1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "exec/page-protection.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/cputlb.h" 22 #include "exec/exec-all.h" 23 #include "exec/translation-block.h" 24 #include "hw/irq.h" 25 #include "system/cpu-timers.h" 26 #include "system/kvm.h" 27 #include "system/tcg.h" 28 #include "qapi/error.h" 29 #include "qemu/guest-random.h" 30 #ifdef CONFIG_TCG 31 #include "semihosting/common-semi.h" 32 #endif 33 #include "cpregs.h" 34 #include "target/arm/gtimer.h" 35 36 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 37 38 static void switch_mode(CPUARMState *env, int mode); 39 40 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 41 { 42 assert(ri->fieldoffset); 43 if (cpreg_field_is_64bit(ri)) { 44 return CPREG_FIELD64(env, ri); 45 } else { 46 return CPREG_FIELD32(env, ri); 47 } 48 } 49 50 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 51 { 52 assert(ri->fieldoffset); 53 if (cpreg_field_is_64bit(ri)) { 54 CPREG_FIELD64(env, ri) = value; 55 } else { 56 CPREG_FIELD32(env, ri) = value; 57 } 58 } 59 60 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 61 { 62 return (char *)env + ri->fieldoffset; 63 } 64 65 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 66 { 67 /* Raw read of a coprocessor register (as needed for migration, etc). */ 68 if (ri->type & ARM_CP_CONST) { 69 return ri->resetvalue; 70 } else if (ri->raw_readfn) { 71 return ri->raw_readfn(env, ri); 72 } else if (ri->readfn) { 73 return ri->readfn(env, ri); 74 } else { 75 return raw_read(env, ri); 76 } 77 } 78 79 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 80 uint64_t v) 81 { 82 /* 83 * Raw write of a coprocessor register (as needed for migration, etc). 84 * Note that constant registers are treated as write-ignored; the 85 * caller should check for success by whether a readback gives the 86 * value written. 87 */ 88 if (ri->type & ARM_CP_CONST) { 89 return; 90 } else if (ri->raw_writefn) { 91 ri->raw_writefn(env, ri, v); 92 } else if (ri->writefn) { 93 ri->writefn(env, ri, v); 94 } else { 95 raw_write(env, ri, v); 96 } 97 } 98 99 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 100 { 101 /* 102 * Return true if the regdef would cause an assertion if you called 103 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 104 * program bug for it not to have the NO_RAW flag). 105 * NB that returning false here doesn't necessarily mean that calling 106 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 107 * read/write access functions which are safe for raw use" from "has 108 * read/write access functions which have side effects but has forgotten 109 * to provide raw access functions". 110 * The tests here line up with the conditions in read/write_raw_cp_reg() 111 * and assertions in raw_read()/raw_write(). 112 */ 113 if ((ri->type & ARM_CP_CONST) || 114 ri->fieldoffset || 115 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 116 return false; 117 } 118 return true; 119 } 120 121 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 122 { 123 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 124 int i; 125 bool ok = true; 126 127 for (i = 0; i < cpu->cpreg_array_len; i++) { 128 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 129 const ARMCPRegInfo *ri; 130 uint64_t newval; 131 132 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 133 if (!ri) { 134 ok = false; 135 continue; 136 } 137 if (ri->type & ARM_CP_NO_RAW) { 138 continue; 139 } 140 141 newval = read_raw_cp_reg(&cpu->env, ri); 142 if (kvm_sync) { 143 /* 144 * Only sync if the previous list->cpustate sync succeeded. 145 * Rather than tracking the success/failure state for every 146 * item in the list, we just recheck "does the raw write we must 147 * have made in write_list_to_cpustate() read back OK" here. 148 */ 149 uint64_t oldval = cpu->cpreg_values[i]; 150 151 if (oldval == newval) { 152 continue; 153 } 154 155 write_raw_cp_reg(&cpu->env, ri, oldval); 156 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 157 continue; 158 } 159 160 write_raw_cp_reg(&cpu->env, ri, newval); 161 } 162 cpu->cpreg_values[i] = newval; 163 } 164 return ok; 165 } 166 167 bool write_list_to_cpustate(ARMCPU *cpu) 168 { 169 int i; 170 bool ok = true; 171 172 for (i = 0; i < cpu->cpreg_array_len; i++) { 173 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 174 uint64_t v = cpu->cpreg_values[i]; 175 const ARMCPRegInfo *ri; 176 177 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 178 if (!ri) { 179 ok = false; 180 continue; 181 } 182 if (ri->type & ARM_CP_NO_RAW) { 183 continue; 184 } 185 /* 186 * Write value and confirm it reads back as written 187 * (to catch read-only registers and partially read-only 188 * registers where the incoming migration value doesn't match) 189 */ 190 write_raw_cp_reg(&cpu->env, ri, v); 191 if (read_raw_cp_reg(&cpu->env, ri) != v) { 192 ok = false; 193 } 194 } 195 return ok; 196 } 197 198 static void add_cpreg_to_list(gpointer key, gpointer opaque) 199 { 200 ARMCPU *cpu = opaque; 201 uint32_t regidx = (uintptr_t)key; 202 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 203 204 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 205 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 206 /* The value array need not be initialized at this point */ 207 cpu->cpreg_array_len++; 208 } 209 } 210 211 static void count_cpreg(gpointer key, gpointer opaque) 212 { 213 ARMCPU *cpu = opaque; 214 const ARMCPRegInfo *ri; 215 216 ri = g_hash_table_lookup(cpu->cp_regs, key); 217 218 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 219 cpu->cpreg_array_len++; 220 } 221 } 222 223 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 224 { 225 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 226 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 227 228 if (aidx > bidx) { 229 return 1; 230 } 231 if (aidx < bidx) { 232 return -1; 233 } 234 return 0; 235 } 236 237 void init_cpreg_list(ARMCPU *cpu) 238 { 239 /* 240 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 static bool arm_pan_enabled(CPUARMState *env) 269 { 270 if (is_a64(env)) { 271 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 272 return false; 273 } 274 return env->pstate & PSTATE_PAN; 275 } else { 276 return env->uncached_cpsr & CPSR_PAN; 277 } 278 } 279 280 /* 281 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 282 */ 283 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 284 const ARMCPRegInfo *ri, 285 bool isread) 286 { 287 if (!is_a64(env) && arm_current_el(env) == 3 && 288 arm_is_secure_below_el3(env)) { 289 return CP_ACCESS_UNDEFINED; 290 } 291 return CP_ACCESS_OK; 292 } 293 294 /* 295 * Some secure-only AArch32 registers trap to EL3 if used from 296 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 297 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 298 * We assume that the .access field is set to PL1_RW. 299 */ 300 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 301 const ARMCPRegInfo *ri, 302 bool isread) 303 { 304 if (arm_current_el(env) == 3) { 305 return CP_ACCESS_OK; 306 } 307 if (arm_is_secure_below_el3(env)) { 308 if (env->cp15.scr_el3 & SCR_EEL2) { 309 return CP_ACCESS_TRAP_EL2; 310 } 311 return CP_ACCESS_TRAP_EL3; 312 } 313 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 314 return CP_ACCESS_UNDEFINED; 315 } 316 317 /* 318 * Check for traps to performance monitor registers, which are controlled 319 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 320 */ 321 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 322 bool isread) 323 { 324 int el = arm_current_el(env); 325 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 326 327 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 331 return CP_ACCESS_TRAP_EL3; 332 } 333 return CP_ACCESS_OK; 334 } 335 336 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 337 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 338 bool isread) 339 { 340 if (arm_current_el(env) == 1) { 341 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 342 if (arm_hcr_el2_eff(env) & trap) { 343 return CP_ACCESS_TRAP_EL2; 344 } 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 350 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 351 bool isread) 352 { 353 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 354 return CP_ACCESS_TRAP_EL2; 355 } 356 return CP_ACCESS_OK; 357 } 358 359 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 360 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 361 bool isread) 362 { 363 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 364 return CP_ACCESS_TRAP_EL2; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 370 { 371 ARMCPU *cpu = env_archcpu(env); 372 373 raw_write(env, ri, value); 374 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 375 } 376 377 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 378 { 379 ARMCPU *cpu = env_archcpu(env); 380 381 if (raw_read(env, ri) != value) { 382 /* 383 * Unlike real hardware the qemu TLB uses virtual addresses, 384 * not modified virtual addresses, so this causes a TLB flush. 385 */ 386 tlb_flush(CPU(cpu)); 387 raw_write(env, ri, value); 388 } 389 } 390 391 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 392 uint64_t value) 393 { 394 ARMCPU *cpu = env_archcpu(env); 395 396 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 397 && !extended_addresses_enabled(env)) { 398 /* 399 * For VMSA (when not using the LPAE long descriptor page table 400 * format) this register includes the ASID, so do a TLB flush. 401 * For PMSA it is purely a process ID and no action is needed. 402 */ 403 tlb_flush(CPU(cpu)); 404 } 405 raw_write(env, ri, value); 406 } 407 408 int alle1_tlbmask(CPUARMState *env) 409 { 410 /* 411 * Note that the 'ALL' scope must invalidate both stage 1 and 412 * stage 2 translations, whereas most other scopes only invalidate 413 * stage 1 translations. 414 * 415 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 416 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 417 */ 418 return (ARMMMUIdxBit_E10_1 | 419 ARMMMUIdxBit_E10_1_PAN | 420 ARMMMUIdxBit_E10_0 | 421 ARMMMUIdxBit_Stage2 | 422 ARMMMUIdxBit_Stage2_S); 423 } 424 425 static const ARMCPRegInfo cp_reginfo[] = { 426 /* 427 * Define the secure and non-secure FCSE identifier CP registers 428 * separately because there is no secure bank in V8 (no _EL3). This allows 429 * the secure register to be properly reset and migrated. There is also no 430 * v8 EL1 version of the register so the non-secure instance stands alone. 431 */ 432 { .name = "FCSEIDR", 433 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 434 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 435 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 436 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 437 { .name = "FCSEIDR_S", 438 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 439 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 440 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 441 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 442 /* 443 * Define the secure and non-secure context identifier CP registers 444 * separately because there is no secure bank in V8 (no _EL3). This allows 445 * the secure register to be properly reset and migrated. In the 446 * non-secure case, the 32-bit register will have reset and migration 447 * disabled during registration as it is handled by the 64-bit instance. 448 */ 449 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 450 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 451 .access = PL1_RW, .accessfn = access_tvm_trvm, 452 .fgt = FGT_CONTEXTIDR_EL1, 453 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 454 .secure = ARM_CP_SECSTATE_NS, 455 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 456 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 457 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 458 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 459 .access = PL1_RW, .accessfn = access_tvm_trvm, 460 .secure = ARM_CP_SECSTATE_S, 461 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 462 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 463 }; 464 465 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 466 /* 467 * NB: Some of these registers exist in v8 but with more precise 468 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 469 */ 470 /* MMU Domain access control / MPU write buffer control */ 471 { .name = "DACR", 472 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 473 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 474 .writefn = dacr_write, .raw_writefn = raw_write, 475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 476 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 477 /* 478 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 479 * For v6 and v5, these mappings are overly broad. 480 */ 481 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 482 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 483 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 484 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 485 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 486 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 487 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 488 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 489 /* Cache maintenance ops; some of this space may be overridden later. */ 490 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 491 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 492 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 493 }; 494 495 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 496 /* 497 * Not all pre-v6 cores implemented this WFI, so this is slightly 498 * over-broad. 499 */ 500 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 501 .access = PL1_W, .type = ARM_CP_WFI }, 502 }; 503 504 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 505 /* 506 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 507 * is UNPREDICTABLE; we choose to NOP as most implementations do). 508 */ 509 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 510 .access = PL1_W, .type = ARM_CP_WFI }, 511 /* 512 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 513 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 514 * OMAPCP will override this space. 515 */ 516 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 517 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 518 .resetvalue = 0 }, 519 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 520 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 521 .resetvalue = 0 }, 522 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 523 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 524 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 525 .resetvalue = 0 }, 526 /* 527 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 528 * implementing it as RAZ means the "debug architecture version" bits 529 * will read as a reserved value, which should cause Linux to not try 530 * to use the debug hardware. 531 */ 532 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 533 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 534 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 535 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 536 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 537 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 538 }; 539 540 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 uint32_t mask = 0; 544 545 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 546 if (!arm_feature(env, ARM_FEATURE_V8)) { 547 /* 548 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 549 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 550 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 551 */ 552 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 553 /* VFP coprocessor: cp10 & cp11 [23:20] */ 554 mask |= R_CPACR_ASEDIS_MASK | 555 R_CPACR_D32DIS_MASK | 556 R_CPACR_CP11_MASK | 557 R_CPACR_CP10_MASK; 558 559 if (!arm_feature(env, ARM_FEATURE_NEON)) { 560 /* ASEDIS [31] bit is RAO/WI */ 561 value |= R_CPACR_ASEDIS_MASK; 562 } 563 564 /* 565 * VFPv3 and upwards with NEON implement 32 double precision 566 * registers (D0-D31). 567 */ 568 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 569 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 570 value |= R_CPACR_D32DIS_MASK; 571 } 572 } 573 value &= mask; 574 } 575 576 /* 577 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 578 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 579 */ 580 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 581 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 582 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 583 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 584 } 585 586 env->cp15.cpacr_el1 = value; 587 } 588 589 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 590 { 591 /* 592 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 593 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 594 */ 595 uint64_t value = env->cp15.cpacr_el1; 596 597 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 598 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 599 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 600 } 601 return value; 602 } 603 604 605 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 606 { 607 /* 608 * Call cpacr_write() so that we reset with the correct RAO bits set 609 * for our CPU features. 610 */ 611 cpacr_write(env, ri, 0); 612 } 613 614 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 if (arm_feature(env, ARM_FEATURE_V8)) { 618 /* Check if CPACR accesses are to be trapped to EL2 */ 619 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 620 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 621 return CP_ACCESS_TRAP_EL2; 622 /* Check if CPACR accesses are to be trapped to EL3 */ 623 } else if (arm_current_el(env) < 3 && 624 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 625 return CP_ACCESS_TRAP_EL3; 626 } 627 } 628 629 return CP_ACCESS_OK; 630 } 631 632 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 633 bool isread) 634 { 635 /* Check if CPTR accesses are set to trap to EL3 */ 636 if (arm_current_el(env) == 2 && 637 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 638 return CP_ACCESS_TRAP_EL3; 639 } 640 641 return CP_ACCESS_OK; 642 } 643 644 static const ARMCPRegInfo v6_cp_reginfo[] = { 645 /* prefetch by MVA in v6, NOP in v7 */ 646 { .name = "MVA_prefetch", 647 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 648 .access = PL1_W, .type = ARM_CP_NOP }, 649 /* 650 * We need to break the TB after ISB to execute self-modifying code 651 * correctly and also to take any pending interrupts immediately. 652 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 653 */ 654 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 655 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 656 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 657 .access = PL0_W, .type = ARM_CP_NOP }, 658 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 659 .access = PL0_W, .type = ARM_CP_NOP }, 660 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 663 offsetof(CPUARMState, cp15.ifar_ns) }, 664 .resetvalue = 0, }, 665 /* 666 * Watchpoint Fault Address Register : should actually only be present 667 * for 1136, 1176, 11MPCore. 668 */ 669 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 670 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 671 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 672 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 673 .fgt = FGT_CPACR_EL1, 674 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 675 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 676 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 677 }; 678 679 typedef struct pm_event { 680 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 681 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 682 bool (*supported)(CPUARMState *); 683 /* 684 * Retrieve the current count of the underlying event. The programmed 685 * counters hold a difference from the return value from this function 686 */ 687 uint64_t (*get_count)(CPUARMState *); 688 /* 689 * Return how many nanoseconds it will take (at a minimum) for count events 690 * to occur. A negative value indicates the counter will never overflow, or 691 * that the counter has otherwise arranged for the overflow bit to be set 692 * and the PMU interrupt to be raised on overflow. 693 */ 694 int64_t (*ns_per_count)(uint64_t); 695 } pm_event; 696 697 static bool event_always_supported(CPUARMState *env) 698 { 699 return true; 700 } 701 702 static uint64_t swinc_get_count(CPUARMState *env) 703 { 704 /* 705 * SW_INCR events are written directly to the pmevcntr's by writes to 706 * PMSWINC, so there is no underlying count maintained by the PMU itself 707 */ 708 return 0; 709 } 710 711 static int64_t swinc_ns_per(uint64_t ignored) 712 { 713 return -1; 714 } 715 716 /* 717 * Return the underlying cycle count for the PMU cycle counters. If we're in 718 * usermode, simply return 0. 719 */ 720 static uint64_t cycles_get_count(CPUARMState *env) 721 { 722 #ifndef CONFIG_USER_ONLY 723 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 724 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 725 #else 726 return cpu_get_host_ticks(); 727 #endif 728 } 729 730 #ifndef CONFIG_USER_ONLY 731 static int64_t cycles_ns_per(uint64_t cycles) 732 { 733 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 734 } 735 736 static bool instructions_supported(CPUARMState *env) 737 { 738 /* Precise instruction counting */ 739 return icount_enabled() == ICOUNT_PRECISE; 740 } 741 742 static uint64_t instructions_get_count(CPUARMState *env) 743 { 744 assert(icount_enabled() == ICOUNT_PRECISE); 745 return (uint64_t)icount_get_raw(); 746 } 747 748 static int64_t instructions_ns_per(uint64_t icount) 749 { 750 assert(icount_enabled() == ICOUNT_PRECISE); 751 return icount_to_ns((int64_t)icount); 752 } 753 #endif 754 755 static bool pmuv3p1_events_supported(CPUARMState *env) 756 { 757 /* For events which are supported in any v8.1 PMU */ 758 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 759 } 760 761 static bool pmuv3p4_events_supported(CPUARMState *env) 762 { 763 /* For events which are supported in any v8.1 PMU */ 764 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 765 } 766 767 static uint64_t zero_event_get_count(CPUARMState *env) 768 { 769 /* For events which on QEMU never fire, so their count is always zero */ 770 return 0; 771 } 772 773 static int64_t zero_event_ns_per(uint64_t cycles) 774 { 775 /* An event which never fires can never overflow */ 776 return -1; 777 } 778 779 static const pm_event pm_events[] = { 780 { .number = 0x000, /* SW_INCR */ 781 .supported = event_always_supported, 782 .get_count = swinc_get_count, 783 .ns_per_count = swinc_ns_per, 784 }, 785 #ifndef CONFIG_USER_ONLY 786 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 787 .supported = instructions_supported, 788 .get_count = instructions_get_count, 789 .ns_per_count = instructions_ns_per, 790 }, 791 { .number = 0x011, /* CPU_CYCLES, Cycle */ 792 .supported = event_always_supported, 793 .get_count = cycles_get_count, 794 .ns_per_count = cycles_ns_per, 795 }, 796 #endif 797 { .number = 0x023, /* STALL_FRONTEND */ 798 .supported = pmuv3p1_events_supported, 799 .get_count = zero_event_get_count, 800 .ns_per_count = zero_event_ns_per, 801 }, 802 { .number = 0x024, /* STALL_BACKEND */ 803 .supported = pmuv3p1_events_supported, 804 .get_count = zero_event_get_count, 805 .ns_per_count = zero_event_ns_per, 806 }, 807 { .number = 0x03c, /* STALL */ 808 .supported = pmuv3p4_events_supported, 809 .get_count = zero_event_get_count, 810 .ns_per_count = zero_event_ns_per, 811 }, 812 }; 813 814 /* 815 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 816 * events (i.e. the statistical profiling extension), this implementation 817 * should first be updated to something sparse instead of the current 818 * supported_event_map[] array. 819 */ 820 #define MAX_EVENT_ID 0x3c 821 #define UNSUPPORTED_EVENT UINT16_MAX 822 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 823 824 /* 825 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 826 * of ARM event numbers to indices in our pm_events array. 827 * 828 * Note: Events in the 0x40XX range are not currently supported. 829 */ 830 void pmu_init(ARMCPU *cpu) 831 { 832 unsigned int i; 833 834 /* 835 * Empty supported_event_map and cpu->pmceid[01] before adding supported 836 * events to them 837 */ 838 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 839 supported_event_map[i] = UNSUPPORTED_EVENT; 840 } 841 cpu->pmceid0 = 0; 842 cpu->pmceid1 = 0; 843 844 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 845 const pm_event *cnt = &pm_events[i]; 846 assert(cnt->number <= MAX_EVENT_ID); 847 /* We do not currently support events in the 0x40xx range */ 848 assert(cnt->number <= 0x3f); 849 850 if (cnt->supported(&cpu->env)) { 851 supported_event_map[cnt->number] = i; 852 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 853 if (cnt->number & 0x20) { 854 cpu->pmceid1 |= event_mask; 855 } else { 856 cpu->pmceid0 |= event_mask; 857 } 858 } 859 } 860 } 861 862 /* 863 * Check at runtime whether a PMU event is supported for the current machine 864 */ 865 static bool event_supported(uint16_t number) 866 { 867 if (number > MAX_EVENT_ID) { 868 return false; 869 } 870 return supported_event_map[number] != UNSUPPORTED_EVENT; 871 } 872 873 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 874 bool isread) 875 { 876 /* 877 * Performance monitor registers user accessibility is controlled 878 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 879 * trapping to EL2 or EL3 for other accesses. 880 */ 881 int el = arm_current_el(env); 882 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 883 884 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 885 return CP_ACCESS_TRAP_EL1; 886 } 887 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 888 return CP_ACCESS_TRAP_EL2; 889 } 890 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 891 return CP_ACCESS_TRAP_EL3; 892 } 893 894 return CP_ACCESS_OK; 895 } 896 897 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 898 const ARMCPRegInfo *ri, 899 bool isread) 900 { 901 /* ER: event counter read trap control */ 902 if (arm_feature(env, ARM_FEATURE_V8) 903 && arm_current_el(env) == 0 904 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 905 && isread) { 906 return CP_ACCESS_OK; 907 } 908 909 return pmreg_access(env, ri, isread); 910 } 911 912 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 913 const ARMCPRegInfo *ri, 914 bool isread) 915 { 916 /* SW: software increment write trap control */ 917 if (arm_feature(env, ARM_FEATURE_V8) 918 && arm_current_el(env) == 0 919 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 920 && !isread) { 921 return CP_ACCESS_OK; 922 } 923 924 return pmreg_access(env, ri, isread); 925 } 926 927 static CPAccessResult pmreg_access_selr(CPUARMState *env, 928 const ARMCPRegInfo *ri, 929 bool isread) 930 { 931 /* ER: event counter read trap control */ 932 if (arm_feature(env, ARM_FEATURE_V8) 933 && arm_current_el(env) == 0 934 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 935 return CP_ACCESS_OK; 936 } 937 938 return pmreg_access(env, ri, isread); 939 } 940 941 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 942 const ARMCPRegInfo *ri, 943 bool isread) 944 { 945 /* CR: cycle counter read trap control */ 946 if (arm_feature(env, ARM_FEATURE_V8) 947 && arm_current_el(env) == 0 948 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 949 && isread) { 950 return CP_ACCESS_OK; 951 } 952 953 return pmreg_access(env, ri, isread); 954 } 955 956 /* 957 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 958 * We use these to decide whether we need to wrap a write to MDCR_EL2 959 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 960 */ 961 #define MDCR_EL2_PMU_ENABLE_BITS \ 962 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 963 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 964 965 /* 966 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 967 * the current EL, security state, and register configuration. 968 */ 969 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 970 { 971 uint64_t filter; 972 bool e, p, u, nsk, nsu, nsh, m; 973 bool enabled, prohibited = false, filtered; 974 bool secure = arm_is_secure(env); 975 int el = arm_current_el(env); 976 uint64_t mdcr_el2; 977 uint8_t hpmn; 978 979 /* 980 * We might be called for M-profile cores where MDCR_EL2 doesn't 981 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 982 * must be before we read that value. 983 */ 984 if (!arm_feature(env, ARM_FEATURE_PMU)) { 985 return false; 986 } 987 988 mdcr_el2 = arm_mdcr_el2_eff(env); 989 hpmn = mdcr_el2 & MDCR_HPMN; 990 991 if (!arm_feature(env, ARM_FEATURE_EL2) || 992 (counter < hpmn || counter == 31)) { 993 e = env->cp15.c9_pmcr & PMCRE; 994 } else { 995 e = mdcr_el2 & MDCR_HPME; 996 } 997 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 998 999 /* Is event counting prohibited? */ 1000 if (el == 2 && (counter < hpmn || counter == 31)) { 1001 prohibited = mdcr_el2 & MDCR_HPMD; 1002 } 1003 if (secure) { 1004 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1005 } 1006 1007 if (counter == 31) { 1008 /* 1009 * The cycle counter defaults to running. PMCR.DP says "disable 1010 * the cycle counter when event counting is prohibited". 1011 * Some MDCR bits disable the cycle counter specifically. 1012 */ 1013 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1014 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1015 if (secure) { 1016 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1017 } 1018 if (el == 2) { 1019 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1020 } 1021 } 1022 } 1023 1024 if (counter == 31) { 1025 filter = env->cp15.pmccfiltr_el0; 1026 } else { 1027 filter = env->cp15.c14_pmevtyper[counter]; 1028 } 1029 1030 p = filter & PMXEVTYPER_P; 1031 u = filter & PMXEVTYPER_U; 1032 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1033 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1034 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1035 m = arm_el_is_aa64(env, 1) && 1036 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1037 1038 if (el == 0) { 1039 filtered = secure ? u : u != nsu; 1040 } else if (el == 1) { 1041 filtered = secure ? p : p != nsk; 1042 } else if (el == 2) { 1043 filtered = !nsh; 1044 } else { /* EL3 */ 1045 filtered = m != p; 1046 } 1047 1048 if (counter != 31) { 1049 /* 1050 * If not checking PMCCNTR, ensure the counter is setup to an event we 1051 * support 1052 */ 1053 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1054 if (!event_supported(event)) { 1055 return false; 1056 } 1057 } 1058 1059 return enabled && !prohibited && !filtered; 1060 } 1061 1062 static void pmu_update_irq(CPUARMState *env) 1063 { 1064 ARMCPU *cpu = env_archcpu(env); 1065 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1066 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1067 } 1068 1069 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1070 { 1071 /* 1072 * Return true if the clock divider is enabled and the cycle counter 1073 * is supposed to tick only once every 64 clock cycles. This is 1074 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1075 * (64-bit) cycle counter PMCR.D has no effect. 1076 */ 1077 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1078 } 1079 1080 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1081 { 1082 /* Return true if the specified event counter is configured to be 64 bit */ 1083 1084 /* This isn't intended to be used with the cycle counter */ 1085 assert(counter < 31); 1086 1087 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1088 return false; 1089 } 1090 1091 if (arm_feature(env, ARM_FEATURE_EL2)) { 1092 /* 1093 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1094 * current security state, so we don't use arm_mdcr_el2_eff() here. 1095 */ 1096 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1097 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1098 1099 if (counter >= hpmn) { 1100 return hlp; 1101 } 1102 } 1103 return env->cp15.c9_pmcr & PMCRLP; 1104 } 1105 1106 /* 1107 * Ensure c15_ccnt is the guest-visible count so that operations such as 1108 * enabling/disabling the counter or filtering, modifying the count itself, 1109 * etc. can be done logically. This is essentially a no-op if the counter is 1110 * not enabled at the time of the call. 1111 */ 1112 static void pmccntr_op_start(CPUARMState *env) 1113 { 1114 uint64_t cycles = cycles_get_count(env); 1115 1116 if (pmu_counter_enabled(env, 31)) { 1117 uint64_t eff_cycles = cycles; 1118 if (pmccntr_clockdiv_enabled(env)) { 1119 eff_cycles /= 64; 1120 } 1121 1122 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1123 1124 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1125 1ull << 63 : 1ull << 31; 1126 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1127 env->cp15.c9_pmovsr |= (1ULL << 31); 1128 pmu_update_irq(env); 1129 } 1130 1131 env->cp15.c15_ccnt = new_pmccntr; 1132 } 1133 env->cp15.c15_ccnt_delta = cycles; 1134 } 1135 1136 /* 1137 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1138 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1139 * pmccntr_op_start. 1140 */ 1141 static void pmccntr_op_finish(CPUARMState *env) 1142 { 1143 if (pmu_counter_enabled(env, 31)) { 1144 #ifndef CONFIG_USER_ONLY 1145 /* Calculate when the counter will next overflow */ 1146 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1147 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1148 remaining_cycles = (uint32_t)remaining_cycles; 1149 } 1150 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1151 1152 if (overflow_in > 0) { 1153 int64_t overflow_at; 1154 1155 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1156 overflow_in, &overflow_at)) { 1157 ARMCPU *cpu = env_archcpu(env); 1158 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1159 } 1160 } 1161 #endif 1162 1163 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1164 if (pmccntr_clockdiv_enabled(env)) { 1165 prev_cycles /= 64; 1166 } 1167 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1168 } 1169 } 1170 1171 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1172 { 1173 1174 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1175 uint64_t count = 0; 1176 if (event_supported(event)) { 1177 uint16_t event_idx = supported_event_map[event]; 1178 count = pm_events[event_idx].get_count(env); 1179 } 1180 1181 if (pmu_counter_enabled(env, counter)) { 1182 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1183 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1184 1ULL << 63 : 1ULL << 31; 1185 1186 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1187 env->cp15.c9_pmovsr |= (1 << counter); 1188 pmu_update_irq(env); 1189 } 1190 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1191 } 1192 env->cp15.c14_pmevcntr_delta[counter] = count; 1193 } 1194 1195 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1196 { 1197 if (pmu_counter_enabled(env, counter)) { 1198 #ifndef CONFIG_USER_ONLY 1199 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1200 uint16_t event_idx = supported_event_map[event]; 1201 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1202 int64_t overflow_in; 1203 1204 if (!pmevcntr_is_64_bit(env, counter)) { 1205 delta = (uint32_t)delta; 1206 } 1207 overflow_in = pm_events[event_idx].ns_per_count(delta); 1208 1209 if (overflow_in > 0) { 1210 int64_t overflow_at; 1211 1212 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1213 overflow_in, &overflow_at)) { 1214 ARMCPU *cpu = env_archcpu(env); 1215 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1216 } 1217 } 1218 #endif 1219 1220 env->cp15.c14_pmevcntr_delta[counter] -= 1221 env->cp15.c14_pmevcntr[counter]; 1222 } 1223 } 1224 1225 void pmu_op_start(CPUARMState *env) 1226 { 1227 unsigned int i; 1228 pmccntr_op_start(env); 1229 for (i = 0; i < pmu_num_counters(env); i++) { 1230 pmevcntr_op_start(env, i); 1231 } 1232 } 1233 1234 void pmu_op_finish(CPUARMState *env) 1235 { 1236 unsigned int i; 1237 pmccntr_op_finish(env); 1238 for (i = 0; i < pmu_num_counters(env); i++) { 1239 pmevcntr_op_finish(env, i); 1240 } 1241 } 1242 1243 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1244 { 1245 pmu_op_start(&cpu->env); 1246 } 1247 1248 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1249 { 1250 pmu_op_finish(&cpu->env); 1251 } 1252 1253 void arm_pmu_timer_cb(void *opaque) 1254 { 1255 ARMCPU *cpu = opaque; 1256 1257 /* 1258 * Update all the counter values based on the current underlying counts, 1259 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1260 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1261 * counter may expire. 1262 */ 1263 pmu_op_start(&cpu->env); 1264 pmu_op_finish(&cpu->env); 1265 } 1266 1267 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1268 uint64_t value) 1269 { 1270 pmu_op_start(env); 1271 1272 if (value & PMCRC) { 1273 /* The counter has been reset */ 1274 env->cp15.c15_ccnt = 0; 1275 } 1276 1277 if (value & PMCRP) { 1278 unsigned int i; 1279 for (i = 0; i < pmu_num_counters(env); i++) { 1280 env->cp15.c14_pmevcntr[i] = 0; 1281 } 1282 } 1283 1284 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1285 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1286 1287 pmu_op_finish(env); 1288 } 1289 1290 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1291 { 1292 uint64_t pmcr = env->cp15.c9_pmcr; 1293 1294 /* 1295 * If EL2 is implemented and enabled for the current security state, reads 1296 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1297 */ 1298 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1299 pmcr &= ~PMCRN_MASK; 1300 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1301 } 1302 1303 return pmcr; 1304 } 1305 1306 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1307 uint64_t value) 1308 { 1309 unsigned int i; 1310 uint64_t overflow_mask, new_pmswinc; 1311 1312 for (i = 0; i < pmu_num_counters(env); i++) { 1313 /* Increment a counter's count iff: */ 1314 if ((value & (1 << i)) && /* counter's bit is set */ 1315 /* counter is enabled and not filtered */ 1316 pmu_counter_enabled(env, i) && 1317 /* counter is SW_INCR */ 1318 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1319 pmevcntr_op_start(env, i); 1320 1321 /* 1322 * Detect if this write causes an overflow since we can't predict 1323 * PMSWINC overflows like we can for other events 1324 */ 1325 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1326 1327 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1328 1ULL << 63 : 1ULL << 31; 1329 1330 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1331 env->cp15.c9_pmovsr |= (1 << i); 1332 pmu_update_irq(env); 1333 } 1334 1335 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1336 1337 pmevcntr_op_finish(env, i); 1338 } 1339 } 1340 } 1341 1342 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1343 { 1344 uint64_t ret; 1345 pmccntr_op_start(env); 1346 ret = env->cp15.c15_ccnt; 1347 pmccntr_op_finish(env); 1348 return ret; 1349 } 1350 1351 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1352 uint64_t value) 1353 { 1354 /* 1355 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1356 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1357 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1358 * accessed. 1359 */ 1360 env->cp15.c9_pmselr = value & 0x1f; 1361 } 1362 1363 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1364 uint64_t value) 1365 { 1366 pmccntr_op_start(env); 1367 env->cp15.c15_ccnt = value; 1368 pmccntr_op_finish(env); 1369 } 1370 1371 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1372 uint64_t value) 1373 { 1374 uint64_t cur_val = pmccntr_read(env, NULL); 1375 1376 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1377 } 1378 1379 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1380 uint64_t value) 1381 { 1382 pmccntr_op_start(env); 1383 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1384 pmccntr_op_finish(env); 1385 } 1386 1387 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1388 uint64_t value) 1389 { 1390 pmccntr_op_start(env); 1391 /* M is not accessible from AArch32 */ 1392 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1393 (value & PMCCFILTR); 1394 pmccntr_op_finish(env); 1395 } 1396 1397 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1398 { 1399 /* M is not visible in AArch32 */ 1400 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1401 } 1402 1403 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 pmu_op_start(env); 1407 value &= pmu_counter_mask(env); 1408 env->cp15.c9_pmcnten |= value; 1409 pmu_op_finish(env); 1410 } 1411 1412 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1413 uint64_t value) 1414 { 1415 pmu_op_start(env); 1416 value &= pmu_counter_mask(env); 1417 env->cp15.c9_pmcnten &= ~value; 1418 pmu_op_finish(env); 1419 } 1420 1421 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1422 uint64_t value) 1423 { 1424 value &= pmu_counter_mask(env); 1425 env->cp15.c9_pmovsr &= ~value; 1426 pmu_update_irq(env); 1427 } 1428 1429 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1430 uint64_t value) 1431 { 1432 value &= pmu_counter_mask(env); 1433 env->cp15.c9_pmovsr |= value; 1434 pmu_update_irq(env); 1435 } 1436 1437 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1438 uint64_t value, const uint8_t counter) 1439 { 1440 if (counter == 31) { 1441 pmccfiltr_write(env, ri, value); 1442 } else if (counter < pmu_num_counters(env)) { 1443 pmevcntr_op_start(env, counter); 1444 1445 /* 1446 * If this counter's event type is changing, store the current 1447 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1448 * pmevcntr_op_finish has the correct baseline when it converts back to 1449 * a delta. 1450 */ 1451 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1452 PMXEVTYPER_EVTCOUNT; 1453 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1454 if (old_event != new_event) { 1455 uint64_t count = 0; 1456 if (event_supported(new_event)) { 1457 uint16_t event_idx = supported_event_map[new_event]; 1458 count = pm_events[event_idx].get_count(env); 1459 } 1460 env->cp15.c14_pmevcntr_delta[counter] = count; 1461 } 1462 1463 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1464 pmevcntr_op_finish(env, counter); 1465 } 1466 /* 1467 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1468 * PMSELR value is equal to or greater than the number of implemented 1469 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1470 */ 1471 } 1472 1473 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1474 const uint8_t counter) 1475 { 1476 if (counter == 31) { 1477 return env->cp15.pmccfiltr_el0; 1478 } else if (counter < pmu_num_counters(env)) { 1479 return env->cp15.c14_pmevtyper[counter]; 1480 } else { 1481 /* 1482 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1483 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1484 */ 1485 return 0; 1486 } 1487 } 1488 1489 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1490 uint64_t value) 1491 { 1492 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1493 pmevtyper_write(env, ri, value, counter); 1494 } 1495 1496 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1497 uint64_t value) 1498 { 1499 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1500 env->cp15.c14_pmevtyper[counter] = value; 1501 1502 /* 1503 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1504 * pmu_op_finish calls when loading saved state for a migration. Because 1505 * we're potentially updating the type of event here, the value written to 1506 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1507 * different counter type. Therefore, we need to set this value to the 1508 * current count for the counter type we're writing so that pmu_op_finish 1509 * has the correct count for its calculation. 1510 */ 1511 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1512 if (event_supported(event)) { 1513 uint16_t event_idx = supported_event_map[event]; 1514 env->cp15.c14_pmevcntr_delta[counter] = 1515 pm_events[event_idx].get_count(env); 1516 } 1517 } 1518 1519 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1520 { 1521 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1522 return pmevtyper_read(env, ri, counter); 1523 } 1524 1525 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1529 } 1530 1531 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1532 { 1533 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1534 } 1535 1536 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1537 uint64_t value, uint8_t counter) 1538 { 1539 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1540 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1541 value &= MAKE_64BIT_MASK(0, 32); 1542 } 1543 if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 env->cp15.c14_pmevcntr[counter] = value; 1546 pmevcntr_op_finish(env, counter); 1547 } 1548 /* 1549 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1550 * are CONSTRAINED UNPREDICTABLE. 1551 */ 1552 } 1553 1554 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1555 uint8_t counter) 1556 { 1557 if (counter < pmu_num_counters(env)) { 1558 uint64_t ret; 1559 pmevcntr_op_start(env, counter); 1560 ret = env->cp15.c14_pmevcntr[counter]; 1561 pmevcntr_op_finish(env, counter); 1562 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1563 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1564 ret &= MAKE_64BIT_MASK(0, 32); 1565 } 1566 return ret; 1567 } else { 1568 /* 1569 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1570 * are CONSTRAINED UNPREDICTABLE. 1571 */ 1572 return 0; 1573 } 1574 } 1575 1576 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1577 uint64_t value) 1578 { 1579 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1580 pmevcntr_write(env, ri, value, counter); 1581 } 1582 1583 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1584 { 1585 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1586 return pmevcntr_read(env, ri, counter); 1587 } 1588 1589 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 assert(counter < pmu_num_counters(env)); 1594 env->cp15.c14_pmevcntr[counter] = value; 1595 pmevcntr_write(env, ri, value, counter); 1596 } 1597 1598 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1599 { 1600 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1601 assert(counter < pmu_num_counters(env)); 1602 return env->cp15.c14_pmevcntr[counter]; 1603 } 1604 1605 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1609 } 1610 1611 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1614 } 1615 1616 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1617 uint64_t value) 1618 { 1619 if (arm_feature(env, ARM_FEATURE_V8)) { 1620 env->cp15.c9_pmuserenr = value & 0xf; 1621 } else { 1622 env->cp15.c9_pmuserenr = value & 1; 1623 } 1624 } 1625 1626 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 /* We have no event counters so only the C bit can be changed */ 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pminten |= value; 1632 pmu_update_irq(env); 1633 } 1634 1635 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pminten &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 /* 1647 * Note that even though the AArch64 view of this register has bits 1648 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1649 * architectural requirements for bits which are RES0 only in some 1650 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1651 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1652 */ 1653 raw_write(env, ri, value & ~0x1FULL); 1654 } 1655 1656 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1657 { 1658 /* Begin with base v8.0 state. */ 1659 uint64_t valid_mask = 0x3fff; 1660 ARMCPU *cpu = env_archcpu(env); 1661 uint64_t changed; 1662 1663 /* 1664 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1665 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1666 * Instead, choose the format based on the mode of EL3. 