1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 #ifndef CONFIG_USER_ONLY 43 44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 bool s1_is_el0, 47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 48 target_ulong *page_size_ptr, 49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 50 __attribute__((nonnull)); 51 #endif 52 53 static void switch_mode(CPUARMState *env, int mode); 54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 55 56 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 57 { 58 ARMCPU *cpu = env_archcpu(env); 59 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 60 61 /* VFP data registers are always little-endian. */ 62 if (reg < nregs) { 63 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 64 } 65 if (arm_feature(env, ARM_FEATURE_NEON)) { 66 /* Aliases for Q regs. */ 67 nregs += 16; 68 if (reg < nregs) { 69 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 70 return gdb_get_reg128(buf, q[0], q[1]); 71 } 72 } 73 switch (reg - nregs) { 74 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 75 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 76 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 77 } 78 return 0; 79 } 80 81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 82 { 83 ARMCPU *cpu = env_archcpu(env); 84 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 85 86 if (reg < nregs) { 87 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 88 return 8; 89 } 90 if (arm_feature(env, ARM_FEATURE_NEON)) { 91 nregs += 16; 92 if (reg < nregs) { 93 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 94 q[0] = ldq_le_p(buf); 95 q[1] = ldq_le_p(buf + 8); 96 return 16; 97 } 98 } 99 switch (reg - nregs) { 100 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 101 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 102 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 103 } 104 return 0; 105 } 106 107 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 108 { 109 switch (reg) { 110 case 0 ... 31: 111 { 112 /* 128 bit FP register - quads are in LE order */ 113 uint64_t *q = aa64_vfp_qreg(env, reg); 114 return gdb_get_reg128(buf, q[1], q[0]); 115 } 116 case 32: 117 /* FPSR */ 118 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 119 case 33: 120 /* FPCR */ 121 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 122 default: 123 return 0; 124 } 125 } 126 127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 128 { 129 switch (reg) { 130 case 0 ... 31: 131 /* 128 bit FP register */ 132 { 133 uint64_t *q = aa64_vfp_qreg(env, reg); 134 q[0] = ldq_le_p(buf); 135 q[1] = ldq_le_p(buf + 8); 136 return 16; 137 } 138 case 32: 139 /* FPSR */ 140 vfp_set_fpsr(env, ldl_p(buf)); 141 return 4; 142 case 33: 143 /* FPCR */ 144 vfp_set_fpcr(env, ldl_p(buf)); 145 return 4; 146 default: 147 return 0; 148 } 149 } 150 151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 152 { 153 assert(ri->fieldoffset); 154 if (cpreg_field_is_64bit(ri)) { 155 return CPREG_FIELD64(env, ri); 156 } else { 157 return CPREG_FIELD32(env, ri); 158 } 159 } 160 161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 162 uint64_t value) 163 { 164 assert(ri->fieldoffset); 165 if (cpreg_field_is_64bit(ri)) { 166 CPREG_FIELD64(env, ri) = value; 167 } else { 168 CPREG_FIELD32(env, ri) = value; 169 } 170 } 171 172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 return (char *)env + ri->fieldoffset; 175 } 176 177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 178 { 179 /* Raw read of a coprocessor register (as needed for migration, etc). */ 180 if (ri->type & ARM_CP_CONST) { 181 return ri->resetvalue; 182 } else if (ri->raw_readfn) { 183 return ri->raw_readfn(env, ri); 184 } else if (ri->readfn) { 185 return ri->readfn(env, ri); 186 } else { 187 return raw_read(env, ri); 188 } 189 } 190 191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 192 uint64_t v) 193 { 194 /* Raw write of a coprocessor register (as needed for migration, etc). 195 * Note that constant registers are treated as write-ignored; the 196 * caller should check for success by whether a readback gives the 197 * value written. 198 */ 199 if (ri->type & ARM_CP_CONST) { 200 return; 201 } else if (ri->raw_writefn) { 202 ri->raw_writefn(env, ri, v); 203 } else if (ri->writefn) { 204 ri->writefn(env, ri, v); 205 } else { 206 raw_write(env, ri, v); 207 } 208 } 209 210 /** 211 * arm_get/set_gdb_*: get/set a gdb register 212 * @env: the CPU state 213 * @buf: a buffer to copy to/from 214 * @reg: register number (offset from start of group) 215 * 216 * We return the number of bytes copied 217 */ 218 219 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 220 { 221 ARMCPU *cpu = env_archcpu(env); 222 const ARMCPRegInfo *ri; 223 uint32_t key; 224 225 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 226 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 227 if (ri) { 228 if (cpreg_field_is_64bit(ri)) { 229 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 230 } else { 231 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 232 } 233 } 234 return 0; 235 } 236 237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 238 { 239 return 0; 240 } 241 242 #ifdef TARGET_AARCH64 243 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 244 { 245 ARMCPU *cpu = env_archcpu(env); 246 247 switch (reg) { 248 /* The first 32 registers are the zregs */ 249 case 0 ... 31: 250 { 251 int vq, len = 0; 252 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 253 len += gdb_get_reg128(buf, 254 env->vfp.zregs[reg].d[vq * 2 + 1], 255 env->vfp.zregs[reg].d[vq * 2]); 256 } 257 return len; 258 } 259 case 32: 260 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 261 case 33: 262 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 263 /* then 16 predicates and the ffr */ 264 case 34 ... 50: 265 { 266 int preg = reg - 34; 267 int vq, len = 0; 268 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 269 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 270 } 271 return len; 272 } 273 case 51: 274 { 275 /* 276 * We report in Vector Granules (VG) which is 64bit in a Z reg 277 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 278 */ 279 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 280 return gdb_get_reg64(buf, vq * 2); 281 } 282 default: 283 /* gdbstub asked for something out our range */ 284 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 285 break; 286 } 287 288 return 0; 289 } 290 291 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 292 { 293 ARMCPU *cpu = env_archcpu(env); 294 295 /* The first 32 registers are the zregs */ 296 switch (reg) { 297 /* The first 32 registers are the zregs */ 298 case 0 ... 31: 299 { 300 int vq, len = 0; 301 uint64_t *p = (uint64_t *) buf; 302 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 303 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 304 env->vfp.zregs[reg].d[vq * 2] = *p++; 305 len += 16; 306 } 307 return len; 308 } 309 case 32: 310 vfp_set_fpsr(env, *(uint32_t *)buf); 311 return 4; 312 case 33: 313 vfp_set_fpcr(env, *(uint32_t *)buf); 314 return 4; 315 case 34 ... 50: 316 { 317 int preg = reg - 34; 318 int vq, len = 0; 319 uint64_t *p = (uint64_t *) buf; 320 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 321 env->vfp.pregs[preg].p[vq / 4] = *p++; 322 len += 8; 323 } 324 return len; 325 } 326 case 51: 327 /* cannot set vg via gdbstub */ 328 return 0; 329 default: 330 /* gdbstub asked for something out our range */ 331 break; 332 } 333 334 return 0; 335 } 336 #endif /* TARGET_AARCH64 */ 337 338 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 339 { 340 /* Return true if the regdef would cause an assertion if you called 341 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 342 * program bug for it not to have the NO_RAW flag). 343 * NB that returning false here doesn't necessarily mean that calling 344 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 345 * read/write access functions which are safe for raw use" from "has 346 * read/write access functions which have side effects but has forgotten 347 * to provide raw access functions". 348 * The tests here line up with the conditions in read/write_raw_cp_reg() 349 * and assertions in raw_read()/raw_write(). 350 */ 351 if ((ri->type & ARM_CP_CONST) || 352 ri->fieldoffset || 353 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 354 return false; 355 } 356 return true; 357 } 358 359 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 360 { 361 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 362 int i; 363 bool ok = true; 364 365 for (i = 0; i < cpu->cpreg_array_len; i++) { 366 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 367 const ARMCPRegInfo *ri; 368 uint64_t newval; 369 370 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 371 if (!ri) { 372 ok = false; 373 continue; 374 } 375 if (ri->type & ARM_CP_NO_RAW) { 376 continue; 377 } 378 379 newval = read_raw_cp_reg(&cpu->env, ri); 380 if (kvm_sync) { 381 /* 382 * Only sync if the previous list->cpustate sync succeeded. 383 * Rather than tracking the success/failure state for every 384 * item in the list, we just recheck "does the raw write we must 385 * have made in write_list_to_cpustate() read back OK" here. 386 */ 387 uint64_t oldval = cpu->cpreg_values[i]; 388 389 if (oldval == newval) { 390 continue; 391 } 392 393 write_raw_cp_reg(&cpu->env, ri, oldval); 394 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 395 continue; 396 } 397 398 write_raw_cp_reg(&cpu->env, ri, newval); 399 } 400 cpu->cpreg_values[i] = newval; 401 } 402 return ok; 403 } 404 405 bool write_list_to_cpustate(ARMCPU *cpu) 406 { 407 int i; 408 bool ok = true; 409 410 for (i = 0; i < cpu->cpreg_array_len; i++) { 411 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 412 uint64_t v = cpu->cpreg_values[i]; 413 const ARMCPRegInfo *ri; 414 415 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 416 if (!ri) { 417 ok = false; 418 continue; 419 } 420 if (ri->type & ARM_CP_NO_RAW) { 421 continue; 422 } 423 /* Write value and confirm it reads back as written 424 * (to catch read-only registers and partially read-only 425 * registers where the incoming migration value doesn't match) 426 */ 427 write_raw_cp_reg(&cpu->env, ri, v); 428 if (read_raw_cp_reg(&cpu->env, ri) != v) { 429 ok = false; 430 } 431 } 432 return ok; 433 } 434 435 static void add_cpreg_to_list(gpointer key, gpointer opaque) 436 { 437 ARMCPU *cpu = opaque; 438 uint64_t regidx; 439 const ARMCPRegInfo *ri; 440 441 regidx = *(uint32_t *)key; 442 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 443 444 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 445 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 446 /* The value array need not be initialized at this point */ 447 cpu->cpreg_array_len++; 448 } 449 } 450 451 static void count_cpreg(gpointer key, gpointer opaque) 452 { 453 ARMCPU *cpu = opaque; 454 uint64_t regidx; 455 const ARMCPRegInfo *ri; 456 457 regidx = *(uint32_t *)key; 458 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 459 460 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 461 cpu->cpreg_array_len++; 462 } 463 } 464 465 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 466 { 467 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 468 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 469 470 if (aidx > bidx) { 471 return 1; 472 } 473 if (aidx < bidx) { 474 return -1; 475 } 476 return 0; 477 } 478 479 void init_cpreg_list(ARMCPU *cpu) 480 { 481 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 482 * Note that we require cpreg_tuples[] to be sorted by key ID. 483 */ 484 GList *keys; 485 int arraylen; 486 487 keys = g_hash_table_get_keys(cpu->cp_regs); 488 keys = g_list_sort(keys, cpreg_key_compare); 489 490 cpu->cpreg_array_len = 0; 491 492 g_list_foreach(keys, count_cpreg, cpu); 493 494 arraylen = cpu->cpreg_array_len; 495 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 496 cpu->cpreg_values = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 500 cpu->cpreg_array_len = 0; 501 502 g_list_foreach(keys, add_cpreg_to_list, cpu); 503 504 assert(cpu->cpreg_array_len == arraylen); 505 506 g_list_free(keys); 507 } 508 509 /* 510 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 511 */ 512 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 513 const ARMCPRegInfo *ri, 514 bool isread) 515 { 516 if (!is_a64(env) && arm_current_el(env) == 3 && 517 arm_is_secure_below_el3(env)) { 518 return CP_ACCESS_TRAP_UNCATEGORIZED; 519 } 520 return CP_ACCESS_OK; 521 } 522 523 /* Some secure-only AArch32 registers trap to EL3 if used from 524 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 525 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 526 * We assume that the .access field is set to PL1_RW. 527 */ 528 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 529 const ARMCPRegInfo *ri, 530 bool isread) 531 { 532 if (arm_current_el(env) == 3) { 533 return CP_ACCESS_OK; 534 } 535 if (arm_is_secure_below_el3(env)) { 536 if (env->cp15.scr_el3 & SCR_EEL2) { 537 return CP_ACCESS_TRAP_EL2; 538 } 539 return CP_ACCESS_TRAP_EL3; 540 } 541 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 542 return CP_ACCESS_TRAP_UNCATEGORIZED; 543 } 544 545 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 546 { 547 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 548 } 549 550 /* Check for traps to "powerdown debug" registers, which are controlled 551 * by MDCR.TDOSA 552 */ 553 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 554 bool isread) 555 { 556 int el = arm_current_el(env); 557 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 558 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 559 (arm_hcr_el2_eff(env) & HCR_TGE); 560 561 if (el < 2 && mdcr_el2_tdosa) { 562 return CP_ACCESS_TRAP_EL2; 563 } 564 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 565 return CP_ACCESS_TRAP_EL3; 566 } 567 return CP_ACCESS_OK; 568 } 569 570 /* Check for traps to "debug ROM" registers, which are controlled 571 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 572 */ 573 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 574 bool isread) 575 { 576 int el = arm_current_el(env); 577 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 578 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 579 (arm_hcr_el2_eff(env) & HCR_TGE); 580 581 if (el < 2 && mdcr_el2_tdra) { 582 return CP_ACCESS_TRAP_EL2; 583 } 584 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 585 return CP_ACCESS_TRAP_EL3; 586 } 587 return CP_ACCESS_OK; 588 } 589 590 /* Check for traps to general debug registers, which are controlled 591 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 592 */ 593 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 594 bool isread) 595 { 596 int el = arm_current_el(env); 597 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 598 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 599 (arm_hcr_el2_eff(env) & HCR_TGE); 600 601 if (el < 2 && mdcr_el2_tda) { 602 return CP_ACCESS_TRAP_EL2; 603 } 604 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 605 return CP_ACCESS_TRAP_EL3; 606 } 607 return CP_ACCESS_OK; 608 } 609 610 /* Check for traps to performance monitor registers, which are controlled 611 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 612 */ 613 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 614 bool isread) 615 { 616 int el = arm_current_el(env); 617 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 618 619 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 620 return CP_ACCESS_TRAP_EL2; 621 } 622 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 623 return CP_ACCESS_TRAP_EL3; 624 } 625 return CP_ACCESS_OK; 626 } 627 628 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 629 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 630 bool isread) 631 { 632 if (arm_current_el(env) == 1) { 633 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 634 if (arm_hcr_el2_eff(env) & trap) { 635 return CP_ACCESS_TRAP_EL2; 636 } 637 } 638 return CP_ACCESS_OK; 639 } 640 641 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 642 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 643 bool isread) 644 { 645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 646 return CP_ACCESS_TRAP_EL2; 647 } 648 return CP_ACCESS_OK; 649 } 650 651 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 652 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 653 bool isread) 654 { 655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 656 return CP_ACCESS_TRAP_EL2; 657 } 658 return CP_ACCESS_OK; 659 } 660 661 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 662 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 663 bool isread) 664 { 665 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 666 return CP_ACCESS_TRAP_EL2; 667 } 668 return CP_ACCESS_OK; 669 } 670 671 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 672 { 673 ARMCPU *cpu = env_archcpu(env); 674 675 raw_write(env, ri, value); 676 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 677 } 678 679 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 680 { 681 ARMCPU *cpu = env_archcpu(env); 682 683 if (raw_read(env, ri) != value) { 684 /* Unlike real hardware the qemu TLB uses virtual addresses, 685 * not modified virtual addresses, so this causes a TLB flush. 686 */ 687 tlb_flush(CPU(cpu)); 688 raw_write(env, ri, value); 689 } 690 } 691 692 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 693 uint64_t value) 694 { 695 ARMCPU *cpu = env_archcpu(env); 696 697 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 698 && !extended_addresses_enabled(env)) { 699 /* For VMSA (when not using the LPAE long descriptor page table 700 * format) this register includes the ASID, so do a TLB flush. 701 * For PMSA it is purely a process ID and no action is needed. 702 */ 703 tlb_flush(CPU(cpu)); 704 } 705 raw_write(env, ri, value); 706 } 707 708 /* IS variants of TLB operations must affect all cores */ 709 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 710 uint64_t value) 711 { 712 CPUState *cs = env_cpu(env); 713 714 tlb_flush_all_cpus_synced(cs); 715 } 716 717 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 718 uint64_t value) 719 { 720 CPUState *cs = env_cpu(env); 721 722 tlb_flush_all_cpus_synced(cs); 723 } 724 725 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 726 uint64_t value) 727 { 728 CPUState *cs = env_cpu(env); 729 730 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 731 } 732 733 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 734 uint64_t value) 735 { 736 CPUState *cs = env_cpu(env); 737 738 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 739 } 740 741 /* 742 * Non-IS variants of TLB operations are upgraded to 743 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 744 * force broadcast of these operations. 745 */ 746 static bool tlb_force_broadcast(CPUARMState *env) 747 { 748 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 749 } 750 751 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 752 uint64_t value) 753 { 754 /* Invalidate all (TLBIALL) */ 755 CPUState *cs = env_cpu(env); 756 757 if (tlb_force_broadcast(env)) { 758 tlb_flush_all_cpus_synced(cs); 759 } else { 760 tlb_flush(cs); 761 } 762 } 763 764 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 765 uint64_t value) 766 { 767 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 768 CPUState *cs = env_cpu(env); 769 770 value &= TARGET_PAGE_MASK; 771 if (tlb_force_broadcast(env)) { 772 tlb_flush_page_all_cpus_synced(cs, value); 773 } else { 774 tlb_flush_page(cs, value); 775 } 776 } 777 778 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 779 uint64_t value) 780 { 781 /* Invalidate by ASID (TLBIASID) */ 782 CPUState *cs = env_cpu(env); 783 784 if (tlb_force_broadcast(env)) { 785 tlb_flush_all_cpus_synced(cs); 786 } else { 787 tlb_flush(cs); 788 } 789 } 790 791 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 792 uint64_t value) 793 { 794 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 795 CPUState *cs = env_cpu(env); 796 797 value &= TARGET_PAGE_MASK; 798 if (tlb_force_broadcast(env)) { 799 tlb_flush_page_all_cpus_synced(cs, value); 800 } else { 801 tlb_flush_page(cs, value); 802 } 803 } 804 805 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 806 uint64_t value) 807 { 808 CPUState *cs = env_cpu(env); 809 810 tlb_flush_by_mmuidx(cs, 811 ARMMMUIdxBit_E10_1 | 812 ARMMMUIdxBit_E10_1_PAN | 813 ARMMMUIdxBit_E10_0); 814 } 815 816 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 817 uint64_t value) 818 { 819 CPUState *cs = env_cpu(env); 820 821 tlb_flush_by_mmuidx_all_cpus_synced(cs, 822 ARMMMUIdxBit_E10_1 | 823 ARMMMUIdxBit_E10_1_PAN | 824 ARMMMUIdxBit_E10_0); 825 } 826 827 828 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 829 uint64_t value) 830 { 831 CPUState *cs = env_cpu(env); 832 833 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 834 } 835 836 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 837 uint64_t value) 838 { 839 CPUState *cs = env_cpu(env); 840 841 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 842 } 843 844 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 845 uint64_t value) 846 { 847 CPUState *cs = env_cpu(env); 848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 849 850 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 851 } 852 853 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 854 uint64_t value) 855 { 856 CPUState *cs = env_cpu(env); 857 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 858 859 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 860 ARMMMUIdxBit_E2); 861 } 862 863 static const ARMCPRegInfo cp_reginfo[] = { 864 /* Define the secure and non-secure FCSE identifier CP registers 865 * separately because there is no secure bank in V8 (no _EL3). This allows 866 * the secure register to be properly reset and migrated. There is also no 867 * v8 EL1 version of the register so the non-secure instance stands alone. 868 */ 869 { .name = "FCSEIDR", 870 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 871 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 872 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 873 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 874 { .name = "FCSEIDR_S", 875 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 876 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 877 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 878 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 879 /* Define the secure and non-secure context identifier CP registers 880 * separately because there is no secure bank in V8 (no _EL3). This allows 881 * the secure register to be properly reset and migrated. In the 882 * non-secure case, the 32-bit register will have reset and migration 883 * disabled during registration as it is handled by the 64-bit instance. 884 */ 885 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 886 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 887 .access = PL1_RW, .accessfn = access_tvm_trvm, 888 .secure = ARM_CP_SECSTATE_NS, 889 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 890 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 891 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 892 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 893 .access = PL1_RW, .accessfn = access_tvm_trvm, 894 .secure = ARM_CP_SECSTATE_S, 895 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 896 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 897 REGINFO_SENTINEL 898 }; 899 900 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 901 /* NB: Some of these registers exist in v8 but with more precise 902 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 903 */ 904 /* MMU Domain access control / MPU write buffer control */ 905 { .name = "DACR", 906 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 907 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 908 .writefn = dacr_write, .raw_writefn = raw_write, 909 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 910 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 911 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 912 * For v6 and v5, these mappings are overly broad. 913 */ 914 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 915 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 916 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 917 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 918 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 919 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 920 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 921 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 922 /* Cache maintenance ops; some of this space may be overridden later. */ 923 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 924 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 925 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 926 REGINFO_SENTINEL 927 }; 928 929 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 930 /* Not all pre-v6 cores implemented this WFI, so this is slightly 931 * over-broad. 932 */ 933 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 934 .access = PL1_W, .type = ARM_CP_WFI }, 935 REGINFO_SENTINEL 936 }; 937 938 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 939 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 940 * is UNPREDICTABLE; we choose to NOP as most implementations do). 941 */ 942 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 943 .access = PL1_W, .type = ARM_CP_WFI }, 944 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 945 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 946 * OMAPCP will override this space. 947 */ 948 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 949 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 950 .resetvalue = 0 }, 951 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 952 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 953 .resetvalue = 0 }, 954 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 955 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 956 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 957 .resetvalue = 0 }, 958 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 959 * implementing it as RAZ means the "debug architecture version" bits 960 * will read as a reserved value, which should cause Linux to not try 961 * to use the debug hardware. 962 */ 963 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 964 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 965 /* MMU TLB control. Note that the wildcarding means we cover not just 966 * the unified TLB ops but also the dside/iside/inner-shareable variants. 967 */ 968 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 969 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 970 .type = ARM_CP_NO_RAW }, 971 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 972 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 973 .type = ARM_CP_NO_RAW }, 974 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 975 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 976 .type = ARM_CP_NO_RAW }, 977 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 978 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 979 .type = ARM_CP_NO_RAW }, 980 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 981 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 982 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 983 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 984 REGINFO_SENTINEL 985 }; 986 987 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 988 uint64_t value) 989 { 990 uint32_t mask = 0; 991 992 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 993 if (!arm_feature(env, ARM_FEATURE_V8)) { 994 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 995 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 996 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 997 */ 998 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 999 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1000 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1001 1002 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1003 /* ASEDIS [31] bit is RAO/WI */ 1004 value |= (1 << 31); 1005 } 1006 1007 /* VFPv3 and upwards with NEON implement 32 double precision 1008 * registers (D0-D31). 1009 */ 1010 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1011 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1012 value |= (1 << 30); 1013 } 1014 } 1015 value &= mask; 1016 } 1017 1018 /* 1019 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1020 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1021 */ 1022 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1023 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1024 value &= ~(0xf << 20); 1025 value |= env->cp15.cpacr_el1 & (0xf << 20); 1026 } 1027 1028 env->cp15.cpacr_el1 = value; 1029 } 1030 1031 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1032 { 1033 /* 1034 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1035 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1036 */ 1037 uint64_t value = env->cp15.cpacr_el1; 1038 1039 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1040 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1041 value &= ~(0xf << 20); 1042 } 1043 return value; 1044 } 1045 1046 1047 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1048 { 1049 /* Call cpacr_write() so that we reset with the correct RAO bits set 1050 * for our CPU features. 1051 */ 1052 cpacr_write(env, ri, 0); 1053 } 1054 1055 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1056 bool isread) 1057 { 1058 if (arm_feature(env, ARM_FEATURE_V8)) { 1059 /* Check if CPACR accesses are to be trapped to EL2 */ 1060 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1061 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1062 return CP_ACCESS_TRAP_EL2; 1063 /* Check if CPACR accesses are to be trapped to EL3 */ 1064 } else if (arm_current_el(env) < 3 && 1065 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1066 return CP_ACCESS_TRAP_EL3; 1067 } 1068 } 1069 1070 return CP_ACCESS_OK; 1071 } 1072 1073 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1074 bool isread) 1075 { 1076 /* Check if CPTR accesses are set to trap to EL3 */ 1077 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1078 return CP_ACCESS_TRAP_EL3; 1079 } 1080 1081 return CP_ACCESS_OK; 1082 } 1083 1084 static const ARMCPRegInfo v6_cp_reginfo[] = { 1085 /* prefetch by MVA in v6, NOP in v7 */ 1086 { .name = "MVA_prefetch", 1087 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1088 .access = PL1_W, .type = ARM_CP_NOP }, 1089 /* We need to break the TB after ISB to execute self-modifying code 1090 * correctly and also to take any pending interrupts immediately. 1091 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1092 */ 1093 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1094 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1095 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1096 .access = PL0_W, .type = ARM_CP_NOP }, 1097 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1098 .access = PL0_W, .type = ARM_CP_NOP }, 1099 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1100 .access = PL1_RW, .accessfn = access_tvm_trvm, 1101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1102 offsetof(CPUARMState, cp15.ifar_ns) }, 1103 .resetvalue = 0, }, 1104 /* Watchpoint Fault Address Register : should actually only be present 1105 * for 1136, 1176, 11MPCore. 1106 */ 1107 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1108 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1109 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1110 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1111 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1112 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1113 REGINFO_SENTINEL 1114 }; 1115 1116 /* Definitions for the PMU registers */ 1117 #define PMCRN_MASK 0xf800 1118 #define PMCRN_SHIFT 11 1119 #define PMCRLC 0x40 1120 #define PMCRDP 0x20 1121 #define PMCRX 0x10 1122 #define PMCRD 0x8 1123 #define PMCRC 0x4 1124 #define PMCRP 0x2 1125 #define PMCRE 0x1 1126 /* 1127 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1128 * which can be written as 1 to trigger behaviour but which stay RAZ). 1129 */ 1130 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1131 1132 #define PMXEVTYPER_P 0x80000000 1133 #define PMXEVTYPER_U 0x40000000 1134 #define PMXEVTYPER_NSK 0x20000000 1135 #define PMXEVTYPER_NSU 0x10000000 1136 #define PMXEVTYPER_NSH 0x08000000 1137 #define PMXEVTYPER_M 0x04000000 1138 #define PMXEVTYPER_MT 0x02000000 1139 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1140 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1141 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1142 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1143 PMXEVTYPER_EVTCOUNT) 1144 1145 #define PMCCFILTR 0xf8000000 1146 #define PMCCFILTR_M PMXEVTYPER_M 1147 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1148 1149 static inline uint32_t pmu_num_counters(CPUARMState *env) 1150 { 1151 ARMCPU *cpu = env_archcpu(env); 1152 1153 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT; 1154 } 1155 1156 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1157 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1158 { 1159 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1160 } 1161 1162 typedef struct pm_event { 1163 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1164 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1165 bool (*supported)(CPUARMState *); 1166 /* 1167 * Retrieve the current count of the underlying event. The programmed 1168 * counters hold a difference from the return value from this function 1169 */ 1170 uint64_t (*get_count)(CPUARMState *); 1171 /* 1172 * Return how many nanoseconds it will take (at a minimum) for count events 1173 * to occur. A negative value indicates the counter will never overflow, or 1174 * that the counter has otherwise arranged for the overflow bit to be set 1175 * and the PMU interrupt to be raised on overflow. 1176 */ 1177 int64_t (*ns_per_count)(uint64_t); 1178 } pm_event; 1179 1180 static bool event_always_supported(CPUARMState *env) 1181 { 1182 return true; 1183 } 1184 1185 static uint64_t swinc_get_count(CPUARMState *env) 1186 { 1187 /* 1188 * SW_INCR events are written directly to the pmevcntr's by writes to 1189 * PMSWINC, so there is no underlying count maintained by the PMU itself 1190 */ 1191 return 0; 1192 } 1193 1194 static int64_t swinc_ns_per(uint64_t ignored) 1195 { 1196 return -1; 1197 } 1198 1199 /* 1200 * Return the underlying cycle count for the PMU cycle counters. If we're in 1201 * usermode, simply return 0. 1202 */ 1203 static uint64_t cycles_get_count(CPUARMState *env) 1204 { 1205 #ifndef CONFIG_USER_ONLY 1206 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1207 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1208 #else 1209 return cpu_get_host_ticks(); 1210 #endif 1211 } 1212 1213 #ifndef CONFIG_USER_ONLY 1214 static int64_t cycles_ns_per(uint64_t cycles) 1215 { 1216 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1217 } 1218 1219 static bool instructions_supported(CPUARMState *env) 1220 { 1221 return icount_enabled() == 1; /* Precise instruction counting */ 1222 } 1223 1224 static uint64_t instructions_get_count(CPUARMState *env) 1225 { 1226 return (uint64_t)icount_get_raw(); 1227 } 1228 1229 static int64_t instructions_ns_per(uint64_t icount) 1230 { 1231 return icount_to_ns((int64_t)icount); 1232 } 1233 #endif 1234 1235 static bool pmu_8_1_events_supported(CPUARMState *env) 1236 { 1237 /* For events which are supported in any v8.1 PMU */ 1238 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1239 } 1240 1241 static bool pmu_8_4_events_supported(CPUARMState *env) 1242 { 1243 /* For events which are supported in any v8.1 PMU */ 1244 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1245 } 1246 1247 static uint64_t zero_event_get_count(CPUARMState *env) 1248 { 1249 /* For events which on QEMU never fire, so their count is always zero */ 1250 return 0; 1251 } 1252 1253 static int64_t zero_event_ns_per(uint64_t cycles) 1254 { 1255 /* An event which never fires can never overflow */ 1256 return -1; 1257 } 1258 1259 static const pm_event pm_events[] = { 1260 { .number = 0x000, /* SW_INCR */ 1261 .supported = event_always_supported, 1262 .get_count = swinc_get_count, 1263 .ns_per_count = swinc_ns_per, 1264 }, 1265 #ifndef CONFIG_USER_ONLY 1266 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1267 .supported = instructions_supported, 1268 .get_count = instructions_get_count, 1269 .ns_per_count = instructions_ns_per, 1270 }, 1271 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1272 .supported = event_always_supported, 1273 .get_count = cycles_get_count, 1274 .ns_per_count = cycles_ns_per, 1275 }, 1276 #endif 1277 { .number = 0x023, /* STALL_FRONTEND */ 1278 .supported = pmu_8_1_events_supported, 1279 .get_count = zero_event_get_count, 1280 .ns_per_count = zero_event_ns_per, 1281 }, 1282 { .number = 0x024, /* STALL_BACKEND */ 1283 .supported = pmu_8_1_events_supported, 1284 .get_count = zero_event_get_count, 1285 .ns_per_count = zero_event_ns_per, 1286 }, 1287 { .number = 0x03c, /* STALL */ 1288 .supported = pmu_8_4_events_supported, 1289 .get_count = zero_event_get_count, 1290 .ns_per_count = zero_event_ns_per, 1291 }, 1292 }; 1293 1294 /* 1295 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1296 * events (i.e. the statistical profiling extension), this implementation 1297 * should first be updated to something sparse instead of the current 1298 * supported_event_map[] array. 1299 */ 1300 #define MAX_EVENT_ID 0x3c 1301 #define UNSUPPORTED_EVENT UINT16_MAX 1302 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1303 1304 /* 1305 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1306 * of ARM event numbers to indices in our pm_events array. 1307 * 1308 * Note: Events in the 0x40XX range are not currently supported. 1309 */ 1310 void pmu_init(ARMCPU *cpu) 1311 { 1312 unsigned int i; 1313 1314 /* 1315 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1316 * events to them 1317 */ 1318 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1319 supported_event_map[i] = UNSUPPORTED_EVENT; 1320 } 1321 cpu->pmceid0 = 0; 1322 cpu->pmceid1 = 0; 1323 1324 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1325 const pm_event *cnt = &pm_events[i]; 1326 assert(cnt->number <= MAX_EVENT_ID); 1327 /* We do not currently support events in the 0x40xx range */ 1328 assert(cnt->number <= 0x3f); 1329 1330 if (cnt->supported(&cpu->env)) { 1331 supported_event_map[cnt->number] = i; 1332 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1333 if (cnt->number & 0x20) { 1334 cpu->pmceid1 |= event_mask; 1335 } else { 1336 cpu->pmceid0 |= event_mask; 1337 } 1338 } 1339 } 1340 } 1341 1342 /* 1343 * Check at runtime whether a PMU event is supported for the current machine 1344 */ 1345 static bool event_supported(uint16_t number) 1346 { 1347 if (number > MAX_EVENT_ID) { 1348 return false; 1349 } 1350 return supported_event_map[number] != UNSUPPORTED_EVENT; 1351 } 1352 1353 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1354 bool isread) 1355 { 1356 /* Performance monitor registers user accessibility is controlled 1357 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1358 * trapping to EL2 or EL3 for other accesses. 1359 */ 1360 int el = arm_current_el(env); 1361 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1362 1363 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1364 return CP_ACCESS_TRAP; 1365 } 1366 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1367 return CP_ACCESS_TRAP_EL2; 1368 } 1369 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1370 return CP_ACCESS_TRAP_EL3; 1371 } 1372 1373 return CP_ACCESS_OK; 1374 } 1375 1376 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1377 const ARMCPRegInfo *ri, 1378 bool isread) 1379 { 1380 /* ER: event counter read trap control */ 1381 if (arm_feature(env, ARM_FEATURE_V8) 1382 && arm_current_el(env) == 0 1383 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1384 && isread) { 1385 return CP_ACCESS_OK; 1386 } 1387 1388 return pmreg_access(env, ri, isread); 1389 } 1390 1391 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1392 const ARMCPRegInfo *ri, 1393 bool isread) 1394 { 1395 /* SW: software increment write trap control */ 1396 if (arm_feature(env, ARM_FEATURE_V8) 1397 && arm_current_el(env) == 0 1398 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1399 && !isread) { 1400 return CP_ACCESS_OK; 1401 } 1402 1403 return pmreg_access(env, ri, isread); 1404 } 1405 1406 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1407 const ARMCPRegInfo *ri, 1408 bool isread) 1409 { 1410 /* ER: event counter read trap control */ 1411 if (arm_feature(env, ARM_FEATURE_V8) 1412 && arm_current_el(env) == 0 1413 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1414 return CP_ACCESS_OK; 1415 } 1416 1417 return pmreg_access(env, ri, isread); 1418 } 1419 1420 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1421 const ARMCPRegInfo *ri, 1422 bool isread) 1423 { 1424 /* CR: cycle counter read trap control */ 1425 if (arm_feature(env, ARM_FEATURE_V8) 1426 && arm_current_el(env) == 0 1427 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1428 && isread) { 1429 return CP_ACCESS_OK; 1430 } 1431 1432 return pmreg_access(env, ri, isread); 1433 } 1434 1435 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1436 * the current EL, security state, and register configuration. 1437 */ 1438 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1439 { 1440 uint64_t filter; 1441 bool e, p, u, nsk, nsu, nsh, m; 1442 bool enabled, prohibited, filtered; 1443 bool secure = arm_is_secure(env); 1444 int el = arm_current_el(env); 1445 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1446 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1447 1448 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1449 return false; 1450 } 1451 1452 if (!arm_feature(env, ARM_FEATURE_EL2) || 1453 (counter < hpmn || counter == 31)) { 1454 e = env->cp15.c9_pmcr & PMCRE; 1455 } else { 1456 e = mdcr_el2 & MDCR_HPME; 1457 } 1458 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1459 1460 if (!secure) { 1461 if (el == 2 && (counter < hpmn || counter == 31)) { 1462 prohibited = mdcr_el2 & MDCR_HPMD; 1463 } else { 1464 prohibited = false; 1465 } 1466 } else { 1467 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1468 !(env->cp15.mdcr_el3 & MDCR_SPME); 1469 } 1470 1471 if (prohibited && counter == 31) { 1472 prohibited = env->cp15.c9_pmcr & PMCRDP; 1473 } 1474 1475 if (counter == 31) { 1476 filter = env->cp15.pmccfiltr_el0; 1477 } else { 1478 filter = env->cp15.c14_pmevtyper[counter]; 1479 } 1480 1481 p = filter & PMXEVTYPER_P; 1482 u = filter & PMXEVTYPER_U; 1483 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1484 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1485 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1486 m = arm_el_is_aa64(env, 1) && 1487 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1488 1489 if (el == 0) { 1490 filtered = secure ? u : u != nsu; 1491 } else if (el == 1) { 1492 filtered = secure ? p : p != nsk; 1493 } else if (el == 2) { 1494 filtered = !nsh; 1495 } else { /* EL3 */ 1496 filtered = m != p; 1497 } 1498 1499 if (counter != 31) { 1500 /* 1501 * If not checking PMCCNTR, ensure the counter is setup to an event we 1502 * support 1503 */ 1504 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1505 if (!event_supported(event)) { 1506 return false; 1507 } 1508 } 1509 1510 return enabled && !prohibited && !filtered; 1511 } 1512 1513 static void pmu_update_irq(CPUARMState *env) 1514 { 1515 ARMCPU *cpu = env_archcpu(env); 1516 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1517 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1518 } 1519 1520 /* 1521 * Ensure c15_ccnt is the guest-visible count so that operations such as 1522 * enabling/disabling the counter or filtering, modifying the count itself, 1523 * etc. can be done logically. This is essentially a no-op if the counter is 1524 * not enabled at the time of the call. 1525 */ 1526 static void pmccntr_op_start(CPUARMState *env) 1527 { 1528 uint64_t cycles = cycles_get_count(env); 1529 1530 if (pmu_counter_enabled(env, 31)) { 1531 uint64_t eff_cycles = cycles; 1532 if (env->cp15.c9_pmcr & PMCRD) { 1533 /* Increment once every 64 processor clock cycles */ 1534 eff_cycles /= 64; 1535 } 1536 1537 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1538 1539 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1540 1ull << 63 : 1ull << 31; 1541 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1542 env->cp15.c9_pmovsr |= (1 << 31); 1543 pmu_update_irq(env); 1544 } 1545 1546 env->cp15.c15_ccnt = new_pmccntr; 1547 } 1548 env->cp15.c15_ccnt_delta = cycles; 1549 } 1550 1551 /* 1552 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1553 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1554 * pmccntr_op_start. 1555 */ 1556 static void pmccntr_op_finish(CPUARMState *env) 1557 { 1558 if (pmu_counter_enabled(env, 31)) { 1559 #ifndef CONFIG_USER_ONLY 1560 /* Calculate when the counter will next overflow */ 1561 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1562 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1563 remaining_cycles = (uint32_t)remaining_cycles; 1564 } 1565 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1566 1567 if (overflow_in > 0) { 1568 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1569 overflow_in; 1570 ARMCPU *cpu = env_archcpu(env); 1571 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1572 } 1573 #endif 1574 1575 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1576 if (env->cp15.c9_pmcr & PMCRD) { 1577 /* Increment once every 64 processor clock cycles */ 1578 prev_cycles /= 64; 1579 } 1580 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1581 } 1582 } 1583 1584 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1585 { 1586 1587 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1588 uint64_t count = 0; 1589 if (event_supported(event)) { 1590 uint16_t event_idx = supported_event_map[event]; 1591 count = pm_events[event_idx].get_count(env); 1592 } 1593 1594 if (pmu_counter_enabled(env, counter)) { 1595 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1596 1597 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1598 env->cp15.c9_pmovsr |= (1 << counter); 1599 pmu_update_irq(env); 1600 } 1601 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1602 } 1603 env->cp15.c14_pmevcntr_delta[counter] = count; 1604 } 1605 1606 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1607 { 1608 if (pmu_counter_enabled(env, counter)) { 1609 #ifndef CONFIG_USER_ONLY 1610 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1611 uint16_t event_idx = supported_event_map[event]; 1612 uint64_t delta = UINT32_MAX - 1613 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1614 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1615 1616 if (overflow_in > 0) { 1617 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1618 overflow_in; 1619 ARMCPU *cpu = env_archcpu(env); 1620 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1621 } 1622 #endif 1623 1624 env->cp15.c14_pmevcntr_delta[counter] -= 1625 env->cp15.c14_pmevcntr[counter]; 1626 } 1627 } 1628 1629 void pmu_op_start(CPUARMState *env) 1630 { 1631 unsigned int i; 1632 pmccntr_op_start(env); 1633 for (i = 0; i < pmu_num_counters(env); i++) { 1634 pmevcntr_op_start(env, i); 1635 } 1636 } 1637 1638 void pmu_op_finish(CPUARMState *env) 1639 { 1640 unsigned int i; 1641 pmccntr_op_finish(env); 1642 for (i = 0; i < pmu_num_counters(env); i++) { 1643 pmevcntr_op_finish(env, i); 1644 } 1645 } 1646 1647 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1648 { 1649 pmu_op_start(&cpu->env); 1650 } 1651 1652 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1653 { 1654 pmu_op_finish(&cpu->env); 1655 } 1656 1657 void arm_pmu_timer_cb(void *opaque) 1658 { 1659 ARMCPU *cpu = opaque; 1660 1661 /* 1662 * Update all the counter values based on the current underlying counts, 1663 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1664 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1665 * counter may expire. 1666 */ 1667 pmu_op_start(&cpu->env); 1668 pmu_op_finish(&cpu->env); 1669 } 1670 1671 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1672 uint64_t value) 1673 { 1674 pmu_op_start(env); 1675 1676 if (value & PMCRC) { 1677 /* The counter has been reset */ 1678 env->cp15.c15_ccnt = 0; 1679 } 1680 1681 if (value & PMCRP) { 1682 unsigned int i; 1683 for (i = 0; i < pmu_num_counters(env); i++) { 1684 env->cp15.c14_pmevcntr[i] = 0; 1685 } 1686 } 1687 1688 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1689 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1690 1691 pmu_op_finish(env); 1692 } 1693 1694 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1695 uint64_t value) 1696 { 1697 unsigned int i; 1698 for (i = 0; i < pmu_num_counters(env); i++) { 1699 /* Increment a counter's count iff: */ 1700 if ((value & (1 << i)) && /* counter's bit is set */ 1701 /* counter is enabled and not filtered */ 1702 pmu_counter_enabled(env, i) && 1703 /* counter is SW_INCR */ 1704 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1705 pmevcntr_op_start(env, i); 1706 1707 /* 1708 * Detect if this write causes an overflow since we can't predict 1709 * PMSWINC overflows like we can for other events 1710 */ 1711 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1712 1713 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1714 env->cp15.c9_pmovsr |= (1 << i); 1715 pmu_update_irq(env); 1716 } 1717 1718 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1719 1720 pmevcntr_op_finish(env, i); 1721 } 1722 } 1723 } 1724 1725 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1726 { 1727 uint64_t ret; 1728 pmccntr_op_start(env); 1729 ret = env->cp15.c15_ccnt; 1730 pmccntr_op_finish(env); 1731 return ret; 1732 } 1733 1734 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 uint64_t value) 1736 { 1737 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1738 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1739 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1740 * accessed. 1741 */ 1742 env->cp15.c9_pmselr = value & 0x1f; 1743 } 1744 1745 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1746 uint64_t value) 1747 { 1748 pmccntr_op_start(env); 1749 env->cp15.c15_ccnt = value; 1750 pmccntr_op_finish(env); 1751 } 1752 1753 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1754 uint64_t value) 1755 { 1756 uint64_t cur_val = pmccntr_read(env, NULL); 1757 1758 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1759 } 1760 1761 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 pmccntr_op_start(env); 1765 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1766 pmccntr_op_finish(env); 1767 } 1768 1769 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1770 uint64_t value) 1771 { 1772 pmccntr_op_start(env); 1773 /* M is not accessible from AArch32 */ 1774 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1775 (value & PMCCFILTR); 1776 pmccntr_op_finish(env); 1777 } 1778 1779 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1780 { 1781 /* M is not visible in AArch32 */ 1782 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1783 } 1784 1785 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1786 uint64_t value) 1787 { 1788 value &= pmu_counter_mask(env); 1789 env->cp15.c9_pmcnten |= value; 1790 } 1791 1792 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 value &= pmu_counter_mask(env); 1796 env->cp15.c9_pmcnten &= ~value; 1797 } 1798 1799 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1800 uint64_t value) 1801 { 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pmovsr &= ~value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pmovsr |= value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value, const uint8_t counter) 1817 { 1818 if (counter == 31) { 1819 pmccfiltr_write(env, ri, value); 1820 } else if (counter < pmu_num_counters(env)) { 1821 pmevcntr_op_start(env, counter); 1822 1823 /* 1824 * If this counter's event type is changing, store the current 1825 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1826 * pmevcntr_op_finish has the correct baseline when it converts back to 1827 * a delta. 1828 */ 1829 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1830 PMXEVTYPER_EVTCOUNT; 1831 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1832 if (old_event != new_event) { 1833 uint64_t count = 0; 1834 if (event_supported(new_event)) { 1835 uint16_t event_idx = supported_event_map[new_event]; 1836 count = pm_events[event_idx].get_count(env); 1837 } 1838 env->cp15.c14_pmevcntr_delta[counter] = count; 1839 } 1840 1841 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1842 pmevcntr_op_finish(env, counter); 1843 } 1844 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1845 * PMSELR value is equal to or greater than the number of implemented 1846 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1847 */ 1848 } 1849 1850 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1851 const uint8_t counter) 1852 { 1853 if (counter == 31) { 1854 return env->cp15.pmccfiltr_el0; 1855 } else if (counter < pmu_num_counters(env)) { 1856 return env->cp15.c14_pmevtyper[counter]; 1857 } else { 1858 /* 1859 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1860 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1861 */ 1862 return 0; 1863 } 1864 } 1865 1866 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1867 uint64_t value) 1868 { 1869 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1870 pmevtyper_write(env, ri, value, counter); 1871 } 1872 1873 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1874 uint64_t value) 1875 { 1876 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1877 env->cp15.c14_pmevtyper[counter] = value; 1878 1879 /* 1880 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1881 * pmu_op_finish calls when loading saved state for a migration. Because 1882 * we're potentially updating the type of event here, the value written to 1883 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1884 * different counter type. Therefore, we need to set this value to the 1885 * current count for the counter type we're writing so that pmu_op_finish 1886 * has the correct count for its calculation. 