its calculation. 1509 */ 1510 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1511 if (event_supported(event)) { 1512 uint16_t event_idx = supported_event_map[event]; 1513 env->cp15.c14_pmevcntr_delta[counter] = 1514 pm_events[event_idx].get_count(env); 1515 } 1516 } 1517 1518 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1519 { 1520 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1521 return pmevtyper_read(env, ri, counter); 1522 } 1523 1524 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1525 uint64_t value) 1526 { 1527 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1528 } 1529 1530 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1531 { 1532 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1533 } 1534 1535 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value, uint8_t counter) 1537 { 1538 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1539 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1540 value &= MAKE_64BIT_MASK(0, 32); 1541 } 1542 if (counter < pmu_num_counters(env)) { 1543 pmevcntr_op_start(env, counter); 1544 env->cp15.c14_pmevcntr[counter] = value; 1545 pmevcntr_op_finish(env, counter); 1546 } 1547 /* 1548 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1549 * are CONSTRAINED UNPREDICTABLE. 1550 */ 1551 } 1552 1553 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1554 uint8_t counter) 1555 { 1556 if (counter < pmu_num_counters(env)) { 1557 uint64_t ret; 1558 pmevcntr_op_start(env, counter); 1559 ret = env->cp15.c14_pmevcntr[counter]; 1560 pmevcntr_op_finish(env, counter); 1561 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1562 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1563 ret &= MAKE_64BIT_MASK(0, 32); 1564 } 1565 return ret; 1566 } else { 1567 /* 1568 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1569 * are CONSTRAINED UNPREDICTABLE. 1570 */ 1571 return 0; 1572 } 1573 } 1574 1575 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1579 pmevcntr_write(env, ri, value, counter); 1580 } 1581 1582 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1583 { 1584 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1585 return pmevcntr_read(env, ri, counter); 1586 } 1587 1588 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1592 assert(counter < pmu_num_counters(env)); 1593 env->cp15.c14_pmevcntr[counter] = value; 1594 pmevcntr_write(env, ri, value, counter); 1595 } 1596 1597 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 assert(counter < pmu_num_counters(env)); 1601 return env->cp15.c14_pmevcntr[counter]; 1602 } 1603 1604 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1608 } 1609 1610 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1611 { 1612 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1613 } 1614 1615 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 if (arm_feature(env, ARM_FEATURE_V8)) { 1619 env->cp15.c9_pmuserenr = value & 0xf; 1620 } else { 1621 env->cp15.c9_pmuserenr = value & 1; 1622 } 1623 } 1624 1625 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 /* We have no event counters so only the C bit can be changed */ 1629 value &= pmu_counter_mask(env); 1630 env->cp15.c9_pminten |= value; 1631 pmu_update_irq(env); 1632 } 1633 1634 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 value &= pmu_counter_mask(env); 1638 env->cp15.c9_pminten &= ~value; 1639 pmu_update_irq(env); 1640 } 1641 1642 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1643 uint64_t value) 1644 { 1645 /* 1646 * Note that even though the AArch64 view of this register has bits 1647 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1648 * architectural requirements for bits which are RES0 only in some 1649 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1650 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1651 */ 1652 raw_write(env, ri, value & ~0x1FULL); 1653 } 1654 1655 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1656 { 1657 /* Begin with base v8.0 state. */ 1658 uint64_t valid_mask = 0x3fff; 1659 ARMCPU *cpu = env_archcpu(env); 1660 uint64_t changed; 1661 1662 /* 1663 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1664 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1665 * Instead, choose the format based on the mode of EL3. 1666 */ 1667 if (arm_el_is_aa64(env, 3)) { 1668 value |= SCR_FW | SCR_AW; /* RES1 */ 1669 valid_mask &= ~SCR_NET; /* RES0 */ 1670 1671 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1672 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1673 value |= SCR_RW; /* RAO/WI */ 1674 } 1675 if (cpu_isar_feature(aa64_ras, cpu)) { 1676 valid_mask |= SCR_TERR; 1677 } 1678 if (cpu_isar_feature(aa64_lor, cpu)) { 1679 valid_mask |= SCR_TLOR; 1680 } 1681 if (cpu_isar_feature(aa64_pauth, cpu)) { 1682 valid_mask |= SCR_API | SCR_APK; 1683 } 1684 if (cpu_isar_feature(aa64_sel2, cpu)) { 1685 valid_mask |= SCR_EEL2; 1686 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1687 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1688 value |= SCR_NS; 1689 } 1690 if (cpu_isar_feature(aa64_mte, cpu)) { 1691 valid_mask |= SCR_ATA; 1692 } 1693 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1694 valid_mask |= SCR_ENSCXT; 1695 } 1696 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1697 valid_mask |= SCR_EASE | SCR_NMEA; 1698 } 1699 if (cpu_isar_feature(aa64_sme, cpu)) { 1700 valid_mask |= SCR_ENTP2; 1701 } 1702 if (cpu_isar_feature(aa64_hcx, cpu)) { 1703 valid_mask |= SCR_HXEN; 1704 } 1705 if (cpu_isar_feature(aa64_fgt, cpu)) { 1706 valid_mask |= SCR_FGTEN; 1707 } 1708 if (cpu_isar_feature(aa64_rme, cpu)) { 1709 valid_mask |= SCR_NSE | SCR_GPF; 1710 } 1711 if (cpu_isar_feature(aa64_ecv, cpu)) { 1712 valid_mask |= SCR_ECVEN; 1713 } 1714 } else { 1715 valid_mask &= ~(SCR_RW | SCR_ST); 1716 if (cpu_isar_feature(aa32_ras, cpu)) { 1717 valid_mask |= SCR_TERR; 1718 } 1719 } 1720 1721 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1722 valid_mask &= ~SCR_HCE; 1723 1724 /* 1725 * On ARMv7, SMD (or SCD as it is called in v7) is only 1726 * supported if EL2 exists. The bit is UNK/SBZP when 1727 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1728 * when EL2 is unavailable. 1729 * On ARMv8, this bit is always available. 1730 */ 1731 if (arm_feature(env, ARM_FEATURE_V7) && 1732 !arm_feature(env, ARM_FEATURE_V8)) { 1733 valid_mask &= ~SCR_SMD; 1734 } 1735 } 1736 1737 /* Clear all-context RES0 bits. */ 1738 value &= valid_mask; 1739 changed = env->cp15.scr_el3 ^ value; 1740 env->cp15.scr_el3 = value; 1741 1742 /* 1743 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1744 * we must invalidate all TLBs below EL3. 1745 */ 1746 if (changed & (SCR_NS | SCR_NSE)) { 1747 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1748 ARMMMUIdxBit_E20_0 | 1749 ARMMMUIdxBit_E10_1 | 1750 ARMMMUIdxBit_E20_2 | 1751 ARMMMUIdxBit_E10_1_PAN | 1752 ARMMMUIdxBit_E20_2_PAN | 1753 ARMMMUIdxBit_E2)); 1754 } 1755 } 1756 1757 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1758 { 1759 /* 1760 * scr_write will set the RES1 bits on an AArch64-only CPU. 1761 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1762 */ 1763 scr_write(env, ri, 0); 1764 } 1765 1766 static CPAccessResult access_tid4(CPUARMState *env, 1767 const ARMCPRegInfo *ri, 1768 bool isread) 1769 { 1770 if (arm_current_el(env) == 1 && 1771 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1772 return CP_ACCESS_TRAP_EL2; 1773 } 1774 1775 return CP_ACCESS_OK; 1776 } 1777 1778 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 ARMCPU *cpu = env_archcpu(env); 1781 1782 /* 1783 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1784 * bank 1785 */ 1786 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1787 ri->secure & ARM_CP_SECSTATE_S); 1788 1789 return cpu->ccsidr[index]; 1790 } 1791 1792 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 raw_write(env, ri, value & 0xf); 1796 } 1797 1798 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1799 { 1800 CPUState *cs = env_cpu(env); 1801 bool el1 = arm_current_el(env) == 1; 1802 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1803 uint64_t ret = 0; 1804 1805 if (hcr_el2 & HCR_IMO) { 1806 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1807 ret |= CPSR_I; 1808 } 1809 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1810 ret |= ISR_IS; 1811 ret |= CPSR_I; 1812 } 1813 } else { 1814 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1815 ret |= CPSR_I; 1816 } 1817 1818 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1819 ret |= ISR_IS; 1820 ret |= CPSR_I; 1821 } 1822 } 1823 1824 if (hcr_el2 & HCR_FMO) { 1825 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1826 ret |= CPSR_F; 1827 } 1828 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1829 ret |= ISR_FS; 1830 ret |= CPSR_F; 1831 } 1832 } else { 1833 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1834 ret |= CPSR_F; 1835 } 1836 } 1837 1838 if (hcr_el2 & HCR_AMO) { 1839 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1840 ret |= CPSR_A; 1841 } 1842 } 1843 1844 return ret; 1845 } 1846 1847 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1848 bool isread) 1849 { 1850 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1851 return CP_ACCESS_TRAP_EL2; 1852 } 1853 1854 return CP_ACCESS_OK; 1855 } 1856 1857 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1858 bool isread) 1859 { 1860 if (arm_feature(env, ARM_FEATURE_V8)) { 1861 return access_aa64_tid1(env, ri, isread); 1862 } 1863 1864 return CP_ACCESS_OK; 1865 } 1866 1867 static const ARMCPRegInfo v7_cp_reginfo[] = { 1868 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1869 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1870 .access = PL1_W, .type = ARM_CP_NOP }, 1871 /* 1872 * Performance monitors are implementation defined in v7, 1873 * but with an ARM recommended set of registers, which we 1874 * follow. 1875 * 1876 * Performance registers fall into three categories: 1877 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1878 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1879 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1880 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1881 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1882 */ 1883 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1884 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1885 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1886 .writefn = pmcntenset_write, 1887 .accessfn = pmreg_access, 1888 .fgt = FGT_PMCNTEN, 1889 .raw_writefn = raw_write }, 1890 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1891 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1892 .access = PL0_RW, .accessfn = pmreg_access, 1893 .fgt = FGT_PMCNTEN, 1894 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1895 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1896 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1897 .access = PL0_RW, 1898 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1899 .accessfn = pmreg_access, 1900 .fgt = FGT_PMCNTEN, 1901 .writefn = pmcntenclr_write, 1902 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1903 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1904 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1905 .access = PL0_RW, .accessfn = pmreg_access, 1906 .fgt = FGT_PMCNTEN, 1907 .type = ARM_CP_ALIAS | ARM_CP_IO, 1908 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1909 .writefn = pmcntenclr_write }, 1910 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1911 .access = PL0_RW, .type = ARM_CP_IO, 1912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1913 .accessfn = pmreg_access, 1914 .fgt = FGT_PMOVS, 1915 .writefn = pmovsr_write, 1916 .raw_writefn = raw_write }, 1917 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1919 .access = PL0_RW, .accessfn = pmreg_access, 1920 .fgt = FGT_PMOVS, 1921 .type = ARM_CP_ALIAS | ARM_CP_IO, 1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1923 .writefn = pmovsr_write, 1924 .raw_writefn = raw_write }, 1925 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1926 .access = PL0_W, .accessfn = pmreg_access_swinc, 1927 .fgt = FGT_PMSWINC_EL0, 1928 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1929 .writefn = pmswinc_write }, 1930 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1932 .access = PL0_W, .accessfn = pmreg_access_swinc, 1933 .fgt = FGT_PMSWINC_EL0, 1934 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1935 .writefn = pmswinc_write }, 1936 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1937 .access = PL0_RW, .type = ARM_CP_ALIAS, 1938 .fgt = FGT_PMSELR_EL0, 1939 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1940 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1941 .raw_writefn = raw_write}, 1942 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1944 .access = PL0_RW, .accessfn = pmreg_access_selr, 1945 .fgt = FGT_PMSELR_EL0, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1947 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1948 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1949 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1950 .fgt = FGT_PMCCNTR_EL0, 1951 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1952 .accessfn = pmreg_access_ccntr }, 1953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1955 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1956 .fgt = FGT_PMCCNTR_EL0, 1957 .type = ARM_CP_IO, 1958 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1959 .readfn = pmccntr_read, .writefn = pmccntr_write, 1960 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1961 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1962 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1963 .access = PL0_RW, .accessfn = pmreg_access, 1964 .fgt = FGT_PMCCFILTR_EL0, 1965 .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .resetvalue = 0, }, 1967 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1968 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1969 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1970 .access = PL0_RW, .accessfn = pmreg_access, 1971 .fgt = FGT_PMCCFILTR_EL0, 1972 .type = ARM_CP_IO, 1973 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1974 .resetvalue = 0, }, 1975 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1976 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1977 .accessfn = pmreg_access, 1978 .fgt = FGT_PMEVTYPERN_EL0, 1979 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1980 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1982 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1983 .accessfn = pmreg_access, 1984 .fgt = FGT_PMEVTYPERN_EL0, 1985 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1986 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access_xevcntr, 1989 .fgt = FGT_PMEVCNTRN_EL0, 1990 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1991 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access_xevcntr, 1995 .fgt = FGT_PMEVCNTRN_EL0, 1996 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1997 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1998 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2000 .resetvalue = 0, 2001 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2002 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2003 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2004 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2005 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2006 .resetvalue = 0, 2007 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2008 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2009 .access = PL1_RW, .accessfn = access_tpm, 2010 .fgt = FGT_PMINTEN, 2011 .type = ARM_CP_ALIAS | ARM_CP_IO, 2012 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2013 .resetvalue = 0, 2014 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2015 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2016 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .fgt = FGT_PMINTEN, 2019 .type = ARM_CP_IO, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2021 .writefn = pmintenset_write, .raw_writefn = raw_write, 2022 .resetvalue = 0x0 }, 2023 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .fgt = FGT_PMINTEN, 2026 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2027 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2028 .writefn = pmintenclr_write, }, 2029 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2031 .access = PL1_RW, .accessfn = access_tpm, 2032 .fgt = FGT_PMINTEN, 2033 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2034 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2035 .writefn = pmintenclr_write }, 2036 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2037 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2038 .access = PL1_R, 2039 .accessfn = access_tid4, 2040 .fgt = FGT_CCSIDR_EL1, 2041 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2042 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2043 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2044 .access = PL1_RW, 2045 .accessfn = access_tid4, 2046 .fgt = FGT_CSSELR_EL1, 2047 .writefn = csselr_write, .resetvalue = 0, 2048 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2049 offsetof(CPUARMState, cp15.csselr_ns) } }, 2050 /* 2051 * Auxiliary ID register: this actually has an IMPDEF value but for now 2052 * just RAZ for all cores: 2053 */ 2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2056 .access = PL1_R, .type = ARM_CP_CONST, 2057 .accessfn = access_aa64_tid1, 2058 .fgt = FGT_AIDR_EL1, 2059 .resetvalue = 0 }, 2060 /* 2061 * Auxiliary fault status registers: these also are IMPDEF, and we 2062 * choose to RAZ/WI for all cores. 2063 */ 2064 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2065 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2066 .access = PL1_RW, .accessfn = access_tvm_trvm, 2067 .fgt = FGT_AFSR0_EL1, 2068 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2071 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2072 .access = PL1_RW, .accessfn = access_tvm_trvm, 2073 .fgt = FGT_AFSR1_EL1, 2074 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2075 .type = ARM_CP_CONST, .resetvalue = 0 }, 2076 /* 2077 * MAIR can just read-as-written because we don't implement caches 2078 * and so don't need to care about memory attributes. 2079 */ 2080 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2082 .access = PL1_RW, .accessfn = access_tvm_trvm, 2083 .fgt = FGT_MAIR_EL1, 2084 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2085 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2086 .resetvalue = 0 }, 2087 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2089 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2090 .resetvalue = 0 }, 2091 /* 2092 * For non-long-descriptor page tables these are PRRR and NMRR; 2093 * regardless they still act as reads-as-written for QEMU. 2094 */ 2095 /* 2096 * MAIR0/1 are defined separately from their 64-bit counterpart which 2097 * allows them to assign the correct fieldoffset based on the endianness 2098 * handled in the field definitions. 2099 */ 2100 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2102 .access = PL1_RW, .accessfn = access_tvm_trvm, 2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2104 offsetof(CPUARMState, cp15.mair0_ns) }, 2105 .resetfn = arm_cp_reset_ignore }, 2106 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2107 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2108 .access = PL1_RW, .accessfn = access_tvm_trvm, 2109 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2110 offsetof(CPUARMState, cp15.mair1_ns) }, 2111 .resetfn = arm_cp_reset_ignore }, 2112 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2114 .fgt = FGT_ISR_EL1, 2115 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2116 }; 2117 2118 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2119 /* PMOVSSET is not implemented in v7 before v7ve */ 2120 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMOVS, 2123 .type = ARM_CP_ALIAS | ARM_CP_IO, 2124 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2125 .writefn = pmovsset_write, 2126 .raw_writefn = raw_write }, 2127 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2128 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2129 .access = PL0_RW, .accessfn = pmreg_access, 2130 .fgt = FGT_PMOVS, 2131 .type = ARM_CP_ALIAS | ARM_CP_IO, 2132 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2133 .writefn = pmovsset_write, 2134 .raw_writefn = raw_write }, 2135 }; 2136 2137 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2138 uint64_t value) 2139 { 2140 value &= 1; 2141 env->teecr = value; 2142 } 2143 2144 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2145 bool isread) 2146 { 2147 /* 2148 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2149 * at all, so we don't need to check whether we're v8A. 2150 */ 2151 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2152 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2153 return CP_ACCESS_TRAP_EL2; 2154 } 2155 return CP_ACCESS_OK; 2156 } 2157 2158 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2159 bool isread) 2160 { 2161 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2162 return CP_ACCESS_TRAP; 2163 } 2164 return teecr_access(env, ri, isread); 2165 } 2166 2167 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2168 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2169 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2170 .resetvalue = 0, 2171 .writefn = teecr_write, .accessfn = teecr_access }, 2172 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2173 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2174 .accessfn = teehbr_access, .resetvalue = 0 }, 2175 }; 2176 2177 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2178 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2180 .access = PL0_RW, 2181 .fgt = FGT_TPIDR_EL0, 2182 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2183 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2184 .access = PL0_RW, 2185 .fgt = FGT_TPIDR_EL0, 2186 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2187 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2188 .resetfn = arm_cp_reset_ignore }, 2189 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2190 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2191 .access = PL0_R | PL1_W, 2192 .fgt = FGT_TPIDRRO_EL0, 2193 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2194 .resetvalue = 0}, 2195 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2196 .access = PL0_R | PL1_W, 2197 .fgt = FGT_TPIDRRO_EL0, 2198 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2199 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2200 .resetfn = arm_cp_reset_ignore }, 2201 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2203 .access = PL1_RW, 2204 .fgt = FGT_TPIDR_EL1, 2205 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2206 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2207 .access = PL1_RW, 2208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2209 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2210 .resetvalue = 0 }, 2211 }; 2212 2213 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2214 { 2215 ARMCPU *cpu = env_archcpu(env); 2216 2217 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2218 } 2219 2220 #ifndef CONFIG_USER_ONLY 2221 2222 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2223 bool isread) 2224 { 2225 /* 2226 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2227 * Writable only at the highest implemented exception level. 2228 */ 2229 int el = arm_current_el(env); 2230 uint64_t hcr; 2231 uint32_t cntkctl; 2232 2233 switch (el) { 2234 case 0: 2235 hcr = arm_hcr_el2_eff(env); 2236 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2237 cntkctl = env->cp15.cnthctl_el2; 2238 } else { 2239 cntkctl = env->cp15.c14_cntkctl; 2240 } 2241 if (!extract32(cntkctl, 0, 2)) { 2242 return CP_ACCESS_TRAP; 2243 } 2244 break; 2245 case 1: 2246 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2247 arm_is_secure_below_el3(env)) { 2248 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2249 return CP_ACCESS_TRAP_UNCATEGORIZED; 2250 } 2251 break; 2252 case 2: 2253 case 3: 2254 break; 2255 } 2256 2257 if (!isread && el < arm_highest_el(env)) { 2258 return CP_ACCESS_TRAP_UNCATEGORIZED; 2259 } 2260 2261 return CP_ACCESS_OK; 2262 } 2263 2264 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2265 bool isread) 2266 { 2267 unsigned int cur_el = arm_current_el(env); 2268 bool has_el2 = arm_is_el2_enabled(env); 2269 uint64_t hcr = arm_hcr_el2_eff(env); 2270 2271 switch (cur_el) { 2272 case 0: 2273 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2275 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2276 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2277 } 2278 2279 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2280 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2281 return CP_ACCESS_TRAP; 2282 } 2283 /* fall through */ 2284 case 1: 2285 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2286 if (has_el2 && timeridx == GTIMER_PHYS && 2287 (hcr & HCR_E2H 2288 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2289 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2290 return CP_ACCESS_TRAP_EL2; 2291 } 2292 if (has_el2 && timeridx == GTIMER_VIRT) { 2293 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2294 return CP_ACCESS_TRAP_EL2; 2295 } 2296 } 2297 break; 2298 } 2299 return CP_ACCESS_OK; 2300 } 2301 2302 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2303 bool isread) 2304 { 2305 unsigned int cur_el = arm_current_el(env); 2306 bool has_el2 = arm_is_el2_enabled(env); 2307 uint64_t hcr = arm_hcr_el2_eff(env); 2308 2309 switch (cur_el) { 2310 case 0: 2311 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2312 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2313 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2314 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2315 } 2316 2317 /* 2318 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2319 * EL0 if EL0[PV]TEN is zero. 2320 */ 2321 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2322 return CP_ACCESS_TRAP; 2323 } 2324 /* fall through */ 2325 2326 case 1: 2327 if (has_el2 && timeridx == GTIMER_PHYS) { 2328 if (hcr & HCR_E2H) { 2329 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2330 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 } else { 2334 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2335 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2336 return CP_ACCESS_TRAP_EL2; 2337 } 2338 } 2339 } 2340 if (has_el2 && timeridx == GTIMER_VIRT) { 2341 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2342 return CP_ACCESS_TRAP_EL2; 2343 } 2344 } 2345 break; 2346 } 2347 return CP_ACCESS_OK; 2348 } 2349 2350 static CPAccessResult gt_pct_access(CPUARMState *env, 2351 const ARMCPRegInfo *ri, 2352 bool isread) 2353 { 2354 return gt_counter_access(env, GTIMER_PHYS, isread); 2355 } 2356 2357 static CPAccessResult gt_vct_access(CPUARMState *env, 2358 const ARMCPRegInfo *ri, 2359 bool isread) 2360 { 2361 return gt_counter_access(env, GTIMER_VIRT, isread); 2362 } 2363 2364 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2365 bool isread) 2366 { 2367 return gt_timer_access(env, GTIMER_PHYS, isread); 2368 } 2369 2370 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2371 bool isread) 2372 { 2373 return gt_timer_access(env, GTIMER_VIRT, isread); 2374 } 2375 2376 static CPAccessResult gt_stimer_access(CPUARMState *env, 2377 const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 /* 2381 * The AArch64 register view of the secure physical timer is 2382 * always accessible from EL3, and configurably accessible from 2383 * Secure EL1. 2384 */ 2385 switch (arm_current_el(env)) { 2386 case 1: 2387 if (!arm_is_secure(env)) { 2388 return CP_ACCESS_TRAP; 2389 } 2390 if (!(env->cp15.scr_el3 & SCR_ST)) { 2391 return CP_ACCESS_TRAP_EL3; 2392 } 2393 return CP_ACCESS_OK; 2394 case 0: 2395 case 2: 2396 return CP_ACCESS_TRAP; 2397 case 3: 2398 return CP_ACCESS_OK; 2399 default: 2400 g_assert_not_reached(); 2401 } 2402 } 2403 2404 uint64_t gt_get_countervalue(CPUARMState *env) 2405 { 2406 ARMCPU *cpu = env_archcpu(env); 2407 2408 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2409 } 2410 2411 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2412 { 2413 CPUARMState *env = &cpu->env; 2414 uint64_t cnthctl = env->cp15.cnthctl_el2; 2415 ARMSecuritySpace ss = arm_security_space(env); 2416 /* ISTATUS && !IMASK */ 2417 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2418 2419 /* 2420 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2421 * It is RES0 in Secure and NonSecure state. 2422 */ 2423 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2424 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2425 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2426 irqstate = 0; 2427 } 2428 2429 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2430 trace_arm_gt_update_irq(timeridx, irqstate); 2431 } 2432 2433 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2434 { 2435 /* 2436 * Changing security state between Root and Secure/NonSecure, which may 2437 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2438 * mask bits. Update the IRQ state accordingly. 2439 */ 2440 gt_update_irq(cpu, GTIMER_VIRT); 2441 gt_update_irq(cpu, GTIMER_PHYS); 2442 } 2443 2444 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2445 { 2446 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2447 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2448 arm_is_el2_enabled(env) && 2449 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2450 return env->cp15.cntpoff_el2; 2451 } 2452 return 0; 2453 } 2454 2455 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2456 { 2457 if (arm_current_el(env) >= 2) { 2458 return 0; 2459 } 2460 return gt_phys_raw_cnt_offset(env); 2461 } 2462 2463 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2464 { 2465 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2466 2467 if (gt->ctl & 1) { 2468 /* 2469 * Timer enabled: calculate and set current ISTATUS, irq, and 2470 * reset timer to when ISTATUS next has to change 2471 */ 2472 uint64_t offset = timeridx == GTIMER_VIRT ? 2473 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2474 uint64_t count = gt_get_countervalue(&cpu->env); 2475 /* Note that this must be unsigned 64 bit arithmetic: */ 2476 int istatus = count - offset >= gt->cval; 2477 uint64_t nexttick; 2478 2479 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2480 2481 if (istatus) { 2482 /* 2483 * Next transition is when (count - offset) rolls back over to 0. 2484 * If offset > count then this is when count == offset; 2485 * if offset <= count then this is when count == offset + 2^64 2486 * For the latter case we set nexttick to an "as far in future 2487 * as possible" value and let the code below handle it. 2488 */ 2489 if (offset > count) { 2490 nexttick = offset; 2491 } else { 2492 nexttick = UINT64_MAX; 2493 } 2494 } else { 2495 /* 2496 * Next transition is when (count - offset) == cval, i.e. 2497 * when count == (cval + offset). 2498 * If that would overflow, then again we set up the next interrupt 2499 * for "as far in the future as possible" for the code below. 2500 */ 2501 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2502 nexttick = UINT64_MAX; 2503 } 2504 } 2505 /* 2506 * Note that the desired next expiry time might be beyond the 2507 * signed-64-bit range of a QEMUTimer -- in this case we just 2508 * set the timer for as far in the future as possible. When the 2509 * timer expires we will reset the timer for any remaining period. 2510 */ 2511 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2512 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2513 } else { 2514 timer_mod(cpu->gt_timer[timeridx], nexttick); 2515 } 2516 trace_arm_gt_recalc(timeridx, nexttick); 2517 } else { 2518 /* Timer disabled: ISTATUS and timer output always clear */ 2519 gt->ctl &= ~4; 2520 timer_del(cpu->gt_timer[timeridx]); 2521 trace_arm_gt_recalc_disabled(timeridx); 2522 } 2523 gt_update_irq(cpu, timeridx); 2524 } 2525 2526 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2527 int timeridx) 2528 { 2529 ARMCPU *cpu = env_archcpu(env); 2530 2531 timer_del(cpu->gt_timer[timeridx]); 2532 } 2533 2534 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2535 { 2536 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2537 } 2538 2539 uint64_t gt_virt_cnt_offset(CPUARMState *env) 2540 { 2541 uint64_t hcr; 2542 2543 switch (arm_current_el(env)) { 2544 case 2: 2545 hcr = arm_hcr_el2_eff(env); 2546 if (hcr & HCR_E2H) { 2547 return 0; 2548 } 2549 break; 2550 case 0: 2551 hcr = arm_hcr_el2_eff(env); 2552 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2553 return 0; 2554 } 2555 break; 2556 } 2557 2558 return env->cp15.cntvoff_el2; 2559 } 2560 2561 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2564 } 2565 2566 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 int timeridx, 2568 uint64_t value) 2569 { 2570 trace_arm_gt_cval_write(timeridx, value); 2571 env->cp15.c14_timer[timeridx].cval = value; 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx) 2577 { 2578 uint64_t offset = 0; 2579 2580 switch (timeridx) { 2581 case GTIMER_VIRT: 2582 case GTIMER_HYPVIRT: 2583 offset = gt_virt_cnt_offset(env); 2584 break; 2585 case GTIMER_PHYS: 2586 offset = gt_phys_cnt_offset(env); 2587 break; 2588 } 2589 2590 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2591 (gt_get_countervalue(env) - offset)); 2592 } 2593 2594 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 int timeridx, 2596 uint64_t value) 2597 { 2598 uint64_t offset = 0; 2599 2600 switch (timeridx) { 2601 case GTIMER_VIRT: 2602 case GTIMER_HYPVIRT: 2603 offset = gt_virt_cnt_offset(env); 2604 break; 2605 case GTIMER_PHYS: 2606 offset = gt_phys_cnt_offset(env); 2607 break; 2608 } 2609 2610 trace_arm_gt_tval_write(timeridx, value); 2611 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2612 sextract64(value, 0, 32); 2613 gt_recalc_timer(env_archcpu(env), timeridx); 2614 } 2615 2616 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2617 int timeridx, 2618 uint64_t value) 2619 { 2620 ARMCPU *cpu = env_archcpu(env); 2621 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2622 2623 trace_arm_gt_ctl_write(timeridx, value); 2624 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2625 if ((oldval ^ value) & 1) { 2626 /* Enable toggled */ 2627 gt_recalc_timer(cpu, timeridx); 2628 } else if ((oldval ^ value) & 2) { 2629 /* 2630 * IMASK toggled: don't need to recalculate, 2631 * just set the interrupt line based on ISTATUS 2632 */ 2633 trace_arm_gt_imask_toggle(timeridx); 2634 gt_update_irq(cpu, timeridx); 2635 } 2636 } 2637 2638 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2639 { 2640 gt_timer_reset(env, ri, GTIMER_PHYS); 2641 } 2642 2643 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2644 uint64_t value) 2645 { 2646 gt_cval_write(env, ri, GTIMER_PHYS, value); 2647 } 2648 2649 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2650 { 2651 return gt_tval_read(env, ri, GTIMER_PHYS); 2652 } 2653 2654 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2655 uint64_t value) 2656 { 2657 gt_tval_write(env, ri, GTIMER_PHYS, value); 2658 } 2659 2660 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2661 uint64_t value) 2662 { 2663 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2664 } 2665 2666 static int gt_phys_redir_timeridx(CPUARMState *env) 2667 { 2668 switch (arm_mmu_idx(env)) { 2669 case ARMMMUIdx_E20_0: 2670 case ARMMMUIdx_E20_2: 2671 case ARMMMUIdx_E20_2_PAN: 2672 return GTIMER_HYP; 2673 default: 2674 return GTIMER_PHYS; 2675 } 2676 } 2677 2678 static int gt_virt_redir_timeridx(CPUARMState *env) 2679 { 2680 switch (arm_mmu_idx(env)) { 2681 case ARMMMUIdx_E20_0: 2682 case ARMMMUIdx_E20_2: 2683 case ARMMMUIdx_E20_2_PAN: 2684 return GTIMER_HYPVIRT; 2685 default: 2686 return GTIMER_VIRT; 2687 } 2688 } 2689 2690 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2691 const ARMCPRegInfo *ri) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 return env->cp15.c14_timer[timeridx].cval; 2695 } 2696 2697 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2698 uint64_t value) 2699 { 2700 int timeridx = gt_phys_redir_timeridx(env); 2701 gt_cval_write(env, ri, timeridx, value); 2702 } 2703 2704 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2705 const ARMCPRegInfo *ri) 2706 { 2707 int timeridx = gt_phys_redir_timeridx(env); 2708 return gt_tval_read(env, ri, timeridx); 2709 } 2710 2711 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2712 uint64_t value) 2713 { 2714 int timeridx = gt_phys_redir_timeridx(env); 2715 gt_tval_write(env, ri, timeridx, value); 2716 } 2717 2718 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2719 const ARMCPRegInfo *ri) 2720 { 2721 int timeridx = gt_phys_redir_timeridx(env); 2722 return env->cp15.c14_timer[timeridx].ctl; 2723 } 2724 2725 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 int timeridx = gt_phys_redir_timeridx(env); 2729 gt_ctl_write(env, ri, timeridx, value); 2730 } 2731 2732 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2733 { 2734 gt_timer_reset(env, ri, GTIMER_VIRT); 2735 } 2736 2737 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2738 uint64_t value) 2739 { 2740 gt_cval_write(env, ri, GTIMER_VIRT, value); 2741 } 2742 2743 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2744 { 2745 return gt_tval_read(env, ri, GTIMER_VIRT); 2746 } 2747 2748 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2749 uint64_t value) 2750 { 2751 gt_tval_write(env, ri, GTIMER_VIRT, value); 2752 } 2753 2754 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2755 uint64_t value) 2756 { 2757 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2758 } 2759 2760 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2761 uint64_t value) 2762 { 2763 ARMCPU *cpu = env_archcpu(env); 2764 uint32_t oldval = env->cp15.cnthctl_el2; 2765 uint32_t valid_mask = 2766 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2767 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2768 R_CNTHCTL_EVNTEN_MASK | 2769 R_CNTHCTL_EVNTDIR_MASK | 2770 R_CNTHCTL_EVNTI_MASK | 2771 R_CNTHCTL_EL0VTEN_MASK | 2772 R_CNTHCTL_EL0PTEN_MASK | 2773 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2774 R_CNTHCTL_EL1PTEN_MASK; 2775 2776 if (cpu_isar_feature(aa64_rme, cpu)) { 2777 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2778 } 2779 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2780 valid_mask |= 2781 R_CNTHCTL_EL1TVT_MASK | 2782 R_CNTHCTL_EL1TVCT_MASK | 2783 R_CNTHCTL_EL1NVPCT_MASK | 2784 R_CNTHCTL_EL1NVVCT_MASK | 2785 R_CNTHCTL_EVNTIS_MASK; 2786 } 2787 if (cpu_isar_feature(aa64_ecv, cpu)) { 2788 valid_mask |= R_CNTHCTL_ECV_MASK; 2789 } 2790 2791 /* Clear RES0 bits */ 2792 value &= valid_mask; 2793 2794 raw_write(env, ri, value); 2795 2796 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2797 gt_update_irq(cpu, GTIMER_VIRT); 2798 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2799 gt_update_irq(cpu, GTIMER_PHYS); 2800 } 2801 } 2802 2803 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 uint64_t value) 2805 { 2806 ARMCPU *cpu = env_archcpu(env); 2807 2808 trace_arm_gt_cntvoff_write(value); 2809 raw_write(env, ri, value); 2810 gt_recalc_timer(cpu, GTIMER_VIRT); 2811 } 2812 2813 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2814 const ARMCPRegInfo *ri) 2815 { 2816 int timeridx = gt_virt_redir_timeridx(env); 2817 return env->cp15.c14_timer[timeridx].cval; 2818 } 2819 2820 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 int timeridx = gt_virt_redir_timeridx(env); 2824 gt_cval_write(env, ri, timeridx, value); 2825 } 2826 2827 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2828 const ARMCPRegInfo *ri) 2829 { 2830 int timeridx = gt_virt_redir_timeridx(env); 2831 return gt_tval_read(env, ri, timeridx); 2832 } 2833 2834 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 uint64_t value) 2836 { 2837 int timeridx = gt_virt_redir_timeridx(env); 2838 gt_tval_write(env, ri, timeridx, value); 2839 } 2840 2841 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2842 const ARMCPRegInfo *ri) 2843 { 2844 int timeridx = gt_virt_redir_timeridx(env); 2845 return env->cp15.c14_timer[timeridx].ctl; 2846 } 2847 2848 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 int timeridx = gt_virt_redir_timeridx(env); 2852 gt_ctl_write(env, ri, timeridx, value); 2853 } 2854 2855 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2856 { 2857 gt_timer_reset(env, ri, GTIMER_HYP); 2858 } 2859 2860 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 uint64_t value) 2862 { 2863 gt_cval_write(env, ri, GTIMER_HYP, value); 2864 } 2865 2866 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2867 { 2868 return gt_tval_read(env, ri, GTIMER_HYP); 2869 } 2870 2871 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2872 uint64_t value) 2873 { 2874 gt_tval_write(env, ri, GTIMER_HYP, value); 2875 } 2876 2877 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2878 uint64_t value) 2879 { 2880 gt_ctl_write(env, ri, GTIMER_HYP, value); 2881 } 2882 2883 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2884 { 2885 gt_timer_reset(env, ri, GTIMER_SEC); 2886 } 2887 2888 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 gt_cval_write(env, ri, GTIMER_SEC, value); 2892 } 2893 2894 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2895 { 2896 return gt_tval_read(env, ri, GTIMER_SEC); 2897 } 2898 2899 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2900 uint64_t value) 2901 { 2902 gt_tval_write(env, ri, GTIMER_SEC, value); 2903 } 2904 2905 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2906 uint64_t value) 2907 { 2908 gt_ctl_write(env, ri, GTIMER_SEC, value); 2909 } 2910 2911 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2912 { 2913 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2914 } 2915 2916 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2920 } 2921 2922 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2923 { 2924 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2925 } 2926 2927 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2931 } 2932 2933 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2937 } 2938 2939 void arm_gt_ptimer_cb(void *opaque) 2940 { 2941 ARMCPU *cpu = opaque; 2942 2943 gt_recalc_timer(cpu, GTIMER_PHYS); 2944 } 2945 2946 void arm_gt_vtimer_cb(void *opaque) 2947 { 2948 ARMCPU *cpu = opaque; 2949 2950 gt_recalc_timer(cpu, GTIMER_VIRT); 2951 } 2952 2953 void arm_gt_htimer_cb(void *opaque) 2954 { 2955 ARMCPU *cpu = opaque; 2956 2957 gt_recalc_timer(cpu, GTIMER_HYP); 2958 } 2959 2960 void arm_gt_stimer_cb(void *opaque) 2961 { 2962 ARMCPU *cpu = opaque; 2963 2964 gt_recalc_timer(cpu, GTIMER_SEC); 2965 } 2966 2967 void arm_gt_hvtimer_cb(void *opaque) 2968 { 2969 ARMCPU *cpu = opaque; 2970 2971 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2972 } 2973 2974 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2975 /* 2976 * Note that CNTFRQ is purely reads-as-written for the benefit 2977 * of software; writing it doesn't actually change the timer frequency. 