1667 */ 1668 if (arm_el_is_aa64(env, 3)) { 1669 value |= SCR_FW | SCR_AW; /* RES1 */ 1670 valid_mask &= ~SCR_NET; /* RES0 */ 1671 1672 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1673 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1674 value |= SCR_RW; /* RAO/WI */ 1675 } 1676 if (cpu_isar_feature(aa64_ras, cpu)) { 1677 valid_mask |= SCR_TERR; 1678 } 1679 if (cpu_isar_feature(aa64_lor, cpu)) { 1680 valid_mask |= SCR_TLOR; 1681 } 1682 if (cpu_isar_feature(aa64_pauth, cpu)) { 1683 valid_mask |= SCR_API | SCR_APK; 1684 } 1685 if (cpu_isar_feature(aa64_sel2, cpu)) { 1686 valid_mask |= SCR_EEL2; 1687 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1688 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1689 value |= SCR_NS; 1690 } 1691 if (cpu_isar_feature(aa64_mte, cpu)) { 1692 valid_mask |= SCR_ATA; 1693 } 1694 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1695 valid_mask |= SCR_ENSCXT; 1696 } 1697 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1698 valid_mask |= SCR_EASE | SCR_NMEA; 1699 } 1700 if (cpu_isar_feature(aa64_sme, cpu)) { 1701 valid_mask |= SCR_ENTP2; 1702 } 1703 if (cpu_isar_feature(aa64_hcx, cpu)) { 1704 valid_mask |= SCR_HXEN; 1705 } 1706 if (cpu_isar_feature(aa64_fgt, cpu)) { 1707 valid_mask |= SCR_FGTEN; 1708 } 1709 if (cpu_isar_feature(aa64_rme, cpu)) { 1710 valid_mask |= SCR_NSE | SCR_GPF; 1711 } 1712 if (cpu_isar_feature(aa64_ecv, cpu)) { 1713 valid_mask |= SCR_ECVEN; 1714 } 1715 } else { 1716 valid_mask &= ~(SCR_RW | SCR_ST); 1717 if (cpu_isar_feature(aa32_ras, cpu)) { 1718 valid_mask |= SCR_TERR; 1719 } 1720 } 1721 1722 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1723 valid_mask &= ~SCR_HCE; 1724 1725 /* 1726 * On ARMv7, SMD (or SCD as it is called in v7) is only 1727 * supported if EL2 exists. The bit is UNK/SBZP when 1728 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1729 * when EL2 is unavailable. 1730 * On ARMv8, this bit is always available. 1731 */ 1732 if (arm_feature(env, ARM_FEATURE_V7) && 1733 !arm_feature(env, ARM_FEATURE_V8)) { 1734 valid_mask &= ~SCR_SMD; 1735 } 1736 } 1737 1738 /* Clear all-context RES0 bits. */ 1739 value &= valid_mask; 1740 changed = env->cp15.scr_el3 ^ value; 1741 env->cp15.scr_el3 = value; 1742 1743 /* 1744 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1745 * we must invalidate all TLBs below EL3. 1746 */ 1747 if (changed & (SCR_NS | SCR_NSE)) { 1748 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1749 ARMMMUIdxBit_E20_0 | 1750 ARMMMUIdxBit_E10_1 | 1751 ARMMMUIdxBit_E20_2 | 1752 ARMMMUIdxBit_E10_1_PAN | 1753 ARMMMUIdxBit_E20_2_PAN | 1754 ARMMMUIdxBit_E2)); 1755 } 1756 } 1757 1758 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1759 { 1760 /* 1761 * scr_write will set the RES1 bits on an AArch64-only CPU. 1762 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1763 */ 1764 scr_write(env, ri, 0); 1765 } 1766 1767 static CPAccessResult access_tid4(CPUARMState *env, 1768 const ARMCPRegInfo *ri, 1769 bool isread) 1770 { 1771 if (arm_current_el(env) == 1 && 1772 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1773 return CP_ACCESS_TRAP_EL2; 1774 } 1775 1776 return CP_ACCESS_OK; 1777 } 1778 1779 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1780 { 1781 ARMCPU *cpu = env_archcpu(env); 1782 1783 /* 1784 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1785 * bank 1786 */ 1787 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1788 ri->secure & ARM_CP_SECSTATE_S); 1789 1790 return cpu->ccsidr[index]; 1791 } 1792 1793 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 raw_write(env, ri, value & 0xf); 1797 } 1798 1799 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 CPUState *cs = env_cpu(env); 1802 bool el1 = arm_current_el(env) == 1; 1803 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1804 uint64_t ret = 0; 1805 1806 if (hcr_el2 & HCR_IMO) { 1807 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1808 ret |= CPSR_I; 1809 } 1810 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1811 ret |= ISR_IS; 1812 ret |= CPSR_I; 1813 } 1814 } else { 1815 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1816 ret |= CPSR_I; 1817 } 1818 1819 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1820 ret |= ISR_IS; 1821 ret |= CPSR_I; 1822 } 1823 } 1824 1825 if (hcr_el2 & HCR_FMO) { 1826 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1827 ret |= CPSR_F; 1828 } 1829 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1830 ret |= ISR_FS; 1831 ret |= CPSR_F; 1832 } 1833 } else { 1834 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1835 ret |= CPSR_F; 1836 } 1837 } 1838 1839 if (hcr_el2 & HCR_AMO) { 1840 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1841 ret |= CPSR_A; 1842 } 1843 } 1844 1845 return ret; 1846 } 1847 1848 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1849 bool isread) 1850 { 1851 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1852 return CP_ACCESS_TRAP_EL2; 1853 } 1854 1855 return CP_ACCESS_OK; 1856 } 1857 1858 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1859 bool isread) 1860 { 1861 if (arm_feature(env, ARM_FEATURE_V8)) { 1862 return access_aa64_tid1(env, ri, isread); 1863 } 1864 1865 return CP_ACCESS_OK; 1866 } 1867 1868 static const ARMCPRegInfo v7_cp_reginfo[] = { 1869 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1870 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1871 .access = PL1_W, .type = ARM_CP_NOP }, 1872 /* 1873 * Performance monitors are implementation defined in v7, 1874 * but with an ARM recommended set of registers, which we 1875 * follow. 1876 * 1877 * Performance registers fall into three categories: 1878 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1879 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1880 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1881 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1882 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1883 */ 1884 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1885 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1886 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1887 .writefn = pmcntenset_write, 1888 .accessfn = pmreg_access, 1889 .fgt = FGT_PMCNTEN, 1890 .raw_writefn = raw_write }, 1891 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1892 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1893 .access = PL0_RW, .accessfn = pmreg_access, 1894 .fgt = FGT_PMCNTEN, 1895 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1896 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1897 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1898 .access = PL0_RW, 1899 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1900 .accessfn = pmreg_access, 1901 .fgt = FGT_PMCNTEN, 1902 .writefn = pmcntenclr_write, 1903 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1904 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1905 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1906 .access = PL0_RW, .accessfn = pmreg_access, 1907 .fgt = FGT_PMCNTEN, 1908 .type = ARM_CP_ALIAS | ARM_CP_IO, 1909 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1910 .writefn = pmcntenclr_write }, 1911 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1912 .access = PL0_RW, .type = ARM_CP_IO, 1913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1914 .accessfn = pmreg_access, 1915 .fgt = FGT_PMOVS, 1916 .writefn = pmovsr_write, 1917 .raw_writefn = raw_write }, 1918 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1920 .access = PL0_RW, .accessfn = pmreg_access, 1921 .fgt = FGT_PMOVS, 1922 .type = ARM_CP_ALIAS | ARM_CP_IO, 1923 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1924 .writefn = pmovsr_write, 1925 .raw_writefn = raw_write }, 1926 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1927 .access = PL0_W, .accessfn = pmreg_access_swinc, 1928 .fgt = FGT_PMSWINC_EL0, 1929 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1930 .writefn = pmswinc_write }, 1931 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1933 .access = PL0_W, .accessfn = pmreg_access_swinc, 1934 .fgt = FGT_PMSWINC_EL0, 1935 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1936 .writefn = pmswinc_write }, 1937 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1938 .access = PL0_RW, .type = ARM_CP_ALIAS, 1939 .fgt = FGT_PMSELR_EL0, 1940 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1941 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1942 .raw_writefn = raw_write}, 1943 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1944 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1945 .access = PL0_RW, .accessfn = pmreg_access_selr, 1946 .fgt = FGT_PMSELR_EL0, 1947 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1948 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1951 .fgt = FGT_PMCCNTR_EL0, 1952 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1953 .accessfn = pmreg_access_ccntr }, 1954 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1955 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1956 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1957 .fgt = FGT_PMCCNTR_EL0, 1958 .type = ARM_CP_IO, 1959 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1960 .readfn = pmccntr_read, .writefn = pmccntr_write, 1961 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1962 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1963 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1964 .access = PL0_RW, .accessfn = pmreg_access, 1965 .fgt = FGT_PMCCFILTR_EL0, 1966 .type = ARM_CP_ALIAS | ARM_CP_IO, 1967 .resetvalue = 0, }, 1968 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1970 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1971 .access = PL0_RW, .accessfn = pmreg_access, 1972 .fgt = FGT_PMCCFILTR_EL0, 1973 .type = ARM_CP_IO, 1974 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1975 .resetvalue = 0, }, 1976 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1977 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1978 .accessfn = pmreg_access, 1979 .fgt = FGT_PMEVTYPERN_EL0, 1980 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1981 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1983 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1984 .accessfn = pmreg_access, 1985 .fgt = FGT_PMEVTYPERN_EL0, 1986 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1987 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access_xevcntr, 1990 .fgt = FGT_PMEVCNTRN_EL0, 1991 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1992 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1994 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1995 .accessfn = pmreg_access_xevcntr, 1996 .fgt = FGT_PMEVCNTRN_EL0, 1997 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1998 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1999 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2001 .resetvalue = 0, 2002 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2003 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2004 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2006 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2007 .resetvalue = 0, 2008 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2009 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2010 .access = PL1_RW, .accessfn = access_tpm, 2011 .fgt = FGT_PMINTEN, 2012 .type = ARM_CP_ALIAS | ARM_CP_IO, 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2014 .resetvalue = 0, 2015 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2017 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2018 .access = PL1_RW, .accessfn = access_tpm, 2019 .fgt = FGT_PMINTEN, 2020 .type = ARM_CP_IO, 2021 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2022 .writefn = pmintenset_write, .raw_writefn = raw_write, 2023 .resetvalue = 0x0 }, 2024 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2025 .access = PL1_RW, .accessfn = access_tpm, 2026 .fgt = FGT_PMINTEN, 2027 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2029 .writefn = pmintenclr_write, }, 2030 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2032 .access = PL1_RW, .accessfn = access_tpm, 2033 .fgt = FGT_PMINTEN, 2034 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2035 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2036 .writefn = pmintenclr_write }, 2037 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2038 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2039 .access = PL1_R, 2040 .accessfn = access_tid4, 2041 .fgt = FGT_CCSIDR_EL1, 2042 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2043 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2045 .access = PL1_RW, 2046 .accessfn = access_tid4, 2047 .fgt = FGT_CSSELR_EL1, 2048 .writefn = csselr_write, .resetvalue = 0, 2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2050 offsetof(CPUARMState, cp15.csselr_ns) } }, 2051 /* 2052 * Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .fgt = FGT_AIDR_EL1, 2060 .resetvalue = 0 }, 2061 /* 2062 * Auxiliary fault status registers: these also are IMPDEF, and we 2063 * choose to RAZ/WI for all cores. 2064 */ 2065 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2067 .access = PL1_RW, .accessfn = access_tvm_trvm, 2068 .fgt = FGT_AFSR0_EL1, 2069 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .fgt = FGT_AFSR1_EL1, 2075 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2076 .type = ARM_CP_CONST, .resetvalue = 0 }, 2077 /* 2078 * MAIR can just read-as-written because we don't implement caches 2079 * and so don't need to care about memory attributes. 2080 */ 2081 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2083 .access = PL1_RW, .accessfn = access_tvm_trvm, 2084 .fgt = FGT_MAIR_EL1, 2085 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2086 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2087 .resetvalue = 0 }, 2088 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2089 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2090 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2091 .resetvalue = 0 }, 2092 /* 2093 * For non-long-descriptor page tables these are PRRR and NMRR; 2094 * regardless they still act as reads-as-written for QEMU. 2095 */ 2096 /* 2097 * MAIR0/1 are defined separately from their 64-bit counterpart which 2098 * allows them to assign the correct fieldoffset based on the endianness 2099 * handled in the field definitions. 2100 */ 2101 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2102 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2103 .access = PL1_RW, .accessfn = access_tvm_trvm, 2104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2105 offsetof(CPUARMState, cp15.mair0_ns) }, 2106 .resetfn = arm_cp_reset_ignore }, 2107 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2108 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2109 .access = PL1_RW, .accessfn = access_tvm_trvm, 2110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2111 offsetof(CPUARMState, cp15.mair1_ns) }, 2112 .resetfn = arm_cp_reset_ignore }, 2113 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2114 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2115 .fgt = FGT_ISR_EL1, 2116 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2117 }; 2118 2119 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2120 /* PMOVSSET is not implemented in v7 before v7ve */ 2121 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2122 .access = PL0_RW, .accessfn = pmreg_access, 2123 .fgt = FGT_PMOVS, 2124 .type = ARM_CP_ALIAS | ARM_CP_IO, 2125 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2126 .writefn = pmovsset_write, 2127 .raw_writefn = raw_write }, 2128 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2129 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2130 .access = PL0_RW, .accessfn = pmreg_access, 2131 .fgt = FGT_PMOVS, 2132 .type = ARM_CP_ALIAS | ARM_CP_IO, 2133 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2134 .writefn = pmovsset_write, 2135 .raw_writefn = raw_write }, 2136 }; 2137 2138 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2139 uint64_t value) 2140 { 2141 value &= 1; 2142 env->teecr = value; 2143 } 2144 2145 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2146 bool isread) 2147 { 2148 /* 2149 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2150 * at all, so we don't need to check whether we're v8A. 2151 */ 2152 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2153 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2154 return CP_ACCESS_TRAP_EL2; 2155 } 2156 return CP_ACCESS_OK; 2157 } 2158 2159 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2160 bool isread) 2161 { 2162 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2163 return CP_ACCESS_TRAP_EL1; 2164 } 2165 return teecr_access(env, ri, isread); 2166 } 2167 2168 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2169 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2170 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2171 .resetvalue = 0, 2172 .writefn = teecr_write, .accessfn = teecr_access }, 2173 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2174 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2175 .accessfn = teehbr_access, .resetvalue = 0 }, 2176 }; 2177 2178 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2179 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2181 .access = PL0_RW, 2182 .fgt = FGT_TPIDR_EL0, 2183 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2184 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2185 .access = PL0_RW, 2186 .fgt = FGT_TPIDR_EL0, 2187 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2188 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2189 .resetfn = arm_cp_reset_ignore }, 2190 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2192 .access = PL0_R | PL1_W, 2193 .fgt = FGT_TPIDRRO_EL0, 2194 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2195 .resetvalue = 0}, 2196 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2197 .access = PL0_R | PL1_W, 2198 .fgt = FGT_TPIDRRO_EL0, 2199 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2200 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2201 .resetfn = arm_cp_reset_ignore }, 2202 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2204 .access = PL1_RW, 2205 .fgt = FGT_TPIDR_EL1, 2206 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2207 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2208 .access = PL1_RW, 2209 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2210 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2211 .resetvalue = 0 }, 2212 }; 2213 2214 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2215 { 2216 ARMCPU *cpu = env_archcpu(env); 2217 2218 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2219 } 2220 2221 #ifndef CONFIG_USER_ONLY 2222 2223 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2224 bool isread) 2225 { 2226 /* 2227 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2228 * Writable only at the highest implemented exception level. 2229 */ 2230 int el = arm_current_el(env); 2231 uint64_t hcr; 2232 uint32_t cntkctl; 2233 2234 switch (el) { 2235 case 0: 2236 hcr = arm_hcr_el2_eff(env); 2237 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2238 cntkctl = env->cp15.cnthctl_el2; 2239 } else { 2240 cntkctl = env->cp15.c14_cntkctl; 2241 } 2242 if (!extract32(cntkctl, 0, 2)) { 2243 return CP_ACCESS_TRAP_EL1; 2244 } 2245 break; 2246 case 1: 2247 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2248 arm_is_secure_below_el3(env)) { 2249 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2250 return CP_ACCESS_UNDEFINED; 2251 } 2252 break; 2253 case 2: 2254 case 3: 2255 break; 2256 } 2257 2258 if (!isread && el < arm_highest_el(env)) { 2259 return CP_ACCESS_UNDEFINED; 2260 } 2261 2262 return CP_ACCESS_OK; 2263 } 2264 2265 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2266 bool isread) 2267 { 2268 unsigned int cur_el = arm_current_el(env); 2269 bool has_el2 = arm_is_el2_enabled(env); 2270 uint64_t hcr = arm_hcr_el2_eff(env); 2271 2272 switch (cur_el) { 2273 case 0: 2274 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2276 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2277 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2278 } 2279 2280 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2281 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2282 return CP_ACCESS_TRAP_EL1; 2283 } 2284 /* fall through */ 2285 case 1: 2286 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2287 if (has_el2 && timeridx == GTIMER_PHYS && 2288 (hcr & HCR_E2H 2289 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2290 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2291 return CP_ACCESS_TRAP_EL2; 2292 } 2293 if (has_el2 && timeridx == GTIMER_VIRT) { 2294 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2295 return CP_ACCESS_TRAP_EL2; 2296 } 2297 } 2298 break; 2299 } 2300 return CP_ACCESS_OK; 2301 } 2302 2303 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2304 bool isread) 2305 { 2306 unsigned int cur_el = arm_current_el(env); 2307 bool has_el2 = arm_is_el2_enabled(env); 2308 uint64_t hcr = arm_hcr_el2_eff(env); 2309 2310 switch (cur_el) { 2311 case 0: 2312 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2313 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2314 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2315 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2316 } 2317 2318 /* 2319 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2320 * EL0 if EL0[PV]TEN is zero. 2321 */ 2322 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2323 return CP_ACCESS_TRAP_EL1; 2324 } 2325 /* fall through */ 2326 2327 case 1: 2328 if (has_el2 && timeridx == GTIMER_PHYS) { 2329 if (hcr & HCR_E2H) { 2330 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2331 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 } else { 2335 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2336 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2337 return CP_ACCESS_TRAP_EL2; 2338 } 2339 } 2340 } 2341 if (has_el2 && timeridx == GTIMER_VIRT) { 2342 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2343 return CP_ACCESS_TRAP_EL2; 2344 } 2345 } 2346 break; 2347 } 2348 return CP_ACCESS_OK; 2349 } 2350 2351 static CPAccessResult gt_pct_access(CPUARMState *env, 2352 const ARMCPRegInfo *ri, 2353 bool isread) 2354 { 2355 return gt_counter_access(env, GTIMER_PHYS, isread); 2356 } 2357 2358 static CPAccessResult gt_vct_access(CPUARMState *env, 2359 const ARMCPRegInfo *ri, 2360 bool isread) 2361 { 2362 return gt_counter_access(env, GTIMER_VIRT, isread); 2363 } 2364 2365 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2366 bool isread) 2367 { 2368 return gt_timer_access(env, GTIMER_PHYS, isread); 2369 } 2370 2371 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2372 bool isread) 2373 { 2374 return gt_timer_access(env, GTIMER_VIRT, isread); 2375 } 2376 2377 static CPAccessResult gt_stimer_access(CPUARMState *env, 2378 const ARMCPRegInfo *ri, 2379 bool isread) 2380 { 2381 /* 2382 * The AArch64 register view of the secure physical timer is 2383 * always accessible from EL3, and configurably accessible from 2384 * Secure EL1. 2385 */ 2386 switch (arm_current_el(env)) { 2387 case 1: 2388 if (!arm_is_secure(env)) { 2389 return CP_ACCESS_UNDEFINED; 2390 } 2391 if (arm_is_el2_enabled(env)) { 2392 return CP_ACCESS_UNDEFINED; 2393 } 2394 if (!(env->cp15.scr_el3 & SCR_ST)) { 2395 return CP_ACCESS_TRAP_EL3; 2396 } 2397 return CP_ACCESS_OK; 2398 case 0: 2399 case 2: 2400 return CP_ACCESS_UNDEFINED; 2401 case 3: 2402 return CP_ACCESS_OK; 2403 default: 2404 g_assert_not_reached(); 2405 } 2406 } 2407 2408 static CPAccessResult gt_sel2timer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* 2413 * The AArch64 register view of the secure EL2 timers are mostly 2414 * accessible from EL3 and EL2 although can also be trapped to EL2 2415 * from EL1 depending on nested virt config. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 0: /* UNDEFINED */ 2419 return CP_ACCESS_UNDEFINED; 2420 case 1: 2421 if (!arm_is_secure(env)) { 2422 /* UNDEFINED */ 2423 return CP_ACCESS_UNDEFINED; 2424 } else if (arm_hcr_el2_eff(env) & HCR_NV) { 2425 /* Aarch64.SystemAccessTrap(EL2, 0x18) */ 2426 return CP_ACCESS_TRAP_EL2; 2427 } 2428 /* UNDEFINED */ 2429 return CP_ACCESS_UNDEFINED; 2430 case 2: 2431 if (!arm_is_secure(env)) { 2432 /* UNDEFINED */ 2433 return CP_ACCESS_UNDEFINED; 2434 } 2435 return CP_ACCESS_OK; 2436 case 3: 2437 if (env->cp15.scr_el3 & SCR_EEL2) { 2438 return CP_ACCESS_OK; 2439 } else { 2440 return CP_ACCESS_UNDEFINED; 2441 } 2442 default: 2443 g_assert_not_reached(); 2444 } 2445 } 2446 2447 uint64_t gt_get_countervalue(CPUARMState *env) 2448 { 2449 ARMCPU *cpu = env_archcpu(env); 2450 2451 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2452 } 2453 2454 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2455 { 2456 CPUARMState *env = &cpu->env; 2457 uint64_t cnthctl = env->cp15.cnthctl_el2; 2458 ARMSecuritySpace ss = arm_security_space(env); 2459 /* ISTATUS && !IMASK */ 2460 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2461 2462 /* 2463 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2464 * It is RES0 in Secure and NonSecure state. 2465 */ 2466 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2467 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2468 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2469 irqstate = 0; 2470 } 2471 2472 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2473 trace_arm_gt_update_irq(timeridx, irqstate); 2474 } 2475 2476 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2477 { 2478 /* 2479 * Changing security state between Root and Secure/NonSecure, which may 2480 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2481 * mask bits. Update the IRQ state accordingly. 2482 */ 2483 gt_update_irq(cpu, GTIMER_VIRT); 2484 gt_update_irq(cpu, GTIMER_PHYS); 2485 } 2486 2487 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2488 { 2489 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2490 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2491 arm_is_el2_enabled(env) && 2492 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2493 return env->cp15.cntpoff_el2; 2494 } 2495 return 0; 2496 } 2497 2498 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx) 2499 { 2500 /* 2501 * Return the timer offset to use for indirect accesses to the timer. 2502 * This is the Offset value as defined in D12.2.4.1 "Operation of the 2503 * CompareValue views of the timers". 2504 * 2505 * The condition here is not always the same as the condition for 2506 * whether to apply an offset register when doing a direct read of 2507 * the counter sysreg; those conditions are described in the 2508 * access pseudocode for each counter register. 2509 */ 2510 switch (timeridx) { 2511 case GTIMER_PHYS: 2512 return gt_phys_raw_cnt_offset(env); 2513 case GTIMER_VIRT: 2514 return env->cp15.cntvoff_el2; 2515 case GTIMER_HYP: 2516 case GTIMER_SEC: 2517 case GTIMER_HYPVIRT: 2518 case GTIMER_S_EL2_PHYS: 2519 case GTIMER_S_EL2_VIRT: 2520 return 0; 2521 default: 2522 g_assert_not_reached(); 2523 } 2524 } 2525 2526 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx) 2527 { 2528 /* 2529 * Return the timer offset to use for direct accesses to the 2530 * counter registers CNTPCT and CNTVCT, and for direct accesses 2531 * to the CNT*_TVAL registers. 2532 * 2533 * This isn't exactly the same as the indirect-access offset, 2534 * because here we also care about what EL the register access 2535 * is being made from. 2536 * 2537 * This corresponds to the access pseudocode for the registers. 2538 */ 2539 uint64_t hcr; 2540 2541 switch (timeridx) { 2542 case GTIMER_PHYS: 2543 if (arm_current_el(env) >= 2) { 2544 return 0; 2545 } 2546 return gt_phys_raw_cnt_offset(env); 2547 case GTIMER_VIRT: 2548 switch (arm_current_el(env)) { 2549 case 2: 2550 hcr = arm_hcr_el2_eff(env); 2551 if (hcr & HCR_E2H) { 2552 return 0; 2553 } 2554 break; 2555 case 0: 2556 hcr = arm_hcr_el2_eff(env); 2557 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2558 return 0; 2559 } 2560 break; 2561 } 2562 return env->cp15.cntvoff_el2; 2563 case GTIMER_HYP: 2564 case GTIMER_SEC: 2565 case GTIMER_HYPVIRT: 2566 case GTIMER_S_EL2_PHYS: 2567 case GTIMER_S_EL2_VIRT: 2568 return 0; 2569 default: 2570 g_assert_not_reached(); 2571 } 2572 } 2573 2574 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2575 { 2576 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2577 2578 if (gt->ctl & 1) { 2579 /* 2580 * Timer enabled: calculate and set current ISTATUS, irq, and 2581 * reset timer to when ISTATUS next has to change 2582 */ 2583 uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx); 2584 uint64_t count = gt_get_countervalue(&cpu->env); 2585 /* Note that this must be unsigned 64 bit arithmetic: */ 2586 int istatus = count - offset >= gt->cval; 2587 uint64_t nexttick; 2588 2589 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2590 2591 if (istatus) { 2592 /* 2593 * Next transition is when (count - offset) rolls back over to 0. 2594 * If offset > count then this is when count == offset; 2595 * if offset <= count then this is when count == offset + 2^64 2596 * For the latter case we set nexttick to an "as far in future 2597 * as possible" value and let the code below handle it. 2598 */ 2599 if (offset > count) { 2600 nexttick = offset; 2601 } else { 2602 nexttick = UINT64_MAX; 2603 } 2604 } else { 2605 /* 2606 * Next transition is when (count - offset) == cval, i.e. 2607 * when count == (cval + offset). 2608 * If that would overflow, then again we set up the next interrupt 2609 * for "as far in the future as possible" for the code below. 2610 */ 2611 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2612 nexttick = UINT64_MAX; 2613 } 2614 } 2615 /* 2616 * Note that the desired next expiry time might be beyond the 2617 * signed-64-bit range of a QEMUTimer -- in this case we just 2618 * set the timer for as far in the future as possible. When the 2619 * timer expires we will reset the timer for any remaining period. 2620 */ 2621 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2622 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2623 } else { 2624 timer_mod(cpu->gt_timer[timeridx], nexttick); 2625 } 2626 trace_arm_gt_recalc(timeridx, nexttick); 2627 } else { 2628 /* Timer disabled: ISTATUS and timer output always clear */ 2629 gt->ctl &= ~4; 2630 timer_del(cpu->gt_timer[timeridx]); 2631 trace_arm_gt_recalc_disabled(timeridx); 2632 } 2633 gt_update_irq(cpu, timeridx); 2634 } 2635 2636 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2637 int timeridx) 2638 { 2639 ARMCPU *cpu = env_archcpu(env); 2640 2641 timer_del(cpu->gt_timer[timeridx]); 2642 } 2643 2644 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2645 { 2646 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS); 2647 return gt_get_countervalue(env) - offset; 2648 } 2649 2650 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2651 { 2652 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT); 2653 return gt_get_countervalue(env) - offset; 2654 } 2655 2656 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2657 int timeridx, 2658 uint64_t value) 2659 { 2660 trace_arm_gt_cval_write(timeridx, value); 2661 env->cp15.c14_timer[timeridx].cval = value; 2662 gt_recalc_timer(env_archcpu(env), timeridx); 2663 } 2664 2665 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset) 2666 { 2667 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2668 (gt_get_countervalue(env) - offset)); 2669 } 2670 2671 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2672 int timeridx) 2673 { 2674 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2675 2676 return do_tval_read(env, timeridx, offset); 2677 } 2678 2679 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value, 2680 uint64_t offset) 2681 { 2682 trace_arm_gt_tval_write(timeridx, value); 2683 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2684 sextract64(value, 0, 32); 2685 gt_recalc_timer(env_archcpu(env), timeridx); 2686 } 2687 2688 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2689 int timeridx, 2690 uint64_t value) 2691 { 2692 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2693 2694 do_tval_write(env, timeridx, value, offset); 2695 } 2696 2697 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2698 int timeridx, 2699 uint64_t value) 2700 { 2701 ARMCPU *cpu = env_archcpu(env); 2702 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2703 2704 trace_arm_gt_ctl_write(timeridx, value); 2705 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2706 if ((oldval ^ value) & 1) { 2707 /* Enable toggled */ 2708 gt_recalc_timer(cpu, timeridx); 2709 } else if ((oldval ^ value) & 2) { 2710 /* 2711 * IMASK toggled: don't need to recalculate, 2712 * just set the interrupt line based on ISTATUS 2713 */ 2714 trace_arm_gt_imask_toggle(timeridx); 2715 gt_update_irq(cpu, timeridx); 2716 } 2717 } 2718 2719 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2720 { 2721 gt_timer_reset(env, ri, GTIMER_PHYS); 2722 } 2723 2724 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 gt_cval_write(env, ri, GTIMER_PHYS, value); 2728 } 2729 2730 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2731 { 2732 return gt_tval_read(env, ri, GTIMER_PHYS); 2733 } 2734 2735 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2736 uint64_t value) 2737 { 2738 gt_tval_write(env, ri, GTIMER_PHYS, value); 2739 } 2740 2741 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2745 } 2746 2747 static int gt_phys_redir_timeridx(CPUARMState *env) 2748 { 2749 switch (arm_mmu_idx(env)) { 2750 case ARMMMUIdx_E20_0: 2751 case ARMMMUIdx_E20_2: 2752 case ARMMMUIdx_E20_2_PAN: 2753 return GTIMER_HYP; 2754 default: 2755 return GTIMER_PHYS; 2756 } 2757 } 2758 2759 static int gt_virt_redir_timeridx(CPUARMState *env) 2760 { 2761 switch (arm_mmu_idx(env)) { 2762 case ARMMMUIdx_E20_0: 2763 case ARMMMUIdx_E20_2: 2764 case ARMMMUIdx_E20_2_PAN: 2765 return GTIMER_HYPVIRT; 2766 default: 2767 return GTIMER_VIRT; 2768 } 2769 } 2770 2771 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2772 const ARMCPRegInfo *ri) 2773 { 2774 int timeridx = gt_phys_redir_timeridx(env); 2775 return env->cp15.c14_timer[timeridx].cval; 2776 } 2777 2778 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2779 uint64_t value) 2780 { 2781 int timeridx = gt_phys_redir_timeridx(env); 2782 gt_cval_write(env, ri, timeridx, value); 2783 } 2784 2785 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2786 const ARMCPRegInfo *ri) 2787 { 2788 int timeridx = gt_phys_redir_timeridx(env); 2789 return gt_tval_read(env, ri, timeridx); 2790 } 2791 2792 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 int timeridx = gt_phys_redir_timeridx(env); 2796 gt_tval_write(env, ri, timeridx, value); 2797 } 2798 2799 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2800 const ARMCPRegInfo *ri) 2801 { 2802 int timeridx = gt_phys_redir_timeridx(env); 2803 return env->cp15.c14_timer[timeridx].ctl; 2804 } 2805 2806 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 int timeridx = gt_phys_redir_timeridx(env); 2810 gt_ctl_write(env, ri, timeridx, value); 2811 } 2812 2813 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2814 { 2815 gt_timer_reset(env, ri, GTIMER_VIRT); 2816 } 2817 2818 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_cval_write(env, ri, GTIMER_VIRT, value); 2822 } 2823 2824 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2825 { 2826 /* 2827 * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0 2828 * we always apply CNTVOFF_EL2. Special case that here rather 2829 * than going into the generic gt_tval_read() and then having 2830 * to re-detect that it's this register. 2831 * Note that the accessfn/perms mean we know we're at EL2 or EL3 here. 2832 */ 2833 return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2); 2834 } 2835 2836 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 /* Similarly for writes to CNTV_TVAL_EL02 */ 2840 do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2); 2841 } 2842 2843 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2844 uint64_t value) 2845 { 2846 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2847 } 2848 2849 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 ARMCPU *cpu = env_archcpu(env); 2853 uint32_t oldval = env->cp15.cnthctl_el2; 2854 uint32_t valid_mask = 2855 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2856 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2857 R_CNTHCTL_EVNTEN_MASK | 2858 R_CNTHCTL_EVNTDIR_MASK | 2859 R_CNTHCTL_EVNTI_MASK | 2860 R_CNTHCTL_EL0VTEN_MASK | 2861 R_CNTHCTL_EL0PTEN_MASK | 2862 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2863 R_CNTHCTL_EL1PTEN_MASK; 2864 2865 if (cpu_isar_feature(aa64_rme, cpu)) { 2866 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2867 } 2868 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2869 valid_mask |= 2870 R_CNTHCTL_EL1TVT_MASK | 2871 R_CNTHCTL_EL1TVCT_MASK | 2872 R_CNTHCTL_EL1NVPCT_MASK | 2873 R_CNTHCTL_EL1NVVCT_MASK | 2874 R_CNTHCTL_EVNTIS_MASK; 2875 } 2876 if (cpu_isar_feature(aa64_ecv, cpu)) { 2877 valid_mask |= R_CNTHCTL_ECV_MASK; 2878 } 2879 2880 /* Clear RES0 bits */ 2881 value &= valid_mask; 2882 2883 raw_write(env, ri, value); 2884 2885 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2886 gt_update_irq(cpu, GTIMER_VIRT); 2887 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2888 gt_update_irq(cpu, GTIMER_PHYS); 2889 } 2890 } 2891 2892 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 ARMCPU *cpu = env_archcpu(env); 2896 2897 trace_arm_gt_cntvoff_write(value); 2898 raw_write(env, ri, value); 2899 gt_recalc_timer(cpu, GTIMER_VIRT); 2900 } 2901 2902 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2903 const ARMCPRegInfo *ri) 2904 { 2905 int timeridx = gt_virt_redir_timeridx(env); 2906 return env->cp15.c14_timer[timeridx].cval; 2907 } 2908 2909 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2910 uint64_t value) 2911 { 2912 int timeridx = gt_virt_redir_timeridx(env); 2913 gt_cval_write(env, ri, timeridx, value); 2914 } 2915 2916 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2917 const ARMCPRegInfo *ri) 2918 { 2919 int timeridx = gt_virt_redir_timeridx(env); 2920 return gt_tval_read(env, ri, timeridx); 2921 } 2922 2923 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2924 uint64_t value) 2925 { 2926 int timeridx = gt_virt_redir_timeridx(env); 2927 gt_tval_write(env, ri, timeridx, value); 2928 } 2929 2930 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2931 const ARMCPRegInfo *ri) 2932 { 2933 int timeridx = gt_virt_redir_timeridx(env); 2934 return env->cp15.c14_timer[timeridx].ctl; 2935 } 2936 2937 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2938 uint64_t value) 2939 { 2940 int timeridx = gt_virt_redir_timeridx(env); 2941 gt_ctl_write(env, ri, timeridx, value); 2942 } 2943 2944 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2945 { 2946 gt_timer_reset(env, ri, GTIMER_HYP); 2947 } 2948 2949 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 gt_cval_write(env, ri, GTIMER_HYP, value); 2953 } 2954 2955 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2956 { 2957 return gt_tval_read(env, ri, GTIMER_HYP); 2958 } 2959 2960 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 gt_tval_write(env, ri, GTIMER_HYP, value); 2964 } 2965 2966 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_ctl_write(env, ri, GTIMER_HYP, value); 2970 } 2971 2972 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2973 { 2974 gt_timer_reset(env, ri, GTIMER_SEC); 2975 } 2976 2977 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2978 uint64_t value) 2979 { 2980 gt_cval_write(env, ri, GTIMER_SEC, value); 2981 } 2982 2983 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2984 { 2985 return gt_tval_read(env, ri, GTIMER_SEC); 2986 } 2987 2988 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2989 uint64_t value) 2990 { 2991 gt_tval_write(env, ri, GTIMER_SEC, value); 2992 } 2993 2994 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2995 uint64_t value) 2996 { 2997 gt_ctl_write(env, ri, GTIMER_SEC, value); 2998 } 2999 3000 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3001 { 3002 gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS); 3003 } 3004 3005 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3006 uint64_t value) 3007 { 3008 gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3009 } 3010 3011 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3012 { 3013 return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS); 3014 } 3015 3016 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3017 uint64_t value) 3018 { 3019 gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3020 } 3021 3022 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value); 3026 } 3027 3028 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3029 { 3030 gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT); 3031 } 3032 3033 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3034 uint64_t value) 3035 { 3036 gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3037 } 3038 3039 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3040 { 3041 return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT); 3042 } 3043 3044 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3045 uint64_t value) 3046 { 3047 gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3048 } 3049 3050 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value); 3054 } 3055 3056 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3057 { 3058 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3059 } 3060 3061 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3062 uint64_t value) 3063 { 3064 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3065 } 3066 3067 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3068 { 3069 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3070 } 3071 3072 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3073 uint64_t value) 3074 { 3075 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3076 } 3077 3078 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3082 } 3083 3084 void arm_gt_ptimer_cb(void *opaque) 3085 { 3086 ARMCPU *cpu = opaque; 3087 3088 gt_recalc_timer(cpu, GTIMER_PHYS); 3089 } 3090 3091 void arm_gt_vtimer_cb(void *opaque) 3092 { 3093 ARMCPU *cpu = opaque; 3094 3095 gt_recalc_timer(cpu, GTIMER_VIRT); 3096 } 3097 3098 void arm_gt_htimer_cb(void *opaque) 3099 { 3100 ARMCPU *cpu = opaque; 3101 3102 gt_recalc_timer(cpu, GTIMER_HYP); 3103 } 3104 3105 void arm_gt_stimer_cb(void *opaque) 3106 { 3107 ARMCPU *cpu = opaque; 3108 3109 gt_recalc_timer(cpu, GTIMER_SEC); 3110 } 3111 3112 void arm_gt_sel2timer_cb(void *opaque) 3113 { 3114 ARMCPU *cpu = opaque; 3115 3116 gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS); 3117 } 3118 3119 void arm_gt_sel2vtimer_cb(void *opaque) 3120 { 3121 ARMCPU *cpu = opaque; 3122 3123 gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT); 3124 } 3125 3126 void arm_gt_hvtimer_cb(void *opaque) 3127 { 3128 ARMCPU *cpu = opaque; 3129 3130 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3131 } 3132 3133 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3134 /* 3135 * Note that CNTFRQ is purely reads-as-written for the benefit 3136 * of software; writing it doesn't actually change the timer frequency. 