1887 */ 1888 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1889 if (event_supported(event)) { 1890 uint16_t event_idx = supported_event_map[event]; 1891 env->cp15.c14_pmevcntr_delta[counter] = 1892 pm_events[event_idx].get_count(env); 1893 } 1894 } 1895 1896 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1897 { 1898 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1899 return pmevtyper_read(env, ri, counter); 1900 } 1901 1902 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1903 uint64_t value) 1904 { 1905 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1906 } 1907 1908 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1909 { 1910 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1911 } 1912 1913 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1914 uint64_t value, uint8_t counter) 1915 { 1916 if (counter < pmu_num_counters(env)) { 1917 pmevcntr_op_start(env, counter); 1918 env->cp15.c14_pmevcntr[counter] = value; 1919 pmevcntr_op_finish(env, counter); 1920 } 1921 /* 1922 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1923 * are CONSTRAINED UNPREDICTABLE. 1924 */ 1925 } 1926 1927 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1928 uint8_t counter) 1929 { 1930 if (counter < pmu_num_counters(env)) { 1931 uint64_t ret; 1932 pmevcntr_op_start(env, counter); 1933 ret = env->cp15.c14_pmevcntr[counter]; 1934 pmevcntr_op_finish(env, counter); 1935 return ret; 1936 } else { 1937 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1938 * are CONSTRAINED UNPREDICTABLE. */ 1939 return 0; 1940 } 1941 } 1942 1943 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1944 uint64_t value) 1945 { 1946 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1947 pmevcntr_write(env, ri, value, counter); 1948 } 1949 1950 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1951 { 1952 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1953 return pmevcntr_read(env, ri, counter); 1954 } 1955 1956 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1957 uint64_t value) 1958 { 1959 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1960 assert(counter < pmu_num_counters(env)); 1961 env->cp15.c14_pmevcntr[counter] = value; 1962 pmevcntr_write(env, ri, value, counter); 1963 } 1964 1965 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1966 { 1967 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1968 assert(counter < pmu_num_counters(env)); 1969 return env->cp15.c14_pmevcntr[counter]; 1970 } 1971 1972 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1973 uint64_t value) 1974 { 1975 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1976 } 1977 1978 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1979 { 1980 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1981 } 1982 1983 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1984 uint64_t value) 1985 { 1986 if (arm_feature(env, ARM_FEATURE_V8)) { 1987 env->cp15.c9_pmuserenr = value & 0xf; 1988 } else { 1989 env->cp15.c9_pmuserenr = value & 1; 1990 } 1991 } 1992 1993 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1994 uint64_t value) 1995 { 1996 /* We have no event counters so only the C bit can be changed */ 1997 value &= pmu_counter_mask(env); 1998 env->cp15.c9_pminten |= value; 1999 pmu_update_irq(env); 2000 } 2001 2002 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2003 uint64_t value) 2004 { 2005 value &= pmu_counter_mask(env); 2006 env->cp15.c9_pminten &= ~value; 2007 pmu_update_irq(env); 2008 } 2009 2010 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2011 uint64_t value) 2012 { 2013 /* Note that even though the AArch64 view of this register has bits 2014 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2015 * architectural requirements for bits which are RES0 only in some 2016 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2017 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2018 */ 2019 raw_write(env, ri, value & ~0x1FULL); 2020 } 2021 2022 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2023 { 2024 /* Begin with base v8.0 state. */ 2025 uint32_t valid_mask = 0x3fff; 2026 ARMCPU *cpu = env_archcpu(env); 2027 2028 if (ri->state == ARM_CP_STATE_AA64) { 2029 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2030 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2031 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2032 } 2033 valid_mask &= ~SCR_NET; 2034 2035 if (cpu_isar_feature(aa64_lor, cpu)) { 2036 valid_mask |= SCR_TLOR; 2037 } 2038 if (cpu_isar_feature(aa64_pauth, cpu)) { 2039 valid_mask |= SCR_API | SCR_APK; 2040 } 2041 if (cpu_isar_feature(aa64_sel2, cpu)) { 2042 valid_mask |= SCR_EEL2; 2043 } 2044 if (cpu_isar_feature(aa64_mte, cpu)) { 2045 valid_mask |= SCR_ATA; 2046 } 2047 } else { 2048 valid_mask &= ~(SCR_RW | SCR_ST); 2049 } 2050 2051 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2052 valid_mask &= ~SCR_HCE; 2053 2054 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2055 * supported if EL2 exists. The bit is UNK/SBZP when 2056 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2057 * when EL2 is unavailable. 2058 * On ARMv8, this bit is always available. 2059 */ 2060 if (arm_feature(env, ARM_FEATURE_V7) && 2061 !arm_feature(env, ARM_FEATURE_V8)) { 2062 valid_mask &= ~SCR_SMD; 2063 } 2064 } 2065 2066 /* Clear all-context RES0 bits. */ 2067 value &= valid_mask; 2068 raw_write(env, ri, value); 2069 } 2070 2071 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2072 { 2073 /* 2074 * scr_write will set the RES1 bits on an AArch64-only CPU. 2075 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2076 */ 2077 scr_write(env, ri, 0); 2078 } 2079 2080 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2081 const ARMCPRegInfo *ri, 2082 bool isread) 2083 { 2084 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2085 return CP_ACCESS_TRAP_EL2; 2086 } 2087 2088 return CP_ACCESS_OK; 2089 } 2090 2091 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2092 { 2093 ARMCPU *cpu = env_archcpu(env); 2094 2095 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2096 * bank 2097 */ 2098 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2099 ri->secure & ARM_CP_SECSTATE_S); 2100 2101 return cpu->ccsidr[index]; 2102 } 2103 2104 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2105 uint64_t value) 2106 { 2107 raw_write(env, ri, value & 0xf); 2108 } 2109 2110 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2111 { 2112 CPUState *cs = env_cpu(env); 2113 bool el1 = arm_current_el(env) == 1; 2114 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2115 uint64_t ret = 0; 2116 2117 if (hcr_el2 & HCR_IMO) { 2118 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2119 ret |= CPSR_I; 2120 } 2121 } else { 2122 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2123 ret |= CPSR_I; 2124 } 2125 } 2126 2127 if (hcr_el2 & HCR_FMO) { 2128 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2129 ret |= CPSR_F; 2130 } 2131 } else { 2132 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2133 ret |= CPSR_F; 2134 } 2135 } 2136 2137 /* External aborts are not possible in QEMU so A bit is always clear */ 2138 return ret; 2139 } 2140 2141 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2142 bool isread) 2143 { 2144 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2145 return CP_ACCESS_TRAP_EL2; 2146 } 2147 2148 return CP_ACCESS_OK; 2149 } 2150 2151 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2152 bool isread) 2153 { 2154 if (arm_feature(env, ARM_FEATURE_V8)) { 2155 return access_aa64_tid1(env, ri, isread); 2156 } 2157 2158 return CP_ACCESS_OK; 2159 } 2160 2161 static const ARMCPRegInfo v7_cp_reginfo[] = { 2162 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2163 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2164 .access = PL1_W, .type = ARM_CP_NOP }, 2165 /* Performance monitors are implementation defined in v7, 2166 * but with an ARM recommended set of registers, which we 2167 * follow. 2168 * 2169 * Performance registers fall into three categories: 2170 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2171 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2172 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2173 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2174 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2175 */ 2176 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2177 .access = PL0_RW, .type = ARM_CP_ALIAS, 2178 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2179 .writefn = pmcntenset_write, 2180 .accessfn = pmreg_access, 2181 .raw_writefn = raw_write }, 2182 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2184 .access = PL0_RW, .accessfn = pmreg_access, 2185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2186 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2187 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2188 .access = PL0_RW, 2189 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2190 .accessfn = pmreg_access, 2191 .writefn = pmcntenclr_write, 2192 .type = ARM_CP_ALIAS }, 2193 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2195 .access = PL0_RW, .accessfn = pmreg_access, 2196 .type = ARM_CP_ALIAS, 2197 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2198 .writefn = pmcntenclr_write }, 2199 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2200 .access = PL0_RW, .type = ARM_CP_IO, 2201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2202 .accessfn = pmreg_access, 2203 .writefn = pmovsr_write, 2204 .raw_writefn = raw_write }, 2205 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2206 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2207 .access = PL0_RW, .accessfn = pmreg_access, 2208 .type = ARM_CP_ALIAS | ARM_CP_IO, 2209 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2210 .writefn = pmovsr_write, 2211 .raw_writefn = raw_write }, 2212 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2213 .access = PL0_W, .accessfn = pmreg_access_swinc, 2214 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2215 .writefn = pmswinc_write }, 2216 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2217 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2218 .access = PL0_W, .accessfn = pmreg_access_swinc, 2219 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2220 .writefn = pmswinc_write }, 2221 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2222 .access = PL0_RW, .type = ARM_CP_ALIAS, 2223 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2224 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2225 .raw_writefn = raw_write}, 2226 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2227 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2228 .access = PL0_RW, .accessfn = pmreg_access_selr, 2229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2230 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2231 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2232 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2233 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2234 .accessfn = pmreg_access_ccntr }, 2235 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2237 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2238 .type = ARM_CP_IO, 2239 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2240 .readfn = pmccntr_read, .writefn = pmccntr_write, 2241 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2242 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2243 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2244 .access = PL0_RW, .accessfn = pmreg_access, 2245 .type = ARM_CP_ALIAS | ARM_CP_IO, 2246 .resetvalue = 0, }, 2247 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2248 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2249 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2250 .access = PL0_RW, .accessfn = pmreg_access, 2251 .type = ARM_CP_IO, 2252 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2253 .resetvalue = 0, }, 2254 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2255 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2256 .accessfn = pmreg_access, 2257 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2258 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2260 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2261 .accessfn = pmreg_access, 2262 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2263 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2264 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2265 .accessfn = pmreg_access_xevcntr, 2266 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2267 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2269 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2270 .accessfn = pmreg_access_xevcntr, 2271 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2272 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2273 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2275 .resetvalue = 0, 2276 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2277 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2278 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2279 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2280 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2281 .resetvalue = 0, 2282 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2283 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2284 .access = PL1_RW, .accessfn = access_tpm, 2285 .type = ARM_CP_ALIAS | ARM_CP_IO, 2286 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2287 .resetvalue = 0, 2288 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2289 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2291 .access = PL1_RW, .accessfn = access_tpm, 2292 .type = ARM_CP_IO, 2293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2294 .writefn = pmintenset_write, .raw_writefn = raw_write, 2295 .resetvalue = 0x0 }, 2296 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2297 .access = PL1_RW, .accessfn = access_tpm, 2298 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2299 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2300 .writefn = pmintenclr_write, }, 2301 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2302 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2303 .access = PL1_RW, .accessfn = access_tpm, 2304 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2305 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2306 .writefn = pmintenclr_write }, 2307 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2308 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2309 .access = PL1_R, 2310 .accessfn = access_aa64_tid2, 2311 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2312 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2313 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2314 .access = PL1_RW, 2315 .accessfn = access_aa64_tid2, 2316 .writefn = csselr_write, .resetvalue = 0, 2317 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2318 offsetof(CPUARMState, cp15.csselr_ns) } }, 2319 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2320 * just RAZ for all cores: 2321 */ 2322 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2323 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2324 .access = PL1_R, .type = ARM_CP_CONST, 2325 .accessfn = access_aa64_tid1, 2326 .resetvalue = 0 }, 2327 /* Auxiliary fault status registers: these also are IMPDEF, and we 2328 * choose to RAZ/WI for all cores. 2329 */ 2330 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2331 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2332 .access = PL1_RW, .accessfn = access_tvm_trvm, 2333 .type = ARM_CP_CONST, .resetvalue = 0 }, 2334 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2335 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2336 .access = PL1_RW, .accessfn = access_tvm_trvm, 2337 .type = ARM_CP_CONST, .resetvalue = 0 }, 2338 /* MAIR can just read-as-written because we don't implement caches 2339 * and so don't need to care about memory attributes. 2340 */ 2341 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2342 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2343 .access = PL1_RW, .accessfn = access_tvm_trvm, 2344 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2345 .resetvalue = 0 }, 2346 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2347 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2348 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2349 .resetvalue = 0 }, 2350 /* For non-long-descriptor page tables these are PRRR and NMRR; 2351 * regardless they still act as reads-as-written for QEMU. 2352 */ 2353 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2354 * allows them to assign the correct fieldoffset based on the endianness 2355 * handled in the field definitions. 2356 */ 2357 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2358 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2359 .access = PL1_RW, .accessfn = access_tvm_trvm, 2360 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2361 offsetof(CPUARMState, cp15.mair0_ns) }, 2362 .resetfn = arm_cp_reset_ignore }, 2363 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2364 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2365 .access = PL1_RW, .accessfn = access_tvm_trvm, 2366 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2367 offsetof(CPUARMState, cp15.mair1_ns) }, 2368 .resetfn = arm_cp_reset_ignore }, 2369 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2370 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2371 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2372 /* 32 bit ITLB invalidates */ 2373 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2374 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2375 .writefn = tlbiall_write }, 2376 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2377 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2378 .writefn = tlbimva_write }, 2379 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2380 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2381 .writefn = tlbiasid_write }, 2382 /* 32 bit DTLB invalidates */ 2383 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2384 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2385 .writefn = tlbiall_write }, 2386 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2387 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2388 .writefn = tlbimva_write }, 2389 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2390 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2391 .writefn = tlbiasid_write }, 2392 /* 32 bit TLB invalidates */ 2393 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2394 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2395 .writefn = tlbiall_write }, 2396 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2397 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2398 .writefn = tlbimva_write }, 2399 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2400 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2401 .writefn = tlbiasid_write }, 2402 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2403 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2404 .writefn = tlbimvaa_write }, 2405 REGINFO_SENTINEL 2406 }; 2407 2408 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2409 /* 32 bit TLB invalidates, Inner Shareable */ 2410 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2411 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2412 .writefn = tlbiall_is_write }, 2413 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2414 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2415 .writefn = tlbimva_is_write }, 2416 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2417 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2418 .writefn = tlbiasid_is_write }, 2419 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2420 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2421 .writefn = tlbimvaa_is_write }, 2422 REGINFO_SENTINEL 2423 }; 2424 2425 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2426 /* PMOVSSET is not implemented in v7 before v7ve */ 2427 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2428 .access = PL0_RW, .accessfn = pmreg_access, 2429 .type = ARM_CP_ALIAS | ARM_CP_IO, 2430 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2431 .writefn = pmovsset_write, 2432 .raw_writefn = raw_write }, 2433 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2434 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2435 .access = PL0_RW, .accessfn = pmreg_access, 2436 .type = ARM_CP_ALIAS | ARM_CP_IO, 2437 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2438 .writefn = pmovsset_write, 2439 .raw_writefn = raw_write }, 2440 REGINFO_SENTINEL 2441 }; 2442 2443 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2444 uint64_t value) 2445 { 2446 value &= 1; 2447 env->teecr = value; 2448 } 2449 2450 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2451 bool isread) 2452 { 2453 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2454 return CP_ACCESS_TRAP; 2455 } 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2460 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2461 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2462 .resetvalue = 0, 2463 .writefn = teecr_write }, 2464 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2465 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2466 .accessfn = teehbr_access, .resetvalue = 0 }, 2467 REGINFO_SENTINEL 2468 }; 2469 2470 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2471 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2472 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2473 .access = PL0_RW, 2474 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2475 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2476 .access = PL0_RW, 2477 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2478 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2479 .resetfn = arm_cp_reset_ignore }, 2480 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2481 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2482 .access = PL0_R|PL1_W, 2483 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2484 .resetvalue = 0}, 2485 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2486 .access = PL0_R|PL1_W, 2487 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2488 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2489 .resetfn = arm_cp_reset_ignore }, 2490 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2491 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2492 .access = PL1_RW, 2493 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2494 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2495 .access = PL1_RW, 2496 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2497 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2498 .resetvalue = 0 }, 2499 REGINFO_SENTINEL 2500 }; 2501 2502 #ifndef CONFIG_USER_ONLY 2503 2504 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2505 bool isread) 2506 { 2507 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2508 * Writable only at the highest implemented exception level. 2509 */ 2510 int el = arm_current_el(env); 2511 uint64_t hcr; 2512 uint32_t cntkctl; 2513 2514 switch (el) { 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 cntkctl = env->cp15.cnthctl_el2; 2519 } else { 2520 cntkctl = env->cp15.c14_cntkctl; 2521 } 2522 if (!extract32(cntkctl, 0, 2)) { 2523 return CP_ACCESS_TRAP; 2524 } 2525 break; 2526 case 1: 2527 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2528 arm_is_secure_below_el3(env)) { 2529 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2530 return CP_ACCESS_TRAP_UNCATEGORIZED; 2531 } 2532 break; 2533 case 2: 2534 case 3: 2535 break; 2536 } 2537 2538 if (!isread && el < arm_highest_el(env)) { 2539 return CP_ACCESS_TRAP_UNCATEGORIZED; 2540 } 2541 2542 return CP_ACCESS_OK; 2543 } 2544 2545 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2546 bool isread) 2547 { 2548 unsigned int cur_el = arm_current_el(env); 2549 bool has_el2 = arm_is_el2_enabled(env); 2550 uint64_t hcr = arm_hcr_el2_eff(env); 2551 2552 switch (cur_el) { 2553 case 0: 2554 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2555 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2556 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2557 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2558 } 2559 2560 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2561 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2562 return CP_ACCESS_TRAP; 2563 } 2564 2565 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2566 if (hcr & HCR_E2H) { 2567 if (timeridx == GTIMER_PHYS && 2568 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2569 return CP_ACCESS_TRAP_EL2; 2570 } 2571 } else { 2572 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2573 if (has_el2 && timeridx == GTIMER_PHYS && 2574 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2575 return CP_ACCESS_TRAP_EL2; 2576 } 2577 } 2578 break; 2579 2580 case 1: 2581 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2582 if (has_el2 && timeridx == GTIMER_PHYS && 2583 (hcr & HCR_E2H 2584 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2585 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2586 return CP_ACCESS_TRAP_EL2; 2587 } 2588 break; 2589 } 2590 return CP_ACCESS_OK; 2591 } 2592 2593 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2594 bool isread) 2595 { 2596 unsigned int cur_el = arm_current_el(env); 2597 bool has_el2 = arm_is_el2_enabled(env); 2598 uint64_t hcr = arm_hcr_el2_eff(env); 2599 2600 switch (cur_el) { 2601 case 0: 2602 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2603 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2604 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2605 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2606 } 2607 2608 /* 2609 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2610 * EL0 if EL0[PV]TEN is zero. 2611 */ 2612 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2613 return CP_ACCESS_TRAP; 2614 } 2615 /* fall through */ 2616 2617 case 1: 2618 if (has_el2 && timeridx == GTIMER_PHYS) { 2619 if (hcr & HCR_E2H) { 2620 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2621 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2622 return CP_ACCESS_TRAP_EL2; 2623 } 2624 } else { 2625 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2626 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2627 return CP_ACCESS_TRAP_EL2; 2628 } 2629 } 2630 } 2631 break; 2632 } 2633 return CP_ACCESS_OK; 2634 } 2635 2636 static CPAccessResult gt_pct_access(CPUARMState *env, 2637 const ARMCPRegInfo *ri, 2638 bool isread) 2639 { 2640 return gt_counter_access(env, GTIMER_PHYS, isread); 2641 } 2642 2643 static CPAccessResult gt_vct_access(CPUARMState *env, 2644 const ARMCPRegInfo *ri, 2645 bool isread) 2646 { 2647 return gt_counter_access(env, GTIMER_VIRT, isread); 2648 } 2649 2650 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2651 bool isread) 2652 { 2653 return gt_timer_access(env, GTIMER_PHYS, isread); 2654 } 2655 2656 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2657 bool isread) 2658 { 2659 return gt_timer_access(env, GTIMER_VIRT, isread); 2660 } 2661 2662 static CPAccessResult gt_stimer_access(CPUARMState *env, 2663 const ARMCPRegInfo *ri, 2664 bool isread) 2665 { 2666 /* The AArch64 register view of the secure physical timer is 2667 * always accessible from EL3, and configurably accessible from 2668 * Secure EL1. 2669 */ 2670 switch (arm_current_el(env)) { 2671 case 1: 2672 if (!arm_is_secure(env)) { 2673 return CP_ACCESS_TRAP; 2674 } 2675 if (!(env->cp15.scr_el3 & SCR_ST)) { 2676 return CP_ACCESS_TRAP_EL3; 2677 } 2678 return CP_ACCESS_OK; 2679 case 0: 2680 case 2: 2681 return CP_ACCESS_TRAP; 2682 case 3: 2683 return CP_ACCESS_OK; 2684 default: 2685 g_assert_not_reached(); 2686 } 2687 } 2688 2689 static uint64_t gt_get_countervalue(CPUARMState *env) 2690 { 2691 ARMCPU *cpu = env_archcpu(env); 2692 2693 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2694 } 2695 2696 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2697 { 2698 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2699 2700 if (gt->ctl & 1) { 2701 /* Timer enabled: calculate and set current ISTATUS, irq, and 2702 * reset timer to when ISTATUS next has to change 2703 */ 2704 uint64_t offset = timeridx == GTIMER_VIRT ? 2705 cpu->env.cp15.cntvoff_el2 : 0; 2706 uint64_t count = gt_get_countervalue(&cpu->env); 2707 /* Note that this must be unsigned 64 bit arithmetic: */ 2708 int istatus = count - offset >= gt->cval; 2709 uint64_t nexttick; 2710 int irqstate; 2711 2712 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2713 2714 irqstate = (istatus && !(gt->ctl & 2)); 2715 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2716 2717 if (istatus) { 2718 /* Next transition is when count rolls back over to zero */ 2719 nexttick = UINT64_MAX; 2720 } else { 2721 /* Next transition is when we hit cval */ 2722 nexttick = gt->cval + offset; 2723 } 2724 /* Note that the desired next expiry time might be beyond the 2725 * signed-64-bit range of a QEMUTimer -- in this case we just 2726 * set the timer for as far in the future as possible. When the 2727 * timer expires we will reset the timer for any remaining period. 2728 */ 2729 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2730 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2731 } else { 2732 timer_mod(cpu->gt_timer[timeridx], nexttick); 2733 } 2734 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2735 } else { 2736 /* Timer disabled: ISTATUS and timer output always clear */ 2737 gt->ctl &= ~4; 2738 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2739 timer_del(cpu->gt_timer[timeridx]); 2740 trace_arm_gt_recalc_disabled(timeridx); 2741 } 2742 } 2743 2744 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2745 int timeridx) 2746 { 2747 ARMCPU *cpu = env_archcpu(env); 2748 2749 timer_del(cpu->gt_timer[timeridx]); 2750 } 2751 2752 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2753 { 2754 return gt_get_countervalue(env); 2755 } 2756 2757 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2758 { 2759 uint64_t hcr; 2760 2761 switch (arm_current_el(env)) { 2762 case 2: 2763 hcr = arm_hcr_el2_eff(env); 2764 if (hcr & HCR_E2H) { 2765 return 0; 2766 } 2767 break; 2768 case 0: 2769 hcr = arm_hcr_el2_eff(env); 2770 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2771 return 0; 2772 } 2773 break; 2774 } 2775 2776 return env->cp15.cntvoff_el2; 2777 } 2778 2779 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2780 { 2781 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2782 } 2783 2784 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2785 int timeridx, 2786 uint64_t value) 2787 { 2788 trace_arm_gt_cval_write(timeridx, value); 2789 env->cp15.c14_timer[timeridx].cval = value; 2790 gt_recalc_timer(env_archcpu(env), timeridx); 2791 } 2792 2793 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2794 int timeridx) 2795 { 2796 uint64_t offset = 0; 2797 2798 switch (timeridx) { 2799 case GTIMER_VIRT: 2800 case GTIMER_HYPVIRT: 2801 offset = gt_virt_cnt_offset(env); 2802 break; 2803 } 2804 2805 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2806 (gt_get_countervalue(env) - offset)); 2807 } 2808 2809 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 int timeridx, 2811 uint64_t value) 2812 { 2813 uint64_t offset = 0; 2814 2815 switch (timeridx) { 2816 case GTIMER_VIRT: 2817 case GTIMER_HYPVIRT: 2818 offset = gt_virt_cnt_offset(env); 2819 break; 2820 } 2821 2822 trace_arm_gt_tval_write(timeridx, value); 2823 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2824 sextract64(value, 0, 32); 2825 gt_recalc_timer(env_archcpu(env), timeridx); 2826 } 2827 2828 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 int timeridx, 2830 uint64_t value) 2831 { 2832 ARMCPU *cpu = env_archcpu(env); 2833 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2834 2835 trace_arm_gt_ctl_write(timeridx, value); 2836 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2837 if ((oldval ^ value) & 1) { 2838 /* Enable toggled */ 2839 gt_recalc_timer(cpu, timeridx); 2840 } else if ((oldval ^ value) & 2) { 2841 /* IMASK toggled: don't need to recalculate, 2842 * just set the interrupt line based on ISTATUS 2843 */ 2844 int irqstate = (oldval & 4) && !(value & 2); 2845 2846 trace_arm_gt_imask_toggle(timeridx, irqstate); 2847 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2848 } 2849 } 2850 2851 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2852 { 2853 gt_timer_reset(env, ri, GTIMER_PHYS); 2854 } 2855 2856 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_cval_write(env, ri, GTIMER_PHYS, value); 2860 } 2861 2862 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2863 { 2864 return gt_tval_read(env, ri, GTIMER_PHYS); 2865 } 2866 2867 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2868 uint64_t value) 2869 { 2870 gt_tval_write(env, ri, GTIMER_PHYS, value); 2871 } 2872 2873 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2874 uint64_t value) 2875 { 2876 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2877 } 2878 2879 static int gt_phys_redir_timeridx(CPUARMState *env) 2880 { 2881 switch (arm_mmu_idx(env)) { 2882 case ARMMMUIdx_E20_0: 2883 case ARMMMUIdx_E20_2: 2884 case ARMMMUIdx_E20_2_PAN: 2885 case ARMMMUIdx_SE20_0: 2886 case ARMMMUIdx_SE20_2: 2887 case ARMMMUIdx_SE20_2_PAN: 2888 return GTIMER_HYP; 2889 default: 2890 return GTIMER_PHYS; 2891 } 2892 } 2893 2894 static int gt_virt_redir_timeridx(CPUARMState *env) 2895 { 2896 switch (arm_mmu_idx(env)) { 2897 case ARMMMUIdx_E20_0: 2898 case ARMMMUIdx_E20_2: 2899 case ARMMMUIdx_E20_2_PAN: 2900 case ARMMMUIdx_SE20_0: 2901 case ARMMMUIdx_SE20_2: 2902 case ARMMMUIdx_SE20_2_PAN: 2903 return GTIMER_HYPVIRT; 2904 default: 2905 return GTIMER_VIRT; 2906 } 2907 } 2908 2909 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_phys_redir_timeridx(env); 2913 return env->cp15.c14_timer[timeridx].cval; 2914 } 2915 2916 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_phys_redir_timeridx(env); 2920 gt_cval_write(env, ri, timeridx, value); 2921 } 2922 2923 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2924 const ARMCPRegInfo *ri) 2925 { 2926 int timeridx = gt_phys_redir_timeridx(env); 2927 return gt_tval_read(env, ri, timeridx); 2928 } 2929 2930 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 int timeridx = gt_phys_redir_timeridx(env); 2934 gt_tval_write(env, ri, timeridx, value); 2935 } 2936 2937 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2938 const ARMCPRegInfo *ri) 2939 { 2940 int timeridx = gt_phys_redir_timeridx(env); 2941 return env->cp15.c14_timer[timeridx].ctl; 2942 } 2943 2944 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2945 uint64_t value) 2946 { 2947 int timeridx = gt_phys_redir_timeridx(env); 2948 gt_ctl_write(env, ri, timeridx, value); 2949 } 2950 2951 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2952 { 2953 gt_timer_reset(env, ri, GTIMER_VIRT); 2954 } 2955 2956 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2957 uint64_t value) 2958 { 2959 gt_cval_write(env, ri, GTIMER_VIRT, value); 2960 } 2961 2962 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2963 { 2964 return gt_tval_read(env, ri, GTIMER_VIRT); 2965 } 2966 2967 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 gt_tval_write(env, ri, GTIMER_VIRT, value); 2971 } 2972 2973 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2974 uint64_t value) 2975 { 2976 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2977 } 2978 2979 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2980 uint64_t value) 2981 { 2982 ARMCPU *cpu = env_archcpu(env); 2983 2984 trace_arm_gt_cntvoff_write(value); 2985 raw_write(env, ri, value); 2986 gt_recalc_timer(cpu, GTIMER_VIRT); 2987 } 2988 2989 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2990 const ARMCPRegInfo *ri) 2991 { 2992 int timeridx = gt_virt_redir_timeridx(env); 2993 return env->cp15.c14_timer[timeridx].cval; 2994 } 2995 2996 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 int timeridx = gt_virt_redir_timeridx(env); 3000 gt_cval_write(env, ri, timeridx, value); 3001 } 3002 3003 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3004 const ARMCPRegInfo *ri) 3005 { 3006 int timeridx = gt_virt_redir_timeridx(env); 3007 return gt_tval_read(env, ri, timeridx); 3008 } 3009 3010 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3011 uint64_t value) 3012 { 3013 int timeridx = gt_virt_redir_timeridx(env); 3014 gt_tval_write(env, ri, timeridx, value); 3015 } 3016 3017 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3018 const ARMCPRegInfo *ri) 3019 { 3020 int timeridx = gt_virt_redir_timeridx(env); 3021 return env->cp15.c14_timer[timeridx].ctl; 3022 } 3023 3024 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 int timeridx = gt_virt_redir_timeridx(env); 3028 gt_ctl_write(env, ri, timeridx, value); 3029 } 3030 3031 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3032 { 3033 gt_timer_reset(env, ri, GTIMER_HYP); 3034 } 3035 3036 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3037 uint64_t value) 3038 { 3039 gt_cval_write(env, ri, GTIMER_HYP, value); 3040 } 3041 3042 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3043 { 3044 return gt_tval_read(env, ri, GTIMER_HYP); 3045 } 3046 3047 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 gt_tval_write(env, ri, GTIMER_HYP, value); 3051 } 3052 3053 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3054 uint64_t value) 3055 { 3056 gt_ctl_write(env, ri, GTIMER_HYP, value); 3057 } 3058 3059 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3060 { 3061 gt_timer_reset(env, ri, GTIMER_SEC); 3062 } 3063 3064 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 gt_cval_write(env, ri, GTIMER_SEC, value); 3068 } 3069 3070 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3071 { 3072 return gt_tval_read(env, ri, GTIMER_SEC); 3073 } 3074 3075 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 gt_tval_write(env, ri, GTIMER_SEC, value); 3079 } 3080 3081 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3082 uint64_t value) 3083 { 3084 gt_ctl_write(env, ri, GTIMER_SEC, value); 3085 } 3086 3087 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3088 { 3089 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3090 } 3091 3092 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3093 uint64_t value) 3094 { 3095 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3096 } 3097 3098 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3099 { 3100 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3101 } 3102 3103 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3104 uint64_t value) 3105 { 3106 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3107 } 3108 3109 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3110 uint64_t value) 3111 { 3112 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3113 } 3114 3115 void arm_gt_ptimer_cb(void *opaque) 3116 { 3117 ARMCPU *cpu = opaque; 3118 3119 gt_recalc_timer(cpu, GTIMER_PHYS); 3120 } 3121 3122 void arm_gt_vtimer_cb(void *opaque) 3123 { 3124 ARMCPU *cpu = opaque; 3125 3126 gt_recalc_timer(cpu, GTIMER_VIRT); 3127 } 3128 3129 void arm_gt_htimer_cb(void *opaque) 3130 { 3131 ARMCPU *cpu = opaque; 3132 3133 gt_recalc_timer(cpu, GTIMER_HYP); 3134 } 3135 3136 void arm_gt_stimer_cb(void *opaque) 3137 { 3138 ARMCPU *cpu = opaque; 3139 3140 gt_recalc_timer(cpu, GTIMER_SEC); 3141 } 3142 3143 void arm_gt_hvtimer_cb(void *opaque) 3144 { 3145 ARMCPU *cpu = opaque; 3146 3147 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3148 } 3149 3150 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3151 { 3152 ARMCPU *cpu = env_archcpu(env); 3153 3154 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3155 } 3156 3157 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3158 /* Note that CNTFRQ is purely reads-as-written for the benefit 3159 * of software; writing it doesn't actually change the timer frequency. 3160 * Our reset value matches the fixed frequency we implement the timer at. 3161 */ 3162 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3163 .type = ARM_CP_ALIAS, 3164 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3166 }, 3167 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3168 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3169 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3170 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3171 .resetfn = arm_gt_cntfrq_reset, 3172 }, 3173 /* overall control: mostly access permissions */ 3174 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3175 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3176 .access = PL1_RW, 3177 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3178 .resetvalue = 0, 3179 }, 3180 /* per-timer control */ 3181 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3182 .secure = ARM_CP_SECSTATE_NS, 3183 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3184 .accessfn = gt_ptimer_access, 3185 .fieldoffset = offsetoflow32(CPUARMState, 3186 cp15.c14_timer[GTIMER_PHYS].ctl), 3187 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3188 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3189 }, 3190 { .name = "CNTP_CTL_S", 3191 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3192 .secure = ARM_CP_SECSTATE_S, 3193 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3194 .accessfn = gt_ptimer_access, 3195 .fieldoffset = offsetoflow32(CPUARMState, 3196 cp15.c14_timer[GTIMER_SEC].ctl), 3197 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3198 }, 3199 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3200 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3201 .type = ARM_CP_IO, .access = PL0_RW, 3202 .accessfn = gt_ptimer_access, 3203 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3204 .resetvalue = 0, 3205 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3206 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3207 }, 3208 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3209 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3210 .accessfn = gt_vtimer_access, 3211 .fieldoffset = offsetoflow32(CPUARMState, 3212 cp15.c14_timer[GTIMER_VIRT].ctl), 3213 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3214 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3215 }, 3216 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3218 .type = ARM_CP_IO, .access = PL0_RW, 3219 .accessfn = gt_vtimer_access, 3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3221 .resetvalue = 0, 3222 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3223 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3224 }, 3225 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3226 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3227 .secure = ARM_CP_SECSTATE_NS, 3228 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3229 .accessfn = gt_ptimer_access, 3230 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3231 }, 3232 { .name = "CNTP_TVAL_S", 3233 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3234 .secure = ARM_CP_SECSTATE_S, 3235 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3236 .accessfn = gt_ptimer_access, 3237 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3238 }, 3239 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3240 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3241 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3242 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3243 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3244 }, 3245 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3246 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3247 .accessfn = gt_vtimer_access, 3248 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3249 }, 3250 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3251 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3252 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3253 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3254 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3255 }, 3256 /* The counter itself */ 3257 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3258 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3259 .accessfn = gt_pct_access, 3260 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3261 }, 3262 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3263 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3264 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3265 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3266 }, 3267 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3268 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3269 .accessfn = gt_vct_access, 3270 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3271 }, 3272 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3273 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3274 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3275 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3276 }, 3277 /* Comparison value, indicating when the timer goes off */ 3278 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3279 .secure = ARM_CP_SECSTATE_NS, 3280 .access = PL0_RW, 3281 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3282 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3283 .accessfn = gt_ptimer_access, 3284 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3285 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3286 }, 3287 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3288 .secure = ARM_CP_SECSTATE_S, 3289 .access = PL0_RW, 3290 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3292 .accessfn = gt_ptimer_access, 3293 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3294 }, 3295 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3296 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3297 .access = PL0_RW, 3298 .type = ARM_CP_IO, 3299 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3300 .resetvalue = 0, .accessfn = gt_ptimer_access, 3301 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3302 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3303 }, 3304 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3305 .access = PL0_RW, 3306 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3308 .accessfn = gt_vtimer_access, 3309 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3310 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3311 }, 3312 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3314 .access = PL0_RW, 3315 .type = ARM_CP_IO, 3316 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3317 .resetvalue = 0, .accessfn = gt_vtimer_access, 3318 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3319 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3320 }, 3321 /* Secure timer -- this is actually restricted to only EL3 3322 * and configurably Secure-EL1 via the accessfn. 3323 */ 3324 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3325 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3326 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3327 .accessfn = gt_stimer_access, 3328 .readfn = gt_sec_tval_read, 3329 .writefn = gt_sec_tval_write, 3330 .resetfn = gt_sec_timer_reset, 3331 }, 3332 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3333 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3334 .type = ARM_CP_IO, .access = PL1_RW, 3335 .accessfn = gt_stimer_access, 3336 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3337 .resetvalue = 0, 3338 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3339 }, 3340 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3342 .type = ARM_CP_IO, .access = PL1_RW, 3343 .accessfn = gt_stimer_access, 3344 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3345 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3346 }, 3347 REGINFO_SENTINEL 3348 }; 3349 3350 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3351 bool isread) 3352 { 3353 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3354 return CP_ACCESS_TRAP; 3355 } 3356 return CP_ACCESS_OK; 3357 } 3358 3359 #else 3360 3361 /* In user-mode most of the generic timer registers are inaccessible 3362 * however modern kernels (4.12+) allow access to cntvct_el0 3363 */ 3364 3365 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3366 { 3367 ARMCPU *cpu = env_archcpu(env); 3368 3369 /* Currently we have no support for QEMUTimer in linux-user so we 3370 * can't call gt_get_countervalue(env), instead we directly 3371 * call the lower level functions. 3372 */ 3373 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3374 } 3375 3376 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3377 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3378 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3379 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3381 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3382 }, 3383 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3385 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3386 .readfn = gt_virt_cnt_read, 3387 }, 3388 REGINFO_SENTINEL 3389 }; 3390 3391 #endif 3392 3393 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3394 { 3395 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3396 raw_write(env, ri, value); 3397 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3398 raw_write(env, ri, value & 0xfffff6ff); 3399 } else { 3400 raw_write(env, ri, value & 0xfffff1ff); 3401 } 3402 } 3403 3404 #ifndef CONFIG_USER_ONLY 3405 /* get_phys_addr() isn't present for user-mode-only targets */ 3406 3407 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3408 bool isread) 3409 { 3410 if (ri->opc2 & 4) { 3411 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3412 * Secure EL1 (which can only happen if EL3 is AArch64). 3413 * They are simply UNDEF if executed from NS EL1. 3414 * They function normally from EL2 or EL3. 3415 */ 3416 if (arm_current_el(env) == 1) { 3417 if (arm_is_secure_below_el3(env)) { 3418 if (env->cp15.scr_el3 & SCR_EEL2) { 3419 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3420 } 3421 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3422 } 3423 return CP_ACCESS_TRAP_UNCATEGORIZED; 3424 } 3425 } 3426 return CP_ACCESS_OK; 3427 } 3428 3429 #ifdef CONFIG_TCG 3430 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3431 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3432 { 3433 hwaddr phys_addr; 3434 target_ulong page_size; 3435 int prot; 3436 bool ret; 3437 uint64_t par64; 3438 bool format64 = false; 3439 MemTxAttrs attrs = {}; 3440 ARMMMUFaultInfo fi = {}; 3441 ARMCacheAttrs cacheattrs = {}; 3442 3443 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3444 &prot, &page_size, &fi, &cacheattrs); 3445 3446 if (ret) { 3447 /* 3448 * Some kinds of translation fault must cause exceptions rather 3449 * than being reported in the PAR. 3450 */ 3451 int current_el = arm_current_el(env); 3452 int target_el; 3453 uint32_t syn, fsr, fsc; 3454 bool take_exc = false; 3455 3456 if (fi.s1ptw && current_el == 1 3457 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3458 /* 3459 * Synchronous stage 2 fault on an access made as part of the 3460 * translation table walk for AT S1E0* or AT S1E1* insn 3461 * executed from NS EL1. If this is a synchronous external abort 3462 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3463 * to EL3. Otherwise the fault is taken as an exception to EL2, 3464 * and HPFAR_EL2 holds the faulting IPA. 3465 */ 3466 if (fi.type == ARMFault_SyncExternalOnWalk && 3467 (env->cp15.scr_el3 & SCR_EA)) { 3468 target_el = 3; 3469 } else { 3470 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3471 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3472 env->cp15.hpfar_el2 |= HPFAR_NS; 3473 } 3474 target_el = 2; 3475 } 3476 take_exc = true; 3477 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3478 /* 3479 * Synchronous external aborts during a translation table walk 3480 * are taken as Data Abort exceptions. 3481 */ 3482 if (fi.stage2) { 3483 if (current_el == 3) { 3484 target_el = 3; 3485 } else { 3486 target_el = 2; 3487 } 3488 } else { 3489 target_el = exception_target_el(env); 3490 } 3491 take_exc = true; 3492 } 3493 3494 if (take_exc) { 3495 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3496 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3497 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3498 fsr = arm_fi_to_lfsc(&fi); 3499 fsc = extract32(fsr, 0, 6); 3500 } else { 3501 fsr = arm_fi_to_sfsc(&fi); 3502 fsc = 0x3f; 3503 } 3504 /* 3505 * Report exception with ESR indicating a fault due to a 3506 * translation table walk for a cache maintenance instruction. 3507 */ 3508 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3509 fi.ea, 1, fi.s1ptw, 1, fsc); 3510 env->exception.vaddress = value; 3511 env->exception.fsr = fsr; 3512 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3513 } 3514 } 3515 3516 if (is_a64(env)) { 3517 format64 = true; 3518 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3519 /* 3520 * ATS1Cxx: 3521 * * TTBCR.EAE determines whether the result is returned using the 3522 * 32-bit or the 64-bit PAR format 3523 * * Instructions executed in Hyp mode always use the 64bit format 3524 * 3525 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3526 * * The Non-secure TTBCR.EAE bit is set to 1 3527 * * The implementation includes EL2, and the value of HCR.VM is 1 3528 * 3529 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3530 * 3531 * ATS1Hx always uses the 64bit format. 3532 */ 3533 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3534 3535 if (arm_feature(env, ARM_FEATURE_EL2)) { 3536 if (mmu_idx == ARMMMUIdx_E10_0 || 3537 mmu_idx == ARMMMUIdx_E10_1 || 3538 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3539 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3540 } else { 3541 format64 |= arm_current_el(env) == 2; 3542 } 3543 } 3544 } 3545 3546 if (format64) { 3547 /* Create a 64-bit PAR */ 3548 par64 = (1 << 11); /* LPAE bit always set */ 3549 if (!ret) { 3550 par64 |= phys_addr & ~0xfffULL; 3551 if (!attrs.secure) { 3552 par64 |= (1 << 9); /* NS */ 3553 } 3554 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3555 par64 |= cacheattrs.shareability << 7; /* SH */ 3556 } else { 3557 uint32_t fsr = arm_fi_to_lfsc(&fi); 3558 3559 par64 |= 1; /* F */ 3560 par64 |= (fsr & 0x3f) << 1; /* FS */ 3561 if (fi.stage2) { 3562 par64 |= (1 << 9); /* S */ 3563 } 3564 if (fi.s1ptw) { 3565 par64 |= (1 << 8); /* PTW */ 3566 } 3567 } 3568 } else { 3569 /* fsr is a DFSR/IFSR value for the short descriptor 3570 * translation table format (with WnR always clear). 