1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/cpus.h" 19 #include "sysemu/kvm.h" 20 #include "fpu/softfloat.h" 21 #include "qemu/range.h" 22 23 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 24 25 #ifndef CONFIG_USER_ONLY 26 /* Cacheability and shareability attributes for a memory access */ 27 typedef struct ARMCacheAttrs { 28 unsigned int attrs:8; /* as in the MAIR register encoding */ 29 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 30 } ARMCacheAttrs; 31 32 static bool get_phys_addr(CPUARMState *env, target_ulong address, 33 MMUAccessType access_type, ARMMMUIdx mmu_idx, 34 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 35 target_ulong *page_size, 36 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 37 38 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 39 MMUAccessType access_type, ARMMMUIdx mmu_idx, 40 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 41 target_ulong *page_size_ptr, 42 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 43 44 /* Security attributes for an address, as returned by v8m_security_lookup. */ 45 typedef struct V8M_SAttributes { 46 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 47 bool ns; 48 bool nsc; 49 uint8_t sregion; 50 bool srvalid; 51 uint8_t iregion; 52 bool irvalid; 53 } V8M_SAttributes; 54 55 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 56 MMUAccessType access_type, ARMMMUIdx mmu_idx, 57 V8M_SAttributes *sattrs); 58 #endif 59 60 static void switch_mode(CPUARMState *env, int mode); 61 62 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 63 { 64 int nregs; 65 66 /* VFP data registers are always little-endian. */ 67 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 68 if (reg < nregs) { 69 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 70 return 8; 71 } 72 if (arm_feature(env, ARM_FEATURE_NEON)) { 73 /* Aliases for Q regs. */ 74 nregs += 16; 75 if (reg < nregs) { 76 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 77 stq_le_p(buf, q[0]); 78 stq_le_p(buf + 8, q[1]); 79 return 16; 80 } 81 } 82 switch (reg - nregs) { 83 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 84 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 85 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 86 } 87 return 0; 88 } 89 90 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 91 { 92 int nregs; 93 94 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 95 if (reg < nregs) { 96 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 97 return 8; 98 } 99 if (arm_feature(env, ARM_FEATURE_NEON)) { 100 nregs += 16; 101 if (reg < nregs) { 102 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 103 q[0] = ldq_le_p(buf); 104 q[1] = ldq_le_p(buf + 8); 105 return 16; 106 } 107 } 108 switch (reg - nregs) { 109 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 110 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 111 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 112 } 113 return 0; 114 } 115 116 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 117 { 118 switch (reg) { 119 case 0 ... 31: 120 /* 128 bit FP register */ 121 { 122 uint64_t *q = aa64_vfp_qreg(env, reg); 123 stq_le_p(buf, q[0]); 124 stq_le_p(buf + 8, q[1]); 125 return 16; 126 } 127 case 32: 128 /* FPSR */ 129 stl_p(buf, vfp_get_fpsr(env)); 130 return 4; 131 case 33: 132 /* FPCR */ 133 stl_p(buf, vfp_get_fpcr(env)); 134 return 4; 135 default: 136 return 0; 137 } 138 } 139 140 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 141 { 142 switch (reg) { 143 case 0 ... 31: 144 /* 128 bit FP register */ 145 { 146 uint64_t *q = aa64_vfp_qreg(env, reg); 147 q[0] = ldq_le_p(buf); 148 q[1] = ldq_le_p(buf + 8); 149 return 16; 150 } 151 case 32: 152 /* FPSR */ 153 vfp_set_fpsr(env, ldl_p(buf)); 154 return 4; 155 case 33: 156 /* FPCR */ 157 vfp_set_fpcr(env, ldl_p(buf)); 158 return 4; 159 default: 160 return 0; 161 } 162 } 163 164 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 165 { 166 assert(ri->fieldoffset); 167 if (cpreg_field_is_64bit(ri)) { 168 return CPREG_FIELD64(env, ri); 169 } else { 170 return CPREG_FIELD32(env, ri); 171 } 172 } 173 174 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t value) 176 { 177 assert(ri->fieldoffset); 178 if (cpreg_field_is_64bit(ri)) { 179 CPREG_FIELD64(env, ri) = value; 180 } else { 181 CPREG_FIELD32(env, ri) = value; 182 } 183 } 184 185 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 186 { 187 return (char *)env + ri->fieldoffset; 188 } 189 190 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 191 { 192 /* Raw read of a coprocessor register (as needed for migration, etc). */ 193 if (ri->type & ARM_CP_CONST) { 194 return ri->resetvalue; 195 } else if (ri->raw_readfn) { 196 return ri->raw_readfn(env, ri); 197 } else if (ri->readfn) { 198 return ri->readfn(env, ri); 199 } else { 200 return raw_read(env, ri); 201 } 202 } 203 204 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 205 uint64_t v) 206 { 207 /* Raw write of a coprocessor register (as needed for migration, etc). 208 * Note that constant registers are treated as write-ignored; the 209 * caller should check for success by whether a readback gives the 210 * value written. 211 */ 212 if (ri->type & ARM_CP_CONST) { 213 return; 214 } else if (ri->raw_writefn) { 215 ri->raw_writefn(env, ri, v); 216 } else if (ri->writefn) { 217 ri->writefn(env, ri, v); 218 } else { 219 raw_write(env, ri, v); 220 } 221 } 222 223 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 224 { 225 ARMCPU *cpu = arm_env_get_cpu(env); 226 const ARMCPRegInfo *ri; 227 uint32_t key; 228 229 key = cpu->dyn_xml.cpregs_keys[reg]; 230 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 231 if (ri) { 232 if (cpreg_field_is_64bit(ri)) { 233 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 234 } else { 235 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 236 } 237 } 238 return 0; 239 } 240 241 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 242 { 243 return 0; 244 } 245 246 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 247 { 248 /* Return true if the regdef would cause an assertion if you called 249 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 250 * program bug for it not to have the NO_RAW flag). 251 * NB that returning false here doesn't necessarily mean that calling 252 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 253 * read/write access functions which are safe for raw use" from "has 254 * read/write access functions which have side effects but has forgotten 255 * to provide raw access functions". 256 * The tests here line up with the conditions in read/write_raw_cp_reg() 257 * and assertions in raw_read()/raw_write(). 258 */ 259 if ((ri->type & ARM_CP_CONST) || 260 ri->fieldoffset || 261 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 262 return false; 263 } 264 return true; 265 } 266 267 bool write_cpustate_to_list(ARMCPU *cpu) 268 { 269 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 270 int i; 271 bool ok = true; 272 273 for (i = 0; i < cpu->cpreg_array_len; i++) { 274 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 275 const ARMCPRegInfo *ri; 276 277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 278 if (!ri) { 279 ok = false; 280 continue; 281 } 282 if (ri->type & ARM_CP_NO_RAW) { 283 continue; 284 } 285 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 286 } 287 return ok; 288 } 289 290 bool write_list_to_cpustate(ARMCPU *cpu) 291 { 292 int i; 293 bool ok = true; 294 295 for (i = 0; i < cpu->cpreg_array_len; i++) { 296 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 297 uint64_t v = cpu->cpreg_values[i]; 298 const ARMCPRegInfo *ri; 299 300 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 301 if (!ri) { 302 ok = false; 303 continue; 304 } 305 if (ri->type & ARM_CP_NO_RAW) { 306 continue; 307 } 308 /* Write value and confirm it reads back as written 309 * (to catch read-only registers and partially read-only 310 * registers where the incoming migration value doesn't match) 311 */ 312 write_raw_cp_reg(&cpu->env, ri, v); 313 if (read_raw_cp_reg(&cpu->env, ri) != v) { 314 ok = false; 315 } 316 } 317 return ok; 318 } 319 320 static void add_cpreg_to_list(gpointer key, gpointer opaque) 321 { 322 ARMCPU *cpu = opaque; 323 uint64_t regidx; 324 const ARMCPRegInfo *ri; 325 326 regidx = *(uint32_t *)key; 327 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 328 329 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 330 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 331 /* The value array need not be initialized at this point */ 332 cpu->cpreg_array_len++; 333 } 334 } 335 336 static void count_cpreg(gpointer key, gpointer opaque) 337 { 338 ARMCPU *cpu = opaque; 339 uint64_t regidx; 340 const ARMCPRegInfo *ri; 341 342 regidx = *(uint32_t *)key; 343 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 344 345 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 346 cpu->cpreg_array_len++; 347 } 348 } 349 350 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 351 { 352 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 353 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 354 355 if (aidx > bidx) { 356 return 1; 357 } 358 if (aidx < bidx) { 359 return -1; 360 } 361 return 0; 362 } 363 364 void init_cpreg_list(ARMCPU *cpu) 365 { 366 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 367 * Note that we require cpreg_tuples[] to be sorted by key ID. 368 */ 369 GList *keys; 370 int arraylen; 371 372 keys = g_hash_table_get_keys(cpu->cp_regs); 373 keys = g_list_sort(keys, cpreg_key_compare); 374 375 cpu->cpreg_array_len = 0; 376 377 g_list_foreach(keys, count_cpreg, cpu); 378 379 arraylen = cpu->cpreg_array_len; 380 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 381 cpu->cpreg_values = g_new(uint64_t, arraylen); 382 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 383 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 384 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 385 cpu->cpreg_array_len = 0; 386 387 g_list_foreach(keys, add_cpreg_to_list, cpu); 388 389 assert(cpu->cpreg_array_len == arraylen); 390 391 g_list_free(keys); 392 } 393 394 /* 395 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 396 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 397 * 398 * access_el3_aa32ns: Used to check AArch32 register views. 399 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 400 */ 401 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 402 const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 bool secure = arm_is_secure_below_el3(env); 406 407 assert(!arm_el_is_aa64(env, 3)); 408 if (secure) { 409 return CP_ACCESS_TRAP_UNCATEGORIZED; 410 } 411 return CP_ACCESS_OK; 412 } 413 414 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 415 const ARMCPRegInfo *ri, 416 bool isread) 417 { 418 if (!arm_el_is_aa64(env, 3)) { 419 return access_el3_aa32ns(env, ri, isread); 420 } 421 return CP_ACCESS_OK; 422 } 423 424 /* Some secure-only AArch32 registers trap to EL3 if used from 425 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 426 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 427 * We assume that the .access field is set to PL1_RW. 428 */ 429 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 430 const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 if (arm_current_el(env) == 3) { 434 return CP_ACCESS_OK; 435 } 436 if (arm_is_secure_below_el3(env)) { 437 return CP_ACCESS_TRAP_EL3; 438 } 439 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 440 return CP_ACCESS_TRAP_UNCATEGORIZED; 441 } 442 443 /* Check for traps to "powerdown debug" registers, which are controlled 444 * by MDCR.TDOSA 445 */ 446 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 447 bool isread) 448 { 449 int el = arm_current_el(env); 450 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 451 (env->cp15.mdcr_el2 & MDCR_TDE) || 452 (arm_hcr_el2_eff(env) & HCR_TGE); 453 454 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 455 return CP_ACCESS_TRAP_EL2; 456 } 457 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 458 return CP_ACCESS_TRAP_EL3; 459 } 460 return CP_ACCESS_OK; 461 } 462 463 /* Check for traps to "debug ROM" registers, which are controlled 464 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 465 */ 466 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 467 bool isread) 468 { 469 int el = arm_current_el(env); 470 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 471 (env->cp15.mdcr_el2 & MDCR_TDE) || 472 (arm_hcr_el2_eff(env) & HCR_TGE); 473 474 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 475 return CP_ACCESS_TRAP_EL2; 476 } 477 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 478 return CP_ACCESS_TRAP_EL3; 479 } 480 return CP_ACCESS_OK; 481 } 482 483 /* Check for traps to general debug registers, which are controlled 484 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 485 */ 486 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 487 bool isread) 488 { 489 int el = arm_current_el(env); 490 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 491 (env->cp15.mdcr_el2 & MDCR_TDE) || 492 (arm_hcr_el2_eff(env) & HCR_TGE); 493 494 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 495 return CP_ACCESS_TRAP_EL2; 496 } 497 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 498 return CP_ACCESS_TRAP_EL3; 499 } 500 return CP_ACCESS_OK; 501 } 502 503 /* Check for traps to performance monitor registers, which are controlled 504 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 505 */ 506 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 507 bool isread) 508 { 509 int el = arm_current_el(env); 510 511 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 512 && !arm_is_secure_below_el3(env)) { 513 return CP_ACCESS_TRAP_EL2; 514 } 515 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 516 return CP_ACCESS_TRAP_EL3; 517 } 518 return CP_ACCESS_OK; 519 } 520 521 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 522 { 523 ARMCPU *cpu = arm_env_get_cpu(env); 524 525 raw_write(env, ri, value); 526 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 527 } 528 529 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 530 { 531 ARMCPU *cpu = arm_env_get_cpu(env); 532 533 if (raw_read(env, ri) != value) { 534 /* Unlike real hardware the qemu TLB uses virtual addresses, 535 * not modified virtual addresses, so this causes a TLB flush. 536 */ 537 tlb_flush(CPU(cpu)); 538 raw_write(env, ri, value); 539 } 540 } 541 542 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 ARMCPU *cpu = arm_env_get_cpu(env); 546 547 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 548 && !extended_addresses_enabled(env)) { 549 /* For VMSA (when not using the LPAE long descriptor page table 550 * format) this register includes the ASID, so do a TLB flush. 551 * For PMSA it is purely a process ID and no action is needed. 552 */ 553 tlb_flush(CPU(cpu)); 554 } 555 raw_write(env, ri, value); 556 } 557 558 /* IS variants of TLB operations must affect all cores */ 559 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 560 uint64_t value) 561 { 562 CPUState *cs = ENV_GET_CPU(env); 563 564 tlb_flush_all_cpus_synced(cs); 565 } 566 567 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 568 uint64_t value) 569 { 570 CPUState *cs = ENV_GET_CPU(env); 571 572 tlb_flush_all_cpus_synced(cs); 573 } 574 575 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 CPUState *cs = ENV_GET_CPU(env); 579 580 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 581 } 582 583 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 584 uint64_t value) 585 { 586 CPUState *cs = ENV_GET_CPU(env); 587 588 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 589 } 590 591 /* 592 * Non-IS variants of TLB operations are upgraded to 593 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 594 * force broadcast of these operations. 595 */ 596 static bool tlb_force_broadcast(CPUARMState *env) 597 { 598 return (env->cp15.hcr_el2 & HCR_FB) && 599 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 600 } 601 602 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 /* Invalidate all (TLBIALL) */ 606 ARMCPU *cpu = arm_env_get_cpu(env); 607 608 if (tlb_force_broadcast(env)) { 609 tlbiall_is_write(env, NULL, value); 610 return; 611 } 612 613 tlb_flush(CPU(cpu)); 614 } 615 616 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 617 uint64_t value) 618 { 619 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 620 ARMCPU *cpu = arm_env_get_cpu(env); 621 622 if (tlb_force_broadcast(env)) { 623 tlbimva_is_write(env, NULL, value); 624 return; 625 } 626 627 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 628 } 629 630 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 /* Invalidate by ASID (TLBIASID) */ 634 ARMCPU *cpu = arm_env_get_cpu(env); 635 636 if (tlb_force_broadcast(env)) { 637 tlbiasid_is_write(env, NULL, value); 638 return; 639 } 640 641 tlb_flush(CPU(cpu)); 642 } 643 644 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 645 uint64_t value) 646 { 647 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 648 ARMCPU *cpu = arm_env_get_cpu(env); 649 650 if (tlb_force_broadcast(env)) { 651 tlbimvaa_is_write(env, NULL, value); 652 return; 653 } 654 655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 656 } 657 658 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 659 uint64_t value) 660 { 661 CPUState *cs = ENV_GET_CPU(env); 662 663 tlb_flush_by_mmuidx(cs, 664 ARMMMUIdxBit_S12NSE1 | 665 ARMMMUIdxBit_S12NSE0 | 666 ARMMMUIdxBit_S2NS); 667 } 668 669 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = ENV_GET_CPU(env); 673 674 tlb_flush_by_mmuidx_all_cpus_synced(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 /* Invalidate by IPA. This has to invalidate any structures that 684 * contain only stage 2 translation information, but does not need 685 * to apply to structures that contain combined stage 1 and stage 2 686 * translation information. 687 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 688 */ 689 CPUState *cs = ENV_GET_CPU(env); 690 uint64_t pageaddr; 691 692 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 693 return; 694 } 695 696 pageaddr = sextract64(value << 12, 0, 40); 697 698 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 699 } 700 701 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 702 uint64_t value) 703 { 704 CPUState *cs = ENV_GET_CPU(env); 705 uint64_t pageaddr; 706 707 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 708 return; 709 } 710 711 pageaddr = sextract64(value << 12, 0, 40); 712 713 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 714 ARMMMUIdxBit_S2NS); 715 } 716 717 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 718 uint64_t value) 719 { 720 CPUState *cs = ENV_GET_CPU(env); 721 722 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 723 } 724 725 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 726 uint64_t value) 727 { 728 CPUState *cs = ENV_GET_CPU(env); 729 730 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 731 } 732 733 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 734 uint64_t value) 735 { 736 CPUState *cs = ENV_GET_CPU(env); 737 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 738 739 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 740 } 741 742 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 743 uint64_t value) 744 { 745 CPUState *cs = ENV_GET_CPU(env); 746 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 747 748 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 749 ARMMMUIdxBit_S1E2); 750 } 751 752 static const ARMCPRegInfo cp_reginfo[] = { 753 /* Define the secure and non-secure FCSE identifier CP registers 754 * separately because there is no secure bank in V8 (no _EL3). This allows 755 * the secure register to be properly reset and migrated. There is also no 756 * v8 EL1 version of the register so the non-secure instance stands alone. 757 */ 758 { .name = "FCSEIDR", 759 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 760 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 761 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 762 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 763 { .name = "FCSEIDR_S", 764 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 765 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 766 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 767 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 768 /* Define the secure and non-secure context identifier CP registers 769 * separately because there is no secure bank in V8 (no _EL3). This allows 770 * the secure register to be properly reset and migrated. In the 771 * non-secure case, the 32-bit register will have reset and migration 772 * disabled during registration as it is handled by the 64-bit instance. 773 */ 774 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 775 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 777 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 778 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 779 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 780 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 781 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 782 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 783 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 784 REGINFO_SENTINEL 785 }; 786 787 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 788 /* NB: Some of these registers exist in v8 but with more precise 789 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 790 */ 791 /* MMU Domain access control / MPU write buffer control */ 792 { .name = "DACR", 793 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 794 .access = PL1_RW, .resetvalue = 0, 795 .writefn = dacr_write, .raw_writefn = raw_write, 796 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 797 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 798 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 799 * For v6 and v5, these mappings are overly broad. 800 */ 801 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 802 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 803 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 804 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 805 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 806 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 807 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 808 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 809 /* Cache maintenance ops; some of this space may be overridden later. */ 810 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 812 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 813 REGINFO_SENTINEL 814 }; 815 816 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 817 /* Not all pre-v6 cores implemented this WFI, so this is slightly 818 * over-broad. 