3137 * Our reset value matches the fixed frequency we implement the timer at. 3138 */ 3139 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3140 .type = ARM_CP_ALIAS, 3141 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3142 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3143 }, 3144 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3145 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3146 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3147 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3148 .resetfn = arm_gt_cntfrq_reset, 3149 }, 3150 /* overall control: mostly access permissions */ 3151 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3152 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3153 .access = PL1_RW, 3154 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3155 .resetvalue = 0, 3156 }, 3157 /* per-timer control */ 3158 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3159 .secure = ARM_CP_SECSTATE_NS, 3160 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3161 .accessfn = gt_ptimer_access, 3162 .fieldoffset = offsetoflow32(CPUARMState, 3163 cp15.c14_timer[GTIMER_PHYS].ctl), 3164 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3165 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3166 }, 3167 { .name = "CNTP_CTL_S", 3168 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3169 .secure = ARM_CP_SECSTATE_S, 3170 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3171 .accessfn = gt_ptimer_access, 3172 .fieldoffset = offsetoflow32(CPUARMState, 3173 cp15.c14_timer[GTIMER_SEC].ctl), 3174 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3175 }, 3176 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3177 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3178 .type = ARM_CP_IO, .access = PL0_RW, 3179 .accessfn = gt_ptimer_access, 3180 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3181 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3182 .resetvalue = 0, 3183 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3184 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3185 }, 3186 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3187 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3188 .accessfn = gt_vtimer_access, 3189 .fieldoffset = offsetoflow32(CPUARMState, 3190 cp15.c14_timer[GTIMER_VIRT].ctl), 3191 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3192 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3193 }, 3194 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3196 .type = ARM_CP_IO, .access = PL0_RW, 3197 .accessfn = gt_vtimer_access, 3198 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3200 .resetvalue = 0, 3201 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3202 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3203 }, 3204 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3205 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3206 .secure = ARM_CP_SECSTATE_NS, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_ptimer_access, 3209 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3210 }, 3211 { .name = "CNTP_TVAL_S", 3212 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3213 .secure = ARM_CP_SECSTATE_S, 3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3215 .accessfn = gt_ptimer_access, 3216 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3217 }, 3218 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3219 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3220 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3221 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3222 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3223 }, 3224 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3226 .accessfn = gt_vtimer_access, 3227 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3228 }, 3229 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3230 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3231 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3232 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3233 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3234 }, 3235 /* The counter itself */ 3236 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3237 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3238 .accessfn = gt_pct_access, 3239 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3240 }, 3241 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3242 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3243 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3244 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3245 }, 3246 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3247 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3248 .accessfn = gt_vct_access, 3249 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3250 }, 3251 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3252 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3253 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3254 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3255 }, 3256 /* Comparison value, indicating when the timer goes off */ 3257 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3258 .secure = ARM_CP_SECSTATE_NS, 3259 .access = PL0_RW, 3260 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3261 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3262 .accessfn = gt_ptimer_access, 3263 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3264 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3265 }, 3266 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3267 .secure = ARM_CP_SECSTATE_S, 3268 .access = PL0_RW, 3269 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3271 .accessfn = gt_ptimer_access, 3272 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3273 }, 3274 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3275 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3276 .access = PL0_RW, 3277 .type = ARM_CP_IO, 3278 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3280 .resetvalue = 0, .accessfn = gt_ptimer_access, 3281 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3282 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3283 }, 3284 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3285 .access = PL0_RW, 3286 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3288 .accessfn = gt_vtimer_access, 3289 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3290 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3291 }, 3292 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3294 .access = PL0_RW, 3295 .type = ARM_CP_IO, 3296 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3298 .resetvalue = 0, .accessfn = gt_vtimer_access, 3299 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3300 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3301 }, 3302 /* 3303 * Secure timer -- this is actually restricted to only EL3 3304 * and configurably Secure-EL1 via the accessfn. 3305 */ 3306 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3307 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3308 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3309 .accessfn = gt_stimer_access, 3310 .readfn = gt_sec_tval_read, 3311 .writefn = gt_sec_tval_write, 3312 .resetfn = gt_sec_timer_reset, 3313 }, 3314 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3316 .type = ARM_CP_IO, .access = PL1_RW, 3317 .accessfn = gt_stimer_access, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3319 .resetvalue = 0, 3320 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3321 }, 3322 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3323 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3324 .type = ARM_CP_IO, .access = PL1_RW, 3325 .accessfn = gt_stimer_access, 3326 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3327 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3328 }, 3329 }; 3330 3331 /* 3332 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3333 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3334 * so our implementations here are identical to the normal registers. 3335 */ 3336 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3337 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3338 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3339 .accessfn = gt_vct_access, 3340 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3341 }, 3342 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3343 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3344 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3345 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3346 }, 3347 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3348 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3349 .accessfn = gt_pct_access, 3350 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3351 }, 3352 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3353 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3354 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3355 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3356 }, 3357 }; 3358 3359 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3360 const ARMCPRegInfo *ri, 3361 bool isread) 3362 { 3363 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3364 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3365 return CP_ACCESS_TRAP_EL3; 3366 } 3367 return CP_ACCESS_OK; 3368 } 3369 3370 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3371 uint64_t value) 3372 { 3373 ARMCPU *cpu = env_archcpu(env); 3374 3375 trace_arm_gt_cntpoff_write(value); 3376 raw_write(env, ri, value); 3377 gt_recalc_timer(cpu, GTIMER_PHYS); 3378 } 3379 3380 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3381 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3382 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3383 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3384 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3385 .nv2_redirect_offset = 0x1a8, 3386 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3387 }; 3388 #else 3389 3390 /* 3391 * In user-mode most of the generic timer registers are inaccessible 3392 * however modern kernels (4.12+) allow access to cntvct_el0 3393 */ 3394 3395 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3396 { 3397 ARMCPU *cpu = env_archcpu(env); 3398 3399 /* 3400 * Currently we have no support for QEMUTimer in linux-user so we 3401 * can't call gt_get_countervalue(env), instead we directly 3402 * call the lower level functions. 3403 */ 3404 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3405 } 3406 3407 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3408 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3409 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3410 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3411 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3412 .resetfn = arm_gt_cntfrq_reset, 3413 }, 3414 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3416 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3417 .readfn = gt_virt_cnt_read, 3418 }, 3419 }; 3420 3421 /* 3422 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3423 * is exposed to userspace by Linux. 3424 */ 3425 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3426 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3428 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3429 .readfn = gt_virt_cnt_read, 3430 }, 3431 }; 3432 3433 #endif 3434 3435 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3436 { 3437 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3438 raw_write(env, ri, value); 3439 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3440 raw_write(env, ri, value & 0xfffff6ff); 3441 } else { 3442 raw_write(env, ri, value & 0xfffff1ff); 3443 } 3444 } 3445 3446 #ifndef CONFIG_USER_ONLY 3447 /* get_phys_addr() isn't present for user-mode-only targets */ 3448 3449 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3450 bool isread) 3451 { 3452 if (ri->opc2 & 4) { 3453 /* 3454 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3455 * Secure EL1 (which can only happen if EL3 is AArch64). 3456 * They are simply UNDEF if executed from NS EL1. 3457 * They function normally from EL2 or EL3. 3458 */ 3459 if (arm_current_el(env) == 1) { 3460 if (arm_is_secure_below_el3(env)) { 3461 if (env->cp15.scr_el3 & SCR_EEL2) { 3462 return CP_ACCESS_TRAP_EL2; 3463 } 3464 return CP_ACCESS_TRAP_EL3; 3465 } 3466 return CP_ACCESS_UNDEFINED; 3467 } 3468 } 3469 return CP_ACCESS_OK; 3470 } 3471 3472 #ifdef CONFIG_TCG 3473 static int par_el1_shareability(GetPhysAddrResult *res) 3474 { 3475 /* 3476 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3477 * memory -- see pseudocode PAREncodeShareability(). 3478 */ 3479 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3480 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3481 return 2; 3482 } 3483 return res->cacheattrs.shareability; 3484 } 3485 3486 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3487 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3488 ARMSecuritySpace ss) 3489 { 3490 bool ret; 3491 uint64_t par64; 3492 bool format64 = false; 3493 ARMMMUFaultInfo fi = {}; 3494 GetPhysAddrResult res = {}; 3495 3496 /* 3497 * I_MXTJT: Granule protection checks are not performed on the final 3498 * address of a successful translation. This is a translation not a 3499 * memory reference, so "memop = none = 0". 3500 */ 3501 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3502 mmu_idx, ss, &res, &fi); 3503 3504 /* 3505 * ATS operations only do S1 or S1+S2 translations, so we never 3506 * have to deal with the ARMCacheAttrs format for S2 only. 3507 */ 3508 assert(!res.cacheattrs.is_s2_format); 3509 3510 if (ret) { 3511 /* 3512 * Some kinds of translation fault must cause exceptions rather 3513 * than being reported in the PAR. 3514 */ 3515 int current_el = arm_current_el(env); 3516 int target_el; 3517 uint32_t syn, fsr, fsc; 3518 bool take_exc = false; 3519 3520 if (fi.s1ptw && current_el == 1 3521 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3522 /* 3523 * Synchronous stage 2 fault on an access made as part of the 3524 * translation table walk for AT S1E0* or AT S1E1* insn 3525 * executed from NS EL1. If this is a synchronous external abort 3526 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3527 * to EL3. Otherwise the fault is taken as an exception to EL2, 3528 * and HPFAR_EL2 holds the faulting IPA. 3529 */ 3530 if (fi.type == ARMFault_SyncExternalOnWalk && 3531 (env->cp15.scr_el3 & SCR_EA)) { 3532 target_el = 3; 3533 } else { 3534 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3535 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3536 env->cp15.hpfar_el2 |= HPFAR_NS; 3537 } 3538 target_el = 2; 3539 } 3540 take_exc = true; 3541 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3542 /* 3543 * Synchronous external aborts during a translation table walk 3544 * are taken as Data Abort exceptions. 3545 */ 3546 if (fi.stage2) { 3547 if (current_el == 3) { 3548 target_el = 3; 3549 } else { 3550 target_el = 2; 3551 } 3552 } else { 3553 target_el = exception_target_el(env); 3554 } 3555 take_exc = true; 3556 } 3557 3558 if (take_exc) { 3559 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3560 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3561 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3562 fsr = arm_fi_to_lfsc(&fi); 3563 fsc = extract32(fsr, 0, 6); 3564 } else { 3565 fsr = arm_fi_to_sfsc(&fi); 3566 fsc = 0x3f; 3567 } 3568 /* 3569 * Report exception with ESR indicating a fault due to a 3570 * translation table walk for a cache maintenance instruction. 3571 */ 3572 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3573 fi.ea, 1, fi.s1ptw, 1, fsc); 3574 env->exception.vaddress = value; 3575 env->exception.fsr = fsr; 3576 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3577 } 3578 } 3579 3580 if (is_a64(env)) { 3581 format64 = true; 3582 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3583 /* 3584 * ATS1Cxx: 3585 * * TTBCR.EAE determines whether the result is returned using the 3586 * 32-bit or the 64-bit PAR format 3587 * * Instructions executed in Hyp mode always use the 64bit format 3588 * 3589 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3590 * * The Non-secure TTBCR.EAE bit is set to 1 3591 * * The implementation includes EL2, and the value of HCR.VM is 1 3592 * 3593 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3594 * 3595 * ATS1Hx always uses the 64bit format. 3596 */ 3597 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3598 3599 if (arm_feature(env, ARM_FEATURE_EL2)) { 3600 if (mmu_idx == ARMMMUIdx_E10_0 || 3601 mmu_idx == ARMMMUIdx_E10_1 || 3602 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3603 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3604 } else { 3605 format64 |= arm_current_el(env) == 2; 3606 } 3607 } 3608 } 3609 3610 if (format64) { 3611 /* Create a 64-bit PAR */ 3612 par64 = (1 << 11); /* LPAE bit always set */ 3613 if (!ret) { 3614 par64 |= res.f.phys_addr & ~0xfffULL; 3615 if (!res.f.attrs.secure) { 3616 par64 |= (1 << 9); /* NS */ 3617 } 3618 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3619 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3620 } else { 3621 uint32_t fsr = arm_fi_to_lfsc(&fi); 3622 3623 par64 |= 1; /* F */ 3624 par64 |= (fsr & 0x3f) << 1; /* FS */ 3625 if (fi.stage2) { 3626 par64 |= (1 << 9); /* S */ 3627 } 3628 if (fi.s1ptw) { 3629 par64 |= (1 << 8); /* PTW */ 3630 } 3631 } 3632 } else { 3633 /* 3634 * fsr is a DFSR/IFSR value for the short descriptor 3635 * translation table format (with WnR always clear). 3636 * Convert it to a 32-bit PAR. 3637 */ 3638 if (!ret) { 3639 /* We do not set any attribute bits in the PAR */ 3640 if (res.f.lg_page_size == 24 3641 && arm_feature(env, ARM_FEATURE_V7)) { 3642 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3643 } else { 3644 par64 = res.f.phys_addr & 0xfffff000; 3645 } 3646 if (!res.f.attrs.secure) { 3647 par64 |= (1 << 9); /* NS */ 3648 } 3649 } else { 3650 uint32_t fsr = arm_fi_to_sfsc(&fi); 3651 3652 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3653 ((fsr & 0xf) << 1) | 1; 3654 } 3655 } 3656 return par64; 3657 } 3658 #endif /* CONFIG_TCG */ 3659 3660 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3661 { 3662 #ifdef CONFIG_TCG 3663 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3664 uint64_t par64; 3665 ARMMMUIdx mmu_idx; 3666 int el = arm_current_el(env); 3667 ARMSecuritySpace ss = arm_security_space(env); 3668 3669 switch (ri->opc2 & 6) { 3670 case 0: 3671 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3672 switch (el) { 3673 case 3: 3674 if (ri->crm == 9 && arm_pan_enabled(env)) { 3675 mmu_idx = ARMMMUIdx_E30_3_PAN; 3676 } else { 3677 mmu_idx = ARMMMUIdx_E3; 3678 } 3679 break; 3680 case 2: 3681 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3682 /* fall through */ 3683 case 1: 3684 if (ri->crm == 9 && arm_pan_enabled(env)) { 3685 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3686 } else { 3687 mmu_idx = ARMMMUIdx_Stage1_E1; 3688 } 3689 break; 3690 default: 3691 g_assert_not_reached(); 3692 } 3693 break; 3694 case 2: 3695 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3696 switch (el) { 3697 case 3: 3698 mmu_idx = ARMMMUIdx_E30_0; 3699 break; 3700 case 2: 3701 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3702 mmu_idx = ARMMMUIdx_Stage1_E0; 3703 break; 3704 case 1: 3705 mmu_idx = ARMMMUIdx_Stage1_E0; 3706 break; 3707 default: 3708 g_assert_not_reached(); 3709 } 3710 break; 3711 case 4: 3712 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3713 mmu_idx = ARMMMUIdx_E10_1; 3714 ss = ARMSS_NonSecure; 3715 break; 3716 case 6: 3717 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3718 mmu_idx = ARMMMUIdx_E10_0; 3719 ss = ARMSS_NonSecure; 3720 break; 3721 default: 3722 g_assert_not_reached(); 3723 } 3724 3725 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3726 3727 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3728 #else 3729 /* Handled by hardware accelerator. */ 3730 g_assert_not_reached(); 3731 #endif /* CONFIG_TCG */ 3732 } 3733 3734 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3735 uint64_t value) 3736 { 3737 #ifdef CONFIG_TCG 3738 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3739 uint64_t par64; 3740 3741 /* There is no SecureEL2 for AArch32. */ 3742 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3743 ARMSS_NonSecure); 3744 3745 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3746 #else 3747 /* Handled by hardware accelerator. */ 3748 g_assert_not_reached(); 3749 #endif /* CONFIG_TCG */ 3750 } 3751 3752 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3753 bool isread) 3754 { 3755 /* 3756 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3757 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3758 * only happen when executing at EL3 because that combination also causes an 3759 * illegal exception return. We don't need to check FEAT_RME either, because 3760 * scr_write() ensures that the NSE bit is not set otherwise. 3761 */ 3762 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3763 return CP_ACCESS_UNDEFINED; 3764 } 3765 return CP_ACCESS_OK; 3766 } 3767 3768 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3769 bool isread) 3770 { 3771 if (arm_current_el(env) == 3 && 3772 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3773 return CP_ACCESS_UNDEFINED; 3774 } 3775 return at_e012_access(env, ri, isread); 3776 } 3777 3778 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3779 bool isread) 3780 { 3781 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3782 return CP_ACCESS_TRAP_EL2; 3783 } 3784 return at_e012_access(env, ri, isread); 3785 } 3786 3787 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3788 uint64_t value) 3789 { 3790 #ifdef CONFIG_TCG 3791 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3792 ARMMMUIdx mmu_idx; 3793 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3794 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3795 bool for_el3 = false; 3796 ARMSecuritySpace ss; 3797 3798 switch (ri->opc2 & 6) { 3799 case 0: 3800 switch (ri->opc1) { 3801 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3802 if (ri->crm == 9 && arm_pan_enabled(env)) { 3803 mmu_idx = regime_e20 ? 3804 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3805 } else { 3806 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3807 } 3808 break; 3809 case 4: /* AT S1E2R, AT S1E2W */ 3810 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3811 break; 3812 case 6: /* AT S1E3R, AT S1E3W */ 3813 mmu_idx = ARMMMUIdx_E3; 3814 for_el3 = true; 3815 break; 3816 default: 3817 g_assert_not_reached(); 3818 } 3819 break; 3820 case 2: /* AT S1E0R, AT S1E0W */ 3821 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3822 break; 3823 case 4: /* AT S12E1R, AT S12E1W */ 3824 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3825 break; 3826 case 6: /* AT S12E0R, AT S12E0W */ 3827 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3828 break; 3829 default: 3830 g_assert_not_reached(); 3831 } 3832 3833 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3834 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3835 #else 3836 /* Handled by hardware accelerator. */ 3837 g_assert_not_reached(); 3838 #endif /* CONFIG_TCG */ 3839 } 3840 #endif 3841 3842 /* Return basic MPU access permission bits. */ 3843 static uint32_t simple_mpu_ap_bits(uint32_t val) 3844 { 3845 uint32_t ret; 3846 uint32_t mask; 3847 int i; 3848 ret = 0; 3849 mask = 3; 3850 for (i = 0; i < 16; i += 2) { 3851 ret |= (val >> i) & mask; 3852 mask <<= 2; 3853 } 3854 return ret; 3855 } 3856 3857 /* Pad basic MPU access permission bits to extended format. */ 3858 static uint32_t extended_mpu_ap_bits(uint32_t val) 3859 { 3860 uint32_t ret; 3861 uint32_t mask; 3862 int i; 3863 ret = 0; 3864 mask = 3; 3865 for (i = 0; i < 16; i += 2) { 3866 ret |= (val & mask) << i; 3867 mask <<= 2; 3868 } 3869 return ret; 3870 } 3871 3872 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3873 uint64_t value) 3874 { 3875 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3876 } 3877 3878 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3879 { 3880 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3881 } 3882 3883 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3887 } 3888 3889 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3890 { 3891 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3892 } 3893 3894 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3895 { 3896 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3897 3898 if (!u32p) { 3899 return 0; 3900 } 3901 3902 u32p += env->pmsav7.rnr[M_REG_NS]; 3903 return *u32p; 3904 } 3905 3906 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3907 uint64_t value) 3908 { 3909 ARMCPU *cpu = env_archcpu(env); 3910 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3911 3912 if (!u32p) { 3913 return; 3914 } 3915 3916 u32p += env->pmsav7.rnr[M_REG_NS]; 3917 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3918 *u32p = value; 3919 } 3920 3921 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3922 uint64_t value) 3923 { 3924 ARMCPU *cpu = env_archcpu(env); 3925 uint32_t nrgs = cpu->pmsav7_dregion; 3926 3927 if (value >= nrgs) { 3928 qemu_log_mask(LOG_GUEST_ERROR, 3929 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3930 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3931 return; 3932 } 3933 3934 raw_write(env, ri, value); 3935 } 3936 3937 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3938 uint64_t value) 3939 { 3940 ARMCPU *cpu = env_archcpu(env); 3941 3942 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3943 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3944 } 3945 3946 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3947 { 3948 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3949 } 3950 3951 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3952 uint64_t value) 3953 { 3954 ARMCPU *cpu = env_archcpu(env); 3955 3956 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3957 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3958 } 3959 3960 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3961 { 3962 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3963 } 3964 3965 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3966 uint64_t value) 3967 { 3968 ARMCPU *cpu = env_archcpu(env); 3969 3970 /* 3971 * Ignore writes that would select not implemented region. 3972 * This is architecturally UNPREDICTABLE. 3973 */ 3974 if (value >= cpu->pmsav7_dregion) { 3975 return; 3976 } 3977 3978 env->pmsav7.rnr[M_REG_NS] = value; 3979 } 3980 3981 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3982 uint64_t value) 3983 { 3984 ARMCPU *cpu = env_archcpu(env); 3985 3986 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3987 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3988 } 3989 3990 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3991 { 3992 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3993 } 3994 3995 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3996 uint64_t value) 3997 { 3998 ARMCPU *cpu = env_archcpu(env); 3999 4000 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4001 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4002 } 4003 4004 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4005 { 4006 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4007 } 4008 4009 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4010 uint64_t value) 4011 { 4012 uint32_t n; 4013 uint32_t bit; 4014 ARMCPU *cpu = env_archcpu(env); 4015 4016 /* Ignore writes to unimplemented regions */ 4017 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4018 value &= MAKE_64BIT_MASK(0, rmax); 4019 4020 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4021 4022 /* Register alias is only valid for first 32 indexes */ 4023 for (n = 0; n < rmax; ++n) { 4024 bit = extract32(value, n, 1); 4025 env->pmsav8.hprlar[n] = deposit32( 4026 env->pmsav8.hprlar[n], 0, 1, bit); 4027 } 4028 } 4029 4030 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4031 { 4032 uint32_t n; 4033 uint32_t result = 0x0; 4034 ARMCPU *cpu = env_archcpu(env); 4035 4036 /* Register alias is only valid for first 32 indexes */ 4037 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4038 if (env->pmsav8.hprlar[n] & 0x1) { 4039 result |= (0x1 << n); 4040 } 4041 } 4042 return result; 4043 } 4044 4045 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4046 uint64_t value) 4047 { 4048 ARMCPU *cpu = env_archcpu(env); 4049 4050 /* 4051 * Ignore writes that would select not implemented region. 4052 * This is architecturally UNPREDICTABLE. 4053 */ 4054 if (value >= cpu->pmsav8r_hdregion) { 4055 return; 4056 } 4057 4058 env->pmsav8.hprselr = value; 4059 } 4060 4061 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4062 uint64_t value) 4063 { 4064 ARMCPU *cpu = env_archcpu(env); 4065 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4066 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4067 4068 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4069 4070 if (ri->opc1 & 4) { 4071 if (index >= cpu->pmsav8r_hdregion) { 4072 return; 4073 } 4074 if (ri->opc2 & 0x1) { 4075 env->pmsav8.hprlar[index] = value; 4076 } else { 4077 env->pmsav8.hprbar[index] = value; 4078 } 4079 } else { 4080 if (index >= cpu->pmsav7_dregion) { 4081 return; 4082 } 4083 if (ri->opc2 & 0x1) { 4084 env->pmsav8.rlar[M_REG_NS][index] = value; 4085 } else { 4086 env->pmsav8.rbar[M_REG_NS][index] = value; 4087 } 4088 } 4089 } 4090 4091 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4092 { 4093 ARMCPU *cpu = env_archcpu(env); 4094 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4095 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4096 4097 if (ri->opc1 & 4) { 4098 if (index >= cpu->pmsav8r_hdregion) { 4099 return 0x0; 4100 } 4101 if (ri->opc2 & 0x1) { 4102 return env->pmsav8.hprlar[index]; 4103 } else { 4104 return env->pmsav8.hprbar[index]; 4105 } 4106 } else { 4107 if (index >= cpu->pmsav7_dregion) { 4108 return 0x0; 4109 } 4110 if (ri->opc2 & 0x1) { 4111 return env->pmsav8.rlar[M_REG_NS][index]; 4112 } else { 4113 return env->pmsav8.rbar[M_REG_NS][index]; 4114 } 4115 } 4116 } 4117 4118 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4119 { .name = "PRBAR", 4120 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4121 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4122 .accessfn = access_tvm_trvm, 4123 .readfn = prbar_read, .writefn = prbar_write }, 4124 { .name = "PRLAR", 4125 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4126 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4127 .accessfn = access_tvm_trvm, 4128 .readfn = prlar_read, .writefn = prlar_write }, 4129 { .name = "PRSELR", .resetvalue = 0, 4130 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4131 .access = PL1_RW, .accessfn = access_tvm_trvm, 4132 .writefn = prselr_write, 4133 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4134 { .name = "HPRBAR", .resetvalue = 0, 4135 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4136 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4137 .readfn = hprbar_read, .writefn = hprbar_write }, 4138 { .name = "HPRLAR", 4139 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4140 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4141 .readfn = hprlar_read, .writefn = hprlar_write }, 4142 { .name = "HPRSELR", .resetvalue = 0, 4143 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4144 .access = PL2_RW, 4145 .writefn = hprselr_write, 4146 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4147 { .name = "HPRENR", 4148 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4149 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4150 .readfn = hprenr_read, .writefn = hprenr_write }, 4151 }; 4152 4153 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4154 /* 4155 * Reset for all these registers is handled in arm_cpu_reset(), 4156 * because the PMSAv7 is also used by M-profile CPUs, which do 4157 * not register cpregs but still need the state to be reset. 4158 */ 4159 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4160 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4161 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4162 .readfn = pmsav7_read, .writefn = pmsav7_write, 4163 .resetfn = arm_cp_reset_ignore }, 4164 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4165 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4166 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4167 .readfn = pmsav7_read, .writefn = pmsav7_write, 4168 .resetfn = arm_cp_reset_ignore }, 4169 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4170 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4171 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4172 .readfn = pmsav7_read, .writefn = pmsav7_write, 4173 .resetfn = arm_cp_reset_ignore }, 4174 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4175 .access = PL1_RW, 4176 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4177 .writefn = pmsav7_rgnr_write, 4178 .resetfn = arm_cp_reset_ignore }, 4179 }; 4180 4181 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4182 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4183 .access = PL1_RW, .type = ARM_CP_ALIAS, 4184 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4185 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4186 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4187 .access = PL1_RW, .type = ARM_CP_ALIAS, 4188 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4189 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4190 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4191 .access = PL1_RW, 4192 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4193 .resetvalue = 0, }, 4194 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4195 .access = PL1_RW, 4196 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4197 .resetvalue = 0, }, 4198 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4199 .access = PL1_RW, 4200 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4201 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4202 .access = PL1_RW, 4203 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4204 /* Protection region base and size registers */ 4205 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4206 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4207 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4208 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4209 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4211 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4212 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4214 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4215 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4216 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4217 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4218 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4219 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4220 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4221 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4222 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4223 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4224 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4225 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4226 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4227 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4228 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4229 }; 4230 4231 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4232 uint64_t value) 4233 { 4234 ARMCPU *cpu = env_archcpu(env); 4235 4236 if (!arm_feature(env, ARM_FEATURE_V8)) { 4237 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4238 /* 4239 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4240 * using Long-descriptor translation table format 4241 */ 4242 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4243 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4244 /* 4245 * In an implementation that includes the Security Extensions 4246 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4247 * Short-descriptor translation table format. 4248 */ 4249 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4250 } else { 4251 value &= TTBCR_N; 4252 } 4253 } 4254 4255 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4256 /* 4257 * With LPAE the TTBCR could result in a change of ASID 4258 * via the TTBCR.A1 bit, so do a TLB flush. 4259 */ 4260 tlb_flush(CPU(cpu)); 4261 } 4262 raw_write(env, ri, value); 4263 } 4264 4265 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4266 uint64_t value) 4267 { 4268 ARMCPU *cpu = env_archcpu(env); 4269 4270 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4271 tlb_flush(CPU(cpu)); 4272 raw_write(env, ri, value); 4273 } 4274 4275 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4276 uint64_t value) 4277 { 4278 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4279 if (cpreg_field_is_64bit(ri) && 4280 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4281 ARMCPU *cpu = env_archcpu(env); 4282 tlb_flush(CPU(cpu)); 4283 } 4284 raw_write(env, ri, value); 4285 } 4286 4287 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4288 uint64_t value) 4289 { 4290 /* 4291 * If we are running with E2&0 regime, then an ASID is active. 4292 * Flush if that might be changing. Note we're not checking 4293 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4294 * holds the active ASID, only checking the field that might. 4295 */ 4296 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4297 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4298 uint16_t mask = ARMMMUIdxBit_E20_2 | 4299 ARMMMUIdxBit_E20_2_PAN | 4300 ARMMMUIdxBit_E20_0; 4301 tlb_flush_by_mmuidx(env_cpu(env), mask); 4302 } 4303 raw_write(env, ri, value); 4304 } 4305 4306 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4307 uint64_t value) 4308 { 4309 ARMCPU *cpu = env_archcpu(env); 4310 CPUState *cs = CPU(cpu); 4311 4312 /* 4313 * A change in VMID to the stage2 page table (Stage2) invalidates 4314 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4315 */ 4316 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4317 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4318 } 4319 raw_write(env, ri, value); 4320 } 4321 4322 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4323 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4324 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4325 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4326 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4327 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4328 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4329 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4330 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4331 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4332 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4333 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4334 offsetof(CPUARMState, cp15.dfar_ns) } }, 4335 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .fgt = FGT_FAR_EL1, 4339 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4340 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4341 .resetvalue = 0, }, 4342 }; 4343 4344 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4345 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4346 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4347 .access = PL1_RW, .accessfn = access_tvm_trvm, 4348 .fgt = FGT_ESR_EL1, 4349 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4350 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4351 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4352 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4353 .access = PL1_RW, .accessfn = access_tvm_trvm, 4354 .fgt = FGT_TTBR0_EL1, 4355 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4356 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4358 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4359 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4360 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4361 .access = PL1_RW, .accessfn = access_tvm_trvm, 4362 .fgt = FGT_TTBR1_EL1, 4363 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4364 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4366 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4367 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4368 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4369 .access = PL1_RW, .accessfn = access_tvm_trvm, 4370 .fgt = FGT_TCR_EL1, 4371 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4372 .writefn = vmsa_tcr_el12_write, 4373 .raw_writefn = raw_write, 4374 .resetvalue = 0, 4375 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4376 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4377 .access = PL1_RW, .accessfn = access_tvm_trvm, 4378 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4379 .raw_writefn = raw_write, 4380 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4381 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4382 }; 4383 4384 /* 4385 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4386 * qemu tlbs nor adjusting cached masks. 4387 */ 4388 static const ARMCPRegInfo ttbcr2_reginfo = { 4389 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4390 .access = PL1_RW, .accessfn = access_tvm_trvm, 4391 .type = ARM_CP_ALIAS, 4392 .bank_fieldoffsets = { 4393 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4394 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4395 }, 4396 }; 4397 4398 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4399 uint64_t value) 4400 { 4401 env->cp15.c15_ticonfig = value & 0xe7; 4402 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4403 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4404 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4405 } 4406 4407 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 env->cp15.c15_threadid = value & 0xffff; 4411 } 4412 4413 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 /* Wait-for-interrupt (deprecated) */ 4417 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4418 } 4419 4420 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 /* 4424 * On OMAP there are registers indicating the max/min index of dcache lines 4425 * containing a dirty line; cache flush operations have to reset these. 4426 */ 4427 env->cp15.c15_i_max = 0x000; 4428 env->cp15.c15_i_min = 0xff0; 4429 } 4430 4431 static const ARMCPRegInfo omap_cp_reginfo[] = { 4432 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4433 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4434 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4435 .resetvalue = 0, }, 4436 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4437 .access = PL1_RW, .type = ARM_CP_NOP }, 4438 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4439 .access = PL1_RW, 4440 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4441 .writefn = omap_ticonfig_write }, 4442 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4443 .access = PL1_RW, 4444 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4445 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4446 .access = PL1_RW, .resetvalue = 0xff0, 4447 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4448 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4449 .access = PL1_RW, 4450 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4451 .writefn = omap_threadid_write }, 4452 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4453 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4454 .type = ARM_CP_NO_RAW, 4455 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4456 /* 4457 * TODO: Peripheral port remap register: 4458 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4459 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4460 * when MMU is off. 4461 */ 4462 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4463 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4464 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4465 .writefn = omap_cachemaint_write }, 4466 { .name = "C9", .cp = 15, .crn = 9, 4467 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4468 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4469 }; 4470 4471 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4472 uint64_t value) 4473 { 4474 env->cp15.c15_cpar = value & 0x3fff; 4475 } 4476 4477 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4478 { .name = "XSCALE_CPAR", 4479 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4480 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4481 .writefn = xscale_cpar_write, }, 4482 { .name = "XSCALE_AUXCR", 4483 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4484 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4485 .resetvalue = 0, }, 4486 /* 4487 * XScale specific cache-lockdown: since we have no cache we NOP these 4488 * and hope the guest does not really rely on cache behaviour. 4489 */ 4490 { .name = "XSCALE_LOCK_ICACHE_LINE", 4491 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4492 .access = PL1_W, .type = ARM_CP_NOP }, 4493 { .name = "XSCALE_UNLOCK_ICACHE", 4494 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4495 .access = PL1_W, .type = ARM_CP_NOP }, 4496 { .name = "XSCALE_DCACHE_LOCK", 4497 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4498 .access = PL1_RW, .type = ARM_CP_NOP }, 4499 { .name = "XSCALE_UNLOCK_DCACHE", 4500 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4501 .access = PL1_W, .type = ARM_CP_NOP }, 4502 }; 4503 4504 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4505 /* 4506 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4507 * implementation of this implementation-defined space. 4508 * Ideally this should eventually disappear in favour of actually 4509 * implementing the correct behaviour for all cores. 4510 */ 4511 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4512 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4513 .access = PL1_RW, 4514 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4515 .resetvalue = 0 }, 4516 }; 4517 4518 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4519 /* Cache status: RAZ because we have no cache so it's always clean */ 4520 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4521 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4522 .resetvalue = 0 }, 4523 }; 4524 4525 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4526 /* We never have a block transfer operation in progress */ 4527 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4528 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4529 .resetvalue = 0 }, 4530 /* The cache ops themselves: these all NOP for QEMU */ 4531 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4532 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4533 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4534 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4535 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4536 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4537 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4538 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4539 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4540 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4541 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4542 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4543 }; 4544 4545 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4546 /* 4547 * The cache test-and-clean instructions always return (1 << 30) 4548 * to indicate that there are no dirty cache lines. 4549 */ 4550 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4551 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4552 .resetvalue = (1 << 30) }, 4553 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4554 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4555 .resetvalue = (1 << 30) }, 4556 }; 4557 4558 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4559 /* Ignore ReadBuffer accesses */ 4560 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4561 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4562 .access = PL1_RW, .resetvalue = 0, 4563 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4564 }; 4565 4566 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4567 { 4568 unsigned int cur_el = arm_current_el(env); 4569 4570 if (arm_is_el2_enabled(env) && cur_el == 1) { 4571 return env->cp15.vpidr_el2; 4572 } 4573 return raw_read(env, ri); 4574 } 4575 4576 static uint64_t mpidr_read_val(CPUARMState *env) 4577 { 4578 ARMCPU *cpu = env_archcpu(env); 4579 uint64_t mpidr = cpu->mp_affinity; 4580 4581 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4582 mpidr |= (1U << 31); 4583 /* 4584 * Cores which are uniprocessor (non-coherent) 4585 * but still implement the MP extensions set 4586 * bit 30. (For instance, Cortex-R5). 