2978 * Our reset value matches the fixed frequency we implement the timer at. 2979 */ 2980 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2981 .type = ARM_CP_ALIAS, 2982 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2984 }, 2985 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2987 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2988 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2989 .resetfn = arm_gt_cntfrq_reset, 2990 }, 2991 /* overall control: mostly access permissions */ 2992 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2993 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2994 .access = PL1_RW, 2995 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2996 .resetvalue = 0, 2997 }, 2998 /* per-timer control */ 2999 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3000 .secure = ARM_CP_SECSTATE_NS, 3001 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3002 .accessfn = gt_ptimer_access, 3003 .fieldoffset = offsetoflow32(CPUARMState, 3004 cp15.c14_timer[GTIMER_PHYS].ctl), 3005 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3006 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3007 }, 3008 { .name = "CNTP_CTL_S", 3009 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3010 .secure = ARM_CP_SECSTATE_S, 3011 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3012 .accessfn = gt_ptimer_access, 3013 .fieldoffset = offsetoflow32(CPUARMState, 3014 cp15.c14_timer[GTIMER_SEC].ctl), 3015 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3016 }, 3017 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3019 .type = ARM_CP_IO, .access = PL0_RW, 3020 .accessfn = gt_ptimer_access, 3021 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3023 .resetvalue = 0, 3024 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3025 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3026 }, 3027 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3028 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3029 .accessfn = gt_vtimer_access, 3030 .fieldoffset = offsetoflow32(CPUARMState, 3031 cp15.c14_timer[GTIMER_VIRT].ctl), 3032 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3033 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3034 }, 3035 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3036 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3037 .type = ARM_CP_IO, .access = PL0_RW, 3038 .accessfn = gt_vtimer_access, 3039 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3040 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3041 .resetvalue = 0, 3042 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3043 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3044 }, 3045 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3046 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3047 .secure = ARM_CP_SECSTATE_NS, 3048 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3049 .accessfn = gt_ptimer_access, 3050 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3051 }, 3052 { .name = "CNTP_TVAL_S", 3053 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3054 .secure = ARM_CP_SECSTATE_S, 3055 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3056 .accessfn = gt_ptimer_access, 3057 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3058 }, 3059 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3061 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3062 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3063 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3064 }, 3065 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3066 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3067 .accessfn = gt_vtimer_access, 3068 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3069 }, 3070 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3073 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3074 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3075 }, 3076 /* The counter itself */ 3077 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3078 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3079 .accessfn = gt_pct_access, 3080 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3081 }, 3082 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3084 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3085 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3086 }, 3087 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3089 .accessfn = gt_vct_access, 3090 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3091 }, 3092 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3095 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3096 }, 3097 /* Comparison value, indicating when the timer goes off */ 3098 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3099 .secure = ARM_CP_SECSTATE_NS, 3100 .access = PL0_RW, 3101 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3102 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3103 .accessfn = gt_ptimer_access, 3104 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3105 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3106 }, 3107 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3108 .secure = ARM_CP_SECSTATE_S, 3109 .access = PL0_RW, 3110 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3112 .accessfn = gt_ptimer_access, 3113 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3114 }, 3115 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3116 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3117 .access = PL0_RW, 3118 .type = ARM_CP_IO, 3119 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3121 .resetvalue = 0, .accessfn = gt_ptimer_access, 3122 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3123 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3124 }, 3125 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3126 .access = PL0_RW, 3127 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3129 .accessfn = gt_vtimer_access, 3130 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3131 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3132 }, 3133 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3135 .access = PL0_RW, 3136 .type = ARM_CP_IO, 3137 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3138 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3139 .resetvalue = 0, .accessfn = gt_vtimer_access, 3140 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3141 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3142 }, 3143 /* 3144 * Secure timer -- this is actually restricted to only EL3 3145 * and configurably Secure-EL1 via the accessfn. 3146 */ 3147 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3148 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3149 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3150 .accessfn = gt_stimer_access, 3151 .readfn = gt_sec_tval_read, 3152 .writefn = gt_sec_tval_write, 3153 .resetfn = gt_sec_timer_reset, 3154 }, 3155 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3156 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3157 .type = ARM_CP_IO, .access = PL1_RW, 3158 .accessfn = gt_stimer_access, 3159 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3160 .resetvalue = 0, 3161 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3164 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3165 .type = ARM_CP_IO, .access = PL1_RW, 3166 .accessfn = gt_stimer_access, 3167 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3168 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3169 }, 3170 }; 3171 3172 /* 3173 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3174 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3175 * so our implementations here are identical to the normal registers. 3176 */ 3177 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3178 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3179 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3180 .accessfn = gt_vct_access, 3181 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3182 }, 3183 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3184 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3185 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3186 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3187 }, 3188 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3189 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3190 .accessfn = gt_pct_access, 3191 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3192 }, 3193 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3194 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3195 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3196 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3197 }, 3198 }; 3199 3200 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3201 const ARMCPRegInfo *ri, 3202 bool isread) 3203 { 3204 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3205 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3206 return CP_ACCESS_TRAP_EL3; 3207 } 3208 return CP_ACCESS_OK; 3209 } 3210 3211 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3212 uint64_t value) 3213 { 3214 ARMCPU *cpu = env_archcpu(env); 3215 3216 trace_arm_gt_cntpoff_write(value); 3217 raw_write(env, ri, value); 3218 gt_recalc_timer(cpu, GTIMER_PHYS); 3219 } 3220 3221 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3222 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3223 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3224 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3225 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3226 .nv2_redirect_offset = 0x1a8, 3227 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3228 }; 3229 #else 3230 3231 /* 3232 * In user-mode most of the generic timer registers are inaccessible 3233 * however modern kernels (4.12+) allow access to cntvct_el0 3234 */ 3235 3236 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3237 { 3238 ARMCPU *cpu = env_archcpu(env); 3239 3240 /* 3241 * Currently we have no support for QEMUTimer in linux-user so we 3242 * can't call gt_get_countervalue(env), instead we directly 3243 * call the lower level functions. 3244 */ 3245 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3246 } 3247 3248 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3251 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3253 .resetfn = arm_gt_cntfrq_reset, 3254 }, 3255 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3257 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3258 .readfn = gt_virt_cnt_read, 3259 }, 3260 }; 3261 3262 /* 3263 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3264 * is exposed to userspace by Linux. 3265 */ 3266 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3267 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3269 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3270 .readfn = gt_virt_cnt_read, 3271 }, 3272 }; 3273 3274 #endif 3275 3276 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3277 { 3278 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3279 raw_write(env, ri, value); 3280 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3281 raw_write(env, ri, value & 0xfffff6ff); 3282 } else { 3283 raw_write(env, ri, value & 0xfffff1ff); 3284 } 3285 } 3286 3287 #ifndef CONFIG_USER_ONLY 3288 /* get_phys_addr() isn't present for user-mode-only targets */ 3289 3290 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3291 bool isread) 3292 { 3293 if (ri->opc2 & 4) { 3294 /* 3295 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3296 * Secure EL1 (which can only happen if EL3 is AArch64). 3297 * They are simply UNDEF if executed from NS EL1. 3298 * They function normally from EL2 or EL3. 3299 */ 3300 if (arm_current_el(env) == 1) { 3301 if (arm_is_secure_below_el3(env)) { 3302 if (env->cp15.scr_el3 & SCR_EEL2) { 3303 return CP_ACCESS_TRAP_EL2; 3304 } 3305 return CP_ACCESS_TRAP_EL3; 3306 } 3307 return CP_ACCESS_TRAP_UNCATEGORIZED; 3308 } 3309 } 3310 return CP_ACCESS_OK; 3311 } 3312 3313 #ifdef CONFIG_TCG 3314 static int par_el1_shareability(GetPhysAddrResult *res) 3315 { 3316 /* 3317 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3318 * memory -- see pseudocode PAREncodeShareability(). 3319 */ 3320 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3321 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3322 return 2; 3323 } 3324 return res->cacheattrs.shareability; 3325 } 3326 3327 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3328 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3329 ARMSecuritySpace ss) 3330 { 3331 bool ret; 3332 uint64_t par64; 3333 bool format64 = false; 3334 ARMMMUFaultInfo fi = {}; 3335 GetPhysAddrResult res = {}; 3336 3337 /* 3338 * I_MXTJT: Granule protection checks are not performed on the final 3339 * address of a successful translation. This is a translation not a 3340 * memory reference, so "memop = none = 0". 3341 */ 3342 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3343 mmu_idx, ss, &res, &fi); 3344 3345 /* 3346 * ATS operations only do S1 or S1+S2 translations, so we never 3347 * have to deal with the ARMCacheAttrs format for S2 only. 3348 */ 3349 assert(!res.cacheattrs.is_s2_format); 3350 3351 if (ret) { 3352 /* 3353 * Some kinds of translation fault must cause exceptions rather 3354 * than being reported in the PAR. 3355 */ 3356 int current_el = arm_current_el(env); 3357 int target_el; 3358 uint32_t syn, fsr, fsc; 3359 bool take_exc = false; 3360 3361 if (fi.s1ptw && current_el == 1 3362 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3363 /* 3364 * Synchronous stage 2 fault on an access made as part of the 3365 * translation table walk for AT S1E0* or AT S1E1* insn 3366 * executed from NS EL1. If this is a synchronous external abort 3367 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3368 * to EL3. Otherwise the fault is taken as an exception to EL2, 3369 * and HPFAR_EL2 holds the faulting IPA. 3370 */ 3371 if (fi.type == ARMFault_SyncExternalOnWalk && 3372 (env->cp15.scr_el3 & SCR_EA)) { 3373 target_el = 3; 3374 } else { 3375 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3376 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3377 env->cp15.hpfar_el2 |= HPFAR_NS; 3378 } 3379 target_el = 2; 3380 } 3381 take_exc = true; 3382 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3383 /* 3384 * Synchronous external aborts during a translation table walk 3385 * are taken as Data Abort exceptions. 3386 */ 3387 if (fi.stage2) { 3388 if (current_el == 3) { 3389 target_el = 3; 3390 } else { 3391 target_el = 2; 3392 } 3393 } else { 3394 target_el = exception_target_el(env); 3395 } 3396 take_exc = true; 3397 } 3398 3399 if (take_exc) { 3400 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3401 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3402 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3403 fsr = arm_fi_to_lfsc(&fi); 3404 fsc = extract32(fsr, 0, 6); 3405 } else { 3406 fsr = arm_fi_to_sfsc(&fi); 3407 fsc = 0x3f; 3408 } 3409 /* 3410 * Report exception with ESR indicating a fault due to a 3411 * translation table walk for a cache maintenance instruction. 3412 */ 3413 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3414 fi.ea, 1, fi.s1ptw, 1, fsc); 3415 env->exception.vaddress = value; 3416 env->exception.fsr = fsr; 3417 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3418 } 3419 } 3420 3421 if (is_a64(env)) { 3422 format64 = true; 3423 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3424 /* 3425 * ATS1Cxx: 3426 * * TTBCR.EAE determines whether the result is returned using the 3427 * 32-bit or the 64-bit PAR format 3428 * * Instructions executed in Hyp mode always use the 64bit format 3429 * 3430 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3431 * * The Non-secure TTBCR.EAE bit is set to 1 3432 * * The implementation includes EL2, and the value of HCR.VM is 1 3433 * 3434 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3435 * 3436 * ATS1Hx always uses the 64bit format. 3437 */ 3438 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3439 3440 if (arm_feature(env, ARM_FEATURE_EL2)) { 3441 if (mmu_idx == ARMMMUIdx_E10_0 || 3442 mmu_idx == ARMMMUIdx_E10_1 || 3443 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3444 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3445 } else { 3446 format64 |= arm_current_el(env) == 2; 3447 } 3448 } 3449 } 3450 3451 if (format64) { 3452 /* Create a 64-bit PAR */ 3453 par64 = (1 << 11); /* LPAE bit always set */ 3454 if (!ret) { 3455 par64 |= res.f.phys_addr & ~0xfffULL; 3456 if (!res.f.attrs.secure) { 3457 par64 |= (1 << 9); /* NS */ 3458 } 3459 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3460 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3461 } else { 3462 uint32_t fsr = arm_fi_to_lfsc(&fi); 3463 3464 par64 |= 1; /* F */ 3465 par64 |= (fsr & 0x3f) << 1; /* FS */ 3466 if (fi.stage2) { 3467 par64 |= (1 << 9); /* S */ 3468 } 3469 if (fi.s1ptw) { 3470 par64 |= (1 << 8); /* PTW */ 3471 } 3472 } 3473 } else { 3474 /* 3475 * fsr is a DFSR/IFSR value for the short descriptor 3476 * translation table format (with WnR always clear). 3477 * Convert it to a 32-bit PAR. 3478 */ 3479 if (!ret) { 3480 /* We do not set any attribute bits in the PAR */ 3481 if (res.f.lg_page_size == 24 3482 && arm_feature(env, ARM_FEATURE_V7)) { 3483 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3484 } else { 3485 par64 = res.f.phys_addr & 0xfffff000; 3486 } 3487 if (!res.f.attrs.secure) { 3488 par64 |= (1 << 9); /* NS */ 3489 } 3490 } else { 3491 uint32_t fsr = arm_fi_to_sfsc(&fi); 3492 3493 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3494 ((fsr & 0xf) << 1) | 1; 3495 } 3496 } 3497 return par64; 3498 } 3499 #endif /* CONFIG_TCG */ 3500 3501 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3502 { 3503 #ifdef CONFIG_TCG 3504 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3505 uint64_t par64; 3506 ARMMMUIdx mmu_idx; 3507 int el = arm_current_el(env); 3508 ARMSecuritySpace ss = arm_security_space(env); 3509 3510 switch (ri->opc2 & 6) { 3511 case 0: 3512 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3513 switch (el) { 3514 case 3: 3515 if (ri->crm == 9 && arm_pan_enabled(env)) { 3516 mmu_idx = ARMMMUIdx_E30_3_PAN; 3517 } else { 3518 mmu_idx = ARMMMUIdx_E3; 3519 } 3520 break; 3521 case 2: 3522 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3523 /* fall through */ 3524 case 1: 3525 if (ri->crm == 9 && arm_pan_enabled(env)) { 3526 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3527 } else { 3528 mmu_idx = ARMMMUIdx_Stage1_E1; 3529 } 3530 break; 3531 default: 3532 g_assert_not_reached(); 3533 } 3534 break; 3535 case 2: 3536 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3537 switch (el) { 3538 case 3: 3539 mmu_idx = ARMMMUIdx_E30_0; 3540 break; 3541 case 2: 3542 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3543 mmu_idx = ARMMMUIdx_Stage1_E0; 3544 break; 3545 case 1: 3546 mmu_idx = ARMMMUIdx_Stage1_E0; 3547 break; 3548 default: 3549 g_assert_not_reached(); 3550 } 3551 break; 3552 case 4: 3553 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3554 mmu_idx = ARMMMUIdx_E10_1; 3555 ss = ARMSS_NonSecure; 3556 break; 3557 case 6: 3558 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3559 mmu_idx = ARMMMUIdx_E10_0; 3560 ss = ARMSS_NonSecure; 3561 break; 3562 default: 3563 g_assert_not_reached(); 3564 } 3565 3566 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3567 3568 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3569 #else 3570 /* Handled by hardware accelerator. */ 3571 g_assert_not_reached(); 3572 #endif /* CONFIG_TCG */ 3573 } 3574 3575 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3576 uint64_t value) 3577 { 3578 #ifdef CONFIG_TCG 3579 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3580 uint64_t par64; 3581 3582 /* There is no SecureEL2 for AArch32. */ 3583 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3584 ARMSS_NonSecure); 3585 3586 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3587 #else 3588 /* Handled by hardware accelerator. */ 3589 g_assert_not_reached(); 3590 #endif /* CONFIG_TCG */ 3591 } 3592 3593 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3594 bool isread) 3595 { 3596 /* 3597 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3598 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3599 * only happen when executing at EL3 because that combination also causes an 3600 * illegal exception return. We don't need to check FEAT_RME either, because 3601 * scr_write() ensures that the NSE bit is not set otherwise. 3602 */ 3603 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3604 return CP_ACCESS_TRAP; 3605 } 3606 return CP_ACCESS_OK; 3607 } 3608 3609 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3610 bool isread) 3611 { 3612 if (arm_current_el(env) == 3 && 3613 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3614 return CP_ACCESS_TRAP; 3615 } 3616 return at_e012_access(env, ri, isread); 3617 } 3618 3619 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3620 bool isread) 3621 { 3622 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3623 return CP_ACCESS_TRAP_EL2; 3624 } 3625 return at_e012_access(env, ri, isread); 3626 } 3627 3628 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3629 uint64_t value) 3630 { 3631 #ifdef CONFIG_TCG 3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3633 ARMMMUIdx mmu_idx; 3634 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3635 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3636 bool for_el3 = false; 3637 ARMSecuritySpace ss; 3638 3639 switch (ri->opc2 & 6) { 3640 case 0: 3641 switch (ri->opc1) { 3642 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3643 if (ri->crm == 9 && arm_pan_enabled(env)) { 3644 mmu_idx = regime_e20 ? 3645 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3646 } else { 3647 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3648 } 3649 break; 3650 case 4: /* AT S1E2R, AT S1E2W */ 3651 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3652 break; 3653 case 6: /* AT S1E3R, AT S1E3W */ 3654 mmu_idx = ARMMMUIdx_E3; 3655 for_el3 = true; 3656 break; 3657 default: 3658 g_assert_not_reached(); 3659 } 3660 break; 3661 case 2: /* AT S1E0R, AT S1E0W */ 3662 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3663 break; 3664 case 4: /* AT S12E1R, AT S12E1W */ 3665 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3666 break; 3667 case 6: /* AT S12E0R, AT S12E0W */ 3668 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3669 break; 3670 default: 3671 g_assert_not_reached(); 3672 } 3673 3674 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3675 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3676 #else 3677 /* Handled by hardware accelerator. */ 3678 g_assert_not_reached(); 3679 #endif /* CONFIG_TCG */ 3680 } 3681 #endif 3682 3683 /* Return basic MPU access permission bits. */ 3684 static uint32_t simple_mpu_ap_bits(uint32_t val) 3685 { 3686 uint32_t ret; 3687 uint32_t mask; 3688 int i; 3689 ret = 0; 3690 mask = 3; 3691 for (i = 0; i < 16; i += 2) { 3692 ret |= (val >> i) & mask; 3693 mask <<= 2; 3694 } 3695 return ret; 3696 } 3697 3698 /* Pad basic MPU access permission bits to extended format. */ 3699 static uint32_t extended_mpu_ap_bits(uint32_t val) 3700 { 3701 uint32_t ret; 3702 uint32_t mask; 3703 int i; 3704 ret = 0; 3705 mask = 3; 3706 for (i = 0; i < 16; i += 2) { 3707 ret |= (val & mask) << i; 3708 mask <<= 2; 3709 } 3710 return ret; 3711 } 3712 3713 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3714 uint64_t value) 3715 { 3716 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3717 } 3718 3719 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3720 { 3721 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3722 } 3723 3724 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3725 uint64_t value) 3726 { 3727 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3728 } 3729 3730 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3731 { 3732 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3733 } 3734 3735 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3736 { 3737 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3738 3739 if (!u32p) { 3740 return 0; 3741 } 3742 3743 u32p += env->pmsav7.rnr[M_REG_NS]; 3744 return *u32p; 3745 } 3746 3747 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 ARMCPU *cpu = env_archcpu(env); 3751 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3752 3753 if (!u32p) { 3754 return; 3755 } 3756 3757 u32p += env->pmsav7.rnr[M_REG_NS]; 3758 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3759 *u32p = value; 3760 } 3761 3762 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3763 uint64_t value) 3764 { 3765 ARMCPU *cpu = env_archcpu(env); 3766 uint32_t nrgs = cpu->pmsav7_dregion; 3767 3768 if (value >= nrgs) { 3769 qemu_log_mask(LOG_GUEST_ERROR, 3770 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3771 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3772 return; 3773 } 3774 3775 raw_write(env, ri, value); 3776 } 3777 3778 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3779 uint64_t value) 3780 { 3781 ARMCPU *cpu = env_archcpu(env); 3782 3783 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3784 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3785 } 3786 3787 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3788 { 3789 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3790 } 3791 3792 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3793 uint64_t value) 3794 { 3795 ARMCPU *cpu = env_archcpu(env); 3796 3797 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3798 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3799 } 3800 3801 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3804 } 3805 3806 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3807 uint64_t value) 3808 { 3809 ARMCPU *cpu = env_archcpu(env); 3810 3811 /* 3812 * Ignore writes that would select not implemented region. 3813 * This is architecturally UNPREDICTABLE. 3814 */ 3815 if (value >= cpu->pmsav7_dregion) { 3816 return; 3817 } 3818 3819 env->pmsav7.rnr[M_REG_NS] = value; 3820 } 3821 3822 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3823 uint64_t value) 3824 { 3825 ARMCPU *cpu = env_archcpu(env); 3826 3827 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3828 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3829 } 3830 3831 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3832 { 3833 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3834 } 3835 3836 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3837 uint64_t value) 3838 { 3839 ARMCPU *cpu = env_archcpu(env); 3840 3841 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3842 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3843 } 3844 3845 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3846 { 3847 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3848 } 3849 3850 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3851 uint64_t value) 3852 { 3853 uint32_t n; 3854 uint32_t bit; 3855 ARMCPU *cpu = env_archcpu(env); 3856 3857 /* Ignore writes to unimplemented regions */ 3858 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3859 value &= MAKE_64BIT_MASK(0, rmax); 3860 3861 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3862 3863 /* Register alias is only valid for first 32 indexes */ 3864 for (n = 0; n < rmax; ++n) { 3865 bit = extract32(value, n, 1); 3866 env->pmsav8.hprlar[n] = deposit32( 3867 env->pmsav8.hprlar[n], 0, 1, bit); 3868 } 3869 } 3870 3871 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3872 { 3873 uint32_t n; 3874 uint32_t result = 0x0; 3875 ARMCPU *cpu = env_archcpu(env); 3876 3877 /* Register alias is only valid for first 32 indexes */ 3878 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3879 if (env->pmsav8.hprlar[n] & 0x1) { 3880 result |= (0x1 << n); 3881 } 3882 } 3883 return result; 3884 } 3885 3886 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 ARMCPU *cpu = env_archcpu(env); 3890 3891 /* 3892 * Ignore writes that would select not implemented region. 3893 * This is architecturally UNPREDICTABLE. 3894 */ 3895 if (value >= cpu->pmsav8r_hdregion) { 3896 return; 3897 } 3898 3899 env->pmsav8.hprselr = value; 3900 } 3901 3902 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3903 uint64_t value) 3904 { 3905 ARMCPU *cpu = env_archcpu(env); 3906 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3907 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3908 3909 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3910 3911 if (ri->opc1 & 4) { 3912 if (index >= cpu->pmsav8r_hdregion) { 3913 return; 3914 } 3915 if (ri->opc2 & 0x1) { 3916 env->pmsav8.hprlar[index] = value; 3917 } else { 3918 env->pmsav8.hprbar[index] = value; 3919 } 3920 } else { 3921 if (index >= cpu->pmsav7_dregion) { 3922 return; 3923 } 3924 if (ri->opc2 & 0x1) { 3925 env->pmsav8.rlar[M_REG_NS][index] = value; 3926 } else { 3927 env->pmsav8.rbar[M_REG_NS][index] = value; 3928 } 3929 } 3930 } 3931 3932 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3933 { 3934 ARMCPU *cpu = env_archcpu(env); 3935 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3936 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3937 3938 if (ri->opc1 & 4) { 3939 if (index >= cpu->pmsav8r_hdregion) { 3940 return 0x0; 3941 } 3942 if (ri->opc2 & 0x1) { 3943 return env->pmsav8.hprlar[index]; 3944 } else { 3945 return env->pmsav8.hprbar[index]; 3946 } 3947 } else { 3948 if (index >= cpu->pmsav7_dregion) { 3949 return 0x0; 3950 } 3951 if (ri->opc2 & 0x1) { 3952 return env->pmsav8.rlar[M_REG_NS][index]; 3953 } else { 3954 return env->pmsav8.rbar[M_REG_NS][index]; 3955 } 3956 } 3957 } 3958 3959 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3960 { .name = "PRBAR", 3961 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3962 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3963 .accessfn = access_tvm_trvm, 3964 .readfn = prbar_read, .writefn = prbar_write }, 3965 { .name = "PRLAR", 3966 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3967 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3968 .accessfn = access_tvm_trvm, 3969 .readfn = prlar_read, .writefn = prlar_write }, 3970 { .name = "PRSELR", .resetvalue = 0, 3971 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3972 .access = PL1_RW, .accessfn = access_tvm_trvm, 3973 .writefn = prselr_write, 3974 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3975 { .name = "HPRBAR", .resetvalue = 0, 3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3977 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3978 .readfn = hprbar_read, .writefn = hprbar_write }, 3979 { .name = "HPRLAR", 3980 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3981 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3982 .readfn = hprlar_read, .writefn = hprlar_write }, 3983 { .name = "HPRSELR", .resetvalue = 0, 3984 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3985 .access = PL2_RW, 3986 .writefn = hprselr_write, 3987 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3988 { .name = "HPRENR", 3989 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3990 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3991 .readfn = hprenr_read, .writefn = hprenr_write }, 3992 }; 3993 3994 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3995 /* 3996 * Reset for all these registers is handled in arm_cpu_reset(), 3997 * because the PMSAv7 is also used by M-profile CPUs, which do 3998 * not register cpregs but still need the state to be reset. 3999 */ 4000 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4001 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4002 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4003 .readfn = pmsav7_read, .writefn = pmsav7_write, 4004 .resetfn = arm_cp_reset_ignore }, 4005 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4006 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4007 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4008 .readfn = pmsav7_read, .writefn = pmsav7_write, 4009 .resetfn = arm_cp_reset_ignore }, 4010 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4011 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4012 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4013 .readfn = pmsav7_read, .writefn = pmsav7_write, 4014 .resetfn = arm_cp_reset_ignore }, 4015 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4016 .access = PL1_RW, 4017 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4018 .writefn = pmsav7_rgnr_write, 4019 .resetfn = arm_cp_reset_ignore }, 4020 }; 4021 4022 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4023 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4024 .access = PL1_RW, .type = ARM_CP_ALIAS, 4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4026 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4027 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4028 .access = PL1_RW, .type = ARM_CP_ALIAS, 4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4030 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4031 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4032 .access = PL1_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4034 .resetvalue = 0, }, 4035 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4036 .access = PL1_RW, 4037 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4038 .resetvalue = 0, }, 4039 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4040 .access = PL1_RW, 4041 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4042 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4043 .access = PL1_RW, 4044 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4045 /* Protection region base and size registers */ 4046 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4047 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4048 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4049 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4050 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4051 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4052 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4053 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4054 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4055 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4056 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4057 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4058 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4059 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4060 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4061 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4062 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4063 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4064 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4065 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4066 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4067 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4068 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4069 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4070 }; 4071 4072 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 ARMCPU *cpu = env_archcpu(env); 4076 4077 if (!arm_feature(env, ARM_FEATURE_V8)) { 4078 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4079 /* 4080 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4081 * using Long-descriptor translation table format 4082 */ 4083 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4084 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4085 /* 4086 * In an implementation that includes the Security Extensions 4087 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4088 * Short-descriptor translation table format. 4089 */ 4090 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4091 } else { 4092 value &= TTBCR_N; 4093 } 4094 } 4095 4096 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4097 /* 4098 * With LPAE the TTBCR could result in a change of ASID 4099 * via the TTBCR.A1 bit, so do a TLB flush. 4100 */ 4101 tlb_flush(CPU(cpu)); 4102 } 4103 raw_write(env, ri, value); 4104 } 4105 4106 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4107 uint64_t value) 4108 { 4109 ARMCPU *cpu = env_archcpu(env); 4110 4111 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4112 tlb_flush(CPU(cpu)); 4113 raw_write(env, ri, value); 4114 } 4115 4116 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4117 uint64_t value) 4118 { 4119 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4120 if (cpreg_field_is_64bit(ri) && 4121 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4122 ARMCPU *cpu = env_archcpu(env); 4123 tlb_flush(CPU(cpu)); 4124 } 4125 raw_write(env, ri, value); 4126 } 4127 4128 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 /* 4132 * If we are running with E2&0 regime, then an ASID is active. 4133 * Flush if that might be changing. Note we're not checking 4134 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4135 * holds the active ASID, only checking the field that might. 4136 */ 4137 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4138 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4139 uint16_t mask = ARMMMUIdxBit_E20_2 | 4140 ARMMMUIdxBit_E20_2_PAN | 4141 ARMMMUIdxBit_E20_0; 4142 tlb_flush_by_mmuidx(env_cpu(env), mask); 4143 } 4144 raw_write(env, ri, value); 4145 } 4146 4147 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 ARMCPU *cpu = env_archcpu(env); 4151 CPUState *cs = CPU(cpu); 4152 4153 /* 4154 * A change in VMID to the stage2 page table (Stage2) invalidates 4155 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4156 */ 4157 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4158 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4159 } 4160 raw_write(env, ri, value); 4161 } 4162 4163 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4164 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4166 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4167 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4168 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4169 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4170 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4171 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4172 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4173 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4174 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4175 offsetof(CPUARMState, cp15.dfar_ns) } }, 4176 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4177 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4178 .access = PL1_RW, .accessfn = access_tvm_trvm, 4179 .fgt = FGT_FAR_EL1, 4180 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4181 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4182 .resetvalue = 0, }, 4183 }; 4184 4185 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4186 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4188 .access = PL1_RW, .accessfn = access_tvm_trvm, 4189 .fgt = FGT_ESR_EL1, 4190 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4191 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4192 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4193 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4194 .access = PL1_RW, .accessfn = access_tvm_trvm, 4195 .fgt = FGT_TTBR0_EL1, 4196 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4197 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4199 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4200 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4201 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4202 .access = PL1_RW, .accessfn = access_tvm_trvm, 4203 .fgt = FGT_TTBR1_EL1, 4204 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4205 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4207 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4208 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4209 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4210 .access = PL1_RW, .accessfn = access_tvm_trvm, 4211 .fgt = FGT_TCR_EL1, 4212 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4213 .writefn = vmsa_tcr_el12_write, 4214 .raw_writefn = raw_write, 4215 .resetvalue = 0, 4216 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4217 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4218 .access = PL1_RW, .accessfn = access_tvm_trvm, 4219 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4220 .raw_writefn = raw_write, 4221 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4222 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4223 }; 4224 4225 /* 4226 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4227 * qemu tlbs nor adjusting cached masks. 