819 */ 820 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 821 .access = PL1_W, .type = ARM_CP_WFI }, 822 REGINFO_SENTINEL 823 }; 824 825 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 826 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 827 * is UNPREDICTABLE; we choose to NOP as most implementations do). 828 */ 829 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 830 .access = PL1_W, .type = ARM_CP_WFI }, 831 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 832 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 833 * OMAPCP will override this space. 834 */ 835 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 836 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 837 .resetvalue = 0 }, 838 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 839 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 840 .resetvalue = 0 }, 841 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 842 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 843 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 844 .resetvalue = 0 }, 845 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 846 * implementing it as RAZ means the "debug architecture version" bits 847 * will read as a reserved value, which should cause Linux to not try 848 * to use the debug hardware. 849 */ 850 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 851 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 852 /* MMU TLB control. Note that the wildcarding means we cover not just 853 * the unified TLB ops but also the dside/iside/inner-shareable variants. 854 */ 855 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 856 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 857 .type = ARM_CP_NO_RAW }, 858 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 859 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 860 .type = ARM_CP_NO_RAW }, 861 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 862 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 863 .type = ARM_CP_NO_RAW }, 864 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 865 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 866 .type = ARM_CP_NO_RAW }, 867 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 868 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 869 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 870 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 871 REGINFO_SENTINEL 872 }; 873 874 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 875 uint64_t value) 876 { 877 uint32_t mask = 0; 878 879 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 880 if (!arm_feature(env, ARM_FEATURE_V8)) { 881 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 882 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 883 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 884 */ 885 if (arm_feature(env, ARM_FEATURE_VFP)) { 886 /* VFP coprocessor: cp10 & cp11 [23:20] */ 887 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 888 889 if (!arm_feature(env, ARM_FEATURE_NEON)) { 890 /* ASEDIS [31] bit is RAO/WI */ 891 value |= (1 << 31); 892 } 893 894 /* VFPv3 and upwards with NEON implement 32 double precision 895 * registers (D0-D31). 896 */ 897 if (!arm_feature(env, ARM_FEATURE_NEON) || 898 !arm_feature(env, ARM_FEATURE_VFP3)) { 899 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 900 value |= (1 << 30); 901 } 902 } 903 value &= mask; 904 } 905 env->cp15.cpacr_el1 = value; 906 } 907 908 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 909 { 910 /* Call cpacr_write() so that we reset with the correct RAO bits set 911 * for our CPU features. 912 */ 913 cpacr_write(env, ri, 0); 914 } 915 916 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 917 bool isread) 918 { 919 if (arm_feature(env, ARM_FEATURE_V8)) { 920 /* Check if CPACR accesses are to be trapped to EL2 */ 921 if (arm_current_el(env) == 1 && 922 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 923 return CP_ACCESS_TRAP_EL2; 924 /* Check if CPACR accesses are to be trapped to EL3 */ 925 } else if (arm_current_el(env) < 3 && 926 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 927 return CP_ACCESS_TRAP_EL3; 928 } 929 } 930 931 return CP_ACCESS_OK; 932 } 933 934 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 935 bool isread) 936 { 937 /* Check if CPTR accesses are set to trap to EL3 */ 938 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 939 return CP_ACCESS_TRAP_EL3; 940 } 941 942 return CP_ACCESS_OK; 943 } 944 945 static const ARMCPRegInfo v6_cp_reginfo[] = { 946 /* prefetch by MVA in v6, NOP in v7 */ 947 { .name = "MVA_prefetch", 948 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 949 .access = PL1_W, .type = ARM_CP_NOP }, 950 /* We need to break the TB after ISB to execute self-modifying code 951 * correctly and also to take any pending interrupts immediately. 952 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 953 */ 954 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 955 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 956 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 957 .access = PL0_W, .type = ARM_CP_NOP }, 958 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 959 .access = PL0_W, .type = ARM_CP_NOP }, 960 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 961 .access = PL1_RW, 962 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 963 offsetof(CPUARMState, cp15.ifar_ns) }, 964 .resetvalue = 0, }, 965 /* Watchpoint Fault Address Register : should actually only be present 966 * for 1136, 1176, 11MPCore. 967 */ 968 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 969 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 970 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 971 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 972 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 973 .resetfn = cpacr_reset, .writefn = cpacr_write }, 974 REGINFO_SENTINEL 975 }; 976 977 /* Definitions for the PMU registers */ 978 #define PMCRN_MASK 0xf800 979 #define PMCRN_SHIFT 11 980 #define PMCRDP 0x10 981 #define PMCRD 0x8 982 #define PMCRC 0x4 983 #define PMCRP 0x2 984 #define PMCRE 0x1 985 986 #define PMXEVTYPER_P 0x80000000 987 #define PMXEVTYPER_U 0x40000000 988 #define PMXEVTYPER_NSK 0x20000000 989 #define PMXEVTYPER_NSU 0x10000000 990 #define PMXEVTYPER_NSH 0x08000000 991 #define PMXEVTYPER_M 0x04000000 992 #define PMXEVTYPER_MT 0x02000000 993 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 994 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 995 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 996 PMXEVTYPER_M | PMXEVTYPER_MT | \ 997 PMXEVTYPER_EVTCOUNT) 998 999 #define PMCCFILTR 0xf8000000 1000 #define PMCCFILTR_M PMXEVTYPER_M 1001 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1002 1003 static inline uint32_t pmu_num_counters(CPUARMState *env) 1004 { 1005 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1006 } 1007 1008 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1009 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1010 { 1011 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1012 } 1013 1014 typedef struct pm_event { 1015 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1016 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1017 bool (*supported)(CPUARMState *); 1018 /* 1019 * Retrieve the current count of the underlying event. The programmed 1020 * counters hold a difference from the return value from this function 1021 */ 1022 uint64_t (*get_count)(CPUARMState *); 1023 } pm_event; 1024 1025 static bool event_always_supported(CPUARMState *env) 1026 { 1027 return true; 1028 } 1029 1030 static uint64_t swinc_get_count(CPUARMState *env) 1031 { 1032 /* 1033 * SW_INCR events are written directly to the pmevcntr's by writes to 1034 * PMSWINC, so there is no underlying count maintained by the PMU itself 1035 */ 1036 return 0; 1037 } 1038 1039 /* 1040 * Return the underlying cycle count for the PMU cycle counters. If we're in 1041 * usermode, simply return 0. 1042 */ 1043 static uint64_t cycles_get_count(CPUARMState *env) 1044 { 1045 #ifndef CONFIG_USER_ONLY 1046 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1047 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1048 #else 1049 return cpu_get_host_ticks(); 1050 #endif 1051 } 1052 1053 #ifndef CONFIG_USER_ONLY 1054 static bool instructions_supported(CPUARMState *env) 1055 { 1056 return use_icount == 1 /* Precise instruction counting */; 1057 } 1058 1059 static uint64_t instructions_get_count(CPUARMState *env) 1060 { 1061 return (uint64_t)cpu_get_icount_raw(); 1062 } 1063 #endif 1064 1065 static const pm_event pm_events[] = { 1066 { .number = 0x000, /* SW_INCR */ 1067 .supported = event_always_supported, 1068 .get_count = swinc_get_count, 1069 }, 1070 #ifndef CONFIG_USER_ONLY 1071 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1072 .supported = instructions_supported, 1073 .get_count = instructions_get_count, 1074 }, 1075 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1076 .supported = event_always_supported, 1077 .get_count = cycles_get_count, 1078 } 1079 #endif 1080 }; 1081 1082 /* 1083 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1084 * events (i.e. the statistical profiling extension), this implementation 1085 * should first be updated to something sparse instead of the current 1086 * supported_event_map[] array. 1087 */ 1088 #define MAX_EVENT_ID 0x11 1089 #define UNSUPPORTED_EVENT UINT16_MAX 1090 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1091 1092 /* 1093 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1094 * of ARM event numbers to indices in our pm_events array. 1095 * 1096 * Note: Events in the 0x40XX range are not currently supported. 1097 */ 1098 void pmu_init(ARMCPU *cpu) 1099 { 1100 unsigned int i; 1101 1102 /* 1103 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1104 * events to them 1105 */ 1106 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1107 supported_event_map[i] = UNSUPPORTED_EVENT; 1108 } 1109 cpu->pmceid0 = 0; 1110 cpu->pmceid1 = 0; 1111 1112 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1113 const pm_event *cnt = &pm_events[i]; 1114 assert(cnt->number <= MAX_EVENT_ID); 1115 /* We do not currently support events in the 0x40xx range */ 1116 assert(cnt->number <= 0x3f); 1117 1118 if (cnt->supported(&cpu->env)) { 1119 supported_event_map[cnt->number] = i; 1120 uint64_t event_mask = 1 << (cnt->number & 0x1f); 1121 if (cnt->number & 0x20) { 1122 cpu->pmceid1 |= event_mask; 1123 } else { 1124 cpu->pmceid0 |= event_mask; 1125 } 1126 } 1127 } 1128 } 1129 1130 /* 1131 * Check at runtime whether a PMU event is supported for the current machine 1132 */ 1133 static bool event_supported(uint16_t number) 1134 { 1135 if (number > MAX_EVENT_ID) { 1136 return false; 1137 } 1138 return supported_event_map[number] != UNSUPPORTED_EVENT; 1139 } 1140 1141 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1142 bool isread) 1143 { 1144 /* Performance monitor registers user accessibility is controlled 1145 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1146 * trapping to EL2 or EL3 for other accesses. 1147 */ 1148 int el = arm_current_el(env); 1149 1150 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1151 return CP_ACCESS_TRAP; 1152 } 1153 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1154 && !arm_is_secure_below_el3(env)) { 1155 return CP_ACCESS_TRAP_EL2; 1156 } 1157 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1158 return CP_ACCESS_TRAP_EL3; 1159 } 1160 1161 return CP_ACCESS_OK; 1162 } 1163 1164 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1165 const ARMCPRegInfo *ri, 1166 bool isread) 1167 { 1168 /* ER: event counter read trap control */ 1169 if (arm_feature(env, ARM_FEATURE_V8) 1170 && arm_current_el(env) == 0 1171 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1172 && isread) { 1173 return CP_ACCESS_OK; 1174 } 1175 1176 return pmreg_access(env, ri, isread); 1177 } 1178 1179 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1180 const ARMCPRegInfo *ri, 1181 bool isread) 1182 { 1183 /* SW: software increment write trap control */ 1184 if (arm_feature(env, ARM_FEATURE_V8) 1185 && arm_current_el(env) == 0 1186 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1187 && !isread) { 1188 return CP_ACCESS_OK; 1189 } 1190 1191 return pmreg_access(env, ri, isread); 1192 } 1193 1194 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1195 const ARMCPRegInfo *ri, 1196 bool isread) 1197 { 1198 /* ER: event counter read trap control */ 1199 if (arm_feature(env, ARM_FEATURE_V8) 1200 && arm_current_el(env) == 0 1201 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1202 return CP_ACCESS_OK; 1203 } 1204 1205 return pmreg_access(env, ri, isread); 1206 } 1207 1208 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1209 const ARMCPRegInfo *ri, 1210 bool isread) 1211 { 1212 /* CR: cycle counter read trap control */ 1213 if (arm_feature(env, ARM_FEATURE_V8) 1214 && arm_current_el(env) == 0 1215 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1216 && isread) { 1217 return CP_ACCESS_OK; 1218 } 1219 1220 return pmreg_access(env, ri, isread); 1221 } 1222 1223 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1224 * the current EL, security state, and register configuration. 1225 */ 1226 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1227 { 1228 uint64_t filter; 1229 bool e, p, u, nsk, nsu, nsh, m; 1230 bool enabled, prohibited, filtered; 1231 bool secure = arm_is_secure(env); 1232 int el = arm_current_el(env); 1233 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1234 1235 if (!arm_feature(env, ARM_FEATURE_EL2) || 1236 (counter < hpmn || counter == 31)) { 1237 e = env->cp15.c9_pmcr & PMCRE; 1238 } else { 1239 e = env->cp15.mdcr_el2 & MDCR_HPME; 1240 } 1241 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1242 1243 if (!secure) { 1244 if (el == 2 && (counter < hpmn || counter == 31)) { 1245 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1246 } else { 1247 prohibited = false; 1248 } 1249 } else { 1250 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1251 (env->cp15.mdcr_el3 & MDCR_SPME); 1252 } 1253 1254 if (prohibited && counter == 31) { 1255 prohibited = env->cp15.c9_pmcr & PMCRDP; 1256 } 1257 1258 if (counter == 31) { 1259 filter = env->cp15.pmccfiltr_el0; 1260 } else { 1261 filter = env->cp15.c14_pmevtyper[counter]; 1262 } 1263 1264 p = filter & PMXEVTYPER_P; 1265 u = filter & PMXEVTYPER_U; 1266 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1267 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1268 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1269 m = arm_el_is_aa64(env, 1) && 1270 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1271 1272 if (el == 0) { 1273 filtered = secure ? u : u != nsu; 1274 } else if (el == 1) { 1275 filtered = secure ? p : p != nsk; 1276 } else if (el == 2) { 1277 filtered = !nsh; 1278 } else { /* EL3 */ 1279 filtered = m != p; 1280 } 1281 1282 if (counter != 31) { 1283 /* 1284 * If not checking PMCCNTR, ensure the counter is setup to an event we 1285 * support 1286 */ 1287 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1288 if (!event_supported(event)) { 1289 return false; 1290 } 1291 } 1292 1293 return enabled && !prohibited && !filtered; 1294 } 1295 1296 /* 1297 * Ensure c15_ccnt is the guest-visible count so that operations such as 1298 * enabling/disabling the counter or filtering, modifying the count itself, 1299 * etc. can be done logically. This is essentially a no-op if the counter is 1300 * not enabled at the time of the call. 1301 */ 1302 void pmccntr_op_start(CPUARMState *env) 1303 { 1304 uint64_t cycles = cycles_get_count(env); 1305 1306 if (pmu_counter_enabled(env, 31)) { 1307 uint64_t eff_cycles = cycles; 1308 if (env->cp15.c9_pmcr & PMCRD) { 1309 /* Increment once every 64 processor clock cycles */ 1310 eff_cycles /= 64; 1311 } 1312 1313 env->cp15.c15_ccnt = eff_cycles - env->cp15.c15_ccnt_delta; 1314 } 1315 env->cp15.c15_ccnt_delta = cycles; 1316 } 1317 1318 /* 1319 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1320 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1321 * pmccntr_op_start. 1322 */ 1323 void pmccntr_op_finish(CPUARMState *env) 1324 { 1325 if (pmu_counter_enabled(env, 31)) { 1326 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1327 1328 if (env->cp15.c9_pmcr & PMCRD) { 1329 /* Increment once every 64 processor clock cycles */ 1330 prev_cycles /= 64; 1331 } 1332 1333 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1334 } 1335 } 1336 1337 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1338 { 1339 1340 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1341 uint64_t count = 0; 1342 if (event_supported(event)) { 1343 uint16_t event_idx = supported_event_map[event]; 1344 count = pm_events[event_idx].get_count(env); 1345 } 1346 1347 if (pmu_counter_enabled(env, counter)) { 1348 env->cp15.c14_pmevcntr[counter] = 1349 count - env->cp15.c14_pmevcntr_delta[counter]; 1350 } 1351 env->cp15.c14_pmevcntr_delta[counter] = count; 1352 } 1353 1354 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1355 { 1356 if (pmu_counter_enabled(env, counter)) { 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1391 uint64_t value) 1392 { 1393 pmu_op_start(env); 1394 1395 if (value & PMCRC) { 1396 /* The counter has been reset */ 1397 env->cp15.c15_ccnt = 0; 1398 } 1399 1400 if (value & PMCRP) { 1401 unsigned int i; 1402 for (i = 0; i < pmu_num_counters(env); i++) { 1403 env->cp15.c14_pmevcntr[i] = 0; 1404 } 1405 } 1406 1407 /* only the DP, X, D and E bits are writable */ 1408 env->cp15.c9_pmcr &= ~0x39; 1409 env->cp15.c9_pmcr |= (value & 0x39); 1410 1411 pmu_op_finish(env); 1412 } 1413 1414 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1415 uint64_t value) 1416 { 1417 unsigned int i; 1418 for (i = 0; i < pmu_num_counters(env); i++) { 1419 /* Increment a counter's count iff: */ 1420 if ((value & (1 << i)) && /* counter's bit is set */ 1421 /* counter is enabled and not filtered */ 1422 pmu_counter_enabled(env, i) && 1423 /* counter is SW_INCR */ 1424 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1425 pmevcntr_op_start(env, i); 1426 env->cp15.c14_pmevcntr[i]++; 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 } 1431 1432 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1433 { 1434 uint64_t ret; 1435 pmccntr_op_start(env); 1436 ret = env->cp15.c15_ccnt; 1437 pmccntr_op_finish(env); 1438 return ret; 1439 } 1440 1441 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1442 uint64_t value) 1443 { 1444 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1445 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1446 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1447 * accessed. 1448 */ 1449 env->cp15.c9_pmselr = value & 0x1f; 1450 } 1451 1452 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1453 uint64_t value) 1454 { 1455 pmccntr_op_start(env); 1456 env->cp15.c15_ccnt = value; 1457 pmccntr_op_finish(env); 1458 } 1459 1460 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1461 uint64_t value) 1462 { 1463 uint64_t cur_val = pmccntr_read(env, NULL); 1464 1465 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1466 } 1467 1468 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 pmccntr_op_start(env); 1480 /* M is not accessible from AArch32 */ 1481 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1482 (value & PMCCFILTR); 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1487 { 1488 /* M is not visible in AArch32 */ 1489 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1490 } 1491 1492 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 value &= pmu_counter_mask(env); 1496 env->cp15.c9_pmcnten |= value; 1497 } 1498 1499 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1500 uint64_t value) 1501 { 1502 value &= pmu_counter_mask(env); 1503 env->cp15.c9_pmcnten &= ~value; 1504 } 1505 1506 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1507 uint64_t value) 1508 { 1509 value &= pmu_counter_mask(env); 1510 env->cp15.c9_pmovsr &= ~value; 1511 } 1512 1513 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1514 uint64_t value) 1515 { 1516 value &= pmu_counter_mask(env); 1517 env->cp15.c9_pmovsr |= value; 1518 } 1519 1520 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value, const uint8_t counter) 1522 { 1523 if (counter == 31) { 1524 pmccfiltr_write(env, ri, value); 1525 } else if (counter < pmu_num_counters(env)) { 1526 pmevcntr_op_start(env, counter); 1527 1528 /* 1529 * If this counter's event type is changing, store the current 1530 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1531 * pmevcntr_op_finish has the correct baseline when it converts back to 1532 * a delta. 1533 */ 1534 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1535 PMXEVTYPER_EVTCOUNT; 1536 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1537 if (old_event != new_event) { 1538 uint64_t count = 0; 1539 if (event_supported(new_event)) { 1540 uint16_t event_idx = supported_event_map[new_event]; 1541 count = pm_events[event_idx].get_count(env); 1542 } 1543 env->cp15.c14_pmevcntr_delta[counter] = count; 1544 } 1545 1546 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1547 pmevcntr_op_finish(env, counter); 1548 } 1549 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1550 * PMSELR value is equal to or greater than the number of implemented 1551 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1552 */ 1553 } 1554 1555 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1556 const uint8_t counter) 1557 { 1558 if (counter == 31) { 1559 return env->cp15.pmccfiltr_el0; 1560 } else if (counter < pmu_num_counters(env)) { 1561 return env->cp15.c14_pmevtyper[counter]; 1562 } else { 1563 /* 1564 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1565 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1566 */ 1567 return 0; 1568 } 1569 } 1570 1571 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1572 uint64_t value) 1573 { 1574 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1575 pmevtyper_write(env, ri, value, counter); 1576 } 1577 1578 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1579 uint64_t value) 1580 { 1581 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1582 env->cp15.c14_pmevtyper[counter] = value; 1583 1584 /* 1585 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1586 * pmu_op_finish calls when loading saved state for a migration. Because 1587 * we're potentially updating the type of event here, the value written to 1588 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1589 * different counter type. Therefore, we need to set this value to the 1590 * current count for the counter type we're writing so that pmu_op_finish 1591 * has the correct count for its calculation. 