4587 */ 4588 if (cpu->mp_is_up) { 4589 mpidr |= (1u << 30); 4590 } 4591 } 4592 return mpidr; 4593 } 4594 4595 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4596 { 4597 unsigned int cur_el = arm_current_el(env); 4598 4599 if (arm_is_el2_enabled(env) && cur_el == 1) { 4600 return env->cp15.vmpidr_el2; 4601 } 4602 return mpidr_read_val(env); 4603 } 4604 4605 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4606 /* NOP AMAIR0/1 */ 4607 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4608 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4609 .access = PL1_RW, .accessfn = access_tvm_trvm, 4610 .fgt = FGT_AMAIR_EL1, 4611 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4612 .type = ARM_CP_CONST, .resetvalue = 0 }, 4613 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4614 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4615 .access = PL1_RW, .accessfn = access_tvm_trvm, 4616 .type = ARM_CP_CONST, .resetvalue = 0 }, 4617 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4618 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4619 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4620 offsetof(CPUARMState, cp15.par_ns)} }, 4621 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4622 .access = PL1_RW, .accessfn = access_tvm_trvm, 4623 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4624 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4625 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4626 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4627 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4628 .access = PL1_RW, .accessfn = access_tvm_trvm, 4629 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4631 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4632 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4633 }; 4634 4635 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4636 { 4637 return vfp_get_fpcr(env); 4638 } 4639 4640 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4641 uint64_t value) 4642 { 4643 vfp_set_fpcr(env, value); 4644 } 4645 4646 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4647 { 4648 return vfp_get_fpsr(env); 4649 } 4650 4651 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4652 uint64_t value) 4653 { 4654 vfp_set_fpsr(env, value); 4655 } 4656 4657 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4658 bool isread) 4659 { 4660 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4661 return CP_ACCESS_TRAP_EL1; 4662 } 4663 return CP_ACCESS_OK; 4664 } 4665 4666 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4667 uint64_t value) 4668 { 4669 env->daif = value & PSTATE_DAIF; 4670 } 4671 4672 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4673 { 4674 return env->pstate & PSTATE_PAN; 4675 } 4676 4677 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4678 uint64_t value) 4679 { 4680 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4681 } 4682 4683 static const ARMCPRegInfo pan_reginfo = { 4684 .name = "PAN", .state = ARM_CP_STATE_AA64, 4685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4686 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4687 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4688 }; 4689 4690 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4691 { 4692 return env->pstate & PSTATE_UAO; 4693 } 4694 4695 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4696 uint64_t value) 4697 { 4698 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4699 } 4700 4701 static const ARMCPRegInfo uao_reginfo = { 4702 .name = "UAO", .state = ARM_CP_STATE_AA64, 4703 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4704 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4705 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4706 }; 4707 4708 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4709 { 4710 return env->pstate & PSTATE_DIT; 4711 } 4712 4713 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4717 } 4718 4719 static const ARMCPRegInfo dit_reginfo = { 4720 .name = "DIT", .state = ARM_CP_STATE_AA64, 4721 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4722 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4723 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4724 }; 4725 4726 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4727 { 4728 return env->pstate & PSTATE_SSBS; 4729 } 4730 4731 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4732 uint64_t value) 4733 { 4734 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4735 } 4736 4737 static const ARMCPRegInfo ssbs_reginfo = { 4738 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4739 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4740 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4741 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4742 }; 4743 4744 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4745 const ARMCPRegInfo *ri, 4746 bool isread) 4747 { 4748 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4749 switch (arm_current_el(env)) { 4750 case 0: 4751 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4752 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4753 return CP_ACCESS_TRAP_EL1; 4754 } 4755 /* fall through */ 4756 case 1: 4757 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4758 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4759 return CP_ACCESS_TRAP_EL2; 4760 } 4761 break; 4762 } 4763 return CP_ACCESS_OK; 4764 } 4765 4766 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4767 { 4768 /* Cache invalidate/clean to Point of Unification... */ 4769 switch (arm_current_el(env)) { 4770 case 0: 4771 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4772 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4773 return CP_ACCESS_TRAP_EL1; 4774 } 4775 /* fall through */ 4776 case 1: 4777 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4778 if (arm_hcr_el2_eff(env) & hcrflags) { 4779 return CP_ACCESS_TRAP_EL2; 4780 } 4781 break; 4782 } 4783 return CP_ACCESS_OK; 4784 } 4785 4786 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4787 bool isread) 4788 { 4789 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4790 } 4791 4792 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4793 bool isread) 4794 { 4795 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4796 } 4797 4798 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4799 bool isread) 4800 { 4801 int cur_el = arm_current_el(env); 4802 4803 if (cur_el < 2) { 4804 uint64_t hcr = arm_hcr_el2_eff(env); 4805 4806 if (cur_el == 0) { 4807 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4808 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4809 return CP_ACCESS_TRAP_EL2; 4810 } 4811 } else { 4812 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4813 return CP_ACCESS_TRAP_EL1; 4814 } 4815 if (hcr & HCR_TDZ) { 4816 return CP_ACCESS_TRAP_EL2; 4817 } 4818 } 4819 } else if (hcr & HCR_TDZ) { 4820 return CP_ACCESS_TRAP_EL2; 4821 } 4822 } 4823 return CP_ACCESS_OK; 4824 } 4825 4826 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4827 { 4828 ARMCPU *cpu = env_archcpu(env); 4829 int dzp_bit = 1 << 4; 4830 4831 /* DZP indicates whether DC ZVA access is allowed */ 4832 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4833 dzp_bit = 0; 4834 } 4835 return cpu->dcz_blocksize | dzp_bit; 4836 } 4837 4838 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4839 bool isread) 4840 { 4841 if (!(env->pstate & PSTATE_SP)) { 4842 /* 4843 * Access to SP_EL0 is undefined if it's being used as 4844 * the stack pointer. 4845 */ 4846 return CP_ACCESS_UNDEFINED; 4847 } 4848 return CP_ACCESS_OK; 4849 } 4850 4851 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4852 { 4853 return env->pstate & PSTATE_SP; 4854 } 4855 4856 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4857 { 4858 update_spsel(env, val); 4859 } 4860 4861 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4862 uint64_t value) 4863 { 4864 ARMCPU *cpu = env_archcpu(env); 4865 4866 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4867 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4868 value &= ~SCTLR_M; 4869 } 4870 4871 /* ??? Lots of these bits are not implemented. */ 4872 4873 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4874 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4875 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4876 } else { 4877 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4878 SCTLR_ATA0 | SCTLR_ATA); 4879 } 4880 } 4881 4882 if (raw_read(env, ri) == value) { 4883 /* 4884 * Skip the TLB flush if nothing actually changed; Linux likes 4885 * to do a lot of pointless SCTLR writes. 4886 */ 4887 return; 4888 } 4889 4890 raw_write(env, ri, value); 4891 4892 /* This may enable/disable the MMU, so do a TLB flush. */ 4893 tlb_flush(CPU(cpu)); 4894 4895 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4896 /* 4897 * Normally we would always end the TB on an SCTLR write; see the 4898 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4899 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4900 * of hflags from the translator, so do it here. 4901 */ 4902 arm_rebuild_hflags(env); 4903 } 4904 } 4905 4906 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4907 uint64_t value) 4908 { 4909 /* 4910 * Some MDCR_EL3 bits affect whether PMU counters are running: 4911 * if we are trying to change any of those then we must 4912 * bracket this update with PMU start/finish calls. 4913 */ 4914 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4915 4916 if (pmu_op) { 4917 pmu_op_start(env); 4918 } 4919 env->cp15.mdcr_el3 = value; 4920 if (pmu_op) { 4921 pmu_op_finish(env); 4922 } 4923 } 4924 4925 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4926 uint64_t value) 4927 { 4928 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4929 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4930 } 4931 4932 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4933 uint64_t value) 4934 { 4935 /* 4936 * Some MDCR_EL2 bits affect whether PMU counters are running: 4937 * if we are trying to change any of those then we must 4938 * bracket this update with PMU start/finish calls. 4939 */ 4940 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4941 4942 if (pmu_op) { 4943 pmu_op_start(env); 4944 } 4945 env->cp15.mdcr_el2 = value; 4946 if (pmu_op) { 4947 pmu_op_finish(env); 4948 } 4949 } 4950 4951 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4952 bool isread) 4953 { 4954 if (arm_current_el(env) == 1) { 4955 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4956 4957 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4958 return CP_ACCESS_TRAP_EL2; 4959 } 4960 } 4961 return CP_ACCESS_OK; 4962 } 4963 4964 #ifdef CONFIG_USER_ONLY 4965 /* 4966 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4967 * code to get around W^X restrictions, where one region is writable and the 4968 * other is executable. 4969 * 4970 * Since the executable region is never written to we cannot detect code 4971 * changes when running in user mode, and rely on the emulated JIT telling us 4972 * that the code has changed by executing this instruction. 4973 */ 4974 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4975 uint64_t value) 4976 { 4977 uint64_t icache_line_mask, start_address, end_address; 4978 const ARMCPU *cpu; 4979 4980 cpu = env_archcpu(env); 4981 4982 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4983 start_address = value & ~icache_line_mask; 4984 end_address = value | icache_line_mask; 4985 4986 mmap_lock(); 4987 4988 tb_invalidate_phys_range(start_address, end_address); 4989 4990 mmap_unlock(); 4991 } 4992 #endif 4993 4994 static const ARMCPRegInfo v8_cp_reginfo[] = { 4995 /* 4996 * Minimal set of EL0-visible registers. This will need to be expanded 4997 * significantly for system emulation of AArch64 CPUs. 4998 */ 4999 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5000 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5001 .access = PL0_RW, .type = ARM_CP_NZCV }, 5002 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5004 .type = ARM_CP_NO_RAW, 5005 .access = PL0_RW, .accessfn = aa64_daif_access, 5006 .fieldoffset = offsetof(CPUARMState, daif), 5007 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5008 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5010 .access = PL0_RW, .type = ARM_CP_FPU, 5011 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5012 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5014 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5015 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5016 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5018 .access = PL0_R, .type = ARM_CP_NO_RAW, 5019 .fgt = FGT_DCZID_EL0, 5020 .readfn = aa64_dczid_read }, 5021 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5023 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5024 #ifndef CONFIG_USER_ONLY 5025 /* Avoid overhead of an access check that always passes in user-mode */ 5026 .accessfn = aa64_zva_access, 5027 .fgt = FGT_DCZVA, 5028 #endif 5029 }, 5030 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5031 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5032 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5033 /* 5034 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5035 * don't emulate caches. 5036 */ 5037 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5039 .access = PL1_W, .type = ARM_CP_NOP, 5040 .fgt = FGT_ICIALLUIS, 5041 .accessfn = access_ticab }, 5042 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5044 .access = PL1_W, .type = ARM_CP_NOP, 5045 .fgt = FGT_ICIALLU, 5046 .accessfn = access_tocu }, 5047 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5049 .access = PL0_W, 5050 .fgt = FGT_ICIVAU, 5051 .accessfn = access_tocu, 5052 #ifdef CONFIG_USER_ONLY 5053 .type = ARM_CP_NO_RAW, 5054 .writefn = ic_ivau_write 5055 #else 5056 .type = ARM_CP_NOP 5057 #endif 5058 }, 5059 /* Cache ops: all NOPs since we don't emulate caches */ 5060 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5062 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5063 .fgt = FGT_DCIVAC, 5064 .type = ARM_CP_NOP }, 5065 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5067 .fgt = FGT_DCISW, 5068 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5069 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5071 .access = PL0_W, .type = ARM_CP_NOP, 5072 .fgt = FGT_DCCVAC, 5073 .accessfn = aa64_cacheop_poc_access }, 5074 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5076 .fgt = FGT_DCCSW, 5077 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5078 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5080 .access = PL0_W, .type = ARM_CP_NOP, 5081 .fgt = FGT_DCCVAU, 5082 .accessfn = access_tocu }, 5083 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5085 .access = PL0_W, .type = ARM_CP_NOP, 5086 .fgt = FGT_DCCIVAC, 5087 .accessfn = aa64_cacheop_poc_access }, 5088 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5090 .fgt = FGT_DCCISW, 5091 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5092 #ifndef CONFIG_USER_ONLY 5093 /* 64 bit address translation operations */ 5094 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5096 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5097 .fgt = FGT_ATS1E1R, 5098 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5099 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5101 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5102 .fgt = FGT_ATS1E1W, 5103 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5104 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5106 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5107 .fgt = FGT_ATS1E0R, 5108 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5109 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5111 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5112 .fgt = FGT_ATS1E0W, 5113 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5114 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5116 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5117 .accessfn = at_e012_access, .writefn = ats_write64 }, 5118 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5119 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5120 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5121 .accessfn = at_e012_access, .writefn = ats_write64 }, 5122 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5124 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5125 .accessfn = at_e012_access, .writefn = ats_write64 }, 5126 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5127 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5128 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5129 .accessfn = at_e012_access, .writefn = ats_write64 }, 5130 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5131 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5133 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5134 .writefn = ats_write64 }, 5135 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5137 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5138 .writefn = ats_write64 }, 5139 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5140 .type = ARM_CP_ALIAS, 5141 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5142 .access = PL1_RW, .resetvalue = 0, 5143 .fgt = FGT_PAR_EL1, 5144 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5145 .writefn = par_write }, 5146 #endif 5147 /* 32 bit cache operations */ 5148 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5149 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5150 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5151 .type = ARM_CP_NOP, .access = PL1_W }, 5152 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5153 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5154 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5155 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5156 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5157 .type = ARM_CP_NOP, .access = PL1_W }, 5158 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5159 .type = ARM_CP_NOP, .access = PL1_W }, 5160 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5161 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5162 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5163 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5164 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5165 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5166 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5167 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5168 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5169 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5170 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5171 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5172 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5173 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5174 /* MMU Domain access control / MPU write buffer control */ 5175 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5176 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5177 .writefn = dacr_write, .raw_writefn = raw_write, 5178 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5179 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5180 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5181 .type = ARM_CP_ALIAS, 5182 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5183 .access = PL1_RW, .accessfn = access_nv1, 5184 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5185 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5186 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5187 .type = ARM_CP_ALIAS, 5188 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5189 .access = PL1_RW, .accessfn = access_nv1, 5190 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5191 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5192 /* 5193 * We rely on the access checks not allowing the guest to write to the 5194 * state field when SPSel indicates that it's being used as the stack 5195 * pointer. 5196 */ 5197 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5198 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5199 .access = PL1_RW, .accessfn = sp_el0_access, 5200 .type = ARM_CP_ALIAS, 5201 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5202 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5204 .nv2_redirect_offset = 0x240, 5205 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5206 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5207 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5208 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5209 .type = ARM_CP_NO_RAW, 5210 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5211 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5212 .type = ARM_CP_ALIAS, 5213 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5214 .access = PL2_RW, 5215 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5216 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5217 .type = ARM_CP_ALIAS, 5218 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5219 .access = PL2_RW, 5220 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5221 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5222 .type = ARM_CP_ALIAS, 5223 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5224 .access = PL2_RW, 5225 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5226 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5227 .type = ARM_CP_ALIAS, 5228 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5229 .access = PL2_RW, 5230 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5231 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5232 .type = ARM_CP_IO, 5233 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5234 .resetvalue = 0, 5235 .access = PL3_RW, 5236 .writefn = mdcr_el3_write, 5237 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5238 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5239 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5240 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5241 .writefn = sdcr_write, 5242 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5243 }; 5244 5245 /* These are present only when EL1 supports AArch32 */ 5246 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5247 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5248 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5249 .access = PL2_RW, 5250 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5251 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5252 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5253 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5254 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5255 .writefn = dacr_write, .raw_writefn = raw_write, 5256 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5257 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5258 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5259 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5260 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5261 }; 5262 5263 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5264 { 5265 ARMCPU *cpu = env_archcpu(env); 5266 5267 if (arm_feature(env, ARM_FEATURE_V8)) { 5268 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5269 } else { 5270 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5271 } 5272 5273 if (arm_feature(env, ARM_FEATURE_EL3)) { 5274 valid_mask &= ~HCR_HCD; 5275 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5276 /* 5277 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5278 * However, if we're using the SMC PSCI conduit then QEMU is 5279 * effectively acting like EL3 firmware and so the guest at 5280 * EL2 should retain the ability to prevent EL1 from being 5281 * able to make SMC calls into the ersatz firmware, so in 5282 * that case HCR.TSC should be read/write. 5283 */ 5284 valid_mask &= ~HCR_TSC; 5285 } 5286 5287 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5288 if (cpu_isar_feature(aa64_vh, cpu)) { 5289 valid_mask |= HCR_E2H; 5290 } 5291 if (cpu_isar_feature(aa64_ras, cpu)) { 5292 valid_mask |= HCR_TERR | HCR_TEA; 5293 } 5294 if (cpu_isar_feature(aa64_lor, cpu)) { 5295 valid_mask |= HCR_TLOR; 5296 } 5297 if (cpu_isar_feature(aa64_pauth, cpu)) { 5298 valid_mask |= HCR_API | HCR_APK; 5299 } 5300 if (cpu_isar_feature(aa64_mte, cpu)) { 5301 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5302 } 5303 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5304 valid_mask |= HCR_ENSCXT; 5305 } 5306 if (cpu_isar_feature(aa64_fwb, cpu)) { 5307 valid_mask |= HCR_FWB; 5308 } 5309 if (cpu_isar_feature(aa64_rme, cpu)) { 5310 valid_mask |= HCR_GPF; 5311 } 5312 if (cpu_isar_feature(aa64_nv, cpu)) { 5313 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5314 } 5315 if (cpu_isar_feature(aa64_nv2, cpu)) { 5316 valid_mask |= HCR_NV2; 5317 } 5318 } 5319 5320 if (cpu_isar_feature(any_evt, cpu)) { 5321 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5322 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5323 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5324 } 5325 5326 /* Clear RES0 bits. */ 5327 value &= valid_mask; 5328 5329 /* RW is RAO/WI if EL1 is AArch64 only */ 5330 if (!cpu_isar_feature(aa64_aa32_el1, cpu)) { 5331 value |= HCR_RW; 5332 } 5333 5334 /* 5335 * These bits change the MMU setup: 5336 * HCR_VM enables stage 2 translation 5337 * HCR_PTW forbids certain page-table setups 5338 * HCR_DC disables stage1 and enables stage2 translation 5339 * HCR_DCT enables tagging on (disabled) stage1 translation 5340 * HCR_FWB changes the interpretation of stage2 descriptor bits 5341 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5342 */ 5343 if ((env->cp15.hcr_el2 ^ value) & 5344 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5345 tlb_flush(CPU(cpu)); 5346 } 5347 env->cp15.hcr_el2 = value; 5348 5349 /* 5350 * Updates to VI and VF require us to update the status of 5351 * virtual interrupts, which are the logical OR of these bits 5352 * and the state of the input lines from the GIC. (This requires 5353 * that we have the BQL, which is done by marking the 5354 * reginfo structs as ARM_CP_IO.) 5355 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5356 * VFNMI, it is never possible for it to be taken immediately 5357 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5358 * at EL0 or EL1, and HCR can only be written at EL2. 5359 */ 5360 g_assert(bql_locked()); 5361 arm_cpu_update_virq(cpu); 5362 arm_cpu_update_vfiq(cpu); 5363 arm_cpu_update_vserr(cpu); 5364 if (cpu_isar_feature(aa64_nmi, cpu)) { 5365 arm_cpu_update_vinmi(cpu); 5366 arm_cpu_update_vfnmi(cpu); 5367 } 5368 } 5369 5370 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5371 { 5372 do_hcr_write(env, value, 0); 5373 } 5374 5375 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5376 uint64_t value) 5377 { 5378 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5379 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5380 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5381 } 5382 5383 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5384 uint64_t value) 5385 { 5386 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5387 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5388 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5389 } 5390 5391 static void hcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 5392 { 5393 /* hcr_write will set the RES1 bits on an AArch64-only CPU */ 5394 hcr_write(env, ri, 0); 5395 } 5396 5397 /* 5398 * Return the effective value of HCR_EL2, at the given security state. 5399 * Bits that are not included here: 5400 * RW (read from SCR_EL3.RW as needed) 5401 */ 5402 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5403 { 5404 uint64_t ret = env->cp15.hcr_el2; 5405 5406 assert(space != ARMSS_Root); 5407 5408 if (!arm_is_el2_enabled_secstate(env, space)) { 5409 /* 5410 * "This register has no effect if EL2 is not enabled in the 5411 * current Security state". This is ARMv8.4-SecEL2 speak for 5412 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5413 * 5414 * Prior to that, the language was "In an implementation that 5415 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5416 * as if this field is 0 for all purposes other than a direct 5417 * read or write access of HCR_EL2". With lots of enumeration 5418 * on a per-field basis. In current QEMU, this is condition 5419 * is arm_is_secure_below_el3. 5420 * 5421 * Since the v8.4 language applies to the entire register, and 5422 * appears to be backward compatible, use that. 5423 */ 5424 return 0; 5425 } 5426 5427 /* 5428 * For a cpu that supports both aarch64 and aarch32, we can set bits 5429 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5430 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5431 */ 5432 if (!arm_el_is_aa64(env, 2)) { 5433 uint64_t aa32_valid; 5434 5435 /* 5436 * These bits are up-to-date as of ARMv8.6. 5437 * For HCR, it's easiest to list just the 2 bits that are invalid. 5438 * For HCR2, list those that are valid. 5439 */ 5440 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5441 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5442 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5443 ret &= aa32_valid; 5444 } 5445 5446 if (ret & HCR_TGE) { 5447 /* These bits are up-to-date as of ARMv8.6. */ 5448 if (ret & HCR_E2H) { 5449 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5450 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5451 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5452 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5453 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5454 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5455 } else { 5456 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5457 } 5458 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5459 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5460 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5461 HCR_TLOR); 5462 } 5463 5464 return ret; 5465 } 5466 5467 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5468 { 5469 if (arm_feature(env, ARM_FEATURE_M)) { 5470 return 0; 5471 } 5472 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5473 } 5474 5475 /* 5476 * Corresponds to ARM pseudocode function ELIsInHost(). 5477 */ 5478 bool el_is_in_host(CPUARMState *env, int el) 5479 { 5480 uint64_t mask; 5481 5482 /* 5483 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5484 * Perform the simplest bit tests first, and validate EL2 afterward. 5485 */ 5486 if (el & 1) { 5487 return false; /* EL1 or EL3 */ 5488 } 5489 5490 /* 5491 * Note that hcr_write() checks isar_feature_aa64_vh(), 5492 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5493 */ 5494 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5495 if ((env->cp15.hcr_el2 & mask) != mask) { 5496 return false; 5497 } 5498 5499 /* TGE and/or E2H set: double check those bits are currently legal. */ 5500 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5501 } 5502 5503 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5504 uint64_t value) 5505 { 5506 ARMCPU *cpu = env_archcpu(env); 5507 uint64_t valid_mask = 0; 5508 5509 /* FEAT_MOPS adds MSCEn and MCE2 */ 5510 if (cpu_isar_feature(aa64_mops, cpu)) { 5511 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5512 } 5513 5514 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5515 if (cpu_isar_feature(aa64_nmi, cpu)) { 5516 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5517 } 5518 /* FEAT_CMOW adds CMOW */ 5519 if (cpu_isar_feature(aa64_cmow, cpu)) { 5520 valid_mask |= HCRX_CMOW; 5521 } 5522 /* FEAT_XS adds FGTnXS, FnXS */ 5523 if (cpu_isar_feature(aa64_xs, cpu)) { 5524 valid_mask |= HCRX_FGTNXS | HCRX_FNXS; 5525 } 5526 5527 /* Clear RES0 bits. */ 5528 env->cp15.hcrx_el2 = value & valid_mask; 5529 5530 /* 5531 * Updates to VINMI and VFNMI require us to update the status of 5532 * virtual NMI, which are the logical OR of these bits 5533 * and the state of the input lines from the GIC. (This requires 5534 * that we have the BQL, which is done by marking the 5535 * reginfo structs as ARM_CP_IO.) 5536 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5537 * possible for it to be taken immediately, because VINMI and 5538 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5539 * can only be written at EL2. 5540 */ 5541 if (cpu_isar_feature(aa64_nmi, cpu)) { 5542 g_assert(bql_locked()); 5543 arm_cpu_update_vinmi(cpu); 5544 arm_cpu_update_vfnmi(cpu); 5545 } 5546 } 5547 5548 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5549 bool isread) 5550 { 5551 if (arm_current_el(env) == 2 5552 && arm_feature(env, ARM_FEATURE_EL3) 5553 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5554 return CP_ACCESS_TRAP_EL3; 5555 } 5556 return CP_ACCESS_OK; 5557 } 5558 5559 static const ARMCPRegInfo hcrx_el2_reginfo = { 5560 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5561 .type = ARM_CP_IO, 5562 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5563 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5564 .nv2_redirect_offset = 0xa0, 5565 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5566 }; 5567 5568 /* Return the effective value of HCRX_EL2. */ 5569 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5570 { 5571 /* 5572 * The bits in this register behave as 0 for all purposes other than 5573 * direct reads of the register if SCR_EL3.HXEn is 0. 5574 * If EL2 is not enabled in the current security state, then the 5575 * bit may behave as if 0, or as if 1, depending on the bit. 5576 * For the moment, we treat the EL2-disabled case as taking 5577 * priority over the HXEn-disabled case. This is true for the only 5578 * bit for a feature which we implement where the answer is different 5579 * for the two cases (MSCEn for FEAT_MOPS). 5580 * This may need to be revisited for future bits. 5581 */ 5582 if (!arm_is_el2_enabled(env)) { 5583 uint64_t hcrx = 0; 5584 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5585 /* MSCEn behaves as 1 if EL2 is not enabled */ 5586 hcrx |= HCRX_MSCEN; 5587 } 5588 return hcrx; 5589 } 5590 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5591 return 0; 5592 } 5593 return env->cp15.hcrx_el2; 5594 } 5595 5596 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5597 uint64_t value) 5598 { 5599 /* 5600 * For A-profile AArch32 EL3, if NSACR.CP10 5601 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5602 */ 5603 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5604 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5605 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5606 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5607 } 5608 env->cp15.cptr_el[2] = value; 5609 } 5610 5611 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5612 { 5613 /* 5614 * For A-profile AArch32 EL3, if NSACR.CP10 5615 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5616 */ 5617 uint64_t value = env->cp15.cptr_el[2]; 5618 5619 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5620 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5621 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5622 } 5623 return value; 5624 } 5625 5626 static const ARMCPRegInfo el2_cp_reginfo[] = { 5627 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5628 .type = ARM_CP_IO, 5629 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5630 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5631 .nv2_redirect_offset = 0x78, 5632 .resetfn = hcr_reset, 5633 .writefn = hcr_write, .raw_writefn = raw_write }, 5634 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5635 .type = ARM_CP_ALIAS | ARM_CP_IO, 5636 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5637 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5638 .writefn = hcr_writelow }, 5639 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5640 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5641 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5642 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5643 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5644 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5645 .access = PL2_RW, 5646 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5647 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5648 .type = ARM_CP_NV2_REDIRECT, 5649 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5650 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5651 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5652 .type = ARM_CP_NV2_REDIRECT, 5653 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5654 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5655 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5656 .type = ARM_CP_ALIAS, 5657 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5658 .access = PL2_RW, 5659 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5660 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5661 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5662 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5663 .access = PL2_RW, 5664 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5665 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5666 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5667 .access = PL2_RW, .writefn = vbar_write, 5668 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5669 .resetvalue = 0 }, 5670 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5671 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5672 .access = PL3_RW, .type = ARM_CP_ALIAS, 5673 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5674 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5676 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5677 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5678 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5679 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5680 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5681 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5682 .resetvalue = 0 }, 5683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5684 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5685 .access = PL2_RW, .type = ARM_CP_ALIAS, 5686 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5687 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5688 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5689 .access = PL2_RW, .type = ARM_CP_CONST, 5690 .resetvalue = 0 }, 5691 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5692 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5693 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5694 .access = PL2_RW, .type = ARM_CP_CONST, 5695 .resetvalue = 0 }, 5696 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5697 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5698 .access = PL2_RW, .type = ARM_CP_CONST, 5699 .resetvalue = 0 }, 5700 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5701 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5702 .access = PL2_RW, .type = ARM_CP_CONST, 5703 .resetvalue = 0 }, 5704 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5705 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5706 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5707 .raw_writefn = raw_write, 5708 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5709 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5710 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5711 .type = ARM_CP_ALIAS, 5712 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5713 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5714 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5716 .access = PL2_RW, 5717 .nv2_redirect_offset = 0x40, 5718 /* no .writefn needed as this can't cause an ASID change */ 5719 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5720 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5721 .cp = 15, .opc1 = 6, .crm = 2, 5722 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5723 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5724 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5725 .writefn = vttbr_write, .raw_writefn = raw_write }, 5726 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5728 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5729 .nv2_redirect_offset = 0x20, 5730 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5731 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5732 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5733 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5734 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5735 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5736 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5737 .access = PL2_RW, .resetvalue = 0, 5738 .nv2_redirect_offset = 0x90, 5739 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5740 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5741 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5742 .access = PL2_RW, .resetvalue = 0, 5743 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5744 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5745 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5746 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5747 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5748 #ifndef CONFIG_USER_ONLY 5749 /* 5750 * Unlike the other EL2-related AT operations, these must 5751 * UNDEF from EL3 if EL2 is not implemented, which is why we 5752 * define them here rather than with the rest of the AT ops. 5753 */ 5754 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5756 .access = PL2_W, .accessfn = at_s1e2_access, 5757 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5758 .writefn = ats_write64 }, 5759 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5760 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5761 .access = PL2_W, .accessfn = at_s1e2_access, 5762 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5763 .writefn = ats_write64 }, 5764 /* 5765 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5766 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5767 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5768 * to behave as if SCR.NS was 1. 5769 */ 5770 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5771 .access = PL2_W, 5772 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5773 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5774 .access = PL2_W, 5775 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5776 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5777 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5778 /* 5779 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5780 * reset values as IMPDEF. We choose to reset to 3 to comply with 5781 * both ARMv7 and ARMv8. 5782 */ 5783 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5784 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5785 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5786 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5787 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5788 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5789 .writefn = gt_cntvoff_write, 5790 .nv2_redirect_offset = 0x60, 5791 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5792 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5793 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5794 .writefn = gt_cntvoff_write, 5795 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5796 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5798 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5799 .type = ARM_CP_IO, .access = PL2_RW, 5800 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5801 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5803 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5804 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5805 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5806 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5807 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5808 .resetfn = gt_hyp_timer_reset, 5809 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5810 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5811 .type = ARM_CP_IO, 5812 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5813 .access = PL2_RW, 5814 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5815 .resetvalue = 0, 5816 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5817 #endif 5818 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5819 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5820 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5821 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5822 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5823 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5824 .access = PL2_RW, 5825 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5826 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5827 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5828 .access = PL2_RW, 5829 .nv2_redirect_offset = 0x80, 5830 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5831 }; 5832 5833 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5834 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5835 .type = ARM_CP_ALIAS | ARM_CP_IO, 5836 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5837 .access = PL2_RW, 5838 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5839 .writefn = hcr_writehigh }, 5840 }; 5841 5842 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5843 bool isread) 5844 { 5845 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5846 return CP_ACCESS_OK; 5847 } 5848 return CP_ACCESS_UNDEFINED; 5849 } 5850 5851 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5852 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5853 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5854 .access = PL2_RW, .accessfn = sel2_access, 5855 .nv2_redirect_offset = 0x30, 5856 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5857 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5858 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5859 .access = PL2_RW, .accessfn = sel2_access, 5860 .nv2_redirect_offset = 0x48, 5861 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5862 #ifndef CONFIG_USER_ONLY 5863 /* Secure EL2 Physical Timer */ 5864 { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5865 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0, 5866 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5867 .accessfn = gt_sel2timer_access, 5868 .readfn = gt_sec_pel2_tval_read, 5869 .writefn = gt_sec_pel2_tval_write, 5870 .resetfn = gt_sec_pel2_timer_reset, 5871 }, 5872 { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5873 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1, 5874 .type = ARM_CP_IO, .access = PL2_RW, 5875 .accessfn = gt_sel2timer_access, 5876 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl), 5877 .resetvalue = 0, 5878 .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write, 5879 }, 5880 { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5881 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2, 5882 .type = ARM_CP_IO, .access = PL2_RW, 5883 .accessfn = gt_sel2timer_access, 5884 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval), 5885 .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write, 5886 }, 5887 /* Secure EL2 Virtual Timer */ 5888 { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0, 5890 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5891 .accessfn = gt_sel2timer_access, 5892 .readfn = gt_sec_vel2_tval_read, 5893 .writefn = gt_sec_vel2_tval_write, 5894 .resetfn = gt_sec_vel2_timer_reset, 5895 }, 5896 { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5897 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1, 5898 .type = ARM_CP_IO, .access = PL2_RW, 5899 .accessfn = gt_sel2timer_access, 5900 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl), 5901 .resetvalue = 0, 5902 .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write, 5903 }, 5904 { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5905 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2, 5906 .type = ARM_CP_IO, .access = PL2_RW, 5907 .accessfn = gt_sel2timer_access, 5908 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval), 5909 .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write, 5910 }, 5911 #endif 5912 }; 5913 5914 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5915 bool isread) 5916 { 5917 /* 5918 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5919 * At Secure EL1 it traps to EL3 or EL2. 