4228 */ 4229 static const ARMCPRegInfo ttbcr2_reginfo = { 4230 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4231 .access = PL1_RW, .accessfn = access_tvm_trvm, 4232 .type = ARM_CP_ALIAS, 4233 .bank_fieldoffsets = { 4234 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4235 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4236 }, 4237 }; 4238 4239 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4240 uint64_t value) 4241 { 4242 env->cp15.c15_ticonfig = value & 0xe7; 4243 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4244 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4245 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4246 } 4247 4248 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4249 uint64_t value) 4250 { 4251 env->cp15.c15_threadid = value & 0xffff; 4252 } 4253 4254 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4255 uint64_t value) 4256 { 4257 /* Wait-for-interrupt (deprecated) */ 4258 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4259 } 4260 4261 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4262 uint64_t value) 4263 { 4264 /* 4265 * On OMAP there are registers indicating the max/min index of dcache lines 4266 * containing a dirty line; cache flush operations have to reset these. 4267 */ 4268 env->cp15.c15_i_max = 0x000; 4269 env->cp15.c15_i_min = 0xff0; 4270 } 4271 4272 static const ARMCPRegInfo omap_cp_reginfo[] = { 4273 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4274 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4275 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4276 .resetvalue = 0, }, 4277 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4278 .access = PL1_RW, .type = ARM_CP_NOP }, 4279 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4280 .access = PL1_RW, 4281 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4282 .writefn = omap_ticonfig_write }, 4283 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4284 .access = PL1_RW, 4285 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4286 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4287 .access = PL1_RW, .resetvalue = 0xff0, 4288 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4289 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4290 .access = PL1_RW, 4291 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4292 .writefn = omap_threadid_write }, 4293 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4294 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4295 .type = ARM_CP_NO_RAW, 4296 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4297 /* 4298 * TODO: Peripheral port remap register: 4299 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4300 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4301 * when MMU is off. 4302 */ 4303 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4304 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4305 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4306 .writefn = omap_cachemaint_write }, 4307 { .name = "C9", .cp = 15, .crn = 9, 4308 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4309 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4310 }; 4311 4312 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 env->cp15.c15_cpar = value & 0x3fff; 4316 } 4317 4318 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4319 { .name = "XSCALE_CPAR", 4320 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4321 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4322 .writefn = xscale_cpar_write, }, 4323 { .name = "XSCALE_AUXCR", 4324 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4325 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4326 .resetvalue = 0, }, 4327 /* 4328 * XScale specific cache-lockdown: since we have no cache we NOP these 4329 * and hope the guest does not really rely on cache behaviour. 4330 */ 4331 { .name = "XSCALE_LOCK_ICACHE_LINE", 4332 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4333 .access = PL1_W, .type = ARM_CP_NOP }, 4334 { .name = "XSCALE_UNLOCK_ICACHE", 4335 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4336 .access = PL1_W, .type = ARM_CP_NOP }, 4337 { .name = "XSCALE_DCACHE_LOCK", 4338 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4339 .access = PL1_RW, .type = ARM_CP_NOP }, 4340 { .name = "XSCALE_UNLOCK_DCACHE", 4341 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4342 .access = PL1_W, .type = ARM_CP_NOP }, 4343 }; 4344 4345 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4346 /* 4347 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4348 * implementation of this implementation-defined space. 4349 * Ideally this should eventually disappear in favour of actually 4350 * implementing the correct behaviour for all cores. 4351 */ 4352 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4353 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4354 .access = PL1_RW, 4355 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4356 .resetvalue = 0 }, 4357 }; 4358 4359 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4360 /* Cache status: RAZ because we have no cache so it's always clean */ 4361 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4362 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4363 .resetvalue = 0 }, 4364 }; 4365 4366 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4367 /* We never have a block transfer operation in progress */ 4368 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4369 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4370 .resetvalue = 0 }, 4371 /* The cache ops themselves: these all NOP for QEMU */ 4372 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4373 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4374 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4375 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4376 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4377 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4378 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4379 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4380 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4381 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4382 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4383 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4384 }; 4385 4386 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4387 /* 4388 * The cache test-and-clean instructions always return (1 << 30) 4389 * to indicate that there are no dirty cache lines. 4390 */ 4391 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4392 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4393 .resetvalue = (1 << 30) }, 4394 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4395 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4396 .resetvalue = (1 << 30) }, 4397 }; 4398 4399 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4400 /* Ignore ReadBuffer accesses */ 4401 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4402 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4403 .access = PL1_RW, .resetvalue = 0, 4404 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4405 }; 4406 4407 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4408 { 4409 unsigned int cur_el = arm_current_el(env); 4410 4411 if (arm_is_el2_enabled(env) && cur_el == 1) { 4412 return env->cp15.vpidr_el2; 4413 } 4414 return raw_read(env, ri); 4415 } 4416 4417 static uint64_t mpidr_read_val(CPUARMState *env) 4418 { 4419 ARMCPU *cpu = env_archcpu(env); 4420 uint64_t mpidr = cpu->mp_affinity; 4421 4422 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4423 mpidr |= (1U << 31); 4424 /* 4425 * Cores which are uniprocessor (non-coherent) 4426 * but still implement the MP extensions set 4427 * bit 30. (For instance, Cortex-R5). 4428 */ 4429 if (cpu->mp_is_up) { 4430 mpidr |= (1u << 30); 4431 } 4432 } 4433 return mpidr; 4434 } 4435 4436 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4437 { 4438 unsigned int cur_el = arm_current_el(env); 4439 4440 if (arm_is_el2_enabled(env) && cur_el == 1) { 4441 return env->cp15.vmpidr_el2; 4442 } 4443 return mpidr_read_val(env); 4444 } 4445 4446 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4447 /* NOP AMAIR0/1 */ 4448 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4449 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4450 .access = PL1_RW, .accessfn = access_tvm_trvm, 4451 .fgt = FGT_AMAIR_EL1, 4452 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4453 .type = ARM_CP_CONST, .resetvalue = 0 }, 4454 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4455 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4456 .access = PL1_RW, .accessfn = access_tvm_trvm, 4457 .type = ARM_CP_CONST, .resetvalue = 0 }, 4458 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4459 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4460 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4461 offsetof(CPUARMState, cp15.par_ns)} }, 4462 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4463 .access = PL1_RW, .accessfn = access_tvm_trvm, 4464 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4465 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4466 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4467 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4468 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4469 .access = PL1_RW, .accessfn = access_tvm_trvm, 4470 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4471 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4472 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4473 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4474 }; 4475 4476 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4477 { 4478 return vfp_get_fpcr(env); 4479 } 4480 4481 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4482 uint64_t value) 4483 { 4484 vfp_set_fpcr(env, value); 4485 } 4486 4487 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4488 { 4489 return vfp_get_fpsr(env); 4490 } 4491 4492 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 vfp_set_fpsr(env, value); 4496 } 4497 4498 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4499 bool isread) 4500 { 4501 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4502 return CP_ACCESS_TRAP; 4503 } 4504 return CP_ACCESS_OK; 4505 } 4506 4507 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4508 uint64_t value) 4509 { 4510 env->daif = value & PSTATE_DAIF; 4511 } 4512 4513 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4514 { 4515 return env->pstate & PSTATE_PAN; 4516 } 4517 4518 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4519 uint64_t value) 4520 { 4521 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4522 } 4523 4524 static const ARMCPRegInfo pan_reginfo = { 4525 .name = "PAN", .state = ARM_CP_STATE_AA64, 4526 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4527 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4528 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4529 }; 4530 4531 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4532 { 4533 return env->pstate & PSTATE_UAO; 4534 } 4535 4536 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4537 uint64_t value) 4538 { 4539 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4540 } 4541 4542 static const ARMCPRegInfo uao_reginfo = { 4543 .name = "UAO", .state = ARM_CP_STATE_AA64, 4544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4545 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4546 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4547 }; 4548 4549 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4550 { 4551 return env->pstate & PSTATE_DIT; 4552 } 4553 4554 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4558 } 4559 4560 static const ARMCPRegInfo dit_reginfo = { 4561 .name = "DIT", .state = ARM_CP_STATE_AA64, 4562 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4563 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4564 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4565 }; 4566 4567 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4568 { 4569 return env->pstate & PSTATE_SSBS; 4570 } 4571 4572 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4576 } 4577 4578 static const ARMCPRegInfo ssbs_reginfo = { 4579 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4580 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4581 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4582 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4583 }; 4584 4585 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4586 const ARMCPRegInfo *ri, 4587 bool isread) 4588 { 4589 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4590 switch (arm_current_el(env)) { 4591 case 0: 4592 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4593 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4594 return CP_ACCESS_TRAP; 4595 } 4596 /* fall through */ 4597 case 1: 4598 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4599 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4600 return CP_ACCESS_TRAP_EL2; 4601 } 4602 break; 4603 } 4604 return CP_ACCESS_OK; 4605 } 4606 4607 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4608 { 4609 /* Cache invalidate/clean to Point of Unification... */ 4610 switch (arm_current_el(env)) { 4611 case 0: 4612 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4613 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4614 return CP_ACCESS_TRAP; 4615 } 4616 /* fall through */ 4617 case 1: 4618 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4619 if (arm_hcr_el2_eff(env) & hcrflags) { 4620 return CP_ACCESS_TRAP_EL2; 4621 } 4622 break; 4623 } 4624 return CP_ACCESS_OK; 4625 } 4626 4627 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4628 bool isread) 4629 { 4630 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4631 } 4632 4633 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4634 bool isread) 4635 { 4636 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4637 } 4638 4639 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4640 bool isread) 4641 { 4642 int cur_el = arm_current_el(env); 4643 4644 if (cur_el < 2) { 4645 uint64_t hcr = arm_hcr_el2_eff(env); 4646 4647 if (cur_el == 0) { 4648 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4649 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4650 return CP_ACCESS_TRAP_EL2; 4651 } 4652 } else { 4653 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4654 return CP_ACCESS_TRAP; 4655 } 4656 if (hcr & HCR_TDZ) { 4657 return CP_ACCESS_TRAP_EL2; 4658 } 4659 } 4660 } else if (hcr & HCR_TDZ) { 4661 return CP_ACCESS_TRAP_EL2; 4662 } 4663 } 4664 return CP_ACCESS_OK; 4665 } 4666 4667 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4668 { 4669 ARMCPU *cpu = env_archcpu(env); 4670 int dzp_bit = 1 << 4; 4671 4672 /* DZP indicates whether DC ZVA access is allowed */ 4673 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4674 dzp_bit = 0; 4675 } 4676 return cpu->dcz_blocksize | dzp_bit; 4677 } 4678 4679 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4680 bool isread) 4681 { 4682 if (!(env->pstate & PSTATE_SP)) { 4683 /* 4684 * Access to SP_EL0 is undefined if it's being used as 4685 * the stack pointer. 4686 */ 4687 return CP_ACCESS_TRAP_UNCATEGORIZED; 4688 } 4689 return CP_ACCESS_OK; 4690 } 4691 4692 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4693 { 4694 return env->pstate & PSTATE_SP; 4695 } 4696 4697 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4698 { 4699 update_spsel(env, val); 4700 } 4701 4702 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4703 uint64_t value) 4704 { 4705 ARMCPU *cpu = env_archcpu(env); 4706 4707 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4708 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4709 value &= ~SCTLR_M; 4710 } 4711 4712 /* ??? Lots of these bits are not implemented. */ 4713 4714 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4715 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4716 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4717 } else { 4718 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4719 SCTLR_ATA0 | SCTLR_ATA); 4720 } 4721 } 4722 4723 if (raw_read(env, ri) == value) { 4724 /* 4725 * Skip the TLB flush if nothing actually changed; Linux likes 4726 * to do a lot of pointless SCTLR writes. 4727 */ 4728 return; 4729 } 4730 4731 raw_write(env, ri, value); 4732 4733 /* This may enable/disable the MMU, so do a TLB flush. */ 4734 tlb_flush(CPU(cpu)); 4735 4736 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4737 /* 4738 * Normally we would always end the TB on an SCTLR write; see the 4739 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4740 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4741 * of hflags from the translator, so do it here. 4742 */ 4743 arm_rebuild_hflags(env); 4744 } 4745 } 4746 4747 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4748 uint64_t value) 4749 { 4750 /* 4751 * Some MDCR_EL3 bits affect whether PMU counters are running: 4752 * if we are trying to change any of those then we must 4753 * bracket this update with PMU start/finish calls. 4754 */ 4755 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4756 4757 if (pmu_op) { 4758 pmu_op_start(env); 4759 } 4760 env->cp15.mdcr_el3 = value; 4761 if (pmu_op) { 4762 pmu_op_finish(env); 4763 } 4764 } 4765 4766 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4767 uint64_t value) 4768 { 4769 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4770 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4771 } 4772 4773 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4774 uint64_t value) 4775 { 4776 /* 4777 * Some MDCR_EL2 bits affect whether PMU counters are running: 4778 * if we are trying to change any of those then we must 4779 * bracket this update with PMU start/finish calls. 4780 */ 4781 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4782 4783 if (pmu_op) { 4784 pmu_op_start(env); 4785 } 4786 env->cp15.mdcr_el2 = value; 4787 if (pmu_op) { 4788 pmu_op_finish(env); 4789 } 4790 } 4791 4792 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4793 bool isread) 4794 { 4795 if (arm_current_el(env) == 1) { 4796 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4797 4798 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4799 return CP_ACCESS_TRAP_EL2; 4800 } 4801 } 4802 return CP_ACCESS_OK; 4803 } 4804 4805 #ifdef CONFIG_USER_ONLY 4806 /* 4807 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4808 * code to get around W^X restrictions, where one region is writable and the 4809 * other is executable. 4810 * 4811 * Since the executable region is never written to we cannot detect code 4812 * changes when running in user mode, and rely on the emulated JIT telling us 4813 * that the code has changed by executing this instruction. 4814 */ 4815 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4816 uint64_t value) 4817 { 4818 uint64_t icache_line_mask, start_address, end_address; 4819 const ARMCPU *cpu; 4820 4821 cpu = env_archcpu(env); 4822 4823 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4824 start_address = value & ~icache_line_mask; 4825 end_address = value | icache_line_mask; 4826 4827 mmap_lock(); 4828 4829 tb_invalidate_phys_range(start_address, end_address); 4830 4831 mmap_unlock(); 4832 } 4833 #endif 4834 4835 static const ARMCPRegInfo v8_cp_reginfo[] = { 4836 /* 4837 * Minimal set of EL0-visible registers. This will need to be expanded 4838 * significantly for system emulation of AArch64 CPUs. 4839 */ 4840 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4842 .access = PL0_RW, .type = ARM_CP_NZCV }, 4843 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4845 .type = ARM_CP_NO_RAW, 4846 .access = PL0_RW, .accessfn = aa64_daif_access, 4847 .fieldoffset = offsetof(CPUARMState, daif), 4848 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4849 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4851 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4852 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4853 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4855 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4856 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4857 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4859 .access = PL0_R, .type = ARM_CP_NO_RAW, 4860 .fgt = FGT_DCZID_EL0, 4861 .readfn = aa64_dczid_read }, 4862 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4865 #ifndef CONFIG_USER_ONLY 4866 /* Avoid overhead of an access check that always passes in user-mode */ 4867 .accessfn = aa64_zva_access, 4868 .fgt = FGT_DCZVA, 4869 #endif 4870 }, 4871 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4873 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4874 /* 4875 * Instruction cache ops. All of these except `IC IVAU` NOP because we 4876 * don't emulate caches. 4877 */ 4878 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4880 .access = PL1_W, .type = ARM_CP_NOP, 4881 .fgt = FGT_ICIALLUIS, 4882 .accessfn = access_ticab }, 4883 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4885 .access = PL1_W, .type = ARM_CP_NOP, 4886 .fgt = FGT_ICIALLU, 4887 .accessfn = access_tocu }, 4888 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4890 .access = PL0_W, 4891 .fgt = FGT_ICIVAU, 4892 .accessfn = access_tocu, 4893 #ifdef CONFIG_USER_ONLY 4894 .type = ARM_CP_NO_RAW, 4895 .writefn = ic_ivau_write 4896 #else 4897 .type = ARM_CP_NOP 4898 #endif 4899 }, 4900 /* Cache ops: all NOPs since we don't emulate caches */ 4901 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4903 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4904 .fgt = FGT_DCIVAC, 4905 .type = ARM_CP_NOP }, 4906 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4908 .fgt = FGT_DCISW, 4909 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4910 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4912 .access = PL0_W, .type = ARM_CP_NOP, 4913 .fgt = FGT_DCCVAC, 4914 .accessfn = aa64_cacheop_poc_access }, 4915 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4917 .fgt = FGT_DCCSW, 4918 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4919 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4921 .access = PL0_W, .type = ARM_CP_NOP, 4922 .fgt = FGT_DCCVAU, 4923 .accessfn = access_tocu }, 4924 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4926 .access = PL0_W, .type = ARM_CP_NOP, 4927 .fgt = FGT_DCCIVAC, 4928 .accessfn = aa64_cacheop_poc_access }, 4929 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4931 .fgt = FGT_DCCISW, 4932 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4933 #ifndef CONFIG_USER_ONLY 4934 /* 64 bit address translation operations */ 4935 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4937 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4938 .fgt = FGT_ATS1E1R, 4939 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4940 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .fgt = FGT_ATS1E1W, 4944 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4945 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4947 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4948 .fgt = FGT_ATS1E0R, 4949 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4950 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4952 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .fgt = FGT_ATS1E0W, 4954 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4955 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4957 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .accessfn = at_e012_access, .writefn = ats_write64 }, 4959 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4961 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .accessfn = at_e012_access, .writefn = ats_write64 }, 4963 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .accessfn = at_e012_access, .writefn = ats_write64 }, 4967 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .accessfn = at_e012_access, .writefn = ats_write64 }, 4971 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4972 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4974 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4975 .writefn = ats_write64 }, 4976 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4978 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4979 .writefn = ats_write64 }, 4980 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4981 .type = ARM_CP_ALIAS, 4982 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4983 .access = PL1_RW, .resetvalue = 0, 4984 .fgt = FGT_PAR_EL1, 4985 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4986 .writefn = par_write }, 4987 #endif 4988 /* 32 bit cache operations */ 4989 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4990 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 4991 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4992 .type = ARM_CP_NOP, .access = PL1_W }, 4993 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4994 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 4995 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4996 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 4997 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4998 .type = ARM_CP_NOP, .access = PL1_W }, 4999 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5000 .type = ARM_CP_NOP, .access = PL1_W }, 5001 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5002 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5003 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5004 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5005 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5006 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5007 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5008 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5009 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5011 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5013 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5015 /* MMU Domain access control / MPU write buffer control */ 5016 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5017 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5018 .writefn = dacr_write, .raw_writefn = raw_write, 5019 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5020 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5021 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5022 .type = ARM_CP_ALIAS, 5023 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5024 .access = PL1_RW, .accessfn = access_nv1, 5025 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5026 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5027 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5028 .type = ARM_CP_ALIAS, 5029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5030 .access = PL1_RW, .accessfn = access_nv1, 5031 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5032 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5033 /* 5034 * We rely on the access checks not allowing the guest to write to the 5035 * state field when SPSel indicates that it's being used as the stack 5036 * pointer. 5037 */ 5038 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5040 .access = PL1_RW, .accessfn = sp_el0_access, 5041 .type = ARM_CP_ALIAS, 5042 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5043 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5045 .nv2_redirect_offset = 0x240, 5046 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5047 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5048 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5050 .type = ARM_CP_NO_RAW, 5051 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5052 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5053 .type = ARM_CP_ALIAS, 5054 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5055 .access = PL2_RW, 5056 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5057 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5058 .type = ARM_CP_ALIAS, 5059 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5060 .access = PL2_RW, 5061 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5062 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5063 .type = ARM_CP_ALIAS, 5064 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5065 .access = PL2_RW, 5066 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5067 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5068 .type = ARM_CP_ALIAS, 5069 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5070 .access = PL2_RW, 5071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5072 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_IO, 5074 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5075 .resetvalue = 0, 5076 .access = PL3_RW, 5077 .writefn = mdcr_el3_write, 5078 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5079 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5080 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5081 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5082 .writefn = sdcr_write, 5083 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5084 }; 5085 5086 /* These are present only when EL1 supports AArch32 */ 5087 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5088 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5090 .access = PL2_RW, 5091 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5092 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5093 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5095 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5096 .writefn = dacr_write, .raw_writefn = raw_write, 5097 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5098 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5100 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5101 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5102 }; 5103 5104 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5105 { 5106 ARMCPU *cpu = env_archcpu(env); 5107 5108 if (arm_feature(env, ARM_FEATURE_V8)) { 5109 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5110 } else { 5111 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5112 } 5113 5114 if (arm_feature(env, ARM_FEATURE_EL3)) { 5115 valid_mask &= ~HCR_HCD; 5116 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5117 /* 5118 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5119 * However, if we're using the SMC PSCI conduit then QEMU is 5120 * effectively acting like EL3 firmware and so the guest at 5121 * EL2 should retain the ability to prevent EL1 from being 5122 * able to make SMC calls into the ersatz firmware, so in 5123 * that case HCR.TSC should be read/write. 5124 */ 5125 valid_mask &= ~HCR_TSC; 5126 } 5127 5128 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5129 if (cpu_isar_feature(aa64_vh, cpu)) { 5130 valid_mask |= HCR_E2H; 5131 } 5132 if (cpu_isar_feature(aa64_ras, cpu)) { 5133 valid_mask |= HCR_TERR | HCR_TEA; 5134 } 5135 if (cpu_isar_feature(aa64_lor, cpu)) { 5136 valid_mask |= HCR_TLOR; 5137 } 5138 if (cpu_isar_feature(aa64_pauth, cpu)) { 5139 valid_mask |= HCR_API | HCR_APK; 5140 } 5141 if (cpu_isar_feature(aa64_mte, cpu)) { 5142 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5143 } 5144 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5145 valid_mask |= HCR_ENSCXT; 5146 } 5147 if (cpu_isar_feature(aa64_fwb, cpu)) { 5148 valid_mask |= HCR_FWB; 5149 } 5150 if (cpu_isar_feature(aa64_rme, cpu)) { 5151 valid_mask |= HCR_GPF; 5152 } 5153 if (cpu_isar_feature(aa64_nv, cpu)) { 5154 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5155 } 5156 if (cpu_isar_feature(aa64_nv2, cpu)) { 5157 valid_mask |= HCR_NV2; 5158 } 5159 } 5160 5161 if (cpu_isar_feature(any_evt, cpu)) { 5162 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5163 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5164 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5165 } 5166 5167 /* Clear RES0 bits. */ 5168 value &= valid_mask; 5169 5170 /* 5171 * These bits change the MMU setup: 5172 * HCR_VM enables stage 2 translation 5173 * HCR_PTW forbids certain page-table setups 5174 * HCR_DC disables stage1 and enables stage2 translation 5175 * HCR_DCT enables tagging on (disabled) stage1 translation 5176 * HCR_FWB changes the interpretation of stage2 descriptor bits 5177 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5178 */ 5179 if ((env->cp15.hcr_el2 ^ value) & 5180 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5181 tlb_flush(CPU(cpu)); 5182 } 5183 env->cp15.hcr_el2 = value; 5184 5185 /* 5186 * Updates to VI and VF require us to update the status of 5187 * virtual interrupts, which are the logical OR of these bits 5188 * and the state of the input lines from the GIC. (This requires 5189 * that we have the BQL, which is done by marking the 5190 * reginfo structs as ARM_CP_IO.) 5191 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5192 * VFNMI, it is never possible for it to be taken immediately 5193 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5194 * at EL0 or EL1, and HCR can only be written at EL2. 5195 */ 5196 g_assert(bql_locked()); 5197 arm_cpu_update_virq(cpu); 5198 arm_cpu_update_vfiq(cpu); 5199 arm_cpu_update_vserr(cpu); 5200 if (cpu_isar_feature(aa64_nmi, cpu)) { 5201 arm_cpu_update_vinmi(cpu); 5202 arm_cpu_update_vfnmi(cpu); 5203 } 5204 } 5205 5206 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5207 { 5208 do_hcr_write(env, value, 0); 5209 } 5210 5211 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5212 uint64_t value) 5213 { 5214 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5215 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5216 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5217 } 5218 5219 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5220 uint64_t value) 5221 { 5222 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5223 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5224 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5225 } 5226 5227 /* 5228 * Return the effective value of HCR_EL2, at the given security state. 5229 * Bits that are not included here: 5230 * RW (read from SCR_EL3.RW as needed) 5231 */ 5232 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5233 { 5234 uint64_t ret = env->cp15.hcr_el2; 5235 5236 assert(space != ARMSS_Root); 5237 5238 if (!arm_is_el2_enabled_secstate(env, space)) { 5239 /* 5240 * "This register has no effect if EL2 is not enabled in the 5241 * current Security state". This is ARMv8.4-SecEL2 speak for 5242 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5243 * 5244 * Prior to that, the language was "In an implementation that 5245 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5246 * as if this field is 0 for all purposes other than a direct 5247 * read or write access of HCR_EL2". With lots of enumeration 5248 * on a per-field basis. In current QEMU, this is condition 5249 * is arm_is_secure_below_el3. 5250 * 5251 * Since the v8.4 language applies to the entire register, and 5252 * appears to be backward compatible, use that. 5253 */ 5254 return 0; 5255 } 5256 5257 /* 5258 * For a cpu that supports both aarch64 and aarch32, we can set bits 5259 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5260 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5261 */ 5262 if (!arm_el_is_aa64(env, 2)) { 5263 uint64_t aa32_valid; 5264 5265 /* 5266 * These bits are up-to-date as of ARMv8.6. 5267 * For HCR, it's easiest to list just the 2 bits that are invalid. 5268 * For HCR2, list those that are valid. 5269 */ 5270 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5271 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5272 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5273 ret &= aa32_valid; 5274 } 5275 5276 if (ret & HCR_TGE) { 5277 /* These bits are up-to-date as of ARMv8.6. */ 5278 if (ret & HCR_E2H) { 5279 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5280 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5281 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5282 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5283 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5284 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5285 } else { 5286 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5287 } 5288 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5289 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5290 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5291 HCR_TLOR); 5292 } 5293 5294 return ret; 5295 } 5296 5297 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5298 { 5299 if (arm_feature(env, ARM_FEATURE_M)) { 5300 return 0; 5301 } 5302 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5303 } 5304 5305 /* 5306 * Corresponds to ARM pseudocode function ELIsInHost(). 5307 */ 5308 bool el_is_in_host(CPUARMState *env, int el) 5309 { 5310 uint64_t mask; 5311 5312 /* 5313 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5314 * Perform the simplest bit tests first, and validate EL2 afterward. 5315 */ 5316 if (el & 1) { 5317 return false; /* EL1 or EL3 */ 5318 } 5319 5320 /* 5321 * Note that hcr_write() checks isar_feature_aa64_vh(), 5322 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5323 */ 5324 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5325 if ((env->cp15.hcr_el2 & mask) != mask) { 5326 return false; 5327 } 5328 5329 /* TGE and/or E2H set: double check those bits are currently legal. */ 5330 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5331 } 5332 5333 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5334 uint64_t value) 5335 { 5336 ARMCPU *cpu = env_archcpu(env); 5337 uint64_t valid_mask = 0; 5338 5339 /* FEAT_MOPS adds MSCEn and MCE2 */ 5340 if (cpu_isar_feature(aa64_mops, cpu)) { 5341 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5342 } 5343 5344 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5345 if (cpu_isar_feature(aa64_nmi, cpu)) { 5346 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5347 } 5348 /* FEAT_CMOW adds CMOW */ 5349 5350 if (cpu_isar_feature(aa64_cmow, cpu)) { 5351 valid_mask |= HCRX_CMOW; 5352 } 5353 5354 /* Clear RES0 bits. */ 5355 env->cp15.hcrx_el2 = value & valid_mask; 5356 5357 /* 5358 * Updates to VINMI and VFNMI require us to update the status of 5359 * virtual NMI, which are the logical OR of these bits 5360 * and the state of the input lines from the GIC. (This requires 5361 * that we have the BQL, which is done by marking the 5362 * reginfo structs as ARM_CP_IO.) 5363 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5364 * possible for it to be taken immediately, because VINMI and 5365 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5366 * can only be written at EL2. 5367 */ 5368 if (cpu_isar_feature(aa64_nmi, cpu)) { 5369 g_assert(bql_locked()); 5370 arm_cpu_update_vinmi(cpu); 5371 arm_cpu_update_vfnmi(cpu); 5372 } 5373 } 5374 5375 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5376 bool isread) 5377 { 5378 if (arm_current_el(env) == 2 5379 && arm_feature(env, ARM_FEATURE_EL3) 5380 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5381 return CP_ACCESS_TRAP_EL3; 5382 } 5383 return CP_ACCESS_OK; 5384 } 5385 5386 static const ARMCPRegInfo hcrx_el2_reginfo = { 5387 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5388 .type = ARM_CP_IO, 5389 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5390 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5391 .nv2_redirect_offset = 0xa0, 5392 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5393 }; 5394 5395 /* Return the effective value of HCRX_EL2. */ 5396 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5397 { 5398 /* 5399 * The bits in this register behave as 0 for all purposes other than 5400 * direct reads of the register if SCR_EL3.HXEn is 0. 5401 * If EL2 is not enabled in the current security state, then the 5402 * bit may behave as if 0, or as if 1, depending on the bit. 5403 * For the moment, we treat the EL2-disabled case as taking 5404 * priority over the HXEn-disabled case. This is true for the only 5405 * bit for a feature which we implement where the answer is different 5406 * for the two cases (MSCEn for FEAT_MOPS). 