3571 * Convert it to a 32-bit PAR. 3572 */ 3573 if (!ret) { 3574 /* We do not set any attribute bits in the PAR */ 3575 if (page_size == (1 << 24) 3576 && arm_feature(env, ARM_FEATURE_V7)) { 3577 par64 = (phys_addr & 0xff000000) | (1 << 1); 3578 } else { 3579 par64 = phys_addr & 0xfffff000; 3580 } 3581 if (!attrs.secure) { 3582 par64 |= (1 << 9); /* NS */ 3583 } 3584 } else { 3585 uint32_t fsr = arm_fi_to_sfsc(&fi); 3586 3587 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3588 ((fsr & 0xf) << 1) | 1; 3589 } 3590 } 3591 return par64; 3592 } 3593 #endif /* CONFIG_TCG */ 3594 3595 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3596 { 3597 #ifdef CONFIG_TCG 3598 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3599 uint64_t par64; 3600 ARMMMUIdx mmu_idx; 3601 int el = arm_current_el(env); 3602 bool secure = arm_is_secure_below_el3(env); 3603 3604 switch (ri->opc2 & 6) { 3605 case 0: 3606 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3607 switch (el) { 3608 case 3: 3609 mmu_idx = ARMMMUIdx_SE3; 3610 break; 3611 case 2: 3612 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3613 /* fall through */ 3614 case 1: 3615 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3616 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3617 : ARMMMUIdx_Stage1_E1_PAN); 3618 } else { 3619 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3620 } 3621 break; 3622 default: 3623 g_assert_not_reached(); 3624 } 3625 break; 3626 case 2: 3627 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3628 switch (el) { 3629 case 3: 3630 mmu_idx = ARMMMUIdx_SE10_0; 3631 break; 3632 case 2: 3633 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3634 mmu_idx = ARMMMUIdx_Stage1_E0; 3635 break; 3636 case 1: 3637 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3638 break; 3639 default: 3640 g_assert_not_reached(); 3641 } 3642 break; 3643 case 4: 3644 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3645 mmu_idx = ARMMMUIdx_E10_1; 3646 break; 3647 case 6: 3648 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3649 mmu_idx = ARMMMUIdx_E10_0; 3650 break; 3651 default: 3652 g_assert_not_reached(); 3653 } 3654 3655 par64 = do_ats_write(env, value, access_type, mmu_idx); 3656 3657 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3658 #else 3659 /* Handled by hardware accelerator. */ 3660 g_assert_not_reached(); 3661 #endif /* CONFIG_TCG */ 3662 } 3663 3664 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3665 uint64_t value) 3666 { 3667 #ifdef CONFIG_TCG 3668 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3669 uint64_t par64; 3670 3671 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3672 3673 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3674 #else 3675 /* Handled by hardware accelerator. */ 3676 g_assert_not_reached(); 3677 #endif /* CONFIG_TCG */ 3678 } 3679 3680 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3681 bool isread) 3682 { 3683 if (arm_current_el(env) == 3 && 3684 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3685 return CP_ACCESS_TRAP; 3686 } 3687 return CP_ACCESS_OK; 3688 } 3689 3690 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3691 uint64_t value) 3692 { 3693 #ifdef CONFIG_TCG 3694 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3695 ARMMMUIdx mmu_idx; 3696 int secure = arm_is_secure_below_el3(env); 3697 3698 switch (ri->opc2 & 6) { 3699 case 0: 3700 switch (ri->opc1) { 3701 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3702 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3703 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3704 : ARMMMUIdx_Stage1_E1_PAN); 3705 } else { 3706 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3707 } 3708 break; 3709 case 4: /* AT S1E2R, AT S1E2W */ 3710 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3711 break; 3712 case 6: /* AT S1E3R, AT S1E3W */ 3713 mmu_idx = ARMMMUIdx_SE3; 3714 break; 3715 default: 3716 g_assert_not_reached(); 3717 } 3718 break; 3719 case 2: /* AT S1E0R, AT S1E0W */ 3720 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3721 break; 3722 case 4: /* AT S12E1R, AT S12E1W */ 3723 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3724 break; 3725 case 6: /* AT S12E0R, AT S12E0W */ 3726 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3727 break; 3728 default: 3729 g_assert_not_reached(); 3730 } 3731 3732 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3733 #else 3734 /* Handled by hardware accelerator. */ 3735 g_assert_not_reached(); 3736 #endif /* CONFIG_TCG */ 3737 } 3738 #endif 3739 3740 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3741 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3742 .access = PL1_RW, .resetvalue = 0, 3743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3744 offsetoflow32(CPUARMState, cp15.par_ns) }, 3745 .writefn = par_write }, 3746 #ifndef CONFIG_USER_ONLY 3747 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3748 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3749 .access = PL1_W, .accessfn = ats_access, 3750 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3751 #endif 3752 REGINFO_SENTINEL 3753 }; 3754 3755 /* Return basic MPU access permission bits. */ 3756 static uint32_t simple_mpu_ap_bits(uint32_t val) 3757 { 3758 uint32_t ret; 3759 uint32_t mask; 3760 int i; 3761 ret = 0; 3762 mask = 3; 3763 for (i = 0; i < 16; i += 2) { 3764 ret |= (val >> i) & mask; 3765 mask <<= 2; 3766 } 3767 return ret; 3768 } 3769 3770 /* Pad basic MPU access permission bits to extended format. */ 3771 static uint32_t extended_mpu_ap_bits(uint32_t val) 3772 { 3773 uint32_t ret; 3774 uint32_t mask; 3775 int i; 3776 ret = 0; 3777 mask = 3; 3778 for (i = 0; i < 16; i += 2) { 3779 ret |= (val & mask) << i; 3780 mask <<= 2; 3781 } 3782 return ret; 3783 } 3784 3785 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3789 } 3790 3791 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3792 { 3793 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3794 } 3795 3796 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3797 uint64_t value) 3798 { 3799 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3800 } 3801 3802 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3803 { 3804 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3805 } 3806 3807 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3808 { 3809 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3810 3811 if (!u32p) { 3812 return 0; 3813 } 3814 3815 u32p += env->pmsav7.rnr[M_REG_NS]; 3816 return *u32p; 3817 } 3818 3819 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3820 uint64_t value) 3821 { 3822 ARMCPU *cpu = env_archcpu(env); 3823 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3824 3825 if (!u32p) { 3826 return; 3827 } 3828 3829 u32p += env->pmsav7.rnr[M_REG_NS]; 3830 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3831 *u32p = value; 3832 } 3833 3834 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3835 uint64_t value) 3836 { 3837 ARMCPU *cpu = env_archcpu(env); 3838 uint32_t nrgs = cpu->pmsav7_dregion; 3839 3840 if (value >= nrgs) { 3841 qemu_log_mask(LOG_GUEST_ERROR, 3842 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3843 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3844 return; 3845 } 3846 3847 raw_write(env, ri, value); 3848 } 3849 3850 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3851 /* Reset for all these registers is handled in arm_cpu_reset(), 3852 * because the PMSAv7 is also used by M-profile CPUs, which do 3853 * not register cpregs but still need the state to be reset. 3854 */ 3855 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3856 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3857 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3858 .readfn = pmsav7_read, .writefn = pmsav7_write, 3859 .resetfn = arm_cp_reset_ignore }, 3860 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3861 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3862 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3863 .readfn = pmsav7_read, .writefn = pmsav7_write, 3864 .resetfn = arm_cp_reset_ignore }, 3865 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3866 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3867 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3868 .readfn = pmsav7_read, .writefn = pmsav7_write, 3869 .resetfn = arm_cp_reset_ignore }, 3870 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3871 .access = PL1_RW, 3872 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3873 .writefn = pmsav7_rgnr_write, 3874 .resetfn = arm_cp_reset_ignore }, 3875 REGINFO_SENTINEL 3876 }; 3877 3878 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3879 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3880 .access = PL1_RW, .type = ARM_CP_ALIAS, 3881 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3882 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3883 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3884 .access = PL1_RW, .type = ARM_CP_ALIAS, 3885 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3886 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3887 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3888 .access = PL1_RW, 3889 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3890 .resetvalue = 0, }, 3891 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3892 .access = PL1_RW, 3893 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3894 .resetvalue = 0, }, 3895 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3896 .access = PL1_RW, 3897 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3898 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3899 .access = PL1_RW, 3900 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3901 /* Protection region base and size registers */ 3902 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3903 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3904 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3905 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3906 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3907 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3908 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3909 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3910 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3911 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3912 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3913 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3914 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3915 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3917 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3918 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3920 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3921 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3923 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3924 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3926 REGINFO_SENTINEL 3927 }; 3928 3929 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3930 uint64_t value) 3931 { 3932 TCR *tcr = raw_ptr(env, ri); 3933 int maskshift = extract32(value, 0, 3); 3934 3935 if (!arm_feature(env, ARM_FEATURE_V8)) { 3936 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3937 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3938 * using Long-desciptor translation table format */ 3939 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3940 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3941 /* In an implementation that includes the Security Extensions 3942 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3943 * Short-descriptor translation table format. 3944 */ 3945 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3946 } else { 3947 value &= TTBCR_N; 3948 } 3949 } 3950 3951 /* Update the masks corresponding to the TCR bank being written 3952 * Note that we always calculate mask and base_mask, but 3953 * they are only used for short-descriptor tables (ie if EAE is 0); 3954 * for long-descriptor tables the TCR fields are used differently 3955 * and the mask and base_mask values are meaningless. 3956 */ 3957 tcr->raw_tcr = value; 3958 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3959 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3960 } 3961 3962 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3963 uint64_t value) 3964 { 3965 ARMCPU *cpu = env_archcpu(env); 3966 TCR *tcr = raw_ptr(env, ri); 3967 3968 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3969 /* With LPAE the TTBCR could result in a change of ASID 3970 * via the TTBCR.A1 bit, so do a TLB flush. 3971 */ 3972 tlb_flush(CPU(cpu)); 3973 } 3974 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3975 value = deposit64(tcr->raw_tcr, 0, 32, value); 3976 vmsa_ttbcr_raw_write(env, ri, value); 3977 } 3978 3979 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3980 { 3981 TCR *tcr = raw_ptr(env, ri); 3982 3983 /* Reset both the TCR as well as the masks corresponding to the bank of 3984 * the TCR being reset. 3985 */ 3986 tcr->raw_tcr = 0; 3987 tcr->mask = 0; 3988 tcr->base_mask = 0xffffc000u; 3989 } 3990 3991 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3992 uint64_t value) 3993 { 3994 ARMCPU *cpu = env_archcpu(env); 3995 TCR *tcr = raw_ptr(env, ri); 3996 3997 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3998 tlb_flush(CPU(cpu)); 3999 tcr->raw_tcr = value; 4000 } 4001 4002 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4003 uint64_t value) 4004 { 4005 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4006 if (cpreg_field_is_64bit(ri) && 4007 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4008 ARMCPU *cpu = env_archcpu(env); 4009 tlb_flush(CPU(cpu)); 4010 } 4011 raw_write(env, ri, value); 4012 } 4013 4014 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4015 uint64_t value) 4016 { 4017 /* 4018 * If we are running with E2&0 regime, then an ASID is active. 4019 * Flush if that might be changing. Note we're not checking 4020 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4021 * holds the active ASID, only checking the field that might. 4022 */ 4023 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4024 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4025 uint16_t mask = ARMMMUIdxBit_E20_2 | 4026 ARMMMUIdxBit_E20_2_PAN | 4027 ARMMMUIdxBit_E20_0; 4028 4029 if (arm_is_secure_below_el3(env)) { 4030 mask >>= ARM_MMU_IDX_A_NS; 4031 } 4032 4033 tlb_flush_by_mmuidx(env_cpu(env), mask); 4034 } 4035 raw_write(env, ri, value); 4036 } 4037 4038 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4039 uint64_t value) 4040 { 4041 ARMCPU *cpu = env_archcpu(env); 4042 CPUState *cs = CPU(cpu); 4043 4044 /* 4045 * A change in VMID to the stage2 page table (Stage2) invalidates 4046 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4047 */ 4048 if (raw_read(env, ri) != value) { 4049 uint16_t mask = ARMMMUIdxBit_E10_1 | 4050 ARMMMUIdxBit_E10_1_PAN | 4051 ARMMMUIdxBit_E10_0; 4052 4053 if (arm_is_secure_below_el3(env)) { 4054 mask >>= ARM_MMU_IDX_A_NS; 4055 } 4056 4057 tlb_flush_by_mmuidx(cs, mask); 4058 raw_write(env, ri, value); 4059 } 4060 } 4061 4062 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4063 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4064 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4065 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4066 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4067 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4068 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4069 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4070 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4071 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4072 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4074 offsetof(CPUARMState, cp15.dfar_ns) } }, 4075 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4076 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4077 .access = PL1_RW, .accessfn = access_tvm_trvm, 4078 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4079 .resetvalue = 0, }, 4080 REGINFO_SENTINEL 4081 }; 4082 4083 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4084 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4085 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4086 .access = PL1_RW, .accessfn = access_tvm_trvm, 4087 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4088 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4089 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4093 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4094 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4095 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4096 .access = PL1_RW, .accessfn = access_tvm_trvm, 4097 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4099 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4100 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4102 .access = PL1_RW, .accessfn = access_tvm_trvm, 4103 .writefn = vmsa_tcr_el12_write, 4104 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4105 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4106 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4107 .access = PL1_RW, .accessfn = access_tvm_trvm, 4108 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4109 .raw_writefn = vmsa_ttbcr_raw_write, 4110 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4111 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4112 REGINFO_SENTINEL 4113 }; 4114 4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4116 * qemu tlbs nor adjusting cached masks. 4117 */ 4118 static const ARMCPRegInfo ttbcr2_reginfo = { 4119 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4120 .access = PL1_RW, .accessfn = access_tvm_trvm, 4121 .type = ARM_CP_ALIAS, 4122 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4123 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4124 }; 4125 4126 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 env->cp15.c15_ticonfig = value & 0xe7; 4130 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4131 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4132 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4133 } 4134 4135 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4136 uint64_t value) 4137 { 4138 env->cp15.c15_threadid = value & 0xffff; 4139 } 4140 4141 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4142 uint64_t value) 4143 { 4144 /* Wait-for-interrupt (deprecated) */ 4145 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4146 } 4147 4148 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4149 uint64_t value) 4150 { 4151 /* On OMAP there are registers indicating the max/min index of dcache lines 4152 * containing a dirty line; cache flush operations have to reset these. 4153 */ 4154 env->cp15.c15_i_max = 0x000; 4155 env->cp15.c15_i_min = 0xff0; 4156 } 4157 4158 static const ARMCPRegInfo omap_cp_reginfo[] = { 4159 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4160 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4161 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4162 .resetvalue = 0, }, 4163 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4164 .access = PL1_RW, .type = ARM_CP_NOP }, 4165 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4166 .access = PL1_RW, 4167 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4168 .writefn = omap_ticonfig_write }, 4169 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4170 .access = PL1_RW, 4171 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4172 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4173 .access = PL1_RW, .resetvalue = 0xff0, 4174 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4175 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4176 .access = PL1_RW, 4177 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4178 .writefn = omap_threadid_write }, 4179 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4180 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4181 .type = ARM_CP_NO_RAW, 4182 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4183 /* TODO: Peripheral port remap register: 4184 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4185 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4186 * when MMU is off. 4187 */ 4188 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4189 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4190 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4191 .writefn = omap_cachemaint_write }, 4192 { .name = "C9", .cp = 15, .crn = 9, 4193 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4194 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4195 REGINFO_SENTINEL 4196 }; 4197 4198 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4199 uint64_t value) 4200 { 4201 env->cp15.c15_cpar = value & 0x3fff; 4202 } 4203 4204 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4205 { .name = "XSCALE_CPAR", 4206 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4207 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4208 .writefn = xscale_cpar_write, }, 4209 { .name = "XSCALE_AUXCR", 4210 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4211 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4212 .resetvalue = 0, }, 4213 /* XScale specific cache-lockdown: since we have no cache we NOP these 4214 * and hope the guest does not really rely on cache behaviour. 4215 */ 4216 { .name = "XSCALE_LOCK_ICACHE_LINE", 4217 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4218 .access = PL1_W, .type = ARM_CP_NOP }, 4219 { .name = "XSCALE_UNLOCK_ICACHE", 4220 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4221 .access = PL1_W, .type = ARM_CP_NOP }, 4222 { .name = "XSCALE_DCACHE_LOCK", 4223 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4224 .access = PL1_RW, .type = ARM_CP_NOP }, 4225 { .name = "XSCALE_UNLOCK_DCACHE", 4226 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4227 .access = PL1_W, .type = ARM_CP_NOP }, 4228 REGINFO_SENTINEL 4229 }; 4230 4231 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4232 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4233 * implementation of this implementation-defined space. 4234 * Ideally this should eventually disappear in favour of actually 4235 * implementing the correct behaviour for all cores. 4236 */ 4237 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4238 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4239 .access = PL1_RW, 4240 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4241 .resetvalue = 0 }, 4242 REGINFO_SENTINEL 4243 }; 4244 4245 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4246 /* Cache status: RAZ because we have no cache so it's always clean */ 4247 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4248 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4249 .resetvalue = 0 }, 4250 REGINFO_SENTINEL 4251 }; 4252 4253 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4254 /* We never have a a block transfer operation in progress */ 4255 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4256 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4257 .resetvalue = 0 }, 4258 /* The cache ops themselves: these all NOP for QEMU */ 4259 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4260 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4261 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4262 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4263 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4264 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4265 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4267 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4268 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4269 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4270 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4271 REGINFO_SENTINEL 4272 }; 4273 4274 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4275 /* The cache test-and-clean instructions always return (1 << 30) 4276 * to indicate that there are no dirty cache lines. 4277 */ 4278 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4279 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4280 .resetvalue = (1 << 30) }, 4281 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4282 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4283 .resetvalue = (1 << 30) }, 4284 REGINFO_SENTINEL 4285 }; 4286 4287 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4288 /* Ignore ReadBuffer accesses */ 4289 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4290 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4291 .access = PL1_RW, .resetvalue = 0, 4292 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4293 REGINFO_SENTINEL 4294 }; 4295 4296 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4297 { 4298 unsigned int cur_el = arm_current_el(env); 4299 4300 if (arm_is_el2_enabled(env) && cur_el == 1) { 4301 return env->cp15.vpidr_el2; 4302 } 4303 return raw_read(env, ri); 4304 } 4305 4306 static uint64_t mpidr_read_val(CPUARMState *env) 4307 { 4308 ARMCPU *cpu = env_archcpu(env); 4309 uint64_t mpidr = cpu->mp_affinity; 4310 4311 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4312 mpidr |= (1U << 31); 4313 /* Cores which are uniprocessor (non-coherent) 4314 * but still implement the MP extensions set 4315 * bit 30. (For instance, Cortex-R5). 4316 */ 4317 if (cpu->mp_is_up) { 4318 mpidr |= (1u << 30); 4319 } 4320 } 4321 return mpidr; 4322 } 4323 4324 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4325 { 4326 unsigned int cur_el = arm_current_el(env); 4327 4328 if (arm_is_el2_enabled(env) && cur_el == 1) { 4329 return env->cp15.vmpidr_el2; 4330 } 4331 return mpidr_read_val(env); 4332 } 4333 4334 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4335 /* NOP AMAIR0/1 */ 4336 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4337 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4338 .access = PL1_RW, .accessfn = access_tvm_trvm, 4339 .type = ARM_CP_CONST, .resetvalue = 0 }, 4340 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4341 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4342 .access = PL1_RW, .accessfn = access_tvm_trvm, 4343 .type = ARM_CP_CONST, .resetvalue = 0 }, 4344 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4345 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4346 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4347 offsetof(CPUARMState, cp15.par_ns)} }, 4348 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4349 .access = PL1_RW, .accessfn = access_tvm_trvm, 4350 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4351 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4352 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4353 .writefn = vmsa_ttbr_write, }, 4354 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4355 .access = PL1_RW, .accessfn = access_tvm_trvm, 4356 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4358 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4359 .writefn = vmsa_ttbr_write, }, 4360 REGINFO_SENTINEL 4361 }; 4362 4363 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4364 { 4365 return vfp_get_fpcr(env); 4366 } 4367 4368 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4369 uint64_t value) 4370 { 4371 vfp_set_fpcr(env, value); 4372 } 4373 4374 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4375 { 4376 return vfp_get_fpsr(env); 4377 } 4378 4379 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4380 uint64_t value) 4381 { 4382 vfp_set_fpsr(env, value); 4383 } 4384 4385 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4386 bool isread) 4387 { 4388 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4389 return CP_ACCESS_TRAP; 4390 } 4391 return CP_ACCESS_OK; 4392 } 4393 4394 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 env->daif = value & PSTATE_DAIF; 4398 } 4399 4400 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4401 { 4402 return env->pstate & PSTATE_PAN; 4403 } 4404 4405 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4406 uint64_t value) 4407 { 4408 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4409 } 4410 4411 static const ARMCPRegInfo pan_reginfo = { 4412 .name = "PAN", .state = ARM_CP_STATE_AA64, 4413 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4414 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4415 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4416 }; 4417 4418 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4419 { 4420 return env->pstate & PSTATE_UAO; 4421 } 4422 4423 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4424 uint64_t value) 4425 { 4426 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4427 } 4428 4429 static const ARMCPRegInfo uao_reginfo = { 4430 .name = "UAO", .state = ARM_CP_STATE_AA64, 4431 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4432 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4433 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4434 }; 4435 4436 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4437 { 4438 return env->pstate & PSTATE_DIT; 4439 } 4440 4441 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4442 uint64_t value) 4443 { 4444 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4445 } 4446 4447 static const ARMCPRegInfo dit_reginfo = { 4448 .name = "DIT", .state = ARM_CP_STATE_AA64, 4449 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4450 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4451 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4452 }; 4453 4454 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4455 { 4456 return env->pstate & PSTATE_SSBS; 4457 } 4458 4459 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4463 } 4464 4465 static const ARMCPRegInfo ssbs_reginfo = { 4466 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4467 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4468 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4469 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4470 }; 4471 4472 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4473 const ARMCPRegInfo *ri, 4474 bool isread) 4475 { 4476 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4477 switch (arm_current_el(env)) { 4478 case 0: 4479 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4480 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4481 return CP_ACCESS_TRAP; 4482 } 4483 /* fall through */ 4484 case 1: 4485 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4486 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4487 return CP_ACCESS_TRAP_EL2; 4488 } 4489 break; 4490 } 4491 return CP_ACCESS_OK; 4492 } 4493 4494 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4495 const ARMCPRegInfo *ri, 4496 bool isread) 4497 { 4498 /* Cache invalidate/clean to Point of Unification... */ 4499 switch (arm_current_el(env)) { 4500 case 0: 4501 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4502 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4503 return CP_ACCESS_TRAP; 4504 } 4505 /* fall through */ 4506 case 1: 4507 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4508 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4509 return CP_ACCESS_TRAP_EL2; 4510 } 4511 break; 4512 } 4513 return CP_ACCESS_OK; 4514 } 4515 4516 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4517 * Page D4-1736 (DDI0487A.b) 4518 */ 4519 4520 static int vae1_tlbmask(CPUARMState *env) 4521 { 4522 uint64_t hcr = arm_hcr_el2_eff(env); 4523 uint16_t mask; 4524 4525 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4526 mask = ARMMMUIdxBit_E20_2 | 4527 ARMMMUIdxBit_E20_2_PAN | 4528 ARMMMUIdxBit_E20_0; 4529 } else { 4530 mask = ARMMMUIdxBit_E10_1 | 4531 ARMMMUIdxBit_E10_1_PAN | 4532 ARMMMUIdxBit_E10_0; 4533 } 4534 4535 if (arm_is_secure_below_el3(env)) { 4536 mask >>= ARM_MMU_IDX_A_NS; 4537 } 4538 4539 return mask; 4540 } 4541 4542 /* Return 56 if TBI is enabled, 64 otherwise. */ 4543 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4544 uint64_t addr) 4545 { 4546 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4547 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4548 int select = extract64(addr, 55, 1); 4549 4550 return (tbi >> select) & 1 ? 56 : 64; 4551 } 4552 4553 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4554 { 4555 uint64_t hcr = arm_hcr_el2_eff(env); 4556 ARMMMUIdx mmu_idx; 4557 4558 /* Only the regime of the mmu_idx below is significant. */ 4559 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4560 mmu_idx = ARMMMUIdx_E20_0; 4561 } else { 4562 mmu_idx = ARMMMUIdx_E10_0; 4563 } 4564 4565 if (arm_is_secure_below_el3(env)) { 4566 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4567 } 4568 4569 return tlbbits_for_regime(env, mmu_idx, addr); 4570 } 4571 4572 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 CPUState *cs = env_cpu(env); 4576 int mask = vae1_tlbmask(env); 4577 4578 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4579 } 4580 4581 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4582 uint64_t value) 4583 { 4584 CPUState *cs = env_cpu(env); 4585 int mask = vae1_tlbmask(env); 4586 4587 if (tlb_force_broadcast(env)) { 4588 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4589 } else { 4590 tlb_flush_by_mmuidx(cs, mask); 4591 } 4592 } 4593 4594 static int alle1_tlbmask(CPUARMState *env) 4595 { 4596 /* 4597 * Note that the 'ALL' scope must invalidate both stage 1 and 4598 * stage 2 translations, whereas most other scopes only invalidate 4599 * stage 1 translations. 4600 */ 4601 if (arm_is_secure_below_el3(env)) { 4602 return ARMMMUIdxBit_SE10_1 | 4603 ARMMMUIdxBit_SE10_1_PAN | 4604 ARMMMUIdxBit_SE10_0; 4605 } else { 4606 return ARMMMUIdxBit_E10_1 | 4607 ARMMMUIdxBit_E10_1_PAN | 4608 ARMMMUIdxBit_E10_0; 4609 } 4610 } 4611 4612 static int e2_tlbmask(CPUARMState *env) 4613 { 4614 if (arm_is_secure_below_el3(env)) { 4615 return ARMMMUIdxBit_SE20_0 | 4616 ARMMMUIdxBit_SE20_2 | 4617 ARMMMUIdxBit_SE20_2_PAN | 4618 ARMMMUIdxBit_SE2; 4619 } else { 4620 return ARMMMUIdxBit_E20_0 | 4621 ARMMMUIdxBit_E20_2 | 4622 ARMMMUIdxBit_E20_2_PAN | 4623 ARMMMUIdxBit_E2; 4624 } 4625 } 4626 4627 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4628 uint64_t value) 4629 { 4630 CPUState *cs = env_cpu(env); 4631 int mask = alle1_tlbmask(env); 4632 4633 tlb_flush_by_mmuidx(cs, mask); 4634 } 4635 4636 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4637 uint64_t value) 4638 { 4639 CPUState *cs = env_cpu(env); 4640 int mask = e2_tlbmask(env); 4641 4642 tlb_flush_by_mmuidx(cs, mask); 4643 } 4644 4645 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4646 uint64_t value) 4647 { 4648 ARMCPU *cpu = env_archcpu(env); 4649 CPUState *cs = CPU(cpu); 4650 4651 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4652 } 4653 4654 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4655 uint64_t value) 4656 { 4657 CPUState *cs = env_cpu(env); 4658 int mask = alle1_tlbmask(env); 4659 4660 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4661 } 4662 4663 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4664 uint64_t value) 4665 { 4666 CPUState *cs = env_cpu(env); 4667 int mask = e2_tlbmask(env); 4668 4669 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4670 } 4671 4672 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4673 uint64_t value) 4674 { 4675 CPUState *cs = env_cpu(env); 4676 4677 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4678 } 4679 4680 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4681 uint64_t value) 4682 { 4683 /* Invalidate by VA, EL2 4684 * Currently handles both VAE2 and VALE2, since we don't support 4685 * flush-last-level-only. 4686 */ 4687 CPUState *cs = env_cpu(env); 4688 int mask = e2_tlbmask(env); 4689 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4690 4691 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4692 } 4693 4694 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4695 uint64_t value) 4696 { 4697 /* Invalidate by VA, EL3 4698 * Currently handles both VAE3 and VALE3, since we don't support 4699 * flush-last-level-only. 4700 */ 4701 ARMCPU *cpu = env_archcpu(env); 4702 CPUState *cs = CPU(cpu); 4703 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4704 4705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4706 } 4707 4708 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4709 uint64_t value) 4710 { 4711 CPUState *cs = env_cpu(env); 4712 int mask = vae1_tlbmask(env); 4713 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4714 int bits = vae1_tlbbits(env, pageaddr); 4715 4716 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4717 } 4718 4719 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4720 uint64_t value) 4721 { 4722 /* Invalidate by VA, EL1&0 (AArch64 version). 4723 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4724 * since we don't support flush-for-specific-ASID-only or 4725 * flush-last-level-only. 4726 */ 4727 CPUState *cs = env_cpu(env); 4728 int mask = vae1_tlbmask(env); 4729 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4730 int bits = vae1_tlbbits(env, pageaddr); 4731 4732 if (tlb_force_broadcast(env)) { 4733 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4734 } else { 4735 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4736 } 4737 } 4738 4739 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 CPUState *cs = env_cpu(env); 4743 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4744 bool secure = arm_is_secure_below_el3(env); 4745 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4746 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, 4747 pageaddr); 4748 4749 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4750 } 4751 4752 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4753 uint64_t value) 4754 { 4755 CPUState *cs = env_cpu(env); 4756 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4757 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4758 4759 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4760 ARMMMUIdxBit_SE3, bits); 4761 } 4762 4763 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4764 bool isread) 4765 { 4766 int cur_el = arm_current_el(env); 4767 4768 if (cur_el < 2) { 4769 uint64_t hcr = arm_hcr_el2_eff(env); 4770 4771 if (cur_el == 0) { 4772 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4773 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4774 return CP_ACCESS_TRAP_EL2; 4775 } 4776 } else { 4777 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4778 return CP_ACCESS_TRAP; 4779 } 4780 if (hcr & HCR_TDZ) { 4781 return CP_ACCESS_TRAP_EL2; 4782 } 4783 } 4784 } else if (hcr & HCR_TDZ) { 4785 return CP_ACCESS_TRAP_EL2; 4786 } 4787 } 4788 return CP_ACCESS_OK; 4789 } 4790 4791 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4792 { 4793 ARMCPU *cpu = env_archcpu(env); 4794 int dzp_bit = 1 << 4; 4795 4796 /* DZP indicates whether DC ZVA access is allowed */ 4797 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4798 dzp_bit = 0; 4799 } 4800 return cpu->dcz_blocksize | dzp_bit; 4801 } 4802 4803 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4804 bool isread) 4805 { 4806 if (!(env->pstate & PSTATE_SP)) { 4807 /* Access to SP_EL0 is undefined if it's being used as 4808 * the stack pointer. 4809 */ 4810 return CP_ACCESS_TRAP_UNCATEGORIZED; 4811 } 4812 return CP_ACCESS_OK; 4813 } 4814 4815 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4816 { 4817 return env->pstate & PSTATE_SP; 4818 } 4819 4820 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4821 { 4822 update_spsel(env, val); 4823 } 4824 4825 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4826 uint64_t value) 4827 { 4828 ARMCPU *cpu = env_archcpu(env); 4829 4830 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4831 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4832 value &= ~SCTLR_M; 4833 } 4834 4835 /* ??? Lots of these bits are not implemented. */ 4836 4837 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4838 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4839 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4840 } else { 4841 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4842 SCTLR_ATA0 | SCTLR_ATA); 4843 } 4844 } 4845 4846 if (raw_read(env, ri) == value) { 4847 /* Skip the TLB flush if nothing actually changed; Linux likes 4848 * to do a lot of pointless SCTLR writes. 4849 */ 4850 return; 4851 } 4852 4853 raw_write(env, ri, value); 4854 4855 /* This may enable/disable the MMU, so do a TLB flush. */ 4856 tlb_flush(CPU(cpu)); 4857 4858 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4859 /* 4860 * Normally we would always end the TB on an SCTLR write; see the 4861 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4862 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4863 * of hflags from the translator, so do it here. 4864 */ 4865 arm_rebuild_hflags(env); 4866 } 4867 } 4868 4869 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4870 bool isread) 4871 { 4872 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4873 return CP_ACCESS_TRAP_FP_EL2; 4874 } 4875 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4876 return CP_ACCESS_TRAP_FP_EL3; 4877 } 4878 return CP_ACCESS_OK; 4879 } 4880 4881 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4882 uint64_t value) 4883 { 4884 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4885 } 4886 4887 static const ARMCPRegInfo v8_cp_reginfo[] = { 4888 /* Minimal set of EL0-visible registers. This will need to be expanded 4889 * significantly for system emulation of AArch64 CPUs. 4890 */ 4891 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4893 .access = PL0_RW, .type = ARM_CP_NZCV }, 4894 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4896 .type = ARM_CP_NO_RAW, 4897 .access = PL0_RW, .accessfn = aa64_daif_access, 4898 .fieldoffset = offsetof(CPUARMState, daif), 4899 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4900 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4902 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4903 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4904 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4906 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4907 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4908 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4910 .access = PL0_R, .type = ARM_CP_NO_RAW, 4911 .readfn = aa64_dczid_read }, 4912 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4914 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4915 #ifndef CONFIG_USER_ONLY 4916 /* Avoid overhead of an access check that always passes in user-mode */ 4917 .accessfn = aa64_zva_access, 4918 #endif 4919 }, 4920 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4922 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4923 /* Cache ops: all NOPs since we don't emulate caches */ 4924 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4926 .access = PL1_W, .type = ARM_CP_NOP, 4927 .accessfn = aa64_cacheop_pou_access }, 4928 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4930 .access = PL1_W, .type = ARM_CP_NOP, 4931 .accessfn = aa64_cacheop_pou_access }, 4932 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4934 .access = PL0_W, .type = ARM_CP_NOP, 4935 .accessfn = aa64_cacheop_pou_access }, 4936 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4938 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4939 .type = ARM_CP_NOP }, 4940 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4942 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4943 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4945 .access = PL0_W, .type = ARM_CP_NOP, 4946 .accessfn = aa64_cacheop_poc_access }, 4947 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4949 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4950 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4952 .access = PL0_W, .type = ARM_CP_NOP, 4953 .accessfn = aa64_cacheop_pou_access }, 4954 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4956 .access = PL0_W, .type = ARM_CP_NOP, 4957 .accessfn = aa64_cacheop_poc_access }, 4958 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4960 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4961 /* TLBI operations */ 4962 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4964 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4965 .writefn = tlbi_aa64_vmalle1is_write }, 4966 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4968 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_vae1is_write }, 4970 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4972 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4973 .writefn = tlbi_aa64_vmalle1is_write }, 4974 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4976 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4977 .writefn = tlbi_aa64_vae1is_write }, 4978 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4980 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4981 .writefn = tlbi_aa64_vae1is_write }, 4982 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4984 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4985 .writefn = tlbi_aa64_vae1is_write }, 4986 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4988 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4989 .writefn = tlbi_aa64_vmalle1_write }, 4990 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4992 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4993 .writefn = tlbi_aa64_vae1_write }, 4994 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4996 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4997 .writefn = tlbi_aa64_vmalle1_write }, 4998 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5000 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5001 .writefn = tlbi_aa64_vae1_write }, 5002 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5004 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5005 .writefn = tlbi_aa64_vae1_write }, 5006 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5008 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5009 .writefn = tlbi_aa64_vae1_write }, 5010 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5012 .access = PL2_W, .type = ARM_CP_NOP }, 5013 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5015 .access = PL2_W, .type = ARM_CP_NOP }, 5016 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5018 .access = PL2_W, .type = ARM_CP_NO_RAW, 5019 .writefn = tlbi_aa64_alle1is_write }, 5020 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5022 .access = PL2_W, .type = ARM_CP_NO_RAW, 5023 .writefn = tlbi_aa64_alle1is_write }, 5024 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5026 .access = PL2_W, .type = ARM_CP_NOP }, 5027 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5029 .access = PL2_W, .type = ARM_CP_NOP }, 5030 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5032 .access = PL2_W, .type = ARM_CP_NO_RAW, 5033 .writefn = tlbi_aa64_alle1_write }, 5034 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5035 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5036 .access = PL2_W, .type = ARM_CP_NO_RAW, 5037 .writefn = tlbi_aa64_alle1is_write }, 5038 #ifndef CONFIG_USER_ONLY 5039 /* 64 bit address translation operations */ 5040 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5042 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5043 .writefn = ats_write64 }, 5044 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5046 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5047 .writefn = ats_write64 }, 5048 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5050 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5051 .writefn = ats_write64 }, 5052 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5054 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5055 .writefn = ats_write64 }, 5056 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5058 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5059 .writefn = ats_write64 }, 5060 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5062 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5063 .writefn = ats_write64 }, 5064 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5066 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5067 .writefn = ats_write64 }, 5068 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5070 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5071 .writefn = ats_write64 }, 5072 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5073 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5075 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5076 .writefn = ats_write64 }, 5077 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5079 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5080 .writefn = ats_write64 }, 5081 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5082 .type = ARM_CP_ALIAS, 5083 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5084 .access = PL1_RW, .resetvalue = 0, 5085 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5086 .writefn = par_write }, 5087 #endif 5088 /* TLB invalidate last level of translation table walk */ 5089 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5090 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5091 .writefn = tlbimva_is_write }, 5092 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5093 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5094 .writefn = tlbimvaa_is_write }, 5095 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5096 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5097 .writefn = tlbimva_write }, 5098 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5099 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5100 .writefn = tlbimvaa_write }, 5101 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5102 .type = ARM_CP_NO_RAW, .access = PL2_W, 5103 .writefn = tlbimva_hyp_write }, 5104 { .name = "TLBIMVALHIS", 5105 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5106 .type = ARM_CP_NO_RAW, .access = PL2_W, 5107 .writefn = tlbimva_hyp_is_write }, 5108 { .name = "TLBIIPAS2", 5109 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5110 .type = ARM_CP_NOP, .access = PL2_W }, 5111 { .name = "TLBIIPAS2IS", 5112 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5113 .type = ARM_CP_NOP, .access = PL2_W }, 5114 { .name = "TLBIIPAS2L", 5115 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5116 .type = ARM_CP_NOP, .access = PL2_W }, 5117 { .name = "TLBIIPAS2LIS", 5118 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5119 .type = ARM_CP_NOP, .access = PL2_W }, 5120 /* 32 bit cache operations */ 5121 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5122 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5123 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5124 .type = ARM_CP_NOP, .access = PL1_W }, 5125 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5126 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5127 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5128 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5129 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5130 .type = ARM_CP_NOP, .access = PL1_W }, 5131 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5132 .type = ARM_CP_NOP, .access = PL1_W }, 5133 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5134 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5135 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5136 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5137 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5138 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5139 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5140 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5141 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5142 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5143 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5144 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5145 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5146 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5147 /* MMU Domain access control / MPU write buffer control */ 5148 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5149 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5150 .writefn = dacr_write, .raw_writefn = raw_write, 5151 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5152 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5153 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5154 .type = ARM_CP_ALIAS, 5155 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5156 .access = PL1_RW, 5157 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5158 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5159 .type = ARM_CP_ALIAS, 5160 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5161 .access = PL1_RW, 5162 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5163 /* We rely on the access checks not allowing the guest to write to the 5164 * state field when SPSel indicates that it's being used as the stack 5165 * pointer. 