5920 */ 5921 if (arm_current_el(env) == 3) { 5922 return CP_ACCESS_OK; 5923 } 5924 if (arm_is_secure_below_el3(env)) { 5925 if (env->cp15.scr_el3 & SCR_EEL2) { 5926 return CP_ACCESS_TRAP_EL2; 5927 } 5928 return CP_ACCESS_TRAP_EL3; 5929 } 5930 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5931 if (isread) { 5932 return CP_ACCESS_OK; 5933 } 5934 return CP_ACCESS_UNDEFINED; 5935 } 5936 5937 static const ARMCPRegInfo el3_cp_reginfo[] = { 5938 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5939 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5940 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5941 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5942 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5943 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5944 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5945 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5946 .writefn = scr_write, .raw_writefn = raw_write }, 5947 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5948 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5949 .access = PL3_RW, .resetvalue = 0, 5950 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5951 { .name = "SDER", 5952 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5953 .access = PL3_RW, .resetvalue = 0, 5954 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5955 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5956 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5957 .writefn = vbar_write, .resetvalue = 0, 5958 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5959 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5960 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5961 .access = PL3_RW, .resetvalue = 0, 5962 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5963 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5964 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5965 .access = PL3_RW, 5966 /* no .writefn needed as this can't cause an ASID change */ 5967 .resetvalue = 0, 5968 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5969 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5970 .type = ARM_CP_ALIAS, 5971 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5972 .access = PL3_RW, 5973 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5974 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5975 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5976 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5977 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5978 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5979 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5980 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5981 .type = ARM_CP_ALIAS, 5982 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5983 .access = PL3_RW, 5984 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5985 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5986 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5987 .access = PL3_RW, .writefn = vbar_write, 5988 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5989 .resetvalue = 0 }, 5990 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5991 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5992 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5993 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5994 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5995 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5996 .access = PL3_RW, .resetvalue = 0, 5997 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5998 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5999 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6000 .access = PL3_RW, .type = ARM_CP_CONST, 6001 .resetvalue = 0 }, 6002 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6003 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6004 .access = PL3_RW, .type = ARM_CP_CONST, 6005 .resetvalue = 0 }, 6006 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6007 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6008 .access = PL3_RW, .type = ARM_CP_CONST, 6009 .resetvalue = 0 }, 6010 }; 6011 6012 #ifndef CONFIG_USER_ONLY 6013 6014 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6015 bool isread) 6016 { 6017 if (arm_current_el(env) == 1) { 6018 /* This must be a FEAT_NV access */ 6019 return CP_ACCESS_OK; 6020 } 6021 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6022 return CP_ACCESS_UNDEFINED; 6023 } 6024 return CP_ACCESS_OK; 6025 } 6026 6027 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6028 bool isread) 6029 { 6030 if (arm_current_el(env) == 1) { 6031 /* This must be a FEAT_NV access with NVx == 101 */ 6032 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6033 return CP_ACCESS_TRAP_EL2; 6034 } 6035 } 6036 return e2h_access(env, ri, isread); 6037 } 6038 6039 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6040 bool isread) 6041 { 6042 if (arm_current_el(env) == 1) { 6043 /* This must be a FEAT_NV access with NVx == 101 */ 6044 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6045 return CP_ACCESS_TRAP_EL2; 6046 } 6047 } 6048 return e2h_access(env, ri, isread); 6049 } 6050 6051 /* Test if system register redirection is to occur in the current state. */ 6052 static bool redirect_for_e2h(CPUARMState *env) 6053 { 6054 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6055 } 6056 6057 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6058 { 6059 CPReadFn *readfn; 6060 6061 if (redirect_for_e2h(env)) { 6062 /* Switch to the saved EL2 version of the register. */ 6063 ri = ri->opaque; 6064 readfn = ri->readfn; 6065 } else { 6066 readfn = ri->orig_readfn; 6067 } 6068 if (readfn == NULL) { 6069 readfn = raw_read; 6070 } 6071 return readfn(env, ri); 6072 } 6073 6074 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6075 uint64_t value) 6076 { 6077 CPWriteFn *writefn; 6078 6079 if (redirect_for_e2h(env)) { 6080 /* Switch to the saved EL2 version of the register. */ 6081 ri = ri->opaque; 6082 writefn = ri->writefn; 6083 } else { 6084 writefn = ri->orig_writefn; 6085 } 6086 if (writefn == NULL) { 6087 writefn = raw_write; 6088 } 6089 writefn(env, ri, value); 6090 } 6091 6092 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6093 { 6094 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6095 return ri->orig_readfn(env, ri->opaque); 6096 } 6097 6098 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6099 uint64_t value) 6100 { 6101 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6102 return ri->orig_writefn(env, ri->opaque, value); 6103 } 6104 6105 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6106 const ARMCPRegInfo *ri, 6107 bool isread) 6108 { 6109 if (arm_current_el(env) == 1) { 6110 /* 6111 * This must be a FEAT_NV access (will either trap or redirect 6112 * to memory). None of the registers with _EL12 aliases want to 6113 * apply their trap controls for this kind of access, so don't 6114 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6115 */ 6116 return CP_ACCESS_OK; 6117 } 6118 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6119 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6120 return CP_ACCESS_UNDEFINED; 6121 } 6122 if (ri->orig_accessfn) { 6123 return ri->orig_accessfn(env, ri->opaque, isread); 6124 } 6125 return CP_ACCESS_OK; 6126 } 6127 6128 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6129 { 6130 struct E2HAlias { 6131 uint32_t src_key, dst_key, new_key; 6132 const char *src_name, *dst_name, *new_name; 6133 bool (*feature)(const ARMISARegisters *id); 6134 }; 6135 6136 #define K(op0, op1, crn, crm, op2) \ 6137 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6138 6139 static const struct E2HAlias aliases[] = { 6140 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6141 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6142 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6143 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6144 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6145 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6146 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6147 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6148 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6149 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6150 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6151 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6152 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6153 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6154 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6155 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6156 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6157 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6158 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6159 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6160 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6161 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6162 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6163 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6164 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6165 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6166 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6167 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6168 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6169 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6170 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6171 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6172 6173 /* 6174 * Note that redirection of ZCR is mentioned in the description 6175 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6176 * not in the summary table. 6177 */ 6178 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6179 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6180 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6181 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6182 6183 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6184 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6185 6186 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6187 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6188 isar_feature_aa64_scxtnum }, 6189 6190 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6191 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6192 }; 6193 #undef K 6194 6195 size_t i; 6196 6197 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6198 const struct E2HAlias *a = &aliases[i]; 6199 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6200 bool ok; 6201 6202 if (a->feature && !a->feature(&cpu->isar)) { 6203 continue; 6204 } 6205 6206 src_reg = g_hash_table_lookup(cpu->cp_regs, 6207 (gpointer)(uintptr_t)a->src_key); 6208 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6209 (gpointer)(uintptr_t)a->dst_key); 6210 g_assert(src_reg != NULL); 6211 g_assert(dst_reg != NULL); 6212 6213 /* Cross-compare names to detect typos in the keys. */ 6214 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6215 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6216 6217 /* None of the core system registers use opaque; we will. */ 6218 g_assert(src_reg->opaque == NULL); 6219 6220 /* Create alias before redirection so we dup the right data. */ 6221 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6222 6223 new_reg->name = a->new_name; 6224 new_reg->type |= ARM_CP_ALIAS; 6225 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6226 new_reg->access &= PL2_RW | PL3_RW; 6227 /* The new_reg op fields are as per new_key, not the target reg */ 6228 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6229 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6230 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6231 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6232 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6233 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6234 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6235 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6236 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6237 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6238 new_reg->opaque = src_reg; 6239 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6240 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6241 new_reg->orig_accessfn = src_reg->accessfn; 6242 if (!new_reg->raw_readfn) { 6243 new_reg->raw_readfn = raw_read; 6244 } 6245 if (!new_reg->raw_writefn) { 6246 new_reg->raw_writefn = raw_write; 6247 } 6248 new_reg->readfn = el2_e2h_e12_read; 6249 new_reg->writefn = el2_e2h_e12_write; 6250 new_reg->accessfn = el2_e2h_e12_access; 6251 6252 /* 6253 * If the _EL1 register is redirected to memory by FEAT_NV2, 6254 * then it shares the offset with the _EL12 register, 6255 * and which one is redirected depends on HCR_EL2.NV1. 6256 */ 6257 if (new_reg->nv2_redirect_offset) { 6258 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6259 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6260 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6261 } 6262 6263 ok = g_hash_table_insert(cpu->cp_regs, 6264 (gpointer)(uintptr_t)a->new_key, new_reg); 6265 g_assert(ok); 6266 6267 src_reg->opaque = dst_reg; 6268 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6269 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6270 if (!src_reg->raw_readfn) { 6271 src_reg->raw_readfn = raw_read; 6272 } 6273 if (!src_reg->raw_writefn) { 6274 src_reg->raw_writefn = raw_write; 6275 } 6276 src_reg->readfn = el2_e2h_read; 6277 src_reg->writefn = el2_e2h_write; 6278 } 6279 } 6280 #endif 6281 6282 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6283 bool isread) 6284 { 6285 int cur_el = arm_current_el(env); 6286 6287 if (cur_el < 2) { 6288 uint64_t hcr = arm_hcr_el2_eff(env); 6289 6290 if (cur_el == 0) { 6291 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6292 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6293 return CP_ACCESS_TRAP_EL2; 6294 } 6295 } else { 6296 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6297 return CP_ACCESS_TRAP_EL1; 6298 } 6299 if (hcr & HCR_TID2) { 6300 return CP_ACCESS_TRAP_EL2; 6301 } 6302 } 6303 } else if (hcr & HCR_TID2) { 6304 return CP_ACCESS_TRAP_EL2; 6305 } 6306 } 6307 6308 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6309 return CP_ACCESS_TRAP_EL2; 6310 } 6311 6312 return CP_ACCESS_OK; 6313 } 6314 6315 /* 6316 * Check for traps to RAS registers, which are controlled 6317 * by HCR_EL2.TERR and SCR_EL3.TERR. 6318 */ 6319 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6320 bool isread) 6321 { 6322 int el = arm_current_el(env); 6323 6324 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6325 return CP_ACCESS_TRAP_EL2; 6326 } 6327 if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) { 6328 return CP_ACCESS_TRAP_EL3; 6329 } 6330 return CP_ACCESS_OK; 6331 } 6332 6333 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6334 { 6335 int el = arm_current_el(env); 6336 6337 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6338 return env->cp15.vdisr_el2; 6339 } 6340 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6341 return 0; /* RAZ/WI */ 6342 } 6343 return env->cp15.disr_el1; 6344 } 6345 6346 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6347 { 6348 int el = arm_current_el(env); 6349 6350 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6351 env->cp15.vdisr_el2 = val; 6352 return; 6353 } 6354 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6355 return; /* RAZ/WI */ 6356 } 6357 env->cp15.disr_el1 = val; 6358 } 6359 6360 /* 6361 * Minimal RAS implementation with no Error Records. 6362 * Which means that all of the Error Record registers: 6363 * ERXADDR_EL1 6364 * ERXCTLR_EL1 6365 * ERXFR_EL1 6366 * ERXMISC0_EL1 6367 * ERXMISC1_EL1 6368 * ERXMISC2_EL1 6369 * ERXMISC3_EL1 6370 * ERXPFGCDN_EL1 (RASv1p1) 6371 * ERXPFGCTL_EL1 (RASv1p1) 6372 * ERXPFGF_EL1 (RASv1p1) 6373 * ERXSTATUS_EL1 6374 * and 6375 * ERRSELR_EL1 6376 * may generate UNDEFINED, which is the effect we get by not 6377 * listing them at all. 6378 * 6379 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6380 * is higher priority than FGT-to-EL2 so we do not need to list them 6381 * in order to check for an FGT. 6382 */ 6383 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6384 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6385 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6386 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6387 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6388 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6390 .access = PL1_R, .accessfn = access_terr, 6391 .fgt = FGT_ERRIDR_EL1, 6392 .type = ARM_CP_CONST, .resetvalue = 0 }, 6393 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6394 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6395 .nv2_redirect_offset = 0x500, 6396 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6397 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6398 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6399 .nv2_redirect_offset = 0x508, 6400 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6401 }; 6402 6403 /* 6404 * Return the exception level to which exceptions should be taken 6405 * via SVEAccessTrap. This excludes the check for whether the exception 6406 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6407 * be found by testing 0 < fp_exception_el < sve_exception_el. 6408 * 6409 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6410 * pseudocode does *not* separate out the FP trap checks, but has them 6411 * all in one function. 6412 */ 6413 int sve_exception_el(CPUARMState *env, int el) 6414 { 6415 #ifndef CONFIG_USER_ONLY 6416 if (el <= 1 && !el_is_in_host(env, el)) { 6417 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6418 case 1: 6419 if (el != 0) { 6420 break; 6421 } 6422 /* fall through */ 6423 case 0: 6424 case 2: 6425 return 1; 6426 } 6427 } 6428 6429 if (el <= 2 && arm_is_el2_enabled(env)) { 6430 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6431 if (env->cp15.hcr_el2 & HCR_E2H) { 6432 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6433 case 1: 6434 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6435 break; 6436 } 6437 /* fall through */ 6438 case 0: 6439 case 2: 6440 return 2; 6441 } 6442 } else { 6443 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6444 return 2; 6445 } 6446 } 6447 } 6448 6449 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6450 if (arm_feature(env, ARM_FEATURE_EL3) 6451 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6452 return 3; 6453 } 6454 #endif 6455 return 0; 6456 } 6457 6458 /* 6459 * Return the exception level to which exceptions should be taken for SME. 6460 * C.f. the ARM pseudocode function CheckSMEAccess. 6461 */ 6462 int sme_exception_el(CPUARMState *env, int el) 6463 { 6464 #ifndef CONFIG_USER_ONLY 6465 if (el <= 1 && !el_is_in_host(env, el)) { 6466 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6467 case 1: 6468 if (el != 0) { 6469 break; 6470 } 6471 /* fall through */ 6472 case 0: 6473 case 2: 6474 return 1; 6475 } 6476 } 6477 6478 if (el <= 2 && arm_is_el2_enabled(env)) { 6479 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6480 if (env->cp15.hcr_el2 & HCR_E2H) { 6481 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6482 case 1: 6483 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6484 break; 6485 } 6486 /* fall through */ 6487 case 0: 6488 case 2: 6489 return 2; 6490 } 6491 } else { 6492 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6493 return 2; 6494 } 6495 } 6496 } 6497 6498 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6499 if (arm_feature(env, ARM_FEATURE_EL3) 6500 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6501 return 3; 6502 } 6503 #endif 6504 return 0; 6505 } 6506 6507 /* 6508 * Given that SVE is enabled, return the vector length for EL. 6509 */ 6510 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6511 { 6512 ARMCPU *cpu = env_archcpu(env); 6513 uint64_t *cr = env->vfp.zcr_el; 6514 uint32_t map = cpu->sve_vq.map; 6515 uint32_t len = ARM_MAX_VQ - 1; 6516 6517 if (sm) { 6518 cr = env->vfp.smcr_el; 6519 map = cpu->sme_vq.map; 6520 } 6521 6522 if (el <= 1 && !el_is_in_host(env, el)) { 6523 len = MIN(len, 0xf & (uint32_t)cr[1]); 6524 } 6525 if (el <= 2 && arm_is_el2_enabled(env)) { 6526 len = MIN(len, 0xf & (uint32_t)cr[2]); 6527 } 6528 if (arm_feature(env, ARM_FEATURE_EL3)) { 6529 len = MIN(len, 0xf & (uint32_t)cr[3]); 6530 } 6531 6532 map &= MAKE_64BIT_MASK(0, len + 1); 6533 if (map != 0) { 6534 return 31 - clz32(map); 6535 } 6536 6537 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6538 assert(sm); 6539 return ctz32(cpu->sme_vq.map); 6540 } 6541 6542 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6543 { 6544 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6545 } 6546 6547 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6548 uint64_t value) 6549 { 6550 int cur_el = arm_current_el(env); 6551 int old_len = sve_vqm1_for_el(env, cur_el); 6552 int new_len; 6553 6554 /* Bits other than [3:0] are RAZ/WI. */ 6555 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6556 raw_write(env, ri, value & 0xf); 6557 6558 /* 6559 * Because we arrived here, we know both FP and SVE are enabled; 6560 * otherwise we would have trapped access to the ZCR_ELn register. 6561 */ 6562 new_len = sve_vqm1_for_el(env, cur_el); 6563 if (new_len < old_len) { 6564 aarch64_sve_narrow_vq(env, new_len + 1); 6565 } 6566 } 6567 6568 static const ARMCPRegInfo zcr_reginfo[] = { 6569 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6570 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6571 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6572 .access = PL1_RW, .type = ARM_CP_SVE, 6573 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6574 .writefn = zcr_write, .raw_writefn = raw_write }, 6575 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6576 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6577 .access = PL2_RW, .type = ARM_CP_SVE, 6578 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6579 .writefn = zcr_write, .raw_writefn = raw_write }, 6580 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6581 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6582 .access = PL3_RW, .type = ARM_CP_SVE, 6583 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6584 .writefn = zcr_write, .raw_writefn = raw_write }, 6585 }; 6586 6587 #ifdef TARGET_AARCH64 6588 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6589 bool isread) 6590 { 6591 int el = arm_current_el(env); 6592 6593 if (el == 0) { 6594 uint64_t sctlr = arm_sctlr(env, el); 6595 if (!(sctlr & SCTLR_EnTP2)) { 6596 return CP_ACCESS_TRAP_EL1; 6597 } 6598 } 6599 /* TODO: FEAT_FGT */ 6600 if (el < 3 6601 && arm_feature(env, ARM_FEATURE_EL3) 6602 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6603 return CP_ACCESS_TRAP_EL3; 6604 } 6605 return CP_ACCESS_OK; 6606 } 6607 6608 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6609 bool isread) 6610 { 6611 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6612 if (arm_current_el(env) == 2 6613 && arm_feature(env, ARM_FEATURE_EL3) 6614 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6615 return CP_ACCESS_TRAP_EL3; 6616 } 6617 return CP_ACCESS_OK; 6618 } 6619 6620 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6621 bool isread) 6622 { 6623 if (arm_current_el(env) < 3 6624 && arm_feature(env, ARM_FEATURE_EL3) 6625 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6626 return CP_ACCESS_TRAP_EL3; 6627 } 6628 return CP_ACCESS_OK; 6629 } 6630 6631 /* ResetSVEState */ 6632 static void arm_reset_sve_state(CPUARMState *env) 6633 { 6634 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6635 /* Recall that FFR is stored as pregs[16]. */ 6636 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6637 vfp_set_fpsr(env, 0x0800009f); 6638 } 6639 6640 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6641 { 6642 uint64_t change = (env->svcr ^ new) & mask; 6643 6644 if (change == 0) { 6645 return; 6646 } 6647 env->svcr ^= change; 6648 6649 if (change & R_SVCR_SM_MASK) { 6650 arm_reset_sve_state(env); 6651 } 6652 6653 /* 6654 * ResetSMEState. 6655 * 6656 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6657 * on enable: while disabled, the storage is inaccessible and the 6658 * value does not matter. We're not saving the storage in vmstate 6659 * when disabled either. 6660 */ 6661 if (change & new & R_SVCR_ZA_MASK) { 6662 memset(env->zarray, 0, sizeof(env->zarray)); 6663 } 6664 6665 if (tcg_enabled()) { 6666 arm_rebuild_hflags(env); 6667 } 6668 } 6669 6670 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6671 uint64_t value) 6672 { 6673 aarch64_set_svcr(env, value, -1); 6674 } 6675 6676 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6677 uint64_t value) 6678 { 6679 int cur_el = arm_current_el(env); 6680 int old_len = sve_vqm1_for_el(env, cur_el); 6681 int new_len; 6682 6683 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6684 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6685 raw_write(env, ri, value); 6686 6687 /* 6688 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6689 * when SVL is widened (old values kept, or zeros). Choose to keep the 6690 * current values for simplicity. But for QEMU internals, we must still 6691 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6692 * above aarch64_sve_narrow_vq. 6693 */ 6694 new_len = sve_vqm1_for_el(env, cur_el); 6695 if (new_len < old_len) { 6696 aarch64_sve_narrow_vq(env, new_len + 1); 6697 } 6698 } 6699 6700 static const ARMCPRegInfo sme_reginfo[] = { 6701 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6702 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6703 .access = PL0_RW, .accessfn = access_tpidr2, 6704 .fgt = FGT_NTPIDR2_EL0, 6705 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6706 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6707 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6708 .access = PL0_RW, .type = ARM_CP_SME, 6709 .fieldoffset = offsetof(CPUARMState, svcr), 6710 .writefn = svcr_write, .raw_writefn = raw_write }, 6711 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6713 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6714 .access = PL1_RW, .type = ARM_CP_SME, 6715 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6716 .writefn = smcr_write, .raw_writefn = raw_write }, 6717 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6718 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6719 .access = PL2_RW, .type = ARM_CP_SME, 6720 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6721 .writefn = smcr_write, .raw_writefn = raw_write }, 6722 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6724 .access = PL3_RW, .type = ARM_CP_SME, 6725 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6726 .writefn = smcr_write, .raw_writefn = raw_write }, 6727 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6728 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6729 .access = PL1_R, .accessfn = access_aa64_tid1, 6730 /* 6731 * IMPLEMENTOR = 0 (software) 6732 * REVISION = 0 (implementation defined) 6733 * SMPS = 0 (no streaming execution priority in QEMU) 6734 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6735 */ 6736 .type = ARM_CP_CONST, .resetvalue = 0, }, 6737 /* 6738 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6739 */ 6740 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6741 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6742 .access = PL1_RW, .accessfn = access_smpri, 6743 .fgt = FGT_NSMPRI_EL1, 6744 .type = ARM_CP_CONST, .resetvalue = 0 }, 6745 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6746 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6747 .nv2_redirect_offset = 0x1f8, 6748 .access = PL2_RW, .accessfn = access_smprimap, 6749 .type = ARM_CP_CONST, .resetvalue = 0 }, 6750 }; 6751 6752 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6753 uint64_t value) 6754 { 6755 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6756 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6757 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6758 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6759 6760 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6761 } 6762 6763 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6764 { 6765 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6766 env_archcpu(env)->reset_l0gptsz); 6767 } 6768 6769 static const ARMCPRegInfo rme_reginfo[] = { 6770 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6772 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6773 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6774 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6776 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6777 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6778 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6779 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6780 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6782 .access = PL3_W, .type = ARM_CP_NOP }, 6783 }; 6784 6785 static const ARMCPRegInfo rme_mte_reginfo[] = { 6786 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6788 .access = PL3_W, .type = ARM_CP_NOP }, 6789 }; 6790 6791 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6792 uint64_t value) 6793 { 6794 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6795 } 6796 6797 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6798 { 6799 return env->pstate & PSTATE_ALLINT; 6800 } 6801 6802 static CPAccessResult aa64_allint_access(CPUARMState *env, 6803 const ARMCPRegInfo *ri, bool isread) 6804 { 6805 if (!isread && arm_current_el(env) == 1 && 6806 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6807 return CP_ACCESS_TRAP_EL2; 6808 } 6809 return CP_ACCESS_OK; 6810 } 6811 6812 static const ARMCPRegInfo nmi_reginfo[] = { 6813 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6815 .type = ARM_CP_NO_RAW, 6816 .access = PL1_RW, .accessfn = aa64_allint_access, 6817 .fieldoffset = offsetof(CPUARMState, pstate), 6818 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6819 .resetfn = arm_cp_reset_ignore }, 6820 }; 6821 #endif /* TARGET_AARCH64 */ 6822 6823 static void define_pmu_regs(ARMCPU *cpu) 6824 { 6825 /* 6826 * v7 performance monitor control register: same implementor 6827 * field as main ID register, and we implement four counters in 6828 * addition to the cycle count register. 6829 */ 6830 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6831 ARMCPRegInfo pmcr = { 6832 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6833 .access = PL0_RW, 6834 .fgt = FGT_PMCR_EL0, 6835 .type = ARM_CP_IO | ARM_CP_ALIAS, 6836 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6837 .accessfn = pmreg_access, 6838 .readfn = pmcr_read, .raw_readfn = raw_read, 6839 .writefn = pmcr_write, .raw_writefn = raw_write, 6840 }; 6841 ARMCPRegInfo pmcr64 = { 6842 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6844 .access = PL0_RW, .accessfn = pmreg_access, 6845 .fgt = FGT_PMCR_EL0, 6846 .type = ARM_CP_IO, 6847 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6848 .resetvalue = cpu->isar.reset_pmcr_el0, 6849 .readfn = pmcr_read, .raw_readfn = raw_read, 6850 .writefn = pmcr_write, .raw_writefn = raw_write, 6851 }; 6852 6853 define_one_arm_cp_reg(cpu, &pmcr); 6854 define_one_arm_cp_reg(cpu, &pmcr64); 6855 for (i = 0; i < pmcrn; i++) { 6856 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6857 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6858 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6859 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6860 ARMCPRegInfo pmev_regs[] = { 6861 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6862 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6863 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6864 .fgt = FGT_PMEVCNTRN_EL0, 6865 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6866 .accessfn = pmreg_access_xevcntr }, 6867 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6868 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6869 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6870 .type = ARM_CP_IO, 6871 .fgt = FGT_PMEVCNTRN_EL0, 6872 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6873 .raw_readfn = pmevcntr_rawread, 6874 .raw_writefn = pmevcntr_rawwrite }, 6875 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6876 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6877 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6878 .fgt = FGT_PMEVTYPERN_EL0, 6879 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6880 .accessfn = pmreg_access }, 6881 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6883 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6884 .fgt = FGT_PMEVTYPERN_EL0, 6885 .type = ARM_CP_IO, 6886 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6887 .raw_writefn = pmevtyper_rawwrite }, 6888 }; 6889 define_arm_cp_regs(cpu, pmev_regs); 6890 g_free(pmevcntr_name); 6891 g_free(pmevcntr_el0_name); 6892 g_free(pmevtyper_name); 6893 g_free(pmevtyper_el0_name); 6894 } 6895 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6896 ARMCPRegInfo v81_pmu_regs[] = { 6897 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6898 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6899 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6900 .fgt = FGT_PMCEIDN_EL0, 6901 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6902 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6903 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6904 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6905 .fgt = FGT_PMCEIDN_EL0, 6906 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6907 }; 6908 define_arm_cp_regs(cpu, v81_pmu_regs); 6909 } 6910 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6911 static const ARMCPRegInfo v84_pmmir = { 6912 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6913 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6914 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6915 .fgt = FGT_PMMIR_EL1, 6916 .resetvalue = 0 6917 }; 6918 define_one_arm_cp_reg(cpu, &v84_pmmir); 6919 } 6920 } 6921 6922 #ifndef CONFIG_USER_ONLY 6923 /* 6924 * We don't know until after realize whether there's a GICv3 6925 * attached, and that is what registers the gicv3 sysregs. 6926 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6927 * at runtime. 6928 */ 6929 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6930 { 6931 ARMCPU *cpu = env_archcpu(env); 6932 uint64_t pfr1 = cpu->isar.id_pfr1; 6933 6934 if (env->gicv3state) { 6935 pfr1 |= 1 << 28; 6936 } 6937 return pfr1; 6938 } 6939 6940 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6941 { 6942 ARMCPU *cpu = env_archcpu(env); 6943 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6944 6945 if (env->gicv3state) { 6946 pfr0 |= 1 << 24; 6947 } 6948 return pfr0; 6949 } 6950 #endif 6951 6952 /* 6953 * Shared logic between LORID and the rest of the LOR* registers. 6954 * Secure state exclusion has already been dealt with. 6955 */ 6956 static CPAccessResult access_lor_ns(CPUARMState *env, 6957 const ARMCPRegInfo *ri, bool isread) 6958 { 6959 int el = arm_current_el(env); 6960 6961 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6962 return CP_ACCESS_TRAP_EL2; 6963 } 6964 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6965 return CP_ACCESS_TRAP_EL3; 6966 } 6967 return CP_ACCESS_OK; 6968 } 6969 6970 static CPAccessResult access_lor_other(CPUARMState *env, 6971 const ARMCPRegInfo *ri, bool isread) 6972 { 6973 if (arm_is_secure_below_el3(env)) { 6974 /* UNDEF if SCR_EL3.NS == 0 */ 6975 return CP_ACCESS_UNDEFINED; 6976 } 6977 return access_lor_ns(env, ri, isread); 6978 } 6979 6980 /* 6981 * A trivial implementation of ARMv8.1-LOR leaves all of these 6982 * registers fixed at 0, which indicates that there are zero 6983 * supported Limited Ordering regions. 6984 */ 6985 static const ARMCPRegInfo lor_reginfo[] = { 6986 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6988 .access = PL1_RW, .accessfn = access_lor_other, 6989 .fgt = FGT_LORSA_EL1, 6990 .type = ARM_CP_CONST, .resetvalue = 0 }, 6991 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6993 .access = PL1_RW, .accessfn = access_lor_other, 6994 .fgt = FGT_LOREA_EL1, 6995 .type = ARM_CP_CONST, .resetvalue = 0 }, 6996 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6998 .access = PL1_RW, .accessfn = access_lor_other, 6999 .fgt = FGT_LORN_EL1, 7000 .type = ARM_CP_CONST, .resetvalue = 0 }, 7001 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7003 .access = PL1_RW, .accessfn = access_lor_other, 7004 .fgt = FGT_LORC_EL1, 7005 .type = ARM_CP_CONST, .resetvalue = 0 }, 7006 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7007 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7008 .access = PL1_R, .accessfn = access_lor_ns, 7009 .fgt = FGT_LORID_EL1, 7010 .type = ARM_CP_CONST, .resetvalue = 0 }, 7011 }; 7012 7013 #ifdef TARGET_AARCH64 7014 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7015 bool isread) 7016 { 7017 int el = arm_current_el(env); 7018 7019 if (el < 2 && 7020 arm_is_el2_enabled(env) && 7021 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7022 return CP_ACCESS_TRAP_EL2; 7023 } 7024 if (el < 3 && 7025 arm_feature(env, ARM_FEATURE_EL3) && 7026 !(env->cp15.scr_el3 & SCR_APK)) { 7027 return CP_ACCESS_TRAP_EL3; 7028 } 7029 return CP_ACCESS_OK; 7030 } 7031 7032 static const ARMCPRegInfo pauth_reginfo[] = { 7033 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7035 .access = PL1_RW, .accessfn = access_pauth, 7036 .fgt = FGT_APDAKEY, 7037 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7038 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7040 .access = PL1_RW, .accessfn = access_pauth, 7041 .fgt = FGT_APDAKEY, 7042 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7043 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7045 .access = PL1_RW, .accessfn = access_pauth, 7046 .fgt = FGT_APDBKEY, 7047 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7048 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7050 .access = PL1_RW, .accessfn = access_pauth, 7051 .fgt = FGT_APDBKEY, 7052 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7053 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7055 .access = PL1_RW, .accessfn = access_pauth, 7056 .fgt = FGT_APGAKEY, 7057 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7058 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7060 .access = PL1_RW, .accessfn = access_pauth, 7061 .fgt = FGT_APGAKEY, 7062 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7063 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7065 .access = PL1_RW, .accessfn = access_pauth, 7066 .fgt = FGT_APIAKEY, 7067 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7068 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7069 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7070 .access = PL1_RW, .accessfn = access_pauth, 7071 .fgt = FGT_APIAKEY, 7072 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7073 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7075 .access = PL1_RW, .accessfn = access_pauth, 7076 .fgt = FGT_APIBKEY, 7077 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7078 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7079 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7080 .access = PL1_RW, .accessfn = access_pauth, 7081 .fgt = FGT_APIBKEY, 7082 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7083 }; 7084 7085 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7086 { 7087 Error *err = NULL; 7088 uint64_t ret; 7089 7090 /* Success sets NZCV = 0000. */ 7091 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7092 7093 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7094 /* 7095 * ??? Failed, for unknown reasons in the crypto subsystem. 7096 * The best we can do is log the reason and return the 7097 * timed-out indication to the guest. There is no reason 7098 * we know to expect this failure to be transitory, so the 7099 * guest may well hang retrying the operation. 7100 */ 7101 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7102 ri->name, error_get_pretty(err)); 7103 error_free(err); 7104 7105 env->ZF = 0; /* NZCF = 0100 */ 7106 return 0; 7107 } 7108 return ret; 7109 } 7110 7111 /* We do not support re-seeding, so the two registers operate the same. */ 7112 static const ARMCPRegInfo rndr_reginfo[] = { 7113 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7114 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7115 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7116 .access = PL0_R, .readfn = rndr_readfn }, 7117 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7118 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7119 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7120 .access = PL0_R, .readfn = rndr_readfn }, 7121 }; 7122 7123 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7124 uint64_t value) 7125 { 7126 #ifdef CONFIG_TCG 7127 ARMCPU *cpu = env_archcpu(env); 7128 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7129 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7130 uint64_t vaddr_in = (uint64_t) value; 7131 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7132 void *haddr; 7133 int mem_idx = arm_env_mmu_index(env); 7134 7135 /* This won't be crossing page boundaries */ 7136 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7137 if (haddr) { 7138 #ifndef CONFIG_USER_ONLY 7139 7140 ram_addr_t offset; 7141 MemoryRegion *mr; 7142 7143 /* RCU lock is already being held */ 7144 mr = memory_region_from_host(haddr, &offset); 7145 7146 if (mr) { 7147 memory_region_writeback(mr, offset, dline_size); 7148 } 7149 #endif /*CONFIG_USER_ONLY*/ 7150 } 7151 #else 7152 /* Handled by hardware accelerator. */ 7153 g_assert_not_reached(); 7154 #endif /* CONFIG_TCG */ 7155 } 7156 7157 static const ARMCPRegInfo dcpop_reg[] = { 7158 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7160 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7161 .fgt = FGT_DCCVAP, 7162 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7163 }; 7164 7165 static const ARMCPRegInfo dcpodp_reg[] = { 7166 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7167 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7168 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7169 .fgt = FGT_DCCVADP, 7170 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7171 }; 7172 7173 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7174 bool isread) 7175 { 7176 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7177 return CP_ACCESS_TRAP_EL2; 7178 } 7179 7180 return CP_ACCESS_OK; 7181 } 7182 7183 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7184 bool isread) 7185 { 7186 int el = arm_current_el(env); 7187 if (el < 2 && arm_is_el2_enabled(env)) { 7188 uint64_t hcr = arm_hcr_el2_eff(env); 7189 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7190 return CP_ACCESS_TRAP_EL2; 7191 } 7192 } 7193 if (el < 3 && 7194 arm_feature(env, ARM_FEATURE_EL3) && 7195 !(env->cp15.scr_el3 & SCR_ATA)) { 7196 return CP_ACCESS_TRAP_EL3; 7197 } 7198 return CP_ACCESS_OK; 7199 } 7200 7201 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7202 bool isread) 7203 { 7204 CPAccessResult nv1 = access_nv1(env, ri, isread); 7205 7206 if (nv1 != CP_ACCESS_OK) { 7207 return nv1; 7208 } 7209 return access_mte(env, ri, isread); 7210 } 7211 7212 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7213 bool isread) 7214 { 7215 /* 7216 * TFSR_EL2: similar to generic access_mte(), but we need to 7217 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7218 * if NV2 is enabled then we will redirect this to TFSR_EL1 7219 * after doing the HCR and SCR ATA traps; otherwise this will 7220 * be a trap to EL2 and the HCR/SCR traps do not apply. 7221 */ 7222 int el = arm_current_el(env); 7223 7224 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7225 return CP_ACCESS_OK; 7226 } 7227 if (el < 2 && arm_is_el2_enabled(env)) { 7228 uint64_t hcr = arm_hcr_el2_eff(env); 7229 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7230 return CP_ACCESS_TRAP_EL2; 7231 } 7232 } 7233 if (el < 3 && 7234 arm_feature(env, ARM_FEATURE_EL3) && 7235 !