1592 */ 1593 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1594 if (event_supported(event)) { 1595 uint16_t event_idx = supported_event_map[event]; 1596 env->cp15.c14_pmevcntr_delta[counter] = 1597 pm_events[event_idx].get_count(env); 1598 } 1599 } 1600 1601 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1602 { 1603 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1604 return pmevtyper_read(env, ri, counter); 1605 } 1606 1607 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1608 uint64_t value) 1609 { 1610 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1611 } 1612 1613 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1614 { 1615 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1616 } 1617 1618 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1619 uint64_t value, uint8_t counter) 1620 { 1621 if (counter < pmu_num_counters(env)) { 1622 pmevcntr_op_start(env, counter); 1623 env->cp15.c14_pmevcntr[counter] = value; 1624 pmevcntr_op_finish(env, counter); 1625 } 1626 /* 1627 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1628 * are CONSTRAINED UNPREDICTABLE. 1629 */ 1630 } 1631 1632 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1633 uint8_t counter) 1634 { 1635 if (counter < pmu_num_counters(env)) { 1636 uint64_t ret; 1637 pmevcntr_op_start(env, counter); 1638 ret = env->cp15.c14_pmevcntr[counter]; 1639 pmevcntr_op_finish(env, counter); 1640 return ret; 1641 } else { 1642 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1643 * are CONSTRAINED UNPREDICTABLE. */ 1644 return 0; 1645 } 1646 } 1647 1648 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1649 uint64_t value) 1650 { 1651 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1652 pmevcntr_write(env, ri, value, counter); 1653 } 1654 1655 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1656 { 1657 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1658 return pmevcntr_read(env, ri, counter); 1659 } 1660 1661 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 assert(counter < pmu_num_counters(env)); 1666 env->cp15.c14_pmevcntr[counter] = value; 1667 pmevcntr_write(env, ri, value, counter); 1668 } 1669 1670 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1671 { 1672 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1673 assert(counter < pmu_num_counters(env)); 1674 return env->cp15.c14_pmevcntr[counter]; 1675 } 1676 1677 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1678 uint64_t value) 1679 { 1680 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1681 } 1682 1683 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1686 } 1687 1688 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 if (arm_feature(env, ARM_FEATURE_V8)) { 1692 env->cp15.c9_pmuserenr = value & 0xf; 1693 } else { 1694 env->cp15.c9_pmuserenr = value & 1; 1695 } 1696 } 1697 1698 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1699 uint64_t value) 1700 { 1701 /* We have no event counters so only the C bit can be changed */ 1702 value &= pmu_counter_mask(env); 1703 env->cp15.c9_pminten |= value; 1704 } 1705 1706 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 value &= pmu_counter_mask(env); 1710 env->cp15.c9_pminten &= ~value; 1711 } 1712 1713 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 /* Note that even though the AArch64 view of this register has bits 1717 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1718 * architectural requirements for bits which are RES0 only in some 1719 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1720 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1721 */ 1722 raw_write(env, ri, value & ~0x1FULL); 1723 } 1724 1725 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1726 { 1727 /* Begin with base v8.0 state. */ 1728 uint32_t valid_mask = 0x3fff; 1729 ARMCPU *cpu = arm_env_get_cpu(env); 1730 1731 if (arm_el_is_aa64(env, 3)) { 1732 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1733 valid_mask &= ~SCR_NET; 1734 } else { 1735 valid_mask &= ~(SCR_RW | SCR_ST); 1736 } 1737 1738 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1739 valid_mask &= ~SCR_HCE; 1740 1741 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1742 * supported if EL2 exists. The bit is UNK/SBZP when 1743 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1744 * when EL2 is unavailable. 1745 * On ARMv8, this bit is always available. 1746 */ 1747 if (arm_feature(env, ARM_FEATURE_V7) && 1748 !arm_feature(env, ARM_FEATURE_V8)) { 1749 valid_mask &= ~SCR_SMD; 1750 } 1751 } 1752 if (cpu_isar_feature(aa64_lor, cpu)) { 1753 valid_mask |= SCR_TLOR; 1754 } 1755 1756 /* Clear all-context RES0 bits. */ 1757 value &= valid_mask; 1758 raw_write(env, ri, value); 1759 } 1760 1761 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1762 { 1763 ARMCPU *cpu = arm_env_get_cpu(env); 1764 1765 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1766 * bank 1767 */ 1768 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1769 ri->secure & ARM_CP_SECSTATE_S); 1770 1771 return cpu->ccsidr[index]; 1772 } 1773 1774 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1775 uint64_t value) 1776 { 1777 raw_write(env, ri, value & 0xf); 1778 } 1779 1780 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1781 { 1782 CPUState *cs = ENV_GET_CPU(env); 1783 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1784 uint64_t ret = 0; 1785 1786 if (hcr_el2 & HCR_IMO) { 1787 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1788 ret |= CPSR_I; 1789 } 1790 } else { 1791 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1792 ret |= CPSR_I; 1793 } 1794 } 1795 1796 if (hcr_el2 & HCR_FMO) { 1797 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1798 ret |= CPSR_F; 1799 } 1800 } else { 1801 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1802 ret |= CPSR_F; 1803 } 1804 } 1805 1806 /* External aborts are not possible in QEMU so A bit is always clear */ 1807 return ret; 1808 } 1809 1810 static const ARMCPRegInfo v7_cp_reginfo[] = { 1811 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1812 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1813 .access = PL1_W, .type = ARM_CP_NOP }, 1814 /* Performance monitors are implementation defined in v7, 1815 * but with an ARM recommended set of registers, which we 1816 * follow. 1817 * 1818 * Performance registers fall into three categories: 1819 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1820 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1821 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1822 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1823 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1824 */ 1825 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1826 .access = PL0_RW, .type = ARM_CP_ALIAS, 1827 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1828 .writefn = pmcntenset_write, 1829 .accessfn = pmreg_access, 1830 .raw_writefn = raw_write }, 1831 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1832 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1833 .access = PL0_RW, .accessfn = pmreg_access, 1834 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1835 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1836 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1837 .access = PL0_RW, 1838 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1839 .accessfn = pmreg_access, 1840 .writefn = pmcntenclr_write, 1841 .type = ARM_CP_ALIAS }, 1842 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1844 .access = PL0_RW, .accessfn = pmreg_access, 1845 .type = ARM_CP_ALIAS, 1846 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1847 .writefn = pmcntenclr_write }, 1848 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1849 .access = PL0_RW, 1850 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1851 .accessfn = pmreg_access, 1852 .writefn = pmovsr_write, 1853 .raw_writefn = raw_write }, 1854 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1855 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1856 .access = PL0_RW, .accessfn = pmreg_access, 1857 .type = ARM_CP_ALIAS, 1858 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1859 .writefn = pmovsr_write, 1860 .raw_writefn = raw_write }, 1861 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1862 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW, 1863 .writefn = pmswinc_write }, 1864 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1865 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1866 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW, 1867 .writefn = pmswinc_write }, 1868 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1869 .access = PL0_RW, .type = ARM_CP_ALIAS, 1870 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1871 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1872 .raw_writefn = raw_write}, 1873 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1874 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1875 .access = PL0_RW, .accessfn = pmreg_access_selr, 1876 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1877 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1878 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1879 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1880 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1881 .accessfn = pmreg_access_ccntr }, 1882 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1883 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1884 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1885 .type = ARM_CP_IO, 1886 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1887 .readfn = pmccntr_read, .writefn = pmccntr_write, 1888 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1889 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1890 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1891 .access = PL0_RW, .accessfn = pmreg_access, 1892 .type = ARM_CP_ALIAS | ARM_CP_IO, 1893 .resetvalue = 0, }, 1894 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1895 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1896 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1897 .access = PL0_RW, .accessfn = pmreg_access, 1898 .type = ARM_CP_IO, 1899 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1900 .resetvalue = 0, }, 1901 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1902 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1903 .accessfn = pmreg_access, 1904 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1905 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1907 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1908 .accessfn = pmreg_access, 1909 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1910 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1911 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1912 .accessfn = pmreg_access_xevcntr, 1913 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1914 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1916 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1917 .accessfn = pmreg_access_xevcntr, 1918 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1919 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1920 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1922 .resetvalue = 0, 1923 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1924 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1926 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1927 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1928 .resetvalue = 0, 1929 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1930 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1931 .access = PL1_RW, .accessfn = access_tpm, 1932 .type = ARM_CP_ALIAS | ARM_CP_IO, 1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1934 .resetvalue = 0, 1935 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1936 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1937 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1938 .access = PL1_RW, .accessfn = access_tpm, 1939 .type = ARM_CP_IO, 1940 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1941 .writefn = pmintenset_write, .raw_writefn = raw_write, 1942 .resetvalue = 0x0 }, 1943 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1944 .access = PL1_RW, .accessfn = access_tpm, 1945 .type = ARM_CP_ALIAS | ARM_CP_IO, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1947 .writefn = pmintenclr_write, }, 1948 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1949 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1950 .access = PL1_RW, .accessfn = access_tpm, 1951 .type = ARM_CP_ALIAS | ARM_CP_IO, 1952 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1953 .writefn = pmintenclr_write }, 1954 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1955 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1956 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1957 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1958 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1959 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1960 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1961 offsetof(CPUARMState, cp15.csselr_ns) } }, 1962 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1963 * just RAZ for all cores: 1964 */ 1965 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1966 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1967 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1968 /* Auxiliary fault status registers: these also are IMPDEF, and we 1969 * choose to RAZ/WI for all cores. 1970 */ 1971 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1972 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1973 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1974 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1975 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1976 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1977 /* MAIR can just read-as-written because we don't implement caches 1978 * and so don't need to care about memory attributes. 1979 */ 1980 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1982 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1983 .resetvalue = 0 }, 1984 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1986 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1987 .resetvalue = 0 }, 1988 /* For non-long-descriptor page tables these are PRRR and NMRR; 1989 * regardless they still act as reads-as-written for QEMU. 1990 */ 1991 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1992 * allows them to assign the correct fieldoffset based on the endianness 1993 * handled in the field definitions. 1994 */ 1995 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1996 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1997 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1998 offsetof(CPUARMState, cp15.mair0_ns) }, 1999 .resetfn = arm_cp_reset_ignore }, 2000 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2001 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2002 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2003 offsetof(CPUARMState, cp15.mair1_ns) }, 2004 .resetfn = arm_cp_reset_ignore }, 2005 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2006 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2007 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2008 /* 32 bit ITLB invalidates */ 2009 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2010 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2011 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2012 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2013 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2014 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2015 /* 32 bit DTLB invalidates */ 2016 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2017 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2018 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2019 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2020 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2021 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2022 /* 32 bit TLB invalidates */ 2023 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2024 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2025 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2026 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2027 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2028 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2029 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2030 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2031 REGINFO_SENTINEL 2032 }; 2033 2034 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2035 /* 32 bit TLB invalidates, Inner Shareable */ 2036 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2037 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2038 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2039 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2040 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2041 .type = ARM_CP_NO_RAW, .access = PL1_W, 2042 .writefn = tlbiasid_is_write }, 2043 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2044 .type = ARM_CP_NO_RAW, .access = PL1_W, 2045 .writefn = tlbimvaa_is_write }, 2046 REGINFO_SENTINEL 2047 }; 2048 2049 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2050 /* PMOVSSET is not implemented in v7 before v7ve */ 2051 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2052 .access = PL0_RW, .accessfn = pmreg_access, 2053 .type = ARM_CP_ALIAS, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2055 .writefn = pmovsset_write, 2056 .raw_writefn = raw_write }, 2057 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2059 .access = PL0_RW, .accessfn = pmreg_access, 2060 .type = ARM_CP_ALIAS, 2061 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2062 .writefn = pmovsset_write, 2063 .raw_writefn = raw_write }, 2064 REGINFO_SENTINEL 2065 }; 2066 2067 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2068 uint64_t value) 2069 { 2070 value &= 1; 2071 env->teecr = value; 2072 } 2073 2074 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2075 bool isread) 2076 { 2077 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2078 return CP_ACCESS_TRAP; 2079 } 2080 return CP_ACCESS_OK; 2081 } 2082 2083 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2084 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2085 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2086 .resetvalue = 0, 2087 .writefn = teecr_write }, 2088 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2089 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2090 .accessfn = teehbr_access, .resetvalue = 0 }, 2091 REGINFO_SENTINEL 2092 }; 2093 2094 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2095 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2097 .access = PL0_RW, 2098 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2099 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2100 .access = PL0_RW, 2101 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2102 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2103 .resetfn = arm_cp_reset_ignore }, 2104 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2106 .access = PL0_R|PL1_W, 2107 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2108 .resetvalue = 0}, 2109 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2110 .access = PL0_R|PL1_W, 2111 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2112 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2113 .resetfn = arm_cp_reset_ignore }, 2114 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2115 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2116 .access = PL1_RW, 2117 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2118 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2119 .access = PL1_RW, 2120 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2121 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2122 .resetvalue = 0 }, 2123 REGINFO_SENTINEL 2124 }; 2125 2126 #ifndef CONFIG_USER_ONLY 2127 2128 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2129 bool isread) 2130 { 2131 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2132 * Writable only at the highest implemented exception level. 2133 */ 2134 int el = arm_current_el(env); 2135 2136 switch (el) { 2137 case 0: 2138 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2139 return CP_ACCESS_TRAP; 2140 } 2141 break; 2142 case 1: 2143 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2144 arm_is_secure_below_el3(env)) { 2145 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2146 return CP_ACCESS_TRAP_UNCATEGORIZED; 2147 } 2148 break; 2149 case 2: 2150 case 3: 2151 break; 2152 } 2153 2154 if (!isread && el < arm_highest_el(env)) { 2155 return CP_ACCESS_TRAP_UNCATEGORIZED; 2156 } 2157 2158 return CP_ACCESS_OK; 2159 } 2160 2161 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2162 bool isread) 2163 { 2164 unsigned int cur_el = arm_current_el(env); 2165 bool secure = arm_is_secure(env); 2166 2167 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2168 if (cur_el == 0 && 2169 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2170 return CP_ACCESS_TRAP; 2171 } 2172 2173 if (arm_feature(env, ARM_FEATURE_EL2) && 2174 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2175 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2176 return CP_ACCESS_TRAP_EL2; 2177 } 2178 return CP_ACCESS_OK; 2179 } 2180 2181 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2182 bool isread) 2183 { 2184 unsigned int cur_el = arm_current_el(env); 2185 bool secure = arm_is_secure(env); 2186 2187 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2188 * EL0[PV]TEN is zero. 2189 */ 2190 if (cur_el == 0 && 2191 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2192 return CP_ACCESS_TRAP; 2193 } 2194 2195 if (arm_feature(env, ARM_FEATURE_EL2) && 2196 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2197 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2198 return CP_ACCESS_TRAP_EL2; 2199 } 2200 return CP_ACCESS_OK; 2201 } 2202 2203 static CPAccessResult gt_pct_access(CPUARMState *env, 2204 const ARMCPRegInfo *ri, 2205 bool isread) 2206 { 2207 return gt_counter_access(env, GTIMER_PHYS, isread); 2208 } 2209 2210 static CPAccessResult gt_vct_access(CPUARMState *env, 2211 const ARMCPRegInfo *ri, 2212 bool isread) 2213 { 2214 return gt_counter_access(env, GTIMER_VIRT, isread); 2215 } 2216 2217 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2218 bool isread) 2219 { 2220 return gt_timer_access(env, GTIMER_PHYS, isread); 2221 } 2222 2223 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2224 bool isread) 2225 { 2226 return gt_timer_access(env, GTIMER_VIRT, isread); 2227 } 2228 2229 static CPAccessResult gt_stimer_access(CPUARMState *env, 2230 const ARMCPRegInfo *ri, 2231 bool isread) 2232 { 2233 /* The AArch64 register view of the secure physical timer is 2234 * always accessible from EL3, and configurably accessible from 2235 * Secure EL1. 