5166 */ 5167 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5168 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5169 .access = PL1_RW, .accessfn = sp_el0_access, 5170 .type = ARM_CP_ALIAS, 5171 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5172 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5174 .access = PL2_RW, .type = ARM_CP_ALIAS, 5175 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5176 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5177 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5178 .type = ARM_CP_NO_RAW, 5179 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5180 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5181 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5182 .type = ARM_CP_ALIAS, 5183 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5184 .access = PL2_RW, .accessfn = fpexc32_access }, 5185 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5187 .access = PL2_RW, .resetvalue = 0, 5188 .writefn = dacr_write, .raw_writefn = raw_write, 5189 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5190 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5191 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5192 .access = PL2_RW, .resetvalue = 0, 5193 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5194 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5195 .type = ARM_CP_ALIAS, 5196 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5197 .access = PL2_RW, 5198 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5199 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5200 .type = ARM_CP_ALIAS, 5201 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5202 .access = PL2_RW, 5203 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5204 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5205 .type = ARM_CP_ALIAS, 5206 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5207 .access = PL2_RW, 5208 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5209 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5210 .type = ARM_CP_ALIAS, 5211 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5212 .access = PL2_RW, 5213 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5214 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5215 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5216 .resetvalue = 0, 5217 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5218 { .name = "SDCR", .type = ARM_CP_ALIAS, 5219 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5220 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5221 .writefn = sdcr_write, 5222 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5223 REGINFO_SENTINEL 5224 }; 5225 5226 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5227 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5228 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5229 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5230 .access = PL2_RW, 5231 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5232 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5234 .access = PL2_RW, 5235 .type = ARM_CP_CONST, .resetvalue = 0 }, 5236 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5237 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5238 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5239 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5240 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5241 .access = PL2_RW, 5242 .type = ARM_CP_CONST, .resetvalue = 0 }, 5243 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5247 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5248 .access = PL2_RW, .type = ARM_CP_CONST, 5249 .resetvalue = 0 }, 5250 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5251 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5252 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5253 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5254 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5255 .access = PL2_RW, .type = ARM_CP_CONST, 5256 .resetvalue = 0 }, 5257 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5258 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5259 .access = PL2_RW, .type = ARM_CP_CONST, 5260 .resetvalue = 0 }, 5261 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5262 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5263 .access = PL2_RW, .type = ARM_CP_CONST, 5264 .resetvalue = 0 }, 5265 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5266 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5267 .access = PL2_RW, .type = ARM_CP_CONST, 5268 .resetvalue = 0 }, 5269 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5270 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5271 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5272 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5273 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5274 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5275 .type = ARM_CP_CONST, .resetvalue = 0 }, 5276 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5277 .cp = 15, .opc1 = 6, .crm = 2, 5278 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5279 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5280 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5282 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5283 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5284 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5285 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5286 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5287 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5288 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5289 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5290 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5291 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5292 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5293 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5294 .resetvalue = 0 }, 5295 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5296 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5297 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5298 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5299 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5300 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5301 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5302 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5303 .resetvalue = 0 }, 5304 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5306 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5307 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5308 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5309 .resetvalue = 0 }, 5310 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5311 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5312 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5313 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5314 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5315 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5316 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5317 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5318 .access = PL2_RW, .accessfn = access_tda, 5319 .type = ARM_CP_CONST, .resetvalue = 0 }, 5320 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5321 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5322 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5323 .type = ARM_CP_CONST, .resetvalue = 0 }, 5324 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5326 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5327 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5328 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5329 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5330 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5331 .type = ARM_CP_CONST, 5332 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5333 .access = PL2_RW, .resetvalue = 0 }, 5334 REGINFO_SENTINEL 5335 }; 5336 5337 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5338 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5339 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5340 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5341 .access = PL2_RW, 5342 .type = ARM_CP_CONST, .resetvalue = 0 }, 5343 REGINFO_SENTINEL 5344 }; 5345 5346 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5347 { 5348 ARMCPU *cpu = env_archcpu(env); 5349 5350 if (arm_feature(env, ARM_FEATURE_V8)) { 5351 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5352 } else { 5353 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5354 } 5355 5356 if (arm_feature(env, ARM_FEATURE_EL3)) { 5357 valid_mask &= ~HCR_HCD; 5358 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5359 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5360 * However, if we're using the SMC PSCI conduit then QEMU is 5361 * effectively acting like EL3 firmware and so the guest at 5362 * EL2 should retain the ability to prevent EL1 from being 5363 * able to make SMC calls into the ersatz firmware, so in 5364 * that case HCR.TSC should be read/write. 5365 */ 5366 valid_mask &= ~HCR_TSC; 5367 } 5368 5369 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5370 if (cpu_isar_feature(aa64_vh, cpu)) { 5371 valid_mask |= HCR_E2H; 5372 } 5373 if (cpu_isar_feature(aa64_lor, cpu)) { 5374 valid_mask |= HCR_TLOR; 5375 } 5376 if (cpu_isar_feature(aa64_pauth, cpu)) { 5377 valid_mask |= HCR_API | HCR_APK; 5378 } 5379 if (cpu_isar_feature(aa64_mte, cpu)) { 5380 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5381 } 5382 } 5383 5384 /* Clear RES0 bits. */ 5385 value &= valid_mask; 5386 5387 /* 5388 * These bits change the MMU setup: 5389 * HCR_VM enables stage 2 translation 5390 * HCR_PTW forbids certain page-table setups 5391 * HCR_DC disables stage1 and enables stage2 translation 5392 * HCR_DCT enables tagging on (disabled) stage1 translation 5393 */ 5394 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5395 tlb_flush(CPU(cpu)); 5396 } 5397 env->cp15.hcr_el2 = value; 5398 5399 /* 5400 * Updates to VI and VF require us to update the status of 5401 * virtual interrupts, which are the logical OR of these bits 5402 * and the state of the input lines from the GIC. (This requires 5403 * that we have the iothread lock, which is done by marking the 5404 * reginfo structs as ARM_CP_IO.) 5405 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5406 * possible for it to be taken immediately, because VIRQ and 5407 * VFIQ are masked unless running at EL0 or EL1, and HCR 5408 * can only be written at EL2. 5409 */ 5410 g_assert(qemu_mutex_iothread_locked()); 5411 arm_cpu_update_virq(cpu); 5412 arm_cpu_update_vfiq(cpu); 5413 } 5414 5415 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5416 { 5417 do_hcr_write(env, value, 0); 5418 } 5419 5420 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5421 uint64_t value) 5422 { 5423 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5424 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5425 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5426 } 5427 5428 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5429 uint64_t value) 5430 { 5431 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5432 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5433 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5434 } 5435 5436 /* 5437 * Return the effective value of HCR_EL2. 5438 * Bits that are not included here: 5439 * RW (read from SCR_EL3.RW as needed) 5440 */ 5441 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5442 { 5443 uint64_t ret = env->cp15.hcr_el2; 5444 5445 if (!arm_is_el2_enabled(env)) { 5446 /* 5447 * "This register has no effect if EL2 is not enabled in the 5448 * current Security state". This is ARMv8.4-SecEL2 speak for 5449 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5450 * 5451 * Prior to that, the language was "In an implementation that 5452 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5453 * as if this field is 0 for all purposes other than a direct 5454 * read or write access of HCR_EL2". With lots of enumeration 5455 * on a per-field basis. In current QEMU, this is condition 5456 * is arm_is_secure_below_el3. 5457 * 5458 * Since the v8.4 language applies to the entire register, and 5459 * appears to be backward compatible, use that. 5460 */ 5461 return 0; 5462 } 5463 5464 /* 5465 * For a cpu that supports both aarch64 and aarch32, we can set bits 5466 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5467 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5468 */ 5469 if (!arm_el_is_aa64(env, 2)) { 5470 uint64_t aa32_valid; 5471 5472 /* 5473 * These bits are up-to-date as of ARMv8.6. 5474 * For HCR, it's easiest to list just the 2 bits that are invalid. 5475 * For HCR2, list those that are valid. 5476 */ 5477 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5478 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5479 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5480 ret &= aa32_valid; 5481 } 5482 5483 if (ret & HCR_TGE) { 5484 /* These bits are up-to-date as of ARMv8.6. */ 5485 if (ret & HCR_E2H) { 5486 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5487 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5488 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5489 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5490 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5491 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5492 } else { 5493 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5494 } 5495 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5496 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5497 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5498 HCR_TLOR); 5499 } 5500 5501 return ret; 5502 } 5503 5504 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5505 uint64_t value) 5506 { 5507 /* 5508 * For A-profile AArch32 EL3, if NSACR.CP10 5509 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5510 */ 5511 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5512 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5513 value &= ~(0x3 << 10); 5514 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5515 } 5516 env->cp15.cptr_el[2] = value; 5517 } 5518 5519 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5520 { 5521 /* 5522 * For A-profile AArch32 EL3, if NSACR.CP10 5523 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5524 */ 5525 uint64_t value = env->cp15.cptr_el[2]; 5526 5527 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5528 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5529 value |= 0x3 << 10; 5530 } 5531 return value; 5532 } 5533 5534 static const ARMCPRegInfo el2_cp_reginfo[] = { 5535 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5536 .type = ARM_CP_IO, 5537 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5538 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5539 .writefn = hcr_write }, 5540 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5541 .type = ARM_CP_ALIAS | ARM_CP_IO, 5542 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5543 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5544 .writefn = hcr_writelow }, 5545 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5546 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5547 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5548 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5549 .type = ARM_CP_ALIAS, 5550 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5551 .access = PL2_RW, 5552 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5553 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5554 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5555 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5556 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5557 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5558 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5559 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5560 .type = ARM_CP_ALIAS, 5561 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5562 .access = PL2_RW, 5563 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5564 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5565 .type = ARM_CP_ALIAS, 5566 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5567 .access = PL2_RW, 5568 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5569 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5570 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5571 .access = PL2_RW, .writefn = vbar_write, 5572 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5573 .resetvalue = 0 }, 5574 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5576 .access = PL3_RW, .type = ARM_CP_ALIAS, 5577 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5578 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5579 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5580 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5581 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5582 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5583 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5584 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5585 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5586 .resetvalue = 0 }, 5587 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5588 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5589 .access = PL2_RW, .type = ARM_CP_ALIAS, 5590 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5591 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5592 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5593 .access = PL2_RW, .type = ARM_CP_CONST, 5594 .resetvalue = 0 }, 5595 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5596 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5597 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5598 .access = PL2_RW, .type = ARM_CP_CONST, 5599 .resetvalue = 0 }, 5600 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5601 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5602 .access = PL2_RW, .type = ARM_CP_CONST, 5603 .resetvalue = 0 }, 5604 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5605 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5606 .access = PL2_RW, .type = ARM_CP_CONST, 5607 .resetvalue = 0 }, 5608 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5610 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5611 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5612 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5613 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5614 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5615 .type = ARM_CP_ALIAS, 5616 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5617 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5618 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5620 .access = PL2_RW, 5621 /* no .writefn needed as this can't cause an ASID change; 5622 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5623 */ 5624 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5625 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5626 .cp = 15, .opc1 = 6, .crm = 2, 5627 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5628 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5629 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5630 .writefn = vttbr_write }, 5631 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5632 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5633 .access = PL2_RW, .writefn = vttbr_write, 5634 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5635 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5636 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5637 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5638 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5639 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5640 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5641 .access = PL2_RW, .resetvalue = 0, 5642 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5643 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5644 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5645 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5646 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5647 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5648 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5649 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5650 { .name = "TLBIALLNSNH", 5651 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5652 .type = ARM_CP_NO_RAW, .access = PL2_W, 5653 .writefn = tlbiall_nsnh_write }, 5654 { .name = "TLBIALLNSNHIS", 5655 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5656 .type = ARM_CP_NO_RAW, .access = PL2_W, 5657 .writefn = tlbiall_nsnh_is_write }, 5658 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5659 .type = ARM_CP_NO_RAW, .access = PL2_W, 5660 .writefn = tlbiall_hyp_write }, 5661 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5662 .type = ARM_CP_NO_RAW, .access = PL2_W, 5663 .writefn = tlbiall_hyp_is_write }, 5664 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5665 .type = ARM_CP_NO_RAW, .access = PL2_W, 5666 .writefn = tlbimva_hyp_write }, 5667 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5668 .type = ARM_CP_NO_RAW, .access = PL2_W, 5669 .writefn = tlbimva_hyp_is_write }, 5670 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5671 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5672 .type = ARM_CP_NO_RAW, .access = PL2_W, 5673 .writefn = tlbi_aa64_alle2_write }, 5674 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5675 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5676 .type = ARM_CP_NO_RAW, .access = PL2_W, 5677 .writefn = tlbi_aa64_vae2_write }, 5678 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5680 .access = PL2_W, .type = ARM_CP_NO_RAW, 5681 .writefn = tlbi_aa64_vae2_write }, 5682 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5683 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5684 .access = PL2_W, .type = ARM_CP_NO_RAW, 5685 .writefn = tlbi_aa64_alle2is_write }, 5686 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5688 .type = ARM_CP_NO_RAW, .access = PL2_W, 5689 .writefn = tlbi_aa64_vae2is_write }, 5690 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5691 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5692 .access = PL2_W, .type = ARM_CP_NO_RAW, 5693 .writefn = tlbi_aa64_vae2is_write }, 5694 #ifndef CONFIG_USER_ONLY 5695 /* Unlike the other EL2-related AT operations, these must 5696 * UNDEF from EL3 if EL2 is not implemented, which is why we 5697 * define them here rather than with the rest of the AT ops. 5698 */ 5699 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5701 .access = PL2_W, .accessfn = at_s1e2_access, 5702 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5703 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5704 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5705 .access = PL2_W, .accessfn = at_s1e2_access, 5706 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5707 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5708 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5709 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5710 * to behave as if SCR.NS was 1. 5711 */ 5712 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5713 .access = PL2_W, 5714 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5715 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5716 .access = PL2_W, 5717 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5718 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5719 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5720 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5721 * reset values as IMPDEF. We choose to reset to 3 to comply with 5722 * both ARMv7 and ARMv8. 5723 */ 5724 .access = PL2_RW, .resetvalue = 3, 5725 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5726 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5728 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5729 .writefn = gt_cntvoff_write, 5730 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5731 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5732 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5733 .writefn = gt_cntvoff_write, 5734 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5735 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5736 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5737 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5738 .type = ARM_CP_IO, .access = PL2_RW, 5739 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5740 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5741 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5742 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5743 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5744 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5745 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5746 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5747 .resetfn = gt_hyp_timer_reset, 5748 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5749 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5750 .type = ARM_CP_IO, 5751 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5752 .access = PL2_RW, 5753 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5754 .resetvalue = 0, 5755 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5756 #endif 5757 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5758 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5759 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5760 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5761 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5763 .access = PL2_RW, 5764 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5765 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5766 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5767 .access = PL2_RW, 5768 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5769 REGINFO_SENTINEL 5770 }; 5771 5772 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5773 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5774 .type = ARM_CP_ALIAS | ARM_CP_IO, 5775 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5776 .access = PL2_RW, 5777 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5778 .writefn = hcr_writehigh }, 5779 REGINFO_SENTINEL 5780 }; 5781 5782 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5783 bool isread) 5784 { 5785 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5786 return CP_ACCESS_OK; 5787 } 5788 return CP_ACCESS_TRAP_UNCATEGORIZED; 5789 } 5790 5791 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5792 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5794 .access = PL2_RW, .accessfn = sel2_access, 5795 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5796 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5798 .access = PL2_RW, .accessfn = sel2_access, 5799 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5800 REGINFO_SENTINEL 5801 }; 5802 5803 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5804 bool isread) 5805 { 5806 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5807 * At Secure EL1 it traps to EL3 or EL2. 5808 */ 5809 if (arm_current_el(env) == 3) { 5810 return CP_ACCESS_OK; 5811 } 5812 if (arm_is_secure_below_el3(env)) { 5813 if (env->cp15.scr_el3 & SCR_EEL2) { 5814 return CP_ACCESS_TRAP_EL2; 5815 } 5816 return CP_ACCESS_TRAP_EL3; 5817 } 5818 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5819 if (isread) { 5820 return CP_ACCESS_OK; 5821 } 5822 return CP_ACCESS_TRAP_UNCATEGORIZED; 5823 } 5824 5825 static const ARMCPRegInfo el3_cp_reginfo[] = { 5826 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5827 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5828 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5829 .resetfn = scr_reset, .writefn = scr_write }, 5830 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5831 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5832 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5833 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5834 .writefn = scr_write }, 5835 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5836 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5837 .access = PL3_RW, .resetvalue = 0, 5838 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5839 { .name = "SDER", 5840 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5841 .access = PL3_RW, .resetvalue = 0, 5842 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5843 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5844 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5845 .writefn = vbar_write, .resetvalue = 0, 5846 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5847 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5849 .access = PL3_RW, .resetvalue = 0, 5850 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5851 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5852 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5853 .access = PL3_RW, 5854 /* no .writefn needed as this can't cause an ASID change; 5855 * we must provide a .raw_writefn and .resetfn because we handle 5856 * reset and migration for the AArch32 TTBCR(S), which might be 5857 * using mask and base_mask. 5858 */ 5859 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5860 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5861 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5862 .type = ARM_CP_ALIAS, 5863 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5864 .access = PL3_RW, 5865 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5866 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5868 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5869 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5870 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5871 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5872 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5873 .type = ARM_CP_ALIAS, 5874 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5875 .access = PL3_RW, 5876 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5877 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5878 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5879 .access = PL3_RW, .writefn = vbar_write, 5880 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5881 .resetvalue = 0 }, 5882 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5883 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5884 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5885 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5886 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5887 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5888 .access = PL3_RW, .resetvalue = 0, 5889 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5890 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5891 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5892 .access = PL3_RW, .type = ARM_CP_CONST, 5893 .resetvalue = 0 }, 5894 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5895 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5896 .access = PL3_RW, .type = ARM_CP_CONST, 5897 .resetvalue = 0 }, 5898 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5899 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5900 .access = PL3_RW, .type = ARM_CP_CONST, 5901 .resetvalue = 0 }, 5902 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5903 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5904 .access = PL3_W, .type = ARM_CP_NO_RAW, 5905 .writefn = tlbi_aa64_alle3is_write }, 5906 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5907 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5908 .access = PL3_W, .type = ARM_CP_NO_RAW, 5909 .writefn = tlbi_aa64_vae3is_write }, 5910 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5911 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5912 .access = PL3_W, .type = ARM_CP_NO_RAW, 5913 .writefn = tlbi_aa64_vae3is_write }, 5914 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5915 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5916 .access = PL3_W, .type = ARM_CP_NO_RAW, 5917 .writefn = tlbi_aa64_alle3_write }, 5918 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5919 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5920 .access = PL3_W, .type = ARM_CP_NO_RAW, 5921 .writefn = tlbi_aa64_vae3_write }, 5922 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5923 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5924 .access = PL3_W, .type = ARM_CP_NO_RAW, 5925 .writefn = tlbi_aa64_vae3_write }, 5926 REGINFO_SENTINEL 5927 }; 5928 5929 #ifndef CONFIG_USER_ONLY 5930 /* Test if system register redirection is to occur in the current state. */ 5931 static bool redirect_for_e2h(CPUARMState *env) 5932 { 5933 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5934 } 5935 5936 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5937 { 5938 CPReadFn *readfn; 5939 5940 if (redirect_for_e2h(env)) { 5941 /* Switch to the saved EL2 version of the register. */ 5942 ri = ri->opaque; 5943 readfn = ri->readfn; 5944 } else { 5945 readfn = ri->orig_readfn; 5946 } 5947 if (readfn == NULL) { 5948 readfn = raw_read; 5949 } 5950 return readfn(env, ri); 5951 } 5952 5953 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5954 uint64_t value) 5955 { 5956 CPWriteFn *writefn; 5957 5958 if (redirect_for_e2h(env)) { 5959 /* Switch to the saved EL2 version of the register. */ 5960 ri = ri->opaque; 5961 writefn = ri->writefn; 5962 } else { 5963 writefn = ri->orig_writefn; 5964 } 5965 if (writefn == NULL) { 5966 writefn = raw_write; 5967 } 5968 writefn(env, ri, value); 5969 } 5970 5971 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5972 { 5973 struct E2HAlias { 5974 uint32_t src_key, dst_key, new_key; 5975 const char *src_name, *dst_name, *new_name; 5976 bool (*feature)(const ARMISARegisters *id); 5977 }; 5978 5979 #define K(op0, op1, crn, crm, op2) \ 5980 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5981 5982 static const struct E2HAlias aliases[] = { 5983 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5984 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5985 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5986 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5987 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5988 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5989 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5990 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5991 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5992 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5993 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5994 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5995 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5996 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5997 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5998 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5999 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6000 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6001 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6002 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6003 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6004 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6005 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6006 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6007 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6008 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6009 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6010 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6011 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6012 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6013 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6014 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6015 6016 /* 6017 * Note that redirection of ZCR is mentioned in the description 6018 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6019 * not in the summary table. 6020 */ 6021 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6022 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6023 6024 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6025 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6026 6027 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6028 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6029 }; 6030 #undef K 6031 6032 size_t i; 6033 6034 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6035 const struct E2HAlias *a = &aliases[i]; 6036 ARMCPRegInfo *src_reg, *dst_reg; 6037 6038 if (a->feature && !a->feature(&cpu->isar)) { 6039 continue; 6040 } 6041 6042 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6043 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6044 g_assert(src_reg != NULL); 6045 g_assert(dst_reg != NULL); 6046 6047 /* Cross-compare names to detect typos in the keys. */ 6048 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6049 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6050 6051 /* None of the core system registers use opaque; we will. */ 6052 g_assert(src_reg->opaque == NULL); 6053 6054 /* Create alias before redirection so we dup the right data. */ 6055 if (a->new_key) { 6056 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6057 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6058 bool ok; 6059 6060 new_reg->name = a->new_name; 6061 new_reg->type |= ARM_CP_ALIAS; 6062 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6063 new_reg->access &= PL2_RW | PL3_RW; 6064 6065 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6066 g_assert(ok); 6067 } 6068 6069 src_reg->opaque = dst_reg; 6070 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6071 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6072 if (!src_reg->raw_readfn) { 6073 src_reg->raw_readfn = raw_read; 6074 } 6075 if (!src_reg->raw_writefn) { 6076 src_reg->raw_writefn = raw_write; 6077 } 6078 src_reg->readfn = el2_e2h_read; 6079 src_reg->writefn = el2_e2h_write; 6080 } 6081 } 6082 #endif 6083 6084 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6085 bool isread) 6086 { 6087 int cur_el = arm_current_el(env); 6088 6089 if (cur_el < 2) { 6090 uint64_t hcr = arm_hcr_el2_eff(env); 6091 6092 if (cur_el == 0) { 6093 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6094 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6095 return CP_ACCESS_TRAP_EL2; 6096 } 6097 } else { 6098 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6099 return CP_ACCESS_TRAP; 6100 } 6101 if (hcr & HCR_TID2) { 6102 return CP_ACCESS_TRAP_EL2; 6103 } 6104 } 6105 } else if (hcr & HCR_TID2) { 6106 return CP_ACCESS_TRAP_EL2; 6107 } 6108 } 6109 6110 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6111 return CP_ACCESS_TRAP_EL2; 6112 } 6113 6114 return CP_ACCESS_OK; 6115 } 6116 6117 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6118 uint64_t value) 6119 { 6120 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6121 * read via a bit in OSLSR_EL1. 6122 */ 6123 int oslock; 6124 6125 if (ri->state == ARM_CP_STATE_AA32) { 6126 oslock = (value == 0xC5ACCE55); 6127 } else { 6128 oslock = value & 1; 6129 } 6130 6131 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6132 } 6133 6134 static const ARMCPRegInfo debug_cp_reginfo[] = { 6135 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6136 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6137 * unlike DBGDRAR it is never accessible from EL0. 6138 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6139 * accessor. 6140 */ 6141 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6142 .access = PL0_R, .accessfn = access_tdra, 6143 .type = ARM_CP_CONST, .resetvalue = 0 }, 6144 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6145 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6146 .access = PL1_R, .accessfn = access_tdra, 6147 .type = ARM_CP_CONST, .resetvalue = 0 }, 6148 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6149 .access = PL0_R, .accessfn = access_tdra, 6150 .type = ARM_CP_CONST, .resetvalue = 0 }, 6151 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6152 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6153 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6154 .access = PL1_RW, .accessfn = access_tda, 6155 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6156 .resetvalue = 0 }, 6157 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6158 * We don't implement the configurable EL0 access. 6159 */ 6160 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6162 .type = ARM_CP_ALIAS, 6163 .access = PL1_R, .accessfn = access_tda, 6164 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6165 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6167 .access = PL1_W, .type = ARM_CP_NO_RAW, 6168 .accessfn = access_tdosa, 6169 .writefn = oslar_write }, 6170 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6171 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6172 .access = PL1_R, .resetvalue = 10, 6173 .accessfn = access_tdosa, 6174 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6175 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6176 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6177 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6178 .access = PL1_RW, .accessfn = access_tdosa, 6179 .type = ARM_CP_NOP }, 6180 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6181 * implement vector catch debug events yet. 6182 */ 6183 { .name = "DBGVCR", 6184 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6185 .access = PL1_RW, .accessfn = access_tda, 6186 .type = ARM_CP_NOP }, 6187 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6188 * to save and restore a 32-bit guest's DBGVCR) 6189 */ 6190 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6192 .access = PL2_RW, .accessfn = access_tda, 6193 .type = ARM_CP_NOP }, 6194 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6195 * Channel but Linux may try to access this register. The 32-bit 6196 * alias is DBGDCCINT. 6197 */ 6198 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6199 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6200 .access = PL1_RW, .accessfn = access_tda, 6201 .type = ARM_CP_NOP }, 6202 REGINFO_SENTINEL 6203 }; 6204 6205 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6206 /* 64 bit access versions of the (dummy) debug registers */ 6207 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6208 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6209 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6210 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6211 REGINFO_SENTINEL 6212 }; 6213 6214 /* Return the exception level to which exceptions should be taken 6215 * via SVEAccessTrap. If an exception should be routed through 6216 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6217 * take care of raising that exception. 6218 * C.f. the ARM pseudocode function CheckSVEEnabled. 6219 */ 6220 int sve_exception_el(CPUARMState *env, int el) 6221 { 6222 #ifndef CONFIG_USER_ONLY 6223 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6224 6225 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6226 bool disabled = false; 6227 6228 /* The CPACR.ZEN controls traps to EL1: 6229 * 0, 2 : trap EL0 and EL1 accesses 6230 * 1 : trap only EL0 accesses 6231 * 3 : trap no accesses 6232 */ 6233 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6234 disabled = true; 6235 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6236 disabled = el == 0; 6237 } 6238 if (disabled) { 6239 /* route_to_el2 */ 6240 return hcr_el2 & HCR_TGE ? 2 : 1; 6241 } 6242 6243 /* Check CPACR.FPEN. */ 6244 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6245 disabled = true; 6246 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6247 disabled = el == 0; 6248 } 6249 if (disabled) { 6250 return 0; 6251 } 6252 } 6253 6254 /* CPTR_EL2. Since TZ and TFP are positive, 6255 * they will be zero when EL2 is not present. 6256 */ 6257 if (el <= 2 && arm_is_el2_enabled(env)) { 6258 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6259 return 2; 6260 } 6261 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6262 return 0; 6263 } 6264 } 6265 6266 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6267 if (arm_feature(env, ARM_FEATURE_EL3) 6268 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6269 return 3; 6270 } 6271 #endif 6272 return 0; 6273 } 6274 6275 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6276 { 6277 uint32_t end_len; 6278 6279 end_len = start_len &= 0xf; 6280 if (!test_bit(start_len, cpu->sve_vq_map)) { 6281 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6282 assert(end_len < start_len); 6283 } 6284 return end_len; 6285 } 6286 6287 /* 6288 * Given that SVE is enabled, return the vector length for EL. 6289 */ 6290 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6291 { 6292 ARMCPU *cpu = env_archcpu(env); 6293 uint32_t zcr_len = cpu->sve_max_vq - 1; 6294 6295 if (el <= 1) { 6296 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6297 } 6298 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6299 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6300 } 6301 if (arm_feature(env, ARM_FEATURE_EL3)) { 6302 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6303 } 6304 6305 return sve_zcr_get_valid_len(cpu, zcr_len); 6306 } 6307 6308 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6309 uint64_t value) 6310 { 6311 int cur_el = arm_current_el(env); 6312 int old_len = sve_zcr_len_for_el(env, cur_el); 6313 int new_len; 6314 6315 /* Bits other than [3:0] are RAZ/WI. */ 6316 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6317 raw_write(env, ri, value & 0xf); 6318 6319 /* 6320 * Because we arrived here, we know both FP and SVE are enabled; 6321 * otherwise we would have trapped access to the ZCR_ELn register. 6322 */ 6323 new_len = sve_zcr_len_for_el(env, cur_el); 6324 if (new_len < old_len) { 6325 aarch64_sve_narrow_vq(env, new_len + 1); 6326 } 6327 } 6328 6329 static const ARMCPRegInfo zcr_el1_reginfo = { 6330 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6331 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6332 .access = PL1_RW, .type = ARM_CP_SVE, 6333 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6334 .writefn = zcr_write, .raw_writefn = raw_write 6335 }; 6336 6337 static const ARMCPRegInfo zcr_el2_reginfo = { 6338 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6339 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6340 .access = PL2_RW, .type = ARM_CP_SVE, 6341 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6342 .writefn = zcr_write, .raw_writefn = raw_write 6343 }; 6344 6345 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6346 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6347 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6348 .access = PL2_RW, .type = ARM_CP_SVE, 6349 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6350 }; 6351 6352 static const ARMCPRegInfo zcr_el3_reginfo = { 6353 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6354 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6355 .access = PL3_RW, .type = ARM_CP_SVE, 6356 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6357 .writefn = zcr_write, .raw_writefn = raw_write 6358 }; 6359 6360 void hw_watchpoint_update(ARMCPU *cpu, int n) 6361 { 6362 CPUARMState *env = &cpu->env; 6363 vaddr len = 0; 6364 vaddr wvr = env->cp15.dbgwvr[n]; 6365 uint64_t wcr = env->cp15.dbgwcr[n]; 6366 int mask; 6367 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6368 6369 if (env->cpu_watchpoint[n]) { 6370 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6371 env->cpu_watchpoint[n] = NULL; 6372 } 6373 6374 if (!extract64(wcr, 0, 1)) { 6375 /* E bit clear : watchpoint disabled */ 6376 return; 6377 } 6378 6379 switch (extract64(wcr, 3, 2)) { 6380 case 0: 6381 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6382 return; 6383 case 1: 6384 flags |= BP_MEM_READ; 6385 break; 6386 case 2: 6387 flags |= BP_MEM_WRITE; 6388 break; 6389 case 3: 6390 flags |= BP_MEM_ACCESS; 6391 break; 6392 } 6393 6394 /* Attempts to use both MASK and BAS fields simultaneously are 6395 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6396 * thus generating a watchpoint for every byte in the masked region. 6397 */ 6398 mask = extract64(wcr, 24, 4); 6399 if (mask == 1 || mask == 2) { 6400 /* Reserved values of MASK; we must act as if the mask value was 6401 * some non-reserved value, or as if the watchpoint were disabled. 6402 * We choose the latter. 6403 */ 6404 return; 6405 } else if (mask) { 6406 /* Watchpoint covers an aligned area up to 2GB in size */ 6407 len = 1ULL << mask; 6408 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6409 * whether the watchpoint fires when the unmasked bits match; we opt 6410 * to generate the exceptions. 6411 */ 6412 wvr &= ~(len - 1); 6413 } else { 6414 /* Watchpoint covers bytes defined by the byte address select bits */ 6415 int bas = extract64(wcr, 5, 8); 6416 int basstart; 6417 6418 if (extract64(wvr, 2, 1)) { 6419 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6420 * ignored, and BAS[3:0] define which bytes to watch. 6421 */ 6422 bas &= 0xf; 6423 } 6424 6425 if (bas == 0) { 6426 /* This must act as if the watchpoint is disabled */ 6427 return; 6428 } 6429 6430 /* The BAS bits are supposed to be programmed to indicate a contiguous 6431 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6432 * we fire for each byte in the word/doubleword addressed by the WVR. 6433 * We choose to ignore any non-zero bits after the first range of 1s. 6434 */ 6435 basstart = ctz32(bas); 6436 len = cto32(bas >> basstart); 6437 wvr += basstart; 6438 } 6439 6440 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6441 &env->cpu_watchpoint[n]); 6442 } 6443 6444 void hw_watchpoint_update_all(ARMCPU *cpu) 6445 { 6446 int i; 6447 CPUARMState *env = &cpu->env; 6448 6449 /* Completely clear out existing QEMU watchpoints and our array, to 6450 * avoid possible stale entries following migration load. 6451 */ 6452 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6453 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6454 6455 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6456 hw_watchpoint_update(cpu, i); 6457 } 6458 } 6459 6460 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6461 uint64_t value) 6462 { 6463 ARMCPU *cpu = env_archcpu(env); 6464 int i = ri->crm; 6465 6466 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6467 * register reads and behaves as if values written are sign extended. 6468 * Bits [1:0] are RES0. 6469 */ 6470 value = sextract64(value, 0, 49) & ~3ULL; 6471 6472 raw_write(env, ri, value); 6473 hw_watchpoint_update(cpu, i); 6474 } 6475 6476 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6477 uint64_t value) 6478 { 6479 ARMCPU *cpu = env_archcpu(env); 6480 int i = ri->crm; 6481 6482 raw_write(env, ri, value); 6483 hw_watchpoint_update(cpu, i); 6484 } 6485 6486 void hw_breakpoint_update(ARMCPU *cpu, int n) 6487 { 6488 CPUARMState *env = &cpu->env; 6489 uint64_t bvr = env->cp15.dbgbvr[n]; 6490 uint64_t bcr = env->cp15.dbgbcr[n]; 6491 vaddr addr; 6492 int bt; 6493 int flags = BP_CPU; 6494 6495 if (env->cpu_breakpoint[n]) { 6496 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6497 env->cpu_breakpoint[n] = NULL; 6498 } 6499 6500 if (!extract64(bcr, 0, 1)) { 6501 /* E bit clear : watchpoint disabled */ 6502 return; 6503 } 6504 6505 bt = extract64(bcr, 20, 4); 6506 6507 switch (bt) { 6508 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6509 case 5: /* linked address mismatch (reserved if AArch64) */ 6510 qemu_log_mask(LOG_UNIMP, 6511 "arm: address mismatch breakpoint types not implemented\n"); 6512 return; 6513 case 0: /* unlinked address match */ 6514 case 1: /* linked address match */ 6515 { 6516 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6517 * we behave as if the register was sign extended. Bits [1:0] are 6518 * RES0. The BAS field is used to allow setting breakpoints on 16 6519 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6520 * a bp will fire if the addresses covered by the bp and the addresses 6521 * covered by the insn overlap but the insn doesn't start at the 6522 * start of the bp address range. We choose to require the insn and 6523 * the bp to have the same address. The constraints on writing to 6524 * BAS enforced in dbgbcr_write mean we have only four cases: 6525 * 0b0000 => no breakpoint 6526 * 0b0011 => breakpoint on addr 6527 * 0b1100 => breakpoint on addr + 2 6528 * 0b1111 => breakpoint on addr 6529 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6530 */ 6531 int bas = extract64(bcr, 5, 4); 6532 addr = sextract64(bvr, 0, 49) & ~3ULL; 6533 if (bas == 0) { 6534 return; 6535 } 6536 if (bas == 0xc) { 6537 addr += 2; 6538 } 6539 break; 6540 } 6541 case 2: /* unlinked context ID match */ 6542 case 8: /* unlinked VMID match (reserved if no EL2) */ 6543 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6544 qemu_log_mask(LOG_UNIMP, 6545 "arm: unlinked context breakpoint types not implemented\n"); 6546 return; 6547 case 9: /* linked VMID match (reserved if no EL2) */ 6548 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6549 case 3: /* linked context ID match */ 6550 default: 6551 /* We must generate no events for Linked context matches (unless 6552 * they are linked to by some other bp/wp, which is handled in 6553 * updates for the linking bp/wp). We choose to also generate no events 6554 * for reserved values. 6555 */ 6556 return; 6557 } 6558 6559 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6560 } 6561 6562 void hw_breakpoint_update_all(ARMCPU *cpu) 6563 { 6564 int i; 6565 CPUARMState *env = &cpu->env; 6566 6567 /* Completely clear out existing QEMU breakpoints and our array, to 6568 * avoid possible stale entries following migration load. 6569 */ 6570 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6571 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6572 6573 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6574 hw_breakpoint_update(cpu, i); 6575 } 6576 } 6577 6578 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6579 uint64_t value) 6580 { 6581 ARMCPU *cpu = env_archcpu(env); 6582 int i = ri->crm; 6583 6584 raw_write(env, ri, value); 6585 hw_breakpoint_update(cpu, i); 6586 } 6587 6588 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6589 uint64_t value) 6590 { 6591 ARMCPU *cpu = env_archcpu(env); 6592 int i = ri->crm; 6593 6594 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6595 * copy of BAS[0]. 6596 */ 6597 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6598 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6599 6600 raw_write(env, ri, value); 6601 hw_breakpoint_update(cpu, i); 6602 } 6603 6604 static void define_debug_regs(ARMCPU *cpu) 6605 { 6606 /* Define v7 and v8 architectural debug registers. 6607 * These are just dummy implementations for now. 6608 */ 6609 int i; 6610 int wrps, brps, ctx_cmps; 6611 6612 /* 6613 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6614 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6615 * the register must not exist for this cpu. 6616 */ 6617 if (cpu->isar.dbgdidr != 0) { 6618 ARMCPRegInfo dbgdidr = { 6619 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6620 .opc1 = 0, .opc2 = 0, 6621 .access = PL0_R, .accessfn = access_tda, 6622 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6623 }; 6624 define_one_arm_cp_reg(cpu, &dbgdidr); 6625 } 6626 6627 /* Note that all these register fields hold "number of Xs minus 1". */ 6628 brps = arm_num_brps(cpu); 6629 wrps = arm_num_wrps(cpu); 6630 ctx_cmps = arm_num_ctx_cmps(cpu); 6631 6632 assert(ctx_cmps <= brps); 6633 6634 define_arm_cp_regs(cpu, debug_cp_reginfo); 6635 6636 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6637 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6638 } 6639 6640 for (i = 0; i < brps; i++) { 6641 ARMCPRegInfo dbgregs[] = { 6642 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6643 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6644 .access = PL1_RW, .accessfn = access_tda, 6645 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6646 .writefn = dbgbvr_write, .raw_writefn = raw_write 6647 }, 6648 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6649 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6650 .access = PL1_RW, .accessfn = access_tda, 6651 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6652 .writefn = dbgbcr_write, .raw_writefn = raw_write 6653 }, 6654 REGINFO_SENTINEL 6655 }; 6656 define_arm_cp_regs(cpu, dbgregs); 6657 } 6658 6659 for (i = 0; i < wrps; i++) { 6660 ARMCPRegInfo dbgregs[] = { 6661 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6662 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6663 .access = PL1_RW, .accessfn = access_tda, 6664 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6665 .writefn = dbgwvr_write, .raw_writefn = raw_write 6666 }, 6667 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6668 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6669 .access = PL1_RW, .accessfn = access_tda, 6670 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6671 .writefn = dbgwcr_write, .raw_writefn = raw_write 6672 }, 6673 REGINFO_SENTINEL 6674 }; 6675 define_arm_cp_regs(cpu, dbgregs); 6676 } 6677 } 6678 6679 static void define_pmu_regs(ARMCPU *cpu) 6680 { 6681 /* 6682 * v7 performance monitor control register: same implementor 6683 * field as main ID register, and we implement four counters in 6684 * addition to the cycle count register. 