5407 * This may need to be revisited for future bits. 5408 */ 5409 if (!arm_is_el2_enabled(env)) { 5410 uint64_t hcrx = 0; 5411 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5412 /* MSCEn behaves as 1 if EL2 is not enabled */ 5413 hcrx |= HCRX_MSCEN; 5414 } 5415 return hcrx; 5416 } 5417 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5418 return 0; 5419 } 5420 return env->cp15.hcrx_el2; 5421 } 5422 5423 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5424 uint64_t value) 5425 { 5426 /* 5427 * For A-profile AArch32 EL3, if NSACR.CP10 5428 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5429 */ 5430 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5431 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5432 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5433 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5434 } 5435 env->cp15.cptr_el[2] = value; 5436 } 5437 5438 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5439 { 5440 /* 5441 * For A-profile AArch32 EL3, if NSACR.CP10 5442 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5443 */ 5444 uint64_t value = env->cp15.cptr_el[2]; 5445 5446 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5447 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5448 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5449 } 5450 return value; 5451 } 5452 5453 static const ARMCPRegInfo el2_cp_reginfo[] = { 5454 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5455 .type = ARM_CP_IO, 5456 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5458 .nv2_redirect_offset = 0x78, 5459 .writefn = hcr_write, .raw_writefn = raw_write }, 5460 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5461 .type = ARM_CP_ALIAS | ARM_CP_IO, 5462 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5463 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5464 .writefn = hcr_writelow }, 5465 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5467 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5468 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5469 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5470 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5471 .access = PL2_RW, 5472 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5473 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5474 .type = ARM_CP_NV2_REDIRECT, 5475 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5476 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5477 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5478 .type = ARM_CP_NV2_REDIRECT, 5479 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5480 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5481 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5482 .type = ARM_CP_ALIAS, 5483 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5484 .access = PL2_RW, 5485 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5486 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5487 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5488 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5489 .access = PL2_RW, 5490 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5491 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5492 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5493 .access = PL2_RW, .writefn = vbar_write, 5494 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5495 .resetvalue = 0 }, 5496 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5497 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5498 .access = PL3_RW, .type = ARM_CP_ALIAS, 5499 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5500 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5501 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5502 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5503 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5504 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5505 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5506 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5507 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5508 .resetvalue = 0 }, 5509 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5510 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5511 .access = PL2_RW, .type = ARM_CP_ALIAS, 5512 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5513 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5514 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5515 .access = PL2_RW, .type = ARM_CP_CONST, 5516 .resetvalue = 0 }, 5517 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5518 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5519 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5520 .access = PL2_RW, .type = ARM_CP_CONST, 5521 .resetvalue = 0 }, 5522 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5524 .access = PL2_RW, .type = ARM_CP_CONST, 5525 .resetvalue = 0 }, 5526 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5527 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5528 .access = PL2_RW, .type = ARM_CP_CONST, 5529 .resetvalue = 0 }, 5530 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5531 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5532 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5533 .raw_writefn = raw_write, 5534 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5535 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5536 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5537 .type = ARM_CP_ALIAS, 5538 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5539 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5540 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5541 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5542 .access = PL2_RW, 5543 .nv2_redirect_offset = 0x40, 5544 /* no .writefn needed as this can't cause an ASID change */ 5545 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5546 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5547 .cp = 15, .opc1 = 6, .crm = 2, 5548 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5549 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5550 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5551 .writefn = vttbr_write, .raw_writefn = raw_write }, 5552 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5554 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5555 .nv2_redirect_offset = 0x20, 5556 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5557 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5558 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5559 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5560 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5561 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5562 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5563 .access = PL2_RW, .resetvalue = 0, 5564 .nv2_redirect_offset = 0x90, 5565 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5566 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5567 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5568 .access = PL2_RW, .resetvalue = 0, 5569 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5570 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5571 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5572 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5573 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5574 #ifndef CONFIG_USER_ONLY 5575 /* 5576 * Unlike the other EL2-related AT operations, these must 5577 * UNDEF from EL3 if EL2 is not implemented, which is why we 5578 * define them here rather than with the rest of the AT ops. 5579 */ 5580 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5581 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5582 .access = PL2_W, .accessfn = at_s1e2_access, 5583 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5584 .writefn = ats_write64 }, 5585 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5587 .access = PL2_W, .accessfn = at_s1e2_access, 5588 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5589 .writefn = ats_write64 }, 5590 /* 5591 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5592 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5593 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5594 * to behave as if SCR.NS was 1. 5595 */ 5596 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5597 .access = PL2_W, 5598 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5599 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5600 .access = PL2_W, 5601 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5602 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5604 /* 5605 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5606 * reset values as IMPDEF. We choose to reset to 3 to comply with 5607 * both ARMv7 and ARMv8. 5608 */ 5609 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5610 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5611 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5612 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5613 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5614 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5615 .writefn = gt_cntvoff_write, 5616 .nv2_redirect_offset = 0x60, 5617 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5618 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5619 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5620 .writefn = gt_cntvoff_write, 5621 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5622 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5623 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5624 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5625 .type = ARM_CP_IO, .access = PL2_RW, 5626 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5627 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5629 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5630 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5631 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5632 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5633 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5634 .resetfn = gt_hyp_timer_reset, 5635 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5636 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5637 .type = ARM_CP_IO, 5638 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5639 .access = PL2_RW, 5640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5641 .resetvalue = 0, 5642 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5643 #endif 5644 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5645 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5646 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5647 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5648 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5649 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5650 .access = PL2_RW, 5651 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5652 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5653 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5654 .access = PL2_RW, 5655 .nv2_redirect_offset = 0x80, 5656 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5657 }; 5658 5659 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5660 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5661 .type = ARM_CP_ALIAS | ARM_CP_IO, 5662 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5663 .access = PL2_RW, 5664 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5665 .writefn = hcr_writehigh }, 5666 }; 5667 5668 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5669 bool isread) 5670 { 5671 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5672 return CP_ACCESS_OK; 5673 } 5674 return CP_ACCESS_TRAP_UNCATEGORIZED; 5675 } 5676 5677 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5678 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5680 .access = PL2_RW, .accessfn = sel2_access, 5681 .nv2_redirect_offset = 0x30, 5682 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5683 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5685 .access = PL2_RW, .accessfn = sel2_access, 5686 .nv2_redirect_offset = 0x48, 5687 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5688 }; 5689 5690 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5691 bool isread) 5692 { 5693 /* 5694 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5695 * At Secure EL1 it traps to EL3 or EL2. 5696 */ 5697 if (arm_current_el(env) == 3) { 5698 return CP_ACCESS_OK; 5699 } 5700 if (arm_is_secure_below_el3(env)) { 5701 if (env->cp15.scr_el3 & SCR_EEL2) { 5702 return CP_ACCESS_TRAP_EL2; 5703 } 5704 return CP_ACCESS_TRAP_EL3; 5705 } 5706 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5707 if (isread) { 5708 return CP_ACCESS_OK; 5709 } 5710 return CP_ACCESS_TRAP_UNCATEGORIZED; 5711 } 5712 5713 static const ARMCPRegInfo el3_cp_reginfo[] = { 5714 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5716 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5717 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5718 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5719 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5720 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5721 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5722 .writefn = scr_write, .raw_writefn = raw_write }, 5723 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5725 .access = PL3_RW, .resetvalue = 0, 5726 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5727 { .name = "SDER", 5728 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5729 .access = PL3_RW, .resetvalue = 0, 5730 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5731 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5732 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5733 .writefn = vbar_write, .resetvalue = 0, 5734 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5735 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5736 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5737 .access = PL3_RW, .resetvalue = 0, 5738 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5739 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5741 .access = PL3_RW, 5742 /* no .writefn needed as this can't cause an ASID change */ 5743 .resetvalue = 0, 5744 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5745 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5746 .type = ARM_CP_ALIAS, 5747 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5748 .access = PL3_RW, 5749 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5750 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5752 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5753 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5755 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5756 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5757 .type = ARM_CP_ALIAS, 5758 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5759 .access = PL3_RW, 5760 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5761 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5763 .access = PL3_RW, .writefn = vbar_write, 5764 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5765 .resetvalue = 0 }, 5766 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5767 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5768 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5769 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5770 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5772 .access = PL3_RW, .resetvalue = 0, 5773 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5774 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5776 .access = PL3_RW, .type = ARM_CP_CONST, 5777 .resetvalue = 0 }, 5778 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5779 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5780 .access = PL3_RW, .type = ARM_CP_CONST, 5781 .resetvalue = 0 }, 5782 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5783 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5784 .access = PL3_RW, .type = ARM_CP_CONST, 5785 .resetvalue = 0 }, 5786 }; 5787 5788 #ifndef CONFIG_USER_ONLY 5789 5790 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 5791 bool isread) 5792 { 5793 if (arm_current_el(env) == 1) { 5794 /* This must be a FEAT_NV access */ 5795 return CP_ACCESS_OK; 5796 } 5797 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 5798 return CP_ACCESS_TRAP_UNCATEGORIZED; 5799 } 5800 return CP_ACCESS_OK; 5801 } 5802 5803 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 5804 bool isread) 5805 { 5806 if (arm_current_el(env) == 1) { 5807 /* This must be a FEAT_NV access with NVx == 101 */ 5808 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 5809 return CP_ACCESS_TRAP_EL2; 5810 } 5811 } 5812 return e2h_access(env, ri, isread); 5813 } 5814 5815 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 5816 bool isread) 5817 { 5818 if (arm_current_el(env) == 1) { 5819 /* This must be a FEAT_NV access with NVx == 101 */ 5820 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 5821 return CP_ACCESS_TRAP_EL2; 5822 } 5823 } 5824 return e2h_access(env, ri, isread); 5825 } 5826 5827 /* Test if system register redirection is to occur in the current state. */ 5828 static bool redirect_for_e2h(CPUARMState *env) 5829 { 5830 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5831 } 5832 5833 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5834 { 5835 CPReadFn *readfn; 5836 5837 if (redirect_for_e2h(env)) { 5838 /* Switch to the saved EL2 version of the register. */ 5839 ri = ri->opaque; 5840 readfn = ri->readfn; 5841 } else { 5842 readfn = ri->orig_readfn; 5843 } 5844 if (readfn == NULL) { 5845 readfn = raw_read; 5846 } 5847 return readfn(env, ri); 5848 } 5849 5850 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5851 uint64_t value) 5852 { 5853 CPWriteFn *writefn; 5854 5855 if (redirect_for_e2h(env)) { 5856 /* Switch to the saved EL2 version of the register. */ 5857 ri = ri->opaque; 5858 writefn = ri->writefn; 5859 } else { 5860 writefn = ri->orig_writefn; 5861 } 5862 if (writefn == NULL) { 5863 writefn = raw_write; 5864 } 5865 writefn(env, ri, value); 5866 } 5867 5868 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 5869 { 5870 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 5871 return ri->orig_readfn(env, ri->opaque); 5872 } 5873 5874 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 5875 uint64_t value) 5876 { 5877 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 5878 return ri->orig_writefn(env, ri->opaque, value); 5879 } 5880 5881 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 5882 const ARMCPRegInfo *ri, 5883 bool isread) 5884 { 5885 if (arm_current_el(env) == 1) { 5886 /* 5887 * This must be a FEAT_NV access (will either trap or redirect 5888 * to memory). None of the registers with _EL12 aliases want to 5889 * apply their trap controls for this kind of access, so don't 5890 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 5891 */ 5892 return CP_ACCESS_OK; 5893 } 5894 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 5895 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 5896 return CP_ACCESS_TRAP_UNCATEGORIZED; 5897 } 5898 if (ri->orig_accessfn) { 5899 return ri->orig_accessfn(env, ri->opaque, isread); 5900 } 5901 return CP_ACCESS_OK; 5902 } 5903 5904 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5905 { 5906 struct E2HAlias { 5907 uint32_t src_key, dst_key, new_key; 5908 const char *src_name, *dst_name, *new_name; 5909 bool (*feature)(const ARMISARegisters *id); 5910 }; 5911 5912 #define K(op0, op1, crn, crm, op2) \ 5913 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5914 5915 static const struct E2HAlias aliases[] = { 5916 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5917 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5918 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5919 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5920 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5921 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5922 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5923 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5924 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5925 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5926 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5927 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5928 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5929 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5930 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5931 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5932 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5933 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5934 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5935 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5936 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5937 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5938 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5939 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5940 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5941 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5942 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5943 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5944 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5945 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5946 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5947 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5948 5949 /* 5950 * Note that redirection of ZCR is mentioned in the description 5951 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5952 * not in the summary table. 5953 */ 5954 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5955 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5956 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5957 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5958 5959 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5960 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5961 5962 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5963 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5964 isar_feature_aa64_scxtnum }, 5965 5966 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5967 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5968 }; 5969 #undef K 5970 5971 size_t i; 5972 5973 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5974 const struct E2HAlias *a = &aliases[i]; 5975 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5976 bool ok; 5977 5978 if (a->feature && !a->feature(&cpu->isar)) { 5979 continue; 5980 } 5981 5982 src_reg = g_hash_table_lookup(cpu->cp_regs, 5983 (gpointer)(uintptr_t)a->src_key); 5984 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5985 (gpointer)(uintptr_t)a->dst_key); 5986 g_assert(src_reg != NULL); 5987 g_assert(dst_reg != NULL); 5988 5989 /* Cross-compare names to detect typos in the keys. */ 5990 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5991 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5992 5993 /* None of the core system registers use opaque; we will. */ 5994 g_assert(src_reg->opaque == NULL); 5995 5996 /* Create alias before redirection so we dup the right data. */ 5997 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5998 5999 new_reg->name = a->new_name; 6000 new_reg->type |= ARM_CP_ALIAS; 6001 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6002 new_reg->access &= PL2_RW | PL3_RW; 6003 /* The new_reg op fields are as per new_key, not the target reg */ 6004 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6005 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6006 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6007 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6008 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6009 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6010 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6011 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6012 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6013 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6014 new_reg->opaque = src_reg; 6015 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6016 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6017 new_reg->orig_accessfn = src_reg->accessfn; 6018 if (!new_reg->raw_readfn) { 6019 new_reg->raw_readfn = raw_read; 6020 } 6021 if (!new_reg->raw_writefn) { 6022 new_reg->raw_writefn = raw_write; 6023 } 6024 new_reg->readfn = el2_e2h_e12_read; 6025 new_reg->writefn = el2_e2h_e12_write; 6026 new_reg->accessfn = el2_e2h_e12_access; 6027 6028 /* 6029 * If the _EL1 register is redirected to memory by FEAT_NV2, 6030 * then it shares the offset with the _EL12 register, 6031 * and which one is redirected depends on HCR_EL2.NV1. 6032 */ 6033 if (new_reg->nv2_redirect_offset) { 6034 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6035 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6036 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6037 } 6038 6039 ok = g_hash_table_insert(cpu->cp_regs, 6040 (gpointer)(uintptr_t)a->new_key, new_reg); 6041 g_assert(ok); 6042 6043 src_reg->opaque = dst_reg; 6044 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6045 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6046 if (!src_reg->raw_readfn) { 6047 src_reg->raw_readfn = raw_read; 6048 } 6049 if (!src_reg->raw_writefn) { 6050 src_reg->raw_writefn = raw_write; 6051 } 6052 src_reg->readfn = el2_e2h_read; 6053 src_reg->writefn = el2_e2h_write; 6054 } 6055 } 6056 #endif 6057 6058 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6059 bool isread) 6060 { 6061 int cur_el = arm_current_el(env); 6062 6063 if (cur_el < 2) { 6064 uint64_t hcr = arm_hcr_el2_eff(env); 6065 6066 if (cur_el == 0) { 6067 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6068 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6069 return CP_ACCESS_TRAP_EL2; 6070 } 6071 } else { 6072 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6073 return CP_ACCESS_TRAP; 6074 } 6075 if (hcr & HCR_TID2) { 6076 return CP_ACCESS_TRAP_EL2; 6077 } 6078 } 6079 } else if (hcr & HCR_TID2) { 6080 return CP_ACCESS_TRAP_EL2; 6081 } 6082 } 6083 6084 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6085 return CP_ACCESS_TRAP_EL2; 6086 } 6087 6088 return CP_ACCESS_OK; 6089 } 6090 6091 /* 6092 * Check for traps to RAS registers, which are controlled 6093 * by HCR_EL2.TERR and SCR_EL3.TERR. 6094 */ 6095 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6096 bool isread) 6097 { 6098 int el = arm_current_el(env); 6099 6100 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6101 return CP_ACCESS_TRAP_EL2; 6102 } 6103 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6104 return CP_ACCESS_TRAP_EL3; 6105 } 6106 return CP_ACCESS_OK; 6107 } 6108 6109 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6110 { 6111 int el = arm_current_el(env); 6112 6113 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6114 return env->cp15.vdisr_el2; 6115 } 6116 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6117 return 0; /* RAZ/WI */ 6118 } 6119 return env->cp15.disr_el1; 6120 } 6121 6122 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6123 { 6124 int el = arm_current_el(env); 6125 6126 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6127 env->cp15.vdisr_el2 = val; 6128 return; 6129 } 6130 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6131 return; /* RAZ/WI */ 6132 } 6133 env->cp15.disr_el1 = val; 6134 } 6135 6136 /* 6137 * Minimal RAS implementation with no Error Records. 6138 * Which means that all of the Error Record registers: 6139 * ERXADDR_EL1 6140 * ERXCTLR_EL1 6141 * ERXFR_EL1 6142 * ERXMISC0_EL1 6143 * ERXMISC1_EL1 6144 * ERXMISC2_EL1 6145 * ERXMISC3_EL1 6146 * ERXPFGCDN_EL1 (RASv1p1) 6147 * ERXPFGCTL_EL1 (RASv1p1) 6148 * ERXPFGF_EL1 (RASv1p1) 6149 * ERXSTATUS_EL1 6150 * and 6151 * ERRSELR_EL1 6152 * may generate UNDEFINED, which is the effect we get by not 6153 * listing them at all. 6154 * 6155 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6156 * is higher priority than FGT-to-EL2 so we do not need to list them 6157 * in order to check for an FGT. 6158 */ 6159 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6160 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6162 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6163 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6164 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6165 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6166 .access = PL1_R, .accessfn = access_terr, 6167 .fgt = FGT_ERRIDR_EL1, 6168 .type = ARM_CP_CONST, .resetvalue = 0 }, 6169 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6170 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6171 .nv2_redirect_offset = 0x500, 6172 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6173 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6174 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6175 .nv2_redirect_offset = 0x508, 6176 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6177 }; 6178 6179 /* 6180 * Return the exception level to which exceptions should be taken 6181 * via SVEAccessTrap. This excludes the check for whether the exception 6182 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6183 * be found by testing 0 < fp_exception_el < sve_exception_el. 6184 * 6185 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6186 * pseudocode does *not* separate out the FP trap checks, but has them 6187 * all in one function. 6188 */ 6189 int sve_exception_el(CPUARMState *env, int el) 6190 { 6191 #ifndef CONFIG_USER_ONLY 6192 if (el <= 1 && !el_is_in_host(env, el)) { 6193 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6194 case 1: 6195 if (el != 0) { 6196 break; 6197 } 6198 /* fall through */ 6199 case 0: 6200 case 2: 6201 return 1; 6202 } 6203 } 6204 6205 if (el <= 2 && arm_is_el2_enabled(env)) { 6206 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6207 if (env->cp15.hcr_el2 & HCR_E2H) { 6208 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6209 case 1: 6210 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6211 break; 6212 } 6213 /* fall through */ 6214 case 0: 6215 case 2: 6216 return 2; 6217 } 6218 } else { 6219 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6220 return 2; 6221 } 6222 } 6223 } 6224 6225 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6226 if (arm_feature(env, ARM_FEATURE_EL3) 6227 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6228 return 3; 6229 } 6230 #endif 6231 return 0; 6232 } 6233 6234 /* 6235 * Return the exception level to which exceptions should be taken for SME. 6236 * C.f. the ARM pseudocode function CheckSMEAccess. 6237 */ 6238 int sme_exception_el(CPUARMState *env, int el) 6239 { 6240 #ifndef CONFIG_USER_ONLY 6241 if (el <= 1 && !el_is_in_host(env, el)) { 6242 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6243 case 1: 6244 if (el != 0) { 6245 break; 6246 } 6247 /* fall through */ 6248 case 0: 6249 case 2: 6250 return 1; 6251 } 6252 } 6253 6254 if (el <= 2 && arm_is_el2_enabled(env)) { 6255 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6256 if (env->cp15.hcr_el2 & HCR_E2H) { 6257 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6258 case 1: 6259 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6260 break; 6261 } 6262 /* fall through */ 6263 case 0: 6264 case 2: 6265 return 2; 6266 } 6267 } else { 6268 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6269 return 2; 6270 } 6271 } 6272 } 6273 6274 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6275 if (arm_feature(env, ARM_FEATURE_EL3) 6276 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6277 return 3; 6278 } 6279 #endif 6280 return 0; 6281 } 6282 6283 /* 6284 * Given that SVE is enabled, return the vector length for EL. 6285 */ 6286 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6287 { 6288 ARMCPU *cpu = env_archcpu(env); 6289 uint64_t *cr = env->vfp.zcr_el; 6290 uint32_t map = cpu->sve_vq.map; 6291 uint32_t len = ARM_MAX_VQ - 1; 6292 6293 if (sm) { 6294 cr = env->vfp.smcr_el; 6295 map = cpu->sme_vq.map; 6296 } 6297 6298 if (el <= 1 && !el_is_in_host(env, el)) { 6299 len = MIN(len, 0xf & (uint32_t)cr[1]); 6300 } 6301 if (el <= 2 && arm_is_el2_enabled(env)) { 6302 len = MIN(len, 0xf & (uint32_t)cr[2]); 6303 } 6304 if (arm_feature(env, ARM_FEATURE_EL3)) { 6305 len = MIN(len, 0xf & (uint32_t)cr[3]); 6306 } 6307 6308 map &= MAKE_64BIT_MASK(0, len + 1); 6309 if (map != 0) { 6310 return 31 - clz32(map); 6311 } 6312 6313 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6314 assert(sm); 6315 return ctz32(cpu->sme_vq.map); 6316 } 6317 6318 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6319 { 6320 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6321 } 6322 6323 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6324 uint64_t value) 6325 { 6326 int cur_el = arm_current_el(env); 6327 int old_len = sve_vqm1_for_el(env, cur_el); 6328 int new_len; 6329 6330 /* Bits other than [3:0] are RAZ/WI. */ 6331 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6332 raw_write(env, ri, value & 0xf); 6333 6334 /* 6335 * Because we arrived here, we know both FP and SVE are enabled; 6336 * otherwise we would have trapped access to the ZCR_ELn register. 6337 */ 6338 new_len = sve_vqm1_for_el(env, cur_el); 6339 if (new_len < old_len) { 6340 aarch64_sve_narrow_vq(env, new_len + 1); 6341 } 6342 } 6343 6344 static const ARMCPRegInfo zcr_reginfo[] = { 6345 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6346 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6347 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6348 .access = PL1_RW, .type = ARM_CP_SVE, 6349 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6350 .writefn = zcr_write, .raw_writefn = raw_write }, 6351 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6352 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6353 .access = PL2_RW, .type = ARM_CP_SVE, 6354 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6355 .writefn = zcr_write, .raw_writefn = raw_write }, 6356 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6357 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6358 .access = PL3_RW, .type = ARM_CP_SVE, 6359 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6360 .writefn = zcr_write, .raw_writefn = raw_write }, 6361 }; 6362 6363 #ifdef TARGET_AARCH64 6364 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6365 bool isread) 6366 { 6367 int el = arm_current_el(env); 6368 6369 if (el == 0) { 6370 uint64_t sctlr = arm_sctlr(env, el); 6371 if (!(sctlr & SCTLR_EnTP2)) { 6372 return CP_ACCESS_TRAP; 6373 } 6374 } 6375 /* TODO: FEAT_FGT */ 6376 if (el < 3 6377 && arm_feature(env, ARM_FEATURE_EL3) 6378 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6379 return CP_ACCESS_TRAP_EL3; 6380 } 6381 return CP_ACCESS_OK; 6382 } 6383 6384 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6385 bool isread) 6386 { 6387 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6388 if (arm_current_el(env) == 2 6389 && arm_feature(env, ARM_FEATURE_EL3) 6390 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6391 return CP_ACCESS_TRAP_EL3; 6392 } 6393 return CP_ACCESS_OK; 6394 } 6395 6396 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6397 bool isread) 6398 { 6399 if (arm_current_el(env) < 3 6400 && arm_feature(env, ARM_FEATURE_EL3) 6401 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6402 return CP_ACCESS_TRAP_EL3; 6403 } 6404 return CP_ACCESS_OK; 6405 } 6406 6407 /* ResetSVEState */ 6408 static void arm_reset_sve_state(CPUARMState *env) 6409 { 6410 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6411 /* Recall that FFR is stored as pregs[16]. */ 6412 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6413 vfp_set_fpcr(env, 0x0800009f); 6414 } 6415 6416 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6417 { 6418 uint64_t change = (env->svcr ^ new) & mask; 6419 6420 if (change == 0) { 6421 return; 6422 } 6423 env->svcr ^= change; 6424 6425 if (change & R_SVCR_SM_MASK) { 6426 arm_reset_sve_state(env); 6427 } 6428 6429 /* 6430 * ResetSMEState. 6431 * 6432 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6433 * on enable: while disabled, the storage is inaccessible and the 6434 * value does not matter. We're not saving the storage in vmstate 6435 * when disabled either. 6436 */ 6437 if (change & new & R_SVCR_ZA_MASK) { 6438 memset(env->zarray, 0, sizeof(env->zarray)); 6439 } 6440 6441 if (tcg_enabled()) { 6442 arm_rebuild_hflags(env); 6443 } 6444 } 6445 6446 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6447 uint64_t value) 6448 { 6449 aarch64_set_svcr(env, value, -1); 6450 } 6451 6452 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6453 uint64_t value) 6454 { 6455 int cur_el = arm_current_el(env); 6456 int old_len = sve_vqm1_for_el(env, cur_el); 6457 int new_len; 6458 6459 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6460 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6461 raw_write(env, ri, value); 6462 6463 /* 6464 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6465 * when SVL is widened (old values kept, or zeros). Choose to keep the 6466 * current values for simplicity. But for QEMU internals, we must still 6467 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6468 * above aarch64_sve_narrow_vq. 6469 */ 6470 new_len = sve_vqm1_for_el(env, cur_el); 6471 if (new_len < old_len) { 6472 aarch64_sve_narrow_vq(env, new_len + 1); 6473 } 6474 } 6475 6476 static const ARMCPRegInfo sme_reginfo[] = { 6477 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6478 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6479 .access = PL0_RW, .accessfn = access_tpidr2, 6480 .fgt = FGT_NTPIDR2_EL0, 6481 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6482 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6483 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6484 .access = PL0_RW, .type = ARM_CP_SME, 6485 .fieldoffset = offsetof(CPUARMState, svcr), 6486 .writefn = svcr_write, .raw_writefn = raw_write }, 6487 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6488 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6489 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6490 .access = PL1_RW, .type = ARM_CP_SME, 6491 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6492 .writefn = smcr_write, .raw_writefn = raw_write }, 6493 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6494 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6495 .access = PL2_RW, .type = ARM_CP_SME, 6496 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6497 .writefn = smcr_write, .raw_writefn = raw_write }, 6498 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6499 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6500 .access = PL3_RW, .type = ARM_CP_SME, 6501 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6502 .writefn = smcr_write, .raw_writefn = raw_write }, 6503 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6504 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6505 .access = PL1_R, .accessfn = access_aa64_tid1, 6506 /* 6507 * IMPLEMENTOR = 0 (software) 6508 * REVISION = 0 (implementation defined) 6509 * SMPS = 0 (no streaming execution priority in QEMU) 6510 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6511 */ 6512 .type = ARM_CP_CONST, .resetvalue = 0, }, 6513 /* 6514 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6515 */ 6516 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6517 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6518 .access = PL1_RW, .accessfn = access_smpri, 6519 .fgt = FGT_NSMPRI_EL1, 6520 .type = ARM_CP_CONST, .resetvalue = 0 }, 6521 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6523 .nv2_redirect_offset = 0x1f8, 6524 .access = PL2_RW, .accessfn = access_smprimap, 6525 .type = ARM_CP_CONST, .resetvalue = 0 }, 6526 }; 6527 6528 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6529 uint64_t value) 6530 { 6531 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6532 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6533 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6534 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6535 6536 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6537 } 6538 6539 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6540 { 6541 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6542 env_archcpu(env)->reset_l0gptsz); 6543 } 6544 6545 static const ARMCPRegInfo rme_reginfo[] = { 6546 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6547 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6548 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6549 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6550 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6551 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6552 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6553 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6554 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6555 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6556 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6557 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6558 .access = PL3_W, .type = ARM_CP_NOP }, 6559 }; 6560 6561 static const ARMCPRegInfo rme_mte_reginfo[] = { 6562 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6563 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6564 .access = PL3_W, .type = ARM_CP_NOP }, 6565 }; 6566 6567 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6568 uint64_t value) 6569 { 6570 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6571 } 6572 6573 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6574 { 6575 return env->pstate & PSTATE_ALLINT; 6576 } 6577 6578 static CPAccessResult aa64_allint_access(CPUARMState *env, 6579 const ARMCPRegInfo *ri, bool isread) 6580 { 6581 if (!isread && arm_current_el(env) == 1 && 6582 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6583 return CP_ACCESS_TRAP_EL2; 6584 } 6585 return CP_ACCESS_OK; 6586 } 6587 6588 static const ARMCPRegInfo nmi_reginfo[] = { 6589 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6590 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6591 .type = ARM_CP_NO_RAW, 6592 .access = PL1_RW, .accessfn = aa64_allint_access, 6593 .fieldoffset = offsetof(CPUARMState, pstate), 6594 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6595 .resetfn = arm_cp_reset_ignore }, 6596 }; 6597 #endif /* TARGET_AARCH64 */ 6598 6599 static void define_pmu_regs(ARMCPU *cpu) 6600 { 6601 /* 6602 * v7 performance monitor control register: same implementor 6603 * field as main ID register, and we implement four counters in 6604 * addition to the cycle count register. 