2236 */ 2237 switch (arm_current_el(env)) { 2238 case 1: 2239 if (!arm_is_secure(env)) { 2240 return CP_ACCESS_TRAP; 2241 } 2242 if (!(env->cp15.scr_el3 & SCR_ST)) { 2243 return CP_ACCESS_TRAP_EL3; 2244 } 2245 return CP_ACCESS_OK; 2246 case 0: 2247 case 2: 2248 return CP_ACCESS_TRAP; 2249 case 3: 2250 return CP_ACCESS_OK; 2251 default: 2252 g_assert_not_reached(); 2253 } 2254 } 2255 2256 static uint64_t gt_get_countervalue(CPUARMState *env) 2257 { 2258 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2259 } 2260 2261 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2262 { 2263 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2264 2265 if (gt->ctl & 1) { 2266 /* Timer enabled: calculate and set current ISTATUS, irq, and 2267 * reset timer to when ISTATUS next has to change 2268 */ 2269 uint64_t offset = timeridx == GTIMER_VIRT ? 2270 cpu->env.cp15.cntvoff_el2 : 0; 2271 uint64_t count = gt_get_countervalue(&cpu->env); 2272 /* Note that this must be unsigned 64 bit arithmetic: */ 2273 int istatus = count - offset >= gt->cval; 2274 uint64_t nexttick; 2275 int irqstate; 2276 2277 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2278 2279 irqstate = (istatus && !(gt->ctl & 2)); 2280 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2281 2282 if (istatus) { 2283 /* Next transition is when count rolls back over to zero */ 2284 nexttick = UINT64_MAX; 2285 } else { 2286 /* Next transition is when we hit cval */ 2287 nexttick = gt->cval + offset; 2288 } 2289 /* Note that the desired next expiry time might be beyond the 2290 * signed-64-bit range of a QEMUTimer -- in this case we just 2291 * set the timer for as far in the future as possible. When the 2292 * timer expires we will reset the timer for any remaining period. 2293 */ 2294 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2295 nexttick = INT64_MAX / GTIMER_SCALE; 2296 } 2297 timer_mod(cpu->gt_timer[timeridx], nexttick); 2298 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2299 } else { 2300 /* Timer disabled: ISTATUS and timer output always clear */ 2301 gt->ctl &= ~4; 2302 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2303 timer_del(cpu->gt_timer[timeridx]); 2304 trace_arm_gt_recalc_disabled(timeridx); 2305 } 2306 } 2307 2308 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2309 int timeridx) 2310 { 2311 ARMCPU *cpu = arm_env_get_cpu(env); 2312 2313 timer_del(cpu->gt_timer[timeridx]); 2314 } 2315 2316 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2317 { 2318 return gt_get_countervalue(env); 2319 } 2320 2321 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2322 { 2323 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2324 } 2325 2326 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2327 int timeridx, 2328 uint64_t value) 2329 { 2330 trace_arm_gt_cval_write(timeridx, value); 2331 env->cp15.c14_timer[timeridx].cval = value; 2332 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2333 } 2334 2335 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2336 int timeridx) 2337 { 2338 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2339 2340 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2341 (gt_get_countervalue(env) - offset)); 2342 } 2343 2344 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2345 int timeridx, 2346 uint64_t value) 2347 { 2348 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2349 2350 trace_arm_gt_tval_write(timeridx, value); 2351 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2352 sextract64(value, 0, 32); 2353 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2354 } 2355 2356 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2357 int timeridx, 2358 uint64_t value) 2359 { 2360 ARMCPU *cpu = arm_env_get_cpu(env); 2361 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2362 2363 trace_arm_gt_ctl_write(timeridx, value); 2364 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2365 if ((oldval ^ value) & 1) { 2366 /* Enable toggled */ 2367 gt_recalc_timer(cpu, timeridx); 2368 } else if ((oldval ^ value) & 2) { 2369 /* IMASK toggled: don't need to recalculate, 2370 * just set the interrupt line based on ISTATUS 2371 */ 2372 int irqstate = (oldval & 4) && !(value & 2); 2373 2374 trace_arm_gt_imask_toggle(timeridx, irqstate); 2375 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2376 } 2377 } 2378 2379 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2380 { 2381 gt_timer_reset(env, ri, GTIMER_PHYS); 2382 } 2383 2384 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2385 uint64_t value) 2386 { 2387 gt_cval_write(env, ri, GTIMER_PHYS, value); 2388 } 2389 2390 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2391 { 2392 return gt_tval_read(env, ri, GTIMER_PHYS); 2393 } 2394 2395 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2396 uint64_t value) 2397 { 2398 gt_tval_write(env, ri, GTIMER_PHYS, value); 2399 } 2400 2401 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2402 uint64_t value) 2403 { 2404 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2405 } 2406 2407 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2408 { 2409 gt_timer_reset(env, ri, GTIMER_VIRT); 2410 } 2411 2412 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2413 uint64_t value) 2414 { 2415 gt_cval_write(env, ri, GTIMER_VIRT, value); 2416 } 2417 2418 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2419 { 2420 return gt_tval_read(env, ri, GTIMER_VIRT); 2421 } 2422 2423 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2424 uint64_t value) 2425 { 2426 gt_tval_write(env, ri, GTIMER_VIRT, value); 2427 } 2428 2429 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2430 uint64_t value) 2431 { 2432 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2433 } 2434 2435 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2436 uint64_t value) 2437 { 2438 ARMCPU *cpu = arm_env_get_cpu(env); 2439 2440 trace_arm_gt_cntvoff_write(value); 2441 raw_write(env, ri, value); 2442 gt_recalc_timer(cpu, GTIMER_VIRT); 2443 } 2444 2445 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2446 { 2447 gt_timer_reset(env, ri, GTIMER_HYP); 2448 } 2449 2450 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2451 uint64_t value) 2452 { 2453 gt_cval_write(env, ri, GTIMER_HYP, value); 2454 } 2455 2456 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2457 { 2458 return gt_tval_read(env, ri, GTIMER_HYP); 2459 } 2460 2461 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2462 uint64_t value) 2463 { 2464 gt_tval_write(env, ri, GTIMER_HYP, value); 2465 } 2466 2467 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2468 uint64_t value) 2469 { 2470 gt_ctl_write(env, ri, GTIMER_HYP, value); 2471 } 2472 2473 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2474 { 2475 gt_timer_reset(env, ri, GTIMER_SEC); 2476 } 2477 2478 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2479 uint64_t value) 2480 { 2481 gt_cval_write(env, ri, GTIMER_SEC, value); 2482 } 2483 2484 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2485 { 2486 return gt_tval_read(env, ri, GTIMER_SEC); 2487 } 2488 2489 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2490 uint64_t value) 2491 { 2492 gt_tval_write(env, ri, GTIMER_SEC, value); 2493 } 2494 2495 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2496 uint64_t value) 2497 { 2498 gt_ctl_write(env, ri, GTIMER_SEC, value); 2499 } 2500 2501 void arm_gt_ptimer_cb(void *opaque) 2502 { 2503 ARMCPU *cpu = opaque; 2504 2505 gt_recalc_timer(cpu, GTIMER_PHYS); 2506 } 2507 2508 void arm_gt_vtimer_cb(void *opaque) 2509 { 2510 ARMCPU *cpu = opaque; 2511 2512 gt_recalc_timer(cpu, GTIMER_VIRT); 2513 } 2514 2515 void arm_gt_htimer_cb(void *opaque) 2516 { 2517 ARMCPU *cpu = opaque; 2518 2519 gt_recalc_timer(cpu, GTIMER_HYP); 2520 } 2521 2522 void arm_gt_stimer_cb(void *opaque) 2523 { 2524 ARMCPU *cpu = opaque; 2525 2526 gt_recalc_timer(cpu, GTIMER_SEC); 2527 } 2528 2529 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2530 /* Note that CNTFRQ is purely reads-as-written for the benefit 2531 * of software; writing it doesn't actually change the timer frequency. 2532 * Our reset value matches the fixed frequency we implement the timer at. 2533 */ 2534 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2535 .type = ARM_CP_ALIAS, 2536 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2537 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2538 }, 2539 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2540 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2541 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2542 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2543 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2544 }, 2545 /* overall control: mostly access permissions */ 2546 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2547 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2548 .access = PL1_RW, 2549 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2550 .resetvalue = 0, 2551 }, 2552 /* per-timer control */ 2553 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2554 .secure = ARM_CP_SECSTATE_NS, 2555 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2556 .accessfn = gt_ptimer_access, 2557 .fieldoffset = offsetoflow32(CPUARMState, 2558 cp15.c14_timer[GTIMER_PHYS].ctl), 2559 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2560 }, 2561 { .name = "CNTP_CTL_S", 2562 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2563 .secure = ARM_CP_SECSTATE_S, 2564 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2565 .accessfn = gt_ptimer_access, 2566 .fieldoffset = offsetoflow32(CPUARMState, 2567 cp15.c14_timer[GTIMER_SEC].ctl), 2568 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2569 }, 2570 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2571 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2572 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2573 .accessfn = gt_ptimer_access, 2574 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2575 .resetvalue = 0, 2576 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2577 }, 2578 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2579 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2580 .accessfn = gt_vtimer_access, 2581 .fieldoffset = offsetoflow32(CPUARMState, 2582 cp15.c14_timer[GTIMER_VIRT].ctl), 2583 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2584 }, 2585 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2586 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2587 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2588 .accessfn = gt_vtimer_access, 2589 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2590 .resetvalue = 0, 2591 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2592 }, 2593 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2594 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2595 .secure = ARM_CP_SECSTATE_NS, 2596 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2597 .accessfn = gt_ptimer_access, 2598 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2599 }, 2600 { .name = "CNTP_TVAL_S", 2601 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2602 .secure = ARM_CP_SECSTATE_S, 2603 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2604 .accessfn = gt_ptimer_access, 2605 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2606 }, 2607 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2608 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2609 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2610 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2611 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2612 }, 2613 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2614 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2615 .accessfn = gt_vtimer_access, 2616 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2617 }, 2618 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2619 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2620 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2621 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2622 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2623 }, 2624 /* The counter itself */ 2625 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2626 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2627 .accessfn = gt_pct_access, 2628 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2629 }, 2630 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2631 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2632 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2633 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2634 }, 2635 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2636 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2637 .accessfn = gt_vct_access, 2638 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2639 }, 2640 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2641 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2642 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2643 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2644 }, 2645 /* Comparison value, indicating when the timer goes off */ 2646 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2647 .secure = ARM_CP_SECSTATE_NS, 2648 .access = PL1_RW | PL0_R, 2649 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2650 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2651 .accessfn = gt_ptimer_access, 2652 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2653 }, 2654 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2655 .secure = ARM_CP_SECSTATE_S, 2656 .access = PL1_RW | PL0_R, 2657 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2658 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2659 .accessfn = gt_ptimer_access, 2660 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2661 }, 2662 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2663 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2664 .access = PL1_RW | PL0_R, 2665 .type = ARM_CP_IO, 2666 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2667 .resetvalue = 0, .accessfn = gt_ptimer_access, 2668 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2669 }, 2670 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2671 .access = PL1_RW | PL0_R, 2672 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2673 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2674 .accessfn = gt_vtimer_access, 2675 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2676 }, 2677 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2678 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2679 .access = PL1_RW | PL0_R, 2680 .type = ARM_CP_IO, 2681 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2682 .resetvalue = 0, .accessfn = gt_vtimer_access, 2683 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2684 }, 2685 /* Secure timer -- this is actually restricted to only EL3 2686 * and configurably Secure-EL1 via the accessfn. 2687 */ 2688 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2689 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2690 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2691 .accessfn = gt_stimer_access, 2692 .readfn = gt_sec_tval_read, 2693 .writefn = gt_sec_tval_write, 2694 .resetfn = gt_sec_timer_reset, 2695 }, 2696 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2697 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2698 .type = ARM_CP_IO, .access = PL1_RW, 2699 .accessfn = gt_stimer_access, 2700 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2701 .resetvalue = 0, 2702 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2703 }, 2704 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2705 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2706 .type = ARM_CP_IO, .access = PL1_RW, 2707 .accessfn = gt_stimer_access, 2708 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2709 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2710 }, 2711 REGINFO_SENTINEL 2712 }; 2713 2714 #else 2715 2716 /* In user-mode most of the generic timer registers are inaccessible 2717 * however modern kernels (4.12+) allow access to cntvct_el0 2718 */ 2719 2720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2721 { 2722 /* Currently we have no support for QEMUTimer in linux-user so we 2723 * can't call gt_get_countervalue(env), instead we directly 2724 * call the lower level functions. 2725 */ 2726 return cpu_get_clock() / GTIMER_SCALE; 2727 } 2728 2729 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2730 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2731 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2732 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2733 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2734 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2735 }, 2736 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2737 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2738 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2739 .readfn = gt_virt_cnt_read, 2740 }, 2741 REGINFO_SENTINEL 2742 }; 2743 2744 #endif 2745 2746 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2747 { 2748 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2749 raw_write(env, ri, value); 2750 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2751 raw_write(env, ri, value & 0xfffff6ff); 2752 } else { 2753 raw_write(env, ri, value & 0xfffff1ff); 2754 } 2755 } 2756 2757 #ifndef CONFIG_USER_ONLY 2758 /* get_phys_addr() isn't present for user-mode-only targets */ 2759 2760 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2761 bool isread) 2762 { 2763 if (ri->opc2 & 4) { 2764 /* The ATS12NSO* operations must trap to EL3 if executed in 2765 * Secure EL1 (which can only happen if EL3 is AArch64). 2766 * They are simply UNDEF if executed from NS EL1. 2767 * They function normally from EL2 or EL3. 2768 */ 2769 if (arm_current_el(env) == 1) { 2770 if (arm_is_secure_below_el3(env)) { 2771 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2772 } 2773 return CP_ACCESS_TRAP_UNCATEGORIZED; 2774 } 2775 } 2776 return CP_ACCESS_OK; 2777 } 2778 2779 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2780 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2781 { 2782 hwaddr phys_addr; 2783 target_ulong page_size; 2784 int prot; 2785 bool ret; 2786 uint64_t par64; 2787 bool format64 = false; 2788 MemTxAttrs attrs = {}; 2789 ARMMMUFaultInfo fi = {}; 2790 ARMCacheAttrs cacheattrs = {}; 2791 2792 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2793 &prot, &page_size, &fi, &cacheattrs); 2794 2795 if (is_a64(env)) { 2796 format64 = true; 2797 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2798 /* 2799 * ATS1Cxx: 2800 * * TTBCR.EAE determines whether the result is returned using the 2801 * 32-bit or the 64-bit PAR format 2802 * * Instructions executed in Hyp mode always use the 64bit format 2803 * 2804 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2805 * * The Non-secure TTBCR.EAE bit is set to 1 2806 * * The implementation includes EL2, and the value of HCR.VM is 1 2807 * 2808 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2809 * 2810 * ATS1Hx always uses the 64bit format. 2811 */ 2812 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2813 2814 if (arm_feature(env, ARM_FEATURE_EL2)) { 2815 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2816 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2817 } else { 2818 format64 |= arm_current_el(env) == 2; 2819 } 2820 } 2821 } 2822 2823 if (format64) { 2824 /* Create a 64-bit PAR */ 2825 par64 = (1 << 11); /* LPAE bit always set */ 2826 if (!ret) { 2827 par64 |= phys_addr & ~0xfffULL; 2828 if (!attrs.secure) { 2829 par64 |= (1 << 9); /* NS */ 2830 } 2831 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2832 par64 |= cacheattrs.shareability << 7; /* SH */ 2833 } else { 2834 uint32_t fsr = arm_fi_to_lfsc(&fi); 2835 2836 par64 |= 1; /* F */ 2837 par64 |= (fsr & 0x3f) << 1; /* FS */ 2838 if (fi.stage2) { 2839 par64 |= (1 << 9); /* S */ 2840 } 2841 if (fi.s1ptw) { 2842 par64 |= (1 << 8); /* PTW */ 2843 } 2844 } 2845 } else { 2846 /* fsr is a DFSR/IFSR value for the short descriptor 2847 * translation table format (with WnR always clear). 