(env->cp15.scr_el3 & SCR_ATA)) { 7236 return CP_ACCESS_TRAP_EL3; 7237 } 7238 return CP_ACCESS_OK; 7239 } 7240 7241 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7242 { 7243 return env->pstate & PSTATE_TCO; 7244 } 7245 7246 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7247 { 7248 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7249 } 7250 7251 static const ARMCPRegInfo mte_reginfo[] = { 7252 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7253 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7254 .access = PL1_RW, .accessfn = access_mte, 7255 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7256 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7258 .access = PL1_RW, .accessfn = access_tfsr_el1, 7259 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7260 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7261 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7262 .type = ARM_CP_NV2_REDIRECT, 7263 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7264 .access = PL2_RW, .accessfn = access_tfsr_el2, 7265 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7266 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7268 .access = PL3_RW, 7269 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7270 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7271 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7272 .access = PL1_RW, .accessfn = access_mte, 7273 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7274 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7275 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7276 .access = PL1_RW, .accessfn = access_mte, 7277 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7278 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7280 .type = ARM_CP_NO_RAW, 7281 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7282 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7284 .type = ARM_CP_NOP, .access = PL1_W, 7285 .fgt = FGT_DCIVAC, 7286 .accessfn = aa64_cacheop_poc_access }, 7287 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7289 .fgt = FGT_DCISW, 7290 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7291 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7293 .type = ARM_CP_NOP, .access = PL1_W, 7294 .fgt = FGT_DCIVAC, 7295 .accessfn = aa64_cacheop_poc_access }, 7296 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7298 .fgt = FGT_DCISW, 7299 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7300 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7302 .fgt = FGT_DCCSW, 7303 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7304 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7306 .fgt = FGT_DCCSW, 7307 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7308 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7310 .fgt = FGT_DCCISW, 7311 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7312 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7314 .fgt = FGT_DCCISW, 7315 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7316 }; 7317 7318 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7319 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7320 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7321 .type = ARM_CP_CONST, .access = PL0_RW, }, 7322 }; 7323 7324 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7325 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7327 .type = ARM_CP_NOP, .access = PL0_W, 7328 .fgt = FGT_DCCVAC, 7329 .accessfn = aa64_cacheop_poc_access }, 7330 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7332 .type = ARM_CP_NOP, .access = PL0_W, 7333 .fgt = FGT_DCCVAC, 7334 .accessfn = aa64_cacheop_poc_access }, 7335 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7337 .type = ARM_CP_NOP, .access = PL0_W, 7338 .fgt = FGT_DCCVAP, 7339 .accessfn = aa64_cacheop_poc_access }, 7340 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7341 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7342 .type = ARM_CP_NOP, .access = PL0_W, 7343 .fgt = FGT_DCCVAP, 7344 .accessfn = aa64_cacheop_poc_access }, 7345 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7346 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7347 .type = ARM_CP_NOP, .access = PL0_W, 7348 .fgt = FGT_DCCVADP, 7349 .accessfn = aa64_cacheop_poc_access }, 7350 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7351 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7352 .type = ARM_CP_NOP, .access = PL0_W, 7353 .fgt = FGT_DCCVADP, 7354 .accessfn = aa64_cacheop_poc_access }, 7355 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7356 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7357 .type = ARM_CP_NOP, .access = PL0_W, 7358 .fgt = FGT_DCCIVAC, 7359 .accessfn = aa64_cacheop_poc_access }, 7360 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7362 .type = ARM_CP_NOP, .access = PL0_W, 7363 .fgt = FGT_DCCIVAC, 7364 .accessfn = aa64_cacheop_poc_access }, 7365 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7366 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7367 .access = PL0_W, .type = ARM_CP_DC_GVA, 7368 #ifndef CONFIG_USER_ONLY 7369 /* Avoid overhead of an access check that always passes in user-mode */ 7370 .accessfn = aa64_zva_access, 7371 .fgt = FGT_DCZVA, 7372 #endif 7373 }, 7374 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7376 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7377 #ifndef CONFIG_USER_ONLY 7378 /* Avoid overhead of an access check that always passes in user-mode */ 7379 .accessfn = aa64_zva_access, 7380 .fgt = FGT_DCZVA, 7381 #endif 7382 }, 7383 }; 7384 7385 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7386 bool isread) 7387 { 7388 uint64_t hcr = arm_hcr_el2_eff(env); 7389 int el = arm_current_el(env); 7390 7391 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7392 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7393 if (hcr & HCR_TGE) { 7394 return CP_ACCESS_TRAP_EL2; 7395 } 7396 return CP_ACCESS_TRAP_EL1; 7397 } 7398 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7399 return CP_ACCESS_TRAP_EL2; 7400 } 7401 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7402 return CP_ACCESS_TRAP_EL2; 7403 } 7404 if (el < 3 7405 && arm_feature(env, ARM_FEATURE_EL3) 7406 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7407 return CP_ACCESS_TRAP_EL3; 7408 } 7409 return CP_ACCESS_OK; 7410 } 7411 7412 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7413 const ARMCPRegInfo *ri, 7414 bool isread) 7415 { 7416 CPAccessResult nv1 = access_nv1(env, ri, isread); 7417 7418 if (nv1 != CP_ACCESS_OK) { 7419 return nv1; 7420 } 7421 return access_scxtnum(env, ri, isread); 7422 } 7423 7424 static const ARMCPRegInfo scxtnum_reginfo[] = { 7425 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7427 .access = PL0_RW, .accessfn = access_scxtnum, 7428 .fgt = FGT_SCXTNUM_EL0, 7429 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7430 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7432 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7433 .fgt = FGT_SCXTNUM_EL1, 7434 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7435 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7436 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7438 .access = PL2_RW, .accessfn = access_scxtnum, 7439 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7440 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7442 .access = PL3_RW, 7443 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7444 }; 7445 7446 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7447 bool isread) 7448 { 7449 if (arm_current_el(env) == 2 && 7450 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7451 return CP_ACCESS_TRAP_EL3; 7452 } 7453 return CP_ACCESS_OK; 7454 } 7455 7456 static const ARMCPRegInfo fgt_reginfo[] = { 7457 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7458 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7459 .nv2_redirect_offset = 0x1b8, 7460 .access = PL2_RW, .accessfn = access_fgt, 7461 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7462 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7464 .nv2_redirect_offset = 0x1c0, 7465 .access = PL2_RW, .accessfn = access_fgt, 7466 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7467 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7469 .nv2_redirect_offset = 0x1d0, 7470 .access = PL2_RW, .accessfn = access_fgt, 7471 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7472 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7474 .nv2_redirect_offset = 0x1d8, 7475 .access = PL2_RW, .accessfn = access_fgt, 7476 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7477 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7479 .nv2_redirect_offset = 0x1c8, 7480 .access = PL2_RW, .accessfn = access_fgt, 7481 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7482 }; 7483 7484 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7485 uint64_t value) 7486 { 7487 /* 7488 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7489 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7490 * about the RESS bits at the top -- we choose the "generate an EL2 7491 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7492 * the ptw.c code detect the resulting invalid address). 7493 */ 7494 env->cp15.vncr_el2 = value & ~0xfffULL; 7495 } 7496 7497 static const ARMCPRegInfo nv2_reginfo[] = { 7498 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7500 .access = PL2_RW, 7501 .writefn = vncr_write, 7502 .nv2_redirect_offset = 0xb0, 7503 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7504 }; 7505 7506 #endif /* TARGET_AARCH64 */ 7507 7508 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7509 bool isread) 7510 { 7511 int el = arm_current_el(env); 7512 7513 if (el == 0) { 7514 uint64_t sctlr = arm_sctlr(env, el); 7515 if (!(sctlr & SCTLR_EnRCTX)) { 7516 return CP_ACCESS_TRAP_EL1; 7517 } 7518 } else if (el == 1) { 7519 uint64_t hcr = arm_hcr_el2_eff(env); 7520 if (hcr & HCR_NV) { 7521 return CP_ACCESS_TRAP_EL2; 7522 } 7523 } 7524 return CP_ACCESS_OK; 7525 } 7526 7527 static const ARMCPRegInfo predinv_reginfo[] = { 7528 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7530 .fgt = FGT_CFPRCTX, 7531 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7532 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7534 .fgt = FGT_DVPRCTX, 7535 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7536 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7537 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7538 .fgt = FGT_CPPRCTX, 7539 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7540 /* 7541 * Note the AArch32 opcodes have a different OPC1. 7542 */ 7543 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7544 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7545 .fgt = FGT_CFPRCTX, 7546 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7547 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7548 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7549 .fgt = FGT_DVPRCTX, 7550 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7551 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7552 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7553 .fgt = FGT_CPPRCTX, 7554 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7555 }; 7556 7557 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7558 { 7559 /* Read the high 32 bits of the current CCSIDR */ 7560 return extract64(ccsidr_read(env, ri), 32, 32); 7561 } 7562 7563 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7564 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7565 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7566 .access = PL1_R, 7567 .accessfn = access_tid4, 7568 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7569 }; 7570 7571 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7572 bool isread) 7573 { 7574 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7575 return CP_ACCESS_TRAP_EL2; 7576 } 7577 7578 return CP_ACCESS_OK; 7579 } 7580 7581 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7582 bool isread) 7583 { 7584 if (arm_feature(env, ARM_FEATURE_V8)) { 7585 return access_aa64_tid3(env, ri, isread); 7586 } 7587 7588 return CP_ACCESS_OK; 7589 } 7590 7591 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7592 bool isread) 7593 { 7594 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7595 return CP_ACCESS_TRAP_EL2; 7596 } 7597 7598 return CP_ACCESS_OK; 7599 } 7600 7601 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7602 const ARMCPRegInfo *ri, bool isread) 7603 { 7604 /* 7605 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7606 * in v7A, not in v8A. 7607 */ 7608 if (!arm_feature(env, ARM_FEATURE_V8) && 7609 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7610 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7611 return CP_ACCESS_TRAP_EL2; 7612 } 7613 return CP_ACCESS_OK; 7614 } 7615 7616 static const ARMCPRegInfo jazelle_regs[] = { 7617 { .name = "JIDR", 7618 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7619 .access = PL1_R, .accessfn = access_jazelle, 7620 .type = ARM_CP_CONST, .resetvalue = 0 }, 7621 { .name = "JOSCR", 7622 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7623 .accessfn = access_joscr_jmcr, 7624 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7625 { .name = "JMCR", 7626 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7627 .accessfn = access_joscr_jmcr, 7628 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7629 }; 7630 7631 static const ARMCPRegInfo contextidr_el2 = { 7632 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7634 .access = PL2_RW, 7635 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7636 }; 7637 7638 static const ARMCPRegInfo vhe_reginfo[] = { 7639 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7640 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7641 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7642 .raw_writefn = raw_write, 7643 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7644 #ifndef CONFIG_USER_ONLY 7645 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7647 .fieldoffset = 7648 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7649 .type = ARM_CP_IO, .access = PL2_RW, 7650 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7651 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7652 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7653 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7654 .resetfn = gt_hv_timer_reset, 7655 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7656 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7657 .type = ARM_CP_IO, 7658 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7659 .access = PL2_RW, 7660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7661 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7662 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7663 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7664 .type = ARM_CP_IO | ARM_CP_ALIAS, 7665 .access = PL2_RW, .accessfn = access_el1nvpct, 7666 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7668 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7669 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7671 .type = ARM_CP_IO | ARM_CP_ALIAS, 7672 .access = PL2_RW, .accessfn = access_el1nvvct, 7673 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7674 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7675 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7676 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7678 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7679 .access = PL2_RW, .accessfn = e2h_access, 7680 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7681 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7683 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7684 .access = PL2_RW, .accessfn = e2h_access, 7685 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7686 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7688 .type = ARM_CP_IO | ARM_CP_ALIAS, 7689 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7690 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7691 .access = PL2_RW, .accessfn = access_el1nvpct, 7692 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7693 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7695 .type = ARM_CP_IO | ARM_CP_ALIAS, 7696 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7697 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7698 .access = PL2_RW, .accessfn = access_el1nvvct, 7699 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7700 #endif 7701 }; 7702 7703 #ifndef CONFIG_USER_ONLY 7704 static const ARMCPRegInfo ats1e1_reginfo[] = { 7705 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7707 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7708 .fgt = FGT_ATS1E1RP, 7709 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7710 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7712 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7713 .fgt = FGT_ATS1E1WP, 7714 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7715 }; 7716 7717 static const ARMCPRegInfo ats1cp_reginfo[] = { 7718 { .name = "ATS1CPRP", 7719 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7720 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7721 .writefn = ats_write }, 7722 { .name = "ATS1CPWP", 7723 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7724 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7725 .writefn = ats_write }, 7726 }; 7727 #endif 7728 7729 /* 7730 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7731 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7732 * is non-zero, which is never for ARMv7, optionally in ARMv8 7733 * and mandatorily for ARMv8.2 and up. 7734 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7735 * implementation is RAZ/WI we can ignore this detail, as we 7736 * do for ACTLR. 7737 */ 7738 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7739 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7741 .access = PL1_RW, .accessfn = access_tacr, 7742 .type = ARM_CP_CONST, .resetvalue = 0 }, 7743 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7744 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7745 .access = PL2_RW, .type = ARM_CP_CONST, 7746 .resetvalue = 0 }, 7747 }; 7748 7749 void register_cp_regs_for_features(ARMCPU *cpu) 7750 { 7751 /* Register all the coprocessor registers based on feature bits */ 7752 CPUARMState *env = &cpu->env; 7753 if (arm_feature(env, ARM_FEATURE_M)) { 7754 /* M profile has no coprocessor registers */ 7755 return; 7756 } 7757 7758 define_arm_cp_regs(cpu, cp_reginfo); 7759 if (!arm_feature(env, ARM_FEATURE_V8)) { 7760 /* 7761 * Must go early as it is full of wildcards that may be 7762 * overridden by later definitions. 7763 */ 7764 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7765 } 7766 7767 define_tlb_insn_regs(cpu); 7768 7769 if (arm_feature(env, ARM_FEATURE_V6)) { 7770 /* The ID registers all have impdef reset values */ 7771 ARMCPRegInfo v6_idregs[] = { 7772 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7774 .access = PL1_R, .type = ARM_CP_CONST, 7775 .accessfn = access_aa32_tid3, 7776 .resetvalue = cpu->isar.id_pfr0 }, 7777 /* 7778 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7779 * the value of the GIC field until after we define these regs. 7780 */ 7781 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7783 .access = PL1_R, .type = ARM_CP_NO_RAW, 7784 .accessfn = access_aa32_tid3, 7785 #ifdef CONFIG_USER_ONLY 7786 .type = ARM_CP_CONST, 7787 .resetvalue = cpu->isar.id_pfr1, 7788 #else 7789 .type = ARM_CP_NO_RAW, 7790 .accessfn = access_aa32_tid3, 7791 .readfn = id_pfr1_read, 7792 .writefn = arm_cp_write_ignore 7793 #endif 7794 }, 7795 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa32_tid3, 7799 .resetvalue = cpu->isar.id_dfr0 }, 7800 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa32_tid3, 7804 .resetvalue = cpu->id_afr0 }, 7805 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa32_tid3, 7809 .resetvalue = cpu->isar.id_mmfr0 }, 7810 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa32_tid3, 7814 .resetvalue = cpu->isar.id_mmfr1 }, 7815 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa32_tid3, 7819 .resetvalue = cpu->isar.id_mmfr2 }, 7820 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa32_tid3, 7824 .resetvalue = cpu->isar.id_mmfr3 }, 7825 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa32_tid3, 7829 .resetvalue = cpu->isar.id_isar0 }, 7830 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa32_tid3, 7834 .resetvalue = cpu->isar.id_isar1 }, 7835 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa32_tid3, 7839 .resetvalue = cpu->isar.id_isar2 }, 7840 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa32_tid3, 7844 .resetvalue = cpu->isar.id_isar3 }, 7845 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa32_tid3, 7849 .resetvalue = cpu->isar.id_isar4 }, 7850 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa32_tid3, 7854 .resetvalue = cpu->isar.id_isar5 }, 7855 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa32_tid3, 7859 .resetvalue = cpu->isar.id_mmfr4 }, 7860 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa32_tid3, 7864 .resetvalue = cpu->isar.id_isar6 }, 7865 }; 7866 define_arm_cp_regs(cpu, v6_idregs); 7867 define_arm_cp_regs(cpu, v6_cp_reginfo); 7868 } else { 7869 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7870 } 7871 if (arm_feature(env, ARM_FEATURE_V6K)) { 7872 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7873 } 7874 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7875 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7876 } 7877 if (arm_feature(env, ARM_FEATURE_V7)) { 7878 ARMCPRegInfo clidr = { 7879 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7880 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7881 .access = PL1_R, .type = ARM_CP_CONST, 7882 .accessfn = access_tid4, 7883 .fgt = FGT_CLIDR_EL1, 7884 .resetvalue = cpu->clidr 7885 }; 7886 define_one_arm_cp_reg(cpu, &clidr); 7887 define_arm_cp_regs(cpu, v7_cp_reginfo); 7888 define_debug_regs(cpu); 7889 define_pmu_regs(cpu); 7890 } else { 7891 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7892 } 7893 if (arm_feature(env, ARM_FEATURE_V8)) { 7894 /* 7895 * v8 ID registers, which all have impdef reset values. 7896 * Note that within the ID register ranges the unused slots 7897 * must all RAZ, not UNDEF; future architecture versions may 7898 * define new registers here. 7899 * ID registers which are AArch64 views of the AArch32 ID registers 7900 * which already existed in v6 and v7 are handled elsewhere, 7901 * in v6_idregs[]. 7902 */ 7903 int i; 7904 ARMCPRegInfo v8_idregs[] = { 7905 /* 7906 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7907 * emulation because we don't know the right value for the 7908 * GIC field until after we define these regs. 7909 */ 7910 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7912 .access = PL1_R, 7913 #ifdef CONFIG_USER_ONLY 7914 .type = ARM_CP_CONST, 7915 .resetvalue = cpu->isar.id_aa64pfr0 7916 #else 7917 .type = ARM_CP_NO_RAW, 7918 .accessfn = access_aa64_tid3, 7919 .readfn = id_aa64pfr0_read, 7920 .writefn = arm_cp_write_ignore 7921 #endif 7922 }, 7923 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7925 .access = PL1_R, .type = ARM_CP_CONST, 7926 .accessfn = access_aa64_tid3, 7927 .resetvalue = cpu->isar.id_aa64pfr1}, 7928 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7930 .access = PL1_R, .type = ARM_CP_CONST, 7931 .accessfn = access_aa64_tid3, 7932 .resetvalue = 0 }, 7933 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7935 .access = PL1_R, .type = ARM_CP_CONST, 7936 .accessfn = access_aa64_tid3, 7937 .resetvalue = 0 }, 7938 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7940 .access = PL1_R, .type = ARM_CP_CONST, 7941 .accessfn = access_aa64_tid3, 7942 .resetvalue = cpu->isar.id_aa64zfr0 }, 7943 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7945 .access = PL1_R, .type = ARM_CP_CONST, 7946 .accessfn = access_aa64_tid3, 7947 .resetvalue = cpu->isar.id_aa64smfr0 }, 7948 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7950 .access = PL1_R, .type = ARM_CP_CONST, 7951 .accessfn = access_aa64_tid3, 7952 .resetvalue = 0 }, 7953 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7955 .access = PL1_R, .type = ARM_CP_CONST, 7956 .accessfn = access_aa64_tid3, 7957 .resetvalue = 0 }, 7958 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7960 .access = PL1_R, .type = ARM_CP_CONST, 7961 .accessfn = access_aa64_tid3, 7962 .resetvalue = cpu->isar.id_aa64dfr0 }, 7963 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7964 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7965 .access = PL1_R, .type = ARM_CP_CONST, 7966 .accessfn = access_aa64_tid3, 7967 .resetvalue = cpu->isar.id_aa64dfr1 }, 7968 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7970 .access = PL1_R, .type = ARM_CP_CONST, 7971 .accessfn = access_aa64_tid3, 7972 .resetvalue = 0 }, 7973 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7975 .access = PL1_R, .type = ARM_CP_CONST, 7976 .accessfn = access_aa64_tid3, 7977 .resetvalue = 0 }, 7978 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7980 .access = PL1_R, .type = ARM_CP_CONST, 7981 .accessfn = access_aa64_tid3, 7982 .resetvalue = cpu->id_aa64afr0 }, 7983 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7985 .access = PL1_R, .type = ARM_CP_CONST, 7986 .accessfn = access_aa64_tid3, 7987 .resetvalue = cpu->id_aa64afr1 }, 7988 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7990 .access = PL1_R, .type = ARM_CP_CONST, 7991 .accessfn = access_aa64_tid3, 7992 .resetvalue = 0 }, 7993 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7995 .access = PL1_R, .type = ARM_CP_CONST, 7996 .accessfn = access_aa64_tid3, 7997 .resetvalue = 0 }, 7998 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8000 .access = PL1_R, .type = ARM_CP_CONST, 8001 .accessfn = access_aa64_tid3, 8002 .resetvalue = cpu->isar.id_aa64isar0 }, 8003 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8005 .access = PL1_R, .type = ARM_CP_CONST, 8006 .accessfn = access_aa64_tid3, 8007 .resetvalue = cpu->isar.id_aa64isar1 }, 8008 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8010 .access = PL1_R, .type = ARM_CP_CONST, 8011 .accessfn = access_aa64_tid3, 8012 .resetvalue = cpu->isar.id_aa64isar2 }, 8013 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8015 .access = PL1_R, .type = ARM_CP_CONST, 8016 .accessfn = access_aa64_tid3, 8017 .resetvalue = 0 }, 8018 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8020 .access = PL1_R, .type = ARM_CP_CONST, 8021 .accessfn = access_aa64_tid3, 8022 .resetvalue = 0 }, 8023 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8025 .access = PL1_R, .type = ARM_CP_CONST, 8026 .accessfn = access_aa64_tid3, 8027 .resetvalue = 0 }, 8028 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8030 .access = PL1_R, .type = ARM_CP_CONST, 8031 .accessfn = access_aa64_tid3, 8032 .resetvalue = 0 }, 8033 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8035 .access = PL1_R, .type = ARM_CP_CONST, 8036 .accessfn = access_aa64_tid3, 8037 .resetvalue = 0 }, 8038 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8040 .access = PL1_R, .type = ARM_CP_CONST, 8041 .accessfn = access_aa64_tid3, 8042 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8043 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8045 .access = PL1_R, .type = ARM_CP_CONST, 8046 .accessfn = access_aa64_tid3, 8047 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8048 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8050 .access = PL1_R, .type = ARM_CP_CONST, 8051 .accessfn = access_aa64_tid3, 8052 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8053 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .accessfn = access_aa64_tid3, 8057 .resetvalue = cpu->isar.id_aa64mmfr3 }, 8058 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8059 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8060 .access = PL1_R, .type = ARM_CP_CONST, 8061 .accessfn = access_aa64_tid3, 8062 .resetvalue = 0 }, 8063 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8064 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8065 .access = PL1_R, .type = ARM_CP_CONST, 8066 .accessfn = access_aa64_tid3, 8067 .resetvalue = 0 }, 8068 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8070 .access = PL1_R, .type = ARM_CP_CONST, 8071 .accessfn = access_aa64_tid3, 8072 .resetvalue = 0 }, 8073 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8075 .access = PL1_R, .type = ARM_CP_CONST, 8076 .accessfn = access_aa64_tid3, 8077 .resetvalue = 0 }, 8078 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8080 .access = PL1_R, .type = ARM_CP_CONST, 8081 .accessfn = access_aa64_tid3, 8082 .resetvalue = cpu->isar.mvfr0 }, 8083 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8085 .access = PL1_R, .type = ARM_CP_CONST, 8086 .accessfn = access_aa64_tid3, 8087 .resetvalue = cpu->isar.mvfr1 }, 8088 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8090 .access = PL1_R, .type = ARM_CP_CONST, 8091 .accessfn = access_aa64_tid3, 8092 .resetvalue = cpu->isar.mvfr2 }, 8093 /* 8094 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8095 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8096 * as RAZ, since it is in the "reserved for future ID 8097 * registers, RAZ" part of the AArch32 encoding space. 8098 */ 8099 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8100 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8101 .access = PL1_R, .type = ARM_CP_CONST, 8102 .accessfn = access_aa64_tid3, 8103 .resetvalue = 0 }, 8104 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8105 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8106 .access = PL1_R, .type = ARM_CP_CONST, 8107 .accessfn = access_aa64_tid3, 8108 .resetvalue = 0 }, 8109 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8110 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8111 .access = PL1_R, .type = ARM_CP_CONST, 8112 .accessfn = access_aa64_tid3, 8113 .resetvalue = 0 }, 8114 /* 8115 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8116 * they're also RAZ for AArch64, and in v8 are gradually 8117 * being filled with AArch64-view-of-AArch32-ID-register 8118 * for new ID registers. 8119 */ 8120 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8122 .access = PL1_R, .type = ARM_CP_CONST, 8123 .accessfn = access_aa64_tid3, 8124 .resetvalue = 0 }, 8125 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8127 .access = PL1_R, .type = ARM_CP_CONST, 8128 .accessfn = access_aa64_tid3, 8129 .resetvalue = cpu->isar.id_pfr2 }, 8130 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8132 .access = PL1_R, .type = ARM_CP_CONST, 8133 .accessfn = access_aa64_tid3, 8134 .resetvalue = cpu->isar.id_dfr1 }, 8135 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8136 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8137 .access = PL1_R, .type = ARM_CP_CONST, 8138 .accessfn = access_aa64_tid3, 8139 .resetvalue = cpu->isar.id_mmfr5 }, 8140 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8142 .access = PL1_R, .type = ARM_CP_CONST, 8143 .accessfn = access_aa64_tid3, 8144 .resetvalue = 0 }, 8145 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8146 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8147 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8148 .fgt = FGT_PMCEIDN_EL0, 8149 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8150 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8151 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8152 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8153 .fgt = FGT_PMCEIDN_EL0, 8154 .resetvalue = cpu->pmceid0 }, 8155 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8156 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8157 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8158 .fgt = FGT_PMCEIDN_EL0, 8159 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8160 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8161 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8162 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8163 .fgt = FGT_PMCEIDN_EL0, 8164 .resetvalue = cpu->pmceid1 }, 8165 }; 8166 #ifdef CONFIG_USER_ONLY 8167 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8168 { .name = "ID_AA64PFR0_EL1", 8169 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8170 R_ID_AA64PFR0_ADVSIMD_MASK | 8171 R_ID_AA64PFR0_SVE_MASK | 8172 R_ID_AA64PFR0_DIT_MASK, 8173 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8174 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8175 { .name = "ID_AA64PFR1_EL1", 8176 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8177 R_ID_AA64PFR1_SSBS_MASK | 8178 R_ID_AA64PFR1_MTE_MASK | 8179 R_ID_AA64PFR1_SME_MASK }, 8180 { .name = "ID_AA64PFR*_EL1_RESERVED", 8181 .is_glob = true }, 8182 { .name = "ID_AA64ZFR0_EL1", 8183 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8184 R_ID_AA64ZFR0_AES_MASK | 8185 R_ID_AA64ZFR0_BITPERM_MASK | 8186 R_ID_AA64ZFR0_BFLOAT16_MASK | 8187 R_ID_AA64ZFR0_B16B16_MASK | 8188 R_ID_AA64ZFR0_SHA3_MASK | 8189 R_ID_AA64ZFR0_SM4_MASK | 8190 R_ID_AA64ZFR0_I8MM_MASK | 8191 R_ID_AA64ZFR0_F32MM_MASK | 8192 R_ID_AA64ZFR0_F64MM_MASK }, 8193 { .name = "ID_AA64SMFR0_EL1", 8194 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8195 R_ID_AA64SMFR0_BI32I32_MASK | 8196 R_ID_AA64SMFR0_B16F32_MASK | 8197 R_ID_AA64SMFR0_F16F32_MASK | 8198 R_ID_AA64SMFR0_I8I32_MASK | 8199 R_ID_AA64SMFR0_F16F16_MASK | 8200 R_ID_AA64SMFR0_B16B16_MASK | 8201 R_ID_AA64SMFR0_I16I32_MASK | 8202 R_ID_AA64SMFR0_F64F64_MASK | 8203 R_ID_AA64SMFR0_I16I64_MASK | 8204 R_ID_AA64SMFR0_SMEVER_MASK | 8205 R_ID_AA64SMFR0_FA64_MASK }, 8206 { .name = "ID_AA64MMFR0_EL1", 8207 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8208 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8209 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8210 { .name = "ID_AA64MMFR1_EL1", 8211 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8212 { .name = "ID_AA64MMFR2_EL1", 8213 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8214 { .name = "ID_AA64MMFR3_EL1", 8215 .exported_bits = 0 }, 8216 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8217 .is_glob = true }, 8218 { .name = "ID_AA64DFR0_EL1", 8219 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8220 { .name = "ID_AA64DFR1_EL1" }, 8221 { .name = "ID_AA64DFR*_EL1_RESERVED", 8222 .is_glob = true }, 8223 { .name = "ID_AA64AFR*", 8224 .is_glob = true }, 8225 { .name = "ID_AA64ISAR0_EL1", 8226 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8227 R_ID_AA64ISAR0_SHA1_MASK | 8228 R_ID_AA64ISAR0_SHA2_MASK | 8229 R_ID_AA64ISAR0_CRC32_MASK | 8230 R_ID_AA64ISAR0_ATOMIC_MASK | 8231 R_ID_AA64ISAR0_RDM_MASK | 8232 R_ID_AA64ISAR0_SHA3_MASK | 8233 R_ID_AA64ISAR0_SM3_MASK | 8234 R_ID_AA64ISAR0_SM4_MASK | 8235 R_ID_AA64ISAR0_DP_MASK | 8236 R_ID_AA64ISAR0_FHM_MASK | 8237 R_ID_AA64ISAR0_TS_MASK | 8238 R_ID_AA64ISAR0_RNDR_MASK }, 8239 { .name = "ID_AA64ISAR1_EL1", 8240 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8241 R_ID_AA64ISAR1_APA_MASK | 8242 R_ID_AA64ISAR1_API_MASK | 8243 R_ID_AA64ISAR1_JSCVT_MASK | 8244 R_ID_AA64ISAR1_FCMA_MASK | 8245 R_ID_AA64ISAR1_LRCPC_MASK | 8246 R_ID_AA64ISAR1_GPA_MASK | 8247 R_ID_AA64ISAR1_GPI_MASK | 8248 R_ID_AA64ISAR1_FRINTTS_MASK | 8249 R_ID_AA64ISAR1_SB_MASK | 8250 R_ID_AA64ISAR1_BF16_MASK | 8251 R_ID_AA64ISAR1_DGH_MASK | 8252 R_ID_AA64ISAR1_I8MM_MASK }, 8253 { .name = "ID_AA64ISAR2_EL1", 8254 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8255 R_ID_AA64ISAR2_RPRES_MASK | 8256 R_ID_AA64ISAR2_GPA3_MASK | 8257 R_ID_AA64ISAR2_APA3_MASK | 8258 R_ID_AA64ISAR2_MOPS_MASK | 8259 R_ID_AA64ISAR2_BC_MASK | 8260 R_ID_AA64ISAR2_RPRFM_MASK | 8261 R_ID_AA64ISAR2_CSSC_MASK }, 8262 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8263 .is_glob = true }, 8264 }; 8265 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8266 #endif 8267 /* 8268 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8269 * TODO: For RMR, a write with bit 1 set should do something with 8270 * cpu_reset(). In the meantime, "the bit is strictly a request", 8271 * so we are in spec just ignoring writes. 8272 */ 8273 if (!arm_feature(env, ARM_FEATURE_EL3) && 8274 !arm_feature(env, ARM_FEATURE_EL2)) { 8275 ARMCPRegInfo el1_reset_regs[] = { 8276 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8277 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8278 .access = PL1_R, 8279 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8280 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8281 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8282 .access = PL1_RW, .type = ARM_CP_CONST, 8283 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8284 }; 8285 define_arm_cp_regs(cpu, el1_reset_regs); 8286 } 8287 define_arm_cp_regs(cpu, v8_idregs); 8288 define_arm_cp_regs(cpu, v8_cp_reginfo); 8289 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8290 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8291 } 8292 8293 for (i = 4; i < 16; i++) { 8294 /* 8295 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8296 * For pre-v8 cores there are RAZ patterns for these in 8297 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8298 * v8 extends the "must RAZ" part of the ID register space 8299 * to also cover c0, 0, c{8-15}, {0-7}. 8300 * These are STATE_AA32 because in the AArch64 sysreg space 8301 * c4-c7 is where the AArch64 ID registers live (and we've 8302 * already defined those in v8_idregs[]), and c8-c15 are not 8303 * "must RAZ" for AArch64. 8304 */ 8305 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8306 ARMCPRegInfo v8_aa32_raz_idregs = { 8307 .name = name, 8308 .state = ARM_CP_STATE_AA32, 8309 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8310 .access = PL1_R, .type = ARM_CP_CONST, 8311 .accessfn = access_aa64_tid3, 8312 .resetvalue = 0 }; 8313 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8314 } 8315 } 8316 8317 /* 8318 * Register the base EL2 cpregs. 8319 * Pre v8, these registers are implemented only as part of the 8320 * Virtualization Extensions (EL2 present). Beginning with v8, 8321 * if EL2 is missing but EL3 is enabled, mostly these become 8322 * RES0 from EL3, with some specific exceptions. 8323 */ 8324 if (arm_feature(env, ARM_FEATURE_EL2) 8325 || (arm_feature(env, ARM_FEATURE_EL3) 8326 && arm_feature(env, ARM_FEATURE_V8))) { 8327 uint64_t vmpidr_def = mpidr_read_val(env); 8328 ARMCPRegInfo vpidr_regs[] = { 8329 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8330 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8331 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8332 .resetvalue = cpu->midr, 8333 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8334 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8335 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8336 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8337 .access = PL2_RW, .resetvalue = cpu->midr, 8338 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8339 .nv2_redirect_offset = 0x88, 8340 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8341 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8342 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8343 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8344 .resetvalue = vmpidr_def, 8345 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8346 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8347 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8348 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8349 .access = PL2_RW, .resetvalue = vmpidr_def, 8350 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8351 .nv2_redirect_offset = 0x50, 8352 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8353 }; 8354 /* 8355 * The only field of MDCR_EL2 that has a defined architectural reset 8356 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8357 */ 8358 ARMCPRegInfo mdcr_el2 = { 8359 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8360 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8361 .writefn = mdcr_el2_write, 8362 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8363 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8364 }; 8365 define_one_arm_cp_reg(cpu, &mdcr_el2); 8366 define_arm_cp_regs(cpu, vpidr_regs); 8367 define_arm_cp_regs(cpu, el2_cp_reginfo); 8368 if (arm_feature(env, ARM_FEATURE_V8)) { 8369 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8370 } 8371 if (cpu_isar_feature(aa64_sel2, cpu)) { 8372 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8373 } 8374 /* 8375 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8376 * See commentary near RMR_EL1. 8377 */ 8378 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8379 static const ARMCPRegInfo el2_reset_regs[] = { 8380 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8381 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8382 .access = PL2_R, 8383 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8384 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8385 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8386 .access = PL2_R, 8387 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8388 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8390 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8391 }; 8392 define_arm_cp_regs(cpu, el2_reset_regs); 8393 } 8394 } 8395 8396 /* Register the base EL3 cpregs. */ 8397 if (arm_feature(env, ARM_FEATURE_EL3)) { 8398 define_arm_cp_regs(cpu, el3_cp_reginfo); 8399 ARMCPRegInfo el3_regs[] = { 8400 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8401 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8402 .access = PL3_R, 8403 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8404 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8405 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8406 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8407 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8408 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8409 .access = PL3_RW, .type = ARM_CP_CONST, 8410 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8411 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8412 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8413 .access = PL3_RW, 8414 .raw_writefn = raw_write, .writefn = sctlr_write, 8415 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8416 .resetvalue = cpu->reset_sctlr }, 8417 }; 8418 8419 define_arm_cp_regs(cpu, el3_regs); 8420 } 8421 /* 8422 * The behaviour of NSACR is sufficiently various that we don't 8423 * try to describe it in a single reginfo: 8424 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8425 * reads as constant 0xc00 from NS EL1 and NS EL2 8426 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8427 * if v7 without EL3, register doesn't exist 8428 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8429 */ 8430 if (arm_feature(env, ARM_FEATURE_EL3)) { 8431 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8432 static const ARMCPRegInfo nsacr = { 8433 .name = "NSACR", .type = ARM_CP_CONST, 8434 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8435 .access = PL1_RW, .accessfn = nsacr_access, 8436 .resetvalue = 0xc00 8437 }; 8438 define_one_arm_cp_reg(cpu, &nsacr); 8439 } else { 8440 static const ARMCPRegInfo nsacr = { 8441 .name = "NSACR", 8442 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8443 .access = PL3_RW | PL1_R, 8444 .resetvalue = 0, 8445 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8446 }; 8447 define_one_arm_cp_reg(cpu, &nsacr); 8448 } 8449 } else { 8450 if (arm_feature(env, ARM_FEATURE_V8)) { 8451 static const ARMCPRegInfo nsacr = { 8452 .name = "NSACR", .type = ARM_CP_CONST, 8453 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8454 .access = PL1_R, 8455 .resetvalue = 0xc00 8456 }; 8457 define_one_arm_cp_reg(cpu, &nsacr); 8458 } 8459 } 8460 8461 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8462 if (arm_feature(env, ARM_FEATURE_V6)) { 8463 /* PMSAv6 not implemented */ 8464 assert(arm_feature(env, ARM_FEATURE_V7)); 8465 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8466 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8467 } else { 8468 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8469 } 8470 } else { 8471 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8472 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8473 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8474 if (cpu_isar_feature(aa32_hpd, cpu)) { 8475 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8476 } 8477 } 8478 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8479 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8480 } 8481 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8482 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8483 } 8484 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8485 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8486 } 8487 #ifndef CONFIG_USER_ONLY 8488 if (cpu_isar_feature(aa64_ecv, cpu)) { 8489 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8490 } 8491 #endif 8492 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8493 ARMCPRegInfo vapa_cp_reginfo[] = { 8494 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8495 .access = PL1_RW, .resetvalue = 0, 8496 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8497 offsetoflow32(CPUARMState, cp15.par_ns) }, 8498 .writefn = par_write}, 8499 #ifndef CONFIG_USER_ONLY 8500 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8501 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8502 .access = PL1_W, .accessfn = ats_access, 8503 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8504 #endif 8505 }; 8506 8507 /* 8508 * When LPAE exists this 32-bit PAR register is an alias of the 8509 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8510 */ 8511 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8512 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8513 } 8514 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8515 } 8516 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8517 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8518 } 8519 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8520 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8521 } 8522 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8523 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8524 } 8525 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8526 define_arm_cp_regs(cpu, omap_cp_reginfo); 8527 } 8528 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8529 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8530 } 8531 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8532 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8533 } 8534 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8535 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8536 } 8537 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8538 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8539 } 8540 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8541 define_arm_cp_regs(cpu, jazelle_regs); 8542 } 8543 /* 8544 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8545 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8546 * be read-only (ie write causes UNDEF exception). 8547 */ 8548 { 8549 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8550 /* 8551 * Pre-v8 MIDR space. 8552 * Note that the MIDR isn't a simple constant register because 8553 * of the TI925 behaviour where writes to another register can 8554 * cause the MIDR value to change. 8555 * 8556 * Unimplemented registers in the c15 0 0 0 space default to 8557 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8558 * and friends override accordingly. 8559 */ 8560 { .name = "MIDR", 8561 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8562 .access = PL1_R, .resetvalue = cpu->midr, 8563 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8564 .readfn = midr_read, 8565 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8566 .type = ARM_CP_OVERRIDE }, 8567 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8568 { .name = "DUMMY", 8569 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8570 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8571 { .name = "DUMMY", 8572 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8573 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8574 { .name = "DUMMY", 8575 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8576 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8577 { .name = "DUMMY", 8578 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8579 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8580 { .name = "DUMMY", 8581 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8582 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8583 }; 8584 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8585 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8587 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8588 .fgt = FGT_MIDR_EL1, 8589 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8590 .readfn = midr_read }, 8591 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8592 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8593 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8594 .access = PL1_R, .resetvalue = cpu->midr }, 8595 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8597 .access = PL1_R, 8598 .accessfn = access_aa64_tid1, 8599 .fgt = FGT_REVIDR_EL1, 8600 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8601 }; 8602 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8603 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8604 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8605 .access = PL1_R, .resetvalue = cpu->midr 8606 }; 8607 ARMCPRegInfo id_cp_reginfo[] = { 8608 /* These are common to v8 and pre-v8 */ 8609 { .name = "CTR", 8610 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8611 .access = PL1_R, .accessfn = ctr_el0_access, 8612 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8613 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8614 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8615 .access = PL0_R, .accessfn = ctr_el0_access, 8616 .fgt = FGT_CTR_EL0, 8617 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8618 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8619 { .name = "TCMTR", 8620 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8621 .access = PL1_R, 8622 .accessfn = access_aa32_tid1, 8623 .type = ARM_CP_CONST, .resetvalue = 0 }, 8624 }; 8625 /* TLBTR is specific to VMSA */ 8626 ARMCPRegInfo id_tlbtr_reginfo = { 8627 .name = "TLBTR", 8628 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8629 .access = PL1_R, 8630 .accessfn = access_aa32_tid1, 8631 .type = ARM_CP_CONST, .resetvalue = 0, 8632 }; 8633 /* MPUIR is specific to PMSA V6+ */ 8634 ARMCPRegInfo id_mpuir_reginfo = { 8635 .name = "MPUIR", 8636 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8637 .access = PL1_R, .type = ARM_CP_CONST, 8638 .resetvalue = cpu->pmsav7_dregion << 8 8639 }; 8640 /* HMPUIR is specific to PMSA V8 */ 8641 ARMCPRegInfo id_hmpuir_reginfo = { 8642 .name = "HMPUIR", 8643 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8644 .access = PL2_R, .type = ARM_CP_CONST, 8645 .resetvalue = cpu->pmsav8r_hdregion 8646 }; 8647 static const ARMCPRegInfo crn0_wi_reginfo = { 8648 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8649 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8650 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8651 }; 8652 #ifdef CONFIG_USER_ONLY 8653 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8654 { .name = "MIDR_EL1", 8655 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8656 R_MIDR_EL1_PARTNUM_MASK | 8657 R_MIDR_EL1_ARCHITECTURE_MASK | 8658 R_MIDR_EL1_VARIANT_MASK | 8659 R_MIDR_EL1_IMPLEMENTER_MASK }, 8660 { .name = "REVIDR_EL1" }, 8661 }; 8662 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8663 #endif 8664 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8665 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8666 size_t i; 8667 /* 8668 * Register the blanket "writes ignored" value first to cover the 8669 * whole space. Then update the specific ID registers to allow write 8670 * access, so that they ignore writes rather than causing them to 8671 * UNDEF. 