6685 */ 6686 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6687 ARMCPRegInfo pmcr = { 6688 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6689 .access = PL0_RW, 6690 .type = ARM_CP_IO | ARM_CP_ALIAS, 6691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6692 .accessfn = pmreg_access, .writefn = pmcr_write, 6693 .raw_writefn = raw_write, 6694 }; 6695 ARMCPRegInfo pmcr64 = { 6696 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6698 .access = PL0_RW, .accessfn = pmreg_access, 6699 .type = ARM_CP_IO, 6700 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6701 .resetvalue = cpu->isar.reset_pmcr_el0, 6702 .writefn = pmcr_write, .raw_writefn = raw_write, 6703 }; 6704 6705 define_one_arm_cp_reg(cpu, &pmcr); 6706 define_one_arm_cp_reg(cpu, &pmcr64); 6707 for (i = 0; i < pmcrn; i++) { 6708 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6709 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6710 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6711 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6712 ARMCPRegInfo pmev_regs[] = { 6713 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6714 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6715 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6716 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6717 .accessfn = pmreg_access }, 6718 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6720 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6721 .type = ARM_CP_IO, 6722 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6723 .raw_readfn = pmevcntr_rawread, 6724 .raw_writefn = pmevcntr_rawwrite }, 6725 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6726 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6727 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6728 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6729 .accessfn = pmreg_access }, 6730 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6731 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6732 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6733 .type = ARM_CP_IO, 6734 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6735 .raw_writefn = pmevtyper_rawwrite }, 6736 REGINFO_SENTINEL 6737 }; 6738 define_arm_cp_regs(cpu, pmev_regs); 6739 g_free(pmevcntr_name); 6740 g_free(pmevcntr_el0_name); 6741 g_free(pmevtyper_name); 6742 g_free(pmevtyper_el0_name); 6743 } 6744 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6745 ARMCPRegInfo v81_pmu_regs[] = { 6746 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6747 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6748 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6749 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6750 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6751 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6752 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6753 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6754 REGINFO_SENTINEL 6755 }; 6756 define_arm_cp_regs(cpu, v81_pmu_regs); 6757 } 6758 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6759 static const ARMCPRegInfo v84_pmmir = { 6760 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6761 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6762 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6763 .resetvalue = 0 6764 }; 6765 define_one_arm_cp_reg(cpu, &v84_pmmir); 6766 } 6767 } 6768 6769 /* We don't know until after realize whether there's a GICv3 6770 * attached, and that is what registers the gicv3 sysregs. 6771 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6772 * at runtime. 6773 */ 6774 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6775 { 6776 ARMCPU *cpu = env_archcpu(env); 6777 uint64_t pfr1 = cpu->isar.id_pfr1; 6778 6779 if (env->gicv3state) { 6780 pfr1 |= 1 << 28; 6781 } 6782 return pfr1; 6783 } 6784 6785 #ifndef CONFIG_USER_ONLY 6786 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6787 { 6788 ARMCPU *cpu = env_archcpu(env); 6789 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6790 6791 if (env->gicv3state) { 6792 pfr0 |= 1 << 24; 6793 } 6794 return pfr0; 6795 } 6796 #endif 6797 6798 /* Shared logic between LORID and the rest of the LOR* registers. 6799 * Secure state exclusion has already been dealt with. 6800 */ 6801 static CPAccessResult access_lor_ns(CPUARMState *env, 6802 const ARMCPRegInfo *ri, bool isread) 6803 { 6804 int el = arm_current_el(env); 6805 6806 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6807 return CP_ACCESS_TRAP_EL2; 6808 } 6809 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6810 return CP_ACCESS_TRAP_EL3; 6811 } 6812 return CP_ACCESS_OK; 6813 } 6814 6815 static CPAccessResult access_lor_other(CPUARMState *env, 6816 const ARMCPRegInfo *ri, bool isread) 6817 { 6818 if (arm_is_secure_below_el3(env)) { 6819 /* Access denied in secure mode. */ 6820 return CP_ACCESS_TRAP; 6821 } 6822 return access_lor_ns(env, ri, isread); 6823 } 6824 6825 /* 6826 * A trivial implementation of ARMv8.1-LOR leaves all of these 6827 * registers fixed at 0, which indicates that there are zero 6828 * supported Limited Ordering regions. 6829 */ 6830 static const ARMCPRegInfo lor_reginfo[] = { 6831 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6833 .access = PL1_RW, .accessfn = access_lor_other, 6834 .type = ARM_CP_CONST, .resetvalue = 0 }, 6835 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6836 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6837 .access = PL1_RW, .accessfn = access_lor_other, 6838 .type = ARM_CP_CONST, .resetvalue = 0 }, 6839 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6840 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6841 .access = PL1_RW, .accessfn = access_lor_other, 6842 .type = ARM_CP_CONST, .resetvalue = 0 }, 6843 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6845 .access = PL1_RW, .accessfn = access_lor_other, 6846 .type = ARM_CP_CONST, .resetvalue = 0 }, 6847 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6849 .access = PL1_R, .accessfn = access_lor_ns, 6850 .type = ARM_CP_CONST, .resetvalue = 0 }, 6851 REGINFO_SENTINEL 6852 }; 6853 6854 #ifdef TARGET_AARCH64 6855 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6856 bool isread) 6857 { 6858 int el = arm_current_el(env); 6859 6860 if (el < 2 && 6861 arm_feature(env, ARM_FEATURE_EL2) && 6862 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6863 return CP_ACCESS_TRAP_EL2; 6864 } 6865 if (el < 3 && 6866 arm_feature(env, ARM_FEATURE_EL3) && 6867 !(env->cp15.scr_el3 & SCR_APK)) { 6868 return CP_ACCESS_TRAP_EL3; 6869 } 6870 return CP_ACCESS_OK; 6871 } 6872 6873 static const ARMCPRegInfo pauth_reginfo[] = { 6874 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6875 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6876 .access = PL1_RW, .accessfn = access_pauth, 6877 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6878 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6879 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6880 .access = PL1_RW, .accessfn = access_pauth, 6881 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6882 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6883 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6884 .access = PL1_RW, .accessfn = access_pauth, 6885 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6886 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6888 .access = PL1_RW, .accessfn = access_pauth, 6889 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6890 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6892 .access = PL1_RW, .accessfn = access_pauth, 6893 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6894 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6896 .access = PL1_RW, .accessfn = access_pauth, 6897 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6898 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6900 .access = PL1_RW, .accessfn = access_pauth, 6901 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6902 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6903 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6904 .access = PL1_RW, .accessfn = access_pauth, 6905 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6906 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6907 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6908 .access = PL1_RW, .accessfn = access_pauth, 6909 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6910 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6911 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6912 .access = PL1_RW, .accessfn = access_pauth, 6913 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6914 REGINFO_SENTINEL 6915 }; 6916 6917 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6918 { 6919 Error *err = NULL; 6920 uint64_t ret; 6921 6922 /* Success sets NZCV = 0000. */ 6923 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6924 6925 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6926 /* 6927 * ??? Failed, for unknown reasons in the crypto subsystem. 6928 * The best we can do is log the reason and return the 6929 * timed-out indication to the guest. There is no reason 6930 * we know to expect this failure to be transitory, so the 6931 * guest may well hang retrying the operation. 6932 */ 6933 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6934 ri->name, error_get_pretty(err)); 6935 error_free(err); 6936 6937 env->ZF = 0; /* NZCF = 0100 */ 6938 return 0; 6939 } 6940 return ret; 6941 } 6942 6943 /* We do not support re-seeding, so the two registers operate the same. */ 6944 static const ARMCPRegInfo rndr_reginfo[] = { 6945 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6946 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6947 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6948 .access = PL0_R, .readfn = rndr_readfn }, 6949 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6950 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6951 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6952 .access = PL0_R, .readfn = rndr_readfn }, 6953 REGINFO_SENTINEL 6954 }; 6955 6956 #ifndef CONFIG_USER_ONLY 6957 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6958 uint64_t value) 6959 { 6960 ARMCPU *cpu = env_archcpu(env); 6961 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6962 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6963 uint64_t vaddr_in = (uint64_t) value; 6964 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6965 void *haddr; 6966 int mem_idx = cpu_mmu_index(env, false); 6967 6968 /* This won't be crossing page boundaries */ 6969 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6970 if (haddr) { 6971 6972 ram_addr_t offset; 6973 MemoryRegion *mr; 6974 6975 /* RCU lock is already being held */ 6976 mr = memory_region_from_host(haddr, &offset); 6977 6978 if (mr) { 6979 memory_region_writeback(mr, offset, dline_size); 6980 } 6981 } 6982 } 6983 6984 static const ARMCPRegInfo dcpop_reg[] = { 6985 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6987 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6988 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6989 REGINFO_SENTINEL 6990 }; 6991 6992 static const ARMCPRegInfo dcpodp_reg[] = { 6993 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6995 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6996 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6997 REGINFO_SENTINEL 6998 }; 6999 #endif /*CONFIG_USER_ONLY*/ 7000 7001 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7002 bool isread) 7003 { 7004 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7005 return CP_ACCESS_TRAP_EL2; 7006 } 7007 7008 return CP_ACCESS_OK; 7009 } 7010 7011 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7012 bool isread) 7013 { 7014 int el = arm_current_el(env); 7015 7016 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7017 uint64_t hcr = arm_hcr_el2_eff(env); 7018 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7019 return CP_ACCESS_TRAP_EL2; 7020 } 7021 } 7022 if (el < 3 && 7023 arm_feature(env, ARM_FEATURE_EL3) && 7024 !(env->cp15.scr_el3 & SCR_ATA)) { 7025 return CP_ACCESS_TRAP_EL3; 7026 } 7027 return CP_ACCESS_OK; 7028 } 7029 7030 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7031 { 7032 return env->pstate & PSTATE_TCO; 7033 } 7034 7035 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7036 { 7037 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7038 } 7039 7040 static const ARMCPRegInfo mte_reginfo[] = { 7041 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7043 .access = PL1_RW, .accessfn = access_mte, 7044 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7045 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7047 .access = PL1_RW, .accessfn = access_mte, 7048 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7049 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7051 .access = PL2_RW, .accessfn = access_mte, 7052 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7053 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7055 .access = PL3_RW, 7056 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7057 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7058 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7059 .access = PL1_RW, .accessfn = access_mte, 7060 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7061 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7063 .access = PL1_RW, .accessfn = access_mte, 7064 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7065 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7067 .access = PL1_R, .accessfn = access_aa64_tid5, 7068 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7069 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7071 .type = ARM_CP_NO_RAW, 7072 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7073 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7075 .type = ARM_CP_NOP, .access = PL1_W, 7076 .accessfn = aa64_cacheop_poc_access }, 7077 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7078 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7079 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7080 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7082 .type = ARM_CP_NOP, .access = PL1_W, 7083 .accessfn = aa64_cacheop_poc_access }, 7084 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7087 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7089 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7090 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7091 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7092 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7093 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7095 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7096 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7098 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7099 REGINFO_SENTINEL 7100 }; 7101 7102 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7103 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7105 .type = ARM_CP_CONST, .access = PL0_RW, }, 7106 REGINFO_SENTINEL 7107 }; 7108 7109 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7110 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7112 .type = ARM_CP_NOP, .access = PL0_W, 7113 .accessfn = aa64_cacheop_poc_access }, 7114 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7116 .type = ARM_CP_NOP, .access = PL0_W, 7117 .accessfn = aa64_cacheop_poc_access }, 7118 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7120 .type = ARM_CP_NOP, .access = PL0_W, 7121 .accessfn = aa64_cacheop_poc_access }, 7122 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7124 .type = ARM_CP_NOP, .access = PL0_W, 7125 .accessfn = aa64_cacheop_poc_access }, 7126 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7128 .type = ARM_CP_NOP, .access = PL0_W, 7129 .accessfn = aa64_cacheop_poc_access }, 7130 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7131 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7132 .type = ARM_CP_NOP, .access = PL0_W, 7133 .accessfn = aa64_cacheop_poc_access }, 7134 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7136 .type = ARM_CP_NOP, .access = PL0_W, 7137 .accessfn = aa64_cacheop_poc_access }, 7138 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7140 .type = ARM_CP_NOP, .access = PL0_W, 7141 .accessfn = aa64_cacheop_poc_access }, 7142 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7144 .access = PL0_W, .type = ARM_CP_DC_GVA, 7145 #ifndef CONFIG_USER_ONLY 7146 /* Avoid overhead of an access check that always passes in user-mode */ 7147 .accessfn = aa64_zva_access, 7148 #endif 7149 }, 7150 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7152 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7153 #ifndef CONFIG_USER_ONLY 7154 /* Avoid overhead of an access check that always passes in user-mode */ 7155 .accessfn = aa64_zva_access, 7156 #endif 7157 }, 7158 REGINFO_SENTINEL 7159 }; 7160 7161 #endif 7162 7163 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7164 bool isread) 7165 { 7166 int el = arm_current_el(env); 7167 7168 if (el == 0) { 7169 uint64_t sctlr = arm_sctlr(env, el); 7170 if (!(sctlr & SCTLR_EnRCTX)) { 7171 return CP_ACCESS_TRAP; 7172 } 7173 } else if (el == 1) { 7174 uint64_t hcr = arm_hcr_el2_eff(env); 7175 if (hcr & HCR_NV) { 7176 return CP_ACCESS_TRAP_EL2; 7177 } 7178 } 7179 return CP_ACCESS_OK; 7180 } 7181 7182 static const ARMCPRegInfo predinv_reginfo[] = { 7183 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7184 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7185 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7186 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7187 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7188 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7189 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7190 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7191 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7192 /* 7193 * Note the AArch32 opcodes have a different OPC1. 7194 */ 7195 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7196 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7197 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7198 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7199 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7200 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7201 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7202 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7203 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7204 REGINFO_SENTINEL 7205 }; 7206 7207 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7208 { 7209 /* Read the high 32 bits of the current CCSIDR */ 7210 return extract64(ccsidr_read(env, ri), 32, 32); 7211 } 7212 7213 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7214 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7215 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7216 .access = PL1_R, 7217 .accessfn = access_aa64_tid2, 7218 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7219 REGINFO_SENTINEL 7220 }; 7221 7222 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7223 bool isread) 7224 { 7225 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7226 return CP_ACCESS_TRAP_EL2; 7227 } 7228 7229 return CP_ACCESS_OK; 7230 } 7231 7232 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7233 bool isread) 7234 { 7235 if (arm_feature(env, ARM_FEATURE_V8)) { 7236 return access_aa64_tid3(env, ri, isread); 7237 } 7238 7239 return CP_ACCESS_OK; 7240 } 7241 7242 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7243 bool isread) 7244 { 7245 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7246 return CP_ACCESS_TRAP_EL2; 7247 } 7248 7249 return CP_ACCESS_OK; 7250 } 7251 7252 static const ARMCPRegInfo jazelle_regs[] = { 7253 { .name = "JIDR", 7254 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7255 .access = PL1_R, .accessfn = access_jazelle, 7256 .type = ARM_CP_CONST, .resetvalue = 0 }, 7257 { .name = "JOSCR", 7258 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7259 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7260 { .name = "JMCR", 7261 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7262 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7263 REGINFO_SENTINEL 7264 }; 7265 7266 static const ARMCPRegInfo vhe_reginfo[] = { 7267 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7269 .access = PL2_RW, 7270 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7271 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7273 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7274 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7275 #ifndef CONFIG_USER_ONLY 7276 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7278 .fieldoffset = 7279 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7280 .type = ARM_CP_IO, .access = PL2_RW, 7281 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7282 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7283 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7284 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7285 .resetfn = gt_hv_timer_reset, 7286 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7287 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7288 .type = ARM_CP_IO, 7289 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7290 .access = PL2_RW, 7291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7292 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7293 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7295 .type = ARM_CP_IO | ARM_CP_ALIAS, 7296 .access = PL2_RW, .accessfn = e2h_access, 7297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7298 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7299 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7301 .type = ARM_CP_IO | ARM_CP_ALIAS, 7302 .access = PL2_RW, .accessfn = e2h_access, 7303 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7304 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7305 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7307 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7308 .access = PL2_RW, .accessfn = e2h_access, 7309 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7310 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7311 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7312 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7313 .access = PL2_RW, .accessfn = e2h_access, 7314 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7315 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7316 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7317 .type = ARM_CP_IO | ARM_CP_ALIAS, 7318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7319 .access = PL2_RW, .accessfn = e2h_access, 7320 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7321 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7322 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7323 .type = ARM_CP_IO | ARM_CP_ALIAS, 7324 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7325 .access = PL2_RW, .accessfn = e2h_access, 7326 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7327 #endif 7328 REGINFO_SENTINEL 7329 }; 7330 7331 #ifndef CONFIG_USER_ONLY 7332 static const ARMCPRegInfo ats1e1_reginfo[] = { 7333 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7335 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7336 .writefn = ats_write64 }, 7337 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7338 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7339 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7340 .writefn = ats_write64 }, 7341 REGINFO_SENTINEL 7342 }; 7343 7344 static const ARMCPRegInfo ats1cp_reginfo[] = { 7345 { .name = "ATS1CPRP", 7346 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7347 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7348 .writefn = ats_write }, 7349 { .name = "ATS1CPWP", 7350 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7351 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7352 .writefn = ats_write }, 7353 REGINFO_SENTINEL 7354 }; 7355 #endif 7356 7357 /* 7358 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7359 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7360 * is non-zero, which is never for ARMv7, optionally in ARMv8 7361 * and mandatorily for ARMv8.2 and up. 7362 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7363 * implementation is RAZ/WI we can ignore this detail, as we 7364 * do for ACTLR. 7365 */ 7366 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7367 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7368 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7369 .access = PL1_RW, .accessfn = access_tacr, 7370 .type = ARM_CP_CONST, .resetvalue = 0 }, 7371 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7372 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7373 .access = PL2_RW, .type = ARM_CP_CONST, 7374 .resetvalue = 0 }, 7375 REGINFO_SENTINEL 7376 }; 7377 7378 void register_cp_regs_for_features(ARMCPU *cpu) 7379 { 7380 /* Register all the coprocessor registers based on feature bits */ 7381 CPUARMState *env = &cpu->env; 7382 if (arm_feature(env, ARM_FEATURE_M)) { 7383 /* M profile has no coprocessor registers */ 7384 return; 7385 } 7386 7387 define_arm_cp_regs(cpu, cp_reginfo); 7388 if (!arm_feature(env, ARM_FEATURE_V8)) { 7389 /* Must go early as it is full of wildcards that may be 7390 * overridden by later definitions. 7391 */ 7392 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7393 } 7394 7395 if (arm_feature(env, ARM_FEATURE_V6)) { 7396 /* The ID registers all have impdef reset values */ 7397 ARMCPRegInfo v6_idregs[] = { 7398 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7400 .access = PL1_R, .type = ARM_CP_CONST, 7401 .accessfn = access_aa32_tid3, 7402 .resetvalue = cpu->isar.id_pfr0 }, 7403 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7404 * the value of the GIC field until after we define these regs. 7405 */ 7406 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7408 .access = PL1_R, .type = ARM_CP_NO_RAW, 7409 .accessfn = access_aa32_tid3, 7410 .readfn = id_pfr1_read, 7411 .writefn = arm_cp_write_ignore }, 7412 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7414 .access = PL1_R, .type = ARM_CP_CONST, 7415 .accessfn = access_aa32_tid3, 7416 .resetvalue = cpu->isar.id_dfr0 }, 7417 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7419 .access = PL1_R, .type = ARM_CP_CONST, 7420 .accessfn = access_aa32_tid3, 7421 .resetvalue = cpu->id_afr0 }, 7422 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7424 .access = PL1_R, .type = ARM_CP_CONST, 7425 .accessfn = access_aa32_tid3, 7426 .resetvalue = cpu->isar.id_mmfr0 }, 7427 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7429 .access = PL1_R, .type = ARM_CP_CONST, 7430 .accessfn = access_aa32_tid3, 7431 .resetvalue = cpu->isar.id_mmfr1 }, 7432 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7434 .access = PL1_R, .type = ARM_CP_CONST, 7435 .accessfn = access_aa32_tid3, 7436 .resetvalue = cpu->isar.id_mmfr2 }, 7437 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7439 .access = PL1_R, .type = ARM_CP_CONST, 7440 .accessfn = access_aa32_tid3, 7441 .resetvalue = cpu->isar.id_mmfr3 }, 7442 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7444 .access = PL1_R, .type = ARM_CP_CONST, 7445 .accessfn = access_aa32_tid3, 7446 .resetvalue = cpu->isar.id_isar0 }, 7447 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7449 .access = PL1_R, .type = ARM_CP_CONST, 7450 .accessfn = access_aa32_tid3, 7451 .resetvalue = cpu->isar.id_isar1 }, 7452 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7454 .access = PL1_R, .type = ARM_CP_CONST, 7455 .accessfn = access_aa32_tid3, 7456 .resetvalue = cpu->isar.id_isar2 }, 7457 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7459 .access = PL1_R, .type = ARM_CP_CONST, 7460 .accessfn = access_aa32_tid3, 7461 .resetvalue = cpu->isar.id_isar3 }, 7462 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7464 .access = PL1_R, .type = ARM_CP_CONST, 7465 .accessfn = access_aa32_tid3, 7466 .resetvalue = cpu->isar.id_isar4 }, 7467 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7469 .access = PL1_R, .type = ARM_CP_CONST, 7470 .accessfn = access_aa32_tid3, 7471 .resetvalue = cpu->isar.id_isar5 }, 7472 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7474 .access = PL1_R, .type = ARM_CP_CONST, 7475 .accessfn = access_aa32_tid3, 7476 .resetvalue = cpu->isar.id_mmfr4 }, 7477 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7479 .access = PL1_R, .type = ARM_CP_CONST, 7480 .accessfn = access_aa32_tid3, 7481 .resetvalue = cpu->isar.id_isar6 }, 7482 REGINFO_SENTINEL 7483 }; 7484 define_arm_cp_regs(cpu, v6_idregs); 7485 define_arm_cp_regs(cpu, v6_cp_reginfo); 7486 } else { 7487 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7488 } 7489 if (arm_feature(env, ARM_FEATURE_V6K)) { 7490 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7491 } 7492 if (arm_feature(env, ARM_FEATURE_V7MP) && 7493 !arm_feature(env, ARM_FEATURE_PMSA)) { 7494 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7495 } 7496 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7497 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7498 } 7499 if (arm_feature(env, ARM_FEATURE_V7)) { 7500 ARMCPRegInfo clidr = { 7501 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7502 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7503 .access = PL1_R, .type = ARM_CP_CONST, 7504 .accessfn = access_aa64_tid2, 7505 .resetvalue = cpu->clidr 7506 }; 7507 define_one_arm_cp_reg(cpu, &clidr); 7508 define_arm_cp_regs(cpu, v7_cp_reginfo); 7509 define_debug_regs(cpu); 7510 define_pmu_regs(cpu); 7511 } else { 7512 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7513 } 7514 if (arm_feature(env, ARM_FEATURE_V8)) { 7515 /* AArch64 ID registers, which all have impdef reset values. 7516 * Note that within the ID register ranges the unused slots 7517 * must all RAZ, not UNDEF; future architecture versions may 7518 * define new registers here. 7519 */ 7520 ARMCPRegInfo v8_idregs[] = { 7521 /* 7522 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7523 * emulation because we don't know the right value for the 7524 * GIC field until after we define these regs. 7525 */ 7526 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7528 .access = PL1_R, 7529 #ifdef CONFIG_USER_ONLY 7530 .type = ARM_CP_CONST, 7531 .resetvalue = cpu->isar.id_aa64pfr0 7532 #else 7533 .type = ARM_CP_NO_RAW, 7534 .accessfn = access_aa64_tid3, 7535 .readfn = id_aa64pfr0_read, 7536 .writefn = arm_cp_write_ignore 7537 #endif 7538 }, 7539 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7541 .access = PL1_R, .type = ARM_CP_CONST, 7542 .accessfn = access_aa64_tid3, 7543 .resetvalue = cpu->isar.id_aa64pfr1}, 7544 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7546 .access = PL1_R, .type = ARM_CP_CONST, 7547 .accessfn = access_aa64_tid3, 7548 .resetvalue = 0 }, 7549 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa64_tid3, 7553 .resetvalue = 0 }, 7554 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa64_tid3, 7558 /* At present, only SVEver == 0 is defined anyway. */ 7559 .resetvalue = 0 }, 7560 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7562 .access = PL1_R, .type = ARM_CP_CONST, 7563 .accessfn = access_aa64_tid3, 7564 .resetvalue = 0 }, 7565 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7567 .access = PL1_R, .type = ARM_CP_CONST, 7568 .accessfn = access_aa64_tid3, 7569 .resetvalue = 0 }, 7570 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7572 .access = PL1_R, .type = ARM_CP_CONST, 7573 .accessfn = access_aa64_tid3, 7574 .resetvalue = 0 }, 7575 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7577 .access = PL1_R, .type = ARM_CP_CONST, 7578 .accessfn = access_aa64_tid3, 7579 .resetvalue = cpu->isar.id_aa64dfr0 }, 7580 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7582 .access = PL1_R, .type = ARM_CP_CONST, 7583 .accessfn = access_aa64_tid3, 7584 .resetvalue = cpu->isar.id_aa64dfr1 }, 7585 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa64_tid3, 7589 .resetvalue = 0 }, 7590 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa64_tid3, 7594 .resetvalue = 0 }, 7595 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7597 .access = PL1_R, .type = ARM_CP_CONST, 7598 .accessfn = access_aa64_tid3, 7599 .resetvalue = cpu->id_aa64afr0 }, 7600 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7602 .access = PL1_R, .type = ARM_CP_CONST, 7603 .accessfn = access_aa64_tid3, 7604 .resetvalue = cpu->id_aa64afr1 }, 7605 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7607 .access = PL1_R, .type = ARM_CP_CONST, 7608 .accessfn = access_aa64_tid3, 7609 .resetvalue = 0 }, 7610 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7612 .access = PL1_R, .type = ARM_CP_CONST, 7613 .accessfn = access_aa64_tid3, 7614 .resetvalue = 0 }, 7615 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7617 .access = PL1_R, .type = ARM_CP_CONST, 7618 .accessfn = access_aa64_tid3, 7619 .resetvalue = cpu->isar.id_aa64isar0 }, 7620 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7622 .access = PL1_R, .type = ARM_CP_CONST, 7623 .accessfn = access_aa64_tid3, 7624 .resetvalue = cpu->isar.id_aa64isar1 }, 7625 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7627 .access = PL1_R, .type = ARM_CP_CONST, 7628 .accessfn = access_aa64_tid3, 7629 .resetvalue = 0 }, 7630 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7632 .access = PL1_R, .type = ARM_CP_CONST, 7633 .accessfn = access_aa64_tid3, 7634 .resetvalue = 0 }, 7635 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7637 .access = PL1_R, .type = ARM_CP_CONST, 7638 .accessfn = access_aa64_tid3, 7639 .resetvalue = 0 }, 7640 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7642 .access = PL1_R, .type = ARM_CP_CONST, 7643 .accessfn = access_aa64_tid3, 7644 .resetvalue = 0 }, 7645 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7647 .access = PL1_R, .type = ARM_CP_CONST, 7648 .accessfn = access_aa64_tid3, 7649 .resetvalue = 0 }, 7650 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa64_tid3, 7654 .resetvalue = 0 }, 7655 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7657 .access = PL1_R, .type = ARM_CP_CONST, 7658 .accessfn = access_aa64_tid3, 7659 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7660 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7662 .access = PL1_R, .type = ARM_CP_CONST, 7663 .accessfn = access_aa64_tid3, 7664 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7665 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7667 .access = PL1_R, .type = ARM_CP_CONST, 7668 .accessfn = access_aa64_tid3, 7669 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7670 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7672 .access = PL1_R, .type = ARM_CP_CONST, 7673 .accessfn = access_aa64_tid3, 7674 .resetvalue = 0 }, 7675 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7677 .access = PL1_R, .type = ARM_CP_CONST, 7678 .accessfn = access_aa64_tid3, 7679 .resetvalue = 0 }, 7680 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7682 .access = PL1_R, .type = ARM_CP_CONST, 7683 .accessfn = access_aa64_tid3, 7684 .resetvalue = 0 }, 7685 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7687 .access = PL1_R, .type = ARM_CP_CONST, 7688 .accessfn = access_aa64_tid3, 7689 .resetvalue = 0 }, 7690 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid3, 7694 .resetvalue = 0 }, 7695 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7697 .access = PL1_R, .type = ARM_CP_CONST, 7698 .accessfn = access_aa64_tid3, 7699 .resetvalue = cpu->isar.mvfr0 }, 7700 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = cpu->isar.mvfr1 }, 7705 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->isar.mvfr2 }, 7710 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = cpu->isar.id_pfr2 }, 7720 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = 0 }, 7725 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = 0 }, 7730 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = 0 }, 7735 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7736 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7738 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7739 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7741 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7742 .resetvalue = cpu->pmceid0 }, 7743 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7744 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7745 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7746 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7747 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7749 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7750 .resetvalue = cpu->pmceid1 }, 7751 REGINFO_SENTINEL 7752 }; 7753 #ifdef CONFIG_USER_ONLY 7754 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7755 { .name = "ID_AA64PFR0_EL1", 7756 .exported_bits = 0x000f000f00ff0000, 7757 .fixed_bits = 0x0000000000000011 }, 7758 { .name = "ID_AA64PFR1_EL1", 7759 .exported_bits = 0x00000000000000f0 }, 7760 { .name = "ID_AA64PFR*_EL1_RESERVED", 7761 .is_glob = true }, 7762 { .name = "ID_AA64ZFR0_EL1" }, 7763 { .name = "ID_AA64MMFR0_EL1", 7764 .fixed_bits = 0x00000000ff000000 }, 7765 { .name = "ID_AA64MMFR1_EL1" }, 7766 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7767 .is_glob = true }, 7768 { .name = "ID_AA64DFR0_EL1", 7769 .fixed_bits = 0x0000000000000006 }, 7770 { .name = "ID_AA64DFR1_EL1" }, 7771 { .name = "ID_AA64DFR*_EL1_RESERVED", 7772 .is_glob = true }, 7773 { .name = "ID_AA64AFR*", 7774 .is_glob = true }, 7775 { .name = "ID_AA64ISAR0_EL1", 7776 .exported_bits = 0x00fffffff0fffff0 }, 7777 { .name = "ID_AA64ISAR1_EL1", 7778 .exported_bits = 0x000000f0ffffffff }, 7779 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7780 .is_glob = true }, 7781 REGUSERINFO_SENTINEL 7782 }; 7783 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7784 #endif 7785 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7786 if (!arm_feature(env, ARM_FEATURE_EL3) && 7787 !arm_feature(env, ARM_FEATURE_EL2)) { 7788 ARMCPRegInfo rvbar = { 7789 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7791 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7792 }; 7793 define_one_arm_cp_reg(cpu, &rvbar); 7794 } 7795 define_arm_cp_regs(cpu, v8_idregs); 7796 define_arm_cp_regs(cpu, v8_cp_reginfo); 7797 } 7798 if (arm_feature(env, ARM_FEATURE_EL2)) { 7799 uint64_t vmpidr_def = mpidr_read_val(env); 7800 ARMCPRegInfo vpidr_regs[] = { 7801 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7802 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7803 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7804 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7805 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7806 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7808 .access = PL2_RW, .resetvalue = cpu->midr, 7809 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7810 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7811 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7812 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7813 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7814 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7815 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7817 .access = PL2_RW, 7818 .resetvalue = vmpidr_def, 7819 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7820 REGINFO_SENTINEL 7821 }; 7822 /* 7823 * The only field of MDCR_EL2 that has a defined architectural reset 7824 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7825 */ 7826 ARMCPRegInfo mdcr_el2 = { 7827 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 7828 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7829 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7830 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7831 }; 7832 define_one_arm_cp_reg(cpu, &mdcr_el2); 7833 define_arm_cp_regs(cpu, vpidr_regs); 7834 define_arm_cp_regs(cpu, el2_cp_reginfo); 7835 if (arm_feature(env, ARM_FEATURE_V8)) { 7836 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7837 } 7838 if (cpu_isar_feature(aa64_sel2, cpu)) { 7839 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7840 } 7841 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7842 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7843 ARMCPRegInfo rvbar = { 7844 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7846 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7847 }; 7848 define_one_arm_cp_reg(cpu, &rvbar); 7849 } 7850 } else { 7851 /* If EL2 is missing but higher ELs are enabled, we need to 7852 * register the no_el2 reginfos. 7853 */ 7854 if (arm_feature(env, ARM_FEATURE_EL3)) { 7855 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7856 * of MIDR_EL1 and MPIDR_EL1. 7857 */ 7858 ARMCPRegInfo vpidr_regs[] = { 7859 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7860 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7861 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7862 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7863 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7864 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7865 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7866 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7867 .type = ARM_CP_NO_RAW, 7868 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7869 REGINFO_SENTINEL 7870 }; 7871 define_arm_cp_regs(cpu, vpidr_regs); 7872 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7873 if (arm_feature(env, ARM_FEATURE_V8)) { 7874 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7875 } 7876 } 7877 } 7878 if (arm_feature(env, ARM_FEATURE_EL3)) { 7879 define_arm_cp_regs(cpu, el3_cp_reginfo); 7880 ARMCPRegInfo el3_regs[] = { 7881 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7883 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7884 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7886 .access = PL3_RW, 7887 .raw_writefn = raw_write, .writefn = sctlr_write, 7888 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7889 .resetvalue = cpu->reset_sctlr }, 7890 REGINFO_SENTINEL 7891 }; 7892 7893 define_arm_cp_regs(cpu, el3_regs); 7894 } 7895 /* The behaviour of NSACR is sufficiently various that we don't 7896 * try to describe it in a single reginfo: 7897 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7898 * reads as constant 0xc00 from NS EL1 and NS EL2 7899 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7900 * if v7 without EL3, register doesn't exist 7901 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7902 */ 7903 if (arm_feature(env, ARM_FEATURE_EL3)) { 7904 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7905 ARMCPRegInfo nsacr = { 7906 .name = "NSACR", .type = ARM_CP_CONST, 7907 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7908 .access = PL1_RW, .accessfn = nsacr_access, 7909 .resetvalue = 0xc00 7910 }; 7911 define_one_arm_cp_reg(cpu, &nsacr); 7912 } else { 7913 ARMCPRegInfo nsacr = { 7914 .name = "NSACR", 7915 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7916 .access = PL3_RW | PL1_R, 7917 .resetvalue = 0, 7918 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7919 }; 7920 define_one_arm_cp_reg(cpu, &nsacr); 7921 } 7922 } else { 7923 if (arm_feature(env, ARM_FEATURE_V8)) { 7924 ARMCPRegInfo nsacr = { 7925 .name = "NSACR", .type = ARM_CP_CONST, 7926 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7927 .access = PL1_R, 7928 .resetvalue = 0xc00 7929 }; 7930 define_one_arm_cp_reg(cpu, &nsacr); 7931 } 7932 } 7933 7934 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7935 if (arm_feature(env, ARM_FEATURE_V6)) { 7936 /* PMSAv6 not implemented */ 7937 assert(arm_feature(env, ARM_FEATURE_V7)); 7938 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7939 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7940 } else { 7941 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7942 } 7943 } else { 7944 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7945 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7946 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7947 if (cpu_isar_feature(aa32_hpd, cpu)) { 7948 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7949 } 7950 } 7951 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7952 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7953 } 7954 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7955 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7956 } 7957 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7958 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7959 } 7960 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7961 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7962 } 7963 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7964 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7965 } 7966 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7967 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7968 } 7969 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7970 define_arm_cp_regs(cpu, omap_cp_reginfo); 7971 } 7972 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7973 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7974 } 7975 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7976 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7977 } 7978 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7979 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7980 } 7981 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7982 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7983 } 7984 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7985 define_arm_cp_regs(cpu, jazelle_regs); 7986 } 7987 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7988 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7989 * be read-only (ie write causes UNDEF exception). 7990 */ 7991 { 7992 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7993 /* Pre-v8 MIDR space. 7994 * Note that the MIDR isn't a simple constant register because 7995 * of the TI925 behaviour where writes to another register can 7996 * cause the MIDR value to change. 7997 * 7998 * Unimplemented registers in the c15 0 0 0 space default to 7999 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8000 * and friends override accordingly. 8001 */ 8002 { .name = "MIDR", 8003 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8004 .access = PL1_R, .resetvalue = cpu->midr, 8005 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8006 .readfn = midr_read, 8007 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8008 .type = ARM_CP_OVERRIDE }, 8009 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8010 { .name = "DUMMY", 8011 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8012 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8013 { .name = "DUMMY", 8014 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8015 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8016 { .name = "DUMMY", 8017 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8018 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8019 { .name = "DUMMY", 8020 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8021 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8022 { .name = "DUMMY", 8023 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8024 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8025 REGINFO_SENTINEL 8026 }; 8027 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8028 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8030 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8031 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8032 .readfn = midr_read }, 8033 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8034 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8035 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8036 .access = PL1_R, .resetvalue = cpu->midr }, 8037 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8038 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8039 .access = PL1_R, .resetvalue = cpu->midr }, 8040 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8042 .access = PL1_R, 8043 .accessfn = access_aa64_tid1, 8044 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8045 REGINFO_SENTINEL 8046 }; 8047 ARMCPRegInfo id_cp_reginfo[] = { 8048 /* These are common to v8 and pre-v8 */ 8049 { .name = "CTR", 8050 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8051 .access = PL1_R, .accessfn = ctr_el0_access, 8052 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8053 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8054 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8055 .access = PL0_R, .accessfn = ctr_el0_access, 8056 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8057 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8058 { .name = "TCMTR", 8059 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8060 .access = PL1_R, 8061 .accessfn = access_aa32_tid1, 8062 .type = ARM_CP_CONST, .resetvalue = 0 }, 8063 REGINFO_SENTINEL 8064 }; 8065 /* TLBTR is specific to VMSA */ 8066 ARMCPRegInfo id_tlbtr_reginfo = { 8067 .name = "TLBTR", 8068 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8069 .access = PL1_R, 8070 .accessfn = access_aa32_tid1, 8071 .type = ARM_CP_CONST, .resetvalue = 0, 8072 }; 8073 /* MPUIR is specific to PMSA V6+ */ 8074 ARMCPRegInfo id_mpuir_reginfo = { 8075 .name = "MPUIR", 8076 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8077 .access = PL1_R, .type = ARM_CP_CONST, 8078 .resetvalue = cpu->pmsav7_dregion << 8 8079 }; 8080 ARMCPRegInfo crn0_wi_reginfo = { 8081 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8082 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8083 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8084 }; 8085 #ifdef CONFIG_USER_ONLY 8086 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8087 { .name = "MIDR_EL1", 8088 .exported_bits = 0x00000000ffffffff }, 8089 { .name = "REVIDR_EL1" }, 8090 REGUSERINFO_SENTINEL 8091 }; 8092 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8093 #endif 8094 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8095 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8096 ARMCPRegInfo *r; 8097 /* Register the blanket "writes ignored" value first to cover the 8098 * whole space. Then update the specific ID registers to allow write 8099 * access, so that they ignore writes rather than causing them to 8100 * UNDEF. 8101 */ 8102 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8103 for (r = id_pre_v8_midr_cp_reginfo; 8104 r->type != ARM_CP_SENTINEL; r++) { 8105 r->access = PL1_RW; 8106 } 8107 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8108 r->access = PL1_RW; 8109 } 8110 id_mpuir_reginfo.access = PL1_RW; 8111 id_tlbtr_reginfo.access = PL1_RW; 8112 } 8113 if (arm_feature(env, ARM_FEATURE_V8)) { 8114 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8115 } else { 8116 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8117 } 8118 define_arm_cp_regs(cpu, id_cp_reginfo); 8119 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8120 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8121 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8122 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8123 } 8124 } 8125 8126 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8127 ARMCPRegInfo mpidr_cp_reginfo[] = { 8128 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8129 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8130 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8131 REGINFO_SENTINEL 8132 }; 8133 #ifdef CONFIG_USER_ONLY 8134 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8135 { .name = "MPIDR_EL1", 8136 .fixed_bits = 0x0000000080000000 }, 8137 REGUSERINFO_SENTINEL 8138 }; 8139 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8140 #endif 8141 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8142 } 8143 8144 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8145 ARMCPRegInfo auxcr_reginfo[] = { 8146 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8147 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8148 .access = PL1_RW, .accessfn = access_tacr, 8149 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8150 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8152 .access = PL2_RW, .type = ARM_CP_CONST, 8153 .resetvalue = 0 }, 8154 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8155 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8156 .access = PL3_RW, .type = ARM_CP_CONST, 8157 .resetvalue = 0 }, 8158 REGINFO_SENTINEL 8159 }; 8160 define_arm_cp_regs(cpu, auxcr_reginfo); 8161 if (cpu_isar_feature(aa32_ac2, cpu)) { 8162 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8163 } 8164 } 8165 8166 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8167 /* 8168 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8169 * There are two flavours: 8170 * (1) older 32-bit only cores have a simple 32-bit CBAR 8171 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8172 * 32-bit register visible to AArch32 at a different encoding 8173 * to the "flavour 1" register and with the bits rearranged to 8174 * be able to squash a 64-bit address into the 32-bit view. 8175 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8176 * in future if we support AArch32-only configs of some of the 8177 * AArch64 cores we might need to add a specific feature flag 8178 * to indicate cores with "flavour 2" CBAR. 8179 */ 8180 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8181 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8182 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8183 | extract64(cpu->reset_cbar, 32, 12); 8184 ARMCPRegInfo cbar_reginfo[] = { 8185 { .name = "CBAR", 8186 .type = ARM_CP_CONST, 8187 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8188 .access = PL1_R, .resetvalue = cbar32 }, 8189 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8190 .type = ARM_CP_CONST, 8191 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8192 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8193 REGINFO_SENTINEL 8194 }; 8195 /* We don't implement a r/w 64 bit CBAR currently */ 8196 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8197 define_arm_cp_regs(cpu, cbar_reginfo); 8198 } else { 8199 ARMCPRegInfo cbar = { 8200 .name = "CBAR", 8201 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8202 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8203 .fieldoffset = offsetof(CPUARMState, 8204 cp15.c15_config_base_address) 8205 }; 8206 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8207 cbar.access = PL1_R; 8208 cbar.fieldoffset = 0; 8209 cbar.type = ARM_CP_CONST; 8210 } 8211 define_one_arm_cp_reg(cpu, &cbar); 8212 } 8213 } 8214 8215 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8216 ARMCPRegInfo vbar_cp_reginfo[] = { 8217 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8218 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8219 .access = PL1_RW, .writefn = vbar_write, 8220 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8221 offsetof(CPUARMState, cp15.vbar_ns) }, 8222 .resetvalue = 0 }, 8223 REGINFO_SENTINEL 8224 }; 8225 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8226 } 8227 8228 /* Generic registers whose values depend on the implementation */ 8229 { 8230 ARMCPRegInfo sctlr = { 8231 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8232 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8233 .access = PL1_RW, .accessfn = access_tvm_trvm, 8234 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8235 offsetof(CPUARMState, cp15.sctlr_ns) }, 8236 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8237 .raw_writefn = raw_write, 8238 }; 8239 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8240 /* Normally we would always end the TB on an SCTLR write, but Linux 8241 * arch/arm/mach-pxa/sleep.S expects two instructions following 8242 * an MMU enable to execute from cache. Imitate this behaviour. 