2848 * Convert it to a 32-bit PAR. 2849 */ 2850 if (!ret) { 2851 /* We do not set any attribute bits in the PAR */ 2852 if (page_size == (1 << 24) 2853 && arm_feature(env, ARM_FEATURE_V7)) { 2854 par64 = (phys_addr & 0xff000000) | (1 << 1); 2855 } else { 2856 par64 = phys_addr & 0xfffff000; 2857 } 2858 if (!attrs.secure) { 2859 par64 |= (1 << 9); /* NS */ 2860 } 2861 } else { 2862 uint32_t fsr = arm_fi_to_sfsc(&fi); 2863 2864 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2865 ((fsr & 0xf) << 1) | 1; 2866 } 2867 } 2868 return par64; 2869 } 2870 2871 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2872 { 2873 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2874 uint64_t par64; 2875 ARMMMUIdx mmu_idx; 2876 int el = arm_current_el(env); 2877 bool secure = arm_is_secure_below_el3(env); 2878 2879 switch (ri->opc2 & 6) { 2880 case 0: 2881 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2882 switch (el) { 2883 case 3: 2884 mmu_idx = ARMMMUIdx_S1E3; 2885 break; 2886 case 2: 2887 mmu_idx = ARMMMUIdx_S1NSE1; 2888 break; 2889 case 1: 2890 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2891 break; 2892 default: 2893 g_assert_not_reached(); 2894 } 2895 break; 2896 case 2: 2897 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2898 switch (el) { 2899 case 3: 2900 mmu_idx = ARMMMUIdx_S1SE0; 2901 break; 2902 case 2: 2903 mmu_idx = ARMMMUIdx_S1NSE0; 2904 break; 2905 case 1: 2906 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2907 break; 2908 default: 2909 g_assert_not_reached(); 2910 } 2911 break; 2912 case 4: 2913 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2914 mmu_idx = ARMMMUIdx_S12NSE1; 2915 break; 2916 case 6: 2917 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2918 mmu_idx = ARMMMUIdx_S12NSE0; 2919 break; 2920 default: 2921 g_assert_not_reached(); 2922 } 2923 2924 par64 = do_ats_write(env, value, access_type, mmu_idx); 2925 2926 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2927 } 2928 2929 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2933 uint64_t par64; 2934 2935 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 2936 2937 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2938 } 2939 2940 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2941 bool isread) 2942 { 2943 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2944 return CP_ACCESS_TRAP; 2945 } 2946 return CP_ACCESS_OK; 2947 } 2948 2949 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2953 ARMMMUIdx mmu_idx; 2954 int secure = arm_is_secure_below_el3(env); 2955 2956 switch (ri->opc2 & 6) { 2957 case 0: 2958 switch (ri->opc1) { 2959 case 0: /* AT S1E1R, AT S1E1W */ 2960 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2961 break; 2962 case 4: /* AT S1E2R, AT S1E2W */ 2963 mmu_idx = ARMMMUIdx_S1E2; 2964 break; 2965 case 6: /* AT S1E3R, AT S1E3W */ 2966 mmu_idx = ARMMMUIdx_S1E3; 2967 break; 2968 default: 2969 g_assert_not_reached(); 2970 } 2971 break; 2972 case 2: /* AT S1E0R, AT S1E0W */ 2973 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2974 break; 2975 case 4: /* AT S12E1R, AT S12E1W */ 2976 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2977 break; 2978 case 6: /* AT S12E0R, AT S12E0W */ 2979 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2980 break; 2981 default: 2982 g_assert_not_reached(); 2983 } 2984 2985 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2986 } 2987 #endif 2988 2989 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2990 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2991 .access = PL1_RW, .resetvalue = 0, 2992 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2993 offsetoflow32(CPUARMState, cp15.par_ns) }, 2994 .writefn = par_write }, 2995 #ifndef CONFIG_USER_ONLY 2996 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2997 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2998 .access = PL1_W, .accessfn = ats_access, 2999 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 3000 #endif 3001 REGINFO_SENTINEL 3002 }; 3003 3004 /* Return basic MPU access permission bits. */ 3005 static uint32_t simple_mpu_ap_bits(uint32_t val) 3006 { 3007 uint32_t ret; 3008 uint32_t mask; 3009 int i; 3010 ret = 0; 3011 mask = 3; 3012 for (i = 0; i < 16; i += 2) { 3013 ret |= (val >> i) & mask; 3014 mask <<= 2; 3015 } 3016 return ret; 3017 } 3018 3019 /* Pad basic MPU access permission bits to extended format. */ 3020 static uint32_t extended_mpu_ap_bits(uint32_t val) 3021 { 3022 uint32_t ret; 3023 uint32_t mask; 3024 int i; 3025 ret = 0; 3026 mask = 3; 3027 for (i = 0; i < 16; i += 2) { 3028 ret |= (val & mask) << i; 3029 mask <<= 2; 3030 } 3031 return ret; 3032 } 3033 3034 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3035 uint64_t value) 3036 { 3037 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3038 } 3039 3040 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3041 { 3042 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3043 } 3044 3045 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3046 uint64_t value) 3047 { 3048 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3049 } 3050 3051 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3052 { 3053 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3054 } 3055 3056 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3057 { 3058 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3059 3060 if (!u32p) { 3061 return 0; 3062 } 3063 3064 u32p += env->pmsav7.rnr[M_REG_NS]; 3065 return *u32p; 3066 } 3067 3068 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3069 uint64_t value) 3070 { 3071 ARMCPU *cpu = arm_env_get_cpu(env); 3072 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3073 3074 if (!u32p) { 3075 return; 3076 } 3077 3078 u32p += env->pmsav7.rnr[M_REG_NS]; 3079 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3080 *u32p = value; 3081 } 3082 3083 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3084 uint64_t value) 3085 { 3086 ARMCPU *cpu = arm_env_get_cpu(env); 3087 uint32_t nrgs = cpu->pmsav7_dregion; 3088 3089 if (value >= nrgs) { 3090 qemu_log_mask(LOG_GUEST_ERROR, 3091 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3092 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3093 return; 3094 } 3095 3096 raw_write(env, ri, value); 3097 } 3098 3099 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3100 /* Reset for all these registers is handled in arm_cpu_reset(), 3101 * because the PMSAv7 is also used by M-profile CPUs, which do 3102 * not register cpregs but still need the state to be reset. 3103 */ 3104 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3105 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3106 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3107 .readfn = pmsav7_read, .writefn = pmsav7_write, 3108 .resetfn = arm_cp_reset_ignore }, 3109 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3110 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3111 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3112 .readfn = pmsav7_read, .writefn = pmsav7_write, 3113 .resetfn = arm_cp_reset_ignore }, 3114 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3115 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3116 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3117 .readfn = pmsav7_read, .writefn = pmsav7_write, 3118 .resetfn = arm_cp_reset_ignore }, 3119 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3120 .access = PL1_RW, 3121 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3122 .writefn = pmsav7_rgnr_write, 3123 .resetfn = arm_cp_reset_ignore }, 3124 REGINFO_SENTINEL 3125 }; 3126 3127 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3128 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3129 .access = PL1_RW, .type = ARM_CP_ALIAS, 3130 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3131 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3132 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3133 .access = PL1_RW, .type = ARM_CP_ALIAS, 3134 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3135 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3136 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3137 .access = PL1_RW, 3138 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3139 .resetvalue = 0, }, 3140 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3141 .access = PL1_RW, 3142 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3143 .resetvalue = 0, }, 3144 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3145 .access = PL1_RW, 3146 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3147 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3148 .access = PL1_RW, 3149 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3150 /* Protection region base and size registers */ 3151 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3152 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3153 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3154 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3155 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3156 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3157 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3158 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3159 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3160 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3161 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3162 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3163 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3164 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3165 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3166 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3167 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3168 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3169 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3170 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3171 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3172 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3173 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3174 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3175 REGINFO_SENTINEL 3176 }; 3177 3178 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3179 uint64_t value) 3180 { 3181 TCR *tcr = raw_ptr(env, ri); 3182 int maskshift = extract32(value, 0, 3); 3183 3184 if (!arm_feature(env, ARM_FEATURE_V8)) { 3185 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3186 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3187 * using Long-desciptor translation table format */ 3188 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3189 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3190 /* In an implementation that includes the Security Extensions 3191 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3192 * Short-descriptor translation table format. 3193 */ 3194 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3195 } else { 3196 value &= TTBCR_N; 3197 } 3198 } 3199 3200 /* Update the masks corresponding to the TCR bank being written 3201 * Note that we always calculate mask and base_mask, but 3202 * they are only used for short-descriptor tables (ie if EAE is 0); 3203 * for long-descriptor tables the TCR fields are used differently 3204 * and the mask and base_mask values are meaningless. 3205 */ 3206 tcr->raw_tcr = value; 3207 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3208 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3209 } 3210 3211 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3212 uint64_t value) 3213 { 3214 ARMCPU *cpu = arm_env_get_cpu(env); 3215 TCR *tcr = raw_ptr(env, ri); 3216 3217 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3218 /* With LPAE the TTBCR could result in a change of ASID 3219 * via the TTBCR.A1 bit, so do a TLB flush. 3220 */ 3221 tlb_flush(CPU(cpu)); 3222 } 3223 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3224 value = deposit64(tcr->raw_tcr, 0, 32, value); 3225 vmsa_ttbcr_raw_write(env, ri, value); 3226 } 3227 3228 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3229 { 3230 TCR *tcr = raw_ptr(env, ri); 3231 3232 /* Reset both the TCR as well as the masks corresponding to the bank of 3233 * the TCR being reset. 3234 */ 3235 tcr->raw_tcr = 0; 3236 tcr->mask = 0; 3237 tcr->base_mask = 0xffffc000u; 3238 } 3239 3240 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3241 uint64_t value) 3242 { 3243 ARMCPU *cpu = arm_env_get_cpu(env); 3244 TCR *tcr = raw_ptr(env, ri); 3245 3246 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3247 tlb_flush(CPU(cpu)); 3248 tcr->raw_tcr = value; 3249 } 3250 3251 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3252 uint64_t value) 3253 { 3254 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3255 if (cpreg_field_is_64bit(ri) && 3256 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3257 ARMCPU *cpu = arm_env_get_cpu(env); 3258 tlb_flush(CPU(cpu)); 3259 } 3260 raw_write(env, ri, value); 3261 } 3262 3263 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3264 uint64_t value) 3265 { 3266 ARMCPU *cpu = arm_env_get_cpu(env); 3267 CPUState *cs = CPU(cpu); 3268 3269 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3270 if (raw_read(env, ri) != value) { 3271 tlb_flush_by_mmuidx(cs, 3272 ARMMMUIdxBit_S12NSE1 | 3273 ARMMMUIdxBit_S12NSE0 | 3274 ARMMMUIdxBit_S2NS); 3275 raw_write(env, ri, value); 3276 } 3277 } 3278 3279 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3280 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3281 .access = PL1_RW, .type = ARM_CP_ALIAS, 3282 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3283 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3284 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3285 .access = PL1_RW, .resetvalue = 0, 3286 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3287 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3288 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3289 .access = PL1_RW, .resetvalue = 0, 3290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3291 offsetof(CPUARMState, cp15.dfar_ns) } }, 3292 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3294 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3295 .resetvalue = 0, }, 3296 REGINFO_SENTINEL 3297 }; 3298 3299 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3300 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3301 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3302 .access = PL1_RW, 3303 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3304 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3305 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3306 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3308 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3309 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3310 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3311 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3312 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3313 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3314 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3316 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3317 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3318 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3319 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3320 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3321 .raw_writefn = vmsa_ttbcr_raw_write, 3322 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3323 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3324 REGINFO_SENTINEL 3325 }; 3326 3327 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3328 * qemu tlbs nor adjusting cached masks. 3329 */ 3330 static const ARMCPRegInfo ttbcr2_reginfo = { 3331 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3332 .access = PL1_RW, .type = ARM_CP_ALIAS, 3333 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3334 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3335 }; 3336 3337 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3338 uint64_t value) 3339 { 3340 env->cp15.c15_ticonfig = value & 0xe7; 3341 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3342 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3343 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3344 } 3345 3346 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3347 uint64_t value) 3348 { 3349 env->cp15.c15_threadid = value & 0xffff; 3350 } 3351 3352 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3353 uint64_t value) 3354 { 3355 /* Wait-for-interrupt (deprecated) */ 3356 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 3357 } 3358 3359 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3360 uint64_t value) 3361 { 3362 /* On OMAP there are registers indicating the max/min index of dcache lines 3363 * containing a dirty line; cache flush operations have to reset these. 3364 */ 3365 env->cp15.c15_i_max = 0x000; 3366 env->cp15.c15_i_min = 0xff0; 3367 } 3368 3369 static const ARMCPRegInfo omap_cp_reginfo[] = { 3370 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3371 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3372 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3373 .resetvalue = 0, }, 3374 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3375 .access = PL1_RW, .type = ARM_CP_NOP }, 3376 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3377 .access = PL1_RW, 3378 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3379 .writefn = omap_ticonfig_write }, 3380 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3381 .access = PL1_RW, 3382 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3383 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3384 .access = PL1_RW, .resetvalue = 0xff0, 3385 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3386 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3387 .access = PL1_RW, 3388 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3389 .writefn = omap_threadid_write }, 3390 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3391 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3392 .type = ARM_CP_NO_RAW, 3393 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3394 /* TODO: Peripheral port remap register: 3395 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3396 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3397 * when MMU is off. 3398 */ 3399 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3400 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3401 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3402 .writefn = omap_cachemaint_write }, 3403 { .name = "C9", .cp = 15, .crn = 9, 3404 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3405 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3406 REGINFO_SENTINEL 3407 }; 3408 3409 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3410 uint64_t value) 3411 { 3412 env->cp15.c15_cpar = value & 0x3fff; 3413 } 3414 3415 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3416 { .name = "XSCALE_CPAR", 3417 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3418 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3419 .writefn = xscale_cpar_write, }, 3420 { .name = "XSCALE_AUXCR", 3421 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3422 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3423 .resetvalue = 0, }, 3424 /* XScale specific cache-lockdown: since we have no cache we NOP these 3425 * and hope the guest does not really rely on cache behaviour. 3426 */ 3427 { .name = "XSCALE_LOCK_ICACHE_LINE", 3428 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3429 .access = PL1_W, .type = ARM_CP_NOP }, 3430 { .name = "XSCALE_UNLOCK_ICACHE", 3431 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3432 .access = PL1_W, .type = ARM_CP_NOP }, 3433 { .name = "XSCALE_DCACHE_LOCK", 3434 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3435 .access = PL1_RW, .type = ARM_CP_NOP }, 3436 { .name = "XSCALE_UNLOCK_DCACHE", 3437 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3438 .access = PL1_W, .type = ARM_CP_NOP }, 3439 REGINFO_SENTINEL 3440 }; 3441 3442 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3443 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3444 * implementation of this implementation-defined space. 3445 * Ideally this should eventually disappear in favour of actually 3446 * implementing the correct behaviour for all cores. 3447 */ 3448 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3449 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3450 .access = PL1_RW, 3451 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3452 .resetvalue = 0 }, 3453 REGINFO_SENTINEL 3454 }; 3455 3456 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3457 /* Cache status: RAZ because we have no cache so it's always clean */ 3458 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3459 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3460 .resetvalue = 0 }, 3461 REGINFO_SENTINEL 3462 }; 3463 3464 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3465 /* We never have a a block transfer operation in progress */ 3466 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3467 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3468 .resetvalue = 0 }, 3469 /* The cache ops themselves: these all NOP for QEMU */ 3470 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3471 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3472 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3473 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3474 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3475 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3476 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3477 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3478 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3479 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3480 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3481 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3482 REGINFO_SENTINEL 3483 }; 3484 3485 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3486 /* The cache test-and-clean instructions always return (1 << 30) 3487 * to indicate that there are no dirty cache lines. 3488 */ 3489 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3490 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3491 .resetvalue = (1 << 30) }, 3492 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3493 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3494 .resetvalue = (1 << 30) }, 3495 REGINFO_SENTINEL 3496 }; 3497 3498 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3499 /* Ignore ReadBuffer accesses */ 3500 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3501 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3502 .access = PL1_RW, .resetvalue = 0, 3503 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3504 REGINFO_SENTINEL 3505 }; 3506 3507 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3508 { 3509 ARMCPU *cpu = arm_env_get_cpu(env); 3510 unsigned int cur_el = arm_current_el(env); 3511 bool secure = arm_is_secure(env); 3512 3513 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3514 return env->cp15.vpidr_el2; 3515 } 3516 return raw_read(env, ri); 3517 } 3518 3519 static uint64_t mpidr_read_val(CPUARMState *env) 3520 { 3521 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 3522 uint64_t mpidr = cpu->mp_affinity; 3523 3524 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3525 mpidr |= (1U << 31); 3526 /* Cores which are uniprocessor (non-coherent) 3527 * but still implement the MP extensions set 3528 * bit 30. (For instance, Cortex-R5). 