8672 */ 8673 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8674 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8675 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8676 } 8677 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8678 id_cp_reginfo[i].access = PL1_RW; 8679 } 8680 id_mpuir_reginfo.access = PL1_RW; 8681 id_tlbtr_reginfo.access = PL1_RW; 8682 } 8683 if (arm_feature(env, ARM_FEATURE_V8)) { 8684 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8685 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8686 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8687 } 8688 } else { 8689 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8690 } 8691 define_arm_cp_regs(cpu, id_cp_reginfo); 8692 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8693 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8694 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8695 arm_feature(env, ARM_FEATURE_V8)) { 8696 uint32_t i = 0; 8697 char *tmp_string; 8698 8699 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8700 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8701 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8702 8703 /* Register alias is only valid for first 32 indexes */ 8704 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8705 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8706 uint8_t opc1 = extract32(i, 4, 1); 8707 uint8_t opc2 = extract32(i, 0, 1) << 2; 8708 8709 tmp_string = g_strdup_printf("PRBAR%u", i); 8710 ARMCPRegInfo tmp_prbarn_reginfo = { 8711 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8712 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8713 .access = PL1_RW, .resetvalue = 0, 8714 .accessfn = access_tvm_trvm, 8715 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8716 }; 8717 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8718 g_free(tmp_string); 8719 8720 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8721 tmp_string = g_strdup_printf("PRLAR%u", i); 8722 ARMCPRegInfo tmp_prlarn_reginfo = { 8723 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8724 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8725 .access = PL1_RW, .resetvalue = 0, 8726 .accessfn = access_tvm_trvm, 8727 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8728 }; 8729 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8730 g_free(tmp_string); 8731 } 8732 8733 /* Register alias is only valid for first 32 indexes */ 8734 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8735 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8736 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8737 uint8_t opc2 = extract32(i, 0, 1) << 2; 8738 8739 tmp_string = g_strdup_printf("HPRBAR%u", i); 8740 ARMCPRegInfo tmp_hprbarn_reginfo = { 8741 .name = tmp_string, 8742 .type = ARM_CP_NO_RAW, 8743 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8744 .access = PL2_RW, .resetvalue = 0, 8745 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8746 }; 8747 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8748 g_free(tmp_string); 8749 8750 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8751 tmp_string = g_strdup_printf("HPRLAR%u", i); 8752 ARMCPRegInfo tmp_hprlarn_reginfo = { 8753 .name = tmp_string, 8754 .type = ARM_CP_NO_RAW, 8755 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8756 .access = PL2_RW, .resetvalue = 0, 8757 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8758 }; 8759 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8760 g_free(tmp_string); 8761 } 8762 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8763 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8764 } 8765 } 8766 8767 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8768 ARMCPRegInfo mpidr_cp_reginfo[] = { 8769 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8770 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8771 .fgt = FGT_MPIDR_EL1, 8772 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8773 }; 8774 #ifdef CONFIG_USER_ONLY 8775 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8776 { .name = "MPIDR_EL1", 8777 .fixed_bits = 0x0000000080000000 }, 8778 }; 8779 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8780 #endif 8781 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8782 } 8783 8784 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8785 ARMCPRegInfo auxcr_reginfo[] = { 8786 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8787 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8788 .access = PL1_RW, .accessfn = access_tacr, 8789 .nv2_redirect_offset = 0x118, 8790 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8791 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8792 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8793 .access = PL2_RW, .type = ARM_CP_CONST, 8794 .resetvalue = 0 }, 8795 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8796 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8797 .access = PL3_RW, .type = ARM_CP_CONST, 8798 .resetvalue = 0 }, 8799 }; 8800 define_arm_cp_regs(cpu, auxcr_reginfo); 8801 if (cpu_isar_feature(aa32_ac2, cpu)) { 8802 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8803 } 8804 } 8805 8806 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8807 /* 8808 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8809 * There are two flavours: 8810 * (1) older 32-bit only cores have a simple 32-bit CBAR 8811 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8812 * 32-bit register visible to AArch32 at a different encoding 8813 * to the "flavour 1" register and with the bits rearranged to 8814 * be able to squash a 64-bit address into the 32-bit view. 8815 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8816 * in future if we support AArch32-only configs of some of the 8817 * AArch64 cores we might need to add a specific feature flag 8818 * to indicate cores with "flavour 2" CBAR. 8819 */ 8820 if (arm_feature(env, ARM_FEATURE_V8)) { 8821 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8822 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8823 | extract64(cpu->reset_cbar, 32, 12); 8824 ARMCPRegInfo cbar_reginfo[] = { 8825 { .name = "CBAR", 8826 .type = ARM_CP_CONST, 8827 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8828 .access = PL1_R, .resetvalue = cbar32 }, 8829 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8830 .type = ARM_CP_CONST, 8831 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8832 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8833 }; 8834 /* We don't implement a r/w 64 bit CBAR currently */ 8835 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8836 define_arm_cp_regs(cpu, cbar_reginfo); 8837 } else { 8838 ARMCPRegInfo cbar = { 8839 .name = "CBAR", 8840 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8841 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8842 .fieldoffset = offsetof(CPUARMState, 8843 cp15.c15_config_base_address) 8844 }; 8845 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8846 cbar.access = PL1_R; 8847 cbar.fieldoffset = 0; 8848 cbar.type = ARM_CP_CONST; 8849 } 8850 define_one_arm_cp_reg(cpu, &cbar); 8851 } 8852 } 8853 8854 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8855 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8856 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8857 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8858 .access = PL1_RW, .writefn = vbar_write, 8859 .accessfn = access_nv1, 8860 .fgt = FGT_VBAR_EL1, 8861 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8863 offsetof(CPUARMState, cp15.vbar_ns) }, 8864 .resetvalue = 0 }, 8865 }; 8866 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8867 } 8868 8869 /* Generic registers whose values depend on the implementation */ 8870 { 8871 ARMCPRegInfo sctlr = { 8872 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8873 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8874 .access = PL1_RW, .accessfn = access_tvm_trvm, 8875 .fgt = FGT_SCTLR_EL1, 8876 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8877 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8878 offsetof(CPUARMState, cp15.sctlr_ns) }, 8879 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8880 .raw_writefn = raw_write, 8881 }; 8882 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8883 /* 8884 * Normally we would always end the TB on an SCTLR write, but Linux 8885 * arch/arm/mach-pxa/sleep.S expects two instructions following 8886 * an MMU enable to execute from cache. Imitate this behaviour. 8887 */ 8888 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8889 } 8890 define_one_arm_cp_reg(cpu, &sctlr); 8891 8892 if (arm_feature(env, ARM_FEATURE_PMSA) && 8893 arm_feature(env, ARM_FEATURE_V8)) { 8894 ARMCPRegInfo vsctlr = { 8895 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8896 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8897 .access = PL2_RW, .resetvalue = 0x0, 8898 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8899 }; 8900 define_one_arm_cp_reg(cpu, &vsctlr); 8901 } 8902 } 8903 8904 if (cpu_isar_feature(aa64_lor, cpu)) { 8905 define_arm_cp_regs(cpu, lor_reginfo); 8906 } 8907 if (cpu_isar_feature(aa64_pan, cpu)) { 8908 define_one_arm_cp_reg(cpu, &pan_reginfo); 8909 } 8910 #ifndef CONFIG_USER_ONLY 8911 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8912 define_arm_cp_regs(cpu, ats1e1_reginfo); 8913 } 8914 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8915 define_arm_cp_regs(cpu, ats1cp_reginfo); 8916 } 8917 #endif 8918 if (cpu_isar_feature(aa64_uao, cpu)) { 8919 define_one_arm_cp_reg(cpu, &uao_reginfo); 8920 } 8921 8922 if (cpu_isar_feature(aa64_dit, cpu)) { 8923 define_one_arm_cp_reg(cpu, &dit_reginfo); 8924 } 8925 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8926 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8927 } 8928 if (cpu_isar_feature(any_ras, cpu)) { 8929 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8930 } 8931 8932 if (cpu_isar_feature(aa64_vh, cpu) || 8933 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8934 define_one_arm_cp_reg(cpu, &contextidr_el2); 8935 } 8936 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8937 define_arm_cp_regs(cpu, vhe_reginfo); 8938 } 8939 8940 if (cpu_isar_feature(aa64_sve, cpu)) { 8941 define_arm_cp_regs(cpu, zcr_reginfo); 8942 } 8943 8944 if (cpu_isar_feature(aa64_hcx, cpu)) { 8945 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8946 } 8947 8948 #ifdef TARGET_AARCH64 8949 if (cpu_isar_feature(aa64_sme, cpu)) { 8950 define_arm_cp_regs(cpu, sme_reginfo); 8951 } 8952 if (cpu_isar_feature(aa64_pauth, cpu)) { 8953 define_arm_cp_regs(cpu, pauth_reginfo); 8954 } 8955 if (cpu_isar_feature(aa64_rndr, cpu)) { 8956 define_arm_cp_regs(cpu, rndr_reginfo); 8957 } 8958 /* Data Cache clean instructions up to PoP */ 8959 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8960 define_one_arm_cp_reg(cpu, dcpop_reg); 8961 8962 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8963 define_one_arm_cp_reg(cpu, dcpodp_reg); 8964 } 8965 } 8966 8967 /* 8968 * If full MTE is enabled, add all of the system registers. 8969 * If only "instructions available at EL0" are enabled, 8970 * then define only a RAZ/WI version of PSTATE.TCO. 8971 */ 8972 if (cpu_isar_feature(aa64_mte, cpu)) { 8973 ARMCPRegInfo gmid_reginfo = { 8974 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8975 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8976 .access = PL1_R, .accessfn = access_aa64_tid5, 8977 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8978 }; 8979 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8980 define_arm_cp_regs(cpu, mte_reginfo); 8981 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8982 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8983 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8984 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8985 } 8986 8987 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8988 define_arm_cp_regs(cpu, scxtnum_reginfo); 8989 } 8990 8991 if (cpu_isar_feature(aa64_fgt, cpu)) { 8992 define_arm_cp_regs(cpu, fgt_reginfo); 8993 } 8994 8995 if (cpu_isar_feature(aa64_rme, cpu)) { 8996 define_arm_cp_regs(cpu, rme_reginfo); 8997 if (cpu_isar_feature(aa64_mte, cpu)) { 8998 define_arm_cp_regs(cpu, rme_mte_reginfo); 8999 } 9000 } 9001 9002 if (cpu_isar_feature(aa64_nv2, cpu)) { 9003 define_arm_cp_regs(cpu, nv2_reginfo); 9004 } 9005 9006 if (cpu_isar_feature(aa64_nmi, cpu)) { 9007 define_arm_cp_regs(cpu, nmi_reginfo); 9008 } 9009 #endif 9010 9011 if (cpu_isar_feature(any_predinv, cpu)) { 9012 define_arm_cp_regs(cpu, predinv_reginfo); 9013 } 9014 9015 if (cpu_isar_feature(any_ccidx, cpu)) { 9016 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9017 } 9018 9019 #ifndef CONFIG_USER_ONLY 9020 /* 9021 * Register redirections and aliases must be done last, 9022 * after the registers from the other extensions have been defined. 9023 */ 9024 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9025 define_arm_vh_e2h_redirects_aliases(cpu); 9026 } 9027 #endif 9028 } 9029 9030 /* 9031 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9032 * add a single reginfo struct to the hash table. 9033 */ 9034 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9035 void *opaque, CPState state, 9036 CPSecureState secstate, 9037 int crm, int opc1, int opc2, 9038 const char *name) 9039 { 9040 CPUARMState *env = &cpu->env; 9041 uint32_t key; 9042 ARMCPRegInfo *r2; 9043 bool is64 = r->type & ARM_CP_64BIT; 9044 bool ns = secstate & ARM_CP_SECSTATE_NS; 9045 int cp = r->cp; 9046 size_t name_len; 9047 bool make_const; 9048 9049 switch (state) { 9050 case ARM_CP_STATE_AA32: 9051 /* We assume it is a cp15 register if the .cp field is left unset. */ 9052 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9053 cp = 15; 9054 } 9055 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9056 break; 9057 case ARM_CP_STATE_AA64: 9058 /* 9059 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9060 * cp == 0 as equivalent to the value for "standard guest-visible 9061 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9062 * in their AArch64 view (the .cp value may be non-zero for the 9063 * benefit of the AArch32 view). 9064 */ 9065 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9066 cp = CP_REG_ARM64_SYSREG_CP; 9067 } 9068 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9069 break; 9070 default: 9071 g_assert_not_reached(); 9072 } 9073 9074 /* Overriding of an existing definition must be explicitly requested. */ 9075 if (!(r->type & ARM_CP_OVERRIDE)) { 9076 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9077 if (oldreg) { 9078 assert(oldreg->type & ARM_CP_OVERRIDE); 9079 } 9080 } 9081 9082 /* 9083 * Eliminate registers that are not present because the EL is missing. 9084 * Doing this here makes it easier to put all registers for a given 9085 * feature into the same ARMCPRegInfo array and define them all at once. 9086 */ 9087 make_const = false; 9088 if (arm_feature(env, ARM_FEATURE_EL3)) { 9089 /* 9090 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9091 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9092 */ 9093 int min_el = ctz32(r->access) / 2; 9094 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9095 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9096 return; 9097 } 9098 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9099 } 9100 } else { 9101 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9102 ? PL2_RW : PL1_RW); 9103 if ((r->access & max_el) == 0) { 9104 return; 9105 } 9106 } 9107 9108 /* Combine cpreg and name into one allocation. */ 9109 name_len = strlen(name) + 1; 9110 r2 = g_malloc(sizeof(*r2) + name_len); 9111 *r2 = *r; 9112 r2->name = memcpy(r2 + 1, name, name_len); 9113 9114 /* 9115 * Update fields to match the instantiation, overwiting wildcards 9116 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9117 */ 9118 r2->cp = cp; 9119 r2->crm = crm; 9120 r2->opc1 = opc1; 9121 r2->opc2 = opc2; 9122 r2->state = state; 9123 r2->secure = secstate; 9124 if (opaque) { 9125 r2->opaque = opaque; 9126 } 9127 9128 if (make_const) { 9129 /* This should not have been a very special register to begin. */ 9130 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9131 assert(old_special == 0 || old_special == ARM_CP_NOP); 9132 /* 9133 * Set the special function to CONST, retaining the other flags. 9134 * This is important for e.g. ARM_CP_SVE so that we still 9135 * take the SVE trap if CPTR_EL3.EZ == 0. 9136 */ 9137 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9138 /* 9139 * Usually, these registers become RES0, but there are a few 9140 * special cases like VPIDR_EL2 which have a constant non-zero 9141 * value with writes ignored. 9142 */ 9143 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9144 r2->resetvalue = 0; 9145 } 9146 /* 9147 * ARM_CP_CONST has precedence, so removing the callbacks and 9148 * offsets are not strictly necessary, but it is potentially 9149 * less confusing to debug later. 9150 */ 9151 r2->readfn = NULL; 9152 r2->writefn = NULL; 9153 r2->raw_readfn = NULL; 9154 r2->raw_writefn = NULL; 9155 r2->resetfn = NULL; 9156 r2->fieldoffset = 0; 9157 r2->bank_fieldoffsets[0] = 0; 9158 r2->bank_fieldoffsets[1] = 0; 9159 } else { 9160 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9161 9162 if (isbanked) { 9163 /* 9164 * Register is banked (using both entries in array). 9165 * Overwriting fieldoffset as the array is only used to define 9166 * banked registers but later only fieldoffset is used. 9167 */ 9168 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9169 } 9170 if (state == ARM_CP_STATE_AA32) { 9171 if (isbanked) { 9172 /* 9173 * If the register is banked then we don't need to migrate or 9174 * reset the 32-bit instance in certain cases: 9175 * 9176 * 1) If the register has both 32-bit and 64-bit instances 9177 * then we can count on the 64-bit instance taking care 9178 * of the non-secure bank. 9179 * 2) If ARMv8 is enabled then we can count on a 64-bit 9180 * version taking care of the secure bank. This requires 9181 * that separate 32 and 64-bit definitions are provided. 9182 */ 9183 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9184 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9185 r2->type |= ARM_CP_ALIAS; 9186 } 9187 } else if ((secstate != r->secure) && !ns) { 9188 /* 9189 * The register is not banked so we only want to allow 9190 * migration of the non-secure instance. 9191 */ 9192 r2->type |= ARM_CP_ALIAS; 9193 } 9194 9195 if (HOST_BIG_ENDIAN && 9196 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9197 r2->fieldoffset += sizeof(uint32_t); 9198 } 9199 } 9200 } 9201 9202 /* 9203 * By convention, for wildcarded registers only the first 9204 * entry is used for migration; the others are marked as 9205 * ALIAS so we don't try to transfer the register 9206 * multiple times. Special registers (ie NOP/WFI) are 9207 * never migratable and not even raw-accessible. 9208 */ 9209 if (r2->type & ARM_CP_SPECIAL_MASK) { 9210 r2->type |= ARM_CP_NO_RAW; 9211 } 9212 if (((r->crm == CP_ANY) && crm != 0) || 9213 ((r->opc1 == CP_ANY) && opc1 != 0) || 9214 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9215 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9216 } 9217 9218 /* 9219 * Check that raw accesses are either forbidden or handled. Note that 9220 * we can't assert this earlier because the setup of fieldoffset for 9221 * banked registers has to be done first. 9222 */ 9223 if (!(r2->type & ARM_CP_NO_RAW)) { 9224 assert(!raw_accessors_invalid(r2)); 9225 } 9226 9227 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9228 } 9229 9230 9231 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9232 const ARMCPRegInfo *r, void *opaque) 9233 { 9234 /* 9235 * Define implementations of coprocessor registers. 9236 * We store these in a hashtable because typically 9237 * there are less than 150 registers in a space which 9238 * is 16*16*16*8*8 = 262144 in size. 9239 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9240 * If a register is defined twice then the second definition is 9241 * used, so this can be used to define some generic registers and 9242 * then override them with implementation specific variations. 9243 * At least one of the original and the second definition should 9244 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9245 * against accidental use. 9246 * 9247 * The state field defines whether the register is to be 9248 * visible in the AArch32 or AArch64 execution state. If the 9249 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9250 * reginfo structure for the AArch32 view, which sees the lower 9251 * 32 bits of the 64 bit register. 9252 * 9253 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9254 * be wildcarded. AArch64 registers are always considered to be 64 9255 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9256 * the register, if any. 9257 */ 9258 int crm, opc1, opc2; 9259 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9260 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9261 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9262 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9263 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9264 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9265 CPState state; 9266 9267 /* 64 bit registers have only CRm and Opc1 fields */ 9268 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9269 /* op0 only exists in the AArch64 encodings */ 9270 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9271 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9272 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9273 /* 9274 * This API is only for Arm's system coprocessors (14 and 15) or 9275 * (M-profile or v7A-and-earlier only) for implementation defined 9276 * coprocessors in the range 0..7. Our decode assumes this, since 9277 * 8..13 can be used for other insns including VFP and Neon. See 9278 * valid_cp() in translate.c. Assert here that we haven't tried 9279 * to use an invalid coprocessor number. 9280 */ 9281 switch (r->state) { 9282 case ARM_CP_STATE_BOTH: 9283 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9284 if (r->cp == 0) { 9285 break; 9286 } 9287 /* fall through */ 9288 case ARM_CP_STATE_AA32: 9289 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9290 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9291 assert(r->cp >= 14 && r->cp <= 15); 9292 } else { 9293 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9294 } 9295 break; 9296 case ARM_CP_STATE_AA64: 9297 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9298 break; 9299 default: 9300 g_assert_not_reached(); 9301 } 9302 /* 9303 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9304 * encodes a minimum access level for the register. We roll this 9305 * runtime check into our general permission check code, so check 9306 * here that the reginfo's specified permissions are strict enough 9307 * to encompass the generic architectural permission check. 9308 */ 9309 if (r->state != ARM_CP_STATE_AA32) { 9310 CPAccessRights mask; 9311 switch (r->opc1) { 9312 case 0: 9313 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9314 mask = PL0U_R | PL1_RW; 9315 break; 9316 case 1: case 2: 9317 /* min_EL EL1 */ 9318 mask = PL1_RW; 9319 break; 9320 case 3: 9321 /* min_EL EL0 */ 9322 mask = PL0_RW; 9323 break; 9324 case 4: 9325 case 5: 9326 /* min_EL EL2 */ 9327 mask = PL2_RW; 9328 break; 9329 case 6: 9330 /* min_EL EL3 */ 9331 mask = PL3_RW; 9332 break; 9333 case 7: 9334 /* min_EL EL1, secure mode only (we don't check the latter) */ 9335 mask = PL1_RW; 9336 break; 9337 default: 9338 /* broken reginfo with out-of-range opc1 */ 9339 g_assert_not_reached(); 9340 } 9341 /* assert our permissions are not too lax (stricter is fine) */ 9342 assert((r->access & ~mask) == 0); 9343 } 9344 9345 /* 9346 * Check that the register definition has enough info to handle 9347 * reads and writes if they are permitted. 9348 */ 9349 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9350 if (r->access & PL3_R) { 9351 assert((r->fieldoffset || 9352 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9353 r->readfn); 9354 } 9355 if (r->access & PL3_W) { 9356 assert((r->fieldoffset || 9357 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9358 r->writefn); 9359 } 9360 } 9361 9362 for (crm = crmmin; crm <= crmmax; crm++) { 9363 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9364 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9365 for (state = ARM_CP_STATE_AA32; 9366 state <= ARM_CP_STATE_AA64; state++) { 9367 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9368 continue; 9369 } 9370 if ((r->type & ARM_CP_ADD_TLBI_NXS) && 9371 cpu_isar_feature(aa64_xs, cpu)) { 9372 /* 9373 * This is a TLBI insn which has an NXS variant. The 9374 * NXS variant is at the same encoding except that 9375 * crn is +1, and has the same behaviour except for 9376 * fine-grained trapping. Add the NXS insn here and 9377 * then fall through to add the normal register. 9378 * add_cpreg_to_hashtable() copies the cpreg struct 9379 * and name that it is passed, so it's OK to use 9380 * a local struct here. 9381 */ 9382 ARMCPRegInfo nxs_ri = *r; 9383 g_autofree char *name = g_strdup_printf("%sNXS", r->name); 9384 9385 assert(state == ARM_CP_STATE_AA64); 9386 assert(nxs_ri.crn < 0xf); 9387 nxs_ri.crn++; 9388 if (nxs_ri.fgt) { 9389 nxs_ri.fgt |= R_FGT_NXS_MASK; 9390 } 9391 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state, 9392 ARM_CP_SECSTATE_NS, 9393 crm, opc1, opc2, name); 9394 } 9395 if (state == ARM_CP_STATE_AA32) { 9396 /* 9397 * Under AArch32 CP registers can be common 9398 * (same for secure and non-secure world) or banked. 9399 */ 9400 char *name; 9401 9402 switch (r->secure) { 9403 case ARM_CP_SECSTATE_S: 9404 case ARM_CP_SECSTATE_NS: 9405 add_cpreg_to_hashtable(cpu, r, opaque, state, 9406 r->secure, crm, opc1, opc2, 9407 r->name); 9408 break; 9409 case ARM_CP_SECSTATE_BOTH: 9410 name = g_strdup_printf("%s_S", r->name); 9411 add_cpreg_to_hashtable(cpu, r, opaque, state, 9412 ARM_CP_SECSTATE_S, 9413 crm, opc1, opc2, name); 9414 g_free(name); 9415 add_cpreg_to_hashtable(cpu, r, opaque, state, 9416 ARM_CP_SECSTATE_NS, 9417 crm, opc1, opc2, r->name); 9418 break; 9419 default: 9420 g_assert_not_reached(); 9421 } 9422 } else { 9423 /* 9424 * AArch64 registers get mapped to non-secure instance 9425 * of AArch32 9426 */ 9427 add_cpreg_to_hashtable(cpu, r, opaque, state, 9428 ARM_CP_SECSTATE_NS, 9429 crm, opc1, opc2, r->name); 9430 } 9431 } 9432 } 9433 } 9434 } 9435 } 9436 9437 /* Define a whole list of registers */ 9438 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9439 void *opaque, size_t len) 9440 { 9441 size_t i; 9442 for (i = 0; i < len; ++i) { 9443 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9444 } 9445 } 9446 9447 /* 9448 * Modify ARMCPRegInfo for access from userspace. 9449 * 9450 * This is a data driven modification directed by 9451 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9452 * user-space cannot alter any values and dynamic values pertaining to 9453 * execution state are hidden from user space view anyway. 9454 */ 9455 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9456 const ARMCPRegUserSpaceInfo *mods, 9457 size_t mods_len) 9458 { 9459 for (size_t mi = 0; mi < mods_len; ++mi) { 9460 const ARMCPRegUserSpaceInfo *m = mods + mi; 9461 GPatternSpec *pat = NULL; 9462 9463 if (m->is_glob) { 9464 pat = g_pattern_spec_new(m->name); 9465 } 9466 for (size_t ri = 0; ri < regs_len; ++ri) { 9467 ARMCPRegInfo *r = regs + ri; 9468 9469 if (pat && g_pattern_match_string(pat, r->name)) { 9470 r->type = ARM_CP_CONST; 9471 r->access = PL0U_R; 9472 r->resetvalue = 0; 9473 /* continue */ 9474 } else if (strcmp(r->name, m->name) == 0) { 9475 r->type = ARM_CP_CONST; 9476 r->access = PL0U_R; 9477 r->resetvalue &= m->exported_bits; 9478 r->resetvalue |= m->fixed_bits; 9479 break; 9480 } 9481 } 9482 if (pat) { 9483 g_pattern_spec_free(pat); 9484 } 9485 } 9486 } 9487 9488 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9489 { 9490 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9491 } 9492 9493 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9494 uint64_t value) 9495 { 9496 /* Helper coprocessor write function for write-ignore registers */ 9497 } 9498 9499 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9500 { 9501 /* Helper coprocessor write function for read-as-zero registers */ 9502 return 0; 9503 } 9504 9505 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9506 { 9507 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9508 } 9509 9510 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9511 { 9512 /* 9513 * Return true if it is not valid for us to switch to 9514 * this CPU mode (ie all the UNPREDICTABLE cases in 9515 * the ARM ARM CPSRWriteByInstr pseudocode). 9516 */ 9517 9518 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9519 if (write_type == CPSRWriteByInstr && 9520 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9521 mode == ARM_CPU_MODE_HYP)) { 9522 return 1; 9523 } 9524 9525 switch (mode) { 9526 case ARM_CPU_MODE_USR: 9527 return 0; 9528 case ARM_CPU_MODE_SYS: 9529 case ARM_CPU_MODE_SVC: 9530 case ARM_CPU_MODE_ABT: 9531 case ARM_CPU_MODE_UND: 9532 case ARM_CPU_MODE_IRQ: 9533 case ARM_CPU_MODE_FIQ: 9534 /* 9535 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9536 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9537 */ 9538 /* 9539 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9540 * and CPS are treated as illegal mode changes. 9541 */ 9542 if (write_type == CPSRWriteByInstr && 9543 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9544 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9545 return 1; 9546 } 9547 return 0; 9548 case ARM_CPU_MODE_HYP: 9549 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9550 case ARM_CPU_MODE_MON: 9551 return arm_current_el(env) < 3; 9552 default: 9553 return 1; 9554 } 9555 } 9556 9557 uint32_t cpsr_read(CPUARMState *env) 9558 { 9559 int ZF; 9560 ZF = (env->ZF == 0); 9561 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9562 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9563 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9564 | ((env->condexec_bits & 0xfc) << 8) 9565 | (env->GE << 16) | (env->daif & CPSR_AIF); 9566 } 9567 9568 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9569 CPSRWriteType write_type) 9570 { 9571 uint32_t changed_daif; 9572 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9573 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9574 9575 if (mask & CPSR_NZCV) { 9576 env->ZF = (~val) & CPSR_Z; 9577 env->NF = val; 9578 env->CF = (val >> 29) & 1; 9579 env->VF = (val << 3) & 0x80000000; 9580 } 9581 if (mask & CPSR_Q) { 9582 env->QF = ((val & CPSR_Q) != 0); 9583 } 9584 if (mask & CPSR_T) { 9585 env->thumb = ((val & CPSR_T) != 0); 9586 } 9587 if (mask & CPSR_IT_0_1) { 9588 env->condexec_bits &= ~3; 9589 env->condexec_bits |= (val >> 25) & 3; 9590 } 9591 if (mask & CPSR_IT_2_7) { 9592 env->condexec_bits &= 3; 9593 env->condexec_bits |= (val >> 8) & 0xfc; 9594 } 9595 if (mask & CPSR_GE) { 9596 env->GE = (val >> 16) & 0xf; 9597 } 9598 9599 /* 9600 * In a V7 implementation that includes the security extensions but does 9601 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9602 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9603 * bits respectively. 9604 * 9605 * In a V8 implementation, it is permitted for privileged software to 9606 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9607 */ 9608 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9609 arm_feature(env, ARM_FEATURE_EL3) && 9610 !arm_feature(env, ARM_FEATURE_EL2) && 9611 !arm_is_secure(env)) { 9612 9613 changed_daif = (env->daif ^ val) & mask; 9614 9615 if (changed_daif & CPSR_A) { 9616 /* 9617 * Check to see if we are allowed to change the masking of async 9618 * abort exceptions from a non-secure state. 9619 */ 9620 if (!(env->cp15.scr_el3 & SCR_AW)) { 9621 qemu_log_mask(LOG_GUEST_ERROR, 9622 "Ignoring attempt to switch CPSR_A flag from " 9623 "non-secure world with SCR.AW bit clear\n"); 9624 mask &= ~CPSR_A; 9625 } 9626 } 9627 9628 if (changed_daif & CPSR_F) { 9629 /* 9630 * Check to see if we are allowed to change the masking of FIQ 9631 * exceptions from a non-secure state. 9632 */ 9633 if (!(env->cp15.scr_el3 & SCR_FW)) { 9634 qemu_log_mask(LOG_GUEST_ERROR, 9635 "Ignoring attempt to switch CPSR_F flag from " 9636 "non-secure world with SCR.FW bit clear\n"); 9637 mask &= ~CPSR_F; 9638 } 9639 9640 /* 9641 * Check whether non-maskable FIQ (NMFI) support is enabled. 9642 * If this bit is set software is not allowed to mask 9643 * FIQs, but is allowed to set CPSR_F to 0. 9644 */ 9645 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9646 (val & CPSR_F)) { 9647 qemu_log_mask(LOG_GUEST_ERROR, 9648 "Ignoring attempt to enable CPSR_F flag " 9649 "(non-maskable FIQ [NMFI] support enabled)\n"); 9650 mask &= ~CPSR_F; 9651 } 9652 } 9653 } 9654 9655 env->daif &= ~(CPSR_AIF & mask); 9656 env->daif |= val & CPSR_AIF & mask; 9657 9658 if (write_type != CPSRWriteRaw && 9659 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9660 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9661 /* 9662 * Note that we can only get here in USR mode if this is a 9663 * gdb stub write; for this case we follow the architectural 9664 * behaviour for guest writes in USR mode of ignoring an attempt 9665 * to switch mode. (Those are caught by translate.c for writes 9666 * triggered by guest instructions.) 9667 */ 9668 mask &= ~CPSR_M; 9669 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9670 /* 9671 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9672 * v7, and has defined behaviour in v8: 9673 * + leave CPSR.M untouched 9674 * + allow changes to the other CPSR fields 9675 * + set PSTATE.IL 9676 * For user changes via the GDB stub, we don't set PSTATE.IL, 9677 * as this would be unnecessarily harsh for a user error. 9678 */ 9679 mask &= ~CPSR_M; 9680 if (write_type != CPSRWriteByGDBStub && 9681 arm_feature(env, ARM_FEATURE_V8)) { 9682 mask |= CPSR_IL; 9683 val |= CPSR_IL; 9684 } 9685 qemu_log_mask(LOG_GUEST_ERROR, 9686 "Illegal AArch32 mode switch attempt from %s to %s\n", 9687 aarch32_mode_name(env->uncached_cpsr), 9688 aarch32_mode_name(val)); 9689 } else { 9690 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9691 write_type == CPSRWriteExceptionReturn ? 9692 "Exception return from AArch32" : 9693 "AArch32 mode switch from", 9694 aarch32_mode_name(env->uncached_cpsr), 9695 aarch32_mode_name(val), env->regs[15]); 9696 switch_mode(env, val & CPSR_M); 9697 } 9698 } 9699 mask &= ~CACHED_CPSR_BITS; 9700 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9701 if (tcg_enabled() && rebuild_hflags) { 9702 arm_rebuild_hflags(env); 9703 } 9704 } 9705 9706 #ifdef CONFIG_USER_ONLY 9707 9708 static void switch_mode(CPUARMState *env, int mode) 9709 { 9710 ARMCPU *cpu = env_archcpu(env); 9711 9712 if (mode != ARM_CPU_MODE_USR) { 9713 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9714 } 9715 } 9716 9717 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9718 uint32_t cur_el, bool secure) 9719 { 9720 return 1; 9721 } 9722 9723 void aarch64_sync_64_to_32(CPUARMState *env) 9724 { 9725 g_assert_not_reached(); 9726 } 9727 9728 #else 9729 9730 static void switch_mode(CPUARMState *env, int mode) 9731 { 9732 int old_mode; 9733 int i; 9734 9735 old_mode = env->uncached_cpsr & CPSR_M; 9736 if (mode == old_mode) { 9737 return; 9738 } 9739 9740 if (old_mode == ARM_CPU_MODE_FIQ) { 9741 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9742 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9743 } else if (mode == ARM_CPU_MODE_FIQ) { 9744 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9745 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9746 } 9747 9748 i = bank_number(old_mode); 9749 env->banked_r13[i] = env->regs[13]; 9750 env->banked_spsr[i] = env->spsr; 9751 9752 i = bank_number(mode); 9753 env->regs[13] = env->banked_r13[i]; 9754 env->spsr = env->banked_spsr[i]; 9755 9756 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9757 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9758 } 9759 9760 /* 9761 * Physical Interrupt Target EL Lookup Table 9762 * 9763 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9764 * 9765 * The below multi-dimensional table is used for looking up the target 9766 * exception level given numerous condition criteria. Specifically, the 9767 * target EL is based on SCR and HCR routing controls as well as the 9768 * currently executing EL and secure state. 9769 * 9770 * Dimensions: 9771 * target_el_table[2][2][2][2][2][4] 9772 * | | | | | +--- Current EL 9773 * | | | | +------ Non-secure(0)/Secure(1) 9774 * | | | +--------- HCR mask override 9775 * | | +------------ SCR exec state control 9776 * | +--------------- SCR mask override 9777 * +------------------ 32-bit(0)/64-bit(1) EL3 9778 * 9779 * The table values are as such: 9780 * 0-3 = EL0-EL3 9781 * -1 = Cannot occur 9782 * 9783 * The ARM ARM target EL table includes entries indicating that an "exception 9784 * is not taken". The two cases where this is applicable are: 9785 * 1) An exception is taken from EL3 but the SCR does not have the exception 9786 * routed to EL3. 9787 * 2) An exception is taken from EL2 but the HCR does not have the exception 9788 * routed to EL2. 9789 * In these two cases, the below table contain a target of EL1. This value is 9790 * returned as it is expected that the consumer of the table data will check 9791 * for "target EL >= current EL" to ensure the exception is not taken. 9792 * 9793 * SCR HCR 9794 * 64 EA AMO From 9795 * BIT IRQ IMO Non-secure Secure 9796 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9797 */ 9798 static const int8_t target_el_table[2][2][2][2][2][4] = { 9799 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9800 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9801 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9802 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9803 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9804 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9805 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9806 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9807 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9808 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9809 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9810 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9811 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9812 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9813 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9814 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9815 }; 9816 9817 /* 9818 * Determine the target EL for physical exceptions 9819 */ 9820 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9821 uint32_t cur_el, bool secure) 9822 { 9823 CPUARMState *env = cpu_env(cs); 9824 bool rw; 9825 bool scr; 9826 bool hcr; 9827 int target_el; 9828 /* Is the highest EL AArch64? */ 9829 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9830 uint64_t hcr_el2; 9831 9832 if (arm_feature(env, ARM_FEATURE_EL3)) { 9833 rw = arm_scr_rw_eff(env); 9834 } else { 9835 /* 9836 * Either EL2 is the highest EL (and so the EL2 register width 9837 * is given by is64); or there is no EL2 or EL3, in which case 9838 * the value of 'rw' does not affect the table lookup anyway. 9839 */ 9840 rw = is64; 9841 } 9842 9843 hcr_el2 = arm_hcr_el2_eff(env); 9844 switch (excp_idx) { 9845 case EXCP_IRQ: 9846 case EXCP_NMI: 9847 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9848 hcr = hcr_el2 & HCR_IMO; 9849 break; 9850 case EXCP_FIQ: 9851 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9852 hcr = hcr_el2 & HCR_FMO; 9853 break; 9854 default: 9855 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9856 hcr = hcr_el2 & HCR_AMO; 9857 break; 9858 }; 9859 9860 /* 9861 * For these purposes, TGE and AMO/IMO/FMO both force the 9862 * interrupt to EL2. Fold TGE into the bit extracted above. 9863 */ 9864 hcr |= (hcr_el2 & HCR_TGE) != 0; 9865 9866 /* Perform a table-lookup for the target EL given the current state */ 9867 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9868 9869 assert(target_el > 0); 9870 9871 return target_el; 9872 } 9873 9874 void arm_log_exception(CPUState *cs) 9875 { 9876 int idx = cs->exception_index; 9877 9878 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9879 const char *exc = NULL; 9880 static const char * const excnames[] = { 9881 [EXCP_UDEF] = "Undefined Instruction", 9882 [EXCP_SWI] = "SVC", 9883 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9884 [EXCP_DATA_ABORT] = "Data Abort", 9885 [EXCP_IRQ] = "IRQ", 9886 [EXCP_FIQ] = "FIQ", 9887 [EXCP_BKPT] = "Breakpoint", 9888 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9889 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9890 [EXCP_HVC] = "Hypervisor Call", 9891 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9892 [EXCP_SMC] = "Secure Monitor Call", 9893 [EXCP_VIRQ] = "Virtual IRQ", 9894 [EXCP_VFIQ] = "Virtual FIQ", 9895 [EXCP_SEMIHOST] = "Semihosting call", 9896 [EXCP_NOCP] = "v7M NOCP UsageFault", 9897 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9898 [EXCP_STKOF] = "v8M STKOF UsageFault", 9899 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9900 [EXCP_LSERR] = "v8M LSERR UsageFault", 9901 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9902 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9903 [EXCP_VSERR] = "Virtual SERR", 9904 [EXCP_GPC] = "Granule Protection Check", 9905 [EXCP_NMI] = "NMI", 9906 [EXCP_VINMI] = "Virtual IRQ NMI", 9907 [EXCP_VFNMI] = "Virtual FIQ NMI", 9908 [EXCP_MON_TRAP] = "Monitor Trap", 9909 }; 9910 9911 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9912 exc = excnames[idx]; 9913 } 9914 if (!exc) { 9915 exc = "unknown"; 9916 } 9917 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9918 idx, exc, cs->cpu_index); 9919 } 9920 } 9921 9922 /* 9923 * Function used to synchronize QEMU's AArch64 register set with AArch32 9924 * register set. This is necessary when switching between AArch32 and AArch64 9925 * execution state. 9926 */ 9927 void aarch64_sync_32_to_64(CPUARMState *env) 9928 { 9929 int i; 9930 uint32_t mode = env->uncached_cpsr & CPSR_M; 9931 9932 /* We can blanket copy R[0:7] to X[0:7] */ 9933 for (i = 0; i < 8; i++) { 9934 env->xregs[i] = env->regs[i]; 9935 } 9936 9937 /* 9938 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9939 * Otherwise, they come from the banked user regs. 9940 */ 9941 if (mode == ARM_CPU_MODE_FIQ) { 9942 for (i = 8; i < 13; i++) { 9943 env->xregs[i] = env->usr_regs[i - 8]; 9944 } 9945 } else { 9946 for (i = 8; i < 13; i++) { 9947 env->xregs[i] = env->regs[i]; 9948 } 9949 } 9950 9951 /* 9952 * Registers x13-x23 are the various mode SP and FP registers. Registers 9953 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9954 * from the mode banked register. 9955 */ 9956 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9957 env->xregs[13] = env->regs[13]; 9958 env->xregs[14] = env->regs[14]; 9959 } else { 9960 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9961 /* HYP is an exception in that it is copied from r14 */ 9962 if (mode == ARM_CPU_MODE_HYP) { 9963 env->xregs[14] = env->regs[14]; 9964 } else { 9965 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9966 } 9967 } 9968 9969 if (mode == ARM_CPU_MODE_HYP) { 9970 env->xregs[15] = env->regs[13]; 9971 } else { 9972 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9973 } 9974 9975 if (mode == ARM_CPU_MODE_IRQ) { 9976 env->xregs[16] = env->regs[14]; 9977 env->xregs[17] = env->regs[13]; 9978 } else { 9979 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9980 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9981 } 9982 9983 if (mode == ARM_CPU_MODE_SVC) { 9984 env->xregs[18] = env->regs[14]; 9985 env->xregs[19] = env->regs[13]; 9986 } else { 9987 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9988 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9989 } 9990 9991 if (mode == ARM_CPU_MODE_ABT) { 9992 env->xregs[20] = env->regs[14]; 9993 env->xregs[21] = env->regs[13]; 9994 } else { 9995 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9996 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9997 } 9998 9999 if (mode == ARM_CPU_MODE_UND) { 10000 env->xregs[22] = env->regs[14]; 10001 env->xregs[23] = env->regs[13]; 10002 } else { 10003 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10004 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10005 } 10006 10007 /* 10008 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10009 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10010 * FIQ bank for r8-r14. 10011 */ 10012 if (mode == ARM_CPU_MODE_FIQ) { 10013 for (i = 24; i < 31; i++) { 10014 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10015 } 10016 } else { 10017 for (i = 24; i < 29; i++) { 10018 env->xregs[i] = env->fiq_regs[i - 24]; 10019 } 10020 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10021 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10022 } 10023 10024 env->pc = env->regs[15]; 10025 } 10026 10027 /* 10028 * Function used to synchronize QEMU's AArch32 register set with AArch64 10029 * register set. This is necessary when switching between AArch32 and AArch64 10030 * execution state. 