8243 */ 8244 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8245 } 8246 define_one_arm_cp_reg(cpu, &sctlr); 8247 } 8248 8249 if (cpu_isar_feature(aa64_lor, cpu)) { 8250 define_arm_cp_regs(cpu, lor_reginfo); 8251 } 8252 if (cpu_isar_feature(aa64_pan, cpu)) { 8253 define_one_arm_cp_reg(cpu, &pan_reginfo); 8254 } 8255 #ifndef CONFIG_USER_ONLY 8256 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8257 define_arm_cp_regs(cpu, ats1e1_reginfo); 8258 } 8259 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8260 define_arm_cp_regs(cpu, ats1cp_reginfo); 8261 } 8262 #endif 8263 if (cpu_isar_feature(aa64_uao, cpu)) { 8264 define_one_arm_cp_reg(cpu, &uao_reginfo); 8265 } 8266 8267 if (cpu_isar_feature(aa64_dit, cpu)) { 8268 define_one_arm_cp_reg(cpu, &dit_reginfo); 8269 } 8270 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8271 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8272 } 8273 8274 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8275 define_arm_cp_regs(cpu, vhe_reginfo); 8276 } 8277 8278 if (cpu_isar_feature(aa64_sve, cpu)) { 8279 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8280 if (arm_feature(env, ARM_FEATURE_EL2)) { 8281 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8282 } else { 8283 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8284 } 8285 if (arm_feature(env, ARM_FEATURE_EL3)) { 8286 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8287 } 8288 } 8289 8290 #ifdef TARGET_AARCH64 8291 if (cpu_isar_feature(aa64_pauth, cpu)) { 8292 define_arm_cp_regs(cpu, pauth_reginfo); 8293 } 8294 if (cpu_isar_feature(aa64_rndr, cpu)) { 8295 define_arm_cp_regs(cpu, rndr_reginfo); 8296 } 8297 #ifndef CONFIG_USER_ONLY 8298 /* Data Cache clean instructions up to PoP */ 8299 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8300 define_one_arm_cp_reg(cpu, dcpop_reg); 8301 8302 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8303 define_one_arm_cp_reg(cpu, dcpodp_reg); 8304 } 8305 } 8306 #endif /*CONFIG_USER_ONLY*/ 8307 8308 /* 8309 * If full MTE is enabled, add all of the system registers. 8310 * If only "instructions available at EL0" are enabled, 8311 * then define only a RAZ/WI version of PSTATE.TCO. 8312 */ 8313 if (cpu_isar_feature(aa64_mte, cpu)) { 8314 define_arm_cp_regs(cpu, mte_reginfo); 8315 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8316 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8317 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8318 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8319 } 8320 #endif 8321 8322 if (cpu_isar_feature(any_predinv, cpu)) { 8323 define_arm_cp_regs(cpu, predinv_reginfo); 8324 } 8325 8326 if (cpu_isar_feature(any_ccidx, cpu)) { 8327 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8328 } 8329 8330 #ifndef CONFIG_USER_ONLY 8331 /* 8332 * Register redirections and aliases must be done last, 8333 * after the registers from the other extensions have been defined. 8334 */ 8335 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8336 define_arm_vh_e2h_redirects_aliases(cpu); 8337 } 8338 #endif 8339 } 8340 8341 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8342 { 8343 CPUState *cs = CPU(cpu); 8344 CPUARMState *env = &cpu->env; 8345 8346 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8347 /* 8348 * The lower part of each SVE register aliases to the FPU 8349 * registers so we don't need to include both. 8350 */ 8351 #ifdef TARGET_AARCH64 8352 if (isar_feature_aa64_sve(&cpu->isar)) { 8353 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8354 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8355 "sve-registers.xml", 0); 8356 } else 8357 #endif 8358 { 8359 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8360 aarch64_fpu_gdb_set_reg, 8361 34, "aarch64-fpu.xml", 0); 8362 } 8363 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8364 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8365 51, "arm-neon.xml", 0); 8366 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8367 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8368 35, "arm-vfp3.xml", 0); 8369 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8370 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8371 19, "arm-vfp.xml", 0); 8372 } 8373 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8374 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8375 "system-registers.xml", 0); 8376 8377 } 8378 8379 /* Sort alphabetically by type name, except for "any". */ 8380 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8381 { 8382 ObjectClass *class_a = (ObjectClass *)a; 8383 ObjectClass *class_b = (ObjectClass *)b; 8384 const char *name_a, *name_b; 8385 8386 name_a = object_class_get_name(class_a); 8387 name_b = object_class_get_name(class_b); 8388 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8389 return 1; 8390 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8391 return -1; 8392 } else { 8393 return strcmp(name_a, name_b); 8394 } 8395 } 8396 8397 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8398 { 8399 ObjectClass *oc = data; 8400 const char *typename; 8401 char *name; 8402 8403 typename = object_class_get_name(oc); 8404 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8405 qemu_printf(" %s\n", name); 8406 g_free(name); 8407 } 8408 8409 void arm_cpu_list(void) 8410 { 8411 GSList *list; 8412 8413 list = object_class_get_list(TYPE_ARM_CPU, false); 8414 list = g_slist_sort(list, arm_cpu_list_compare); 8415 qemu_printf("Available CPUs:\n"); 8416 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8417 g_slist_free(list); 8418 } 8419 8420 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8421 { 8422 ObjectClass *oc = data; 8423 CpuDefinitionInfoList **cpu_list = user_data; 8424 CpuDefinitionInfo *info; 8425 const char *typename; 8426 8427 typename = object_class_get_name(oc); 8428 info = g_malloc0(sizeof(*info)); 8429 info->name = g_strndup(typename, 8430 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8431 info->q_typename = g_strdup(typename); 8432 8433 QAPI_LIST_PREPEND(*cpu_list, info); 8434 } 8435 8436 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8437 { 8438 CpuDefinitionInfoList *cpu_list = NULL; 8439 GSList *list; 8440 8441 list = object_class_get_list(TYPE_ARM_CPU, false); 8442 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8443 g_slist_free(list); 8444 8445 return cpu_list; 8446 } 8447 8448 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8449 void *opaque, int state, int secstate, 8450 int crm, int opc1, int opc2, 8451 const char *name) 8452 { 8453 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8454 * add a single reginfo struct to the hash table. 8455 */ 8456 uint32_t *key = g_new(uint32_t, 1); 8457 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8458 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8459 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8460 8461 r2->name = g_strdup(name); 8462 /* Reset the secure state to the specific incoming state. This is 8463 * necessary as the register may have been defined with both states. 8464 */ 8465 r2->secure = secstate; 8466 8467 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8468 /* Register is banked (using both entries in array). 8469 * Overwriting fieldoffset as the array is only used to define 8470 * banked registers but later only fieldoffset is used. 8471 */ 8472 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8473 } 8474 8475 if (state == ARM_CP_STATE_AA32) { 8476 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8477 /* If the register is banked then we don't need to migrate or 8478 * reset the 32-bit instance in certain cases: 8479 * 8480 * 1) If the register has both 32-bit and 64-bit instances then we 8481 * can count on the 64-bit instance taking care of the 8482 * non-secure bank. 8483 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8484 * taking care of the secure bank. This requires that separate 8485 * 32 and 64-bit definitions are provided. 8486 */ 8487 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8488 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8489 r2->type |= ARM_CP_ALIAS; 8490 } 8491 } else if ((secstate != r->secure) && !ns) { 8492 /* The register is not banked so we only want to allow migration of 8493 * the non-secure instance. 8494 */ 8495 r2->type |= ARM_CP_ALIAS; 8496 } 8497 8498 if (r->state == ARM_CP_STATE_BOTH) { 8499 /* We assume it is a cp15 register if the .cp field is left unset. 8500 */ 8501 if (r2->cp == 0) { 8502 r2->cp = 15; 8503 } 8504 8505 #ifdef HOST_WORDS_BIGENDIAN 8506 if (r2->fieldoffset) { 8507 r2->fieldoffset += sizeof(uint32_t); 8508 } 8509 #endif 8510 } 8511 } 8512 if (state == ARM_CP_STATE_AA64) { 8513 /* To allow abbreviation of ARMCPRegInfo 8514 * definitions, we treat cp == 0 as equivalent to 8515 * the value for "standard guest-visible sysreg". 8516 * STATE_BOTH definitions are also always "standard 8517 * sysreg" in their AArch64 view (the .cp value may 8518 * be non-zero for the benefit of the AArch32 view). 8519 */ 8520 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8521 r2->cp = CP_REG_ARM64_SYSREG_CP; 8522 } 8523 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8524 r2->opc0, opc1, opc2); 8525 } else { 8526 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8527 } 8528 if (opaque) { 8529 r2->opaque = opaque; 8530 } 8531 /* reginfo passed to helpers is correct for the actual access, 8532 * and is never ARM_CP_STATE_BOTH: 8533 */ 8534 r2->state = state; 8535 /* Make sure reginfo passed to helpers for wildcarded regs 8536 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8537 */ 8538 r2->crm = crm; 8539 r2->opc1 = opc1; 8540 r2->opc2 = opc2; 8541 /* By convention, for wildcarded registers only the first 8542 * entry is used for migration; the others are marked as 8543 * ALIAS so we don't try to transfer the register 8544 * multiple times. Special registers (ie NOP/WFI) are 8545 * never migratable and not even raw-accessible. 8546 */ 8547 if ((r->type & ARM_CP_SPECIAL)) { 8548 r2->type |= ARM_CP_NO_RAW; 8549 } 8550 if (((r->crm == CP_ANY) && crm != 0) || 8551 ((r->opc1 == CP_ANY) && opc1 != 0) || 8552 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8553 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8554 } 8555 8556 /* Check that raw accesses are either forbidden or handled. Note that 8557 * we can't assert this earlier because the setup of fieldoffset for 8558 * banked registers has to be done first. 8559 */ 8560 if (!(r2->type & ARM_CP_NO_RAW)) { 8561 assert(!raw_accessors_invalid(r2)); 8562 } 8563 8564 /* Overriding of an existing definition must be explicitly 8565 * requested. 8566 */ 8567 if (!(r->type & ARM_CP_OVERRIDE)) { 8568 ARMCPRegInfo *oldreg; 8569 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8570 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8571 fprintf(stderr, "Register redefined: cp=%d %d bit " 8572 "crn=%d crm=%d opc1=%d opc2=%d, " 8573 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8574 r2->crn, r2->crm, r2->opc1, r2->opc2, 8575 oldreg->name, r2->name); 8576 g_assert_not_reached(); 8577 } 8578 } 8579 g_hash_table_insert(cpu->cp_regs, key, r2); 8580 } 8581 8582 8583 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8584 const ARMCPRegInfo *r, void *opaque) 8585 { 8586 /* Define implementations of coprocessor registers. 8587 * We store these in a hashtable because typically 8588 * there are less than 150 registers in a space which 8589 * is 16*16*16*8*8 = 262144 in size. 8590 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8591 * If a register is defined twice then the second definition is 8592 * used, so this can be used to define some generic registers and 8593 * then override them with implementation specific variations. 8594 * At least one of the original and the second definition should 8595 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8596 * against accidental use. 8597 * 8598 * The state field defines whether the register is to be 8599 * visible in the AArch32 or AArch64 execution state. If the 8600 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8601 * reginfo structure for the AArch32 view, which sees the lower 8602 * 32 bits of the 64 bit register. 8603 * 8604 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8605 * be wildcarded. AArch64 registers are always considered to be 64 8606 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8607 * the register, if any. 8608 */ 8609 int crm, opc1, opc2, state; 8610 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8611 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8612 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8613 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8614 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8615 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8616 /* 64 bit registers have only CRm and Opc1 fields */ 8617 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8618 /* op0 only exists in the AArch64 encodings */ 8619 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8620 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8621 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8622 /* 8623 * This API is only for Arm's system coprocessors (14 and 15) or 8624 * (M-profile or v7A-and-earlier only) for implementation defined 8625 * coprocessors in the range 0..7. Our decode assumes this, since 8626 * 8..13 can be used for other insns including VFP and Neon. See 8627 * valid_cp() in translate.c. Assert here that we haven't tried 8628 * to use an invalid coprocessor number. 8629 */ 8630 switch (r->state) { 8631 case ARM_CP_STATE_BOTH: 8632 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8633 if (r->cp == 0) { 8634 break; 8635 } 8636 /* fall through */ 8637 case ARM_CP_STATE_AA32: 8638 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8639 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8640 assert(r->cp >= 14 && r->cp <= 15); 8641 } else { 8642 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8643 } 8644 break; 8645 case ARM_CP_STATE_AA64: 8646 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8647 break; 8648 default: 8649 g_assert_not_reached(); 8650 } 8651 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8652 * encodes a minimum access level for the register. We roll this 8653 * runtime check into our general permission check code, so check 8654 * here that the reginfo's specified permissions are strict enough 8655 * to encompass the generic architectural permission check. 8656 */ 8657 if (r->state != ARM_CP_STATE_AA32) { 8658 int mask = 0; 8659 switch (r->opc1) { 8660 case 0: 8661 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8662 mask = PL0U_R | PL1_RW; 8663 break; 8664 case 1: case 2: 8665 /* min_EL EL1 */ 8666 mask = PL1_RW; 8667 break; 8668 case 3: 8669 /* min_EL EL0 */ 8670 mask = PL0_RW; 8671 break; 8672 case 4: 8673 case 5: 8674 /* min_EL EL2 */ 8675 mask = PL2_RW; 8676 break; 8677 case 6: 8678 /* min_EL EL3 */ 8679 mask = PL3_RW; 8680 break; 8681 case 7: 8682 /* min_EL EL1, secure mode only (we don't check the latter) */ 8683 mask = PL1_RW; 8684 break; 8685 default: 8686 /* broken reginfo with out-of-range opc1 */ 8687 assert(false); 8688 break; 8689 } 8690 /* assert our permissions are not too lax (stricter is fine) */ 8691 assert((r->access & ~mask) == 0); 8692 } 8693 8694 /* Check that the register definition has enough info to handle 8695 * reads and writes if they are permitted. 8696 */ 8697 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8698 if (r->access & PL3_R) { 8699 assert((r->fieldoffset || 8700 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8701 r->readfn); 8702 } 8703 if (r->access & PL3_W) { 8704 assert((r->fieldoffset || 8705 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8706 r->writefn); 8707 } 8708 } 8709 /* Bad type field probably means missing sentinel at end of reg list */ 8710 assert(cptype_valid(r->type)); 8711 for (crm = crmmin; crm <= crmmax; crm++) { 8712 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8713 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8714 for (state = ARM_CP_STATE_AA32; 8715 state <= ARM_CP_STATE_AA64; state++) { 8716 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8717 continue; 8718 } 8719 if (state == ARM_CP_STATE_AA32) { 8720 /* Under AArch32 CP registers can be common 8721 * (same for secure and non-secure world) or banked. 8722 */ 8723 char *name; 8724 8725 switch (r->secure) { 8726 case ARM_CP_SECSTATE_S: 8727 case ARM_CP_SECSTATE_NS: 8728 add_cpreg_to_hashtable(cpu, r, opaque, state, 8729 r->secure, crm, opc1, opc2, 8730 r->name); 8731 break; 8732 default: 8733 name = g_strdup_printf("%s_S", r->name); 8734 add_cpreg_to_hashtable(cpu, r, opaque, state, 8735 ARM_CP_SECSTATE_S, 8736 crm, opc1, opc2, name); 8737 g_free(name); 8738 add_cpreg_to_hashtable(cpu, r, opaque, state, 8739 ARM_CP_SECSTATE_NS, 8740 crm, opc1, opc2, r->name); 8741 break; 8742 } 8743 } else { 8744 /* AArch64 registers get mapped to non-secure instance 8745 * of AArch32 */ 8746 add_cpreg_to_hashtable(cpu, r, opaque, state, 8747 ARM_CP_SECSTATE_NS, 8748 crm, opc1, opc2, r->name); 8749 } 8750 } 8751 } 8752 } 8753 } 8754 } 8755 8756 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8757 const ARMCPRegInfo *regs, void *opaque) 8758 { 8759 /* Define a whole list of registers */ 8760 const ARMCPRegInfo *r; 8761 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8762 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8763 } 8764 } 8765 8766 /* 8767 * Modify ARMCPRegInfo for access from userspace. 8768 * 8769 * This is a data driven modification directed by 8770 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8771 * user-space cannot alter any values and dynamic values pertaining to 8772 * execution state are hidden from user space view anyway. 8773 */ 8774 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8775 { 8776 const ARMCPRegUserSpaceInfo *m; 8777 ARMCPRegInfo *r; 8778 8779 for (m = mods; m->name; m++) { 8780 GPatternSpec *pat = NULL; 8781 if (m->is_glob) { 8782 pat = g_pattern_spec_new(m->name); 8783 } 8784 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8785 if (pat && g_pattern_match_string(pat, r->name)) { 8786 r->type = ARM_CP_CONST; 8787 r->access = PL0U_R; 8788 r->resetvalue = 0; 8789 /* continue */ 8790 } else if (strcmp(r->name, m->name) == 0) { 8791 r->type = ARM_CP_CONST; 8792 r->access = PL0U_R; 8793 r->resetvalue &= m->exported_bits; 8794 r->resetvalue |= m->fixed_bits; 8795 break; 8796 } 8797 } 8798 if (pat) { 8799 g_pattern_spec_free(pat); 8800 } 8801 } 8802 } 8803 8804 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8805 { 8806 return g_hash_table_lookup(cpregs, &encoded_cp); 8807 } 8808 8809 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8810 uint64_t value) 8811 { 8812 /* Helper coprocessor write function for write-ignore registers */ 8813 } 8814 8815 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8816 { 8817 /* Helper coprocessor write function for read-as-zero registers */ 8818 return 0; 8819 } 8820 8821 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8822 { 8823 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8824 } 8825 8826 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8827 { 8828 /* Return true if it is not valid for us to switch to 8829 * this CPU mode (ie all the UNPREDICTABLE cases in 8830 * the ARM ARM CPSRWriteByInstr pseudocode). 8831 */ 8832 8833 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8834 if (write_type == CPSRWriteByInstr && 8835 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8836 mode == ARM_CPU_MODE_HYP)) { 8837 return 1; 8838 } 8839 8840 switch (mode) { 8841 case ARM_CPU_MODE_USR: 8842 return 0; 8843 case ARM_CPU_MODE_SYS: 8844 case ARM_CPU_MODE_SVC: 8845 case ARM_CPU_MODE_ABT: 8846 case ARM_CPU_MODE_UND: 8847 case ARM_CPU_MODE_IRQ: 8848 case ARM_CPU_MODE_FIQ: 8849 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8850 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8851 */ 8852 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8853 * and CPS are treated as illegal mode changes. 8854 */ 8855 if (write_type == CPSRWriteByInstr && 8856 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8857 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8858 return 1; 8859 } 8860 return 0; 8861 case ARM_CPU_MODE_HYP: 8862 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8863 case ARM_CPU_MODE_MON: 8864 return arm_current_el(env) < 3; 8865 default: 8866 return 1; 8867 } 8868 } 8869 8870 uint32_t cpsr_read(CPUARMState *env) 8871 { 8872 int ZF; 8873 ZF = (env->ZF == 0); 8874 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8875 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8876 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8877 | ((env->condexec_bits & 0xfc) << 8) 8878 | (env->GE << 16) | (env->daif & CPSR_AIF); 8879 } 8880 8881 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8882 CPSRWriteType write_type) 8883 { 8884 uint32_t changed_daif; 8885 8886 if (mask & CPSR_NZCV) { 8887 env->ZF = (~val) & CPSR_Z; 8888 env->NF = val; 8889 env->CF = (val >> 29) & 1; 8890 env->VF = (val << 3) & 0x80000000; 8891 } 8892 if (mask & CPSR_Q) 8893 env->QF = ((val & CPSR_Q) != 0); 8894 if (mask & CPSR_T) 8895 env->thumb = ((val & CPSR_T) != 0); 8896 if (mask & CPSR_IT_0_1) { 8897 env->condexec_bits &= ~3; 8898 env->condexec_bits |= (val >> 25) & 3; 8899 } 8900 if (mask & CPSR_IT_2_7) { 8901 env->condexec_bits &= 3; 8902 env->condexec_bits |= (val >> 8) & 0xfc; 8903 } 8904 if (mask & CPSR_GE) { 8905 env->GE = (val >> 16) & 0xf; 8906 } 8907 8908 /* In a V7 implementation that includes the security extensions but does 8909 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8910 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8911 * bits respectively. 8912 * 8913 * In a V8 implementation, it is permitted for privileged software to 8914 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8915 */ 8916 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8917 arm_feature(env, ARM_FEATURE_EL3) && 8918 !arm_feature(env, ARM_FEATURE_EL2) && 8919 !arm_is_secure(env)) { 8920 8921 changed_daif = (env->daif ^ val) & mask; 8922 8923 if (changed_daif & CPSR_A) { 8924 /* Check to see if we are allowed to change the masking of async 8925 * abort exceptions from a non-secure state. 8926 */ 8927 if (!(env->cp15.scr_el3 & SCR_AW)) { 8928 qemu_log_mask(LOG_GUEST_ERROR, 8929 "Ignoring attempt to switch CPSR_A flag from " 8930 "non-secure world with SCR.AW bit clear\n"); 8931 mask &= ~CPSR_A; 8932 } 8933 } 8934 8935 if (changed_daif & CPSR_F) { 8936 /* Check to see if we are allowed to change the masking of FIQ 8937 * exceptions from a non-secure state. 8938 */ 8939 if (!(env->cp15.scr_el3 & SCR_FW)) { 8940 qemu_log_mask(LOG_GUEST_ERROR, 8941 "Ignoring attempt to switch CPSR_F flag from " 8942 "non-secure world with SCR.FW bit clear\n"); 8943 mask &= ~CPSR_F; 8944 } 8945 8946 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8947 * If this bit is set software is not allowed to mask 8948 * FIQs, but is allowed to set CPSR_F to 0. 8949 */ 8950 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8951 (val & CPSR_F)) { 8952 qemu_log_mask(LOG_GUEST_ERROR, 8953 "Ignoring attempt to enable CPSR_F flag " 8954 "(non-maskable FIQ [NMFI] support enabled)\n"); 8955 mask &= ~CPSR_F; 8956 } 8957 } 8958 } 8959 8960 env->daif &= ~(CPSR_AIF & mask); 8961 env->daif |= val & CPSR_AIF & mask; 8962 8963 if (write_type != CPSRWriteRaw && 8964 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8965 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8966 /* Note that we can only get here in USR mode if this is a 8967 * gdb stub write; for this case we follow the architectural 8968 * behaviour for guest writes in USR mode of ignoring an attempt 8969 * to switch mode. (Those are caught by translate.c for writes 8970 * triggered by guest instructions.) 8971 */ 8972 mask &= ~CPSR_M; 8973 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8974 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8975 * v7, and has defined behaviour in v8: 8976 * + leave CPSR.M untouched 8977 * + allow changes to the other CPSR fields 8978 * + set PSTATE.IL 8979 * For user changes via the GDB stub, we don't set PSTATE.IL, 8980 * as this would be unnecessarily harsh for a user error. 8981 */ 8982 mask &= ~CPSR_M; 8983 if (write_type != CPSRWriteByGDBStub && 8984 arm_feature(env, ARM_FEATURE_V8)) { 8985 mask |= CPSR_IL; 8986 val |= CPSR_IL; 8987 } 8988 qemu_log_mask(LOG_GUEST_ERROR, 8989 "Illegal AArch32 mode switch attempt from %s to %s\n", 8990 aarch32_mode_name(env->uncached_cpsr), 8991 aarch32_mode_name(val)); 8992 } else { 8993 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8994 write_type == CPSRWriteExceptionReturn ? 8995 "Exception return from AArch32" : 8996 "AArch32 mode switch from", 8997 aarch32_mode_name(env->uncached_cpsr), 8998 aarch32_mode_name(val), env->regs[15]); 8999 switch_mode(env, val & CPSR_M); 9000 } 9001 } 9002 mask &= ~CACHED_CPSR_BITS; 9003 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9004 } 9005 9006 /* Sign/zero extend */ 9007 uint32_t HELPER(sxtb16)(uint32_t x) 9008 { 9009 uint32_t res; 9010 res = (uint16_t)(int8_t)x; 9011 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9012 return res; 9013 } 9014 9015 uint32_t HELPER(uxtb16)(uint32_t x) 9016 { 9017 uint32_t res; 9018 res = (uint16_t)(uint8_t)x; 9019 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9020 return res; 9021 } 9022 9023 int32_t HELPER(sdiv)(int32_t num, int32_t den) 9024 { 9025 if (den == 0) 9026 return 0; 9027 if (num == INT_MIN && den == -1) 9028 return INT_MIN; 9029 return num / den; 9030 } 9031 9032 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9033 { 9034 if (den == 0) 9035 return 0; 9036 return num / den; 9037 } 9038 9039 uint32_t HELPER(rbit)(uint32_t x) 9040 { 9041 return revbit32(x); 9042 } 9043 9044 #ifdef CONFIG_USER_ONLY 9045 9046 static void switch_mode(CPUARMState *env, int mode) 9047 { 9048 ARMCPU *cpu = env_archcpu(env); 9049 9050 if (mode != ARM_CPU_MODE_USR) { 9051 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9052 } 9053 } 9054 9055 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9056 uint32_t cur_el, bool secure) 9057 { 9058 return 1; 9059 } 9060 9061 void aarch64_sync_64_to_32(CPUARMState *env) 9062 { 9063 g_assert_not_reached(); 9064 } 9065 9066 #else 9067 9068 static void switch_mode(CPUARMState *env, int mode) 9069 { 9070 int old_mode; 9071 int i; 9072 9073 old_mode = env->uncached_cpsr & CPSR_M; 9074 if (mode == old_mode) 9075 return; 9076 9077 if (old_mode == ARM_CPU_MODE_FIQ) { 9078 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9079 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9080 } else if (mode == ARM_CPU_MODE_FIQ) { 9081 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9082 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9083 } 9084 9085 i = bank_number(old_mode); 9086 env->banked_r13[i] = env->regs[13]; 9087 env->banked_spsr[i] = env->spsr; 9088 9089 i = bank_number(mode); 9090 env->regs[13] = env->banked_r13[i]; 9091 env->spsr = env->banked_spsr[i]; 9092 9093 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9094 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9095 } 9096 9097 /* Physical Interrupt Target EL Lookup Table 9098 * 9099 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9100 * 9101 * The below multi-dimensional table is used for looking up the target 9102 * exception level given numerous condition criteria. Specifically, the 9103 * target EL is based on SCR and HCR routing controls as well as the 9104 * currently executing EL and secure state. 9105 * 9106 * Dimensions: 9107 * target_el_table[2][2][2][2][2][4] 9108 * | | | | | +--- Current EL 9109 * | | | | +------ Non-secure(0)/Secure(1) 9110 * | | | +--------- HCR mask override 9111 * | | +------------ SCR exec state control 9112 * | +--------------- SCR mask override 9113 * +------------------ 32-bit(0)/64-bit(1) EL3 9114 * 9115 * The table values are as such: 9116 * 0-3 = EL0-EL3 9117 * -1 = Cannot occur 9118 * 9119 * The ARM ARM target EL table includes entries indicating that an "exception 9120 * is not taken". The two cases where this is applicable are: 9121 * 1) An exception is taken from EL3 but the SCR does not have the exception 9122 * routed to EL3. 9123 * 2) An exception is taken from EL2 but the HCR does not have the exception 9124 * routed to EL2. 9125 * In these two cases, the below table contain a target of EL1. This value is 9126 * returned as it is expected that the consumer of the table data will check 9127 * for "target EL >= current EL" to ensure the exception is not taken. 9128 * 9129 * SCR HCR 9130 * 64 EA AMO From 9131 * BIT IRQ IMO Non-secure Secure 9132 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9133 */ 9134 static const int8_t target_el_table[2][2][2][2][2][4] = { 9135 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9136 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9137 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9138 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9139 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9140 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9141 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9142 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9143 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9144 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9145 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9146 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9147 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9148 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9149 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9150 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9151 }; 9152 9153 /* 9154 * Determine the target EL for physical exceptions 9155 */ 9156 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9157 uint32_t cur_el, bool secure) 9158 { 9159 CPUARMState *env = cs->env_ptr; 9160 bool rw; 9161 bool scr; 9162 bool hcr; 9163 int target_el; 9164 /* Is the highest EL AArch64? */ 9165 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9166 uint64_t hcr_el2; 9167 9168 if (arm_feature(env, ARM_FEATURE_EL3)) { 9169 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9170 } else { 9171 /* Either EL2 is the highest EL (and so the EL2 register width 9172 * is given by is64); or there is no EL2 or EL3, in which case 9173 * the value of 'rw' does not affect the table lookup anyway. 9174 */ 9175 rw = is64; 9176 } 9177 9178 hcr_el2 = arm_hcr_el2_eff(env); 9179 switch (excp_idx) { 9180 case EXCP_IRQ: 9181 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9182 hcr = hcr_el2 & HCR_IMO; 9183 break; 9184 case EXCP_FIQ: 9185 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9186 hcr = hcr_el2 & HCR_FMO; 9187 break; 9188 default: 9189 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9190 hcr = hcr_el2 & HCR_AMO; 9191 break; 9192 }; 9193 9194 /* 9195 * For these purposes, TGE and AMO/IMO/FMO both force the 9196 * interrupt to EL2. Fold TGE into the bit extracted above. 9197 */ 9198 hcr |= (hcr_el2 & HCR_TGE) != 0; 9199 9200 /* Perform a table-lookup for the target EL given the current state */ 9201 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9202 9203 assert(target_el > 0); 9204 9205 return target_el; 9206 } 9207 9208 void arm_log_exception(int idx) 9209 { 9210 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9211 const char *exc = NULL; 9212 static const char * const excnames[] = { 9213 [EXCP_UDEF] = "Undefined Instruction", 9214 [EXCP_SWI] = "SVC", 9215 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9216 [EXCP_DATA_ABORT] = "Data Abort", 9217 [EXCP_IRQ] = "IRQ", 9218 [EXCP_FIQ] = "FIQ", 9219 [EXCP_BKPT] = "Breakpoint", 9220 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9221 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9222 [EXCP_HVC] = "Hypervisor Call", 9223 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9224 [EXCP_SMC] = "Secure Monitor Call", 9225 [EXCP_VIRQ] = "Virtual IRQ", 9226 [EXCP_VFIQ] = "Virtual FIQ", 9227 [EXCP_SEMIHOST] = "Semihosting call", 9228 [EXCP_NOCP] = "v7M NOCP UsageFault", 9229 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9230 [EXCP_STKOF] = "v8M STKOF UsageFault", 9231 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9232 [EXCP_LSERR] = "v8M LSERR UsageFault", 9233 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9234 }; 9235 9236 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9237 exc = excnames[idx]; 9238 } 9239 if (!exc) { 9240 exc = "unknown"; 9241 } 9242 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9243 } 9244 } 9245 9246 /* 9247 * Function used to synchronize QEMU's AArch64 register set with AArch32 9248 * register set. This is necessary when switching between AArch32 and AArch64 9249 * execution state. 9250 */ 9251 void aarch64_sync_32_to_64(CPUARMState *env) 9252 { 9253 int i; 9254 uint32_t mode = env->uncached_cpsr & CPSR_M; 9255 9256 /* We can blanket copy R[0:7] to X[0:7] */ 9257 for (i = 0; i < 8; i++) { 9258 env->xregs[i] = env->regs[i]; 9259 } 9260 9261 /* 9262 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9263 * Otherwise, they come from the banked user regs. 9264 */ 9265 if (mode == ARM_CPU_MODE_FIQ) { 9266 for (i = 8; i < 13; i++) { 9267 env->xregs[i] = env->usr_regs[i - 8]; 9268 } 9269 } else { 9270 for (i = 8; i < 13; i++) { 9271 env->xregs[i] = env->regs[i]; 9272 } 9273 } 9274 9275 /* 9276 * Registers x13-x23 are the various mode SP and FP registers. Registers 9277 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9278 * from the mode banked register. 9279 */ 9280 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9281 env->xregs[13] = env->regs[13]; 9282 env->xregs[14] = env->regs[14]; 9283 } else { 9284 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9285 /* HYP is an exception in that it is copied from r14 */ 9286 if (mode == ARM_CPU_MODE_HYP) { 9287 env->xregs[14] = env->regs[14]; 9288 } else { 9289 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9290 } 9291 } 9292 9293 if (mode == ARM_CPU_MODE_HYP) { 9294 env->xregs[15] = env->regs[13]; 9295 } else { 9296 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9297 } 9298 9299 if (mode == ARM_CPU_MODE_IRQ) { 9300 env->xregs[16] = env->regs[14]; 9301 env->xregs[17] = env->regs[13]; 9302 } else { 9303 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9304 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9305 } 9306 9307 if (mode == ARM_CPU_MODE_SVC) { 9308 env->xregs[18] = env->regs[14]; 9309 env->xregs[19] = env->regs[13]; 9310 } else { 9311 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9312 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9313 } 9314 9315 if (mode == ARM_CPU_MODE_ABT) { 9316 env->xregs[20] = env->regs[14]; 9317 env->xregs[21] = env->regs[13]; 9318 } else { 9319 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9320 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9321 } 9322 9323 if (mode == ARM_CPU_MODE_UND) { 9324 env->xregs[22] = env->regs[14]; 9325 env->xregs[23] = env->regs[13]; 9326 } else { 9327 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9328 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9329 } 9330 9331 /* 9332 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9333 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9334 * FIQ bank for r8-r14. 9335 */ 9336 if (mode == ARM_CPU_MODE_FIQ) { 9337 for (i = 24; i < 31; i++) { 9338 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9339 } 9340 } else { 9341 for (i = 24; i < 29; i++) { 9342 env->xregs[i] = env->fiq_regs[i - 24]; 9343 } 9344 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9345 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9346 } 9347 9348 env->pc = env->regs[15]; 9349 } 9350 9351 /* 9352 * Function used to synchronize QEMU's AArch32 register set with AArch64 9353 * register set. This is necessary when switching between AArch32 and AArch64 9354 * execution state. 9355 */ 9356 void aarch64_sync_64_to_32(CPUARMState *env) 9357 { 9358 int i; 9359 uint32_t mode = env->uncached_cpsr & CPSR_M; 9360 9361 /* We can blanket copy X[0:7] to R[0:7] */ 9362 for (i = 0; i < 8; i++) { 9363 env->regs[i] = env->xregs[i]; 9364 } 9365 9366 /* 9367 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9368 * Otherwise, we copy x8-x12 into the banked user regs. 9369 */ 9370 if (mode == ARM_CPU_MODE_FIQ) { 9371 for (i = 8; i < 13; i++) { 9372 env->usr_regs[i - 8] = env->xregs[i]; 9373 } 9374 } else { 9375 for (i = 8; i < 13; i++) { 9376 env->regs[i] = env->xregs[i]; 9377 } 9378 } 9379 9380 /* 9381 * Registers r13 & r14 depend on the current mode. 9382 * If we are in a given mode, we copy the corresponding x registers to r13 9383 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9384 * for the mode. 9385 */ 9386 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9387 env->regs[13] = env->xregs[13]; 9388 env->regs[14] = env->xregs[14]; 9389 } else { 9390 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9391 9392 /* 9393 * HYP is an exception in that it does not have its own banked r14 but 9394 * shares the USR r14 9395 */ 9396 if (mode == ARM_CPU_MODE_HYP) { 9397 env->regs[14] = env->xregs[14]; 9398 } else { 9399 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9400 } 9401 } 9402 9403 if (mode == ARM_CPU_MODE_HYP) { 9404 env->regs[13] = env->xregs[15]; 9405 } else { 9406 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9407 } 9408 9409 if (mode == ARM_CPU_MODE_IRQ) { 9410 env->regs[14] = env->xregs[16]; 9411 env->regs[13] = env->xregs[17]; 9412 } else { 9413 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9414 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9415 } 9416 9417 if (mode == ARM_CPU_MODE_SVC) { 9418 env->regs[14] = env->xregs[18]; 9419 env->regs[13] = env->xregs[19]; 9420 } else { 9421 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9422 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9423 } 9424 9425 if (mode == ARM_CPU_MODE_ABT) { 9426 env->regs[14] = env->xregs[20]; 9427 env->regs[13] = env->xregs[21]; 9428 } else { 9429 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9430 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9431 } 9432 9433 if (mode == ARM_CPU_MODE_UND) { 9434 env->regs[14] = env->xregs[22]; 9435 env->regs[13] = env->xregs[23]; 9436 } else { 9437 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9438 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9439 } 9440 9441 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9442 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9443 * FIQ bank for r8-r14. 9444 */ 9445 if (mode == ARM_CPU_MODE_FIQ) { 9446 for (i = 24; i < 31; i++) { 9447 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9448 } 9449 } else { 9450 for (i = 24; i < 29; i++) { 9451 env->fiq_regs[i - 24] = env->xregs[i]; 9452 } 9453 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9454 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9455 } 9456 9457 env->regs[15] = env->pc; 9458 } 9459 9460 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9461 uint32_t mask, uint32_t offset, 9462 uint32_t newpc) 9463 { 9464 int new_el; 9465 9466 /* Change the CPU state so as to actually take the exception. */ 9467 switch_mode(env, new_mode); 9468 9469 /* 9470 * For exceptions taken to AArch32 we must clear the SS bit in both 9471 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9472 */ 9473 env->pstate &= ~PSTATE_SS; 9474 env->spsr = cpsr_read(env); 9475 /* Clear IT bits. */ 9476 env->condexec_bits = 0; 9477 /* Switch to the new mode, and to the correct instruction set. */ 9478 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9479 9480 /* This must be after mode switching. */ 9481 new_el = arm_current_el(env); 9482 9483 /* Set new mode endianness */ 9484 env->uncached_cpsr &= ~CPSR_E; 9485 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9486 env->uncached_cpsr |= CPSR_E; 9487 } 9488 /* J and IL must always be cleared for exception entry */ 9489 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9490 env->daif |= mask; 9491 9492 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9493 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9494 env->uncached_cpsr |= CPSR_SSBS; 9495 } else { 9496 env->uncached_cpsr &= ~CPSR_SSBS; 9497 } 9498 } 9499 9500 if (new_mode == ARM_CPU_MODE_HYP) { 9501 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9502 env->elr_el[2] = env->regs[15]; 9503 } else { 9504 /* CPSR.PAN is normally preserved preserved unless... */ 9505 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9506 switch (new_el) { 9507 case 3: 9508 if (!arm_is_secure_below_el3(env)) { 9509 /* ... the target is EL3, from non-secure state. */ 9510 env->uncached_cpsr &= ~CPSR_PAN; 9511 break; 9512 } 9513 /* ... the target is EL3, from secure state ... */ 9514 /* fall through */ 9515 case 1: 9516 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9517 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9518 env->uncached_cpsr |= CPSR_PAN; 9519 } 9520 break; 9521 } 9522 } 9523 /* 9524 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9525 * and we should just guard the thumb mode on V4 9526 */ 9527 if (arm_feature(env, ARM_FEATURE_V4T)) { 9528 env->thumb = 9529 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9530 } 9531 env->regs[14] = env->regs[15] + offset; 9532 } 9533 env->regs[15] = newpc; 9534 arm_rebuild_hflags(env); 9535 } 9536 9537 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9538 { 9539 /* 9540 * Handle exception entry to Hyp mode; this is sufficiently 9541 * different to entry to other AArch32 modes that we handle it 9542 * separately here. 9543 * 9544 * The vector table entry used is always the 0x14 Hyp mode entry point, 9545 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9546 * The offset applied to the preferred return address is always zero 9547 * (see DDI0487C.a section G1.12.3). 9548 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9549 */ 9550 uint32_t addr, mask; 9551 ARMCPU *cpu = ARM_CPU(cs); 9552 CPUARMState *env = &cpu->env; 9553 9554 switch (cs->exception_index) { 9555 case EXCP_UDEF: 9556 addr = 0x04; 9557 break; 9558 case EXCP_SWI: 9559 addr = 0x14; 9560 break; 9561 case EXCP_BKPT: 9562 /* Fall through to prefetch abort. */ 9563 case EXCP_PREFETCH_ABORT: 9564 env->cp15.ifar_s = env->exception.vaddress; 9565 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9566 (uint32_t)env->exception.vaddress); 9567 addr = 0x0c; 9568 break; 9569 case EXCP_DATA_ABORT: 9570 env->cp15.dfar_s = env->exception.vaddress; 9571 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9572 (uint32_t)env->exception.vaddress); 9573 addr = 0x10; 9574 break; 9575 case EXCP_IRQ: 9576 addr = 0x18; 9577 break; 9578 case EXCP_FIQ: 9579 addr = 0x1c; 9580 break; 9581 case EXCP_HVC: 9582 addr = 0x08; 9583 break; 9584 case EXCP_HYP_TRAP: 9585 addr = 0x14; 9586 break; 9587 default: 9588 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9589 } 9590 9591 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9592 if (!arm_feature(env, ARM_FEATURE_V8)) { 9593 /* 9594 * QEMU syndrome values are v8-style. v7 has the IL bit 9595 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9596 * If this is a v7 CPU, squash the IL bit in those cases. 9597 */ 9598 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9599 (cs->exception_index == EXCP_DATA_ABORT && 9600 !(env->exception.syndrome & ARM_EL_ISV)) || 9601 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9602 env->exception.syndrome &= ~ARM_EL_IL; 9603 } 9604 } 9605 env->cp15.esr_el[2] = env->exception.syndrome; 9606 } 9607 9608 if (arm_current_el(env) != 2 && addr < 0x14) { 9609 addr = 0x14; 9610 } 9611 9612 mask = 0; 9613 if (!(env->cp15.scr_el3 & SCR_EA)) { 9614 mask |= CPSR_A; 9615 } 9616 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9617 mask |= CPSR_I; 9618 } 9619 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9620 mask |= CPSR_F; 9621 } 9622 9623 addr += env->cp15.hvbar; 9624 9625 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9626 } 9627 9628 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9629 { 9630 ARMCPU *cpu = ARM_CPU(cs); 9631 CPUARMState *env = &cpu->env; 9632 uint32_t addr; 9633 uint32_t mask; 9634 int new_mode; 9635 uint32_t offset; 9636 uint32_t moe; 9637 9638 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9639 switch (syn_get_ec(env->exception.syndrome)) { 9640 case EC_BREAKPOINT: 9641 case EC_BREAKPOINT_SAME_EL: 9642 moe = 1; 9643 break; 9644 case EC_WATCHPOINT: 9645 case EC_WATCHPOINT_SAME_EL: 9646 moe = 10; 9647 break; 9648 case EC_AA32_BKPT: 9649 moe = 3; 9650 break; 9651 case EC_VECTORCATCH: 9652 moe = 5; 9653 break; 9654 default: 9655 moe = 0; 9656 break; 9657 } 9658 9659 if (moe) { 9660 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9661 } 9662 9663 if (env->exception.target_el == 2) { 9664 arm_cpu_do_interrupt_aarch32_hyp(cs); 9665 return; 9666 } 9667 9668 switch (cs->exception_index) { 9669 case EXCP_UDEF: 9670 new_mode = ARM_CPU_MODE_UND; 9671 addr = 0x04; 9672 mask = CPSR_I; 9673 if (env->thumb) 9674 offset = 2; 9675 else 9676 offset = 4; 9677 break; 9678 case EXCP_SWI: 9679 new_mode = ARM_CPU_MODE_SVC; 9680 addr = 0x08; 9681 mask = CPSR_I; 9682 /* The PC already points to the next instruction. */ 9683 offset = 0; 9684 break; 9685 case EXCP_BKPT: 9686 /* Fall through to prefetch abort. */ 9687 case EXCP_PREFETCH_ABORT: 9688 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9689 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9690 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9691 env->exception.fsr, (uint32_t)env->exception.vaddress); 9692 new_mode = ARM_CPU_MODE_ABT; 9693 addr = 0x0c; 9694 mask = CPSR_A | CPSR_I; 9695 offset = 4; 9696 break; 9697 case EXCP_DATA_ABORT: 9698 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9699 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9700 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9701 env->exception.fsr, 9702 (uint32_t)env->exception.vaddress); 9703 new_mode = ARM_CPU_MODE_ABT; 9704 addr = 0x10; 9705 mask = CPSR_A | CPSR_I; 9706 offset = 8; 9707 break; 9708 case EXCP_IRQ: 9709 new_mode = ARM_CPU_MODE_IRQ; 9710 addr = 0x18; 9711 /* Disable IRQ and imprecise data aborts. */ 9712 mask = CPSR_A | CPSR_I; 9713 offset = 4; 9714 if (env->cp15.scr_el3 & SCR_IRQ) { 9715 /* IRQ routed to monitor mode */ 9716 new_mode = ARM_CPU_MODE_MON; 9717 mask |= CPSR_F; 9718 } 9719 break; 9720 case EXCP_FIQ: 9721 new_mode = ARM_CPU_MODE_FIQ; 9722 addr = 0x1c; 9723 /* Disable FIQ, IRQ and imprecise data aborts. */ 9724 mask = CPSR_A | CPSR_I | CPSR_F; 9725 if (env->cp15.scr_el3 & SCR_FIQ) { 9726 /* FIQ routed to monitor mode */ 9727 new_mode = ARM_CPU_MODE_MON; 9728 } 9729 offset = 4; 9730 break; 9731 case EXCP_VIRQ: 9732 new_mode = ARM_CPU_MODE_IRQ; 9733 addr = 0x18; 9734 /* Disable IRQ and imprecise data aborts. */ 9735 mask = CPSR_A | CPSR_I; 9736 offset = 4; 9737 break; 9738 case EXCP_VFIQ: 9739 new_mode = ARM_CPU_MODE_FIQ; 9740 addr = 0x1c; 9741 /* Disable FIQ, IRQ and imprecise data aborts. */ 9742 mask = CPSR_A | CPSR_I | CPSR_F; 9743 offset = 4; 9744 break; 9745 case EXCP_SMC: 9746 new_mode = ARM_CPU_MODE_MON; 9747 addr = 0x08; 9748 mask = CPSR_A | CPSR_I | CPSR_F; 9749 offset = 0; 9750 break; 9751 default: 9752 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9753 return; /* Never happens. Keep compiler happy. */ 9754 } 9755 9756 if (new_mode == ARM_CPU_MODE_MON) { 9757 addr += env->cp15.mvbar; 9758 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9759 /* High vectors. When enabled, base address cannot be remapped. */ 9760 addr += 0xffff0000; 9761 } else { 9762 /* ARM v7 architectures provide a vector base address register to remap 9763 * the interrupt vector table. 9764 * This register is only followed in non-monitor mode, and is banked. 9765 * Note: only bits 31:5 are valid. 9766 */ 9767 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9768 } 9769 9770 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9771 env->cp15.scr_el3 &= ~SCR_NS; 9772 } 9773 9774 take_aarch32_exception(env, new_mode, mask, offset, addr); 9775 } 9776 9777 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9778 { 9779 /* 9780 * Return the register number of the AArch64 view of the AArch32 9781 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9782 * be that of the AArch32 mode the exception came from. 9783 */ 9784 int mode = env->uncached_cpsr & CPSR_M; 9785 9786 switch (aarch32_reg) { 9787 case 0 ... 7: 9788 return aarch32_reg; 9789 case 8 ... 12: 9790 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9791 case 13: 9792 switch (mode) { 9793 case ARM_CPU_MODE_USR: 9794 case ARM_CPU_MODE_SYS: 9795 return 13; 9796 case ARM_CPU_MODE_HYP: 9797 return 15; 9798 case ARM_CPU_MODE_IRQ: 9799 return 17; 9800 case ARM_CPU_MODE_SVC: 9801 return 19; 9802 case ARM_CPU_MODE_ABT: 9803 return 21; 9804 case ARM_CPU_MODE_UND: 9805 return 23; 9806 case ARM_CPU_MODE_FIQ: 9807 return 29; 9808 default: 9809 g_assert_not_reached(); 9810 } 9811 case 14: 9812 switch (mode) { 9813 case ARM_CPU_MODE_USR: 9814 case ARM_CPU_MODE_SYS: 9815 case ARM_CPU_MODE_HYP: 9816 return 14; 9817 case ARM_CPU_MODE_IRQ: 9818 return 16; 9819 case ARM_CPU_MODE_SVC: 9820 return 18; 9821 case ARM_CPU_MODE_ABT: 9822 return 20; 9823 case ARM_CPU_MODE_UND: 9824 return 22; 9825 case ARM_CPU_MODE_FIQ: 9826 return 30; 9827 default: 9828 g_assert_not_reached(); 9829 } 9830 case 15: 9831 return 31; 9832 default: 9833 g_assert_not_reached(); 9834 } 9835 } 9836 9837 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9838 { 9839 uint32_t ret = cpsr_read(env); 9840 9841 /* Move DIT to the correct location for SPSR_ELx */ 9842 if (ret & CPSR_DIT) { 9843 ret &= ~CPSR_DIT; 9844 ret |= PSTATE_DIT; 9845 } 9846 /* Merge PSTATE.SS into SPSR_ELx */ 9847 ret |= env->pstate & PSTATE_SS; 9848 9849 return ret; 9850 } 9851 9852 /* Handle exception entry to a target EL which is using AArch64 */ 9853 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9854 { 9855 ARMCPU *cpu = ARM_CPU(cs); 9856 CPUARMState *env = &cpu->env; 9857 unsigned int new_el = env->exception.target_el; 9858 target_ulong addr = env->cp15.vbar_el[new_el]; 9859 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9860 unsigned int old_mode; 9861 unsigned int cur_el = arm_current_el(env); 9862 int rt; 9863 9864 /* 9865 * Note that new_el can never be 0. If cur_el is 0, then 9866 * el0_a64 is is_a64(), else el0_a64 is ignored. 9867 */ 9868 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9869 9870 if (cur_el < new_el) { 9871 /* Entry vector offset depends on whether the implemented EL 9872 * immediately lower than the target level is using AArch32 or AArch64 9873 */ 9874 bool is_aa64; 9875 uint64_t hcr; 9876 9877 switch (new_el) { 9878 case 3: 9879 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9880 break; 9881 case 2: 9882 hcr = arm_hcr_el2_eff(env); 9883 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9884 is_aa64 = (hcr & HCR_RW) != 0; 9885 break; 9886 } 9887 /* fall through */ 9888 case 1: 9889 is_aa64 = is_a64(env); 9890 break; 9891 default: 9892 g_assert_not_reached(); 9893 } 9894 9895 if (is_aa64) { 9896 addr += 0x400; 9897 } else { 9898 addr += 0x600; 9899 } 9900 } else if (pstate_read(env) & PSTATE_SP) { 9901 addr += 0x200; 9902 } 9903 9904 switch (cs->exception_index) { 9905 case EXCP_PREFETCH_ABORT: 9906 case EXCP_DATA_ABORT: 9907 env->cp15.far_el[new_el] = env->exception.vaddress; 9908 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9909 env->cp15.far_el[new_el]); 9910 /* fall through */ 9911 case EXCP_BKPT: 9912 case EXCP_UDEF: 9913 case EXCP_SWI: 9914 case EXCP_HVC: 9915 case EXCP_HYP_TRAP: 9916 case EXCP_SMC: 9917 switch (syn_get_ec(env->exception.syndrome)) { 9918 case EC_ADVSIMDFPACCESSTRAP: 9919 /* 9920 * QEMU internal FP/SIMD syndromes from AArch32 include the 9921 * TA and coproc fields which are only exposed if the exception 9922 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9923 * AArch64 format syndrome. 