3529 */ 3530 if (cpu->mp_is_up) { 3531 mpidr |= (1u << 30); 3532 } 3533 } 3534 return mpidr; 3535 } 3536 3537 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3538 { 3539 unsigned int cur_el = arm_current_el(env); 3540 bool secure = arm_is_secure(env); 3541 3542 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3543 return env->cp15.vmpidr_el2; 3544 } 3545 return mpidr_read_val(env); 3546 } 3547 3548 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 3549 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 3550 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 3551 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 3552 REGINFO_SENTINEL 3553 }; 3554 3555 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3556 /* NOP AMAIR0/1 */ 3557 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3558 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3559 .access = PL1_RW, .type = ARM_CP_CONST, 3560 .resetvalue = 0 }, 3561 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3562 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3563 .access = PL1_RW, .type = ARM_CP_CONST, 3564 .resetvalue = 0 }, 3565 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3566 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3567 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3568 offsetof(CPUARMState, cp15.par_ns)} }, 3569 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3570 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3571 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3572 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3573 .writefn = vmsa_ttbr_write, }, 3574 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3575 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3576 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3577 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3578 .writefn = vmsa_ttbr_write, }, 3579 REGINFO_SENTINEL 3580 }; 3581 3582 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3583 { 3584 return vfp_get_fpcr(env); 3585 } 3586 3587 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3588 uint64_t value) 3589 { 3590 vfp_set_fpcr(env, value); 3591 } 3592 3593 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3594 { 3595 return vfp_get_fpsr(env); 3596 } 3597 3598 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3599 uint64_t value) 3600 { 3601 vfp_set_fpsr(env, value); 3602 } 3603 3604 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3605 bool isread) 3606 { 3607 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3608 return CP_ACCESS_TRAP; 3609 } 3610 return CP_ACCESS_OK; 3611 } 3612 3613 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3614 uint64_t value) 3615 { 3616 env->daif = value & PSTATE_DAIF; 3617 } 3618 3619 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3620 const ARMCPRegInfo *ri, 3621 bool isread) 3622 { 3623 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3624 * SCTLR_EL1.UCI is set. 3625 */ 3626 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3627 return CP_ACCESS_TRAP; 3628 } 3629 return CP_ACCESS_OK; 3630 } 3631 3632 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3633 * Page D4-1736 (DDI0487A.b) 3634 */ 3635 3636 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3637 uint64_t value) 3638 { 3639 CPUState *cs = ENV_GET_CPU(env); 3640 bool sec = arm_is_secure_below_el3(env); 3641 3642 if (sec) { 3643 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3644 ARMMMUIdxBit_S1SE1 | 3645 ARMMMUIdxBit_S1SE0); 3646 } else { 3647 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3648 ARMMMUIdxBit_S12NSE1 | 3649 ARMMMUIdxBit_S12NSE0); 3650 } 3651 } 3652 3653 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3654 uint64_t value) 3655 { 3656 CPUState *cs = ENV_GET_CPU(env); 3657 3658 if (tlb_force_broadcast(env)) { 3659 tlbi_aa64_vmalle1is_write(env, NULL, value); 3660 return; 3661 } 3662 3663 if (arm_is_secure_below_el3(env)) { 3664 tlb_flush_by_mmuidx(cs, 3665 ARMMMUIdxBit_S1SE1 | 3666 ARMMMUIdxBit_S1SE0); 3667 } else { 3668 tlb_flush_by_mmuidx(cs, 3669 ARMMMUIdxBit_S12NSE1 | 3670 ARMMMUIdxBit_S12NSE0); 3671 } 3672 } 3673 3674 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3675 uint64_t value) 3676 { 3677 /* Note that the 'ALL' scope must invalidate both stage 1 and 3678 * stage 2 translations, whereas most other scopes only invalidate 3679 * stage 1 translations. 3680 */ 3681 ARMCPU *cpu = arm_env_get_cpu(env); 3682 CPUState *cs = CPU(cpu); 3683 3684 if (arm_is_secure_below_el3(env)) { 3685 tlb_flush_by_mmuidx(cs, 3686 ARMMMUIdxBit_S1SE1 | 3687 ARMMMUIdxBit_S1SE0); 3688 } else { 3689 if (arm_feature(env, ARM_FEATURE_EL2)) { 3690 tlb_flush_by_mmuidx(cs, 3691 ARMMMUIdxBit_S12NSE1 | 3692 ARMMMUIdxBit_S12NSE0 | 3693 ARMMMUIdxBit_S2NS); 3694 } else { 3695 tlb_flush_by_mmuidx(cs, 3696 ARMMMUIdxBit_S12NSE1 | 3697 ARMMMUIdxBit_S12NSE0); 3698 } 3699 } 3700 } 3701 3702 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3703 uint64_t value) 3704 { 3705 ARMCPU *cpu = arm_env_get_cpu(env); 3706 CPUState *cs = CPU(cpu); 3707 3708 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3709 } 3710 3711 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3712 uint64_t value) 3713 { 3714 ARMCPU *cpu = arm_env_get_cpu(env); 3715 CPUState *cs = CPU(cpu); 3716 3717 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3718 } 3719 3720 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3721 uint64_t value) 3722 { 3723 /* Note that the 'ALL' scope must invalidate both stage 1 and 3724 * stage 2 translations, whereas most other scopes only invalidate 3725 * stage 1 translations. 3726 */ 3727 CPUState *cs = ENV_GET_CPU(env); 3728 bool sec = arm_is_secure_below_el3(env); 3729 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3730 3731 if (sec) { 3732 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3733 ARMMMUIdxBit_S1SE1 | 3734 ARMMMUIdxBit_S1SE0); 3735 } else if (has_el2) { 3736 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3737 ARMMMUIdxBit_S12NSE1 | 3738 ARMMMUIdxBit_S12NSE0 | 3739 ARMMMUIdxBit_S2NS); 3740 } else { 3741 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3742 ARMMMUIdxBit_S12NSE1 | 3743 ARMMMUIdxBit_S12NSE0); 3744 } 3745 } 3746 3747 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 CPUState *cs = ENV_GET_CPU(env); 3751 3752 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3753 } 3754 3755 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3756 uint64_t value) 3757 { 3758 CPUState *cs = ENV_GET_CPU(env); 3759 3760 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3761 } 3762 3763 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3764 uint64_t value) 3765 { 3766 /* Invalidate by VA, EL2 3767 * Currently handles both VAE2 and VALE2, since we don't support 3768 * flush-last-level-only. 3769 */ 3770 ARMCPU *cpu = arm_env_get_cpu(env); 3771 CPUState *cs = CPU(cpu); 3772 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3773 3774 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3775 } 3776 3777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3778 uint64_t value) 3779 { 3780 /* Invalidate by VA, EL3 3781 * Currently handles both VAE3 and VALE3, since we don't support 3782 * flush-last-level-only. 3783 */ 3784 ARMCPU *cpu = arm_env_get_cpu(env); 3785 CPUState *cs = CPU(cpu); 3786 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3787 3788 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3789 } 3790 3791 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3792 uint64_t value) 3793 { 3794 ARMCPU *cpu = arm_env_get_cpu(env); 3795 CPUState *cs = CPU(cpu); 3796 bool sec = arm_is_secure_below_el3(env); 3797 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3798 3799 if (sec) { 3800 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3801 ARMMMUIdxBit_S1SE1 | 3802 ARMMMUIdxBit_S1SE0); 3803 } else { 3804 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3805 ARMMMUIdxBit_S12NSE1 | 3806 ARMMMUIdxBit_S12NSE0); 3807 } 3808 } 3809 3810 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3811 uint64_t value) 3812 { 3813 /* Invalidate by VA, EL1&0 (AArch64 version). 3814 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3815 * since we don't support flush-for-specific-ASID-only or 3816 * flush-last-level-only. 3817 */ 3818 ARMCPU *cpu = arm_env_get_cpu(env); 3819 CPUState *cs = CPU(cpu); 3820 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3821 3822 if (tlb_force_broadcast(env)) { 3823 tlbi_aa64_vae1is_write(env, NULL, value); 3824 return; 3825 } 3826 3827 if (arm_is_secure_below_el3(env)) { 3828 tlb_flush_page_by_mmuidx(cs, pageaddr, 3829 ARMMMUIdxBit_S1SE1 | 3830 ARMMMUIdxBit_S1SE0); 3831 } else { 3832 tlb_flush_page_by_mmuidx(cs, pageaddr, 3833 ARMMMUIdxBit_S12NSE1 | 3834 ARMMMUIdxBit_S12NSE0); 3835 } 3836 } 3837 3838 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3839 uint64_t value) 3840 { 3841 CPUState *cs = ENV_GET_CPU(env); 3842 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3843 3844 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3845 ARMMMUIdxBit_S1E2); 3846 } 3847 3848 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 CPUState *cs = ENV_GET_CPU(env); 3852 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3853 3854 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3855 ARMMMUIdxBit_S1E3); 3856 } 3857 3858 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3859 uint64_t value) 3860 { 3861 /* Invalidate by IPA. This has to invalidate any structures that 3862 * contain only stage 2 translation information, but does not need 3863 * to apply to structures that contain combined stage 1 and stage 2 3864 * translation information. 3865 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3866 */ 3867 ARMCPU *cpu = arm_env_get_cpu(env); 3868 CPUState *cs = CPU(cpu); 3869 uint64_t pageaddr; 3870 3871 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3872 return; 3873 } 3874 3875 pageaddr = sextract64(value << 12, 0, 48); 3876 3877 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3878 } 3879 3880 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3881 uint64_t value) 3882 { 3883 CPUState *cs = ENV_GET_CPU(env); 3884 uint64_t pageaddr; 3885 3886 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3887 return; 3888 } 3889 3890 pageaddr = sextract64(value << 12, 0, 48); 3891 3892 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3893 ARMMMUIdxBit_S2NS); 3894 } 3895 3896 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3897 bool isread) 3898 { 3899 /* We don't implement EL2, so the only control on DC ZVA is the 3900 * bit in the SCTLR which can prohibit access for EL0. 3901 */ 3902 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3903 return CP_ACCESS_TRAP; 3904 } 3905 return CP_ACCESS_OK; 3906 } 3907 3908 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3909 { 3910 ARMCPU *cpu = arm_env_get_cpu(env); 3911 int dzp_bit = 1 << 4; 3912 3913 /* DZP indicates whether DC ZVA access is allowed */ 3914 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3915 dzp_bit = 0; 3916 } 3917 return cpu->dcz_blocksize | dzp_bit; 3918 } 3919 3920 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3921 bool isread) 3922 { 3923 if (!(env->pstate & PSTATE_SP)) { 3924 /* Access to SP_EL0 is undefined if it's being used as 3925 * the stack pointer. 3926 */ 3927 return CP_ACCESS_TRAP_UNCATEGORIZED; 3928 } 3929 return CP_ACCESS_OK; 3930 } 3931 3932 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3933 { 3934 return env->pstate & PSTATE_SP; 3935 } 3936 3937 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3938 { 3939 update_spsel(env, val); 3940 } 3941 3942 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3943 uint64_t value) 3944 { 3945 ARMCPU *cpu = arm_env_get_cpu(env); 3946 3947 if (raw_read(env, ri) == value) { 3948 /* Skip the TLB flush if nothing actually changed; Linux likes 3949 * to do a lot of pointless SCTLR writes. 3950 */ 3951 return; 3952 } 3953 3954 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3955 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3956 value &= ~SCTLR_M; 3957 } 3958 3959 raw_write(env, ri, value); 3960 /* ??? Lots of these bits are not implemented. */ 3961 /* This may enable/disable the MMU, so do a TLB flush. */ 3962 tlb_flush(CPU(cpu)); 3963 } 3964 3965 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3966 bool isread) 3967 { 3968 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3969 return CP_ACCESS_TRAP_FP_EL2; 3970 } 3971 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3972 return CP_ACCESS_TRAP_FP_EL3; 3973 } 3974 return CP_ACCESS_OK; 3975 } 3976 3977 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3981 } 3982 3983 static const ARMCPRegInfo v8_cp_reginfo[] = { 3984 /* Minimal set of EL0-visible registers. This will need to be expanded 3985 * significantly for system emulation of AArch64 CPUs. 3986 */ 3987 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3988 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3989 .access = PL0_RW, .type = ARM_CP_NZCV }, 3990 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3991 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3992 .type = ARM_CP_NO_RAW, 3993 .access = PL0_RW, .accessfn = aa64_daif_access, 3994 .fieldoffset = offsetof(CPUARMState, daif), 3995 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3996 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3997 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3998 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3999 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4000 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4001 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4002 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4003 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4004 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4005 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4006 .access = PL0_R, .type = ARM_CP_NO_RAW, 4007 .readfn = aa64_dczid_read }, 4008 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4009 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4010 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4011 #ifndef CONFIG_USER_ONLY 4012 /* Avoid overhead of an access check that always passes in user-mode */ 4013 .accessfn = aa64_zva_access, 4014 #endif 4015 }, 4016 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4017 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4018 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4019 /* Cache ops: all NOPs since we don't emulate caches */ 4020 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4021 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4022 .access = PL1_W, .type = ARM_CP_NOP }, 4023 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4025 .access = PL1_W, .type = ARM_CP_NOP }, 4026 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4027 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4028 .access = PL0_W, .type = ARM_CP_NOP, 4029 .accessfn = aa64_cacheop_access }, 4030 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4032 .access = PL1_W, .type = ARM_CP_NOP }, 4033 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4034 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4035 .access = PL1_W, .type = ARM_CP_NOP }, 4036 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4037 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4038 .access = PL0_W, .type = ARM_CP_NOP, 4039 .accessfn = aa64_cacheop_access }, 4040 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4042 .access = PL1_W, .type = ARM_CP_NOP }, 4043 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4045 .access = PL0_W, .type = ARM_CP_NOP, 4046 .accessfn = aa64_cacheop_access }, 4047 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4048 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4049 .access = PL0_W, .type = ARM_CP_NOP, 4050 .accessfn = aa64_cacheop_access }, 4051 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4052 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4053 .access = PL1_W, .type = ARM_CP_NOP }, 4054 /* TLBI operations */ 4055 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4056 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4057 .access = PL1_W, .type = ARM_CP_NO_RAW, 4058 .writefn = tlbi_aa64_vmalle1is_write }, 4059 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4060 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4061 .access = PL1_W, .type = ARM_CP_NO_RAW, 4062 .writefn = tlbi_aa64_vae1is_write }, 4063 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4064 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4065 .access = PL1_W, .type = ARM_CP_NO_RAW, 4066 .writefn = tlbi_aa64_vmalle1is_write }, 4067 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4068 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4069 .access = PL1_W, .type = ARM_CP_NO_RAW, 4070 .writefn = tlbi_aa64_vae1is_write }, 4071 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4072 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4073 .access = PL1_W, .type = ARM_CP_NO_RAW, 4074 .writefn = tlbi_aa64_vae1is_write }, 4075 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4076 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4077 .access = PL1_W, .type = ARM_CP_NO_RAW, 4078 .writefn = tlbi_aa64_vae1is_write }, 4079 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4080 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4081 .access = PL1_W, .type = ARM_CP_NO_RAW, 4082 .writefn = tlbi_aa64_vmalle1_write }, 4083 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4084 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4085 .access = PL1_W, .type = ARM_CP_NO_RAW, 4086 .writefn = tlbi_aa64_vae1_write }, 4087 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4088 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4089 .access = PL1_W, .type = ARM_CP_NO_RAW, 4090 .writefn = tlbi_aa64_vmalle1_write }, 4091 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4092 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4093 .access = PL1_W, .type = ARM_CP_NO_RAW, 4094 .writefn = tlbi_aa64_vae1_write }, 4095 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4096 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4097 .access = PL1_W, .type = ARM_CP_NO_RAW, 4098 .writefn = tlbi_aa64_vae1_write }, 4099 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4100 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4101 .access = PL1_W, .type = ARM_CP_NO_RAW, 4102 .writefn = tlbi_aa64_vae1_write }, 4103 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4104 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4105 .access = PL2_W, .type = ARM_CP_NO_RAW, 4106 .writefn = tlbi_aa64_ipas2e1is_write }, 4107 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4108 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4109 .access = PL2_W, .type = ARM_CP_NO_RAW, 4110 .writefn = tlbi_aa64_ipas2e1is_write }, 4111 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4112 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4113 .access = PL2_W, .type = ARM_CP_NO_RAW, 4114 .writefn = tlbi_aa64_alle1is_write }, 4115 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4116 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4117 .access = PL2_W, .type = ARM_CP_NO_RAW, 4118 .writefn = tlbi_aa64_alle1is_write }, 4119 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4120 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4121 .access = PL2_W, .type = ARM_CP_NO_RAW, 4122 .writefn = tlbi_aa64_ipas2e1_write }, 4123 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4124 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4125 .access = PL2_W, .type = ARM_CP_NO_RAW, 4126 .writefn = tlbi_aa64_ipas2e1_write }, 4127 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4128 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4129 .access = PL2_W, .type = ARM_CP_NO_RAW, 4130 .writefn = tlbi_aa64_alle1_write }, 4131 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4132 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4133 .access = PL2_W, .type = ARM_CP_NO_RAW, 4134 .writefn = tlbi_aa64_alle1is_write }, 4135 #ifndef CONFIG_USER_ONLY 4136 /* 64 bit address translation operations */ 4137 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4139 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4140 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4141 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4142 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4143 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4144 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4145 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4146 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4147 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4148 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4149 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4150 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4151 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4152 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4153 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4154 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4155 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4157 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4158 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4159 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4160 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4161 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4162 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4164 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4165 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4166 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4167 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4168 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4169 .type = ARM_CP_ALIAS, 4170 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4171 .access = PL1_RW, .resetvalue = 0, 4172 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4173 .writefn = par_write }, 4174 #endif 4175 /* TLB invalidate last level of translation table walk */ 4176 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4177 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4178 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4179 .type = ARM_CP_NO_RAW, .access = PL1_W, 4180 .writefn = tlbimvaa_is_write }, 4181 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4183 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4185 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4186 .type = ARM_CP_NO_RAW, .access = PL2_W, 4187 .writefn = tlbimva_hyp_write }, 4188 { .name = "TLBIMVALHIS", 4189 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4190 .type = ARM_CP_NO_RAW, .access = PL2_W, 4191 .writefn = tlbimva_hyp_is_write }, 4192 { .name = "TLBIIPAS2", 4193 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4194 .type = ARM_CP_NO_RAW, .access = PL2_W, 4195 .writefn = tlbiipas2_write }, 4196 { .name = "TLBIIPAS2IS", 4197 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4198 .type = ARM_CP_NO_RAW, .access = PL2_W, 4199 .writefn = tlbiipas2_is_write }, 4200 { .name = "TLBIIPAS2L", 4201 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4202 .type = ARM_CP_NO_RAW, .access = PL2_W, 4203 .writefn = tlbiipas2_write }, 4204 { .name = "TLBIIPAS2LIS", 4205 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4206 .type = ARM_CP_NO_RAW, .access = PL2_W, 4207 .writefn = tlbiipas2_is_write }, 4208 /* 32 bit cache operations */ 4209 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4210 .type = ARM_CP_NOP, .access = PL1_W }, 4211 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4212 .type = ARM_CP_NOP, .access = PL1_W }, 4213 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4214 .type = ARM_CP_NOP, .access = PL1_W }, 4215 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4216 .type = ARM_CP_NOP, .access = PL1_W }, 4217 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4218 .type = ARM_CP_NOP, .access = PL1_W }, 4219 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4220 .type = ARM_CP_NOP, .access = PL1_W }, 4221 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4222 .type = ARM_CP_NOP, .access = PL1_W }, 4223 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4224 .type = ARM_CP_NOP, .access = PL1_W }, 4225 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4226 .type = ARM_CP_NOP, .access = PL1_W }, 4227 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4228 .type = ARM_CP_NOP, .access = PL1_W }, 4229 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4230 .type = ARM_CP_NOP, .access = PL1_W }, 4231 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4232 .type = ARM_CP_NOP, .access = PL1_W }, 4233 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4234 .type = ARM_CP_NOP, .access = PL1_W }, 4235 /* MMU Domain access control / MPU write buffer control */ 4236 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4237 .access = PL1_RW, .resetvalue = 0, 4238 .writefn = dacr_write, .raw_writefn = raw_write, 4239 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4240 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4241 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4242 .type = ARM_CP_ALIAS, 4243 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4244 .access = PL1_RW, 4245 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4246 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4247 .type = ARM_CP_ALIAS, 4248 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4249 .access = PL1_RW, 4250 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4251 /* We rely on the access checks not allowing the guest to write to the 4252 * state field when SPSel indicates that it's being used as the stack 4253 * pointer. 