6605 */ 6606 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6607 ARMCPRegInfo pmcr = { 6608 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6609 .access = PL0_RW, 6610 .fgt = FGT_PMCR_EL0, 6611 .type = ARM_CP_IO | ARM_CP_ALIAS, 6612 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6613 .accessfn = pmreg_access, 6614 .readfn = pmcr_read, .raw_readfn = raw_read, 6615 .writefn = pmcr_write, .raw_writefn = raw_write, 6616 }; 6617 ARMCPRegInfo pmcr64 = { 6618 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6619 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6620 .access = PL0_RW, .accessfn = pmreg_access, 6621 .fgt = FGT_PMCR_EL0, 6622 .type = ARM_CP_IO, 6623 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6624 .resetvalue = cpu->isar.reset_pmcr_el0, 6625 .readfn = pmcr_read, .raw_readfn = raw_read, 6626 .writefn = pmcr_write, .raw_writefn = raw_write, 6627 }; 6628 6629 define_one_arm_cp_reg(cpu, &pmcr); 6630 define_one_arm_cp_reg(cpu, &pmcr64); 6631 for (i = 0; i < pmcrn; i++) { 6632 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6633 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6634 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6635 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6636 ARMCPRegInfo pmev_regs[] = { 6637 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6638 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6639 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6640 .fgt = FGT_PMEVCNTRN_EL0, 6641 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6642 .accessfn = pmreg_access_xevcntr }, 6643 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6644 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6645 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6646 .type = ARM_CP_IO, 6647 .fgt = FGT_PMEVCNTRN_EL0, 6648 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6649 .raw_readfn = pmevcntr_rawread, 6650 .raw_writefn = pmevcntr_rawwrite }, 6651 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6652 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6653 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6654 .fgt = FGT_PMEVTYPERN_EL0, 6655 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6656 .accessfn = pmreg_access }, 6657 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6659 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6660 .fgt = FGT_PMEVTYPERN_EL0, 6661 .type = ARM_CP_IO, 6662 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6663 .raw_writefn = pmevtyper_rawwrite }, 6664 }; 6665 define_arm_cp_regs(cpu, pmev_regs); 6666 g_free(pmevcntr_name); 6667 g_free(pmevcntr_el0_name); 6668 g_free(pmevtyper_name); 6669 g_free(pmevtyper_el0_name); 6670 } 6671 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6672 ARMCPRegInfo v81_pmu_regs[] = { 6673 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6674 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6675 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6676 .fgt = FGT_PMCEIDN_EL0, 6677 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6678 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6679 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6680 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6681 .fgt = FGT_PMCEIDN_EL0, 6682 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6683 }; 6684 define_arm_cp_regs(cpu, v81_pmu_regs); 6685 } 6686 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6687 static const ARMCPRegInfo v84_pmmir = { 6688 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6689 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6690 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6691 .fgt = FGT_PMMIR_EL1, 6692 .resetvalue = 0 6693 }; 6694 define_one_arm_cp_reg(cpu, &v84_pmmir); 6695 } 6696 } 6697 6698 #ifndef CONFIG_USER_ONLY 6699 /* 6700 * We don't know until after realize whether there's a GICv3 6701 * attached, and that is what registers the gicv3 sysregs. 6702 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6703 * at runtime. 6704 */ 6705 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6706 { 6707 ARMCPU *cpu = env_archcpu(env); 6708 uint64_t pfr1 = cpu->isar.id_pfr1; 6709 6710 if (env->gicv3state) { 6711 pfr1 |= 1 << 28; 6712 } 6713 return pfr1; 6714 } 6715 6716 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6717 { 6718 ARMCPU *cpu = env_archcpu(env); 6719 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6720 6721 if (env->gicv3state) { 6722 pfr0 |= 1 << 24; 6723 } 6724 return pfr0; 6725 } 6726 #endif 6727 6728 /* 6729 * Shared logic between LORID and the rest of the LOR* registers. 6730 * Secure state exclusion has already been dealt with. 6731 */ 6732 static CPAccessResult access_lor_ns(CPUARMState *env, 6733 const ARMCPRegInfo *ri, bool isread) 6734 { 6735 int el = arm_current_el(env); 6736 6737 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6738 return CP_ACCESS_TRAP_EL2; 6739 } 6740 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6741 return CP_ACCESS_TRAP_EL3; 6742 } 6743 return CP_ACCESS_OK; 6744 } 6745 6746 static CPAccessResult access_lor_other(CPUARMState *env, 6747 const ARMCPRegInfo *ri, bool isread) 6748 { 6749 if (arm_is_secure_below_el3(env)) { 6750 /* Access denied in secure mode. */ 6751 return CP_ACCESS_TRAP; 6752 } 6753 return access_lor_ns(env, ri, isread); 6754 } 6755 6756 /* 6757 * A trivial implementation of ARMv8.1-LOR leaves all of these 6758 * registers fixed at 0, which indicates that there are zero 6759 * supported Limited Ordering regions. 6760 */ 6761 static const ARMCPRegInfo lor_reginfo[] = { 6762 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6764 .access = PL1_RW, .accessfn = access_lor_other, 6765 .fgt = FGT_LORSA_EL1, 6766 .type = ARM_CP_CONST, .resetvalue = 0 }, 6767 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6769 .access = PL1_RW, .accessfn = access_lor_other, 6770 .fgt = FGT_LOREA_EL1, 6771 .type = ARM_CP_CONST, .resetvalue = 0 }, 6772 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6774 .access = PL1_RW, .accessfn = access_lor_other, 6775 .fgt = FGT_LORN_EL1, 6776 .type = ARM_CP_CONST, .resetvalue = 0 }, 6777 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6778 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6779 .access = PL1_RW, .accessfn = access_lor_other, 6780 .fgt = FGT_LORC_EL1, 6781 .type = ARM_CP_CONST, .resetvalue = 0 }, 6782 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6784 .access = PL1_R, .accessfn = access_lor_ns, 6785 .fgt = FGT_LORID_EL1, 6786 .type = ARM_CP_CONST, .resetvalue = 0 }, 6787 }; 6788 6789 #ifdef TARGET_AARCH64 6790 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6791 bool isread) 6792 { 6793 int el = arm_current_el(env); 6794 6795 if (el < 2 && 6796 arm_is_el2_enabled(env) && 6797 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6798 return CP_ACCESS_TRAP_EL2; 6799 } 6800 if (el < 3 && 6801 arm_feature(env, ARM_FEATURE_EL3) && 6802 !(env->cp15.scr_el3 & SCR_APK)) { 6803 return CP_ACCESS_TRAP_EL3; 6804 } 6805 return CP_ACCESS_OK; 6806 } 6807 6808 static const ARMCPRegInfo pauth_reginfo[] = { 6809 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6811 .access = PL1_RW, .accessfn = access_pauth, 6812 .fgt = FGT_APDAKEY, 6813 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6814 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6816 .access = PL1_RW, .accessfn = access_pauth, 6817 .fgt = FGT_APDAKEY, 6818 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6819 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6820 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6821 .access = PL1_RW, .accessfn = access_pauth, 6822 .fgt = FGT_APDBKEY, 6823 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6824 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6826 .access = PL1_RW, .accessfn = access_pauth, 6827 .fgt = FGT_APDBKEY, 6828 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6829 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6830 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6831 .access = PL1_RW, .accessfn = access_pauth, 6832 .fgt = FGT_APGAKEY, 6833 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6834 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6836 .access = PL1_RW, .accessfn = access_pauth, 6837 .fgt = FGT_APGAKEY, 6838 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6839 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6841 .access = PL1_RW, .accessfn = access_pauth, 6842 .fgt = FGT_APIAKEY, 6843 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6844 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6846 .access = PL1_RW, .accessfn = access_pauth, 6847 .fgt = FGT_APIAKEY, 6848 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6849 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6850 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6851 .access = PL1_RW, .accessfn = access_pauth, 6852 .fgt = FGT_APIBKEY, 6853 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6854 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6856 .access = PL1_RW, .accessfn = access_pauth, 6857 .fgt = FGT_APIBKEY, 6858 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6859 }; 6860 6861 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6862 { 6863 Error *err = NULL; 6864 uint64_t ret; 6865 6866 /* Success sets NZCV = 0000. */ 6867 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6868 6869 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6870 /* 6871 * ??? Failed, for unknown reasons in the crypto subsystem. 6872 * The best we can do is log the reason and return the 6873 * timed-out indication to the guest. There is no reason 6874 * we know to expect this failure to be transitory, so the 6875 * guest may well hang retrying the operation. 6876 */ 6877 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6878 ri->name, error_get_pretty(err)); 6879 error_free(err); 6880 6881 env->ZF = 0; /* NZCF = 0100 */ 6882 return 0; 6883 } 6884 return ret; 6885 } 6886 6887 /* We do not support re-seeding, so the two registers operate the same. */ 6888 static const ARMCPRegInfo rndr_reginfo[] = { 6889 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6890 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6891 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6892 .access = PL0_R, .readfn = rndr_readfn }, 6893 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6894 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6895 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6896 .access = PL0_R, .readfn = rndr_readfn }, 6897 }; 6898 6899 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6900 uint64_t value) 6901 { 6902 #ifdef CONFIG_TCG 6903 ARMCPU *cpu = env_archcpu(env); 6904 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6905 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6906 uint64_t vaddr_in = (uint64_t) value; 6907 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6908 void *haddr; 6909 int mem_idx = arm_env_mmu_index(env); 6910 6911 /* This won't be crossing page boundaries */ 6912 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6913 if (haddr) { 6914 #ifndef CONFIG_USER_ONLY 6915 6916 ram_addr_t offset; 6917 MemoryRegion *mr; 6918 6919 /* RCU lock is already being held */ 6920 mr = memory_region_from_host(haddr, &offset); 6921 6922 if (mr) { 6923 memory_region_writeback(mr, offset, dline_size); 6924 } 6925 #endif /*CONFIG_USER_ONLY*/ 6926 } 6927 #else 6928 /* Handled by hardware accelerator. */ 6929 g_assert_not_reached(); 6930 #endif /* CONFIG_TCG */ 6931 } 6932 6933 static const ARMCPRegInfo dcpop_reg[] = { 6934 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6936 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6937 .fgt = FGT_DCCVAP, 6938 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6939 }; 6940 6941 static const ARMCPRegInfo dcpodp_reg[] = { 6942 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6944 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6945 .fgt = FGT_DCCVADP, 6946 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6947 }; 6948 6949 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6950 bool isread) 6951 { 6952 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6953 return CP_ACCESS_TRAP_EL2; 6954 } 6955 6956 return CP_ACCESS_OK; 6957 } 6958 6959 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6960 bool isread) 6961 { 6962 int el = arm_current_el(env); 6963 if (el < 2 && arm_is_el2_enabled(env)) { 6964 uint64_t hcr = arm_hcr_el2_eff(env); 6965 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6966 return CP_ACCESS_TRAP_EL2; 6967 } 6968 } 6969 if (el < 3 && 6970 arm_feature(env, ARM_FEATURE_EL3) && 6971 !(env->cp15.scr_el3 & SCR_ATA)) { 6972 return CP_ACCESS_TRAP_EL3; 6973 } 6974 return CP_ACCESS_OK; 6975 } 6976 6977 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 6978 bool isread) 6979 { 6980 CPAccessResult nv1 = access_nv1(env, ri, isread); 6981 6982 if (nv1 != CP_ACCESS_OK) { 6983 return nv1; 6984 } 6985 return access_mte(env, ri, isread); 6986 } 6987 6988 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 6989 bool isread) 6990 { 6991 /* 6992 * TFSR_EL2: similar to generic access_mte(), but we need to 6993 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 6994 * if NV2 is enabled then we will redirect this to TFSR_EL1 6995 * after doing the HCR and SCR ATA traps; otherwise this will 6996 * be a trap to EL2 and the HCR/SCR traps do not apply. 6997 */ 6998 int el = arm_current_el(env); 6999 7000 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7001 return CP_ACCESS_OK; 7002 } 7003 if (el < 2 && arm_is_el2_enabled(env)) { 7004 uint64_t hcr = arm_hcr_el2_eff(env); 7005 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7006 return CP_ACCESS_TRAP_EL2; 7007 } 7008 } 7009 if (el < 3 && 7010 arm_feature(env, ARM_FEATURE_EL3) && 7011 !(env->cp15.scr_el3 & SCR_ATA)) { 7012 return CP_ACCESS_TRAP_EL3; 7013 } 7014 return CP_ACCESS_OK; 7015 } 7016 7017 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7018 { 7019 return env->pstate & PSTATE_TCO; 7020 } 7021 7022 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7023 { 7024 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7025 } 7026 7027 static const ARMCPRegInfo mte_reginfo[] = { 7028 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7030 .access = PL1_RW, .accessfn = access_mte, 7031 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7032 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7034 .access = PL1_RW, .accessfn = access_tfsr_el1, 7035 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7036 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7037 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7038 .type = ARM_CP_NV2_REDIRECT, 7039 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7040 .access = PL2_RW, .accessfn = access_tfsr_el2, 7041 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7042 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7044 .access = PL3_RW, 7045 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7046 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7048 .access = PL1_RW, .accessfn = access_mte, 7049 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7050 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7052 .access = PL1_RW, .accessfn = access_mte, 7053 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7054 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7056 .type = ARM_CP_NO_RAW, 7057 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7058 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7060 .type = ARM_CP_NOP, .access = PL1_W, 7061 .fgt = FGT_DCIVAC, 7062 .accessfn = aa64_cacheop_poc_access }, 7063 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7065 .fgt = FGT_DCISW, 7066 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7067 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7069 .type = ARM_CP_NOP, .access = PL1_W, 7070 .fgt = FGT_DCIVAC, 7071 .accessfn = aa64_cacheop_poc_access }, 7072 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7074 .fgt = FGT_DCISW, 7075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7076 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7078 .fgt = FGT_DCCSW, 7079 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7080 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7082 .fgt = FGT_DCCSW, 7083 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7084 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7086 .fgt = FGT_DCCISW, 7087 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7088 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7089 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7090 .fgt = FGT_DCCISW, 7091 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7092 }; 7093 7094 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7095 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7097 .type = ARM_CP_CONST, .access = PL0_RW, }, 7098 }; 7099 7100 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7101 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7102 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7103 .type = ARM_CP_NOP, .access = PL0_W, 7104 .fgt = FGT_DCCVAC, 7105 .accessfn = aa64_cacheop_poc_access }, 7106 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7108 .type = ARM_CP_NOP, .access = PL0_W, 7109 .fgt = FGT_DCCVAC, 7110 .accessfn = aa64_cacheop_poc_access }, 7111 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7113 .type = ARM_CP_NOP, .access = PL0_W, 7114 .fgt = FGT_DCCVAP, 7115 .accessfn = aa64_cacheop_poc_access }, 7116 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7118 .type = ARM_CP_NOP, .access = PL0_W, 7119 .fgt = FGT_DCCVAP, 7120 .accessfn = aa64_cacheop_poc_access }, 7121 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7122 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7123 .type = ARM_CP_NOP, .access = PL0_W, 7124 .fgt = FGT_DCCVADP, 7125 .accessfn = aa64_cacheop_poc_access }, 7126 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7128 .type = ARM_CP_NOP, .access = PL0_W, 7129 .fgt = FGT_DCCVADP, 7130 .accessfn = aa64_cacheop_poc_access }, 7131 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7133 .type = ARM_CP_NOP, .access = PL0_W, 7134 .fgt = FGT_DCCIVAC, 7135 .accessfn = aa64_cacheop_poc_access }, 7136 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7138 .type = ARM_CP_NOP, .access = PL0_W, 7139 .fgt = FGT_DCCIVAC, 7140 .accessfn = aa64_cacheop_poc_access }, 7141 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7142 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7143 .access = PL0_W, .type = ARM_CP_DC_GVA, 7144 #ifndef CONFIG_USER_ONLY 7145 /* Avoid overhead of an access check that always passes in user-mode */ 7146 .accessfn = aa64_zva_access, 7147 .fgt = FGT_DCZVA, 7148 #endif 7149 }, 7150 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7152 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7153 #ifndef CONFIG_USER_ONLY 7154 /* Avoid overhead of an access check that always passes in user-mode */ 7155 .accessfn = aa64_zva_access, 7156 .fgt = FGT_DCZVA, 7157 #endif 7158 }, 7159 }; 7160 7161 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7162 bool isread) 7163 { 7164 uint64_t hcr = arm_hcr_el2_eff(env); 7165 int el = arm_current_el(env); 7166 7167 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7168 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7169 if (hcr & HCR_TGE) { 7170 return CP_ACCESS_TRAP_EL2; 7171 } 7172 return CP_ACCESS_TRAP; 7173 } 7174 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7175 return CP_ACCESS_TRAP_EL2; 7176 } 7177 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7178 return CP_ACCESS_TRAP_EL2; 7179 } 7180 if (el < 3 7181 && arm_feature(env, ARM_FEATURE_EL3) 7182 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7183 return CP_ACCESS_TRAP_EL3; 7184 } 7185 return CP_ACCESS_OK; 7186 } 7187 7188 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7189 const ARMCPRegInfo *ri, 7190 bool isread) 7191 { 7192 CPAccessResult nv1 = access_nv1(env, ri, isread); 7193 7194 if (nv1 != CP_ACCESS_OK) { 7195 return nv1; 7196 } 7197 return access_scxtnum(env, ri, isread); 7198 } 7199 7200 static const ARMCPRegInfo scxtnum_reginfo[] = { 7201 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7203 .access = PL0_RW, .accessfn = access_scxtnum, 7204 .fgt = FGT_SCXTNUM_EL0, 7205 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7206 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7208 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7209 .fgt = FGT_SCXTNUM_EL1, 7210 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7211 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7212 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7214 .access = PL2_RW, .accessfn = access_scxtnum, 7215 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7216 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7218 .access = PL3_RW, 7219 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7220 }; 7221 7222 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7223 bool isread) 7224 { 7225 if (arm_current_el(env) == 2 && 7226 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7227 return CP_ACCESS_TRAP_EL3; 7228 } 7229 return CP_ACCESS_OK; 7230 } 7231 7232 static const ARMCPRegInfo fgt_reginfo[] = { 7233 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7235 .nv2_redirect_offset = 0x1b8, 7236 .access = PL2_RW, .accessfn = access_fgt, 7237 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7238 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7240 .nv2_redirect_offset = 0x1c0, 7241 .access = PL2_RW, .accessfn = access_fgt, 7242 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7243 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7245 .nv2_redirect_offset = 0x1d0, 7246 .access = PL2_RW, .accessfn = access_fgt, 7247 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7248 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7249 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7250 .nv2_redirect_offset = 0x1d8, 7251 .access = PL2_RW, .accessfn = access_fgt, 7252 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7253 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7255 .nv2_redirect_offset = 0x1c8, 7256 .access = PL2_RW, .accessfn = access_fgt, 7257 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7258 }; 7259 7260 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7261 uint64_t value) 7262 { 7263 /* 7264 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7265 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7266 * about the RESS bits at the top -- we choose the "generate an EL2 7267 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7268 * the ptw.c code detect the resulting invalid address). 7269 */ 7270 env->cp15.vncr_el2 = value & ~0xfffULL; 7271 } 7272 7273 static const ARMCPRegInfo nv2_reginfo[] = { 7274 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7276 .access = PL2_RW, 7277 .writefn = vncr_write, 7278 .nv2_redirect_offset = 0xb0, 7279 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7280 }; 7281 7282 #endif /* TARGET_AARCH64 */ 7283 7284 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7285 bool isread) 7286 { 7287 int el = arm_current_el(env); 7288 7289 if (el == 0) { 7290 uint64_t sctlr = arm_sctlr(env, el); 7291 if (!(sctlr & SCTLR_EnRCTX)) { 7292 return CP_ACCESS_TRAP; 7293 } 7294 } else if (el == 1) { 7295 uint64_t hcr = arm_hcr_el2_eff(env); 7296 if (hcr & HCR_NV) { 7297 return CP_ACCESS_TRAP_EL2; 7298 } 7299 } 7300 return CP_ACCESS_OK; 7301 } 7302 7303 static const ARMCPRegInfo predinv_reginfo[] = { 7304 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7306 .fgt = FGT_CFPRCTX, 7307 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7308 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7310 .fgt = FGT_DVPRCTX, 7311 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7312 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7314 .fgt = FGT_CPPRCTX, 7315 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7316 /* 7317 * Note the AArch32 opcodes have a different OPC1. 7318 */ 7319 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7320 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7321 .fgt = FGT_CFPRCTX, 7322 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7323 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7324 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7325 .fgt = FGT_DVPRCTX, 7326 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7327 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7328 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7329 .fgt = FGT_CPPRCTX, 7330 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7331 }; 7332 7333 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7334 { 7335 /* Read the high 32 bits of the current CCSIDR */ 7336 return extract64(ccsidr_read(env, ri), 32, 32); 7337 } 7338 7339 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7340 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7341 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7342 .access = PL1_R, 7343 .accessfn = access_tid4, 7344 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7345 }; 7346 7347 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7348 bool isread) 7349 { 7350 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7351 return CP_ACCESS_TRAP_EL2; 7352 } 7353 7354 return CP_ACCESS_OK; 7355 } 7356 7357 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7358 bool isread) 7359 { 7360 if (arm_feature(env, ARM_FEATURE_V8)) { 7361 return access_aa64_tid3(env, ri, isread); 7362 } 7363 7364 return CP_ACCESS_OK; 7365 } 7366 7367 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7368 bool isread) 7369 { 7370 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7371 return CP_ACCESS_TRAP_EL2; 7372 } 7373 7374 return CP_ACCESS_OK; 7375 } 7376 7377 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7378 const ARMCPRegInfo *ri, bool isread) 7379 { 7380 /* 7381 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7382 * in v7A, not in v8A. 7383 */ 7384 if (!arm_feature(env, ARM_FEATURE_V8) && 7385 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7386 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7387 return CP_ACCESS_TRAP_EL2; 7388 } 7389 return CP_ACCESS_OK; 7390 } 7391 7392 static const ARMCPRegInfo jazelle_regs[] = { 7393 { .name = "JIDR", 7394 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7395 .access = PL1_R, .accessfn = access_jazelle, 7396 .type = ARM_CP_CONST, .resetvalue = 0 }, 7397 { .name = "JOSCR", 7398 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7399 .accessfn = access_joscr_jmcr, 7400 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7401 { .name = "JMCR", 7402 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7403 .accessfn = access_joscr_jmcr, 7404 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7405 }; 7406 7407 static const ARMCPRegInfo contextidr_el2 = { 7408 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7409 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7410 .access = PL2_RW, 7411 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7412 }; 7413 7414 static const ARMCPRegInfo vhe_reginfo[] = { 7415 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7417 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7418 .raw_writefn = raw_write, 7419 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7420 #ifndef CONFIG_USER_ONLY 7421 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7422 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7423 .fieldoffset = 7424 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7425 .type = ARM_CP_IO, .access = PL2_RW, 7426 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7427 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7428 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7429 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7430 .resetfn = gt_hv_timer_reset, 7431 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7432 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7433 .type = ARM_CP_IO, 7434 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7435 .access = PL2_RW, 7436 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7437 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7438 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7440 .type = ARM_CP_IO | ARM_CP_ALIAS, 7441 .access = PL2_RW, .accessfn = access_el1nvpct, 7442 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7443 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7444 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7445 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7447 .type = ARM_CP_IO | ARM_CP_ALIAS, 7448 .access = PL2_RW, .accessfn = access_el1nvvct, 7449 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7450 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7451 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7452 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7453 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7454 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7455 .access = PL2_RW, .accessfn = e2h_access, 7456 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7457 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7458 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7459 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7460 .access = PL2_RW, .accessfn = e2h_access, 7461 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7462 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7464 .type = ARM_CP_IO | ARM_CP_ALIAS, 7465 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7466 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7467 .access = PL2_RW, .accessfn = access_el1nvpct, 7468 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7469 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7471 .type = ARM_CP_IO | ARM_CP_ALIAS, 7472 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7473 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7474 .access = PL2_RW, .accessfn = access_el1nvvct, 7475 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7476 #endif 7477 }; 7478 7479 #ifndef CONFIG_USER_ONLY 7480 static const ARMCPRegInfo ats1e1_reginfo[] = { 7481 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7483 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7484 .fgt = FGT_ATS1E1RP, 7485 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7486 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7488 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7489 .fgt = FGT_ATS1E1WP, 7490 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7491 }; 7492 7493 static const ARMCPRegInfo ats1cp_reginfo[] = { 7494 { .name = "ATS1CPRP", 7495 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7496 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7497 .writefn = ats_write }, 7498 { .name = "ATS1CPWP", 7499 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7500 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7501 .writefn = ats_write }, 7502 }; 7503 #endif 7504 7505 /* 7506 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7507 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7508 * is non-zero, which is never for ARMv7, optionally in ARMv8 7509 * and mandatorily for ARMv8.2 and up. 7510 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7511 * implementation is RAZ/WI we can ignore this detail, as we 7512 * do for ACTLR. 7513 */ 7514 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7515 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7516 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7517 .access = PL1_RW, .accessfn = access_tacr, 7518 .type = ARM_CP_CONST, .resetvalue = 0 }, 7519 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7520 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7521 .access = PL2_RW, .type = ARM_CP_CONST, 7522 .resetvalue = 0 }, 7523 }; 7524 7525 void register_cp_regs_for_features(ARMCPU *cpu) 7526 { 7527 /* Register all the coprocessor registers based on feature bits */ 7528 CPUARMState *env = &cpu->env; 7529 if (arm_feature(env, ARM_FEATURE_M)) { 7530 /* M profile has no coprocessor registers */ 7531 return; 7532 } 7533 7534 define_arm_cp_regs(cpu, cp_reginfo); 7535 if (!arm_feature(env, ARM_FEATURE_V8)) { 7536 /* 7537 * Must go early as it is full of wildcards that may be 7538 * overridden by later definitions. 7539 */ 7540 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7541 } 7542 7543 define_tlb_insn_regs(cpu); 7544 7545 if (arm_feature(env, ARM_FEATURE_V6)) { 7546 /* The ID registers all have impdef reset values */ 7547 ARMCPRegInfo v6_idregs[] = { 7548 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7550 .access = PL1_R, .type = ARM_CP_CONST, 7551 .accessfn = access_aa32_tid3, 7552 .resetvalue = cpu->isar.id_pfr0 }, 7553 /* 7554 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7555 * the value of the GIC field until after we define these regs. 7556 */ 7557 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7559 .access = PL1_R, .type = ARM_CP_NO_RAW, 7560 .accessfn = access_aa32_tid3, 7561 #ifdef CONFIG_USER_ONLY 7562 .type = ARM_CP_CONST, 7563 .resetvalue = cpu->isar.id_pfr1, 7564 #else 7565 .type = ARM_CP_NO_RAW, 7566 .accessfn = access_aa32_tid3, 7567 .readfn = id_pfr1_read, 7568 .writefn = arm_cp_write_ignore 7569 #endif 7570 }, 7571 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa32_tid3, 7575 .resetvalue = cpu->isar.id_dfr0 }, 7576 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7578 .access = PL1_R, .type = ARM_CP_CONST, 7579 .accessfn = access_aa32_tid3, 7580 .resetvalue = cpu->id_afr0 }, 7581 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa32_tid3, 7585 .resetvalue = cpu->isar.id_mmfr0 }, 7586 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa32_tid3, 7590 .resetvalue = cpu->isar.id_mmfr1 }, 7591 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa32_tid3, 7595 .resetvalue = cpu->isar.id_mmfr2 }, 7596 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa32_tid3, 7600 .resetvalue = cpu->isar.id_mmfr3 }, 7601 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa32_tid3, 7605 .resetvalue = cpu->isar.id_isar0 }, 7606 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa32_tid3, 7610 .resetvalue = cpu->isar.id_isar1 }, 7611 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa32_tid3, 7615 .resetvalue = cpu->isar.id_isar2 }, 7616 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa32_tid3, 7620 .resetvalue = cpu->isar.id_isar3 }, 7621 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa32_tid3, 7625 .resetvalue = cpu->isar.id_isar4 }, 7626 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa32_tid3, 7630 .resetvalue = cpu->isar.id_isar5 }, 7631 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa32_tid3, 7635 .resetvalue = cpu->isar.id_mmfr4 }, 7636 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa32_tid3, 7640 .resetvalue = cpu->isar.id_isar6 }, 7641 }; 7642 define_arm_cp_regs(cpu, v6_idregs); 7643 define_arm_cp_regs(cpu, v6_cp_reginfo); 7644 } else { 7645 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7646 } 7647 if (arm_feature(env, ARM_FEATURE_V6K)) { 7648 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7649 } 7650 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7651 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7652 } 7653 if (arm_feature(env, ARM_FEATURE_V7)) { 7654 ARMCPRegInfo clidr = { 7655 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7656 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_tid4, 7659 .fgt = FGT_CLIDR_EL1, 7660 .resetvalue = cpu->clidr 7661 }; 7662 define_one_arm_cp_reg(cpu, &clidr); 7663 define_arm_cp_regs(cpu, v7_cp_reginfo); 7664 define_debug_regs(cpu); 7665 define_pmu_regs(cpu); 7666 } else { 7667 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7668 } 7669 if (arm_feature(env, ARM_FEATURE_V8)) { 7670 /* 7671 * v8 ID registers, which all have impdef reset values. 7672 * Note that within the ID register ranges the unused slots 7673 * must all RAZ, not UNDEF; future architecture versions may 7674 * define new registers here. 7675 * ID registers which are AArch64 views of the AArch32 ID registers 7676 * which already existed in v6 and v7 are handled elsewhere, 7677 * in v6_idregs[]. 7678 */ 7679 int i; 7680 ARMCPRegInfo v8_idregs[] = { 7681 /* 7682 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7683 * emulation because we don't know the right value for the 7684 * GIC field until after we define these regs. 7685 */ 7686 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7688 .access = PL1_R, 7689 #ifdef CONFIG_USER_ONLY 7690 .type = ARM_CP_CONST, 7691 .resetvalue = cpu->isar.id_aa64pfr0 7692 #else 7693 .type = ARM_CP_NO_RAW, 7694 .accessfn = access_aa64_tid3, 7695 .readfn = id_aa64pfr0_read, 7696 .writefn = arm_cp_write_ignore 7697 #endif 7698 }, 7699 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = cpu->isar.id_aa64pfr1}, 7704 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = 0 }, 7709 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7711 .access = PL1_R, .type = ARM_CP_CONST, 7712 .accessfn = access_aa64_tid3, 7713 .resetvalue = 0 }, 7714 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7716 .access = PL1_R, .type = ARM_CP_CONST, 7717 .accessfn = access_aa64_tid3, 7718 .resetvalue = cpu->isar.id_aa64zfr0 }, 7719 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = cpu->isar.id_aa64smfr0 }, 7724 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa64_tid3, 7728 .resetvalue = 0 }, 7729 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7731 .access = PL1_R, .type = ARM_CP_CONST, 7732 .accessfn = access_aa64_tid3, 7733 .resetvalue = 0 }, 7734 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7736 .access = PL1_R, .type = ARM_CP_CONST, 7737 .accessfn = access_aa64_tid3, 7738 .resetvalue = cpu->isar.id_aa64dfr0 }, 7739 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7741 .access = PL1_R, .type = ARM_CP_CONST, 7742 .accessfn = access_aa64_tid3, 7743 .resetvalue = cpu->isar.id_aa64dfr1 }, 7744 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7746 .access = PL1_R, .type = ARM_CP_CONST, 7747 .accessfn = access_aa64_tid3, 7748 .resetvalue = 0 }, 7749 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa64_tid3, 7753 .resetvalue = 0 }, 7754 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7756 .access = PL1_R, .type = ARM_CP_CONST, 7757 .accessfn = access_aa64_tid3, 7758 .resetvalue = cpu->id_aa64afr0 }, 7759 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7761 .access = PL1_R, .type = ARM_CP_CONST, 7762 .accessfn = access_aa64_tid3, 7763 .resetvalue = cpu->id_aa64afr1 }, 7764 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7766 .access = PL1_R, .type = ARM_CP_CONST, 7767 .accessfn = access_aa64_tid3, 7768 .resetvalue = 0 }, 7769 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7771 .access = PL1_R, .type = ARM_CP_CONST, 7772 .accessfn = access_aa64_tid3, 7773 .resetvalue = 0 }, 7774 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7776 .access = PL1_R, .type = ARM_CP_CONST, 7777 .accessfn = access_aa64_tid3, 7778 .resetvalue = cpu->isar.id_aa64isar0 }, 7779 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7781 .access = PL1_R, .type = ARM_CP_CONST, 7782 .accessfn = access_aa64_tid3, 7783 .resetvalue = cpu->isar.id_aa64isar1 }, 7784 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7786 .access = PL1_R, .type = ARM_CP_CONST, 7787 .accessfn = access_aa64_tid3, 7788 .resetvalue = cpu->isar.id_aa64isar2 }, 7789 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7791 .access = PL1_R, .type = ARM_CP_CONST, 7792 .accessfn = access_aa64_tid3, 7793 .resetvalue = 0 }, 7794 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7796 .access = PL1_R, .type = ARM_CP_CONST, 7797 .accessfn = access_aa64_tid3, 7798 .resetvalue = 0 }, 7799 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7801 .access = PL1_R, .type = ARM_CP_CONST, 7802 .accessfn = access_aa64_tid3, 7803 .resetvalue = 0 }, 7804 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7806 .access = PL1_R, .type = ARM_CP_CONST, 7807 .accessfn = access_aa64_tid3, 7808 .resetvalue = 0 }, 7809 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7811 .access = PL1_R, .type = ARM_CP_CONST, 7812 .accessfn = access_aa64_tid3, 7813 .resetvalue = 0 }, 7814 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7816 .access = PL1_R, .type = ARM_CP_CONST, 7817 .accessfn = access_aa64_tid3, 7818 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7819 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7821 .access = PL1_R, .type = ARM_CP_CONST, 7822 .accessfn = access_aa64_tid3, 7823 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7824 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7826 .access = PL1_R, .type = ARM_CP_CONST, 7827 .accessfn = access_aa64_tid3, 7828 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7829 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 7830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7831 .access = PL1_R, .type = ARM_CP_CONST, 7832 .accessfn = access_aa64_tid3, 7833 .resetvalue = cpu->isar.id_aa64mmfr3 }, 7834 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7836 .access = PL1_R, .type = ARM_CP_CONST, 7837 .accessfn = access_aa64_tid3, 7838 .resetvalue = 0 }, 7839 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7841 .access = PL1_R, .type = ARM_CP_CONST, 7842 .accessfn = access_aa64_tid3, 7843 .resetvalue = 0 }, 7844 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7846 .access = PL1_R, .type = ARM_CP_CONST, 7847 .accessfn = access_aa64_tid3, 7848 .resetvalue = 0 }, 7849 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7851 .access = PL1_R, .type = ARM_CP_CONST, 7852 .accessfn = access_aa64_tid3, 7853 .resetvalue = 0 }, 7854 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7856 .access = PL1_R, .type = ARM_CP_CONST, 7857 .accessfn = access_aa64_tid3, 7858 .resetvalue = cpu->isar.mvfr0 }, 7859 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7861 .access = PL1_R, .type = ARM_CP_CONST, 7862 .accessfn = access_aa64_tid3, 7863 .resetvalue = cpu->isar.mvfr1 }, 7864 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7866 .access = PL1_R, .type = ARM_CP_CONST, 7867 .accessfn = access_aa64_tid3, 7868 .resetvalue = cpu->isar.mvfr2 }, 7869 /* 7870 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7871 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7872 * as RAZ, since it is in the "reserved for future ID 7873 * registers, RAZ" part of the AArch32 encoding space. 