9924 */ 9925 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9926 break; 9927 case EC_CP14RTTRAP: 9928 case EC_CP15RTTRAP: 9929 case EC_CP14DTTRAP: 9930 /* 9931 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9932 * the raw register field from the insn; when taking this to 9933 * AArch64 we must convert it to the AArch64 view of the register 9934 * number. Notice that we read a 4-bit AArch32 register number and 9935 * write back a 5-bit AArch64 one. 9936 */ 9937 rt = extract32(env->exception.syndrome, 5, 4); 9938 rt = aarch64_regnum(env, rt); 9939 env->exception.syndrome = deposit32(env->exception.syndrome, 9940 5, 5, rt); 9941 break; 9942 case EC_CP15RRTTRAP: 9943 case EC_CP14RRTTRAP: 9944 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9945 rt = extract32(env->exception.syndrome, 5, 4); 9946 rt = aarch64_regnum(env, rt); 9947 env->exception.syndrome = deposit32(env->exception.syndrome, 9948 5, 5, rt); 9949 rt = extract32(env->exception.syndrome, 10, 4); 9950 rt = aarch64_regnum(env, rt); 9951 env->exception.syndrome = deposit32(env->exception.syndrome, 9952 10, 5, rt); 9953 break; 9954 } 9955 env->cp15.esr_el[new_el] = env->exception.syndrome; 9956 break; 9957 case EXCP_IRQ: 9958 case EXCP_VIRQ: 9959 addr += 0x80; 9960 break; 9961 case EXCP_FIQ: 9962 case EXCP_VFIQ: 9963 addr += 0x100; 9964 break; 9965 default: 9966 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9967 } 9968 9969 if (is_a64(env)) { 9970 old_mode = pstate_read(env); 9971 aarch64_save_sp(env, arm_current_el(env)); 9972 env->elr_el[new_el] = env->pc; 9973 } else { 9974 old_mode = cpsr_read_for_spsr_elx(env); 9975 env->elr_el[new_el] = env->regs[15]; 9976 9977 aarch64_sync_32_to_64(env); 9978 9979 env->condexec_bits = 0; 9980 } 9981 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9982 9983 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9984 env->elr_el[new_el]); 9985 9986 if (cpu_isar_feature(aa64_pan, cpu)) { 9987 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9988 new_mode |= old_mode & PSTATE_PAN; 9989 switch (new_el) { 9990 case 2: 9991 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9992 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9993 != (HCR_E2H | HCR_TGE)) { 9994 break; 9995 } 9996 /* fall through */ 9997 case 1: 9998 /* ... the target is EL1 ... */ 9999 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10000 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10001 new_mode |= PSTATE_PAN; 10002 } 10003 break; 10004 } 10005 } 10006 if (cpu_isar_feature(aa64_mte, cpu)) { 10007 new_mode |= PSTATE_TCO; 10008 } 10009 10010 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10011 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10012 new_mode |= PSTATE_SSBS; 10013 } else { 10014 new_mode &= ~PSTATE_SSBS; 10015 } 10016 } 10017 10018 pstate_write(env, PSTATE_DAIF | new_mode); 10019 env->aarch64 = 1; 10020 aarch64_restore_sp(env, new_el); 10021 helper_rebuild_hflags_a64(env, new_el); 10022 10023 env->pc = addr; 10024 10025 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10026 new_el, env->pc, pstate_read(env)); 10027 } 10028 10029 /* 10030 * Do semihosting call and set the appropriate return value. All the 10031 * permission and validity checks have been done at translate time. 10032 * 10033 * We only see semihosting exceptions in TCG only as they are not 10034 * trapped to the hypervisor in KVM. 10035 */ 10036 #ifdef CONFIG_TCG 10037 static void handle_semihosting(CPUState *cs) 10038 { 10039 ARMCPU *cpu = ARM_CPU(cs); 10040 CPUARMState *env = &cpu->env; 10041 10042 if (is_a64(env)) { 10043 qemu_log_mask(CPU_LOG_INT, 10044 "...handling as semihosting call 0x%" PRIx64 "\n", 10045 env->xregs[0]); 10046 env->xregs[0] = do_common_semihosting(cs); 10047 env->pc += 4; 10048 } else { 10049 qemu_log_mask(CPU_LOG_INT, 10050 "...handling as semihosting call 0x%x\n", 10051 env->regs[0]); 10052 env->regs[0] = do_common_semihosting(cs); 10053 env->regs[15] += env->thumb ? 2 : 4; 10054 } 10055 } 10056 #endif 10057 10058 /* Handle a CPU exception for A and R profile CPUs. 10059 * Do any appropriate logging, handle PSCI calls, and then hand off 10060 * to the AArch64-entry or AArch32-entry function depending on the 10061 * target exception level's register width. 10062 * 10063 * Note: this is used for both TCG (as the do_interrupt tcg op), 10064 * and KVM to re-inject guest debug exceptions, and to 10065 * inject a Synchronous-External-Abort. 10066 */ 10067 void arm_cpu_do_interrupt(CPUState *cs) 10068 { 10069 ARMCPU *cpu = ARM_CPU(cs); 10070 CPUARMState *env = &cpu->env; 10071 unsigned int new_el = env->exception.target_el; 10072 10073 assert(!arm_feature(env, ARM_FEATURE_M)); 10074 10075 arm_log_exception(cs->exception_index); 10076 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10077 new_el); 10078 if (qemu_loglevel_mask(CPU_LOG_INT) 10079 && !excp_is_internal(cs->exception_index)) { 10080 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10081 syn_get_ec(env->exception.syndrome), 10082 env->exception.syndrome); 10083 } 10084 10085 if (arm_is_psci_call(cpu, cs->exception_index)) { 10086 arm_handle_psci_call(cpu); 10087 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10088 return; 10089 } 10090 10091 /* 10092 * Semihosting semantics depend on the register width of the code 10093 * that caused the exception, not the target exception level, so 10094 * must be handled here. 10095 */ 10096 #ifdef CONFIG_TCG 10097 if (cs->exception_index == EXCP_SEMIHOST) { 10098 handle_semihosting(cs); 10099 return; 10100 } 10101 #endif 10102 10103 /* Hooks may change global state so BQL should be held, also the 10104 * BQL needs to be held for any modification of 10105 * cs->interrupt_request. 10106 */ 10107 g_assert(qemu_mutex_iothread_locked()); 10108 10109 arm_call_pre_el_change_hook(cpu); 10110 10111 assert(!excp_is_internal(cs->exception_index)); 10112 if (arm_el_is_aa64(env, new_el)) { 10113 arm_cpu_do_interrupt_aarch64(cs); 10114 } else { 10115 arm_cpu_do_interrupt_aarch32(cs); 10116 } 10117 10118 arm_call_el_change_hook(cpu); 10119 10120 if (!kvm_enabled()) { 10121 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10122 } 10123 } 10124 #endif /* !CONFIG_USER_ONLY */ 10125 10126 uint64_t arm_sctlr(CPUARMState *env, int el) 10127 { 10128 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10129 if (el == 0) { 10130 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10131 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10132 ? 2 : 1; 10133 } 10134 return env->cp15.sctlr_el[el]; 10135 } 10136 10137 /* Return the SCTLR value which controls this address translation regime */ 10138 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10139 { 10140 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10141 } 10142 10143 #ifndef CONFIG_USER_ONLY 10144 10145 /* Return true if the specified stage of address translation is disabled */ 10146 static inline bool regime_translation_disabled(CPUARMState *env, 10147 ARMMMUIdx mmu_idx) 10148 { 10149 uint64_t hcr_el2; 10150 10151 if (arm_feature(env, ARM_FEATURE_M)) { 10152 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10153 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10154 case R_V7M_MPU_CTRL_ENABLE_MASK: 10155 /* Enabled, but not for HardFault and NMI */ 10156 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10157 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10158 /* Enabled for all cases */ 10159 return false; 10160 case 0: 10161 default: 10162 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10163 * we warned about that in armv7m_nvic.c when the guest set it. 10164 */ 10165 return true; 10166 } 10167 } 10168 10169 hcr_el2 = arm_hcr_el2_eff(env); 10170 10171 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10172 /* HCR.DC means HCR.VM behaves as 1 */ 10173 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10174 } 10175 10176 if (hcr_el2 & HCR_TGE) { 10177 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10178 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10179 return true; 10180 } 10181 } 10182 10183 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10184 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10185 return true; 10186 } 10187 10188 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10189 } 10190 10191 static inline bool regime_translation_big_endian(CPUARMState *env, 10192 ARMMMUIdx mmu_idx) 10193 { 10194 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10195 } 10196 10197 /* Return the TTBR associated with this translation regime */ 10198 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10199 int ttbrn) 10200 { 10201 if (mmu_idx == ARMMMUIdx_Stage2) { 10202 return env->cp15.vttbr_el2; 10203 } 10204 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10205 return env->cp15.vsttbr_el2; 10206 } 10207 if (ttbrn == 0) { 10208 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10209 } else { 10210 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10211 } 10212 } 10213 10214 #endif /* !CONFIG_USER_ONLY */ 10215 10216 /* Convert a possible stage1+2 MMU index into the appropriate 10217 * stage 1 MMU index 10218 */ 10219 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10220 { 10221 switch (mmu_idx) { 10222 case ARMMMUIdx_SE10_0: 10223 return ARMMMUIdx_Stage1_SE0; 10224 case ARMMMUIdx_SE10_1: 10225 return ARMMMUIdx_Stage1_SE1; 10226 case ARMMMUIdx_SE10_1_PAN: 10227 return ARMMMUIdx_Stage1_SE1_PAN; 10228 case ARMMMUIdx_E10_0: 10229 return ARMMMUIdx_Stage1_E0; 10230 case ARMMMUIdx_E10_1: 10231 return ARMMMUIdx_Stage1_E1; 10232 case ARMMMUIdx_E10_1_PAN: 10233 return ARMMMUIdx_Stage1_E1_PAN; 10234 default: 10235 return mmu_idx; 10236 } 10237 } 10238 10239 /* Return true if the translation regime is using LPAE format page tables */ 10240 static inline bool regime_using_lpae_format(CPUARMState *env, 10241 ARMMMUIdx mmu_idx) 10242 { 10243 int el = regime_el(env, mmu_idx); 10244 if (el == 2 || arm_el_is_aa64(env, el)) { 10245 return true; 10246 } 10247 if (arm_feature(env, ARM_FEATURE_LPAE) 10248 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10249 return true; 10250 } 10251 return false; 10252 } 10253 10254 /* Returns true if the stage 1 translation regime is using LPAE format page 10255 * tables. Used when raising alignment exceptions, whose FSR changes depending 10256 * on whether the long or short descriptor format is in use. */ 10257 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10258 { 10259 mmu_idx = stage_1_mmu_idx(mmu_idx); 10260 10261 return regime_using_lpae_format(env, mmu_idx); 10262 } 10263 10264 #ifndef CONFIG_USER_ONLY 10265 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10266 { 10267 switch (mmu_idx) { 10268 case ARMMMUIdx_SE10_0: 10269 case ARMMMUIdx_E20_0: 10270 case ARMMMUIdx_SE20_0: 10271 case ARMMMUIdx_Stage1_E0: 10272 case ARMMMUIdx_Stage1_SE0: 10273 case ARMMMUIdx_MUser: 10274 case ARMMMUIdx_MSUser: 10275 case ARMMMUIdx_MUserNegPri: 10276 case ARMMMUIdx_MSUserNegPri: 10277 return true; 10278 default: 10279 return false; 10280 case ARMMMUIdx_E10_0: 10281 case ARMMMUIdx_E10_1: 10282 case ARMMMUIdx_E10_1_PAN: 10283 g_assert_not_reached(); 10284 } 10285 } 10286 10287 /* Translate section/page access permissions to page 10288 * R/W protection flags 10289 * 10290 * @env: CPUARMState 10291 * @mmu_idx: MMU index indicating required translation regime 10292 * @ap: The 3-bit access permissions (AP[2:0]) 10293 * @domain_prot: The 2-bit domain access permissions 10294 */ 10295 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10296 int ap, int domain_prot) 10297 { 10298 bool is_user = regime_is_user(env, mmu_idx); 10299 10300 if (domain_prot == 3) { 10301 return PAGE_READ | PAGE_WRITE; 10302 } 10303 10304 switch (ap) { 10305 case 0: 10306 if (arm_feature(env, ARM_FEATURE_V7)) { 10307 return 0; 10308 } 10309 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10310 case SCTLR_S: 10311 return is_user ? 0 : PAGE_READ; 10312 case SCTLR_R: 10313 return PAGE_READ; 10314 default: 10315 return 0; 10316 } 10317 case 1: 10318 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10319 case 2: 10320 if (is_user) { 10321 return PAGE_READ; 10322 } else { 10323 return PAGE_READ | PAGE_WRITE; 10324 } 10325 case 3: 10326 return PAGE_READ | PAGE_WRITE; 10327 case 4: /* Reserved. */ 10328 return 0; 10329 case 5: 10330 return is_user ? 0 : PAGE_READ; 10331 case 6: 10332 return PAGE_READ; 10333 case 7: 10334 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10335 return 0; 10336 } 10337 return PAGE_READ; 10338 default: 10339 g_assert_not_reached(); 10340 } 10341 } 10342 10343 /* Translate section/page access permissions to page 10344 * R/W protection flags. 10345 * 10346 * @ap: The 2-bit simple AP (AP[2:1]) 10347 * @is_user: TRUE if accessing from PL0 10348 */ 10349 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10350 { 10351 switch (ap) { 10352 case 0: 10353 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10354 case 1: 10355 return PAGE_READ | PAGE_WRITE; 10356 case 2: 10357 return is_user ? 0 : PAGE_READ; 10358 case 3: 10359 return PAGE_READ; 10360 default: 10361 g_assert_not_reached(); 10362 } 10363 } 10364 10365 static inline int 10366 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10367 { 10368 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10369 } 10370 10371 /* Translate S2 section/page access permissions to protection flags 10372 * 10373 * @env: CPUARMState 10374 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10375 * @xn: XN (execute-never) bits 10376 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10377 */ 10378 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10379 { 10380 int prot = 0; 10381 10382 if (s2ap & 1) { 10383 prot |= PAGE_READ; 10384 } 10385 if (s2ap & 2) { 10386 prot |= PAGE_WRITE; 10387 } 10388 10389 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10390 switch (xn) { 10391 case 0: 10392 prot |= PAGE_EXEC; 10393 break; 10394 case 1: 10395 if (s1_is_el0) { 10396 prot |= PAGE_EXEC; 10397 } 10398 break; 10399 case 2: 10400 break; 10401 case 3: 10402 if (!s1_is_el0) { 10403 prot |= PAGE_EXEC; 10404 } 10405 break; 10406 default: 10407 g_assert_not_reached(); 10408 } 10409 } else { 10410 if (!extract32(xn, 1, 1)) { 10411 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10412 prot |= PAGE_EXEC; 10413 } 10414 } 10415 } 10416 return prot; 10417 } 10418 10419 /* Translate section/page access permissions to protection flags 10420 * 10421 * @env: CPUARMState 10422 * @mmu_idx: MMU index indicating required translation regime 10423 * @is_aa64: TRUE if AArch64 10424 * @ap: The 2-bit simple AP (AP[2:1]) 10425 * @ns: NS (non-secure) bit 10426 * @xn: XN (execute-never) bit 10427 * @pxn: PXN (privileged execute-never) bit 10428 */ 10429 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10430 int ap, int ns, int xn, int pxn) 10431 { 10432 bool is_user = regime_is_user(env, mmu_idx); 10433 int prot_rw, user_rw; 10434 bool have_wxn; 10435 int wxn = 0; 10436 10437 assert(mmu_idx != ARMMMUIdx_Stage2); 10438 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10439 10440 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10441 if (is_user) { 10442 prot_rw = user_rw; 10443 } else { 10444 if (user_rw && regime_is_pan(env, mmu_idx)) { 10445 /* PAN forbids data accesses but doesn't affect insn fetch */ 10446 prot_rw = 0; 10447 } else { 10448 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10449 } 10450 } 10451 10452 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10453 return prot_rw; 10454 } 10455 10456 /* TODO have_wxn should be replaced with 10457 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10458 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10459 * compatible processors have EL2, which is required for [U]WXN. 10460 */ 10461 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10462 10463 if (have_wxn) { 10464 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10465 } 10466 10467 if (is_aa64) { 10468 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10469 xn = pxn || (user_rw & PAGE_WRITE); 10470 } 10471 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10472 switch (regime_el(env, mmu_idx)) { 10473 case 1: 10474 case 3: 10475 if (is_user) { 10476 xn = xn || !(user_rw & PAGE_READ); 10477 } else { 10478 int uwxn = 0; 10479 if (have_wxn) { 10480 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10481 } 10482 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10483 (uwxn && (user_rw & PAGE_WRITE)); 10484 } 10485 break; 10486 case 2: 10487 break; 10488 } 10489 } else { 10490 xn = wxn = 0; 10491 } 10492 10493 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10494 return prot_rw; 10495 } 10496 return prot_rw | PAGE_EXEC; 10497 } 10498 10499 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10500 uint32_t *table, uint32_t address) 10501 { 10502 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10503 TCR *tcr = regime_tcr(env, mmu_idx); 10504 10505 if (address & tcr->mask) { 10506 if (tcr->raw_tcr & TTBCR_PD1) { 10507 /* Translation table walk disabled for TTBR1 */ 10508 return false; 10509 } 10510 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10511 } else { 10512 if (tcr->raw_tcr & TTBCR_PD0) { 10513 /* Translation table walk disabled for TTBR0 */ 10514 return false; 10515 } 10516 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10517 } 10518 *table |= (address >> 18) & 0x3ffc; 10519 return true; 10520 } 10521 10522 /* Translate a S1 pagetable walk through S2 if needed. */ 10523 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10524 hwaddr addr, bool *is_secure, 10525 ARMMMUFaultInfo *fi) 10526 { 10527 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10528 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10529 target_ulong s2size; 10530 hwaddr s2pa; 10531 int s2prot; 10532 int ret; 10533 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10534 : ARMMMUIdx_Stage2; 10535 ARMCacheAttrs cacheattrs = {}; 10536 MemTxAttrs txattrs = {}; 10537 10538 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10539 &s2pa, &txattrs, &s2prot, &s2size, fi, 10540 &cacheattrs); 10541 if (ret) { 10542 assert(fi->type != ARMFault_None); 10543 fi->s2addr = addr; 10544 fi->stage2 = true; 10545 fi->s1ptw = true; 10546 fi->s1ns = !*is_secure; 10547 return ~0; 10548 } 10549 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10550 (cacheattrs.attrs & 0xf0) == 0) { 10551 /* 10552 * PTW set and S1 walk touched S2 Device memory: 10553 * generate Permission fault. 10554 */ 10555 fi->type = ARMFault_Permission; 10556 fi->s2addr = addr; 10557 fi->stage2 = true; 10558 fi->s1ptw = true; 10559 fi->s1ns = !*is_secure; 10560 return ~0; 10561 } 10562 10563 if (arm_is_secure_below_el3(env)) { 10564 /* Check if page table walk is to secure or non-secure PA space. */ 10565 if (*is_secure) { 10566 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10567 } else { 10568 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10569 } 10570 } else { 10571 assert(!*is_secure); 10572 } 10573 10574 addr = s2pa; 10575 } 10576 return addr; 10577 } 10578 10579 /* All loads done in the course of a page table walk go through here. */ 10580 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10581 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10582 { 10583 ARMCPU *cpu = ARM_CPU(cs); 10584 CPUARMState *env = &cpu->env; 10585 MemTxAttrs attrs = {}; 10586 MemTxResult result = MEMTX_OK; 10587 AddressSpace *as; 10588 uint32_t data; 10589 10590 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10591 attrs.secure = is_secure; 10592 as = arm_addressspace(cs, attrs); 10593 if (fi->s1ptw) { 10594 return 0; 10595 } 10596 if (regime_translation_big_endian(env, mmu_idx)) { 10597 data = address_space_ldl_be(as, addr, attrs, &result); 10598 } else { 10599 data = address_space_ldl_le(as, addr, attrs, &result); 10600 } 10601 if (result == MEMTX_OK) { 10602 return data; 10603 } 10604 fi->type = ARMFault_SyncExternalOnWalk; 10605 fi->ea = arm_extabort_type(result); 10606 return 0; 10607 } 10608 10609 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10610 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10611 { 10612 ARMCPU *cpu = ARM_CPU(cs); 10613 CPUARMState *env = &cpu->env; 10614 MemTxAttrs attrs = {}; 10615 MemTxResult result = MEMTX_OK; 10616 AddressSpace *as; 10617 uint64_t data; 10618 10619 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10620 attrs.secure = is_secure; 10621 as = arm_addressspace(cs, attrs); 10622 if (fi->s1ptw) { 10623 return 0; 10624 } 10625 if (regime_translation_big_endian(env, mmu_idx)) { 10626 data = address_space_ldq_be(as, addr, attrs, &result); 10627 } else { 10628 data = address_space_ldq_le(as, addr, attrs, &result); 10629 } 10630 if (result == MEMTX_OK) { 10631 return data; 10632 } 10633 fi->type = ARMFault_SyncExternalOnWalk; 10634 fi->ea = arm_extabort_type(result); 10635 return 0; 10636 } 10637 10638 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10639 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10640 hwaddr *phys_ptr, int *prot, 10641 target_ulong *page_size, 10642 ARMMMUFaultInfo *fi) 10643 { 10644 CPUState *cs = env_cpu(env); 10645 int level = 1; 10646 uint32_t table; 10647 uint32_t desc; 10648 int type; 10649 int ap; 10650 int domain = 0; 10651 int domain_prot; 10652 hwaddr phys_addr; 10653 uint32_t dacr; 10654 10655 /* Pagetable walk. */ 10656 /* Lookup l1 descriptor. */ 10657 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10658 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10659 fi->type = ARMFault_Translation; 10660 goto do_fault; 10661 } 10662 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10663 mmu_idx, fi); 10664 if (fi->type != ARMFault_None) { 10665 goto do_fault; 10666 } 10667 type = (desc & 3); 10668 domain = (desc >> 5) & 0x0f; 10669 if (regime_el(env, mmu_idx) == 1) { 10670 dacr = env->cp15.dacr_ns; 10671 } else { 10672 dacr = env->cp15.dacr_s; 10673 } 10674 domain_prot = (dacr >> (domain * 2)) & 3; 10675 if (type == 0) { 10676 /* Section translation fault. */ 10677 fi->type = ARMFault_Translation; 10678 goto do_fault; 10679 } 10680 if (type != 2) { 10681 level = 2; 10682 } 10683 if (domain_prot == 0 || domain_prot == 2) { 10684 fi->type = ARMFault_Domain; 10685 goto do_fault; 10686 } 10687 if (type == 2) { 10688 /* 1Mb section. */ 10689 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10690 ap = (desc >> 10) & 3; 10691 *page_size = 1024 * 1024; 10692 } else { 10693 /* Lookup l2 entry. */ 10694 if (type == 1) { 10695 /* Coarse pagetable. */ 10696 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10697 } else { 10698 /* Fine pagetable. */ 10699 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10700 } 10701 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10702 mmu_idx, fi); 10703 if (fi->type != ARMFault_None) { 10704 goto do_fault; 10705 } 10706 switch (desc & 3) { 10707 case 0: /* Page translation fault. */ 10708 fi->type = ARMFault_Translation; 10709 goto do_fault; 10710 case 1: /* 64k page. */ 10711 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10712 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10713 *page_size = 0x10000; 10714 break; 10715 case 2: /* 4k page. */ 10716 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10717 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10718 *page_size = 0x1000; 10719 break; 10720 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10721 if (type == 1) { 10722 /* ARMv6/XScale extended small page format */ 10723 if (arm_feature(env, ARM_FEATURE_XSCALE) 10724 || arm_feature(env, ARM_FEATURE_V6)) { 10725 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10726 *page_size = 0x1000; 10727 } else { 10728 /* UNPREDICTABLE in ARMv5; we choose to take a 10729 * page translation fault. 10730 */ 10731 fi->type = ARMFault_Translation; 10732 goto do_fault; 10733 } 10734 } else { 10735 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10736 *page_size = 0x400; 10737 } 10738 ap = (desc >> 4) & 3; 10739 break; 10740 default: 10741 /* Never happens, but compiler isn't smart enough to tell. */ 10742 abort(); 10743 } 10744 } 10745 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10746 *prot |= *prot ? PAGE_EXEC : 0; 10747 if (!(*prot & (1 << access_type))) { 10748 /* Access permission fault. */ 10749 fi->type = ARMFault_Permission; 10750 goto do_fault; 10751 } 10752 *phys_ptr = phys_addr; 10753 return false; 10754 do_fault: 10755 fi->domain = domain; 10756 fi->level = level; 10757 return true; 10758 } 10759 10760 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10761 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10762 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10763 target_ulong *page_size, ARMMMUFaultInfo *fi) 10764 { 10765 CPUState *cs = env_cpu(env); 10766 ARMCPU *cpu = env_archcpu(env); 10767 int level = 1; 10768 uint32_t table; 10769 uint32_t desc; 10770 uint32_t xn; 10771 uint32_t pxn = 0; 10772 int type; 10773 int ap; 10774 int domain = 0; 10775 int domain_prot; 10776 hwaddr phys_addr; 10777 uint32_t dacr; 10778 bool ns; 10779 10780 /* Pagetable walk. */ 10781 /* Lookup l1 descriptor. */ 10782 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10783 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10784 fi->type = ARMFault_Translation; 10785 goto do_fault; 10786 } 10787 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10788 mmu_idx, fi); 10789 if (fi->type != ARMFault_None) { 10790 goto do_fault; 10791 } 10792 type = (desc & 3); 10793 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10794 /* Section translation fault, or attempt to use the encoding 10795 * which is Reserved on implementations without PXN. 10796 */ 10797 fi->type = ARMFault_Translation; 10798 goto do_fault; 10799 } 10800 if ((type == 1) || !(desc & (1 << 18))) { 10801 /* Page or Section. */ 10802 domain = (desc >> 5) & 0x0f; 10803 } 10804 if (regime_el(env, mmu_idx) == 1) { 10805 dacr = env->cp15.dacr_ns; 10806 } else { 10807 dacr = env->cp15.dacr_s; 10808 } 10809 if (type == 1) { 10810 level = 2; 10811 } 10812 domain_prot = (dacr >> (domain * 2)) & 3; 10813 if (domain_prot == 0 || domain_prot == 2) { 10814 /* Section or Page domain fault */ 10815 fi->type = ARMFault_Domain; 10816 goto do_fault; 10817 } 10818 if (type != 1) { 10819 if (desc & (1 << 18)) { 10820 /* Supersection. */ 10821 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10822 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10823 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10824 *page_size = 0x1000000; 10825 } else { 10826 /* Section. */ 10827 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10828 *page_size = 0x100000; 10829 } 10830 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10831 xn = desc & (1 << 4); 10832 pxn = desc & 1; 10833 ns = extract32(desc, 19, 1); 10834 } else { 10835 if (cpu_isar_feature(aa32_pxn, cpu)) { 10836 pxn = (desc >> 2) & 1; 10837 } 10838 ns = extract32(desc, 3, 1); 10839 /* Lookup l2 entry. */ 10840 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10841 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10842 mmu_idx, fi); 10843 if (fi->type != ARMFault_None) { 10844 goto do_fault; 10845 } 10846 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10847 switch (desc & 3) { 10848 case 0: /* Page translation fault. */ 10849 fi->type = ARMFault_Translation; 10850 goto do_fault; 10851 case 1: /* 64k page. */ 10852 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10853 xn = desc & (1 << 15); 10854 *page_size = 0x10000; 10855 break; 10856 case 2: case 3: /* 4k page. */ 10857 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10858 xn = desc & 1; 10859 *page_size = 0x1000; 10860 break; 10861 default: 10862 /* Never happens, but compiler isn't smart enough to tell. */ 10863 abort(); 10864 } 10865 } 10866 if (domain_prot == 3) { 10867 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10868 } else { 10869 if (pxn && !regime_is_user(env, mmu_idx)) { 10870 xn = 1; 10871 } 10872 if (xn && access_type == MMU_INST_FETCH) { 10873 fi->type = ARMFault_Permission; 10874 goto do_fault; 10875 } 10876 10877 if (arm_feature(env, ARM_FEATURE_V6K) && 10878 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10879 /* The simplified model uses AP[0] as an access control bit. */ 10880 if ((ap & 1) == 0) { 10881 /* Access flag fault. */ 10882 fi->type = ARMFault_AccessFlag; 10883 goto do_fault; 10884 } 10885 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10886 } else { 10887 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10888 } 10889 if (*prot && !xn) { 10890 *prot |= PAGE_EXEC; 10891 } 10892 if (!(*prot & (1 << access_type))) { 10893 /* Access permission fault. */ 10894 fi->type = ARMFault_Permission; 10895 goto do_fault; 10896 } 10897 } 10898 if (ns) { 10899 /* The NS bit will (as required by the architecture) have no effect if 10900 * the CPU doesn't support TZ or this is a non-secure translation 10901 * regime, because the attribute will already be non-secure. 10902 */ 10903 attrs->secure = false; 10904 } 10905 *phys_ptr = phys_addr; 10906 return false; 10907 do_fault: 10908 fi->domain = domain; 10909 fi->level = level; 10910 return true; 10911 } 10912 10913 /* 10914 * check_s2_mmu_setup 10915 * @cpu: ARMCPU 10916 * @is_aa64: True if the translation regime is in AArch64 state 10917 * @startlevel: Suggested starting level 10918 * @inputsize: Bitsize of IPAs 10919 * @stride: Page-table stride (See the ARM ARM) 10920 * 10921 * Returns true if the suggested S2 translation parameters are OK and 10922 * false otherwise. 10923 */ 10924 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10925 int inputsize, int stride) 10926 { 10927 const int grainsize = stride + 3; 10928 int startsizecheck; 10929 10930 /* Negative levels are never allowed. */ 10931 if (level < 0) { 10932 return false; 10933 } 10934 10935 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10936 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10937 return false; 10938 } 10939 10940 if (is_aa64) { 10941 CPUARMState *env = &cpu->env; 10942 unsigned int pamax = arm_pamax(cpu); 10943 10944 switch (stride) { 10945 case 13: /* 64KB Pages. */ 10946 if (level == 0 || (level == 1 && pamax <= 42)) { 10947 return false; 10948 } 10949 break; 10950 case 11: /* 16KB Pages. */ 10951 if (level == 0 || (level == 1 && pamax <= 40)) { 10952 return false; 10953 } 10954 break; 10955 case 9: /* 4KB Pages. */ 10956 if (level == 0 && pamax <= 42) { 10957 return false; 10958 } 10959 break; 10960 default: 10961 g_assert_not_reached(); 10962 } 10963 10964 /* Inputsize checks. */ 10965 if (inputsize > pamax && 10966 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10967 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10968 return false; 10969 } 10970 } else { 10971 /* AArch32 only supports 4KB pages. Assert on that. */ 10972 assert(stride == 9); 10973 10974 if (level == 0) { 10975 return false; 10976 } 10977 } 10978 return true; 10979 } 10980 10981 /* Translate from the 4-bit stage 2 representation of 10982 * memory attributes (without cache-allocation hints) to 10983 * the 8-bit representation of the stage 1 MAIR registers 10984 * (which includes allocation hints). 10985 * 10986 * ref: shared/translation/attrs/S2AttrDecode() 10987 * .../S2ConvertAttrsHints() 10988 */ 10989 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10990 { 10991 uint8_t hiattr = extract32(s2attrs, 2, 2); 10992 uint8_t loattr = extract32(s2attrs, 0, 2); 10993 uint8_t hihint = 0, lohint = 0; 10994 10995 if (hiattr != 0) { /* normal memory */ 10996 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 10997 hiattr = loattr = 1; /* non-cacheable */ 10998 } else { 10999 if (hiattr != 1) { /* Write-through or write-back */ 11000 hihint = 3; /* RW allocate */ 11001 } 11002 if (loattr != 1) { /* Write-through or write-back */ 11003 lohint = 3; /* RW allocate */ 11004 } 11005 } 11006 } 11007 11008 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11009 } 11010 #endif /* !CONFIG_USER_ONLY */ 11011 11012 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11013 { 11014 if (regime_has_2_ranges(mmu_idx)) { 11015 return extract64(tcr, 37, 2); 11016 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11017 return 0; /* VTCR_EL2 */ 11018 } else { 11019 /* Replicate the single TBI bit so we always have 2 bits. */ 11020 return extract32(tcr, 20, 1) * 3; 11021 } 11022 } 11023 11024 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11025 { 11026 if (regime_has_2_ranges(mmu_idx)) { 11027 return extract64(tcr, 51, 2); 11028 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11029 return 0; /* VTCR_EL2 */ 11030 } else { 11031 /* Replicate the single TBID bit so we always have 2 bits. */ 11032 return extract32(tcr, 29, 1) * 3; 11033 } 11034 } 11035 11036 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11037 { 11038 if (regime_has_2_ranges(mmu_idx)) { 11039 return extract64(tcr, 57, 2); 11040 } else { 11041 /* Replicate the single TCMA bit so we always have 2 bits. */ 11042 return extract32(tcr, 30, 1) * 3; 11043 } 11044 } 11045 11046 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11047 ARMMMUIdx mmu_idx, bool data) 11048 { 11049 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11050 bool epd, hpd, using16k, using64k; 11051 int select, tsz, tbi, max_tsz; 11052 11053 if (!regime_has_2_ranges(mmu_idx)) { 11054 select = 0; 11055 tsz = extract32(tcr, 0, 6); 11056 using64k = extract32(tcr, 14, 1); 11057 using16k = extract32(tcr, 15, 1); 11058 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11059 /* VTCR_EL2 */ 11060 hpd = false; 11061 } else { 11062 hpd = extract32(tcr, 24, 1); 11063 } 11064 epd = false; 11065 } else { 11066 /* 11067 * Bit 55 is always between the two regions, and is canonical for 11068 * determining if address tagging is enabled. 11069 */ 11070 select = extract64(va, 55, 1); 11071 if (!select) { 11072 tsz = extract32(tcr, 0, 6); 11073 epd = extract32(tcr, 7, 1); 11074 using64k = extract32(tcr, 14, 1); 11075 using16k = extract32(tcr, 15, 1); 11076 hpd = extract64(tcr, 41, 1); 11077 } else { 11078 int tg = extract32(tcr, 30, 2); 11079 using16k = tg == 1; 11080 using64k = tg == 3; 11081 tsz = extract32(tcr, 16, 6); 11082 epd = extract32(tcr, 23, 1); 11083 hpd = extract64(tcr, 42, 1); 11084 } 11085 } 11086 11087 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11088 max_tsz = 48 - using64k; 11089 } else { 11090 max_tsz = 39; 11091 } 11092 11093 tsz = MIN(tsz, max_tsz); 11094 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11095 11096 /* Present TBI as a composite with TBID. */ 11097 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11098 if (!data) { 11099 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11100 } 11101 tbi = (tbi >> select) & 1; 11102 11103 return (ARMVAParameters) { 11104 .tsz = tsz, 11105 .select = select, 11106 .tbi = tbi, 11107 .epd = epd, 11108 .hpd = hpd, 11109 .using16k = using16k, 11110 .using64k = using64k, 11111 }; 11112 } 11113 11114 #ifndef CONFIG_USER_ONLY 11115 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11116 ARMMMUIdx mmu_idx) 11117 { 11118 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11119 uint32_t el = regime_el(env, mmu_idx); 11120 int select, tsz; 11121 bool epd, hpd; 11122 11123 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11124 11125 if (mmu_idx == ARMMMUIdx_Stage2) { 11126 /* VTCR */ 11127 bool sext = extract32(tcr, 4, 1); 11128 bool sign = extract32(tcr, 3, 1); 11129 11130 /* 11131 * If the sign-extend bit is not the same as t0sz[3], the result 11132 * is unpredictable. Flag this as a guest error. 11133 */ 11134 if (sign != sext) { 11135 qemu_log_mask(LOG_GUEST_ERROR, 11136 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11137 } 11138 tsz = sextract32(tcr, 0, 4) + 8; 11139 select = 0; 11140 hpd = false; 11141 epd = false; 11142 } else if (el == 2) { 11143 /* HTCR */ 11144 tsz = extract32(tcr, 0, 3); 11145 select = 0; 11146 hpd = extract64(tcr, 24, 1); 11147 epd = false; 11148 } else { 11149 int t0sz = extract32(tcr, 0, 3); 11150 int t1sz = extract32(tcr, 16, 3); 11151 11152 if (t1sz == 0) { 11153 select = va > (0xffffffffu >> t0sz); 11154 } else { 11155 /* Note that we will detect errors later. */ 11156 select = va >= ~(0xffffffffu >> t1sz); 11157 } 11158 if (!select) { 11159 tsz = t0sz; 11160 epd = extract32(tcr, 7, 1); 11161 hpd = extract64(tcr, 41, 1); 11162 } else { 11163 tsz = t1sz; 11164 epd = extract32(tcr, 23, 1); 11165 hpd = extract64(tcr, 42, 1); 11166 } 11167 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11168 hpd &= extract32(tcr, 6, 1); 11169 } 11170 11171 return (ARMVAParameters) { 11172 .tsz = tsz, 11173 .select = select, 11174 .epd = epd, 11175 .hpd = hpd, 11176 }; 11177 } 11178 11179 /** 11180 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11181 * 11182 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11183 * prot and page_size may not be filled in, and the populated fsr value provides 11184 * information on why the translation aborted, in the format of a long-format 11185 * DFSR/IFSR fault register, with the following caveats: 11186 * * the WnR bit is never set (the caller must do this). 11187 * 11188 * @env: CPUARMState 11189 * @address: virtual address to get physical address for 11190 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11191 * @mmu_idx: MMU index indicating required translation regime 11192 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11193 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11194 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11195 * @phys_ptr: set to the physical address corresponding to the virtual address 11196 * @attrs: set to the memory transaction attributes to use 11197 * @prot: set to the permissions for the page containing phys_ptr 11198 * @page_size_ptr: set to the size of the page containing phys_ptr 11199 * @fi: set to fault info if the translation fails 11200 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11201 */ 11202 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11203 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11204 bool s1_is_el0, 11205 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11206 target_ulong *page_size_ptr, 11207 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11208 { 11209 ARMCPU *cpu = env_archcpu(env); 11210 CPUState *cs = CPU(cpu); 11211 /* Read an LPAE long-descriptor translation table. */ 11212 ARMFaultType fault_type = ARMFault_Translation; 11213 uint32_t level; 11214 ARMVAParameters param; 11215 uint64_t ttbr; 11216 hwaddr descaddr, indexmask, indexmask_grainsize; 11217 uint32_t tableattrs; 11218 target_ulong page_size; 11219 uint32_t attrs; 11220 int32_t stride; 11221 int addrsize, inputsize; 11222 TCR *tcr = regime_tcr(env, mmu_idx); 11223 int ap, ns, xn, pxn; 11224 uint32_t el = regime_el(env, mmu_idx); 11225 uint64_t descaddrmask; 11226 bool aarch64 = arm_el_is_aa64(env, el); 11227 bool guarded = false; 11228 11229 /* TODO: This code does not support shareability levels. */ 11230 if (aarch64) { 11231 param = aa64_va_parameters(env, address, mmu_idx, 11232 access_type != MMU_INST_FETCH); 11233 level = 0; 11234 addrsize = 64 - 8 * param.tbi; 11235 inputsize = 64 - param.tsz; 11236 } else { 11237 param = aa32_va_parameters(env, address, mmu_idx); 11238 level = 1; 11239 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11240 inputsize = addrsize - param.tsz; 11241 } 11242 11243 /* 11244 * We determined the region when collecting the parameters, but we 11245 * have not yet validated that the address is valid for the region. 11246 * Extract the top bits and verify that they all match select. 11247 * 11248 * For aa32, if inputsize == addrsize, then we have selected the 11249 * region by exclusion in aa32_va_parameters and there is no more 11250 * validation to do here. 11251 */ 11252 if (inputsize < addrsize) { 11253 target_ulong top_bits = sextract64(address, inputsize, 11254 addrsize - inputsize); 11255 if (-top_bits != param.select) { 11256 /* The gap between the two regions is a Translation fault */ 11257 fault_type = ARMFault_Translation; 11258 goto do_fault; 11259 } 11260 } 11261 11262 if (param.using64k) { 11263 stride = 13; 11264 } else if (param.using16k) { 11265 stride = 11; 11266 } else { 11267 stride = 9; 11268 } 11269 11270 /* Note that QEMU ignores shareability and cacheability attributes, 11271 * so we don't need to do anything with the SH, ORGN, IRGN fields 11272 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11273 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11274 * implement any ASID-like capability so we can ignore it (instead 11275 * we will always flush the TLB any time the ASID is changed). 11276 */ 11277 ttbr = regime_ttbr(env, mmu_idx, param.select); 11278 11279 /* Here we should have set up all the parameters for the translation: 11280 * inputsize, ttbr, epd, stride, tbi 11281 */ 11282 11283 if (param.epd) { 11284 /* Translation table walk disabled => Translation fault on TLB miss 11285 * Note: This is always 0 on 64-bit EL2 and EL3. 11286 */ 11287 goto do_fault; 11288 } 11289 11290 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11291 /* The starting level depends on the virtual address size (which can 11292 * be up to 48 bits) and the translation granule size. It indicates 11293 * the number of strides (stride bits at a time) needed to 11294 * consume the bits of the input address. In the pseudocode this is: 11295 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11296 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11297 * our 'stride + 3' and 'stride' is our 'stride'. 11298 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11299 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11300 * = 4 - (inputsize - 4) / stride; 11301 */ 11302 level = 4 - (inputsize - 4) / stride; 11303 } else { 11304 /* For stage 2 translations the starting level is specified by the 11305 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11306 */ 11307 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11308 uint32_t startlevel; 11309 bool ok; 11310 11311 if (!aarch64 || stride == 9) { 11312 /* AArch32 or 4KB pages */ 11313 startlevel = 2 - sl0; 11314 11315 if (cpu_isar_feature(aa64_st, cpu)) { 11316 startlevel &= 3; 11317 } 11318 } else { 11319 /* 16KB or 64KB pages */ 11320 startlevel = 3 - sl0; 11321 } 11322 11323 /* Check that the starting level is valid. */ 11324 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11325 inputsize, stride); 11326 if (!ok) { 11327 fault_type = ARMFault_Translation; 11328 goto do_fault; 11329 } 11330 level = startlevel; 11331 } 11332 11333 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11334 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11335 11336 /* Now we can extract the actual base address from the TTBR */ 11337 descaddr = extract64(ttbr, 0, 48); 11338 /* 11339 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11340 * and also to mask out CnP (bit 0) which could validly be non-zero. 11341 */ 11342 descaddr &= ~indexmask; 11343 11344 /* The address field in the descriptor goes up to bit 39 for ARMv7 11345 * but up to bit 47 for ARMv8, but we use the descaddrmask 11346 * up to bit 39 for AArch32, because we don't need other bits in that case 11347 * to construct next descriptor address (anyway they should be all zeroes). 11348 */ 11349 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11350 ~indexmask_grainsize; 11351 11352 /* Secure accesses start with the page table in secure memory and 11353 * can be downgraded to non-secure at any step. Non-secure accesses 11354 * remain non-secure. We implement this by just ORing in the NSTable/NS 11355 * bits at each step. 11356 */ 11357 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11358 for (;;) { 11359 uint64_t descriptor; 11360 bool nstable; 11361 11362 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11363 descaddr &= ~7ULL; 11364 nstable = extract32(tableattrs, 4, 1); 11365 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11366 if (fi->type != ARMFault_None) { 11367 goto do_fault; 11368 } 11369 11370 if (!(descriptor & 1) || 11371 (!(descriptor & 2) && (level == 3))) { 11372 /* Invalid, or the Reserved level 3 encoding */ 11373 goto do_fault; 11374 } 11375 descaddr = descriptor & descaddrmask; 11376 11377 if ((descriptor & 2) && (level < 3)) { 11378 /* Table entry. The top five bits are attributes which may 11379 * propagate down through lower levels of the table (and 11380 * which are all arranged so that 0 means "no effect", so 11381 * we can gather them up by ORing in the bits at each level). 11382 */ 11383 tableattrs |= extract64(descriptor, 59, 5); 11384 level++; 11385 indexmask = indexmask_grainsize; 11386 continue; 11387 } 11388 /* Block entry at level 1 or 2, or page entry at level 3. 11389 * These are basically the same thing, although the number 11390 * of bits we pull in from the vaddr varies. 11391 */ 11392 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11393 descaddr |= (address & (page_size - 1)); 11394 /* Extract attributes from the descriptor */ 11395 attrs = extract64(descriptor, 2, 10) 11396 | (extract64(descriptor, 52, 12) << 10); 11397 11398 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11399 /* Stage 2 table descriptors do not include any attribute fields */ 11400 break; 11401 } 11402 /* Merge in attributes from table descriptors */ 11403 attrs |= nstable << 3; /* NS */ 11404 guarded = extract64(descriptor, 50, 1); /* GP */ 11405 if (param.hpd) { 11406 /* HPD disables all the table attributes except NSTable. */ 11407 break; 11408 } 11409 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11410 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11411 * means "force PL1 access only", which means forcing AP[1] to 0. 11412 */ 11413 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11414 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11415 break; 11416 } 11417 /* Here descaddr is the final physical address, and attributes 11418 * are all in attrs. 11419 */ 11420 fault_type = ARMFault_AccessFlag; 11421 if ((attrs & (1 << 8)) == 0) { 11422 /* Access flag */ 11423 goto do_fault; 11424 } 11425 11426 ap = extract32(attrs, 4, 2); 11427 11428 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11429 ns = mmu_idx == ARMMMUIdx_Stage2; 11430 xn = extract32(attrs, 11, 2); 11431 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11432 } else { 11433 ns = extract32(attrs, 3, 1); 11434 xn = extract32(attrs, 12, 1); 11435 pxn = extract32(attrs, 11, 1); 11436 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11437 } 11438 11439 fault_type = ARMFault_Permission; 11440 if (!(*prot & (1 << access_type))) { 11441 goto do_fault; 11442 } 11443 11444 if (ns) { 11445 /* The NS bit will (as required by the architecture) have no effect if 11446 * the CPU doesn't support TZ or this is a non-secure translation 11447 * regime, because the attribute will already be non-secure. 11448 */ 11449 txattrs->secure = false; 11450 } 11451 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11452 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11453 arm_tlb_bti_gp(txattrs) = true; 11454 } 11455 11456 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11457 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11458 } else { 11459 /* Index into MAIR registers for cache attributes */ 11460 uint8_t attrindx = extract32(attrs, 0, 3); 11461 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11462 assert(attrindx <= 7); 11463 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11464 } 11465 cacheattrs->shareability = extract32(attrs, 6, 2); 11466 11467 *phys_ptr = descaddr; 11468 *page_size_ptr = page_size; 11469 return false; 11470 11471 do_fault: 11472 fi->type = fault_type; 11473 fi->level = level; 11474 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11475 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11476 mmu_idx == ARMMMUIdx_Stage2_S); 11477 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11478 return true; 11479 } 11480 11481 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11482 ARMMMUIdx mmu_idx, 11483 int32_t address, int *prot) 11484 { 11485 if (!arm_feature(env, ARM_FEATURE_M)) { 11486 *prot = PAGE_READ | PAGE_WRITE; 11487 switch (address) { 11488 case 0xF0000000 ... 0xFFFFFFFF: 11489 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11490 /* hivecs execing is ok */ 11491 *prot |= PAGE_EXEC; 11492 } 11493 break; 11494 case 0x00000000 ... 0x7FFFFFFF: 11495 *prot |= PAGE_EXEC; 11496 break; 11497 } 11498 } else { 11499 /* Default system address map for M profile cores. 11500 * The architecture specifies which regions are execute-never; 11501 * at the MPU level no other checks are defined. 11502 */ 11503 switch (address) { 11504 case 0x00000000 ... 0x1fffffff: /* ROM */ 11505 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11506 case 0x60000000 ... 0x7fffffff: /* RAM */ 11507 case 0x80000000 ... 0x9fffffff: /* RAM */ 11508 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11509 break; 11510 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11511 case 0xa0000000 ... 0xbfffffff: /* Device */ 11512 case 0xc0000000 ... 0xdfffffff: /* Device */ 11513 case 0xe0000000 ... 0xffffffff: /* System */ 11514 *prot = PAGE_READ | PAGE_WRITE; 11515 break; 11516 default: 11517 g_assert_not_reached(); 11518 } 11519 } 11520 } 11521 11522 static bool pmsav7_use_background_region(ARMCPU *cpu, 11523 ARMMMUIdx mmu_idx, bool is_user) 11524 { 11525 /* Return true if we should use the default memory map as a 11526 * "background" region if there are no hits against any MPU regions. 11527 */ 11528 CPUARMState *env = &cpu->env; 11529 11530 if (is_user) { 11531 return false; 11532 } 11533 11534 if (arm_feature(env, ARM_FEATURE_M)) { 11535 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11536 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11537 } else { 11538 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11539 } 11540 } 11541 11542 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11543 { 11544 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11545 return arm_feature(env, ARM_FEATURE_M) && 11546 extract32(address, 20, 12) == 0xe00; 11547 } 11548 11549 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11550 { 11551 /* True if address is in the M profile system region 11552 * 0xe0000000 - 0xffffffff 11553 */ 11554 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11555 } 11556 11557 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11558 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11559 hwaddr *phys_ptr, int *prot, 11560 target_ulong *page_size, 11561 ARMMMUFaultInfo *fi) 11562 { 11563 ARMCPU *cpu = env_archcpu(env); 11564 int n; 11565 bool is_user = regime_is_user(env, mmu_idx); 11566 11567 *phys_ptr = address; 11568 *page_size = TARGET_PAGE_SIZE; 11569 *prot = 0; 11570 11571 if (regime_translation_disabled(env, mmu_idx) || 11572 m_is_ppb_region(env, address)) { 11573 /* MPU disabled or M profile PPB access: use default memory map. 11574 * The other case which uses the default memory map in the 11575 * v7M ARM ARM pseudocode is exception vector reads from the vector 11576 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11577 * which always does a direct read using address_space_ldl(), rather 11578 * than going via this function, so we don't need to check that here. 11579 */ 11580 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11581 } else { /* MPU enabled */ 11582 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11583 /* region search */ 11584 uint32_t base = env->pmsav7.drbar[n]; 11585 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11586 uint32_t rmask; 11587 bool srdis = false; 11588 11589 if (!(env->pmsav7.drsr[n] & 0x1)) { 11590 continue; 11591 } 11592 11593 if (!rsize) { 11594 qemu_log_mask(LOG_GUEST_ERROR, 11595 "DRSR[%d]: Rsize field cannot be 0\n", n); 11596 continue; 11597 } 11598 rsize++; 11599 rmask = (1ull << rsize) - 1; 11600 11601 if (base & rmask) { 11602 qemu_log_mask(LOG_GUEST_ERROR, 11603 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11604 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11605 n, base, rmask); 11606 continue; 11607 } 11608 11609 if (address < base || address > base + rmask) { 11610 /* 11611 * Address not in this region. We must check whether the 11612 * region covers addresses in the same page as our address. 11613 * In that case we must not report a size that covers the 11614 * whole page for a subsequent hit against a different MPU 11615 * region or the background region, because it would result in 11616 * incorrect TLB hits for subsequent accesses to addresses that 11617 * are in this MPU region. 11618 */ 11619 if (ranges_overlap(base, rmask, 11620 address & TARGET_PAGE_MASK, 11621 TARGET_PAGE_SIZE)) { 11622 *page_size = 1; 11623 } 11624 continue; 11625 } 11626 11627 /* Region matched */ 11628 11629 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11630 int i, snd; 11631 uint32_t srdis_mask; 11632 11633 rsize -= 3; /* sub region size (power of 2) */ 11634 snd = ((address - base) >> rsize) & 0x7; 11635 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11636 11637 srdis_mask = srdis ? 