4254 */ 4255 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4256 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4257 .access = PL1_RW, .accessfn = sp_el0_access, 4258 .type = ARM_CP_ALIAS, 4259 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4260 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4261 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4262 .access = PL2_RW, .type = ARM_CP_ALIAS, 4263 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4264 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4265 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4266 .type = ARM_CP_NO_RAW, 4267 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4268 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4269 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4270 .type = ARM_CP_ALIAS, 4271 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4272 .access = PL2_RW, .accessfn = fpexc32_access }, 4273 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4274 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4275 .access = PL2_RW, .resetvalue = 0, 4276 .writefn = dacr_write, .raw_writefn = raw_write, 4277 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4278 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4279 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4280 .access = PL2_RW, .resetvalue = 0, 4281 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4282 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4283 .type = ARM_CP_ALIAS, 4284 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4285 .access = PL2_RW, 4286 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4287 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4288 .type = ARM_CP_ALIAS, 4289 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4290 .access = PL2_RW, 4291 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4292 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4293 .type = ARM_CP_ALIAS, 4294 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4295 .access = PL2_RW, 4296 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4297 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4298 .type = ARM_CP_ALIAS, 4299 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4300 .access = PL2_RW, 4301 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4302 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4303 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4304 .resetvalue = 0, 4305 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4306 { .name = "SDCR", .type = ARM_CP_ALIAS, 4307 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4308 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4309 .writefn = sdcr_write, 4310 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4311 REGINFO_SENTINEL 4312 }; 4313 4314 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4315 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4316 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4317 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4318 .access = PL2_RW, 4319 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4320 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4321 .type = ARM_CP_NO_RAW, 4322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4323 .access = PL2_RW, 4324 .type = ARM_CP_CONST, .resetvalue = 0 }, 4325 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4326 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4327 .access = PL2_RW, 4328 .type = ARM_CP_CONST, .resetvalue = 0 }, 4329 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4330 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4331 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4332 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4333 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4334 .access = PL2_RW, .type = ARM_CP_CONST, 4335 .resetvalue = 0 }, 4336 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4337 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4338 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4339 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4340 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4341 .access = PL2_RW, .type = ARM_CP_CONST, 4342 .resetvalue = 0 }, 4343 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4344 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4345 .access = PL2_RW, .type = ARM_CP_CONST, 4346 .resetvalue = 0 }, 4347 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4348 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4349 .access = PL2_RW, .type = ARM_CP_CONST, 4350 .resetvalue = 0 }, 4351 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4352 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4353 .access = PL2_RW, .type = ARM_CP_CONST, 4354 .resetvalue = 0 }, 4355 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4356 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4357 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4358 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4359 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4360 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4361 .type = ARM_CP_CONST, .resetvalue = 0 }, 4362 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4363 .cp = 15, .opc1 = 6, .crm = 2, 4364 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4365 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4366 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4367 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4368 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4369 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4370 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4371 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4372 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4373 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4374 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4375 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4376 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4377 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4378 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4379 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4380 .resetvalue = 0 }, 4381 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4382 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4383 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4384 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4386 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4387 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4388 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4389 .resetvalue = 0 }, 4390 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4391 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4392 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4393 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4394 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4395 .resetvalue = 0 }, 4396 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4397 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4398 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4399 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4400 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4401 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4402 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4403 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4404 .access = PL2_RW, .accessfn = access_tda, 4405 .type = ARM_CP_CONST, .resetvalue = 0 }, 4406 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4407 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4408 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4409 .type = ARM_CP_CONST, .resetvalue = 0 }, 4410 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4411 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4412 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4413 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4414 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4415 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4416 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4417 .type = ARM_CP_CONST, 4418 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4419 .access = PL2_RW, .resetvalue = 0 }, 4420 REGINFO_SENTINEL 4421 }; 4422 4423 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4424 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4425 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4426 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4427 .access = PL2_RW, 4428 .type = ARM_CP_CONST, .resetvalue = 0 }, 4429 REGINFO_SENTINEL 4430 }; 4431 4432 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4433 { 4434 ARMCPU *cpu = arm_env_get_cpu(env); 4435 uint64_t valid_mask = HCR_MASK; 4436 4437 if (arm_feature(env, ARM_FEATURE_EL3)) { 4438 valid_mask &= ~HCR_HCD; 4439 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4440 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4441 * However, if we're using the SMC PSCI conduit then QEMU is 4442 * effectively acting like EL3 firmware and so the guest at 4443 * EL2 should retain the ability to prevent EL1 from being 4444 * able to make SMC calls into the ersatz firmware, so in 4445 * that case HCR.TSC should be read/write. 4446 */ 4447 valid_mask &= ~HCR_TSC; 4448 } 4449 if (cpu_isar_feature(aa64_lor, cpu)) { 4450 valid_mask |= HCR_TLOR; 4451 } 4452 4453 /* Clear RES0 bits. */ 4454 value &= valid_mask; 4455 4456 /* These bits change the MMU setup: 4457 * HCR_VM enables stage 2 translation 4458 * HCR_PTW forbids certain page-table setups 4459 * HCR_DC Disables stage1 and enables stage2 translation 4460 */ 4461 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4462 tlb_flush(CPU(cpu)); 4463 } 4464 env->cp15.hcr_el2 = value; 4465 4466 /* 4467 * Updates to VI and VF require us to update the status of 4468 * virtual interrupts, which are the logical OR of these bits 4469 * and the state of the input lines from the GIC. (This requires 4470 * that we have the iothread lock, which is done by marking the 4471 * reginfo structs as ARM_CP_IO.) 4472 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4473 * possible for it to be taken immediately, because VIRQ and 4474 * VFIQ are masked unless running at EL0 or EL1, and HCR 4475 * can only be written at EL2. 4476 */ 4477 g_assert(qemu_mutex_iothread_locked()); 4478 arm_cpu_update_virq(cpu); 4479 arm_cpu_update_vfiq(cpu); 4480 } 4481 4482 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4483 uint64_t value) 4484 { 4485 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4486 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4487 hcr_write(env, NULL, value); 4488 } 4489 4490 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4491 uint64_t value) 4492 { 4493 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4494 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4495 hcr_write(env, NULL, value); 4496 } 4497 4498 /* 4499 * Return the effective value of HCR_EL2. 4500 * Bits that are not included here: 4501 * RW (read from SCR_EL3.RW as needed) 4502 */ 4503 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4504 { 4505 uint64_t ret = env->cp15.hcr_el2; 4506 4507 if (arm_is_secure_below_el3(env)) { 4508 /* 4509 * "This register has no effect if EL2 is not enabled in the 4510 * current Security state". This is ARMv8.4-SecEL2 speak for 4511 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4512 * 4513 * Prior to that, the language was "In an implementation that 4514 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4515 * as if this field is 0 for all purposes other than a direct 4516 * read or write access of HCR_EL2". With lots of enumeration 4517 * on a per-field basis. In current QEMU, this is condition 4518 * is arm_is_secure_below_el3. 4519 * 4520 * Since the v8.4 language applies to the entire register, and 4521 * appears to be backward compatible, use that. 4522 */ 4523 ret = 0; 4524 } else if (ret & HCR_TGE) { 4525 /* These bits are up-to-date as of ARMv8.4. */ 4526 if (ret & HCR_E2H) { 4527 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4528 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4529 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4530 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4531 } else { 4532 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4533 } 4534 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4535 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4536 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4537 HCR_TLOR); 4538 } 4539 4540 return ret; 4541 } 4542 4543 static const ARMCPRegInfo el2_cp_reginfo[] = { 4544 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4545 .type = ARM_CP_IO, 4546 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4547 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4548 .writefn = hcr_write }, 4549 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4550 .type = ARM_CP_ALIAS | ARM_CP_IO, 4551 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4552 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4553 .writefn = hcr_writelow }, 4554 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4555 .type = ARM_CP_ALIAS, 4556 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4557 .access = PL2_RW, 4558 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4559 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4560 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4561 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4562 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4563 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4565 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4566 .type = ARM_CP_ALIAS, 4567 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4568 .access = PL2_RW, 4569 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4570 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4571 .type = ARM_CP_ALIAS, 4572 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4573 .access = PL2_RW, 4574 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4575 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4576 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4577 .access = PL2_RW, .writefn = vbar_write, 4578 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4579 .resetvalue = 0 }, 4580 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4581 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4582 .access = PL3_RW, .type = ARM_CP_ALIAS, 4583 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4584 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4586 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4587 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 4588 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4589 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4590 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4591 .resetvalue = 0 }, 4592 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4593 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4594 .access = PL2_RW, .type = ARM_CP_ALIAS, 4595 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4596 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4597 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4598 .access = PL2_RW, .type = ARM_CP_CONST, 4599 .resetvalue = 0 }, 4600 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4601 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4602 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4603 .access = PL2_RW, .type = ARM_CP_CONST, 4604 .resetvalue = 0 }, 4605 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4606 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4607 .access = PL2_RW, .type = ARM_CP_CONST, 4608 .resetvalue = 0 }, 4609 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4610 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4611 .access = PL2_RW, .type = ARM_CP_CONST, 4612 .resetvalue = 0 }, 4613 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4614 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4615 .access = PL2_RW, 4616 /* no .writefn needed as this can't cause an ASID change; 4617 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4618 */ 4619 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4620 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4621 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4622 .type = ARM_CP_ALIAS, 4623 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4624 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4625 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4626 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4627 .access = PL2_RW, 4628 /* no .writefn needed as this can't cause an ASID change; 4629 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4630 */ 4631 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4632 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4633 .cp = 15, .opc1 = 6, .crm = 2, 4634 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4635 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4636 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4637 .writefn = vttbr_write }, 4638 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4639 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4640 .access = PL2_RW, .writefn = vttbr_write, 4641 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4642 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4643 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4644 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4645 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4646 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4647 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4648 .access = PL2_RW, .resetvalue = 0, 4649 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4650 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4651 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4652 .access = PL2_RW, .resetvalue = 0, 4653 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4654 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4655 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4656 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4657 { .name = "TLBIALLNSNH", 4658 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4659 .type = ARM_CP_NO_RAW, .access = PL2_W, 4660 .writefn = tlbiall_nsnh_write }, 4661 { .name = "TLBIALLNSNHIS", 4662 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4663 .type = ARM_CP_NO_RAW, .access = PL2_W, 4664 .writefn = tlbiall_nsnh_is_write }, 4665 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4666 .type = ARM_CP_NO_RAW, .access = PL2_W, 4667 .writefn = tlbiall_hyp_write }, 4668 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4669 .type = ARM_CP_NO_RAW, .access = PL2_W, 4670 .writefn = tlbiall_hyp_is_write }, 4671 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4672 .type = ARM_CP_NO_RAW, .access = PL2_W, 4673 .writefn = tlbimva_hyp_write }, 4674 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4675 .type = ARM_CP_NO_RAW, .access = PL2_W, 4676 .writefn = tlbimva_hyp_is_write }, 4677 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4678 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4679 .type = ARM_CP_NO_RAW, .access = PL2_W, 4680 .writefn = tlbi_aa64_alle2_write }, 4681 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4683 .type = ARM_CP_NO_RAW, .access = PL2_W, 4684 .writefn = tlbi_aa64_vae2_write }, 4685 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4686 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4687 .access = PL2_W, .type = ARM_CP_NO_RAW, 4688 .writefn = tlbi_aa64_vae2_write }, 4689 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4691 .access = PL2_W, .type = ARM_CP_NO_RAW, 4692 .writefn = tlbi_aa64_alle2is_write }, 4693 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4694 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4695 .type = ARM_CP_NO_RAW, .access = PL2_W, 4696 .writefn = tlbi_aa64_vae2is_write }, 4697 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4698 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4699 .access = PL2_W, .type = ARM_CP_NO_RAW, 4700 .writefn = tlbi_aa64_vae2is_write }, 4701 #ifndef CONFIG_USER_ONLY 4702 /* Unlike the other EL2-related AT operations, these must 4703 * UNDEF from EL3 if EL2 is not implemented, which is why we 4704 * define them here rather than with the rest of the AT ops. 4705 */ 4706 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4707 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4708 .access = PL2_W, .accessfn = at_s1e2_access, 4709 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4710 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4711 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4712 .access = PL2_W, .accessfn = at_s1e2_access, 4713 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4714 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4715 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4716 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4717 * to behave as if SCR.NS was 1. 4718 */ 4719 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4720 .access = PL2_W, 4721 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4722 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4723 .access = PL2_W, 4724 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4725 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4726 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4727 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4728 * reset values as IMPDEF. We choose to reset to 3 to comply with 4729 * both ARMv7 and ARMv8. 