7874 */ 7875 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7876 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = 0 }, 7880 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7881 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = 0 }, 7885 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7886 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7887 .access = PL1_R, .type = ARM_CP_CONST, 7888 .accessfn = access_aa64_tid3, 7889 .resetvalue = 0 }, 7890 /* 7891 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7892 * they're also RAZ for AArch64, and in v8 are gradually 7893 * being filled with AArch64-view-of-AArch32-ID-register 7894 * for new ID registers. 7895 */ 7896 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7898 .access = PL1_R, .type = ARM_CP_CONST, 7899 .accessfn = access_aa64_tid3, 7900 .resetvalue = 0 }, 7901 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7903 .access = PL1_R, .type = ARM_CP_CONST, 7904 .accessfn = access_aa64_tid3, 7905 .resetvalue = cpu->isar.id_pfr2 }, 7906 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7908 .access = PL1_R, .type = ARM_CP_CONST, 7909 .accessfn = access_aa64_tid3, 7910 .resetvalue = cpu->isar.id_dfr1 }, 7911 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7913 .access = PL1_R, .type = ARM_CP_CONST, 7914 .accessfn = access_aa64_tid3, 7915 .resetvalue = cpu->isar.id_mmfr5 }, 7916 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7918 .access = PL1_R, .type = ARM_CP_CONST, 7919 .accessfn = access_aa64_tid3, 7920 .resetvalue = 0 }, 7921 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7922 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7923 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7924 .fgt = FGT_PMCEIDN_EL0, 7925 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7926 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7928 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7929 .fgt = FGT_PMCEIDN_EL0, 7930 .resetvalue = cpu->pmceid0 }, 7931 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7932 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7934 .fgt = FGT_PMCEIDN_EL0, 7935 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7936 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7937 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7938 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7939 .fgt = FGT_PMCEIDN_EL0, 7940 .resetvalue = cpu->pmceid1 }, 7941 }; 7942 #ifdef CONFIG_USER_ONLY 7943 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7944 { .name = "ID_AA64PFR0_EL1", 7945 .exported_bits = R_ID_AA64PFR0_FP_MASK | 7946 R_ID_AA64PFR0_ADVSIMD_MASK | 7947 R_ID_AA64PFR0_SVE_MASK | 7948 R_ID_AA64PFR0_DIT_MASK, 7949 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 7950 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 7951 { .name = "ID_AA64PFR1_EL1", 7952 .exported_bits = R_ID_AA64PFR1_BT_MASK | 7953 R_ID_AA64PFR1_SSBS_MASK | 7954 R_ID_AA64PFR1_MTE_MASK | 7955 R_ID_AA64PFR1_SME_MASK }, 7956 { .name = "ID_AA64PFR*_EL1_RESERVED", 7957 .is_glob = true }, 7958 { .name = "ID_AA64ZFR0_EL1", 7959 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 7960 R_ID_AA64ZFR0_AES_MASK | 7961 R_ID_AA64ZFR0_BITPERM_MASK | 7962 R_ID_AA64ZFR0_BFLOAT16_MASK | 7963 R_ID_AA64ZFR0_B16B16_MASK | 7964 R_ID_AA64ZFR0_SHA3_MASK | 7965 R_ID_AA64ZFR0_SM4_MASK | 7966 R_ID_AA64ZFR0_I8MM_MASK | 7967 R_ID_AA64ZFR0_F32MM_MASK | 7968 R_ID_AA64ZFR0_F64MM_MASK }, 7969 { .name = "ID_AA64SMFR0_EL1", 7970 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 7971 R_ID_AA64SMFR0_BI32I32_MASK | 7972 R_ID_AA64SMFR0_B16F32_MASK | 7973 R_ID_AA64SMFR0_F16F32_MASK | 7974 R_ID_AA64SMFR0_I8I32_MASK | 7975 R_ID_AA64SMFR0_F16F16_MASK | 7976 R_ID_AA64SMFR0_B16B16_MASK | 7977 R_ID_AA64SMFR0_I16I32_MASK | 7978 R_ID_AA64SMFR0_F64F64_MASK | 7979 R_ID_AA64SMFR0_I16I64_MASK | 7980 R_ID_AA64SMFR0_SMEVER_MASK | 7981 R_ID_AA64SMFR0_FA64_MASK }, 7982 { .name = "ID_AA64MMFR0_EL1", 7983 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 7984 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 7985 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 7986 { .name = "ID_AA64MMFR1_EL1", 7987 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 7988 { .name = "ID_AA64MMFR2_EL1", 7989 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 7990 { .name = "ID_AA64MMFR3_EL1", 7991 .exported_bits = 0 }, 7992 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7993 .is_glob = true }, 7994 { .name = "ID_AA64DFR0_EL1", 7995 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 7996 { .name = "ID_AA64DFR1_EL1" }, 7997 { .name = "ID_AA64DFR*_EL1_RESERVED", 7998 .is_glob = true }, 7999 { .name = "ID_AA64AFR*", 8000 .is_glob = true }, 8001 { .name = "ID_AA64ISAR0_EL1", 8002 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8003 R_ID_AA64ISAR0_SHA1_MASK | 8004 R_ID_AA64ISAR0_SHA2_MASK | 8005 R_ID_AA64ISAR0_CRC32_MASK | 8006 R_ID_AA64ISAR0_ATOMIC_MASK | 8007 R_ID_AA64ISAR0_RDM_MASK | 8008 R_ID_AA64ISAR0_SHA3_MASK | 8009 R_ID_AA64ISAR0_SM3_MASK | 8010 R_ID_AA64ISAR0_SM4_MASK | 8011 R_ID_AA64ISAR0_DP_MASK | 8012 R_ID_AA64ISAR0_FHM_MASK | 8013 R_ID_AA64ISAR0_TS_MASK | 8014 R_ID_AA64ISAR0_RNDR_MASK }, 8015 { .name = "ID_AA64ISAR1_EL1", 8016 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8017 R_ID_AA64ISAR1_APA_MASK | 8018 R_ID_AA64ISAR1_API_MASK | 8019 R_ID_AA64ISAR1_JSCVT_MASK | 8020 R_ID_AA64ISAR1_FCMA_MASK | 8021 R_ID_AA64ISAR1_LRCPC_MASK | 8022 R_ID_AA64ISAR1_GPA_MASK | 8023 R_ID_AA64ISAR1_GPI_MASK | 8024 R_ID_AA64ISAR1_FRINTTS_MASK | 8025 R_ID_AA64ISAR1_SB_MASK | 8026 R_ID_AA64ISAR1_BF16_MASK | 8027 R_ID_AA64ISAR1_DGH_MASK | 8028 R_ID_AA64ISAR1_I8MM_MASK }, 8029 { .name = "ID_AA64ISAR2_EL1", 8030 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8031 R_ID_AA64ISAR2_RPRES_MASK | 8032 R_ID_AA64ISAR2_GPA3_MASK | 8033 R_ID_AA64ISAR2_APA3_MASK | 8034 R_ID_AA64ISAR2_MOPS_MASK | 8035 R_ID_AA64ISAR2_BC_MASK | 8036 R_ID_AA64ISAR2_RPRFM_MASK | 8037 R_ID_AA64ISAR2_CSSC_MASK }, 8038 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8039 .is_glob = true }, 8040 }; 8041 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8042 #endif 8043 /* 8044 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8045 * TODO: For RMR, a write with bit 1 set should do something with 8046 * cpu_reset(). In the meantime, "the bit is strictly a request", 8047 * so we are in spec just ignoring writes. 8048 */ 8049 if (!arm_feature(env, ARM_FEATURE_EL3) && 8050 !arm_feature(env, ARM_FEATURE_EL2)) { 8051 ARMCPRegInfo el1_reset_regs[] = { 8052 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8053 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8054 .access = PL1_R, 8055 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8056 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8057 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8058 .access = PL1_RW, .type = ARM_CP_CONST, 8059 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8060 }; 8061 define_arm_cp_regs(cpu, el1_reset_regs); 8062 } 8063 define_arm_cp_regs(cpu, v8_idregs); 8064 define_arm_cp_regs(cpu, v8_cp_reginfo); 8065 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8066 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8067 } 8068 8069 for (i = 4; i < 16; i++) { 8070 /* 8071 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8072 * For pre-v8 cores there are RAZ patterns for these in 8073 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8074 * v8 extends the "must RAZ" part of the ID register space 8075 * to also cover c0, 0, c{8-15}, {0-7}. 8076 * These are STATE_AA32 because in the AArch64 sysreg space 8077 * c4-c7 is where the AArch64 ID registers live (and we've 8078 * already defined those in v8_idregs[]), and c8-c15 are not 8079 * "must RAZ" for AArch64. 8080 */ 8081 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8082 ARMCPRegInfo v8_aa32_raz_idregs = { 8083 .name = name, 8084 .state = ARM_CP_STATE_AA32, 8085 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8086 .access = PL1_R, .type = ARM_CP_CONST, 8087 .accessfn = access_aa64_tid3, 8088 .resetvalue = 0 }; 8089 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8090 } 8091 } 8092 8093 /* 8094 * Register the base EL2 cpregs. 8095 * Pre v8, these registers are implemented only as part of the 8096 * Virtualization Extensions (EL2 present). Beginning with v8, 8097 * if EL2 is missing but EL3 is enabled, mostly these become 8098 * RES0 from EL3, with some specific exceptions. 8099 */ 8100 if (arm_feature(env, ARM_FEATURE_EL2) 8101 || (arm_feature(env, ARM_FEATURE_EL3) 8102 && arm_feature(env, ARM_FEATURE_V8))) { 8103 uint64_t vmpidr_def = mpidr_read_val(env); 8104 ARMCPRegInfo vpidr_regs[] = { 8105 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8106 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8107 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8108 .resetvalue = cpu->midr, 8109 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8110 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8111 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8112 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8113 .access = PL2_RW, .resetvalue = cpu->midr, 8114 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8115 .nv2_redirect_offset = 0x88, 8116 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8117 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8118 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8119 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8120 .resetvalue = vmpidr_def, 8121 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8122 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8123 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8124 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8125 .access = PL2_RW, .resetvalue = vmpidr_def, 8126 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8127 .nv2_redirect_offset = 0x50, 8128 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8129 }; 8130 /* 8131 * The only field of MDCR_EL2 that has a defined architectural reset 8132 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8133 */ 8134 ARMCPRegInfo mdcr_el2 = { 8135 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8136 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8137 .writefn = mdcr_el2_write, 8138 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8139 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8140 }; 8141 define_one_arm_cp_reg(cpu, &mdcr_el2); 8142 define_arm_cp_regs(cpu, vpidr_regs); 8143 define_arm_cp_regs(cpu, el2_cp_reginfo); 8144 if (arm_feature(env, ARM_FEATURE_V8)) { 8145 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8146 } 8147 if (cpu_isar_feature(aa64_sel2, cpu)) { 8148 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8149 } 8150 /* 8151 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8152 * See commentary near RMR_EL1. 8153 */ 8154 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8155 static const ARMCPRegInfo el2_reset_regs[] = { 8156 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8157 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8158 .access = PL2_R, 8159 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8160 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8161 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8162 .access = PL2_R, 8163 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8164 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8165 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8167 }; 8168 define_arm_cp_regs(cpu, el2_reset_regs); 8169 } 8170 } 8171 8172 /* Register the base EL3 cpregs. */ 8173 if (arm_feature(env, ARM_FEATURE_EL3)) { 8174 define_arm_cp_regs(cpu, el3_cp_reginfo); 8175 ARMCPRegInfo el3_regs[] = { 8176 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8177 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8178 .access = PL3_R, 8179 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8180 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8181 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8182 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8183 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8184 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8185 .access = PL3_RW, .type = ARM_CP_CONST, 8186 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8187 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8188 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8189 .access = PL3_RW, 8190 .raw_writefn = raw_write, .writefn = sctlr_write, 8191 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8192 .resetvalue = cpu->reset_sctlr }, 8193 }; 8194 8195 define_arm_cp_regs(cpu, el3_regs); 8196 } 8197 /* 8198 * The behaviour of NSACR is sufficiently various that we don't 8199 * try to describe it in a single reginfo: 8200 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8201 * reads as constant 0xc00 from NS EL1 and NS EL2 8202 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8203 * if v7 without EL3, register doesn't exist 8204 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8205 */ 8206 if (arm_feature(env, ARM_FEATURE_EL3)) { 8207 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8208 static const ARMCPRegInfo nsacr = { 8209 .name = "NSACR", .type = ARM_CP_CONST, 8210 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8211 .access = PL1_RW, .accessfn = nsacr_access, 8212 .resetvalue = 0xc00 8213 }; 8214 define_one_arm_cp_reg(cpu, &nsacr); 8215 } else { 8216 static const ARMCPRegInfo nsacr = { 8217 .name = "NSACR", 8218 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8219 .access = PL3_RW | PL1_R, 8220 .resetvalue = 0, 8221 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8222 }; 8223 define_one_arm_cp_reg(cpu, &nsacr); 8224 } 8225 } else { 8226 if (arm_feature(env, ARM_FEATURE_V8)) { 8227 static const ARMCPRegInfo nsacr = { 8228 .name = "NSACR", .type = ARM_CP_CONST, 8229 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8230 .access = PL1_R, 8231 .resetvalue = 0xc00 8232 }; 8233 define_one_arm_cp_reg(cpu, &nsacr); 8234 } 8235 } 8236 8237 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8238 if (arm_feature(env, ARM_FEATURE_V6)) { 8239 /* PMSAv6 not implemented */ 8240 assert(arm_feature(env, ARM_FEATURE_V7)); 8241 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8242 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8243 } else { 8244 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8245 } 8246 } else { 8247 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8248 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8249 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8250 if (cpu_isar_feature(aa32_hpd, cpu)) { 8251 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8252 } 8253 } 8254 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8255 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8256 } 8257 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8258 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8259 } 8260 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8261 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8262 } 8263 #ifndef CONFIG_USER_ONLY 8264 if (cpu_isar_feature(aa64_ecv, cpu)) { 8265 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8266 } 8267 #endif 8268 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8269 ARMCPRegInfo vapa_cp_reginfo[] = { 8270 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8271 .access = PL1_RW, .resetvalue = 0, 8272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8273 offsetoflow32(CPUARMState, cp15.par_ns) }, 8274 .writefn = par_write}, 8275 #ifndef CONFIG_USER_ONLY 8276 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8277 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8278 .access = PL1_W, .accessfn = ats_access, 8279 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8280 #endif 8281 }; 8282 8283 /* 8284 * When LPAE exists this 32-bit PAR register is an alias of the 8285 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8286 */ 8287 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8288 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8289 } 8290 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8291 } 8292 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8293 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8294 } 8295 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8296 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8297 } 8298 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8299 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8300 } 8301 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8302 define_arm_cp_regs(cpu, omap_cp_reginfo); 8303 } 8304 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8305 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8306 } 8307 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8308 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8309 } 8310 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8311 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8312 } 8313 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8314 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8315 } 8316 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8317 define_arm_cp_regs(cpu, jazelle_regs); 8318 } 8319 /* 8320 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8321 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8322 * be read-only (ie write causes UNDEF exception). 8323 */ 8324 { 8325 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8326 /* 8327 * Pre-v8 MIDR space. 8328 * Note that the MIDR isn't a simple constant register because 8329 * of the TI925 behaviour where writes to another register can 8330 * cause the MIDR value to change. 8331 * 8332 * Unimplemented registers in the c15 0 0 0 space default to 8333 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8334 * and friends override accordingly. 8335 */ 8336 { .name = "MIDR", 8337 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8338 .access = PL1_R, .resetvalue = cpu->midr, 8339 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8340 .readfn = midr_read, 8341 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8342 .type = ARM_CP_OVERRIDE }, 8343 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8344 { .name = "DUMMY", 8345 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8346 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8347 { .name = "DUMMY", 8348 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8349 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8350 { .name = "DUMMY", 8351 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8352 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8353 { .name = "DUMMY", 8354 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8355 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8356 { .name = "DUMMY", 8357 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8358 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8359 }; 8360 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8361 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8363 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8364 .fgt = FGT_MIDR_EL1, 8365 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8366 .readfn = midr_read }, 8367 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8368 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8369 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8370 .access = PL1_R, .resetvalue = cpu->midr }, 8371 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8373 .access = PL1_R, 8374 .accessfn = access_aa64_tid1, 8375 .fgt = FGT_REVIDR_EL1, 8376 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8377 }; 8378 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8379 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8380 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8381 .access = PL1_R, .resetvalue = cpu->midr 8382 }; 8383 ARMCPRegInfo id_cp_reginfo[] = { 8384 /* These are common to v8 and pre-v8 */ 8385 { .name = "CTR", 8386 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8387 .access = PL1_R, .accessfn = ctr_el0_access, 8388 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8389 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8390 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8391 .access = PL0_R, .accessfn = ctr_el0_access, 8392 .fgt = FGT_CTR_EL0, 8393 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8394 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8395 { .name = "TCMTR", 8396 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8397 .access = PL1_R, 8398 .accessfn = access_aa32_tid1, 8399 .type = ARM_CP_CONST, .resetvalue = 0 }, 8400 }; 8401 /* TLBTR is specific to VMSA */ 8402 ARMCPRegInfo id_tlbtr_reginfo = { 8403 .name = "TLBTR", 8404 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8405 .access = PL1_R, 8406 .accessfn = access_aa32_tid1, 8407 .type = ARM_CP_CONST, .resetvalue = 0, 8408 }; 8409 /* MPUIR is specific to PMSA V6+ */ 8410 ARMCPRegInfo id_mpuir_reginfo = { 8411 .name = "MPUIR", 8412 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8413 .access = PL1_R, .type = ARM_CP_CONST, 8414 .resetvalue = cpu->pmsav7_dregion << 8 8415 }; 8416 /* HMPUIR is specific to PMSA V8 */ 8417 ARMCPRegInfo id_hmpuir_reginfo = { 8418 .name = "HMPUIR", 8419 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8420 .access = PL2_R, .type = ARM_CP_CONST, 8421 .resetvalue = cpu->pmsav8r_hdregion 8422 }; 8423 static const ARMCPRegInfo crn0_wi_reginfo = { 8424 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8425 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8426 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8427 }; 8428 #ifdef CONFIG_USER_ONLY 8429 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8430 { .name = "MIDR_EL1", 8431 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8432 R_MIDR_EL1_PARTNUM_MASK | 8433 R_MIDR_EL1_ARCHITECTURE_MASK | 8434 R_MIDR_EL1_VARIANT_MASK | 8435 R_MIDR_EL1_IMPLEMENTER_MASK }, 8436 { .name = "REVIDR_EL1" }, 8437 }; 8438 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8439 #endif 8440 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8441 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8442 size_t i; 8443 /* 8444 * Register the blanket "writes ignored" value first to cover the 8445 * whole space. Then update the specific ID registers to allow write 8446 * access, so that they ignore writes rather than causing them to 8447 * UNDEF. 8448 */ 8449 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8450 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8451 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8452 } 8453 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8454 id_cp_reginfo[i].access = PL1_RW; 8455 } 8456 id_mpuir_reginfo.access = PL1_RW; 8457 id_tlbtr_reginfo.access = PL1_RW; 8458 } 8459 if (arm_feature(env, ARM_FEATURE_V8)) { 8460 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8461 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8462 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8463 } 8464 } else { 8465 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8466 } 8467 define_arm_cp_regs(cpu, id_cp_reginfo); 8468 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8469 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8470 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8471 arm_feature(env, ARM_FEATURE_V8)) { 8472 uint32_t i = 0; 8473 char *tmp_string; 8474 8475 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8476 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8477 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8478 8479 /* Register alias is only valid for first 32 indexes */ 8480 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8481 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8482 uint8_t opc1 = extract32(i, 4, 1); 8483 uint8_t opc2 = extract32(i, 0, 1) << 2; 8484 8485 tmp_string = g_strdup_printf("PRBAR%u", i); 8486 ARMCPRegInfo tmp_prbarn_reginfo = { 8487 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8488 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8489 .access = PL1_RW, .resetvalue = 0, 8490 .accessfn = access_tvm_trvm, 8491 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8492 }; 8493 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8494 g_free(tmp_string); 8495 8496 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8497 tmp_string = g_strdup_printf("PRLAR%u", i); 8498 ARMCPRegInfo tmp_prlarn_reginfo = { 8499 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8500 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8501 .access = PL1_RW, .resetvalue = 0, 8502 .accessfn = access_tvm_trvm, 8503 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8504 }; 8505 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8506 g_free(tmp_string); 8507 } 8508 8509 /* Register alias is only valid for first 32 indexes */ 8510 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8511 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8512 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8513 uint8_t opc2 = extract32(i, 0, 1) << 2; 8514 8515 tmp_string = g_strdup_printf("HPRBAR%u", i); 8516 ARMCPRegInfo tmp_hprbarn_reginfo = { 8517 .name = tmp_string, 8518 .type = ARM_CP_NO_RAW, 8519 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8520 .access = PL2_RW, .resetvalue = 0, 8521 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8522 }; 8523 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8524 g_free(tmp_string); 8525 8526 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8527 tmp_string = g_strdup_printf("HPRLAR%u", i); 8528 ARMCPRegInfo tmp_hprlarn_reginfo = { 8529 .name = tmp_string, 8530 .type = ARM_CP_NO_RAW, 8531 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8532 .access = PL2_RW, .resetvalue = 0, 8533 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8534 }; 8535 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8536 g_free(tmp_string); 8537 } 8538 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8539 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8540 } 8541 } 8542 8543 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8544 ARMCPRegInfo mpidr_cp_reginfo[] = { 8545 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8546 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8547 .fgt = FGT_MPIDR_EL1, 8548 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8549 }; 8550 #ifdef CONFIG_USER_ONLY 8551 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8552 { .name = "MPIDR_EL1", 8553 .fixed_bits = 0x0000000080000000 }, 8554 }; 8555 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8556 #endif 8557 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8558 } 8559 8560 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8561 ARMCPRegInfo auxcr_reginfo[] = { 8562 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8563 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8564 .access = PL1_RW, .accessfn = access_tacr, 8565 .nv2_redirect_offset = 0x118, 8566 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8567 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8568 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8569 .access = PL2_RW, .type = ARM_CP_CONST, 8570 .resetvalue = 0 }, 8571 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8572 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8573 .access = PL3_RW, .type = ARM_CP_CONST, 8574 .resetvalue = 0 }, 8575 }; 8576 define_arm_cp_regs(cpu, auxcr_reginfo); 8577 if (cpu_isar_feature(aa32_ac2, cpu)) { 8578 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8579 } 8580 } 8581 8582 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8583 /* 8584 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8585 * There are two flavours: 8586 * (1) older 32-bit only cores have a simple 32-bit CBAR 8587 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8588 * 32-bit register visible to AArch32 at a different encoding 8589 * to the "flavour 1" register and with the bits rearranged to 8590 * be able to squash a 64-bit address into the 32-bit view. 8591 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8592 * in future if we support AArch32-only configs of some of the 8593 * AArch64 cores we might need to add a specific feature flag 8594 * to indicate cores with "flavour 2" CBAR. 8595 */ 8596 if (arm_feature(env, ARM_FEATURE_V8)) { 8597 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8598 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8599 | extract64(cpu->reset_cbar, 32, 12); 8600 ARMCPRegInfo cbar_reginfo[] = { 8601 { .name = "CBAR", 8602 .type = ARM_CP_CONST, 8603 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8604 .access = PL1_R, .resetvalue = cbar32 }, 8605 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8606 .type = ARM_CP_CONST, 8607 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8608 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8609 }; 8610 /* We don't implement a r/w 64 bit CBAR currently */ 8611 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8612 define_arm_cp_regs(cpu, cbar_reginfo); 8613 } else { 8614 ARMCPRegInfo cbar = { 8615 .name = "CBAR", 8616 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8617 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8618 .fieldoffset = offsetof(CPUARMState, 8619 cp15.c15_config_base_address) 8620 }; 8621 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8622 cbar.access = PL1_R; 8623 cbar.fieldoffset = 0; 8624 cbar.type = ARM_CP_CONST; 8625 } 8626 define_one_arm_cp_reg(cpu, &cbar); 8627 } 8628 } 8629 8630 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8631 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8632 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8633 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8634 .access = PL1_RW, .writefn = vbar_write, 8635 .accessfn = access_nv1, 8636 .fgt = FGT_VBAR_EL1, 8637 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8638 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8639 offsetof(CPUARMState, cp15.vbar_ns) }, 8640 .resetvalue = 0 }, 8641 }; 8642 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8643 } 8644 8645 /* Generic registers whose values depend on the implementation */ 8646 { 8647 ARMCPRegInfo sctlr = { 8648 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8649 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8650 .access = PL1_RW, .accessfn = access_tvm_trvm, 8651 .fgt = FGT_SCTLR_EL1, 8652 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8653 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8654 offsetof(CPUARMState, cp15.sctlr_ns) }, 8655 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8656 .raw_writefn = raw_write, 8657 }; 8658 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8659 /* 8660 * Normally we would always end the TB on an SCTLR write, but Linux 8661 * arch/arm/mach-pxa/sleep.S expects two instructions following 8662 * an MMU enable to execute from cache. Imitate this behaviour. 8663 */ 8664 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8665 } 8666 define_one_arm_cp_reg(cpu, &sctlr); 8667 8668 if (arm_feature(env, ARM_FEATURE_PMSA) && 8669 arm_feature(env, ARM_FEATURE_V8)) { 8670 ARMCPRegInfo vsctlr = { 8671 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8672 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8673 .access = PL2_RW, .resetvalue = 0x0, 8674 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8675 }; 8676 define_one_arm_cp_reg(cpu, &vsctlr); 8677 } 8678 } 8679 8680 if (cpu_isar_feature(aa64_lor, cpu)) { 8681 define_arm_cp_regs(cpu, lor_reginfo); 8682 } 8683 if (cpu_isar_feature(aa64_pan, cpu)) { 8684 define_one_arm_cp_reg(cpu, &pan_reginfo); 8685 } 8686 #ifndef CONFIG_USER_ONLY 8687 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8688 define_arm_cp_regs(cpu, ats1e1_reginfo); 8689 } 8690 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8691 define_arm_cp_regs(cpu, ats1cp_reginfo); 8692 } 8693 #endif 8694 if (cpu_isar_feature(aa64_uao, cpu)) { 8695 define_one_arm_cp_reg(cpu, &uao_reginfo); 8696 } 8697 8698 if (cpu_isar_feature(aa64_dit, cpu)) { 8699 define_one_arm_cp_reg(cpu, &dit_reginfo); 8700 } 8701 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8702 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8703 } 8704 if (cpu_isar_feature(any_ras, cpu)) { 8705 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8706 } 8707 8708 if (cpu_isar_feature(aa64_vh, cpu) || 8709 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8710 define_one_arm_cp_reg(cpu, &contextidr_el2); 8711 } 8712 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8713 define_arm_cp_regs(cpu, vhe_reginfo); 8714 } 8715 8716 if (cpu_isar_feature(aa64_sve, cpu)) { 8717 define_arm_cp_regs(cpu, zcr_reginfo); 8718 } 8719 8720 if (cpu_isar_feature(aa64_hcx, cpu)) { 8721 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8722 } 8723 8724 #ifdef TARGET_AARCH64 8725 if (cpu_isar_feature(aa64_sme, cpu)) { 8726 define_arm_cp_regs(cpu, sme_reginfo); 8727 } 8728 if (cpu_isar_feature(aa64_pauth, cpu)) { 8729 define_arm_cp_regs(cpu, pauth_reginfo); 8730 } 8731 if (cpu_isar_feature(aa64_rndr, cpu)) { 8732 define_arm_cp_regs(cpu, rndr_reginfo); 8733 } 8734 /* Data Cache clean instructions up to PoP */ 8735 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8736 define_one_arm_cp_reg(cpu, dcpop_reg); 8737 8738 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8739 define_one_arm_cp_reg(cpu, dcpodp_reg); 8740 } 8741 } 8742 8743 /* 8744 * If full MTE is enabled, add all of the system registers. 8745 * If only "instructions available at EL0" are enabled, 8746 * then define only a RAZ/WI version of PSTATE.TCO. 8747 */ 8748 if (cpu_isar_feature(aa64_mte, cpu)) { 8749 ARMCPRegInfo gmid_reginfo = { 8750 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8751 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8752 .access = PL1_R, .accessfn = access_aa64_tid5, 8753 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8754 }; 8755 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8756 define_arm_cp_regs(cpu, mte_reginfo); 8757 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8758 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8759 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8760 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8761 } 8762 8763 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8764 define_arm_cp_regs(cpu, scxtnum_reginfo); 8765 } 8766 8767 if (cpu_isar_feature(aa64_fgt, cpu)) { 8768 define_arm_cp_regs(cpu, fgt_reginfo); 8769 } 8770 8771 if (cpu_isar_feature(aa64_rme, cpu)) { 8772 define_arm_cp_regs(cpu, rme_reginfo); 8773 if (cpu_isar_feature(aa64_mte, cpu)) { 8774 define_arm_cp_regs(cpu, rme_mte_reginfo); 8775 } 8776 } 8777 8778 if (cpu_isar_feature(aa64_nv2, cpu)) { 8779 define_arm_cp_regs(cpu, nv2_reginfo); 8780 } 8781 8782 if (cpu_isar_feature(aa64_nmi, cpu)) { 8783 define_arm_cp_regs(cpu, nmi_reginfo); 8784 } 8785 #endif 8786 8787 if (cpu_isar_feature(any_predinv, cpu)) { 8788 define_arm_cp_regs(cpu, predinv_reginfo); 8789 } 8790 8791 if (cpu_isar_feature(any_ccidx, cpu)) { 8792 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8793 } 8794 8795 #ifndef CONFIG_USER_ONLY 8796 /* 8797 * Register redirections and aliases must be done last, 8798 * after the registers from the other extensions have been defined. 8799 */ 8800 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8801 define_arm_vh_e2h_redirects_aliases(cpu); 8802 } 8803 #endif 8804 } 8805 8806 /* 8807 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8808 * add a single reginfo struct to the hash table. 8809 */ 8810 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8811 void *opaque, CPState state, 8812 CPSecureState secstate, 8813 int crm, int opc1, int opc2, 8814 const char *name) 8815 { 8816 CPUARMState *env = &cpu->env; 8817 uint32_t key; 8818 ARMCPRegInfo *r2; 8819 bool is64 = r->type & ARM_CP_64BIT; 8820 bool ns = secstate & ARM_CP_SECSTATE_NS; 8821 int cp = r->cp; 8822 size_t name_len; 8823 bool make_const; 8824 8825 switch (state) { 8826 case ARM_CP_STATE_AA32: 8827 /* We assume it is a cp15 register if the .cp field is left unset. */ 8828 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8829 cp = 15; 8830 } 8831 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8832 break; 8833 case ARM_CP_STATE_AA64: 8834 /* 8835 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8836 * cp == 0 as equivalent to the value for "standard guest-visible 8837 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8838 * in their AArch64 view (the .cp value may be non-zero for the 8839 * benefit of the AArch32 view). 8840 */ 8841 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8842 cp = CP_REG_ARM64_SYSREG_CP; 8843 } 8844 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8845 break; 8846 default: 8847 g_assert_not_reached(); 8848 } 8849 8850 /* Overriding of an existing definition must be explicitly requested. */ 8851 if (!(r->type & ARM_CP_OVERRIDE)) { 8852 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8853 if (oldreg) { 8854 assert(oldreg->type & ARM_CP_OVERRIDE); 8855 } 8856 } 8857 8858 /* 8859 * Eliminate registers that are not present because the EL is missing. 8860 * Doing this here makes it easier to put all registers for a given 8861 * feature into the same ARMCPRegInfo array and define them all at once. 8862 */ 8863 make_const = false; 8864 if (arm_feature(env, ARM_FEATURE_EL3)) { 8865 /* 8866 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8867 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8868 */ 8869 int min_el = ctz32(r->access) / 2; 8870 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8871 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8872 return; 8873 } 8874 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8875 } 8876 } else { 8877 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8878 ? PL2_RW : PL1_RW); 8879 if ((r->access & max_el) == 0) { 8880 return; 8881 } 8882 } 8883 8884 /* Combine cpreg and name into one allocation. */ 8885 name_len = strlen(name) + 1; 8886 r2 = g_malloc(sizeof(*r2) + name_len); 8887 *r2 = *r; 8888 r2->name = memcpy(r2 + 1, name, name_len); 8889 8890 /* 8891 * Update fields to match the instantiation, overwiting wildcards 8892 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8893 */ 8894 r2->cp = cp; 8895 r2->crm = crm; 8896 r2->opc1 = opc1; 8897 r2->opc2 = opc2; 8898 r2->state = state; 8899 r2->secure = secstate; 8900 if (opaque) { 8901 r2->opaque = opaque; 8902 } 8903 8904 if (make_const) { 8905 /* This should not have been a very special register to begin. */ 8906 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8907 assert(old_special == 0 || old_special == ARM_CP_NOP); 8908 /* 8909 * Set the special function to CONST, retaining the other flags. 8910 * This is important for e.g. ARM_CP_SVE so that we still 8911 * take the SVE trap if CPTR_EL3.EZ == 0. 8912 */ 8913 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8914 /* 8915 * Usually, these registers become RES0, but there are a few 8916 * special cases like VPIDR_EL2 which have a constant non-zero 8917 * value with writes ignored. 8918 */ 8919 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8920 r2->resetvalue = 0; 8921 } 8922 /* 8923 * ARM_CP_CONST has precedence, so removing the callbacks and 8924 * offsets are not strictly necessary, but it is potentially 8925 * less confusing to debug later. 