0x3 : 0x0; 11638 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11639 /* This will check in groups of 2, 4 and then 8, whether 11640 * the subregion bits are consistent. rsize is incremented 11641 * back up to give the region size, considering consistent 11642 * adjacent subregions as one region. Stop testing if rsize 11643 * is already big enough for an entire QEMU page. 11644 */ 11645 int snd_rounded = snd & ~(i - 1); 11646 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11647 snd_rounded + 8, i); 11648 if (srdis_mask ^ srdis_multi) { 11649 break; 11650 } 11651 srdis_mask = (srdis_mask << i) | srdis_mask; 11652 rsize++; 11653 } 11654 } 11655 if (srdis) { 11656 continue; 11657 } 11658 if (rsize < TARGET_PAGE_BITS) { 11659 *page_size = 1 << rsize; 11660 } 11661 break; 11662 } 11663 11664 if (n == -1) { /* no hits */ 11665 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11666 /* background fault */ 11667 fi->type = ARMFault_Background; 11668 return true; 11669 } 11670 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11671 } else { /* a MPU hit! */ 11672 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11673 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11674 11675 if (m_is_system_region(env, address)) { 11676 /* System space is always execute never */ 11677 xn = 1; 11678 } 11679 11680 if (is_user) { /* User mode AP bit decoding */ 11681 switch (ap) { 11682 case 0: 11683 case 1: 11684 case 5: 11685 break; /* no access */ 11686 case 3: 11687 *prot |= PAGE_WRITE; 11688 /* fall through */ 11689 case 2: 11690 case 6: 11691 *prot |= PAGE_READ | PAGE_EXEC; 11692 break; 11693 case 7: 11694 /* for v7M, same as 6; for R profile a reserved value */ 11695 if (arm_feature(env, ARM_FEATURE_M)) { 11696 *prot |= PAGE_READ | PAGE_EXEC; 11697 break; 11698 } 11699 /* fall through */ 11700 default: 11701 qemu_log_mask(LOG_GUEST_ERROR, 11702 "DRACR[%d]: Bad value for AP bits: 0x%" 11703 PRIx32 "\n", n, ap); 11704 } 11705 } else { /* Priv. mode AP bits decoding */ 11706 switch (ap) { 11707 case 0: 11708 break; /* no access */ 11709 case 1: 11710 case 2: 11711 case 3: 11712 *prot |= PAGE_WRITE; 11713 /* fall through */ 11714 case 5: 11715 case 6: 11716 *prot |= PAGE_READ | PAGE_EXEC; 11717 break; 11718 case 7: 11719 /* for v7M, same as 6; for R profile a reserved value */ 11720 if (arm_feature(env, ARM_FEATURE_M)) { 11721 *prot |= PAGE_READ | PAGE_EXEC; 11722 break; 11723 } 11724 /* fall through */ 11725 default: 11726 qemu_log_mask(LOG_GUEST_ERROR, 11727 "DRACR[%d]: Bad value for AP bits: 0x%" 11728 PRIx32 "\n", n, ap); 11729 } 11730 } 11731 11732 /* execute never */ 11733 if (xn) { 11734 *prot &= ~PAGE_EXEC; 11735 } 11736 } 11737 } 11738 11739 fi->type = ARMFault_Permission; 11740 fi->level = 1; 11741 return !(*prot & (1 << access_type)); 11742 } 11743 11744 static bool v8m_is_sau_exempt(CPUARMState *env, 11745 uint32_t address, MMUAccessType access_type) 11746 { 11747 /* The architecture specifies that certain address ranges are 11748 * exempt from v8M SAU/IDAU checks. 11749 */ 11750 return 11751 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11752 (address >= 0xe0000000 && address <= 0xe0002fff) || 11753 (address >= 0xe000e000 && address <= 0xe000efff) || 11754 (address >= 0xe002e000 && address <= 0xe002efff) || 11755 (address >= 0xe0040000 && address <= 0xe0041fff) || 11756 (address >= 0xe00ff000 && address <= 0xe00fffff); 11757 } 11758 11759 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11760 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11761 V8M_SAttributes *sattrs) 11762 { 11763 /* Look up the security attributes for this address. Compare the 11764 * pseudocode SecurityCheck() function. 11765 * We assume the caller has zero-initialized *sattrs. 11766 */ 11767 ARMCPU *cpu = env_archcpu(env); 11768 int r; 11769 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11770 int idau_region = IREGION_NOTVALID; 11771 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11772 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11773 11774 if (cpu->idau) { 11775 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11776 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11777 11778 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11779 &idau_nsc); 11780 } 11781 11782 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11783 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11784 return; 11785 } 11786 11787 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11788 sattrs->ns = !regime_is_secure(env, mmu_idx); 11789 return; 11790 } 11791 11792 if (idau_region != IREGION_NOTVALID) { 11793 sattrs->irvalid = true; 11794 sattrs->iregion = idau_region; 11795 } 11796 11797 switch (env->sau.ctrl & 3) { 11798 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11799 break; 11800 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11801 sattrs->ns = true; 11802 break; 11803 default: /* SAU.ENABLE == 1 */ 11804 for (r = 0; r < cpu->sau_sregion; r++) { 11805 if (env->sau.rlar[r] & 1) { 11806 uint32_t base = env->sau.rbar[r] & ~0x1f; 11807 uint32_t limit = env->sau.rlar[r] | 0x1f; 11808 11809 if (base <= address && limit >= address) { 11810 if (base > addr_page_base || limit < addr_page_limit) { 11811 sattrs->subpage = true; 11812 } 11813 if (sattrs->srvalid) { 11814 /* If we hit in more than one region then we must report 11815 * as Secure, not NS-Callable, with no valid region 11816 * number info. 11817 */ 11818 sattrs->ns = false; 11819 sattrs->nsc = false; 11820 sattrs->sregion = 0; 11821 sattrs->srvalid = false; 11822 break; 11823 } else { 11824 if (env->sau.rlar[r] & 2) { 11825 sattrs->nsc = true; 11826 } else { 11827 sattrs->ns = true; 11828 } 11829 sattrs->srvalid = true; 11830 sattrs->sregion = r; 11831 } 11832 } else { 11833 /* 11834 * Address not in this region. We must check whether the 11835 * region covers addresses in the same page as our address. 11836 * In that case we must not report a size that covers the 11837 * whole page for a subsequent hit against a different MPU 11838 * region or the background region, because it would result 11839 * in incorrect TLB hits for subsequent accesses to 11840 * addresses that are in this MPU region. 11841 */ 11842 if (limit >= base && 11843 ranges_overlap(base, limit - base + 1, 11844 addr_page_base, 11845 TARGET_PAGE_SIZE)) { 11846 sattrs->subpage = true; 11847 } 11848 } 11849 } 11850 } 11851 break; 11852 } 11853 11854 /* 11855 * The IDAU will override the SAU lookup results if it specifies 11856 * higher security than the SAU does. 11857 */ 11858 if (!idau_ns) { 11859 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11860 sattrs->ns = false; 11861 sattrs->nsc = idau_nsc; 11862 } 11863 } 11864 } 11865 11866 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11867 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11868 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11869 int *prot, bool *is_subpage, 11870 ARMMMUFaultInfo *fi, uint32_t *mregion) 11871 { 11872 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11873 * that a full phys-to-virt translation does). 11874 * mregion is (if not NULL) set to the region number which matched, 11875 * or -1 if no region number is returned (MPU off, address did not 11876 * hit a region, address hit in multiple regions). 11877 * We set is_subpage to true if the region hit doesn't cover the 11878 * entire TARGET_PAGE the address is within. 11879 */ 11880 ARMCPU *cpu = env_archcpu(env); 11881 bool is_user = regime_is_user(env, mmu_idx); 11882 uint32_t secure = regime_is_secure(env, mmu_idx); 11883 int n; 11884 int matchregion = -1; 11885 bool hit = false; 11886 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11887 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11888 11889 *is_subpage = false; 11890 *phys_ptr = address; 11891 *prot = 0; 11892 if (mregion) { 11893 *mregion = -1; 11894 } 11895 11896 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11897 * was an exception vector read from the vector table (which is always 11898 * done using the default system address map), because those accesses 11899 * are done in arm_v7m_load_vector(), which always does a direct 11900 * read using address_space_ldl(), rather than going via this function. 11901 */ 11902 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11903 hit = true; 11904 } else if (m_is_ppb_region(env, address)) { 11905 hit = true; 11906 } else { 11907 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11908 hit = true; 11909 } 11910 11911 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11912 /* region search */ 11913 /* Note that the base address is bits [31:5] from the register 11914 * with bits [4:0] all zeroes, but the limit address is bits 11915 * [31:5] from the register with bits [4:0] all ones. 11916 */ 11917 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11918 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11919 11920 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11921 /* Region disabled */ 11922 continue; 11923 } 11924 11925 if (address < base || address > limit) { 11926 /* 11927 * Address not in this region. We must check whether the 11928 * region covers addresses in the same page as our address. 11929 * In that case we must not report a size that covers the 11930 * whole page for a subsequent hit against a different MPU 11931 * region or the background region, because it would result in 11932 * incorrect TLB hits for subsequent accesses to addresses that 11933 * are in this MPU region. 11934 */ 11935 if (limit >= base && 11936 ranges_overlap(base, limit - base + 1, 11937 addr_page_base, 11938 TARGET_PAGE_SIZE)) { 11939 *is_subpage = true; 11940 } 11941 continue; 11942 } 11943 11944 if (base > addr_page_base || limit < addr_page_limit) { 11945 *is_subpage = true; 11946 } 11947 11948 if (matchregion != -1) { 11949 /* Multiple regions match -- always a failure (unlike 11950 * PMSAv7 where highest-numbered-region wins) 11951 */ 11952 fi->type = ARMFault_Permission; 11953 fi->level = 1; 11954 return true; 11955 } 11956 11957 matchregion = n; 11958 hit = true; 11959 } 11960 } 11961 11962 if (!hit) { 11963 /* background fault */ 11964 fi->type = ARMFault_Background; 11965 return true; 11966 } 11967 11968 if (matchregion == -1) { 11969 /* hit using the background region */ 11970 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11971 } else { 11972 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11973 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11974 bool pxn = false; 11975 11976 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11977 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11978 } 11979 11980 if (m_is_system_region(env, address)) { 11981 /* System space is always execute never */ 11982 xn = 1; 11983 } 11984 11985 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11986 if (*prot && !xn && !(pxn && !is_user)) { 11987 *prot |= PAGE_EXEC; 11988 } 11989 /* We don't need to look the attribute up in the MAIR0/MAIR1 11990 * registers because that only tells us about cacheability. 11991 */ 11992 if (mregion) { 11993 *mregion = matchregion; 11994 } 11995 } 11996 11997 fi->type = ARMFault_Permission; 11998 fi->level = 1; 11999 return !(*prot & (1 << access_type)); 12000 } 12001 12002 12003 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12004 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12005 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12006 int *prot, target_ulong *page_size, 12007 ARMMMUFaultInfo *fi) 12008 { 12009 uint32_t secure = regime_is_secure(env, mmu_idx); 12010 V8M_SAttributes sattrs = {}; 12011 bool ret; 12012 bool mpu_is_subpage; 12013 12014 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12015 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12016 if (access_type == MMU_INST_FETCH) { 12017 /* Instruction fetches always use the MMU bank and the 12018 * transaction attribute determined by the fetch address, 12019 * regardless of CPU state. This is painful for QEMU 12020 * to handle, because it would mean we need to encode 12021 * into the mmu_idx not just the (user, negpri) information 12022 * for the current security state but also that for the 12023 * other security state, which would balloon the number 12024 * of mmu_idx values needed alarmingly. 12025 * Fortunately we can avoid this because it's not actually 12026 * possible to arbitrarily execute code from memory with 12027 * the wrong security attribute: it will always generate 12028 * an exception of some kind or another, apart from the 12029 * special case of an NS CPU executing an SG instruction 12030 * in S&NSC memory. So we always just fail the translation 12031 * here and sort things out in the exception handler 12032 * (including possibly emulating an SG instruction). 12033 */ 12034 if (sattrs.ns != !secure) { 12035 if (sattrs.nsc) { 12036 fi->type = ARMFault_QEMU_NSCExec; 12037 } else { 12038 fi->type = ARMFault_QEMU_SFault; 12039 } 12040 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12041 *phys_ptr = address; 12042 *prot = 0; 12043 return true; 12044 } 12045 } else { 12046 /* For data accesses we always use the MMU bank indicated 12047 * by the current CPU state, but the security attributes 12048 * might downgrade a secure access to nonsecure. 12049 */ 12050 if (sattrs.ns) { 12051 txattrs->secure = false; 12052 } else if (!secure) { 12053 /* NS access to S memory must fault. 12054 * Architecturally we should first check whether the 12055 * MPU information for this address indicates that we 12056 * are doing an unaligned access to Device memory, which 12057 * should generate a UsageFault instead. QEMU does not 12058 * currently check for that kind of unaligned access though. 12059 * If we added it we would need to do so as a special case 12060 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12061 */ 12062 fi->type = ARMFault_QEMU_SFault; 12063 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12064 *phys_ptr = address; 12065 *prot = 0; 12066 return true; 12067 } 12068 } 12069 } 12070 12071 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12072 txattrs, prot, &mpu_is_subpage, fi, NULL); 12073 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12074 return ret; 12075 } 12076 12077 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12078 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12079 hwaddr *phys_ptr, int *prot, 12080 ARMMMUFaultInfo *fi) 12081 { 12082 int n; 12083 uint32_t mask; 12084 uint32_t base; 12085 bool is_user = regime_is_user(env, mmu_idx); 12086 12087 if (regime_translation_disabled(env, mmu_idx)) { 12088 /* MPU disabled. */ 12089 *phys_ptr = address; 12090 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12091 return false; 12092 } 12093 12094 *phys_ptr = address; 12095 for (n = 7; n >= 0; n--) { 12096 base = env->cp15.c6_region[n]; 12097 if ((base & 1) == 0) { 12098 continue; 12099 } 12100 mask = 1 << ((base >> 1) & 0x1f); 12101 /* Keep this shift separate from the above to avoid an 12102 (undefined) << 32. */ 12103 mask = (mask << 1) - 1; 12104 if (((base ^ address) & ~mask) == 0) { 12105 break; 12106 } 12107 } 12108 if (n < 0) { 12109 fi->type = ARMFault_Background; 12110 return true; 12111 } 12112 12113 if (access_type == MMU_INST_FETCH) { 12114 mask = env->cp15.pmsav5_insn_ap; 12115 } else { 12116 mask = env->cp15.pmsav5_data_ap; 12117 } 12118 mask = (mask >> (n * 4)) & 0xf; 12119 switch (mask) { 12120 case 0: 12121 fi->type = ARMFault_Permission; 12122 fi->level = 1; 12123 return true; 12124 case 1: 12125 if (is_user) { 12126 fi->type = ARMFault_Permission; 12127 fi->level = 1; 12128 return true; 12129 } 12130 *prot = PAGE_READ | PAGE_WRITE; 12131 break; 12132 case 2: 12133 *prot = PAGE_READ; 12134 if (!is_user) { 12135 *prot |= PAGE_WRITE; 12136 } 12137 break; 12138 case 3: 12139 *prot = PAGE_READ | PAGE_WRITE; 12140 break; 12141 case 5: 12142 if (is_user) { 12143 fi->type = ARMFault_Permission; 12144 fi->level = 1; 12145 return true; 12146 } 12147 *prot = PAGE_READ; 12148 break; 12149 case 6: 12150 *prot = PAGE_READ; 12151 break; 12152 default: 12153 /* Bad permission. */ 12154 fi->type = ARMFault_Permission; 12155 fi->level = 1; 12156 return true; 12157 } 12158 *prot |= PAGE_EXEC; 12159 return false; 12160 } 12161 12162 /* Combine either inner or outer cacheability attributes for normal 12163 * memory, according to table D4-42 and pseudocode procedure 12164 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12165 * 12166 * NB: only stage 1 includes allocation hints (RW bits), leading to 12167 * some asymmetry. 12168 */ 12169 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12170 { 12171 if (s1 == 4 || s2 == 4) { 12172 /* non-cacheable has precedence */ 12173 return 4; 12174 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12175 /* stage 1 write-through takes precedence */ 12176 return s1; 12177 } else if (extract32(s2, 2, 2) == 2) { 12178 /* stage 2 write-through takes precedence, but the allocation hint 12179 * is still taken from stage 1 12180 */ 12181 return (2 << 2) | extract32(s1, 0, 2); 12182 } else { /* write-back */ 12183 return s1; 12184 } 12185 } 12186 12187 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12188 * and CombineS1S2Desc() 12189 * 12190 * @s1: Attributes from stage 1 walk 12191 * @s2: Attributes from stage 2 walk 12192 */ 12193 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12194 { 12195 uint8_t s1lo, s2lo, s1hi, s2hi; 12196 ARMCacheAttrs ret; 12197 bool tagged = false; 12198 12199 if (s1.attrs == 0xf0) { 12200 tagged = true; 12201 s1.attrs = 0xff; 12202 } 12203 12204 s1lo = extract32(s1.attrs, 0, 4); 12205 s2lo = extract32(s2.attrs, 0, 4); 12206 s1hi = extract32(s1.attrs, 4, 4); 12207 s2hi = extract32(s2.attrs, 4, 4); 12208 12209 /* Combine shareability attributes (table D4-43) */ 12210 if (s1.shareability == 2 || s2.shareability == 2) { 12211 /* if either are outer-shareable, the result is outer-shareable */ 12212 ret.shareability = 2; 12213 } else if (s1.shareability == 3 || s2.shareability == 3) { 12214 /* if either are inner-shareable, the result is inner-shareable */ 12215 ret.shareability = 3; 12216 } else { 12217 /* both non-shareable */ 12218 ret.shareability = 0; 12219 } 12220 12221 /* Combine memory type and cacheability attributes */ 12222 if (s1hi == 0 || s2hi == 0) { 12223 /* Device has precedence over normal */ 12224 if (s1lo == 0 || s2lo == 0) { 12225 /* nGnRnE has precedence over anything */ 12226 ret.attrs = 0; 12227 } else if (s1lo == 4 || s2lo == 4) { 12228 /* non-Reordering has precedence over Reordering */ 12229 ret.attrs = 4; /* nGnRE */ 12230 } else if (s1lo == 8 || s2lo == 8) { 12231 /* non-Gathering has precedence over Gathering */ 12232 ret.attrs = 8; /* nGRE */ 12233 } else { 12234 ret.attrs = 0xc; /* GRE */ 12235 } 12236 12237 /* Any location for which the resultant memory type is any 12238 * type of Device memory is always treated as Outer Shareable. 12239 */ 12240 ret.shareability = 2; 12241 } else { /* Normal memory */ 12242 /* Outer/inner cacheability combine independently */ 12243 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12244 | combine_cacheattr_nibble(s1lo, s2lo); 12245 12246 if (ret.attrs == 0x44) { 12247 /* Any location for which the resultant memory type is Normal 12248 * Inner Non-cacheable, Outer Non-cacheable is always treated 12249 * as Outer Shareable. 12250 */ 12251 ret.shareability = 2; 12252 } 12253 } 12254 12255 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12256 if (tagged && ret.attrs == 0xff) { 12257 ret.attrs = 0xf0; 12258 } 12259 12260 return ret; 12261 } 12262 12263 12264 /* get_phys_addr - get the physical address for this virtual address 12265 * 12266 * Find the physical address corresponding to the given virtual address, 12267 * by doing a translation table walk on MMU based systems or using the 12268 * MPU state on MPU based systems. 12269 * 12270 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12271 * prot and page_size may not be filled in, and the populated fsr value provides 12272 * information on why the translation aborted, in the format of a 12273 * DFSR/IFSR fault register, with the following caveats: 12274 * * we honour the short vs long DFSR format differences. 12275 * * the WnR bit is never set (the caller must do this). 12276 * * for PSMAv5 based systems we don't bother to return a full FSR format 12277 * value. 12278 * 12279 * @env: CPUARMState 12280 * @address: virtual address to get physical address for 12281 * @access_type: 0 for read, 1 for write, 2 for execute 12282 * @mmu_idx: MMU index indicating required translation regime 12283 * @phys_ptr: set to the physical address corresponding to the virtual address 12284 * @attrs: set to the memory transaction attributes to use 12285 * @prot: set to the permissions for the page containing phys_ptr 12286 * @page_size: set to the size of the page containing phys_ptr 12287 * @fi: set to fault info if the translation fails 12288 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12289 */ 12290 bool get_phys_addr(CPUARMState *env, target_ulong address, 12291 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12292 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12293 target_ulong *page_size, 12294 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12295 { 12296 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12297 12298 if (mmu_idx != s1_mmu_idx) { 12299 /* Call ourselves recursively to do the stage 1 and then stage 2 12300 * translations if mmu_idx is a two-stage regime. 12301 */ 12302 if (arm_feature(env, ARM_FEATURE_EL2)) { 12303 hwaddr ipa; 12304 int s2_prot; 12305 int ret; 12306 ARMCacheAttrs cacheattrs2 = {}; 12307 ARMMMUIdx s2_mmu_idx; 12308 bool is_el0; 12309 12310 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12311 attrs, prot, page_size, fi, cacheattrs); 12312 12313 /* If S1 fails or S2 is disabled, return early. */ 12314 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12315 *phys_ptr = ipa; 12316 return ret; 12317 } 12318 12319 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12320 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12321 12322 /* S1 is done. Now do S2 translation. */ 12323 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12324 phys_ptr, attrs, &s2_prot, 12325 page_size, fi, &cacheattrs2); 12326 fi->s2addr = ipa; 12327 /* Combine the S1 and S2 perms. */ 12328 *prot &= s2_prot; 12329 12330 /* If S2 fails, return early. */ 12331 if (ret) { 12332 return ret; 12333 } 12334 12335 /* Combine the S1 and S2 cache attributes. */ 12336 if (arm_hcr_el2_eff(env) & HCR_DC) { 12337 /* 12338 * HCR.DC forces the first stage attributes to 12339 * Normal Non-Shareable, 12340 * Inner Write-Back Read-Allocate Write-Allocate, 12341 * Outer Write-Back Read-Allocate Write-Allocate. 12342 * Do not overwrite Tagged within attrs. 12343 */ 12344 if (cacheattrs->attrs != 0xf0) { 12345 cacheattrs->attrs = 0xff; 12346 } 12347 cacheattrs->shareability = 0; 12348 } 12349 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12350 12351 /* Check if IPA translates to secure or non-secure PA space. */ 12352 if (arm_is_secure_below_el3(env)) { 12353 if (attrs->secure) { 12354 attrs->secure = 12355 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12356 } else { 12357 attrs->secure = 12358 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12359 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12360 } 12361 } 12362 return 0; 12363 } else { 12364 /* 12365 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12366 */ 12367 mmu_idx = stage_1_mmu_idx(mmu_idx); 12368 } 12369 } 12370 12371 /* The page table entries may downgrade secure to non-secure, but 12372 * cannot upgrade an non-secure translation regime's attributes 12373 * to secure. 12374 */ 12375 attrs->secure = regime_is_secure(env, mmu_idx); 12376 attrs->user = regime_is_user(env, mmu_idx); 12377 12378 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12379 * In v7 and earlier it affects all stage 1 translations. 12380 */ 12381 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12382 && !arm_feature(env, ARM_FEATURE_V8)) { 12383 if (regime_el(env, mmu_idx) == 3) { 12384 address += env->cp15.fcseidr_s; 12385 } else { 12386 address += env->cp15.fcseidr_ns; 12387 } 12388 } 12389 12390 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12391 bool ret; 12392 *page_size = TARGET_PAGE_SIZE; 12393 12394 if (arm_feature(env, ARM_FEATURE_V8)) { 12395 /* PMSAv8 */ 12396 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12397 phys_ptr, attrs, prot, page_size, fi); 12398 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12399 /* PMSAv7 */ 12400 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12401 phys_ptr, prot, page_size, fi); 12402 } else { 12403 /* Pre-v7 MPU */ 12404 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12405 phys_ptr, prot, fi); 12406 } 12407 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12408 " mmu_idx %u -> %s (prot %c%c%c)\n", 12409 access_type == MMU_DATA_LOAD ? "reading" : 12410 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12411 (uint32_t)address, mmu_idx, 12412 ret ? "Miss" : "Hit", 12413 *prot & PAGE_READ ? 'r' : '-', 12414 *prot & PAGE_WRITE ? 'w' : '-', 12415 *prot & PAGE_EXEC ? 'x' : '-'); 12416 12417 return ret; 12418 } 12419 12420 /* Definitely a real MMU, not an MPU */ 12421 12422 if (regime_translation_disabled(env, mmu_idx)) { 12423 uint64_t hcr; 12424 uint8_t memattr; 12425 12426 /* 12427 * MMU disabled. S1 addresses within aa64 translation regimes are 12428 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12429 */ 12430 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12431 int r_el = regime_el(env, mmu_idx); 12432 if (arm_el_is_aa64(env, r_el)) { 12433 int pamax = arm_pamax(env_archcpu(env)); 12434 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12435 int addrtop, tbi; 12436 12437 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12438 if (access_type == MMU_INST_FETCH) { 12439 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12440 } 12441 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12442 addrtop = (tbi ? 55 : 63); 12443 12444 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12445 fi->type = ARMFault_AddressSize; 12446 fi->level = 0; 12447 fi->stage2 = false; 12448 return 1; 12449 } 12450 12451 /* 12452 * When TBI is disabled, we've just validated that all of the 12453 * bits above PAMax are zero, so logically we only need to 12454 * clear the top byte for TBI. But it's clearer to follow 12455 * the pseudocode set of addrdesc.paddress. 12456 */ 12457 address = extract64(address, 0, 52); 12458 } 12459 } 12460 *phys_ptr = address; 12461 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12462 *page_size = TARGET_PAGE_SIZE; 12463 12464 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12465 hcr = arm_hcr_el2_eff(env); 12466 cacheattrs->shareability = 0; 12467 if (hcr & HCR_DC) { 12468 if (hcr & HCR_DCT) { 12469 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12470 } else { 12471 memattr = 0xff; /* Normal, WB, RWA */ 12472 } 12473 } else if (access_type == MMU_INST_FETCH) { 12474 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12475 memattr = 0xee; /* Normal, WT, RA, NT */ 12476 } else { 12477 memattr = 0x44; /* Normal, NC, No */ 12478 } 12479 cacheattrs->shareability = 2; /* outer sharable */ 12480 } else { 12481 memattr = 0x00; /* Device, nGnRnE */ 12482 } 12483 cacheattrs->attrs = memattr; 12484 return 0; 12485 } 12486 12487 if (regime_using_lpae_format(env, mmu_idx)) { 12488 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12489 phys_ptr, attrs, prot, page_size, 12490 fi, cacheattrs); 12491 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12492 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12493 phys_ptr, attrs, prot, page_size, fi); 12494 } else { 12495 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12496 phys_ptr, prot, page_size, fi); 12497 } 12498 } 12499 12500 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12501 MemTxAttrs *attrs) 12502 { 12503 ARMCPU *cpu = ARM_CPU(cs); 12504 CPUARMState *env = &cpu->env; 12505 hwaddr phys_addr; 12506 target_ulong page_size; 12507 int prot; 12508 bool ret; 12509 ARMMMUFaultInfo fi = {}; 12510 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12511 ARMCacheAttrs cacheattrs = {}; 12512 12513 *attrs = (MemTxAttrs) {}; 12514 12515 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12516 attrs, &prot, &page_size, &fi, &cacheattrs); 12517 12518 if (ret) { 12519 return -1; 12520 } 12521 return phys_addr; 12522 } 12523 12524 #endif 12525 12526 /* Note that signed overflow is undefined in C. The following routines are 12527 careful to use unsigned types where modulo arithmetic is required. 12528 Failure to do so _will_ break on newer gcc. */ 12529 12530 /* Signed saturating arithmetic. */ 12531 12532 /* Perform 16-bit signed saturating addition. */ 12533 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12534 { 12535 uint16_t res; 12536 12537 res = a + b; 12538 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12539 if (a & 0x8000) 12540 res = 0x8000; 12541 else 12542 res = 0x7fff; 12543 } 12544 return res; 12545 } 12546 12547 /* Perform 8-bit signed saturating addition. */ 12548 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12549 { 12550 uint8_t res; 12551 12552 res = a + b; 12553 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12554 if (a & 0x80) 12555 res = 0x80; 12556 else 12557 res = 0x7f; 12558 } 12559 return res; 12560 } 12561 12562 /* Perform 16-bit signed saturating subtraction. */ 12563 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12564 { 12565 uint16_t res; 12566 12567 res = a - b; 12568 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12569 if (a & 0x8000) 12570 res = 0x8000; 12571 else 12572 res = 0x7fff; 12573 } 12574 return res; 12575 } 12576 12577 /* Perform 8-bit signed saturating subtraction. */ 12578 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12579 { 12580 uint8_t res; 12581 12582 res = a - b; 12583 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12584 if (a & 0x80) 12585 res = 0x80; 12586 else 12587 res = 0x7f; 12588 } 12589 return res; 12590 } 12591 12592 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12593 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12594 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12595 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12596 #define PFX q 12597 12598 #include "op_addsub.h" 12599 12600 /* Unsigned saturating arithmetic. */ 12601 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12602 { 12603 uint16_t res; 12604 res = a + b; 12605 if (res < a) 12606 res = 0xffff; 12607 return res; 12608 } 12609 12610 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12611 { 12612 if (a > b) 12613 return a - b; 12614 else 12615 return 0; 12616 } 12617 12618 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12619 { 12620 uint8_t res; 12621 res = a + b; 12622 if (res < a) 12623 res = 0xff; 12624 return res; 12625 } 12626 12627 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12628 { 12629 if (a > b) 12630 return a - b; 12631 else 12632 return 0; 12633 } 12634 12635 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12636 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12637 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12638 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12639 #define PFX uq 12640 12641 #include "op_addsub.h" 12642 12643 /* Signed modulo arithmetic. */ 12644 #define SARITH16(a, b, n, op) do { \ 12645 int32_t sum; \ 12646 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12647 RESULT(sum, n, 16); \ 12648 if (sum >= 0) \ 12649 ge |= 3 << (n * 2); \ 12650 } while(0) 12651 12652 #define SARITH8(a, b, n, op) do { \ 12653 int32_t sum; \ 12654 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12655 RESULT(sum, n, 8); \ 12656 if (sum >= 0) \ 12657 ge |= 1 << n; \ 12658 } while(0) 12659 12660 12661 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12662 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12663 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12664 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12665 #define PFX s 12666 #define ARITH_GE 12667 12668 #include "op_addsub.h" 12669 12670 /* Unsigned modulo arithmetic. */ 12671 #define ADD16(a, b, n) do { \ 12672 uint32_t sum; \ 12673 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12674 RESULT(sum, n, 16); \ 12675 if ((sum >> 16) == 1) \ 12676 ge |= 3 << (n * 2); \ 12677 } while(0) 12678 12679 #define ADD8(a, b, n) do { \ 12680 uint32_t sum; \ 12681 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12682 RESULT(sum, n, 8); \ 12683 if ((sum >> 8) == 1) \ 12684 ge |= 1 << n; \ 12685 } while(0) 12686 12687 #define SUB16(a, b, n) do { \ 12688 uint32_t sum; \ 12689 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12690 RESULT(sum, n, 16); \ 12691 if ((sum >> 16) == 0) \ 12692 ge |= 3 << (n * 2); \ 12693 } while(0) 12694 12695 #define SUB8(a, b, n) do { \ 12696 uint32_t sum; \ 12697 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12698 RESULT(sum, n, 8); \ 12699 if ((sum >> 8) == 0) \ 12700 ge |= 1 << n; \ 12701 } while(0) 12702 12703 #define PFX u 12704 #define ARITH_GE 12705 12706 #include "op_addsub.h" 12707 12708 /* Halved signed arithmetic. */ 12709 #define ADD16(a, b, n) \ 12710 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12711 #define SUB16(a, b, n) \ 12712 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12713 #define ADD8(a, b, n) \ 12714 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12715 #define SUB8(a, b, n) \ 12716 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12717 #define PFX sh 12718 12719 #include "op_addsub.h" 12720 12721 /* Halved unsigned arithmetic. */ 12722 #define ADD16(a, b, n) \ 12723 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12724 #define SUB16(a, b, n) \ 12725 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12726 #define ADD8(a, b, n) \ 12727 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12728 #define SUB8(a, b, n) \ 12729 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12730 #define PFX uh 12731 12732 #include "op_addsub.h" 12733 12734 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12735 { 12736 if (a > b) 12737 return a - b; 12738 else 12739 return b - a; 12740 } 12741 12742 /* Unsigned sum of absolute byte differences. */ 12743 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12744 { 12745 uint32_t sum; 12746 sum = do_usad(a, b); 12747 sum += do_usad(a >> 8, b >> 8); 12748 sum += do_usad(a >> 16, b >> 16); 12749 sum += do_usad(a >> 24, b >> 24); 12750 return sum; 12751 } 12752 12753 /* For ARMv6 SEL instruction. */ 12754 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12755 { 12756 uint32_t mask; 12757 12758 mask = 0; 12759 if (flags & 1) 12760 mask |= 0xff; 12761 if (flags & 2) 12762 mask |= 0xff00; 12763 if (flags & 4) 12764 mask |= 0xff0000; 12765 if (flags & 8) 12766 mask |= 0xff000000; 12767 return (a & mask) | (b & ~mask); 12768 } 12769 12770 /* CRC helpers. 12771 * The upper bytes of val (above the number specified by 'bytes') must have 12772 * been zeroed out by the caller. 12773 */ 12774 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12775 { 12776 uint8_t buf[4]; 12777 12778 stl_le_p(buf, val); 12779 12780 /* zlib crc32 converts the accumulator and output to one's complement. */ 12781 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12782 } 12783 12784 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12785 { 12786 uint8_t buf[4]; 12787 12788 stl_le_p(buf, val); 12789 12790 /* Linux crc32c converts the output to one's complement. */ 12791 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12792 } 12793 12794 /* Return the exception level to which FP-disabled exceptions should 12795 * be taken, or 0 if FP is enabled. 12796 */ 12797 int fp_exception_el(CPUARMState *env, int cur_el) 12798 { 12799 #ifndef CONFIG_USER_ONLY 12800 /* CPACR and the CPTR registers don't exist before v6, so FP is 12801 * always accessible 12802 */ 12803 if (!arm_feature(env, ARM_FEATURE_V6)) { 12804 return 0; 12805 } 12806 12807 if (arm_feature(env, ARM_FEATURE_M)) { 12808 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12809 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12810 return 1; 12811 } 12812 12813 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12814 if (!extract32(env->v7m.nsacr, 10, 1)) { 12815 /* FP insns cause a NOCP UsageFault taken to Secure */ 12816 return 3; 12817 } 12818 } 12819 12820 return 0; 12821 } 12822 12823 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12824 * 0, 2 : trap EL0 and EL1/PL1 accesses 12825 * 1 : trap only EL0 accesses 12826 * 3 : trap no accesses 12827 * This register is ignored if E2H+TGE are both set. 12828 */ 12829 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12830 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12831 12832 switch (fpen) { 12833 case 0: 12834 case 2: 12835 if (cur_el == 0 || cur_el == 1) { 12836 /* Trap to PL1, which might be EL1 or EL3 */ 12837 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12838 return 3; 12839 } 12840 return 1; 12841 } 12842 if (cur_el == 3 && !is_a64(env)) { 12843 /* Secure PL1 running at EL3 */ 12844 return 3; 12845 } 12846 break; 12847 case 1: 12848 if (cur_el == 0) { 12849 return 1; 12850 } 12851 break; 12852 case 3: 12853 break; 12854 } 12855 } 12856 12857 /* 12858 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12859 * to control non-secure access to the FPU. It doesn't have any 12860 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12861 */ 12862 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12863 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12864 if (!extract32(env->cp15.nsacr, 10, 1)) { 12865 /* FP insns act as UNDEF */ 12866 return cur_el == 2 ? 2 : 1; 12867 } 12868 } 12869 12870 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12871 * check because zero bits in the registers mean "don't trap". 12872 */ 12873 12874 /* CPTR_EL2 : present in v7VE or v8 */ 12875 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12876 && arm_is_el2_enabled(env)) { 12877 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12878 return 2; 12879 } 12880 12881 /* CPTR_EL3 : present in v8 */ 12882 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12883 /* Trap all FP ops to EL3 */ 12884 return 3; 12885 } 12886 #endif 12887 return 0; 12888 } 12889 12890 /* Return the exception level we're running at if this is our mmu_idx */ 12891 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12892 { 12893 if (mmu_idx & ARM_MMU_IDX_M) { 12894 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12895 } 12896 12897 switch (mmu_idx) { 12898 case ARMMMUIdx_E10_0: 12899 case ARMMMUIdx_E20_0: 12900 case ARMMMUIdx_SE10_0: 12901 case ARMMMUIdx_SE20_0: 12902 return 0; 12903 case ARMMMUIdx_E10_1: 12904 case ARMMMUIdx_E10_1_PAN: 12905 case ARMMMUIdx_SE10_1: 12906 case ARMMMUIdx_SE10_1_PAN: 12907 return 1; 12908 case ARMMMUIdx_E2: 12909 case ARMMMUIdx_E20_2: 12910 case ARMMMUIdx_E20_2_PAN: 12911 case ARMMMUIdx_SE2: 12912 case ARMMMUIdx_SE20_2: 12913 case ARMMMUIdx_SE20_2_PAN: 12914 return 2; 12915 case ARMMMUIdx_SE3: 12916 return 3; 12917 default: 12918 g_assert_not_reached(); 12919 } 12920 } 12921 12922 #ifndef CONFIG_TCG 12923 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12924 { 12925 g_assert_not_reached(); 12926 } 12927 #endif 12928 12929 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12930 { 12931 ARMMMUIdx idx; 12932 uint64_t hcr; 12933 12934 if (arm_feature(env, ARM_FEATURE_M)) { 12935 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12936 } 12937 12938 /* See ARM pseudo-function ELIsInHost. */ 12939 switch (el) { 12940 case 0: 12941 hcr = arm_hcr_el2_eff(env); 12942 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12943 idx = ARMMMUIdx_E20_0; 12944 } else { 12945 idx = ARMMMUIdx_E10_0; 12946 } 12947 break; 12948 case 1: 12949 if (env->pstate & PSTATE_PAN) { 12950 idx = ARMMMUIdx_E10_1_PAN; 12951 } else { 12952 idx = ARMMMUIdx_E10_1; 12953 } 12954 break; 12955 case 2: 12956 /* Note that TGE does not apply at EL2. */ 12957 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12958 if (env->pstate & PSTATE_PAN) { 12959 idx = ARMMMUIdx_E20_2_PAN; 12960 } else { 12961 idx = ARMMMUIdx_E20_2; 12962 } 12963 } else { 12964 idx = ARMMMUIdx_E2; 12965 } 12966 break; 12967 case 3: 12968 return ARMMMUIdx_SE3; 12969 default: 12970 g_assert_not_reached(); 12971 } 12972 12973 if (arm_is_secure_below_el3(env)) { 12974 idx &= ~ARM_MMU_IDX_A_NS; 12975 } 12976 12977 return idx; 12978 } 12979 12980 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12981 { 12982 return arm_mmu_idx_el(env, arm_current_el(env)); 12983 } 12984 12985 #ifndef CONFIG_USER_ONLY 12986 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12987 { 12988 return stage_1_mmu_idx(arm_mmu_idx(env)); 12989 } 12990 #endif 12991 12992 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12993 ARMMMUIdx mmu_idx, uint32_t flags) 12994 { 12995 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12996 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12997 arm_to_core_mmu_idx(mmu_idx)); 12998 12999 if (arm_singlestep_active(env)) { 13000 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 13001 } 13002 return flags; 13003 } 13004 13005 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13006 ARMMMUIdx mmu_idx, uint32_t flags) 13007 { 13008 bool sctlr_b = arm_sctlr_b(env); 13009 13010 if (sctlr_b) { 13011 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 13012 } 13013 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13014 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13015 } 13016 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 13017 13018 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13019 } 13020 13021 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 13022 ARMMMUIdx mmu_idx) 13023 { 13024 uint32_t flags = 0; 13025 13026 if (arm_v7m_is_handler_mode(env)) { 13027 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 13028 } 13029 13030 /* 13031 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13032 * is suppressing them because the requested execution priority 13033 * is less than 0. 13034 */ 13035 if (arm_feature(env, ARM_FEATURE_V8) && 13036 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13037 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13038 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 13039 } 13040 13041 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13042 } 13043 13044 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 13045 { 13046 int flags = 0; 13047 13048 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 13049 arm_debug_target_el(env)); 13050 return flags; 13051 } 13052 13053 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 13054 ARMMMUIdx mmu_idx) 13055 { 13056 uint32_t flags = rebuild_hflags_aprofile(env); 13057 13058 if (arm_el_is_aa64(env, 1)) { 13059 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13060 } 13061 13062 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 13063 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13064 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 13065 } 13066 13067 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13068 } 13069 13070 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13071 ARMMMUIdx mmu_idx) 13072 { 13073 uint32_t flags = rebuild_hflags_aprofile(env); 13074 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13075 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13076 uint64_t sctlr; 13077 int tbii, tbid; 13078 13079 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13080 13081 /* Get control bits for tagged addresses. */ 13082 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13083 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13084 13085 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13086 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13087 13088 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13089 int sve_el = sve_exception_el(env, el); 13090 uint32_t zcr_len; 13091 13092 /* 13093 * If SVE is disabled, but FP is enabled, 13094 * then the effective len is 0. 13095 */ 13096 if (sve_el != 0 && fp_el == 0) { 13097 zcr_len = 0; 13098 } else { 13099 zcr_len = sve_zcr_len_for_el(env, el); 13100 } 13101 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13102 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13103 } 13104 13105 sctlr = regime_sctlr(env, stage1); 13106 13107 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13108 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13109 } 13110 13111 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13112 /* 13113 * In order to save space in flags, we record only whether 13114 * pauth is "inactive", meaning all insns are implemented as 13115 * a nop, or "active" when some action must be performed. 13116 * The decision of which action to take is left to a helper. 13117 */ 13118 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13119 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13120 } 13121 } 13122 13123 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13124 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13125 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13126 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13127 } 13128 } 13129 13130 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13131 if (!(env->pstate & PSTATE_UAO)) { 13132 switch (mmu_idx) { 13133 case ARMMMUIdx_E10_1: 13134 case ARMMMUIdx_E10_1_PAN: 13135 case ARMMMUIdx_SE10_1: 13136 case ARMMMUIdx_SE10_1_PAN: 13137 /* TODO: ARMv8.3-NV */ 13138 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13139 break; 13140 case ARMMMUIdx_E20_2: 13141 case ARMMMUIdx_E20_2_PAN: 13142 case ARMMMUIdx_SE20_2: 13143 case ARMMMUIdx_SE20_2_PAN: 13144 /* 13145 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13146 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13147 */ 13148 if (env->cp15.hcr_el2 & HCR_TGE) { 13149 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13150 } 13151 break; 13152 default: 13153 break; 13154 } 13155 } 13156 13157 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13158 /* 13159 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13160 * if all accesses must be Unchecked: 13161 * 1) If no TBI, then there are no tags in the address to check, 13162 * 2) If Tag Check Override, then all accesses are Unchecked, 13163 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13164 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13165 */ 13166 if (allocation_tag_access_enabled(env, el, sctlr)) { 13167 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 13168 if (tbid 13169 && !(env->pstate & PSTATE_TCO) 13170 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13171 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 13172 } 13173 } 13174 /* And again for unprivileged accesses, if required. */ 13175 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 13176 && tbid 13177 && !(env->pstate & PSTATE_TCO) 13178 && (sctlr & SCTLR_TCF0) 13179 && allocation_tag_access_enabled(env, 0, sctlr)) { 13180 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 13181 } 13182 /* Cache TCMA as well as TBI. */ 13183 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 13184 aa64_va_parameter_tcma(tcr, mmu_idx)); 13185 } 13186 13187 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13188 } 13189 13190 static uint32_t rebuild_hflags_internal(CPUARMState *env) 13191 { 13192 int el = arm_current_el(env); 13193 int fp_el = fp_exception_el(env, el); 13194 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13195 13196 if (is_a64(env)) { 13197 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13198 } else if (arm_feature(env, ARM_FEATURE_M)) { 13199 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13200 } else { 13201 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13202 } 13203 } 13204 13205 void arm_rebuild_hflags(CPUARMState *env) 13206 { 13207 env->hflags = rebuild_hflags_internal(env); 13208 } 13209 13210 /* 13211 * If we have triggered a EL state change we can't rely on the 13212 * translator having passed it to us, we need to recompute. 13213 */ 13214 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13215 { 13216 int el = arm_current_el(env); 13217 int fp_el = fp_exception_el(env, el); 13218 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13219 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13220 } 13221 13222 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13223 { 13224 int fp_el = fp_exception_el(env, el); 13225 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13226 13227 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13228 } 13229 13230 /* 13231 * If we have triggered a EL state change we can't rely on the 13232 * translator having passed it to us, we need to recompute. 13233 */ 13234 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13235 { 13236 int el = arm_current_el(env); 13237 int fp_el = fp_exception_el(env, el); 13238 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13239 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13240 } 13241 13242 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13243 { 13244 int fp_el = fp_exception_el(env, el); 13245 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13246 13247 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13248 } 13249 13250 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13251 { 13252 int fp_el = fp_exception_el(env, el); 13253 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13254 13255 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13256 } 13257 13258 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13259 { 13260 #ifdef CONFIG_DEBUG_TCG 13261 uint32_t env_flags_current = env->hflags; 13262 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13263 13264 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13265 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13266 env_flags_current, env_flags_rebuilt); 13267 abort(); 13268 } 13269 #endif 13270 } 13271 13272 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13273 target_ulong *cs_base, uint32_t *pflags) 13274 { 13275 uint32_t flags = env->hflags; 13276 13277 *cs_base = 0; 13278 assert_hflags_rebuild_correctly(env); 13279 13280 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13281 *pc = env->pc; 13282 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13283 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13284 } 13285 } else { 13286 *pc = env->regs[15]; 13287 13288 if (arm_feature(env, ARM_FEATURE_M)) { 13289 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13290 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13291 != env->v7m.secure) { 13292 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13293 } 13294 13295 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13296 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13297 (env->v7m.secure && 13298 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13299 /* 13300 * ASPEN is set, but FPCA/SFPA indicate that there is no 13301 * active FP context; we must create a new FP context before 13302 * executing any FP insn. 13303 */ 13304 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13305 } 13306 13307 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13308 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13309 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13310 } 13311 } else { 13312 /* 13313 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13314 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13315 */ 13316 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13317 flags = FIELD_DP32(flags, TBFLAG_A32, 13318 XSCALE_CPAR, env->cp15.c15_cpar); 13319 } else { 13320 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13321 env->vfp.vec_len); 13322 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13323 env->vfp.vec_stride); 13324 } 13325 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13326 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13327 } 13328 } 13329 13330 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13331 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13332 } 13333 13334 /* 13335 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13336 * states defined in the ARM ARM for software singlestep: 13337 * SS_ACTIVE PSTATE.SS State 13338 * 0 x Inactive (the TB flag for SS is always 0) 13339 * 1 0 Active-pending 13340 * 1 1 Active-not-pending 13341 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13342 */ 13343 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13344 (env->pstate & PSTATE_SS)) { 13345 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13346 } 13347 13348 *pflags = flags; 13349 } 13350 13351 #ifdef TARGET_AARCH64 13352 /* 13353 * The manual says that when SVE is enabled and VQ is widened the 13354 * implementation is allowed to zero the previously inaccessible 13355 * portion of the registers. The corollary to that is that when 13356 * SVE is enabled and VQ is narrowed we are also allowed to zero 13357 * the now inaccessible portion of the registers. 13358 * 13359 * The intent of this is that no predicate bit beyond VQ is ever set. 13360 * Which means that some operations on predicate registers themselves 13361 * may operate on full uint64_t or even unrolled across the maximum 13362 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13363 * may well be cheaper than conditionals to restrict the operation 13364 * to the relevant portion of a uint16_t[16]. 13365 */ 13366 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13367 { 13368 int i, j; 13369 uint64_t pmask; 13370 13371 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13372 assert(vq <= env_archcpu(env)->sve_max_vq); 13373 13374 /* Zap the high bits of the zregs. */ 13375 for (i = 0; i < 32; i++) { 13376 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13377 } 13378 13379 /* Zap the high bits of the pregs and ffr. */ 13380 pmask = 0; 13381 if (vq & 3) { 13382 pmask = ~(-1ULL << (16 * (vq & 3))); 13383 } 13384 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13385 for (i = 0; i < 17; ++i) { 13386 env->vfp.pregs[i].p[j] &= pmask; 13387 } 13388 pmask = 0; 13389 } 13390 } 13391 13392 /* 13393 * Notice a change in SVE vector size when changing EL. 13394 */ 13395 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13396 int new_el, bool el0_a64) 13397 { 13398 ARMCPU *cpu = env_archcpu(env); 13399 int old_len, new_len; 13400 bool old_a64, new_a64; 13401 13402 /* Nothing to do if no SVE. */ 13403 if (!cpu_isar_feature(aa64_sve, cpu)) { 13404 return; 13405 } 13406 13407 /* Nothing to do if FP is disabled in either EL. */ 13408 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13409 return; 13410 } 13411 13412 /* 13413 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13414 * at ELx, or not available because the EL is in AArch32 state, then 13415 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13416 * has an effective value of 0". 13417 * 13418 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13419 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13420 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13421 * we already have the correct register contents when encountering the 13422 * vq0->vq0 transition between EL0->EL1. 13423 */ 13424 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13425 old_len = (old_a64 && !sve_exception_el(env, old_el) 13426 ? sve_zcr_len_for_el(env, old_el) : 0); 13427 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13428 new_len = (new_a64 && !sve_exception_el(env, new_el) 13429 ? sve_zcr_len_for_el(env, new_el) : 0); 13430 13431 /* When changing vector length, clear inaccessible state. */ 13432 if (new_len < old_len) { 13433 aarch64_sve_narrow_vq(env, new_len + 1); 13434 } 13435 } 13436 #endif 13437