10031 */ 10032 void aarch64_sync_64_to_32(CPUARMState *env) 10033 { 10034 int i; 10035 uint32_t mode = env->uncached_cpsr & CPSR_M; 10036 10037 /* We can blanket copy X[0:7] to R[0:7] */ 10038 for (i = 0; i < 8; i++) { 10039 env->regs[i] = env->xregs[i]; 10040 } 10041 10042 /* 10043 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10044 * Otherwise, we copy x8-x12 into the banked user regs. 10045 */ 10046 if (mode == ARM_CPU_MODE_FIQ) { 10047 for (i = 8; i < 13; i++) { 10048 env->usr_regs[i - 8] = env->xregs[i]; 10049 } 10050 } else { 10051 for (i = 8; i < 13; i++) { 10052 env->regs[i] = env->xregs[i]; 10053 } 10054 } 10055 10056 /* 10057 * Registers r13 & r14 depend on the current mode. 10058 * If we are in a given mode, we copy the corresponding x registers to r13 10059 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10060 * for the mode. 10061 */ 10062 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10063 env->regs[13] = env->xregs[13]; 10064 env->regs[14] = env->xregs[14]; 10065 } else { 10066 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10067 10068 /* 10069 * HYP is an exception in that it does not have its own banked r14 but 10070 * shares the USR r14 10071 */ 10072 if (mode == ARM_CPU_MODE_HYP) { 10073 env->regs[14] = env->xregs[14]; 10074 } else { 10075 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10076 } 10077 } 10078 10079 if (mode == ARM_CPU_MODE_HYP) { 10080 env->regs[13] = env->xregs[15]; 10081 } else { 10082 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10083 } 10084 10085 if (mode == ARM_CPU_MODE_IRQ) { 10086 env->regs[14] = env->xregs[16]; 10087 env->regs[13] = env->xregs[17]; 10088 } else { 10089 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10090 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10091 } 10092 10093 if (mode == ARM_CPU_MODE_SVC) { 10094 env->regs[14] = env->xregs[18]; 10095 env->regs[13] = env->xregs[19]; 10096 } else { 10097 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10098 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10099 } 10100 10101 if (mode == ARM_CPU_MODE_ABT) { 10102 env->regs[14] = env->xregs[20]; 10103 env->regs[13] = env->xregs[21]; 10104 } else { 10105 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10106 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10107 } 10108 10109 if (mode == ARM_CPU_MODE_UND) { 10110 env->regs[14] = env->xregs[22]; 10111 env->regs[13] = env->xregs[23]; 10112 } else { 10113 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10114 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10115 } 10116 10117 /* 10118 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10119 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10120 * FIQ bank for r8-r14. 10121 */ 10122 if (mode == ARM_CPU_MODE_FIQ) { 10123 for (i = 24; i < 31; i++) { 10124 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10125 } 10126 } else { 10127 for (i = 24; i < 29; i++) { 10128 env->fiq_regs[i - 24] = env->xregs[i]; 10129 } 10130 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10131 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10132 } 10133 10134 env->regs[15] = env->pc; 10135 } 10136 10137 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10138 uint32_t mask, uint32_t offset, 10139 uint32_t newpc) 10140 { 10141 int new_el; 10142 10143 /* Change the CPU state so as to actually take the exception. */ 10144 switch_mode(env, new_mode); 10145 10146 /* 10147 * For exceptions taken to AArch32 we must clear the SS bit in both 10148 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10149 */ 10150 env->pstate &= ~PSTATE_SS; 10151 env->spsr = cpsr_read(env); 10152 /* Clear IT bits. */ 10153 env->condexec_bits = 0; 10154 /* Switch to the new mode, and to the correct instruction set. */ 10155 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10156 10157 /* This must be after mode switching. */ 10158 new_el = arm_current_el(env); 10159 10160 /* Set new mode endianness */ 10161 env->uncached_cpsr &= ~CPSR_E; 10162 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10163 env->uncached_cpsr |= CPSR_E; 10164 } 10165 /* J and IL must always be cleared for exception entry */ 10166 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10167 env->daif |= mask; 10168 10169 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10170 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10171 env->uncached_cpsr |= CPSR_SSBS; 10172 } else { 10173 env->uncached_cpsr &= ~CPSR_SSBS; 10174 } 10175 } 10176 10177 if (new_mode == ARM_CPU_MODE_HYP) { 10178 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10179 env->elr_el[2] = env->regs[15]; 10180 } else { 10181 /* CPSR.PAN is normally preserved preserved unless... */ 10182 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10183 switch (new_el) { 10184 case 3: 10185 if (!arm_is_secure_below_el3(env)) { 10186 /* ... the target is EL3, from non-secure state. */ 10187 env->uncached_cpsr &= ~CPSR_PAN; 10188 break; 10189 } 10190 /* ... the target is EL3, from secure state ... */ 10191 /* fall through */ 10192 case 1: 10193 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10194 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10195 env->uncached_cpsr |= CPSR_PAN; 10196 } 10197 break; 10198 } 10199 } 10200 /* 10201 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10202 * and we should just guard the thumb mode on V4 10203 */ 10204 if (arm_feature(env, ARM_FEATURE_V4T)) { 10205 env->thumb = 10206 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10207 } 10208 env->regs[14] = env->regs[15] + offset; 10209 } 10210 env->regs[15] = newpc; 10211 10212 if (tcg_enabled()) { 10213 arm_rebuild_hflags(env); 10214 } 10215 } 10216 10217 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10218 { 10219 /* 10220 * Handle exception entry to Hyp mode; this is sufficiently 10221 * different to entry to other AArch32 modes that we handle it 10222 * separately here. 10223 * 10224 * The vector table entry used is always the 0x14 Hyp mode entry point, 10225 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10226 * The offset applied to the preferred return address is always zero 10227 * (see DDI0487C.a section G1.12.3). 10228 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10229 */ 10230 uint32_t addr, mask; 10231 ARMCPU *cpu = ARM_CPU(cs); 10232 CPUARMState *env = &cpu->env; 10233 10234 switch (cs->exception_index) { 10235 case EXCP_UDEF: 10236 addr = 0x04; 10237 break; 10238 case EXCP_SWI: 10239 addr = 0x08; 10240 break; 10241 case EXCP_BKPT: 10242 /* Fall through to prefetch abort. */ 10243 case EXCP_PREFETCH_ABORT: 10244 env->cp15.ifar_s = env->exception.vaddress; 10245 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10246 (uint32_t)env->exception.vaddress); 10247 addr = 0x0c; 10248 break; 10249 case EXCP_DATA_ABORT: 10250 env->cp15.dfar_s = env->exception.vaddress; 10251 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10252 (uint32_t)env->exception.vaddress); 10253 addr = 0x10; 10254 break; 10255 case EXCP_IRQ: 10256 addr = 0x18; 10257 break; 10258 case EXCP_FIQ: 10259 addr = 0x1c; 10260 break; 10261 case EXCP_HVC: 10262 addr = 0x08; 10263 break; 10264 case EXCP_HYP_TRAP: 10265 addr = 0x14; 10266 break; 10267 default: 10268 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10269 } 10270 10271 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10272 if (!arm_feature(env, ARM_FEATURE_V8)) { 10273 /* 10274 * QEMU syndrome values are v8-style. v7 has the IL bit 10275 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10276 * If this is a v7 CPU, squash the IL bit in those cases. 10277 */ 10278 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10279 (cs->exception_index == EXCP_DATA_ABORT && 10280 !(env->exception.syndrome & ARM_EL_ISV)) || 10281 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10282 env->exception.syndrome &= ~ARM_EL_IL; 10283 } 10284 } 10285 env->cp15.esr_el[2] = env->exception.syndrome; 10286 } 10287 10288 if (arm_current_el(env) != 2 && addr < 0x14) { 10289 addr = 0x14; 10290 } 10291 10292 mask = 0; 10293 if (!(env->cp15.scr_el3 & SCR_EA)) { 10294 mask |= CPSR_A; 10295 } 10296 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10297 mask |= CPSR_I; 10298 } 10299 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10300 mask |= CPSR_F; 10301 } 10302 10303 addr += env->cp15.hvbar; 10304 10305 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10306 } 10307 10308 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10309 { 10310 ARMCPU *cpu = ARM_CPU(cs); 10311 CPUARMState *env = &cpu->env; 10312 uint32_t addr; 10313 uint32_t mask; 10314 int new_mode; 10315 uint32_t offset; 10316 uint32_t moe; 10317 10318 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10319 switch (syn_get_ec(env->exception.syndrome)) { 10320 case EC_BREAKPOINT: 10321 case EC_BREAKPOINT_SAME_EL: 10322 moe = 1; 10323 break; 10324 case EC_WATCHPOINT: 10325 case EC_WATCHPOINT_SAME_EL: 10326 moe = 10; 10327 break; 10328 case EC_AA32_BKPT: 10329 moe = 3; 10330 break; 10331 case EC_VECTORCATCH: 10332 moe = 5; 10333 break; 10334 default: 10335 moe = 0; 10336 break; 10337 } 10338 10339 if (moe) { 10340 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10341 } 10342 10343 if (env->exception.target_el == 2) { 10344 /* Debug exceptions are reported differently on AArch32 */ 10345 switch (syn_get_ec(env->exception.syndrome)) { 10346 case EC_BREAKPOINT: 10347 case EC_BREAKPOINT_SAME_EL: 10348 case EC_AA32_BKPT: 10349 case EC_VECTORCATCH: 10350 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10351 0, 0, 0x22); 10352 break; 10353 case EC_WATCHPOINT: 10354 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10355 EC_DATAABORT); 10356 break; 10357 case EC_WATCHPOINT_SAME_EL: 10358 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10359 EC_DATAABORT_SAME_EL); 10360 break; 10361 } 10362 arm_cpu_do_interrupt_aarch32_hyp(cs); 10363 return; 10364 } 10365 10366 switch (cs->exception_index) { 10367 case EXCP_UDEF: 10368 new_mode = ARM_CPU_MODE_UND; 10369 addr = 0x04; 10370 mask = CPSR_I; 10371 if (env->thumb) { 10372 offset = 2; 10373 } else { 10374 offset = 4; 10375 } 10376 break; 10377 case EXCP_SWI: 10378 new_mode = ARM_CPU_MODE_SVC; 10379 addr = 0x08; 10380 mask = CPSR_I; 10381 /* The PC already points to the next instruction. */ 10382 offset = 0; 10383 break; 10384 case EXCP_BKPT: 10385 /* Fall through to prefetch abort. */ 10386 case EXCP_PREFETCH_ABORT: 10387 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10388 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10389 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10390 env->exception.fsr, (uint32_t)env->exception.vaddress); 10391 new_mode = ARM_CPU_MODE_ABT; 10392 addr = 0x0c; 10393 mask = CPSR_A | CPSR_I; 10394 offset = 4; 10395 break; 10396 case EXCP_DATA_ABORT: 10397 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10398 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10399 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10400 env->exception.fsr, 10401 (uint32_t)env->exception.vaddress); 10402 new_mode = ARM_CPU_MODE_ABT; 10403 addr = 0x10; 10404 mask = CPSR_A | CPSR_I; 10405 offset = 8; 10406 break; 10407 case EXCP_IRQ: 10408 new_mode = ARM_CPU_MODE_IRQ; 10409 addr = 0x18; 10410 /* Disable IRQ and imprecise data aborts. */ 10411 mask = CPSR_A | CPSR_I; 10412 offset = 4; 10413 if (env->cp15.scr_el3 & SCR_IRQ) { 10414 /* IRQ routed to monitor mode */ 10415 new_mode = ARM_CPU_MODE_MON; 10416 mask |= CPSR_F; 10417 } 10418 break; 10419 case EXCP_FIQ: 10420 new_mode = ARM_CPU_MODE_FIQ; 10421 addr = 0x1c; 10422 /* Disable FIQ, IRQ and imprecise data aborts. */ 10423 mask = CPSR_A | CPSR_I | CPSR_F; 10424 if (env->cp15.scr_el3 & SCR_FIQ) { 10425 /* FIQ routed to monitor mode */ 10426 new_mode = ARM_CPU_MODE_MON; 10427 } 10428 offset = 4; 10429 break; 10430 case EXCP_VIRQ: 10431 new_mode = ARM_CPU_MODE_IRQ; 10432 addr = 0x18; 10433 /* Disable IRQ and imprecise data aborts. */ 10434 mask = CPSR_A | CPSR_I; 10435 offset = 4; 10436 break; 10437 case EXCP_VFIQ: 10438 new_mode = ARM_CPU_MODE_FIQ; 10439 addr = 0x1c; 10440 /* Disable FIQ, IRQ and imprecise data aborts. */ 10441 mask = CPSR_A | CPSR_I | CPSR_F; 10442 offset = 4; 10443 break; 10444 case EXCP_VSERR: 10445 { 10446 /* 10447 * Note that this is reported as a data abort, but the DFAR 10448 * has an UNKNOWN value. Construct the SError syndrome from 10449 * AET and ExT fields. 10450 */ 10451 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10452 10453 if (extended_addresses_enabled(env)) { 10454 env->exception.fsr = arm_fi_to_lfsc(&fi); 10455 } else { 10456 env->exception.fsr = arm_fi_to_sfsc(&fi); 10457 } 10458 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10459 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10460 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10461 env->exception.fsr); 10462 10463 new_mode = ARM_CPU_MODE_ABT; 10464 addr = 0x10; 10465 mask = CPSR_A | CPSR_I; 10466 offset = 8; 10467 } 10468 break; 10469 case EXCP_SMC: 10470 new_mode = ARM_CPU_MODE_MON; 10471 addr = 0x08; 10472 mask = CPSR_A | CPSR_I | CPSR_F; 10473 offset = 0; 10474 break; 10475 case EXCP_MON_TRAP: 10476 new_mode = ARM_CPU_MODE_MON; 10477 addr = 0x04; 10478 mask = CPSR_A | CPSR_I | CPSR_F; 10479 if (env->thumb) { 10480 offset = 2; 10481 } else { 10482 offset = 4; 10483 } 10484 break; 10485 default: 10486 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10487 return; /* Never happens. Keep compiler happy. */ 10488 } 10489 10490 if (new_mode == ARM_CPU_MODE_MON) { 10491 addr += env->cp15.mvbar; 10492 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10493 /* High vectors. When enabled, base address cannot be remapped. */ 10494 addr += 0xffff0000; 10495 } else { 10496 /* 10497 * ARM v7 architectures provide a vector base address register to remap 10498 * the interrupt vector table. 10499 * This register is only followed in non-monitor mode, and is banked. 10500 * Note: only bits 31:5 are valid. 10501 */ 10502 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10503 } 10504 10505 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10506 env->cp15.scr_el3 &= ~SCR_NS; 10507 } 10508 10509 take_aarch32_exception(env, new_mode, mask, offset, addr); 10510 } 10511 10512 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10513 { 10514 /* 10515 * Return the register number of the AArch64 view of the AArch32 10516 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10517 * be that of the AArch32 mode the exception came from. 10518 */ 10519 int mode = env->uncached_cpsr & CPSR_M; 10520 10521 switch (aarch32_reg) { 10522 case 0 ... 7: 10523 return aarch32_reg; 10524 case 8 ... 12: 10525 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10526 case 13: 10527 switch (mode) { 10528 case ARM_CPU_MODE_USR: 10529 case ARM_CPU_MODE_SYS: 10530 return 13; 10531 case ARM_CPU_MODE_HYP: 10532 return 15; 10533 case ARM_CPU_MODE_IRQ: 10534 return 17; 10535 case ARM_CPU_MODE_SVC: 10536 return 19; 10537 case ARM_CPU_MODE_ABT: 10538 return 21; 10539 case ARM_CPU_MODE_UND: 10540 return 23; 10541 case ARM_CPU_MODE_FIQ: 10542 return 29; 10543 default: 10544 g_assert_not_reached(); 10545 } 10546 case 14: 10547 switch (mode) { 10548 case ARM_CPU_MODE_USR: 10549 case ARM_CPU_MODE_SYS: 10550 case ARM_CPU_MODE_HYP: 10551 return 14; 10552 case ARM_CPU_MODE_IRQ: 10553 return 16; 10554 case ARM_CPU_MODE_SVC: 10555 return 18; 10556 case ARM_CPU_MODE_ABT: 10557 return 20; 10558 case ARM_CPU_MODE_UND: 10559 return 22; 10560 case ARM_CPU_MODE_FIQ: 10561 return 30; 10562 default: 10563 g_assert_not_reached(); 10564 } 10565 case 15: 10566 return 31; 10567 default: 10568 g_assert_not_reached(); 10569 } 10570 } 10571 10572 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10573 { 10574 uint32_t ret = cpsr_read(env); 10575 10576 /* Move DIT to the correct location for SPSR_ELx */ 10577 if (ret & CPSR_DIT) { 10578 ret &= ~CPSR_DIT; 10579 ret |= PSTATE_DIT; 10580 } 10581 /* Merge PSTATE.SS into SPSR_ELx */ 10582 ret |= env->pstate & PSTATE_SS; 10583 10584 return ret; 10585 } 10586 10587 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10588 { 10589 /* Return true if this syndrome value is a synchronous external abort */ 10590 switch (syn_get_ec(syndrome)) { 10591 case EC_INSNABORT: 10592 case EC_INSNABORT_SAME_EL: 10593 case EC_DATAABORT: 10594 case EC_DATAABORT_SAME_EL: 10595 /* Look at fault status code for all the synchronous ext abort cases */ 10596 switch (syndrome & 0x3f) { 10597 case 0x10: 10598 case 0x13: 10599 case 0x14: 10600 case 0x15: 10601 case 0x16: 10602 case 0x17: 10603 return true; 10604 default: 10605 return false; 10606 } 10607 default: 10608 return false; 10609 } 10610 } 10611 10612 /* Handle exception entry to a target EL which is using AArch64 */ 10613 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10614 { 10615 ARMCPU *cpu = ARM_CPU(cs); 10616 CPUARMState *env = &cpu->env; 10617 unsigned int new_el = env->exception.target_el; 10618 target_ulong addr = env->cp15.vbar_el[new_el]; 10619 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10620 unsigned int old_mode; 10621 unsigned int cur_el = arm_current_el(env); 10622 int rt; 10623 10624 if (tcg_enabled()) { 10625 /* 10626 * Note that new_el can never be 0. If cur_el is 0, then 10627 * el0_a64 is is_a64(), else el0_a64 is ignored. 10628 */ 10629 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10630 } 10631 10632 if (cur_el < new_el) { 10633 /* 10634 * Entry vector offset depends on whether the implemented EL 10635 * immediately lower than the target level is using AArch32 or AArch64 10636 */ 10637 bool is_aa64; 10638 uint64_t hcr; 10639 10640 switch (new_el) { 10641 case 3: 10642 is_aa64 = arm_scr_rw_eff(env); 10643 break; 10644 case 2: 10645 hcr = arm_hcr_el2_eff(env); 10646 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10647 is_aa64 = (hcr & HCR_RW) != 0; 10648 break; 10649 } 10650 /* fall through */ 10651 case 1: 10652 is_aa64 = is_a64(env); 10653 break; 10654 default: 10655 g_assert_not_reached(); 10656 } 10657 10658 if (is_aa64) { 10659 addr += 0x400; 10660 } else { 10661 addr += 0x600; 10662 } 10663 } else if (pstate_read(env) & PSTATE_SP) { 10664 addr += 0x200; 10665 } 10666 10667 switch (cs->exception_index) { 10668 case EXCP_GPC: 10669 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10670 env->cp15.mfar_el3); 10671 /* fall through */ 10672 case EXCP_PREFETCH_ABORT: 10673 case EXCP_DATA_ABORT: 10674 /* 10675 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10676 * to be taken to the SError vector entrypoint. 10677 */ 10678 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10679 syndrome_is_sync_extabt(env->exception.syndrome)) { 10680 addr += 0x180; 10681 } 10682 env->cp15.far_el[new_el] = env->exception.vaddress; 10683 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10684 env->cp15.far_el[new_el]); 10685 /* fall through */ 10686 case EXCP_BKPT: 10687 case EXCP_UDEF: 10688 case EXCP_SWI: 10689 case EXCP_HVC: 10690 case EXCP_HYP_TRAP: 10691 case EXCP_SMC: 10692 switch (syn_get_ec(env->exception.syndrome)) { 10693 case EC_ADVSIMDFPACCESSTRAP: 10694 /* 10695 * QEMU internal FP/SIMD syndromes from AArch32 include the 10696 * TA and coproc fields which are only exposed if the exception 10697 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10698 * AArch64 format syndrome. 10699 */ 10700 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10701 break; 10702 case EC_CP14RTTRAP: 10703 case EC_CP15RTTRAP: 10704 case EC_CP14DTTRAP: 10705 /* 10706 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10707 * the raw register field from the insn; when taking this to 10708 * AArch64 we must convert it to the AArch64 view of the register 10709 * number. Notice that we read a 4-bit AArch32 register number and 10710 * write back a 5-bit AArch64 one. 10711 */ 10712 rt = extract32(env->exception.syndrome, 5, 4); 10713 rt = aarch64_regnum(env, rt); 10714 env->exception.syndrome = deposit32(env->exception.syndrome, 10715 5, 5, rt); 10716 break; 10717 case EC_CP15RRTTRAP: 10718 case EC_CP14RRTTRAP: 10719 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10720 rt = extract32(env->exception.syndrome, 5, 4); 10721 rt = aarch64_regnum(env, rt); 10722 env->exception.syndrome = deposit32(env->exception.syndrome, 10723 5, 5, rt); 10724 rt = extract32(env->exception.syndrome, 10, 4); 10725 rt = aarch64_regnum(env, rt); 10726 env->exception.syndrome = deposit32(env->exception.syndrome, 10727 10, 5, rt); 10728 break; 10729 } 10730 env->cp15.esr_el[new_el] = env->exception.syndrome; 10731 break; 10732 case EXCP_IRQ: 10733 case EXCP_VIRQ: 10734 case EXCP_NMI: 10735 case EXCP_VINMI: 10736 addr += 0x80; 10737 break; 10738 case EXCP_FIQ: 10739 case EXCP_VFIQ: 10740 case EXCP_VFNMI: 10741 addr += 0x100; 10742 break; 10743 case EXCP_VSERR: 10744 addr += 0x180; 10745 /* Construct the SError syndrome from IDS and ISS fields. */ 10746 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10747 env->cp15.esr_el[new_el] = env->exception.syndrome; 10748 break; 10749 default: 10750 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10751 } 10752 10753 if (is_a64(env)) { 10754 old_mode = pstate_read(env); 10755 aarch64_save_sp(env, arm_current_el(env)); 10756 env->elr_el[new_el] = env->pc; 10757 10758 if (cur_el == 1 && new_el == 1) { 10759 uint64_t hcr = arm_hcr_el2_eff(env); 10760 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10761 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10762 /* 10763 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10764 * by setting M[3:2] to 0b10. 10765 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10766 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10767 */ 10768 old_mode = deposit32(old_mode, 2, 2, 2); 10769 } 10770 } 10771 } else { 10772 old_mode = cpsr_read_for_spsr_elx(env); 10773 env->elr_el[new_el] = env->regs[15]; 10774 10775 aarch64_sync_32_to_64(env); 10776 10777 env->condexec_bits = 0; 10778 } 10779 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10780 10781 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10782 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10783 env->elr_el[new_el]); 10784 10785 if (cpu_isar_feature(aa64_pan, cpu)) { 10786 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10787 new_mode |= old_mode & PSTATE_PAN; 10788 switch (new_el) { 10789 case 2: 10790 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10791 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10792 != (HCR_E2H | HCR_TGE)) { 10793 break; 10794 } 10795 /* fall through */ 10796 case 1: 10797 /* ... the target is EL1 ... */ 10798 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10799 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10800 new_mode |= PSTATE_PAN; 10801 } 10802 break; 10803 } 10804 } 10805 if (cpu_isar_feature(aa64_mte, cpu)) { 10806 new_mode |= PSTATE_TCO; 10807 } 10808 10809 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10810 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10811 new_mode |= PSTATE_SSBS; 10812 } else { 10813 new_mode &= ~PSTATE_SSBS; 10814 } 10815 } 10816 10817 if (cpu_isar_feature(aa64_nmi, cpu)) { 10818 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10819 new_mode |= PSTATE_ALLINT; 10820 } else { 10821 new_mode &= ~PSTATE_ALLINT; 10822 } 10823 } 10824 10825 pstate_write(env, PSTATE_DAIF | new_mode); 10826 env->aarch64 = true; 10827 aarch64_restore_sp(env, new_el); 10828 10829 if (tcg_enabled()) { 10830 helper_rebuild_hflags_a64(env, new_el); 10831 } 10832 10833 env->pc = addr; 10834 10835 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10836 new_el, env->pc, pstate_read(env)); 10837 } 10838 10839 /* 10840 * Do semihosting call and set the appropriate return value. All the 10841 * permission and validity checks have been done at translate time. 10842 * 10843 * We only see semihosting exceptions in TCG only as they are not 10844 * trapped to the hypervisor in KVM. 10845 */ 10846 #ifdef CONFIG_TCG 10847 static void tcg_handle_semihosting(CPUState *cs) 10848 { 10849 ARMCPU *cpu = ARM_CPU(cs); 10850 CPUARMState *env = &cpu->env; 10851 10852 if (is_a64(env)) { 10853 qemu_log_mask(CPU_LOG_INT, 10854 "...handling as semihosting call 0x%" PRIx64 "\n", 10855 env->xregs[0]); 10856 do_common_semihosting(cs); 10857 env->pc += 4; 10858 } else { 10859 qemu_log_mask(CPU_LOG_INT, 10860 "...handling as semihosting call 0x%x\n", 10861 env->regs[0]); 10862 do_common_semihosting(cs); 10863 env->regs[15] += env->thumb ? 2 : 4; 10864 } 10865 } 10866 #endif 10867 10868 /* 10869 * Handle a CPU exception for A and R profile CPUs. 10870 * Do any appropriate logging, handle PSCI calls, and then hand off 10871 * to the AArch64-entry or AArch32-entry function depending on the 10872 * target exception level's register width. 10873 * 10874 * Note: this is used for both TCG (as the do_interrupt tcg op), 10875 * and KVM to re-inject guest debug exceptions, and to 10876 * inject a Synchronous-External-Abort. 10877 */ 10878 void arm_cpu_do_interrupt(CPUState *cs) 10879 { 10880 ARMCPU *cpu = ARM_CPU(cs); 10881 CPUARMState *env = &cpu->env; 10882 unsigned int new_el = env->exception.target_el; 10883 10884 assert(!arm_feature(env, ARM_FEATURE_M)); 10885 10886 arm_log_exception(cs); 10887 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10888 new_el); 10889 if (qemu_loglevel_mask(CPU_LOG_INT) 10890 && !excp_is_internal(cs->exception_index)) { 10891 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10892 syn_get_ec(env->exception.syndrome), 10893 env->exception.syndrome); 10894 } 10895 10896 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10897 arm_handle_psci_call(cpu); 10898 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10899 return; 10900 } 10901 10902 /* 10903 * Semihosting semantics depend on the register width of the code 10904 * that caused the exception, not the target exception level, so 10905 * must be handled here. 10906 */ 10907 #ifdef CONFIG_TCG 10908 if (cs->exception_index == EXCP_SEMIHOST) { 10909 tcg_handle_semihosting(cs); 10910 return; 10911 } 10912 #endif 10913 10914 /* 10915 * Hooks may change global state so BQL should be held, also the 10916 * BQL needs to be held for any modification of 10917 * cs->interrupt_request. 10918 */ 10919 g_assert(bql_locked()); 10920 10921 arm_call_pre_el_change_hook(cpu); 10922 10923 assert(!excp_is_internal(cs->exception_index)); 10924 if (arm_el_is_aa64(env, new_el)) { 10925 arm_cpu_do_interrupt_aarch64(cs); 10926 } else { 10927 arm_cpu_do_interrupt_aarch32(cs); 10928 } 10929 10930 arm_call_el_change_hook(cpu); 10931 10932 if (!kvm_enabled()) { 10933 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10934 } 10935 } 10936 #endif /* !CONFIG_USER_ONLY */ 10937 10938 uint64_t arm_sctlr(CPUARMState *env, int el) 10939 { 10940 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10941 if (el == 0) { 10942 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10943 switch (mmu_idx) { 10944 case ARMMMUIdx_E20_0: 10945 el = 2; 10946 break; 10947 case ARMMMUIdx_E30_0: 10948 el = 3; 10949 break; 10950 default: 10951 el = 1; 10952 break; 10953 } 10954 } 10955 return env->cp15.sctlr_el[el]; 10956 } 10957 10958 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10959 { 10960 if (regime_has_2_ranges(mmu_idx)) { 10961 return extract64(tcr, 37, 2); 10962 } else if (regime_is_stage2(mmu_idx)) { 10963 return 0; /* VTCR_EL2 */ 10964 } else { 10965 /* Replicate the single TBI bit so we always have 2 bits. */ 10966 return extract32(tcr, 20, 1) * 3; 10967 } 10968 } 10969 10970 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10971 { 10972 if (regime_has_2_ranges(mmu_idx)) { 10973 return extract64(tcr, 51, 2); 10974 } else if (regime_is_stage2(mmu_idx)) { 10975 return 0; /* VTCR_EL2 */ 10976 } else { 10977 /* Replicate the single TBID bit so we always have 2 bits. */ 10978 return extract32(tcr, 29, 1) * 3; 10979 } 10980 } 10981 10982 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10983 { 10984 if (regime_has_2_ranges(mmu_idx)) { 10985 return extract64(tcr, 57, 2); 10986 } else { 10987 /* Replicate the single TCMA bit so we always have 2 bits. */ 10988 return extract32(tcr, 30, 1) * 3; 10989 } 10990 } 10991 10992 static ARMGranuleSize tg0_to_gran_size(int tg) 10993 { 10994 switch (tg) { 10995 case 0: 10996 return Gran4K; 10997 case 1: 10998 return Gran64K; 10999 case 2: 11000 return Gran16K; 11001 default: 11002 return GranInvalid; 11003 } 11004 } 11005 11006 static ARMGranuleSize tg1_to_gran_size(int tg) 11007 { 11008 switch (tg) { 11009 case 1: 11010 return Gran16K; 11011 case 2: 11012 return Gran4K; 11013 case 3: 11014 return Gran64K; 11015 default: 11016 return GranInvalid; 11017 } 11018 } 11019 11020 static inline bool have4k(ARMCPU *cpu, bool stage2) 11021 { 11022 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11023 : cpu_isar_feature(aa64_tgran4, cpu); 11024 } 11025 11026 static inline bool have16k(ARMCPU *cpu, bool stage2) 11027 { 11028 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11029 : cpu_isar_feature(aa64_tgran16, cpu); 11030 } 11031 11032 static inline bool have64k(ARMCPU *cpu, bool stage2) 11033 { 11034 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11035 : cpu_isar_feature(aa64_tgran64, cpu); 11036 } 11037 11038 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11039 bool stage2) 11040 { 11041 switch (gran) { 11042 case Gran4K: 11043 if (have4k(cpu, stage2)) { 11044 return gran; 11045 } 11046 break; 11047 case Gran16K: 11048 if (have16k(cpu, stage2)) { 11049 return gran; 11050 } 11051 break; 11052 case Gran64K: 11053 if (have64k(cpu, stage2)) { 11054 return gran; 11055 } 11056 break; 11057 case GranInvalid: 11058 break; 11059 } 11060 /* 11061 * If the guest selects a granule size that isn't implemented, 11062 * the architecture requires that we behave as if it selected one 11063 * that is (with an IMPDEF choice of which one to pick). We choose 11064 * to implement the smallest supported granule size. 11065 */ 11066 if (have4k(cpu, stage2)) { 11067 return Gran4K; 11068 } 11069 if (have16k(cpu, stage2)) { 11070 return Gran16K; 11071 } 11072 assert(have64k(cpu, stage2)); 11073 return Gran64K; 11074 } 11075 11076 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11077 ARMMMUIdx mmu_idx, bool data, 11078 bool el1_is_aa32) 11079 { 11080 uint64_t tcr = regime_tcr(env, mmu_idx); 11081 bool epd, hpd, tsz_oob, ds, ha, hd; 11082 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11083 ARMGranuleSize gran; 11084 ARMCPU *cpu = env_archcpu(env); 11085 bool stage2 = regime_is_stage2(mmu_idx); 11086 11087 if (!regime_has_2_ranges(mmu_idx)) { 11088 select = 0; 11089 tsz = extract32(tcr, 0, 6); 11090 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11091 if (stage2) { 11092 /* VTCR_EL2 */ 11093 hpd = false; 11094 } else { 11095 hpd = extract32(tcr, 24, 1); 11096 } 11097 epd = false; 11098 sh = extract32(tcr, 12, 2); 11099 ps = extract32(tcr, 16, 3); 11100 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11101 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11102 ds = extract64(tcr, 32, 1); 11103 } else { 11104 bool e0pd; 11105 11106 /* 11107 * Bit 55 is always between the two regions, and is canonical for 11108 * determining if address tagging is enabled. 11109 */ 11110 select = extract64(va, 55, 1); 11111 if (!select) { 11112 tsz = extract32(tcr, 0, 6); 11113 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11114 epd = extract32(tcr, 7, 1); 11115 sh = extract32(tcr, 12, 2); 11116 hpd = extract64(tcr, 41, 1); 11117 e0pd = extract64(tcr, 55, 1); 11118 } else { 11119 tsz = extract32(tcr, 16, 6); 11120 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11121 epd = extract32(tcr, 23, 1); 11122 sh = extract32(tcr, 28, 2); 11123 hpd = extract64(tcr, 42, 1); 11124 e0pd = extract64(tcr, 56, 1); 11125 } 11126 ps = extract64(tcr, 32, 3); 11127 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11128 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11129 ds = extract64(tcr, 59, 1); 11130 11131 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11132 regime_is_user(env, mmu_idx)) { 11133 epd = true; 11134 } 11135 } 11136 11137 gran = sanitize_gran_size(cpu, gran, stage2); 11138 11139 if (cpu_isar_feature(aa64_st, cpu)) { 11140 max_tsz = 48 - (gran == Gran64K); 11141 } else { 11142 max_tsz = 39; 11143 } 11144 11145 /* 11146 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11147 * adjust the effective value of DS, as documented. 11148 */ 11149 min_tsz = 16; 11150 if (gran == Gran64K) { 11151 if (cpu_isar_feature(aa64_lva, cpu)) { 11152 min_tsz = 12; 11153 } 11154 ds = false; 11155 } else if (ds) { 11156 if (regime_is_stage2(mmu_idx)) { 11157 if (gran == Gran16K) { 11158 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11159 } else { 11160 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11161 } 11162 } else { 11163 if (gran == Gran16K) { 11164 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11165 } else { 11166 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11167 } 11168 } 11169 if (ds) { 11170 min_tsz = 12; 11171 } 11172 } 11173 11174 if (stage2 && el1_is_aa32) { 11175 /* 11176 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11177 * are loosened: a configured IPA of 40 bits is permitted even if 11178 * the implemented PA is less than that (and so a 40 bit IPA would 11179 * fault for an AArch64 EL1). See R_DTLMN. 11180 */ 11181 min_tsz = MIN(min_tsz, 24); 11182 } 11183 11184 if (tsz > max_tsz) { 11185 tsz = max_tsz; 11186 tsz_oob = true; 11187 } else if (tsz < min_tsz) { 11188 tsz = min_tsz; 11189 tsz_oob = true; 11190 } else { 11191 tsz_oob = false; 11192 } 11193 11194 /* Present TBI as a composite with TBID. */ 11195 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11196 if (!data) { 11197 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11198 } 11199 tbi = (tbi >> select) & 1; 11200 11201 return (ARMVAParameters) { 11202 .tsz = tsz, 11203 .ps = ps, 11204 .sh = sh, 11205 .select = select, 11206 .tbi = tbi, 11207 .epd = epd, 11208 .hpd = hpd, 11209 .tsz_oob = tsz_oob, 11210 .ds = ds, 11211 .ha = ha, 11212 .hd = ha && hd, 11213 .gran = gran, 11214 }; 11215 } 11216 11217 11218 /* 11219 * Return the exception level to which FP-disabled exceptions should 11220 * be taken, or 0 if FP is enabled. 11221 */ 11222 int fp_exception_el(CPUARMState *env, int cur_el) 11223 { 11224 #ifndef CONFIG_USER_ONLY 11225 uint64_t hcr_el2; 11226 11227 /* 11228 * CPACR and the CPTR registers don't exist before v6, so FP is 11229 * always accessible 11230 */ 11231 if (!arm_feature(env, ARM_FEATURE_V6)) { 11232 return 0; 11233 } 11234 11235 if (arm_feature(env, ARM_FEATURE_M)) { 11236 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11237 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11238 return 1; 11239 } 11240 11241 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11242 if (!extract32(env->v7m.nsacr, 10, 1)) { 11243 /* FP insns cause a NOCP UsageFault taken to Secure */ 11244 return 3; 11245 } 11246 } 11247 11248 return 0; 11249 } 11250 11251 hcr_el2 = arm_hcr_el2_eff(env); 11252 11253 /* 11254 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11255 * 0, 2 : trap EL0 and EL1/PL1 accesses 11256 * 1 : trap only EL0 accesses 11257 * 3 : trap no accesses 11258 * This register is ignored if E2H+TGE are both set. 11259 */ 11260 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11261 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11262 11263 switch (fpen) { 11264 case 1: 11265 if (cur_el != 0) { 11266 break; 11267 } 11268 /* fall through */ 11269 case 0: 11270 case 2: 11271 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11272 if (!arm_el_is_aa64(env, 3) 11273 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11274 return 3; 11275 } 11276 if (cur_el <= 1) { 11277 return 1; 11278 } 11279 break; 11280 } 11281 } 11282 11283 /* 11284 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11285 * to control non-secure access to the FPU. It doesn't have any 11286 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11287 */ 11288 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11289 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11290 if (!extract32(env->cp15.nsacr, 10, 1)) { 11291 /* FP insns act as UNDEF */ 11292 return cur_el == 2 ? 2 : 1; 11293 } 11294 } 11295 11296 /* 11297 * CPTR_EL2 is present in v7VE or v8, and changes format 11298 * with HCR_EL2.E2H (regardless of TGE). 11299 */ 11300 if (cur_el <= 2) { 11301 if (hcr_el2 & HCR_E2H) { 11302 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11303 case 1: 11304 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11305 break; 11306 } 11307 /* fall through */ 11308 case 0: 11309 case 2: 11310 return 2; 11311 } 11312 } else if (arm_is_el2_enabled(env)) { 11313 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11314 return 2; 11315 } 11316 } 11317 } 11318 11319 /* CPTR_EL3 : present in v8 */ 11320 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11321 /* Trap all FP ops to EL3 */ 11322 return 3; 11323 } 11324 #endif 11325 return 0; 11326 } 11327 11328 /* Return the exception level we're running at if this is our mmu_idx */ 11329 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11330 { 11331 if (mmu_idx & ARM_MMU_IDX_M) { 11332 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11333 } 11334 11335 switch (mmu_idx) { 11336 case ARMMMUIdx_E10_0: 11337 case ARMMMUIdx_E20_0: 11338 case ARMMMUIdx_E30_0: 11339 return 0; 11340 case ARMMMUIdx_E10_1: 11341 case ARMMMUIdx_E10_1_PAN: 11342 return 1; 11343 case ARMMMUIdx_E2: 11344 case ARMMMUIdx_E20_2: 11345 case ARMMMUIdx_E20_2_PAN: 11346 return 2; 11347 case ARMMMUIdx_E3: 11348 case ARMMMUIdx_E30_3_PAN: 11349 return 3; 11350 default: 11351 g_assert_not_reached(); 11352 } 11353 } 11354 11355 #ifndef CONFIG_TCG 11356 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11357 { 11358 g_assert_not_reached(); 11359 } 11360 #endif 11361 11362 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11363 { 11364 ARMMMUIdx idx; 11365 uint64_t hcr; 11366 11367 if (arm_feature(env, ARM_FEATURE_M)) { 11368 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11369 } 11370 11371 /* See ARM pseudo-function ELIsInHost. */ 11372 switch (el) { 11373 case 0: 11374 hcr = arm_hcr_el2_eff(env); 11375 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11376 idx = ARMMMUIdx_E20_0; 11377 } else if (arm_is_secure_below_el3(env) && 11378 !arm_el_is_aa64(env, 3)) { 11379 idx = ARMMMUIdx_E30_0; 11380 } else { 11381 idx = ARMMMUIdx_E10_0; 11382 } 11383 break; 11384 case 1: 11385 if (arm_pan_enabled(env)) { 11386 idx = ARMMMUIdx_E10_1_PAN; 11387 } else { 11388 idx = ARMMMUIdx_E10_1; 11389 } 11390 break; 11391 case 2: 11392 /* Note that TGE does not apply at EL2. */ 11393 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11394 if (arm_pan_enabled(env)) { 11395 idx = ARMMMUIdx_E20_2_PAN; 11396 } else { 11397 idx = ARMMMUIdx_E20_2; 11398 } 11399 } else { 11400 idx = ARMMMUIdx_E2; 11401 } 11402 break; 11403 case 3: 11404 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11405 return ARMMMUIdx_E30_3_PAN; 11406 } 11407 return ARMMMUIdx_E3; 11408 default: 11409 g_assert_not_reached(); 11410 } 11411 11412 return idx; 11413 } 11414 11415 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11416 { 11417 return arm_mmu_idx_el(env, arm_current_el(env)); 11418 } 11419 11420 static bool mve_no_pred(CPUARMState *env) 11421 { 11422 /* 11423 * Return true if there is definitely no predication of MVE 11424 * instructions by VPR or LTPSIZE. (Returning false even if there 11425 * isn't any predication is OK; generated code will just be 11426 * a little worse.) 11427 * If the CPU does not implement MVE then this TB flag is always 0. 11428 * 11429 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11430 * logic in gen_update_fp_context() needs to be updated to match. 11431 * 11432 * We do not include the effect of the ECI bits here -- they are 11433 * tracked in other TB flags. This simplifies the logic for 11434 * "when did we emit code that changes the MVE_NO_PRED TB flag 11435 * and thus need to end the TB?". 11436 */ 11437 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11438 return false; 11439 } 11440 if (env->v7m.vpr) { 11441 return false; 11442 } 11443 if (env->v7m.ltpsize < 4) { 11444 return false; 11445 } 11446 return true; 11447 } 11448 11449 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11450 uint64_t *cs_base, uint32_t *pflags) 11451 { 11452 CPUARMTBFlags flags; 11453 11454 assert_hflags_rebuild_correctly(env); 11455 flags = env->hflags; 11456 11457 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11458 *pc = env->pc; 11459 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11460 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11461 } 11462 } else { 11463 *pc = env->regs[15]; 11464 11465 if (arm_feature(env, ARM_FEATURE_M)) { 11466 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11467 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11468 != env->v7m.secure) { 11469 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11470 } 11471 11472 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11473 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11474 (env->v7m.secure && 11475 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11476 /* 11477 * ASPEN is set, but FPCA/SFPA indicate that there is no 11478 * active FP context; we must create a new FP context before 11479 * executing any FP insn. 11480 */ 11481 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11482 } 11483 11484 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11485 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11486 DP_TBFLAG_M32(flags, LSPACT, 1); 11487 } 11488 11489 if (mve_no_pred(env)) { 11490 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11491 } 11492 } else { 11493 /* 11494 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11495 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11496 */ 11497 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11498 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11499 } else { 11500 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11501 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11502 } 11503 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11504 DP_TBFLAG_A32(flags, VFPEN, 1); 11505 } 11506 } 11507 11508 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11509 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11510 } 11511 11512 /* 11513 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11514 * states defined in the ARM ARM for software singlestep: 11515 * SS_ACTIVE PSTATE.SS State 11516 * 0 x Inactive (the TB flag for SS is always 0) 11517 * 1 0 Active-pending 11518 * 1 1 Active-not-pending 11519 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11520 */ 11521 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11522 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11523 } 11524 11525 *pflags = flags.flags; 11526 *cs_base = flags.flags2; 11527 } 11528 11529 #ifdef TARGET_AARCH64 11530 /* 11531 * The manual says that when SVE is enabled and VQ is widened the 11532 * implementation is allowed to zero the previously inaccessible 11533 * portion of the registers. The corollary to that is that when 11534 * SVE is enabled and VQ is narrowed we are also allowed to zero 11535 * the now inaccessible portion of the registers. 11536 * 11537 * The intent of this is that no predicate bit beyond VQ is ever set. 11538 * Which means that some operations on predicate registers themselves 11539 * may operate on full uint64_t or even unrolled across the maximum 11540 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11541 * may well be cheaper than conditionals to restrict the operation 11542 * to the relevant portion of a uint16_t[16]. 11543 */ 11544 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11545 { 11546 int i, j; 11547 uint64_t pmask; 11548 11549 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11550 assert(vq <= env_archcpu(env)->sve_max_vq); 11551 11552 /* Zap the high bits of the zregs. */ 11553 for (i = 0; i < 32; i++) { 11554 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11555 } 11556 11557 /* Zap the high bits of the pregs and ffr. */ 11558 pmask = 0; 11559 if (vq & 3) { 11560 pmask = ~(-1ULL << (16 * (vq & 3))); 11561 } 11562 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11563 for (i = 0; i < 17; ++i) { 11564 env->vfp.pregs[i].p[j] &= pmask; 11565 } 11566 pmask = 0; 11567 } 11568 } 11569 11570 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11571 { 11572 int exc_el; 11573 11574 if (sm) { 11575 exc_el = sme_exception_el(env, el); 11576 } else { 11577 exc_el = sve_exception_el(env, el); 11578 } 11579 if (exc_el) { 11580 return 0; /* disabled */ 11581 } 11582 return sve_vqm1_for_el_sm(env, el, sm); 11583 } 11584 11585 /* 11586 * Notice a change in SVE vector size when changing EL. 11587 */ 11588 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11589 int new_el, bool el0_a64) 11590 { 11591 ARMCPU *cpu = env_archcpu(env); 11592 int old_len, new_len; 11593 bool old_a64, new_a64, sm; 11594 11595 /* Nothing to do if no SVE. */ 11596 if (!cpu_isar_feature(aa64_sve, cpu)) { 11597 return; 11598 } 11599 11600 /* Nothing to do if FP is disabled in either EL. */ 11601 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11602 return; 11603 } 11604 11605 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11606 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11607 11608 /* 11609 * Both AArch64.TakeException and AArch64.ExceptionReturn 11610 * invoke ResetSVEState when taking an exception from, or 11611 * returning to, AArch32 state when PSTATE.SM is enabled. 11612 */ 11613 sm = FIELD_EX64(env->svcr, SVCR, SM); 11614 if (old_a64 != new_a64 && sm) { 11615 arm_reset_sve_state(env); 11616 return; 11617 } 11618 11619 /* 11620 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11621 * at ELx, or not available because the EL is in AArch32 state, then 11622 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11623 * has an effective value of 0". 11624 * 11625 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11626 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11627 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11628 * we already have the correct register contents when encountering the 11629 * vq0->vq0 transition between EL0->EL1. 11630 */ 11631 old_len = new_len = 0; 11632 if (old_a64) { 11633 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11634 } 11635 if (new_a64) { 11636 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11637 } 11638 11639 /* When changing vector length, clear inaccessible state. */ 11640 if (new_len < old_len) { 11641 aarch64_sve_narrow_vq(env, new_len + 1); 11642 } 11643 } 11644 #endif 11645 11646 #ifndef CONFIG_USER_ONLY 11647 ARMSecuritySpace arm_security_space(CPUARMState *env) 11648 { 11649 if (arm_feature(env, ARM_FEATURE_M)) { 11650 return arm_secure_to_space(env->v7m.secure); 11651 } 11652 11653 /* 11654 * If EL3 is not supported then the secure state is implementation 11655 * defined, in which case QEMU defaults to non-secure. 11656 */ 11657 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11658 return ARMSS_NonSecure; 11659 } 11660 11661 /* Check for AArch64 EL3 or AArch32 Mon. */ 11662 if (is_a64(env)) { 11663 if (extract32(env->pstate, 2, 2) == 3) { 11664 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11665 return ARMSS_Root; 11666 } else { 11667 return ARMSS_Secure; 11668 } 11669 } 11670 } else { 11671 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11672 return ARMSS_Secure; 11673 } 11674 } 11675 11676 return arm_security_space_below_el3(env); 11677 } 11678 11679 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11680 { 11681 assert(!arm_feature(env, ARM_FEATURE_M)); 11682 11683 /* 11684 * If EL3 is not supported then the secure state is implementation 11685 * defined, in which case QEMU defaults to non-secure. 11686 */ 11687 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11688 return ARMSS_NonSecure; 11689 } 11690 11691 /* 11692 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11693 * Ignoring NSE when !NS retains consistency without having to 11694 * modify other predicates. 11695 */ 11696 if (!(env->cp15.scr_el3 & SCR_NS)) { 11697 return ARMSS_Secure; 11698 } else if (env->cp15.scr_el3 & SCR_NSE) { 11699 return ARMSS_Realm; 11700 } else { 11701 return ARMSS_NonSecure; 11702 } 11703 } 11704 #endif /* !CONFIG_USER_ONLY */ 11705