8926 */ 8927 r2->readfn = NULL; 8928 r2->writefn = NULL; 8929 r2->raw_readfn = NULL; 8930 r2->raw_writefn = NULL; 8931 r2->resetfn = NULL; 8932 r2->fieldoffset = 0; 8933 r2->bank_fieldoffsets[0] = 0; 8934 r2->bank_fieldoffsets[1] = 0; 8935 } else { 8936 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8937 8938 if (isbanked) { 8939 /* 8940 * Register is banked (using both entries in array). 8941 * Overwriting fieldoffset as the array is only used to define 8942 * banked registers but later only fieldoffset is used. 8943 */ 8944 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8945 } 8946 if (state == ARM_CP_STATE_AA32) { 8947 if (isbanked) { 8948 /* 8949 * If the register is banked then we don't need to migrate or 8950 * reset the 32-bit instance in certain cases: 8951 * 8952 * 1) If the register has both 32-bit and 64-bit instances 8953 * then we can count on the 64-bit instance taking care 8954 * of the non-secure bank. 8955 * 2) If ARMv8 is enabled then we can count on a 64-bit 8956 * version taking care of the secure bank. This requires 8957 * that separate 32 and 64-bit definitions are provided. 8958 */ 8959 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8960 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8961 r2->type |= ARM_CP_ALIAS; 8962 } 8963 } else if ((secstate != r->secure) && !ns) { 8964 /* 8965 * The register is not banked so we only want to allow 8966 * migration of the non-secure instance. 8967 */ 8968 r2->type |= ARM_CP_ALIAS; 8969 } 8970 8971 if (HOST_BIG_ENDIAN && 8972 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8973 r2->fieldoffset += sizeof(uint32_t); 8974 } 8975 } 8976 } 8977 8978 /* 8979 * By convention, for wildcarded registers only the first 8980 * entry is used for migration; the others are marked as 8981 * ALIAS so we don't try to transfer the register 8982 * multiple times. Special registers (ie NOP/WFI) are 8983 * never migratable and not even raw-accessible. 8984 */ 8985 if (r2->type & ARM_CP_SPECIAL_MASK) { 8986 r2->type |= ARM_CP_NO_RAW; 8987 } 8988 if (((r->crm == CP_ANY) && crm != 0) || 8989 ((r->opc1 == CP_ANY) && opc1 != 0) || 8990 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8991 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8992 } 8993 8994 /* 8995 * Check that raw accesses are either forbidden or handled. Note that 8996 * we can't assert this earlier because the setup of fieldoffset for 8997 * banked registers has to be done first. 8998 */ 8999 if (!(r2->type & ARM_CP_NO_RAW)) { 9000 assert(!raw_accessors_invalid(r2)); 9001 } 9002 9003 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9004 } 9005 9006 9007 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9008 const ARMCPRegInfo *r, void *opaque) 9009 { 9010 /* 9011 * Define implementations of coprocessor registers. 9012 * We store these in a hashtable because typically 9013 * there are less than 150 registers in a space which 9014 * is 16*16*16*8*8 = 262144 in size. 9015 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9016 * If a register is defined twice then the second definition is 9017 * used, so this can be used to define some generic registers and 9018 * then override them with implementation specific variations. 9019 * At least one of the original and the second definition should 9020 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9021 * against accidental use. 9022 * 9023 * The state field defines whether the register is to be 9024 * visible in the AArch32 or AArch64 execution state. If the 9025 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9026 * reginfo structure for the AArch32 view, which sees the lower 9027 * 32 bits of the 64 bit register. 9028 * 9029 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9030 * be wildcarded. AArch64 registers are always considered to be 64 9031 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9032 * the register, if any. 9033 */ 9034 int crm, opc1, opc2; 9035 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9036 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9037 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9038 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9039 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9040 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9041 CPState state; 9042 9043 /* 64 bit registers have only CRm and Opc1 fields */ 9044 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9045 /* op0 only exists in the AArch64 encodings */ 9046 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9047 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9048 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9049 /* 9050 * This API is only for Arm's system coprocessors (14 and 15) or 9051 * (M-profile or v7A-and-earlier only) for implementation defined 9052 * coprocessors in the range 0..7. Our decode assumes this, since 9053 * 8..13 can be used for other insns including VFP and Neon. See 9054 * valid_cp() in translate.c. Assert here that we haven't tried 9055 * to use an invalid coprocessor number. 9056 */ 9057 switch (r->state) { 9058 case ARM_CP_STATE_BOTH: 9059 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9060 if (r->cp == 0) { 9061 break; 9062 } 9063 /* fall through */ 9064 case ARM_CP_STATE_AA32: 9065 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9066 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9067 assert(r->cp >= 14 && r->cp <= 15); 9068 } else { 9069 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9070 } 9071 break; 9072 case ARM_CP_STATE_AA64: 9073 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9074 break; 9075 default: 9076 g_assert_not_reached(); 9077 } 9078 /* 9079 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9080 * encodes a minimum access level for the register. We roll this 9081 * runtime check into our general permission check code, so check 9082 * here that the reginfo's specified permissions are strict enough 9083 * to encompass the generic architectural permission check. 9084 */ 9085 if (r->state != ARM_CP_STATE_AA32) { 9086 CPAccessRights mask; 9087 switch (r->opc1) { 9088 case 0: 9089 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9090 mask = PL0U_R | PL1_RW; 9091 break; 9092 case 1: case 2: 9093 /* min_EL EL1 */ 9094 mask = PL1_RW; 9095 break; 9096 case 3: 9097 /* min_EL EL0 */ 9098 mask = PL0_RW; 9099 break; 9100 case 4: 9101 case 5: 9102 /* min_EL EL2 */ 9103 mask = PL2_RW; 9104 break; 9105 case 6: 9106 /* min_EL EL3 */ 9107 mask = PL3_RW; 9108 break; 9109 case 7: 9110 /* min_EL EL1, secure mode only (we don't check the latter) */ 9111 mask = PL1_RW; 9112 break; 9113 default: 9114 /* broken reginfo with out-of-range opc1 */ 9115 g_assert_not_reached(); 9116 } 9117 /* assert our permissions are not too lax (stricter is fine) */ 9118 assert((r->access & ~mask) == 0); 9119 } 9120 9121 /* 9122 * Check that the register definition has enough info to handle 9123 * reads and writes if they are permitted. 9124 */ 9125 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9126 if (r->access & PL3_R) { 9127 assert((r->fieldoffset || 9128 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9129 r->readfn); 9130 } 9131 if (r->access & PL3_W) { 9132 assert((r->fieldoffset || 9133 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9134 r->writefn); 9135 } 9136 } 9137 9138 for (crm = crmmin; crm <= crmmax; crm++) { 9139 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9140 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9141 for (state = ARM_CP_STATE_AA32; 9142 state <= ARM_CP_STATE_AA64; state++) { 9143 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9144 continue; 9145 } 9146 if (state == ARM_CP_STATE_AA32) { 9147 /* 9148 * Under AArch32 CP registers can be common 9149 * (same for secure and non-secure world) or banked. 9150 */ 9151 char *name; 9152 9153 switch (r->secure) { 9154 case ARM_CP_SECSTATE_S: 9155 case ARM_CP_SECSTATE_NS: 9156 add_cpreg_to_hashtable(cpu, r, opaque, state, 9157 r->secure, crm, opc1, opc2, 9158 r->name); 9159 break; 9160 case ARM_CP_SECSTATE_BOTH: 9161 name = g_strdup_printf("%s_S", r->name); 9162 add_cpreg_to_hashtable(cpu, r, opaque, state, 9163 ARM_CP_SECSTATE_S, 9164 crm, opc1, opc2, name); 9165 g_free(name); 9166 add_cpreg_to_hashtable(cpu, r, opaque, state, 9167 ARM_CP_SECSTATE_NS, 9168 crm, opc1, opc2, r->name); 9169 break; 9170 default: 9171 g_assert_not_reached(); 9172 } 9173 } else { 9174 /* 9175 * AArch64 registers get mapped to non-secure instance 9176 * of AArch32 9177 */ 9178 add_cpreg_to_hashtable(cpu, r, opaque, state, 9179 ARM_CP_SECSTATE_NS, 9180 crm, opc1, opc2, r->name); 9181 } 9182 } 9183 } 9184 } 9185 } 9186 } 9187 9188 /* Define a whole list of registers */ 9189 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9190 void *opaque, size_t len) 9191 { 9192 size_t i; 9193 for (i = 0; i < len; ++i) { 9194 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9195 } 9196 } 9197 9198 /* 9199 * Modify ARMCPRegInfo for access from userspace. 9200 * 9201 * This is a data driven modification directed by 9202 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9203 * user-space cannot alter any values and dynamic values pertaining to 9204 * execution state are hidden from user space view anyway. 9205 */ 9206 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9207 const ARMCPRegUserSpaceInfo *mods, 9208 size_t mods_len) 9209 { 9210 for (size_t mi = 0; mi < mods_len; ++mi) { 9211 const ARMCPRegUserSpaceInfo *m = mods + mi; 9212 GPatternSpec *pat = NULL; 9213 9214 if (m->is_glob) { 9215 pat = g_pattern_spec_new(m->name); 9216 } 9217 for (size_t ri = 0; ri < regs_len; ++ri) { 9218 ARMCPRegInfo *r = regs + ri; 9219 9220 if (pat && g_pattern_match_string(pat, r->name)) { 9221 r->type = ARM_CP_CONST; 9222 r->access = PL0U_R; 9223 r->resetvalue = 0; 9224 /* continue */ 9225 } else if (strcmp(r->name, m->name) == 0) { 9226 r->type = ARM_CP_CONST; 9227 r->access = PL0U_R; 9228 r->resetvalue &= m->exported_bits; 9229 r->resetvalue |= m->fixed_bits; 9230 break; 9231 } 9232 } 9233 if (pat) { 9234 g_pattern_spec_free(pat); 9235 } 9236 } 9237 } 9238 9239 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9240 { 9241 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9242 } 9243 9244 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9245 uint64_t value) 9246 { 9247 /* Helper coprocessor write function for write-ignore registers */ 9248 } 9249 9250 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9251 { 9252 /* Helper coprocessor write function for read-as-zero registers */ 9253 return 0; 9254 } 9255 9256 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9257 { 9258 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9259 } 9260 9261 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9262 { 9263 /* 9264 * Return true if it is not valid for us to switch to 9265 * this CPU mode (ie all the UNPREDICTABLE cases in 9266 * the ARM ARM CPSRWriteByInstr pseudocode). 9267 */ 9268 9269 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9270 if (write_type == CPSRWriteByInstr && 9271 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9272 mode == ARM_CPU_MODE_HYP)) { 9273 return 1; 9274 } 9275 9276 switch (mode) { 9277 case ARM_CPU_MODE_USR: 9278 return 0; 9279 case ARM_CPU_MODE_SYS: 9280 case ARM_CPU_MODE_SVC: 9281 case ARM_CPU_MODE_ABT: 9282 case ARM_CPU_MODE_UND: 9283 case ARM_CPU_MODE_IRQ: 9284 case ARM_CPU_MODE_FIQ: 9285 /* 9286 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9287 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9288 */ 9289 /* 9290 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9291 * and CPS are treated as illegal mode changes. 9292 */ 9293 if (write_type == CPSRWriteByInstr && 9294 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9295 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9296 return 1; 9297 } 9298 return 0; 9299 case ARM_CPU_MODE_HYP: 9300 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9301 case ARM_CPU_MODE_MON: 9302 return arm_current_el(env) < 3; 9303 default: 9304 return 1; 9305 } 9306 } 9307 9308 uint32_t cpsr_read(CPUARMState *env) 9309 { 9310 int ZF; 9311 ZF = (env->ZF == 0); 9312 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9313 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9314 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9315 | ((env->condexec_bits & 0xfc) << 8) 9316 | (env->GE << 16) | (env->daif & CPSR_AIF); 9317 } 9318 9319 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9320 CPSRWriteType write_type) 9321 { 9322 uint32_t changed_daif; 9323 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9324 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9325 9326 if (mask & CPSR_NZCV) { 9327 env->ZF = (~val) & CPSR_Z; 9328 env->NF = val; 9329 env->CF = (val >> 29) & 1; 9330 env->VF = (val << 3) & 0x80000000; 9331 } 9332 if (mask & CPSR_Q) { 9333 env->QF = ((val & CPSR_Q) != 0); 9334 } 9335 if (mask & CPSR_T) { 9336 env->thumb = ((val & CPSR_T) != 0); 9337 } 9338 if (mask & CPSR_IT_0_1) { 9339 env->condexec_bits &= ~3; 9340 env->condexec_bits |= (val >> 25) & 3; 9341 } 9342 if (mask & CPSR_IT_2_7) { 9343 env->condexec_bits &= 3; 9344 env->condexec_bits |= (val >> 8) & 0xfc; 9345 } 9346 if (mask & CPSR_GE) { 9347 env->GE = (val >> 16) & 0xf; 9348 } 9349 9350 /* 9351 * In a V7 implementation that includes the security extensions but does 9352 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9353 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9354 * bits respectively. 9355 * 9356 * In a V8 implementation, it is permitted for privileged software to 9357 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9358 */ 9359 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9360 arm_feature(env, ARM_FEATURE_EL3) && 9361 !arm_feature(env, ARM_FEATURE_EL2) && 9362 !arm_is_secure(env)) { 9363 9364 changed_daif = (env->daif ^ val) & mask; 9365 9366 if (changed_daif & CPSR_A) { 9367 /* 9368 * Check to see if we are allowed to change the masking of async 9369 * abort exceptions from a non-secure state. 9370 */ 9371 if (!(env->cp15.scr_el3 & SCR_AW)) { 9372 qemu_log_mask(LOG_GUEST_ERROR, 9373 "Ignoring attempt to switch CPSR_A flag from " 9374 "non-secure world with SCR.AW bit clear\n"); 9375 mask &= ~CPSR_A; 9376 } 9377 } 9378 9379 if (changed_daif & CPSR_F) { 9380 /* 9381 * Check to see if we are allowed to change the masking of FIQ 9382 * exceptions from a non-secure state. 9383 */ 9384 if (!(env->cp15.scr_el3 & SCR_FW)) { 9385 qemu_log_mask(LOG_GUEST_ERROR, 9386 "Ignoring attempt to switch CPSR_F flag from " 9387 "non-secure world with SCR.FW bit clear\n"); 9388 mask &= ~CPSR_F; 9389 } 9390 9391 /* 9392 * Check whether non-maskable FIQ (NMFI) support is enabled. 9393 * If this bit is set software is not allowed to mask 9394 * FIQs, but is allowed to set CPSR_F to 0. 9395 */ 9396 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9397 (val & CPSR_F)) { 9398 qemu_log_mask(LOG_GUEST_ERROR, 9399 "Ignoring attempt to enable CPSR_F flag " 9400 "(non-maskable FIQ [NMFI] support enabled)\n"); 9401 mask &= ~CPSR_F; 9402 } 9403 } 9404 } 9405 9406 env->daif &= ~(CPSR_AIF & mask); 9407 env->daif |= val & CPSR_AIF & mask; 9408 9409 if (write_type != CPSRWriteRaw && 9410 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9411 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9412 /* 9413 * Note that we can only get here in USR mode if this is a 9414 * gdb stub write; for this case we follow the architectural 9415 * behaviour for guest writes in USR mode of ignoring an attempt 9416 * to switch mode. (Those are caught by translate.c for writes 9417 * triggered by guest instructions.) 9418 */ 9419 mask &= ~CPSR_M; 9420 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9421 /* 9422 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9423 * v7, and has defined behaviour in v8: 9424 * + leave CPSR.M untouched 9425 * + allow changes to the other CPSR fields 9426 * + set PSTATE.IL 9427 * For user changes via the GDB stub, we don't set PSTATE.IL, 9428 * as this would be unnecessarily harsh for a user error. 9429 */ 9430 mask &= ~CPSR_M; 9431 if (write_type != CPSRWriteByGDBStub && 9432 arm_feature(env, ARM_FEATURE_V8)) { 9433 mask |= CPSR_IL; 9434 val |= CPSR_IL; 9435 } 9436 qemu_log_mask(LOG_GUEST_ERROR, 9437 "Illegal AArch32 mode switch attempt from %s to %s\n", 9438 aarch32_mode_name(env->uncached_cpsr), 9439 aarch32_mode_name(val)); 9440 } else { 9441 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9442 write_type == CPSRWriteExceptionReturn ? 9443 "Exception return from AArch32" : 9444 "AArch32 mode switch from", 9445 aarch32_mode_name(env->uncached_cpsr), 9446 aarch32_mode_name(val), env->regs[15]); 9447 switch_mode(env, val & CPSR_M); 9448 } 9449 } 9450 mask &= ~CACHED_CPSR_BITS; 9451 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9452 if (tcg_enabled() && rebuild_hflags) { 9453 arm_rebuild_hflags(env); 9454 } 9455 } 9456 9457 #ifdef CONFIG_USER_ONLY 9458 9459 static void switch_mode(CPUARMState *env, int mode) 9460 { 9461 ARMCPU *cpu = env_archcpu(env); 9462 9463 if (mode != ARM_CPU_MODE_USR) { 9464 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9465 } 9466 } 9467 9468 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9469 uint32_t cur_el, bool secure) 9470 { 9471 return 1; 9472 } 9473 9474 void aarch64_sync_64_to_32(CPUARMState *env) 9475 { 9476 g_assert_not_reached(); 9477 } 9478 9479 #else 9480 9481 static void switch_mode(CPUARMState *env, int mode) 9482 { 9483 int old_mode; 9484 int i; 9485 9486 old_mode = env->uncached_cpsr & CPSR_M; 9487 if (mode == old_mode) { 9488 return; 9489 } 9490 9491 if (old_mode == ARM_CPU_MODE_FIQ) { 9492 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9493 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9494 } else if (mode == ARM_CPU_MODE_FIQ) { 9495 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9496 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9497 } 9498 9499 i = bank_number(old_mode); 9500 env->banked_r13[i] = env->regs[13]; 9501 env->banked_spsr[i] = env->spsr; 9502 9503 i = bank_number(mode); 9504 env->regs[13] = env->banked_r13[i]; 9505 env->spsr = env->banked_spsr[i]; 9506 9507 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9508 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9509 } 9510 9511 /* 9512 * Physical Interrupt Target EL Lookup Table 9513 * 9514 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9515 * 9516 * The below multi-dimensional table is used for looking up the target 9517 * exception level given numerous condition criteria. Specifically, the 9518 * target EL is based on SCR and HCR routing controls as well as the 9519 * currently executing EL and secure state. 9520 * 9521 * Dimensions: 9522 * target_el_table[2][2][2][2][2][4] 9523 * | | | | | +--- Current EL 9524 * | | | | +------ Non-secure(0)/Secure(1) 9525 * | | | +--------- HCR mask override 9526 * | | +------------ SCR exec state control 9527 * | +--------------- SCR mask override 9528 * +------------------ 32-bit(0)/64-bit(1) EL3 9529 * 9530 * The table values are as such: 9531 * 0-3 = EL0-EL3 9532 * -1 = Cannot occur 9533 * 9534 * The ARM ARM target EL table includes entries indicating that an "exception 9535 * is not taken". The two cases where this is applicable are: 9536 * 1) An exception is taken from EL3 but the SCR does not have the exception 9537 * routed to EL3. 9538 * 2) An exception is taken from EL2 but the HCR does not have the exception 9539 * routed to EL2. 9540 * In these two cases, the below table contain a target of EL1. This value is 9541 * returned as it is expected that the consumer of the table data will check 9542 * for "target EL >= current EL" to ensure the exception is not taken. 9543 * 9544 * SCR HCR 9545 * 64 EA AMO From 9546 * BIT IRQ IMO Non-secure Secure 9547 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9548 */ 9549 static const int8_t target_el_table[2][2][2][2][2][4] = { 9550 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9551 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9552 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9553 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9554 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9555 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9556 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9557 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9558 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9559 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9560 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9561 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9562 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9563 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9564 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9565 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9566 }; 9567 9568 /* 9569 * Determine the target EL for physical exceptions 9570 */ 9571 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9572 uint32_t cur_el, bool secure) 9573 { 9574 CPUARMState *env = cpu_env(cs); 9575 bool rw; 9576 bool scr; 9577 bool hcr; 9578 int target_el; 9579 /* Is the highest EL AArch64? */ 9580 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9581 uint64_t hcr_el2; 9582 9583 if (arm_feature(env, ARM_FEATURE_EL3)) { 9584 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9585 } else { 9586 /* 9587 * Either EL2 is the highest EL (and so the EL2 register width 9588 * is given by is64); or there is no EL2 or EL3, in which case 9589 * the value of 'rw' does not affect the table lookup anyway. 9590 */ 9591 rw = is64; 9592 } 9593 9594 hcr_el2 = arm_hcr_el2_eff(env); 9595 switch (excp_idx) { 9596 case EXCP_IRQ: 9597 case EXCP_NMI: 9598 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9599 hcr = hcr_el2 & HCR_IMO; 9600 break; 9601 case EXCP_FIQ: 9602 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9603 hcr = hcr_el2 & HCR_FMO; 9604 break; 9605 default: 9606 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9607 hcr = hcr_el2 & HCR_AMO; 9608 break; 9609 }; 9610 9611 /* 9612 * For these purposes, TGE and AMO/IMO/FMO both force the 9613 * interrupt to EL2. Fold TGE into the bit extracted above. 9614 */ 9615 hcr |= (hcr_el2 & HCR_TGE) != 0; 9616 9617 /* Perform a table-lookup for the target EL given the current state */ 9618 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9619 9620 assert(target_el > 0); 9621 9622 return target_el; 9623 } 9624 9625 void arm_log_exception(CPUState *cs) 9626 { 9627 int idx = cs->exception_index; 9628 9629 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9630 const char *exc = NULL; 9631 static const char * const excnames[] = { 9632 [EXCP_UDEF] = "Undefined Instruction", 9633 [EXCP_SWI] = "SVC", 9634 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9635 [EXCP_DATA_ABORT] = "Data Abort", 9636 [EXCP_IRQ] = "IRQ", 9637 [EXCP_FIQ] = "FIQ", 9638 [EXCP_BKPT] = "Breakpoint", 9639 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9640 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9641 [EXCP_HVC] = "Hypervisor Call", 9642 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9643 [EXCP_SMC] = "Secure Monitor Call", 9644 [EXCP_VIRQ] = "Virtual IRQ", 9645 [EXCP_VFIQ] = "Virtual FIQ", 9646 [EXCP_SEMIHOST] = "Semihosting call", 9647 [EXCP_NOCP] = "v7M NOCP UsageFault", 9648 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9649 [EXCP_STKOF] = "v8M STKOF UsageFault", 9650 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9651 [EXCP_LSERR] = "v8M LSERR UsageFault", 9652 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9653 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9654 [EXCP_VSERR] = "Virtual SERR", 9655 [EXCP_GPC] = "Granule Protection Check", 9656 [EXCP_NMI] = "NMI", 9657 [EXCP_VINMI] = "Virtual IRQ NMI", 9658 [EXCP_VFNMI] = "Virtual FIQ NMI", 9659 }; 9660 9661 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9662 exc = excnames[idx]; 9663 } 9664 if (!exc) { 9665 exc = "unknown"; 9666 } 9667 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9668 idx, exc, cs->cpu_index); 9669 } 9670 } 9671 9672 /* 9673 * Function used to synchronize QEMU's AArch64 register set with AArch32 9674 * register set. This is necessary when switching between AArch32 and AArch64 9675 * execution state. 9676 */ 9677 void aarch64_sync_32_to_64(CPUARMState *env) 9678 { 9679 int i; 9680 uint32_t mode = env->uncached_cpsr & CPSR_M; 9681 9682 /* We can blanket copy R[0:7] to X[0:7] */ 9683 for (i = 0; i < 8; i++) { 9684 env->xregs[i] = env->regs[i]; 9685 } 9686 9687 /* 9688 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9689 * Otherwise, they come from the banked user regs. 9690 */ 9691 if (mode == ARM_CPU_MODE_FIQ) { 9692 for (i = 8; i < 13; i++) { 9693 env->xregs[i] = env->usr_regs[i - 8]; 9694 } 9695 } else { 9696 for (i = 8; i < 13; i++) { 9697 env->xregs[i] = env->regs[i]; 9698 } 9699 } 9700 9701 /* 9702 * Registers x13-x23 are the various mode SP and FP registers. Registers 9703 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9704 * from the mode banked register. 9705 */ 9706 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9707 env->xregs[13] = env->regs[13]; 9708 env->xregs[14] = env->regs[14]; 9709 } else { 9710 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9711 /* HYP is an exception in that it is copied from r14 */ 9712 if (mode == ARM_CPU_MODE_HYP) { 9713 env->xregs[14] = env->regs[14]; 9714 } else { 9715 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9716 } 9717 } 9718 9719 if (mode == ARM_CPU_MODE_HYP) { 9720 env->xregs[15] = env->regs[13]; 9721 } else { 9722 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9723 } 9724 9725 if (mode == ARM_CPU_MODE_IRQ) { 9726 env->xregs[16] = env->regs[14]; 9727 env->xregs[17] = env->regs[13]; 9728 } else { 9729 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9730 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9731 } 9732 9733 if (mode == ARM_CPU_MODE_SVC) { 9734 env->xregs[18] = env->regs[14]; 9735 env->xregs[19] = env->regs[13]; 9736 } else { 9737 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9738 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9739 } 9740 9741 if (mode == ARM_CPU_MODE_ABT) { 9742 env->xregs[20] = env->regs[14]; 9743 env->xregs[21] = env->regs[13]; 9744 } else { 9745 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9746 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9747 } 9748 9749 if (mode == ARM_CPU_MODE_UND) { 9750 env->xregs[22] = env->regs[14]; 9751 env->xregs[23] = env->regs[13]; 9752 } else { 9753 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9754 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9755 } 9756 9757 /* 9758 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9759 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9760 * FIQ bank for r8-r14. 9761 */ 9762 if (mode == ARM_CPU_MODE_FIQ) { 9763 for (i = 24; i < 31; i++) { 9764 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9765 } 9766 } else { 9767 for (i = 24; i < 29; i++) { 9768 env->xregs[i] = env->fiq_regs[i - 24]; 9769 } 9770 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9771 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9772 } 9773 9774 env->pc = env->regs[15]; 9775 } 9776 9777 /* 9778 * Function used to synchronize QEMU's AArch32 register set with AArch64 9779 * register set. This is necessary when switching between AArch32 and AArch64 9780 * execution state. 9781 */ 9782 void aarch64_sync_64_to_32(CPUARMState *env) 9783 { 9784 int i; 9785 uint32_t mode = env->uncached_cpsr & CPSR_M; 9786 9787 /* We can blanket copy X[0:7] to R[0:7] */ 9788 for (i = 0; i < 8; i++) { 9789 env->regs[i] = env->xregs[i]; 9790 } 9791 9792 /* 9793 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9794 * Otherwise, we copy x8-x12 into the banked user regs. 9795 */ 9796 if (mode == ARM_CPU_MODE_FIQ) { 9797 for (i = 8; i < 13; i++) { 9798 env->usr_regs[i - 8] = env->xregs[i]; 9799 } 9800 } else { 9801 for (i = 8; i < 13; i++) { 9802 env->regs[i] = env->xregs[i]; 9803 } 9804 } 9805 9806 /* 9807 * Registers r13 & r14 depend on the current mode. 9808 * If we are in a given mode, we copy the corresponding x registers to r13 9809 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9810 * for the mode. 9811 */ 9812 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9813 env->regs[13] = env->xregs[13]; 9814 env->regs[14] = env->xregs[14]; 9815 } else { 9816 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9817 9818 /* 9819 * HYP is an exception in that it does not have its own banked r14 but 9820 * shares the USR r14 9821 */ 9822 if (mode == ARM_CPU_MODE_HYP) { 9823 env->regs[14] = env->xregs[14]; 9824 } else { 9825 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9826 } 9827 } 9828 9829 if (mode == ARM_CPU_MODE_HYP) { 9830 env->regs[13] = env->xregs[15]; 9831 } else { 9832 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9833 } 9834 9835 if (mode == ARM_CPU_MODE_IRQ) { 9836 env->regs[14] = env->xregs[16]; 9837 env->regs[13] = env->xregs[17]; 9838 } else { 9839 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9840 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9841 } 9842 9843 if (mode == ARM_CPU_MODE_SVC) { 9844 env->regs[14] = env->xregs[18]; 9845 env->regs[13] = env->xregs[19]; 9846 } else { 9847 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9848 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9849 } 9850 9851 if (mode == ARM_CPU_MODE_ABT) { 9852 env->regs[14] = env->xregs[20]; 9853 env->regs[13] = env->xregs[21]; 9854 } else { 9855 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9856 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9857 } 9858 9859 if (mode == ARM_CPU_MODE_UND) { 9860 env->regs[14] = env->xregs[22]; 9861 env->regs[13] = env->xregs[23]; 9862 } else { 9863 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9864 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9865 } 9866 9867 /* 9868 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9869 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9870 * FIQ bank for r8-r14. 9871 */ 9872 if (mode == ARM_CPU_MODE_FIQ) { 9873 for (i = 24; i < 31; i++) { 9874 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9875 } 9876 } else { 9877 for (i = 24; i < 29; i++) { 9878 env->fiq_regs[i - 24] = env->xregs[i]; 9879 } 9880 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9881 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9882 } 9883 9884 env->regs[15] = env->pc; 9885 } 9886 9887 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9888 uint32_t mask, uint32_t offset, 9889 uint32_t newpc) 9890 { 9891 int new_el; 9892 9893 /* Change the CPU state so as to actually take the exception. */ 9894 switch_mode(env, new_mode); 9895 9896 /* 9897 * For exceptions taken to AArch32 we must clear the SS bit in both 9898 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9899 */ 9900 env->pstate &= ~PSTATE_SS; 9901 env->spsr = cpsr_read(env); 9902 /* Clear IT bits. */ 9903 env->condexec_bits = 0; 9904 /* Switch to the new mode, and to the correct instruction set. */ 9905 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9906 9907 /* This must be after mode switching. */ 9908 new_el = arm_current_el(env); 9909 9910 /* Set new mode endianness */ 9911 env->uncached_cpsr &= ~CPSR_E; 9912 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9913 env->uncached_cpsr |= CPSR_E; 9914 } 9915 /* J and IL must always be cleared for exception entry */ 9916 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9917 env->daif |= mask; 9918 9919 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9920 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9921 env->uncached_cpsr |= CPSR_SSBS; 9922 } else { 9923 env->uncached_cpsr &= ~CPSR_SSBS; 9924 } 9925 } 9926 9927 if (new_mode == ARM_CPU_MODE_HYP) { 9928 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9929 env->elr_el[2] = env->regs[15]; 9930 } else { 9931 /* CPSR.PAN is normally preserved preserved unless... */ 9932 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9933 switch (new_el) { 9934 case 3: 9935 if (!arm_is_secure_below_el3(env)) { 9936 /* ... the target is EL3, from non-secure state. */ 9937 env->uncached_cpsr &= ~CPSR_PAN; 9938 break; 9939 } 9940 /* ... the target is EL3, from secure state ... */ 9941 /* fall through */ 9942 case 1: 9943 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9944 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9945 env->uncached_cpsr |= CPSR_PAN; 9946 } 9947 break; 9948 } 9949 } 9950 /* 9951 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9952 * and we should just guard the thumb mode on V4 9953 */ 9954 if (arm_feature(env, ARM_FEATURE_V4T)) { 9955 env->thumb = 9956 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9957 } 9958 env->regs[14] = env->regs[15] + offset; 9959 } 9960 env->regs[15] = newpc; 9961 9962 if (tcg_enabled()) { 9963 arm_rebuild_hflags(env); 9964 } 9965 } 9966 9967 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9968 { 9969 /* 9970 * Handle exception entry to Hyp mode; this is sufficiently 9971 * different to entry to other AArch32 modes that we handle it 9972 * separately here. 9973 * 9974 * The vector table entry used is always the 0x14 Hyp mode entry point, 9975 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9976 * The offset applied to the preferred return address is always zero 9977 * (see DDI0487C.a section G1.12.3). 9978 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9979 */ 9980 uint32_t addr, mask; 9981 ARMCPU *cpu = ARM_CPU(cs); 9982 CPUARMState *env = &cpu->env; 9983 9984 switch (cs->exception_index) { 9985 case EXCP_UDEF: 9986 addr = 0x04; 9987 break; 9988 case EXCP_SWI: 9989 addr = 0x08; 9990 break; 9991 case EXCP_BKPT: 9992 /* Fall through to prefetch abort. */ 9993 case EXCP_PREFETCH_ABORT: 9994 env->cp15.ifar_s = env->exception.vaddress; 9995 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9996 (uint32_t)env->exception.vaddress); 9997 addr = 0x0c; 9998 break; 9999 case EXCP_DATA_ABORT: 10000 env->cp15.dfar_s = env->exception.vaddress; 10001 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10002 (uint32_t)env->exception.vaddress); 10003 addr = 0x10; 10004 break; 10005 case EXCP_IRQ: 10006 addr = 0x18; 10007 break; 10008 case EXCP_FIQ: 10009 addr = 0x1c; 10010 break; 10011 case EXCP_HVC: 10012 addr = 0x08; 10013 break; 10014 case EXCP_HYP_TRAP: 10015 addr = 0x14; 10016 break; 10017 default: 10018 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10019 } 10020 10021 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10022 if (!arm_feature(env, ARM_FEATURE_V8)) { 10023 /* 10024 * QEMU syndrome values are v8-style. v7 has the IL bit 10025 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10026 * If this is a v7 CPU, squash the IL bit in those cases. 10027 */ 10028 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10029 (cs->exception_index == EXCP_DATA_ABORT && 10030 !(env->exception.syndrome & ARM_EL_ISV)) || 10031 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10032 env->exception.syndrome &= ~ARM_EL_IL; 10033 } 10034 } 10035 env->cp15.esr_el[2] = env->exception.syndrome; 10036 } 10037 10038 if (arm_current_el(env) != 2 && addr < 0x14) { 10039 addr = 0x14; 10040 } 10041 10042 mask = 0; 10043 if (!(env->cp15.scr_el3 & SCR_EA)) { 10044 mask |= CPSR_A; 10045 } 10046 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10047 mask |= CPSR_I; 10048 } 10049 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10050 mask |= CPSR_F; 10051 } 10052 10053 addr += env->cp15.hvbar; 10054 10055 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10056 } 10057 10058 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10059 { 10060 ARMCPU *cpu = ARM_CPU(cs); 10061 CPUARMState *env = &cpu->env; 10062 uint32_t addr; 10063 uint32_t mask; 10064 int new_mode; 10065 uint32_t offset; 10066 uint32_t moe; 10067 10068 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10069 switch (syn_get_ec(env->exception.syndrome)) { 10070 case EC_BREAKPOINT: 10071 case EC_BREAKPOINT_SAME_EL: 10072 moe = 1; 10073 break; 10074 case EC_WATCHPOINT: 10075 case EC_WATCHPOINT_SAME_EL: 10076 moe = 10; 10077 break; 10078 case EC_AA32_BKPT: 10079 moe = 3; 10080 break; 10081 case EC_VECTORCATCH: 10082 moe = 5; 10083 break; 10084 default: 10085 moe = 0; 10086 break; 10087 } 10088 10089 if (moe) { 10090 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10091 } 10092 10093 if (env->exception.target_el == 2) { 10094 /* Debug exceptions are reported differently on AArch32 */ 10095 switch (syn_get_ec(env->exception.syndrome)) { 10096 case EC_BREAKPOINT: 10097 case EC_BREAKPOINT_SAME_EL: 10098 case EC_AA32_BKPT: 10099 case EC_VECTORCATCH: 10100 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10101 0, 0, 0x22); 10102 break; 10103 case EC_WATCHPOINT: 10104 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10105 EC_DATAABORT); 10106 break; 10107 case EC_WATCHPOINT_SAME_EL: 10108 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10109 EC_DATAABORT_SAME_EL); 10110 break; 10111 } 10112 arm_cpu_do_interrupt_aarch32_hyp(cs); 10113 return; 10114 } 10115 10116 switch (cs->exception_index) { 10117 case EXCP_UDEF: 10118 new_mode = ARM_CPU_MODE_UND; 10119 addr = 0x04; 10120 mask = CPSR_I; 10121 if (env->thumb) { 10122 offset = 2; 10123 } else { 10124 offset = 4; 10125 } 10126 break; 10127 case EXCP_SWI: 10128 new_mode = ARM_CPU_MODE_SVC; 10129 addr = 0x08; 10130 mask = CPSR_I; 10131 /* The PC already points to the next instruction. */ 10132 offset = 0; 10133 break; 10134 case EXCP_BKPT: 10135 /* Fall through to prefetch abort. */ 10136 case EXCP_PREFETCH_ABORT: 10137 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10138 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10139 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10140 env->exception.fsr, (uint32_t)env->exception.vaddress); 10141 new_mode = ARM_CPU_MODE_ABT; 10142 addr = 0x0c; 10143 mask = CPSR_A | CPSR_I; 10144 offset = 4; 10145 break; 10146 case EXCP_DATA_ABORT: 10147 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10148 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10149 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10150 env->exception.fsr, 10151 (uint32_t)env->exception.vaddress); 10152 new_mode = ARM_CPU_MODE_ABT; 10153 addr = 0x10; 10154 mask = CPSR_A | CPSR_I; 10155 offset = 8; 10156 break; 10157 case EXCP_IRQ: 10158 new_mode = ARM_CPU_MODE_IRQ; 10159 addr = 0x18; 10160 /* Disable IRQ and imprecise data aborts. */ 10161 mask = CPSR_A | CPSR_I; 10162 offset = 4; 10163 if (env->cp15.scr_el3 & SCR_IRQ) { 10164 /* IRQ routed to monitor mode */ 10165 new_mode = ARM_CPU_MODE_MON; 10166 mask |= CPSR_F; 10167 } 10168 break; 10169 case EXCP_FIQ: 10170 new_mode = ARM_CPU_MODE_FIQ; 10171 addr = 0x1c; 10172 /* Disable FIQ, IRQ and imprecise data aborts. */ 10173 mask = CPSR_A | CPSR_I | CPSR_F; 10174 if (env->cp15.scr_el3 & SCR_FIQ) { 10175 /* FIQ routed to monitor mode */ 10176 new_mode = ARM_CPU_MODE_MON; 10177 } 10178 offset = 4; 10179 break; 10180 case EXCP_VIRQ: 10181 new_mode = ARM_CPU_MODE_IRQ; 10182 addr = 0x18; 10183 /* Disable IRQ and imprecise data aborts. */ 10184 mask = CPSR_A | CPSR_I; 10185 offset = 4; 10186 break; 10187 case EXCP_VFIQ: 10188 new_mode = ARM_CPU_MODE_FIQ; 10189 addr = 0x1c; 10190 /* Disable FIQ, IRQ and imprecise data aborts. */ 10191 mask = CPSR_A | CPSR_I | CPSR_F; 10192 offset = 4; 10193 break; 10194 case EXCP_VSERR: 10195 { 10196 /* 10197 * Note that this is reported as a data abort, but the DFAR 10198 * has an UNKNOWN value. Construct the SError syndrome from 10199 * AET and ExT fields. 10200 */ 10201 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10202 10203 if (extended_addresses_enabled(env)) { 10204 env->exception.fsr = arm_fi_to_lfsc(&fi); 10205 } else { 10206 env->exception.fsr = arm_fi_to_sfsc(&fi); 10207 } 10208 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10209 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10210 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10211 env->exception.fsr); 10212 10213 new_mode = ARM_CPU_MODE_ABT; 10214 addr = 0x10; 10215 mask = CPSR_A | CPSR_I; 10216 offset = 8; 10217 } 10218 break; 10219 case EXCP_SMC: 10220 new_mode = ARM_CPU_MODE_MON; 10221 addr = 0x08; 10222 mask = CPSR_A | CPSR_I | CPSR_F; 10223 offset = 0; 10224 break; 10225 default: 10226 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10227 return; /* Never happens. Keep compiler happy. */ 10228 } 10229 10230 if (new_mode == ARM_CPU_MODE_MON) { 10231 addr += env->cp15.mvbar; 10232 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10233 /* High vectors. When enabled, base address cannot be remapped. */ 10234 addr += 0xffff0000; 10235 } else { 10236 /* 10237 * ARM v7 architectures provide a vector base address register to remap 10238 * the interrupt vector table. 10239 * This register is only followed in non-monitor mode, and is banked. 10240 * Note: only bits 31:5 are valid. 10241 */ 10242 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10243 } 10244 10245 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10246 env->cp15.scr_el3 &= ~SCR_NS; 10247 } 10248 10249 take_aarch32_exception(env, new_mode, mask, offset, addr); 10250 } 10251 10252 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10253 { 10254 /* 10255 * Return the register number of the AArch64 view of the AArch32 10256 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10257 * be that of the AArch32 mode the exception came from. 10258 */ 10259 int mode = env->uncached_cpsr & CPSR_M; 10260 10261 switch (aarch32_reg) { 10262 case 0 ... 7: 10263 return aarch32_reg; 10264 case 8 ... 12: 10265 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10266 case 13: 10267 switch (mode) { 10268 case ARM_CPU_MODE_USR: 10269 case ARM_CPU_MODE_SYS: 10270 return 13; 10271 case ARM_CPU_MODE_HYP: 10272 return 15; 10273 case ARM_CPU_MODE_IRQ: 10274 return 17; 10275 case ARM_CPU_MODE_SVC: 10276 return 19; 10277 case ARM_CPU_MODE_ABT: 10278 return 21; 10279 case ARM_CPU_MODE_UND: 10280 return 23; 10281 case ARM_CPU_MODE_FIQ: 10282 return 29; 10283 default: 10284 g_assert_not_reached(); 10285 } 10286 case 14: 10287 switch (mode) { 10288 case ARM_CPU_MODE_USR: 10289 case ARM_CPU_MODE_SYS: 10290 case ARM_CPU_MODE_HYP: 10291 return 14; 10292 case ARM_CPU_MODE_IRQ: 10293 return 16; 10294 case ARM_CPU_MODE_SVC: 10295 return 18; 10296 case ARM_CPU_MODE_ABT: 10297 return 20; 10298 case ARM_CPU_MODE_UND: 10299 return 22; 10300 case ARM_CPU_MODE_FIQ: 10301 return 30; 10302 default: 10303 g_assert_not_reached(); 10304 } 10305 case 15: 10306 return 31; 10307 default: 10308 g_assert_not_reached(); 10309 } 10310 } 10311 10312 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10313 { 10314 uint32_t ret = cpsr_read(env); 10315 10316 /* Move DIT to the correct location for SPSR_ELx */ 10317 if (ret & CPSR_DIT) { 10318 ret &= ~CPSR_DIT; 10319 ret |= PSTATE_DIT; 10320 } 10321 /* Merge PSTATE.SS into SPSR_ELx */ 10322 ret |= env->pstate & PSTATE_SS; 10323 10324 return ret; 10325 } 10326 10327 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10328 { 10329 /* Return true if this syndrome value is a synchronous external abort */ 10330 switch (syn_get_ec(syndrome)) { 10331 case EC_INSNABORT: 10332 case EC_INSNABORT_SAME_EL: 10333 case EC_DATAABORT: 10334 case EC_DATAABORT_SAME_EL: 10335 /* Look at fault status code for all the synchronous ext abort cases */ 10336 switch (syndrome & 0x3f) { 10337 case 0x10: 10338 case 0x13: 10339 case 0x14: 10340 case 0x15: 10341 case 0x16: 10342 case 0x17: 10343 return true; 10344 default: 10345 return false; 10346 } 10347 default: 10348 return false; 10349 } 10350 } 10351 10352 /* Handle exception entry to a target EL which is using AArch64 */ 10353 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10354 { 10355 ARMCPU *cpu = ARM_CPU(cs); 10356 CPUARMState *env = &cpu->env; 10357 unsigned int new_el = env->exception.target_el; 10358 target_ulong addr = env->cp15.vbar_el[new_el]; 10359 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10360 unsigned int old_mode; 10361 unsigned int cur_el = arm_current_el(env); 10362 int rt; 10363 10364 if (tcg_enabled()) { 10365 /* 10366 * Note that new_el can never be 0. If cur_el is 0, then 10367 * el0_a64 is is_a64(), else el0_a64 is ignored. 10368 */ 10369 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10370 } 10371 10372 if (cur_el < new_el) { 10373 /* 10374 * Entry vector offset depends on whether the implemented EL 10375 * immediately lower than the target level is using AArch32 or AArch64 10376 */ 10377 bool is_aa64; 10378 uint64_t hcr; 10379 10380 switch (new_el) { 10381 case 3: 10382 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10383 break; 10384 case 2: 10385 hcr = arm_hcr_el2_eff(env); 10386 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10387 is_aa64 = (hcr & HCR_RW) != 0; 10388 break; 10389 } 10390 /* fall through */ 10391 case 1: 10392 is_aa64 = is_a64(env); 10393 break; 10394 default: 10395 g_assert_not_reached(); 10396 } 10397 10398 if (is_aa64) { 10399 addr += 0x400; 10400 } else { 10401 addr += 0x600; 10402 } 10403 } else if (pstate_read(env) & PSTATE_SP) { 10404 addr += 0x200; 10405 } 10406 10407 switch (cs->exception_index) { 10408 case EXCP_GPC: 10409 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10410 env->cp15.mfar_el3); 10411 /* fall through */ 10412 case EXCP_PREFETCH_ABORT: 10413 case EXCP_DATA_ABORT: 10414 /* 10415 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10416 * to be taken to the SError vector entrypoint. 10417 */ 10418 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10419 syndrome_is_sync_extabt(env->exception.syndrome)) { 10420 addr += 0x180; 10421 } 10422 env->cp15.far_el[new_el] = env->exception.vaddress; 10423 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10424 env->cp15.far_el[new_el]); 10425 /* fall through */ 10426 case EXCP_BKPT: 10427 case EXCP_UDEF: 10428 case EXCP_SWI: 10429 case EXCP_HVC: 10430 case EXCP_HYP_TRAP: 10431 case EXCP_SMC: 10432 switch (syn_get_ec(env->exception.syndrome)) { 10433 case EC_ADVSIMDFPACCESSTRAP: 10434 /* 10435 * QEMU internal FP/SIMD syndromes from AArch32 include the 10436 * TA and coproc fields which are only exposed if the exception 10437 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10438 * AArch64 format syndrome. 10439 */ 10440 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10441 break; 10442 case EC_CP14RTTRAP: 10443 case EC_CP15RTTRAP: 10444 case EC_CP14DTTRAP: 10445 /* 10446 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10447 * the raw register field from the insn; when taking this to 10448 * AArch64 we must convert it to the AArch64 view of the register 10449 * number. Notice that we read a 4-bit AArch32 register number and 10450 * write back a 5-bit AArch64 one. 10451 */ 10452 rt = extract32(env->exception.syndrome, 5, 4); 10453 rt = aarch64_regnum(env, rt); 10454 env->exception.syndrome = deposit32(env->exception.syndrome, 10455 5, 5, rt); 10456 break; 10457 case EC_CP15RRTTRAP: 10458 case EC_CP14RRTTRAP: 10459 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10460 rt = extract32(env->exception.syndrome, 5, 4); 10461 rt = aarch64_regnum(env, rt); 10462 env->exception.syndrome = deposit32(env->exception.syndrome, 10463 5, 5, rt); 10464 rt = extract32(env->exception.syndrome, 10, 4); 10465 rt = aarch64_regnum(env, rt); 10466 env->exception.syndrome = deposit32(env->exception.syndrome, 10467 10, 5, rt); 10468 break; 10469 } 10470 env->cp15.esr_el[new_el] = env->exception.syndrome; 10471 break; 10472 case EXCP_IRQ: 10473 case EXCP_VIRQ: 10474 case EXCP_NMI: 10475 case EXCP_VINMI: 10476 addr += 0x80; 10477 break; 10478 case EXCP_FIQ: 10479 case EXCP_VFIQ: 10480 case EXCP_VFNMI: 10481 addr += 0x100; 10482 break; 10483 case EXCP_VSERR: 10484 addr += 0x180; 10485 /* Construct the SError syndrome from IDS and ISS fields. */ 10486 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10487 env->cp15.esr_el[new_el] = env->exception.syndrome; 10488 break; 10489 default: 10490 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10491 } 10492 10493 if (is_a64(env)) { 10494 old_mode = pstate_read(env); 10495 aarch64_save_sp(env, arm_current_el(env)); 10496 env->elr_el[new_el] = env->pc; 10497 10498 if (cur_el == 1 && new_el == 1) { 10499 uint64_t hcr = arm_hcr_el2_eff(env); 10500 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10501 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10502 /* 10503 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10504 * by setting M[3:2] to 0b10. 10505 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10506 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10507 */ 10508 old_mode = deposit32(old_mode, 2, 2, 2); 10509 } 10510 } 10511 } else { 10512 old_mode = cpsr_read_for_spsr_elx(env); 10513 env->elr_el[new_el] = env->regs[15]; 10514 10515 aarch64_sync_32_to_64(env); 10516 10517 env->condexec_bits = 0; 10518 } 10519 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10520 10521 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10522 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10523 env->elr_el[new_el]); 10524 10525 if (cpu_isar_feature(aa64_pan, cpu)) { 10526 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10527 new_mode |= old_mode & PSTATE_PAN; 10528 switch (new_el) { 10529 case 2: 10530 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10531 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10532 != (HCR_E2H | HCR_TGE)) { 10533 break; 10534 } 10535 /* fall through */ 10536 case 1: 10537 /* ... the target is EL1 ... */ 10538 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10539 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10540 new_mode |= PSTATE_PAN; 10541 } 10542 break; 10543 } 10544 } 10545 if (cpu_isar_feature(aa64_mte, cpu)) { 10546 new_mode |= PSTATE_TCO; 10547 } 10548 10549 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10550 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10551 new_mode |= PSTATE_SSBS; 10552 } else { 10553 new_mode &= ~PSTATE_SSBS; 10554 } 10555 } 10556 10557 if (cpu_isar_feature(aa64_nmi, cpu)) { 10558 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10559 new_mode |= PSTATE_ALLINT; 10560 } else { 10561 new_mode &= ~PSTATE_ALLINT; 10562 } 10563 } 10564 10565 pstate_write(env, PSTATE_DAIF | new_mode); 10566 env->aarch64 = true; 10567 aarch64_restore_sp(env, new_el); 10568 10569 if (tcg_enabled()) { 10570 helper_rebuild_hflags_a64(env, new_el); 10571 } 10572 10573 env->pc = addr; 10574 10575 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10576 new_el, env->pc, pstate_read(env)); 10577 } 10578 10579 /* 10580 * Do semihosting call and set the appropriate return value. All the 10581 * permission and validity checks have been done at translate time. 10582 * 10583 * We only see semihosting exceptions in TCG only as they are not 10584 * trapped to the hypervisor in KVM. 10585 */ 10586 #ifdef CONFIG_TCG 10587 static void tcg_handle_semihosting(CPUState *cs) 10588 { 10589 ARMCPU *cpu = ARM_CPU(cs); 10590 CPUARMState *env = &cpu->env; 10591 10592 if (is_a64(env)) { 10593 qemu_log_mask(CPU_LOG_INT, 10594 "...handling as semihosting call 0x%" PRIx64 "\n", 10595 env->xregs[0]); 10596 do_common_semihosting(cs); 10597 env->pc += 4; 10598 } else { 10599 qemu_log_mask(CPU_LOG_INT, 10600 "...handling as semihosting call 0x%x\n", 10601 env->regs[0]); 10602 do_common_semihosting(cs); 10603 env->regs[15] += env->thumb ? 2 : 4; 10604 } 10605 } 10606 #endif 10607 10608 /* 10609 * Handle a CPU exception for A and R profile CPUs. 10610 * Do any appropriate logging, handle PSCI calls, and then hand off 10611 * to the AArch64-entry or AArch32-entry function depending on the 10612 * target exception level's register width. 10613 * 10614 * Note: this is used for both TCG (as the do_interrupt tcg op), 10615 * and KVM to re-inject guest debug exceptions, and to 10616 * inject a Synchronous-External-Abort. 10617 */ 10618 void arm_cpu_do_interrupt(CPUState *cs) 10619 { 10620 ARMCPU *cpu = ARM_CPU(cs); 10621 CPUARMState *env = &cpu->env; 10622 unsigned int new_el = env->exception.target_el; 10623 10624 assert(!arm_feature(env, ARM_FEATURE_M)); 10625 10626 arm_log_exception(cs); 10627 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10628 new_el); 10629 if (qemu_loglevel_mask(CPU_LOG_INT) 10630 && !excp_is_internal(cs->exception_index)) { 10631 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10632 syn_get_ec(env->exception.syndrome), 10633 env->exception.syndrome); 10634 } 10635 10636 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10637 arm_handle_psci_call(cpu); 10638 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10639 return; 10640 } 10641 10642 /* 10643 * Semihosting semantics depend on the register width of the code 10644 * that caused the exception, not the target exception level, so 10645 * must be handled here. 10646 */ 10647 #ifdef CONFIG_TCG 10648 if (cs->exception_index == EXCP_SEMIHOST) { 10649 tcg_handle_semihosting(cs); 10650 return; 10651 } 10652 #endif 10653 10654 /* 10655 * Hooks may change global state so BQL should be held, also the 10656 * BQL needs to be held for any modification of 10657 * cs->interrupt_request. 10658 */ 10659 g_assert(bql_locked()); 10660 10661 arm_call_pre_el_change_hook(cpu); 10662 10663 assert(!excp_is_internal(cs->exception_index)); 10664 if (arm_el_is_aa64(env, new_el)) { 10665 arm_cpu_do_interrupt_aarch64(cs); 10666 } else { 10667 arm_cpu_do_interrupt_aarch32(cs); 10668 } 10669 10670 arm_call_el_change_hook(cpu); 10671 10672 if (!kvm_enabled()) { 10673 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10674 } 10675 } 10676 #endif /* !CONFIG_USER_ONLY */ 10677 10678 uint64_t arm_sctlr(CPUARMState *env, int el) 10679 { 10680 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10681 if (el == 0) { 10682 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10683 switch (mmu_idx) { 10684 case ARMMMUIdx_E20_0: 10685 el = 2; 10686 break; 10687 case ARMMMUIdx_E30_0: 10688 el = 3; 10689 break; 10690 default: 10691 el = 1; 10692 break; 10693 } 10694 } 10695 return env->cp15.sctlr_el[el]; 10696 } 10697 10698 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10699 { 10700 if (regime_has_2_ranges(mmu_idx)) { 10701 return extract64(tcr, 37, 2); 10702 } else if (regime_is_stage2(mmu_idx)) { 10703 return 0; /* VTCR_EL2 */ 10704 } else { 10705 /* Replicate the single TBI bit so we always have 2 bits. */ 10706 return extract32(tcr, 20, 1) * 3; 10707 } 10708 } 10709 10710 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10711 { 10712 if (regime_has_2_ranges(mmu_idx)) { 10713 return extract64(tcr, 51, 2); 10714 } else if (regime_is_stage2(mmu_idx)) { 10715 return 0; /* VTCR_EL2 */ 10716 } else { 10717 /* Replicate the single TBID bit so we always have 2 bits. */ 10718 return extract32(tcr, 29, 1) * 3; 10719 } 10720 } 10721 10722 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10723 { 10724 if (regime_has_2_ranges(mmu_idx)) { 10725 return extract64(tcr, 57, 2); 10726 } else { 10727 /* Replicate the single TCMA bit so we always have 2 bits. */ 10728 return extract32(tcr, 30, 1) * 3; 10729 } 10730 } 10731 10732 static ARMGranuleSize tg0_to_gran_size(int tg) 10733 { 10734 switch (tg) { 10735 case 0: 10736 return Gran4K; 10737 case 1: 10738 return Gran64K; 10739 case 2: 10740 return Gran16K; 10741 default: 10742 return GranInvalid; 10743 } 10744 } 10745 10746 static ARMGranuleSize tg1_to_gran_size(int tg) 10747 { 10748 switch (tg) { 10749 case 1: 10750 return Gran16K; 10751 case 2: 10752 return Gran4K; 10753 case 3: 10754 return Gran64K; 10755 default: 10756 return GranInvalid; 10757 } 10758 } 10759 10760 static inline bool have4k(ARMCPU *cpu, bool stage2) 10761 { 10762 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10763 : cpu_isar_feature(aa64_tgran4, cpu); 10764 } 10765 10766 static inline bool have16k(ARMCPU *cpu, bool stage2) 10767 { 10768 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10769 : cpu_isar_feature(aa64_tgran16, cpu); 10770 } 10771 10772 static inline bool have64k(ARMCPU *cpu, bool stage2) 10773 { 10774 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10775 : cpu_isar_feature(aa64_tgran64, cpu); 10776 } 10777 10778 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10779 bool stage2) 10780 { 10781 switch (gran) { 10782 case Gran4K: 10783 if (have4k(cpu, stage2)) { 10784 return gran; 10785 } 10786 break; 10787 case Gran16K: 10788 if (have16k(cpu, stage2)) { 10789 return gran; 10790 } 10791 break; 10792 case Gran64K: 10793 if (have64k(cpu, stage2)) { 10794 return gran; 10795 } 10796 break; 10797 case GranInvalid: 10798 break; 10799 } 10800 /* 10801 * If the guest selects a granule size that isn't implemented, 10802 * the architecture requires that we behave as if it selected one 10803 * that is (with an IMPDEF choice of which one to pick). We choose 10804 * to implement the smallest supported granule size. 10805 */ 10806 if (have4k(cpu, stage2)) { 10807 return Gran4K; 10808 } 10809 if (have16k(cpu, stage2)) { 10810 return Gran16K; 10811 } 10812 assert(have64k(cpu, stage2)); 10813 return Gran64K; 10814 } 10815 10816 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10817 ARMMMUIdx mmu_idx, bool data, 10818 bool el1_is_aa32) 10819 { 10820 uint64_t tcr = regime_tcr(env, mmu_idx); 10821 bool epd, hpd, tsz_oob, ds, ha, hd; 10822 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10823 ARMGranuleSize gran; 10824 ARMCPU *cpu = env_archcpu(env); 10825 bool stage2 = regime_is_stage2(mmu_idx); 10826 10827 if (!regime_has_2_ranges(mmu_idx)) { 10828 select = 0; 10829 tsz = extract32(tcr, 0, 6); 10830 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10831 if (stage2) { 10832 /* VTCR_EL2 */ 10833 hpd = false; 10834 } else { 10835 hpd = extract32(tcr, 24, 1); 10836 } 10837 epd = false; 10838 sh = extract32(tcr, 12, 2); 10839 ps = extract32(tcr, 16, 3); 10840 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 10841 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10842 ds = extract64(tcr, 32, 1); 10843 } else { 10844 bool e0pd; 10845 10846 /* 10847 * Bit 55 is always between the two regions, and is canonical for 10848 * determining if address tagging is enabled. 10849 */ 10850 select = extract64(va, 55, 1); 10851 if (!select) { 10852 tsz = extract32(tcr, 0, 6); 10853 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10854 epd = extract32(tcr, 7, 1); 10855 sh = extract32(tcr, 12, 2); 10856 hpd = extract64(tcr, 41, 1); 10857 e0pd = extract64(tcr, 55, 1); 10858 } else { 10859 tsz = extract32(tcr, 16, 6); 10860 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10861 epd = extract32(tcr, 23, 1); 10862 sh = extract32(tcr, 28, 2); 10863 hpd = extract64(tcr, 42, 1); 10864 e0pd = extract64(tcr, 56, 1); 10865 } 10866 ps = extract64(tcr, 32, 3); 10867 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 10868 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10869 ds = extract64(tcr, 59, 1); 10870 10871 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 10872 regime_is_user(env, mmu_idx)) { 10873 epd = true; 10874 } 10875 } 10876 10877 gran = sanitize_gran_size(cpu, gran, stage2); 10878 10879 if (cpu_isar_feature(aa64_st, cpu)) { 10880 max_tsz = 48 - (gran == Gran64K); 10881 } else { 10882 max_tsz = 39; 10883 } 10884 10885 /* 10886 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10887 * adjust the effective value of DS, as documented. 10888 */ 10889 min_tsz = 16; 10890 if (gran == Gran64K) { 10891 if (cpu_isar_feature(aa64_lva, cpu)) { 10892 min_tsz = 12; 10893 } 10894 ds = false; 10895 } else if (ds) { 10896 if (regime_is_stage2(mmu_idx)) { 10897 if (gran == Gran16K) { 10898 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10899 } else { 10900 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10901 } 10902 } else { 10903 if (gran == Gran16K) { 10904 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10905 } else { 10906 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10907 } 10908 } 10909 if (ds) { 10910 min_tsz = 12; 10911 } 10912 } 10913 10914 if (stage2 && el1_is_aa32) { 10915 /* 10916 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 10917 * are loosened: a configured IPA of 40 bits is permitted even if 10918 * the implemented PA is less than that (and so a 40 bit IPA would 10919 * fault for an AArch64 EL1). See R_DTLMN. 10920 */ 10921 min_tsz = MIN(min_tsz, 24); 10922 } 10923 10924 if (tsz > max_tsz) { 10925 tsz = max_tsz; 10926 tsz_oob = true; 10927 } else if (tsz < min_tsz) { 10928 tsz = min_tsz; 10929 tsz_oob = true; 10930 } else { 10931 tsz_oob = false; 10932 } 10933 10934 /* Present TBI as a composite with TBID. */ 10935 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10936 if (!data) { 10937 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10938 } 10939 tbi = (tbi >> select) & 1; 10940 10941 return (ARMVAParameters) { 10942 .tsz = tsz, 10943 .ps = ps, 10944 .sh = sh, 10945 .select = select, 10946 .tbi = tbi, 10947 .epd = epd, 10948 .hpd = hpd, 10949 .tsz_oob = tsz_oob, 10950 .ds = ds, 10951 .ha = ha, 10952 .hd = ha && hd, 10953 .gran = gran, 10954 }; 10955 } 10956 10957 /* 10958 * Note that signed overflow is undefined in C. The following routines are 10959 * careful to use unsigned types where modulo arithmetic is required. 10960 * Failure to do so _will_ break on newer gcc. 10961 */ 10962 10963 /* Signed saturating arithmetic. */ 10964 10965 /* Perform 16-bit signed saturating addition. */ 10966 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10967 { 10968 uint16_t res; 10969 10970 res = a + b; 10971 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10972 if (a & 0x8000) { 10973 res = 0x8000; 10974 } else { 10975 res = 0x7fff; 10976 } 10977 } 10978 return res; 10979 } 10980 10981 /* Perform 8-bit signed saturating addition. */ 10982 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10983 { 10984 uint8_t res; 10985 10986 res = a + b; 10987 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10988 if (a & 0x80) { 10989 res = 0x80; 10990 } else { 10991 res = 0x7f; 10992 } 10993 } 10994 return res; 10995 } 10996 10997 /* Perform 16-bit signed saturating subtraction. */ 10998 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10999 { 11000 uint16_t res; 11001 11002 res = a - b; 11003 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11004 if (a & 0x8000) { 11005 res = 0x8000; 11006 } else { 11007 res = 0x7fff; 11008 } 11009 } 11010 return res; 11011 } 11012 11013 /* Perform 8-bit signed saturating subtraction. */ 11014 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11015 { 11016 uint8_t res; 11017 11018 res = a - b; 11019 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11020 if (a & 0x80) { 11021 res = 0x80; 11022 } else { 11023 res = 0x7f; 11024 } 11025 } 11026 return res; 11027 } 11028 11029 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11030 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11031 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11032 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11033 #define PFX q 11034 11035 #include "op_addsub.h" 11036 11037 /* Unsigned saturating arithmetic. */ 11038 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11039 { 11040 uint16_t res; 11041 res = a + b; 11042 if (res < a) { 11043 res = 0xffff; 11044 } 11045 return res; 11046 } 11047 11048 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11049 { 11050 if (a > b) { 11051 return a - b; 11052 } else { 11053 return 0; 11054 } 11055 } 11056 11057 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11058 { 11059 uint8_t res; 11060 res = a + b; 11061 if (res < a) { 11062 res = 0xff; 11063 } 11064 return res; 11065 } 11066 11067 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11068 { 11069 if (a > b) { 11070 return a - b; 11071 } else { 11072 return 0; 11073 } 11074 } 11075 11076 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11077 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11078 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11079 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11080 #define PFX uq 11081 11082 #include "op_addsub.h" 11083 11084 /* Signed modulo arithmetic. */ 11085 #define SARITH16(a, b, n, op) do { \ 11086 int32_t sum; \ 11087 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11088 RESULT(sum, n, 16); \ 11089 if (sum >= 0) \ 11090 ge |= 3 << (n * 2); \ 11091 } while (0) 11092 11093 #define SARITH8(a, b, n, op) do { \ 11094 int32_t sum; \ 11095 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11096 RESULT(sum, n, 8); \ 11097 if (sum >= 0) \ 11098 ge |= 1 << n; \ 11099 } while (0) 11100 11101 11102 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11103 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11104 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11105 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11106 #define PFX s 11107 #define ARITH_GE 11108 11109 #include "op_addsub.h" 11110 11111 /* Unsigned modulo arithmetic. */ 11112 #define ADD16(a, b, n) do { \ 11113 uint32_t sum; \ 11114 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11115 RESULT(sum, n, 16); \ 11116 if ((sum >> 16) == 1) \ 11117 ge |= 3 << (n * 2); \ 11118 } while (0) 11119 11120 #define ADD8(a, b, n) do { \ 11121 uint32_t sum; \ 11122 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11123 RESULT(sum, n, 8); \ 11124 if ((sum >> 8) == 1) \ 11125 ge |= 1 << n; \ 11126 } while (0) 11127 11128 #define SUB16(a, b, n) do { \ 11129 uint32_t sum; \ 11130 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11131 RESULT(sum, n, 16); \ 11132 if ((sum >> 16) == 0) \ 11133 ge |= 3 << (n * 2); \ 11134 } while (0) 11135 11136 #define SUB8(a, b, n) do { \ 11137 uint32_t sum; \ 11138 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11139 RESULT(sum, n, 8); \ 11140 if ((sum >> 8) == 0) \ 11141 ge |= 1 << n; \ 11142 } while (0) 11143 11144 #define PFX u 11145 #define ARITH_GE 11146 11147 #include "op_addsub.h" 11148 11149 /* Halved signed arithmetic. */ 11150 #define ADD16(a, b, n) \ 11151 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11152 #define SUB16(a, b, n) \ 11153 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11154 #define ADD8(a, b, n) \ 11155 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11156 #define SUB8(a, b, n) \ 11157 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11158 #define PFX sh 11159 11160 #include "op_addsub.h" 11161 11162 /* Halved unsigned arithmetic. */ 11163 #define ADD16(a, b, n) \ 11164 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11165 #define SUB16(a, b, n) \ 11166 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11167 #define ADD8(a, b, n) \ 11168 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11169 #define SUB8(a, b, n) \ 11170 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11171 #define PFX uh 11172 11173 #include "op_addsub.h" 11174 11175 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11176 { 11177 if (a > b) { 11178 return a - b; 11179 } else { 11180 return b - a; 11181 } 11182 } 11183 11184 /* Unsigned sum of absolute byte differences. */ 11185 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11186 { 11187 uint32_t sum; 11188 sum = do_usad(a, b); 11189 sum += do_usad(a >> 8, b >> 8); 11190 sum += do_usad(a >> 16, b >> 16); 11191 sum += do_usad(a >> 24, b >> 24); 11192 return sum; 11193 } 11194 11195 /* For ARMv6 SEL instruction. */ 11196 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11197 { 11198 uint32_t mask; 11199 11200 mask = 0; 11201 if (flags & 1) { 11202 mask |= 0xff; 11203 } 11204 if (flags & 2) { 11205 mask |= 0xff00; 11206 } 11207 if (flags & 4) { 11208 mask |= 0xff0000; 11209 } 11210 if (flags & 8) { 11211 mask |= 0xff000000; 11212 } 11213 return (a & mask) | (b & ~mask); 11214 } 11215 11216 /* 11217 * CRC helpers. 11218 * The upper bytes of val (above the number specified by 'bytes') must have 11219 * been zeroed out by the caller. 11220 */ 11221 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11222 { 11223 uint8_t buf[4]; 11224 11225 stl_le_p(buf, val); 11226 11227 /* zlib crc32 converts the accumulator and output to one's complement. */ 11228 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11229 } 11230 11231 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11232 { 11233 uint8_t buf[4]; 11234 11235 stl_le_p(buf, val); 11236 11237 /* Linux crc32c converts the output to one's complement. */ 11238 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11239 } 11240 11241 /* 11242 * Return the exception level to which FP-disabled exceptions should 11243 * be taken, or 0 if FP is enabled. 11244 */ 11245 int fp_exception_el(CPUARMState *env, int cur_el) 11246 { 11247 #ifndef CONFIG_USER_ONLY 11248 uint64_t hcr_el2; 11249 11250 /* 11251 * CPACR and the CPTR registers don't exist before v6, so FP is 11252 * always accessible 11253 */ 11254 if (!arm_feature(env, ARM_FEATURE_V6)) { 11255 return 0; 11256 } 11257 11258 if (arm_feature(env, ARM_FEATURE_M)) { 11259 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11260 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11261 return 1; 11262 } 11263 11264 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11265 if (!extract32(env->v7m.nsacr, 10, 1)) { 11266 /* FP insns cause a NOCP UsageFault taken to Secure */ 11267 return 3; 11268 } 11269 } 11270 11271 return 0; 11272 } 11273 11274 hcr_el2 = arm_hcr_el2_eff(env); 11275 11276 /* 11277 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11278 * 0, 2 : trap EL0 and EL1/PL1 accesses 11279 * 1 : trap only EL0 accesses 11280 * 3 : trap no accesses 11281 * This register is ignored if E2H+TGE are both set. 11282 */ 11283 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11284 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11285 11286 switch (fpen) { 11287 case 1: 11288 if (cur_el != 0) { 11289 break; 11290 } 11291 /* fall through */ 11292 case 0: 11293 case 2: 11294 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11295 if (!arm_el_is_aa64(env, 3) 11296 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11297 return 3; 11298 } 11299 if (cur_el <= 1) { 11300 return 1; 11301 } 11302 break; 11303 } 11304 } 11305 11306 /* 11307 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11308 * to control non-secure access to the FPU. It doesn't have any 11309 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11310 */ 11311 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11312 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11313 if (!extract32(env->cp15.nsacr, 10, 1)) { 11314 /* FP insns act as UNDEF */ 11315 return cur_el == 2 ? 2 : 1; 11316 } 11317 } 11318 11319 /* 11320 * CPTR_EL2 is present in v7VE or v8, and changes format 11321 * with HCR_EL2.E2H (regardless of TGE). 11322 */ 11323 if (cur_el <= 2) { 11324 if (hcr_el2 & HCR_E2H) { 11325 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11326 case 1: 11327 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11328 break; 11329 } 11330 /* fall through */ 11331 case 0: 11332 case 2: 11333 return 2; 11334 } 11335 } else if (arm_is_el2_enabled(env)) { 11336 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11337 return 2; 11338 } 11339 } 11340 } 11341 11342 /* CPTR_EL3 : present in v8 */ 11343 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11344 /* Trap all FP ops to EL3 */ 11345 return 3; 11346 } 11347 #endif 11348 return 0; 11349 } 11350 11351 /* Return the exception level we're running at if this is our mmu_idx */ 11352 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11353 { 11354 if (mmu_idx & ARM_MMU_IDX_M) { 11355 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11356 } 11357 11358 switch (mmu_idx) { 11359 case ARMMMUIdx_E10_0: 11360 case ARMMMUIdx_E20_0: 11361 case ARMMMUIdx_E30_0: 11362 return 0; 11363 case ARMMMUIdx_E10_1: 11364 case ARMMMUIdx_E10_1_PAN: 11365 return 1; 11366 case ARMMMUIdx_E2: 11367 case ARMMMUIdx_E20_2: 11368 case ARMMMUIdx_E20_2_PAN: 11369 return 2; 11370 case ARMMMUIdx_E3: 11371 case ARMMMUIdx_E30_3_PAN: 11372 return 3; 11373 default: 11374 g_assert_not_reached(); 11375 } 11376 } 11377 11378 #ifndef CONFIG_TCG 11379 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11380 { 11381 g_assert_not_reached(); 11382 } 11383 #endif 11384 11385 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11386 { 11387 ARMMMUIdx idx; 11388 uint64_t hcr; 11389 11390 if (arm_feature(env, ARM_FEATURE_M)) { 11391 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11392 } 11393 11394 /* See ARM pseudo-function ELIsInHost. */ 11395 switch (el) { 11396 case 0: 11397 hcr = arm_hcr_el2_eff(env); 11398 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11399 idx = ARMMMUIdx_E20_0; 11400 } else if (arm_is_secure_below_el3(env) && 11401 !arm_el_is_aa64(env, 3)) { 11402 idx = ARMMMUIdx_E30_0; 11403 } else { 11404 idx = ARMMMUIdx_E10_0; 11405 } 11406 break; 11407 case 1: 11408 if (arm_pan_enabled(env)) { 11409 idx = ARMMMUIdx_E10_1_PAN; 11410 } else { 11411 idx = ARMMMUIdx_E10_1; 11412 } 11413 break; 11414 case 2: 11415 /* Note that TGE does not apply at EL2. */ 11416 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11417 if (arm_pan_enabled(env)) { 11418 idx = ARMMMUIdx_E20_2_PAN; 11419 } else { 11420 idx = ARMMMUIdx_E20_2; 11421 } 11422 } else { 11423 idx = ARMMMUIdx_E2; 11424 } 11425 break; 11426 case 3: 11427 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11428 return ARMMMUIdx_E30_3_PAN; 11429 } 11430 return ARMMMUIdx_E3; 11431 default: 11432 g_assert_not_reached(); 11433 } 11434 11435 return idx; 11436 } 11437 11438 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11439 { 11440 return arm_mmu_idx_el(env, arm_current_el(env)); 11441 } 11442 11443 static bool mve_no_pred(CPUARMState *env) 11444 { 11445 /* 11446 * Return true if there is definitely no predication of MVE 11447 * instructions by VPR or LTPSIZE. (Returning false even if there 11448 * isn't any predication is OK; generated code will just be 11449 * a little worse.) 11450 * If the CPU does not implement MVE then this TB flag is always 0. 11451 * 11452 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11453 * logic in gen_update_fp_context() needs to be updated to match. 11454 * 11455 * We do not include the effect of the ECI bits here -- they are 11456 * tracked in other TB flags. This simplifies the logic for 11457 * "when did we emit code that changes the MVE_NO_PRED TB flag 11458 * and thus need to end the TB?". 11459 */ 11460 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11461 return false; 11462 } 11463 if (env->v7m.vpr) { 11464 return false; 11465 } 11466 if (env->v7m.ltpsize < 4) { 11467 return false; 11468 } 11469 return true; 11470 } 11471 11472 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11473 uint64_t *cs_base, uint32_t *pflags) 11474 { 11475 CPUARMTBFlags flags; 11476 11477 assert_hflags_rebuild_correctly(env); 11478 flags = env->hflags; 11479 11480 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11481 *pc = env->pc; 11482 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11483 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11484 } 11485 } else { 11486 *pc = env->regs[15]; 11487 11488 if (arm_feature(env, ARM_FEATURE_M)) { 11489 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11490 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11491 != env->v7m.secure) { 11492 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11493 } 11494 11495 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11496 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11497 (env->v7m.secure && 11498 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11499 /* 11500 * ASPEN is set, but FPCA/SFPA indicate that there is no 11501 * active FP context; we must create a new FP context before 11502 * executing any FP insn. 11503 */ 11504 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11505 } 11506 11507 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11508 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11509 DP_TBFLAG_M32(flags, LSPACT, 1); 11510 } 11511 11512 if (mve_no_pred(env)) { 11513 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11514 } 11515 } else { 11516 /* 11517 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11518 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11519 */ 11520 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11521 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11522 } else { 11523 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11524 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11525 } 11526 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11527 DP_TBFLAG_A32(flags, VFPEN, 1); 11528 } 11529 } 11530 11531 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11532 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11533 } 11534 11535 /* 11536 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11537 * states defined in the ARM ARM for software singlestep: 11538 * SS_ACTIVE PSTATE.SS State 11539 * 0 x Inactive (the TB flag for SS is always 0) 11540 * 1 0 Active-pending 11541 * 1 1 Active-not-pending 11542 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11543 */ 11544 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11545 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11546 } 11547 11548 *pflags = flags.flags; 11549 *cs_base = flags.flags2; 11550 } 11551 11552 #ifdef TARGET_AARCH64 11553 /* 11554 * The manual says that when SVE is enabled and VQ is widened the 11555 * implementation is allowed to zero the previously inaccessible 11556 * portion of the registers. The corollary to that is that when 11557 * SVE is enabled and VQ is narrowed we are also allowed to zero 11558 * the now inaccessible portion of the registers. 11559 * 11560 * The intent of this is that no predicate bit beyond VQ is ever set. 11561 * Which means that some operations on predicate registers themselves 11562 * may operate on full uint64_t or even unrolled across the maximum 11563 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11564 * may well be cheaper than conditionals to restrict the operation 11565 * to the relevant portion of a uint16_t[16]. 11566 */ 11567 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11568 { 11569 int i, j; 11570 uint64_t pmask; 11571 11572 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11573 assert(vq <= env_archcpu(env)->sve_max_vq); 11574 11575 /* Zap the high bits of the zregs. */ 11576 for (i = 0; i < 32; i++) { 11577 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11578 } 11579 11580 /* Zap the high bits of the pregs and ffr. */ 11581 pmask = 0; 11582 if (vq & 3) { 11583 pmask = ~(-1ULL << (16 * (vq & 3))); 11584 } 11585 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11586 for (i = 0; i < 17; ++i) { 11587 env->vfp.pregs[i].p[j] &= pmask; 11588 } 11589 pmask = 0; 11590 } 11591 } 11592 11593 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11594 { 11595 int exc_el; 11596 11597 if (sm) { 11598 exc_el = sme_exception_el(env, el); 11599 } else { 11600 exc_el = sve_exception_el(env, el); 11601 } 11602 if (exc_el) { 11603 return 0; /* disabled */ 11604 } 11605 return sve_vqm1_for_el_sm(env, el, sm); 11606 } 11607 11608 /* 11609 * Notice a change in SVE vector size when changing EL. 11610 */ 11611 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11612 int new_el, bool el0_a64) 11613 { 11614 ARMCPU *cpu = env_archcpu(env); 11615 int old_len, new_len; 11616 bool old_a64, new_a64, sm; 11617 11618 /* Nothing to do if no SVE. */ 11619 if (!cpu_isar_feature(aa64_sve, cpu)) { 11620 return; 11621 } 11622 11623 /* Nothing to do if FP is disabled in either EL. */ 11624 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11625 return; 11626 } 11627 11628 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11629 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11630 11631 /* 11632 * Both AArch64.TakeException and AArch64.ExceptionReturn 11633 * invoke ResetSVEState when taking an exception from, or 11634 * returning to, AArch32 state when PSTATE.SM is enabled. 11635 */ 11636 sm = FIELD_EX64(env->svcr, SVCR, SM); 11637 if (old_a64 != new_a64 && sm) { 11638 arm_reset_sve_state(env); 11639 return; 11640 } 11641 11642 /* 11643 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11644 * at ELx, or not available because the EL is in AArch32 state, then 11645 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11646 * has an effective value of 0". 11647 * 11648 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11649 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11650 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11651 * we already have the correct register contents when encountering the 11652 * vq0->vq0 transition between EL0->EL1. 11653 */ 11654 old_len = new_len = 0; 11655 if (old_a64) { 11656 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11657 } 11658 if (new_a64) { 11659 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11660 } 11661 11662 /* When changing vector length, clear inaccessible state. */ 11663 if (new_len < old_len) { 11664 aarch64_sve_narrow_vq(env, new_len + 1); 11665 } 11666 } 11667 #endif 11668 11669 #ifndef CONFIG_USER_ONLY 11670 ARMSecuritySpace arm_security_space(CPUARMState *env) 11671 { 11672 if (arm_feature(env, ARM_FEATURE_M)) { 11673 return arm_secure_to_space(env->v7m.secure); 11674 } 11675 11676 /* 11677 * If EL3 is not supported then the secure state is implementation 11678 * defined, in which case QEMU defaults to non-secure. 11679 */ 11680 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11681 return ARMSS_NonSecure; 11682 } 11683 11684 /* Check for AArch64 EL3 or AArch32 Mon. */ 11685 if (is_a64(env)) { 11686 if (extract32(env->pstate, 2, 2) == 3) { 11687 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11688 return ARMSS_Root; 11689 } else { 11690 return ARMSS_Secure; 11691 } 11692 } 11693 } else { 11694 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11695 return ARMSS_Secure; 11696 } 11697 } 11698 11699 return arm_security_space_below_el3(env); 11700 } 11701 11702 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11703 { 11704 assert(!arm_feature(env, ARM_FEATURE_M)); 11705 11706 /* 11707 * If EL3 is not supported then the secure state is implementation 11708 * defined, in which case QEMU defaults to non-secure. 11709 */ 11710 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11711 return ARMSS_NonSecure; 11712 } 11713 11714 /* 11715 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11716 * Ignoring NSE when !NS retains consistency without having to 11717 * modify other predicates. 11718 */ 11719 if (!(env->cp15.scr_el3 & SCR_NS)) { 11720 return ARMSS_Secure; 11721 } else if (env->cp15.scr_el3 & SCR_NSE) { 11722 return ARMSS_Realm; 11723 } else { 11724 return ARMSS_NonSecure; 11725 } 11726 } 11727 #endif /* !CONFIG_USER_ONLY */ 11728