4730 */ 4731 .access = PL2_RW, .resetvalue = 3, 4732 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4733 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4734 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4735 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4736 .writefn = gt_cntvoff_write, 4737 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4738 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4739 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4740 .writefn = gt_cntvoff_write, 4741 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4742 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4743 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4744 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4745 .type = ARM_CP_IO, .access = PL2_RW, 4746 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4747 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4748 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4749 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4750 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4751 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4752 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4753 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4754 .resetfn = gt_hyp_timer_reset, 4755 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4756 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4757 .type = ARM_CP_IO, 4758 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4759 .access = PL2_RW, 4760 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4761 .resetvalue = 0, 4762 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4763 #endif 4764 /* The only field of MDCR_EL2 that has a defined architectural reset value 4765 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4766 * don't implement any PMU event counters, so using zero as a reset 4767 * value for MDCR_EL2 is okay 4768 */ 4769 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4770 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4771 .access = PL2_RW, .resetvalue = 0, 4772 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4773 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4774 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4775 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4776 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4777 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4778 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4779 .access = PL2_RW, 4780 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4781 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4782 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4783 .access = PL2_RW, 4784 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4785 REGINFO_SENTINEL 4786 }; 4787 4788 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4789 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4790 .type = ARM_CP_ALIAS | ARM_CP_IO, 4791 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4792 .access = PL2_RW, 4793 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4794 .writefn = hcr_writehigh }, 4795 REGINFO_SENTINEL 4796 }; 4797 4798 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4799 bool isread) 4800 { 4801 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4802 * At Secure EL1 it traps to EL3. 4803 */ 4804 if (arm_current_el(env) == 3) { 4805 return CP_ACCESS_OK; 4806 } 4807 if (arm_is_secure_below_el3(env)) { 4808 return CP_ACCESS_TRAP_EL3; 4809 } 4810 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4811 if (isread) { 4812 return CP_ACCESS_OK; 4813 } 4814 return CP_ACCESS_TRAP_UNCATEGORIZED; 4815 } 4816 4817 static const ARMCPRegInfo el3_cp_reginfo[] = { 4818 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4820 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4821 .resetvalue = 0, .writefn = scr_write }, 4822 { .name = "SCR", .type = ARM_CP_ALIAS, 4823 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4824 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4825 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4826 .writefn = scr_write }, 4827 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4829 .access = PL3_RW, .resetvalue = 0, 4830 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4831 { .name = "SDER", 4832 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4833 .access = PL3_RW, .resetvalue = 0, 4834 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4835 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4836 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4837 .writefn = vbar_write, .resetvalue = 0, 4838 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4839 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4841 .access = PL3_RW, .resetvalue = 0, 4842 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4843 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4845 .access = PL3_RW, 4846 /* no .writefn needed as this can't cause an ASID change; 4847 * we must provide a .raw_writefn and .resetfn because we handle 4848 * reset and migration for the AArch32 TTBCR(S), which might be 4849 * using mask and base_mask. 4850 */ 4851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4853 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4854 .type = ARM_CP_ALIAS, 4855 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4856 .access = PL3_RW, 4857 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4858 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4860 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4861 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4863 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4864 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4865 .type = ARM_CP_ALIAS, 4866 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4867 .access = PL3_RW, 4868 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4869 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4871 .access = PL3_RW, .writefn = vbar_write, 4872 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4873 .resetvalue = 0 }, 4874 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4876 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4877 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4878 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4880 .access = PL3_RW, .resetvalue = 0, 4881 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4882 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4884 .access = PL3_RW, .type = ARM_CP_CONST, 4885 .resetvalue = 0 }, 4886 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4887 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4888 .access = PL3_RW, .type = ARM_CP_CONST, 4889 .resetvalue = 0 }, 4890 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4891 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4892 .access = PL3_RW, .type = ARM_CP_CONST, 4893 .resetvalue = 0 }, 4894 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4896 .access = PL3_W, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_alle3is_write }, 4898 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4900 .access = PL3_W, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae3is_write }, 4902 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4904 .access = PL3_W, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vae3is_write }, 4906 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4908 .access = PL3_W, .type = ARM_CP_NO_RAW, 4909 .writefn = tlbi_aa64_alle3_write }, 4910 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4912 .access = PL3_W, .type = ARM_CP_NO_RAW, 4913 .writefn = tlbi_aa64_vae3_write }, 4914 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4916 .access = PL3_W, .type = ARM_CP_NO_RAW, 4917 .writefn = tlbi_aa64_vae3_write }, 4918 REGINFO_SENTINEL 4919 }; 4920 4921 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4922 bool isread) 4923 { 4924 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4925 * but the AArch32 CTR has its own reginfo struct) 4926 */ 4927 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4928 return CP_ACCESS_TRAP; 4929 } 4930 return CP_ACCESS_OK; 4931 } 4932 4933 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4934 uint64_t value) 4935 { 4936 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4937 * read via a bit in OSLSR_EL1. 4938 */ 4939 int oslock; 4940 4941 if (ri->state == ARM_CP_STATE_AA32) { 4942 oslock = (value == 0xC5ACCE55); 4943 } else { 4944 oslock = value & 1; 4945 } 4946 4947 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4948 } 4949 4950 static const ARMCPRegInfo debug_cp_reginfo[] = { 4951 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4952 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4953 * unlike DBGDRAR it is never accessible from EL0. 4954 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4955 * accessor. 4956 */ 4957 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4958 .access = PL0_R, .accessfn = access_tdra, 4959 .type = ARM_CP_CONST, .resetvalue = 0 }, 4960 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4962 .access = PL1_R, .accessfn = access_tdra, 4963 .type = ARM_CP_CONST, .resetvalue = 0 }, 4964 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4965 .access = PL0_R, .accessfn = access_tdra, 4966 .type = ARM_CP_CONST, .resetvalue = 0 }, 4967 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4968 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4969 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4970 .access = PL1_RW, .accessfn = access_tda, 4971 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4972 .resetvalue = 0 }, 4973 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4974 * We don't implement the configurable EL0 access. 4975 */ 4976 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4977 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4978 .type = ARM_CP_ALIAS, 4979 .access = PL1_R, .accessfn = access_tda, 4980 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4981 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4982 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4983 .access = PL1_W, .type = ARM_CP_NO_RAW, 4984 .accessfn = access_tdosa, 4985 .writefn = oslar_write }, 4986 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4987 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4988 .access = PL1_R, .resetvalue = 10, 4989 .accessfn = access_tdosa, 4990 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4991 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4992 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4993 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4994 .access = PL1_RW, .accessfn = access_tdosa, 4995 .type = ARM_CP_NOP }, 4996 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4997 * implement vector catch debug events yet. 4998 */ 4999 { .name = "DBGVCR", 5000 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5001 .access = PL1_RW, .accessfn = access_tda, 5002 .type = ARM_CP_NOP }, 5003 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5004 * to save and restore a 32-bit guest's DBGVCR) 5005 */ 5006 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5008 .access = PL2_RW, .accessfn = access_tda, 5009 .type = ARM_CP_NOP }, 5010 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5011 * Channel but Linux may try to access this register. The 32-bit 5012 * alias is DBGDCCINT. 5013 */ 5014 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5015 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5016 .access = PL1_RW, .accessfn = access_tda, 5017 .type = ARM_CP_NOP }, 5018 REGINFO_SENTINEL 5019 }; 5020 5021 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5022 /* 64 bit access versions of the (dummy) debug registers */ 5023 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5024 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5025 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5026 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5027 REGINFO_SENTINEL 5028 }; 5029 5030 /* Return the exception level to which exceptions should be taken 5031 * via SVEAccessTrap. If an exception should be routed through 5032 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5033 * take care of raising that exception. 5034 * C.f. the ARM pseudocode function CheckSVEEnabled. 5035 */ 5036 int sve_exception_el(CPUARMState *env, int el) 5037 { 5038 #ifndef CONFIG_USER_ONLY 5039 if (el <= 1) { 5040 bool disabled = false; 5041 5042 /* The CPACR.ZEN controls traps to EL1: 5043 * 0, 2 : trap EL0 and EL1 accesses 5044 * 1 : trap only EL0 accesses 5045 * 3 : trap no accesses 5046 */ 5047 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5048 disabled = true; 5049 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5050 disabled = el == 0; 5051 } 5052 if (disabled) { 5053 /* route_to_el2 */ 5054 return (arm_feature(env, ARM_FEATURE_EL2) 5055 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5056 } 5057 5058 /* Check CPACR.FPEN. */ 5059 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5060 disabled = true; 5061 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5062 disabled = el == 0; 5063 } 5064 if (disabled) { 5065 return 0; 5066 } 5067 } 5068 5069 /* CPTR_EL2. Since TZ and TFP are positive, 5070 * they will be zero when EL2 is not present. 5071 */ 5072 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5073 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5074 return 2; 5075 } 5076 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5077 return 0; 5078 } 5079 } 5080 5081 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5082 if (arm_feature(env, ARM_FEATURE_EL3) 5083 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5084 return 3; 5085 } 5086 #endif 5087 return 0; 5088 } 5089 5090 /* 5091 * Given that SVE is enabled, return the vector length for EL. 5092 */ 5093 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5094 { 5095 ARMCPU *cpu = arm_env_get_cpu(env); 5096 uint32_t zcr_len = cpu->sve_max_vq - 1; 5097 5098 if (el <= 1) { 5099 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5100 } 5101 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5102 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5103 } 5104 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 5105 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5106 } 5107 return zcr_len; 5108 } 5109 5110 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5111 uint64_t value) 5112 { 5113 int cur_el = arm_current_el(env); 5114 int old_len = sve_zcr_len_for_el(env, cur_el); 5115 int new_len; 5116 5117 /* Bits other than [3:0] are RAZ/WI. */ 5118 raw_write(env, ri, value & 0xf); 5119 5120 /* 5121 * Because we arrived here, we know both FP and SVE are enabled; 5122 * otherwise we would have trapped access to the ZCR_ELn register. 5123 */ 5124 new_len = sve_zcr_len_for_el(env, cur_el); 5125 if (new_len < old_len) { 5126 aarch64_sve_narrow_vq(env, new_len + 1); 5127 } 5128 } 5129 5130 static const ARMCPRegInfo zcr_el1_reginfo = { 5131 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5133 .access = PL1_RW, .type = ARM_CP_SVE, 5134 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5135 .writefn = zcr_write, .raw_writefn = raw_write 5136 }; 5137 5138 static const ARMCPRegInfo zcr_el2_reginfo = { 5139 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5140 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5141 .access = PL2_RW, .type = ARM_CP_SVE, 5142 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5143 .writefn = zcr_write, .raw_writefn = raw_write 5144 }; 5145 5146 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5147 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5148 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5149 .access = PL2_RW, .type = ARM_CP_SVE, 5150 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5151 }; 5152 5153 static const ARMCPRegInfo zcr_el3_reginfo = { 5154 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5155 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5156 .access = PL3_RW, .type = ARM_CP_SVE, 5157 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5158 .writefn = zcr_write, .raw_writefn = raw_write 5159 }; 5160 5161 void hw_watchpoint_update(ARMCPU *cpu, int n) 5162 { 5163 CPUARMState *env = &cpu->env; 5164 vaddr len = 0; 5165 vaddr wvr = env->cp15.dbgwvr[n]; 5166 uint64_t wcr = env->cp15.dbgwcr[n]; 5167 int mask; 5168 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5169 5170 if (env->cpu_watchpoint[n]) { 5171 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5172 env->cpu_watchpoint[n] = NULL; 5173 } 5174 5175 if (!extract64(wcr, 0, 1)) { 5176 /* E bit clear : watchpoint disabled */ 5177 return; 5178 } 5179 5180 switch (extract64(wcr, 3, 2)) { 5181 case 0: 5182 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5183 return; 5184 case 1: 5185 flags |= BP_MEM_READ; 5186 break; 5187 case 2: 5188 flags |= BP_MEM_WRITE; 5189 break; 5190 case 3: 5191 flags |= BP_MEM_ACCESS; 5192 break; 5193 } 5194 5195 /* Attempts to use both MASK and BAS fields simultaneously are 5196 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5197 * thus generating a watchpoint for every byte in the masked region. 5198 */ 5199 mask = extract64(wcr, 24, 4); 5200 if (mask == 1 || mask == 2) { 5201 /* Reserved values of MASK; we must act as if the mask value was 5202 * some non-reserved value, or as if the watchpoint were disabled. 5203 * We choose the latter. 5204 */ 5205 return; 5206 } else if (mask) { 5207 /* Watchpoint covers an aligned area up to 2GB in size */ 5208 len = 1ULL << mask; 5209 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5210 * whether the watchpoint fires when the unmasked bits match; we opt 5211 * to generate the exceptions. 5212 */ 5213 wvr &= ~(len - 1); 5214 } else { 5215 /* Watchpoint covers bytes defined by the byte address select bits */ 5216 int bas = extract64(wcr, 5, 8); 5217 int basstart; 5218 5219 if (bas == 0) { 5220 /* This must act as if the watchpoint is disabled */ 5221 return; 5222 } 5223 5224 if (extract64(wvr, 2, 1)) { 5225 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5226 * ignored, and BAS[3:0] define which bytes to watch. 5227 */ 5228 bas &= 0xf; 5229 } 5230 /* The BAS bits are supposed to be programmed to indicate a contiguous 5231 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5232 * we fire for each byte in the word/doubleword addressed by the WVR. 5233 * We choose to ignore any non-zero bits after the first range of 1s. 5234 */ 5235 basstart = ctz32(bas); 5236 len = cto32(bas >> basstart); 5237 wvr += basstart; 5238 } 5239 5240 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5241 &env->cpu_watchpoint[n]); 5242 } 5243 5244 void hw_watchpoint_update_all(ARMCPU *cpu) 5245 { 5246 int i; 5247 CPUARMState *env = &cpu->env; 5248 5249 /* Completely clear out existing QEMU watchpoints and our array, to 5250 * avoid possible stale entries following migration load. 5251 */ 5252 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5253 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5254 5255 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5256 hw_watchpoint_update(cpu, i); 5257 } 5258 } 5259 5260 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5261 uint64_t value) 5262 { 5263 ARMCPU *cpu = arm_env_get_cpu(env); 5264 int i = ri->crm; 5265 5266 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5267 * register reads and behaves as if values written are sign extended. 5268 * Bits [1:0] are RES0. 5269 */ 5270 value = sextract64(value, 0, 49) & ~3ULL; 5271 5272 raw_write(env, ri, value); 5273 hw_watchpoint_update(cpu, i); 5274 } 5275 5276 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5277 uint64_t value) 5278 { 5279 ARMCPU *cpu = arm_env_get_cpu(env); 5280 int i = ri->crm; 5281 5282 raw_write(env, ri, value); 5283 hw_watchpoint_update(cpu, i); 5284 } 5285 5286 void hw_breakpoint_update(ARMCPU *cpu, int n) 5287 { 5288 CPUARMState *env = &cpu->env; 5289 uint64_t bvr = env->cp15.dbgbvr[n]; 5290 uint64_t bcr = env->cp15.dbgbcr[n]; 5291 vaddr addr; 5292 int bt; 5293 int flags = BP_CPU; 5294 5295 if (env->cpu_breakpoint[n]) { 5296 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5297 env->cpu_breakpoint[n] = NULL; 5298 } 5299 5300 if (!extract64(bcr, 0, 1)) { 5301 /* E bit clear : watchpoint disabled */ 5302 return; 5303 } 5304 5305 bt = extract64(bcr, 20, 4); 5306 5307 switch (bt) { 5308 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5309 case 5: /* linked address mismatch (reserved if AArch64) */ 5310 qemu_log_mask(LOG_UNIMP, 5311 "arm: address mismatch breakpoint types not implemented\n"); 5312 return; 5313 case 0: /* unlinked address match */ 5314 case 1: /* linked address match */ 5315 { 5316 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5317 * we behave as if the register was sign extended. Bits [1:0] are 5318 * RES0. The BAS field is used to allow setting breakpoints on 16 5319 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5320 * a bp will fire if the addresses covered by the bp and the addresses 5321 * covered by the insn overlap but the insn doesn't start at the 5322 * start of the bp address range. We choose to require the insn and 5323 * the bp to have the same address. The constraints on writing to 5324 * BAS enforced in dbgbcr_write mean we have only four cases: 5325 * 0b0000 => no breakpoint 5326 * 0b0011 => breakpoint on addr 5327 * 0b1100 => breakpoint on addr + 2 5328 * 0b1111 => breakpoint on addr 5329 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5330 */ 5331 int bas = extract64(bcr, 5, 4); 5332 addr = sextract64(bvr, 0, 49) & ~3ULL; 5333 if (bas == 0) { 5334 return; 5335 } 5336 if (bas == 0xc) { 5337 addr += 2; 5338 } 5339 break; 5340 } 5341 case 2: /* unlinked context ID match */ 5342 case 8: /* unlinked VMID match (reserved if no EL2) */ 5343 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5344 qemu_log_mask(LOG_UNIMP, 5345 "arm: unlinked context breakpoint types not implemented\n"); 5346 return; 5347 case 9: /* linked VMID match (reserved if no EL2) */ 5348 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5349 case 3: /* linked context ID match */ 5350 default: 5351 /* We must generate no events for Linked context matches (unless 5352 * they are linked to by some other bp/wp, which is handled in 5353 * updates for the linking bp/wp). We choose to also generate no events 5354 * for reserved values. 5355 */ 5356 return; 5357 } 5358 5359 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5360 } 5361 5362 void hw_breakpoint_update_all(ARMCPU *cpu) 5363 { 5364 int i; 5365 CPUARMState *env = &cpu->env; 5366 5367 /* Completely clear out existing QEMU breakpoints and our array, to 5368 * avoid possible stale entries following migration load. 5369 */ 5370 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5371 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5372 5373 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5374 hw_breakpoint_update(cpu, i); 5375 } 5376 } 5377 5378 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5379 uint64_t value) 5380 { 5381 ARMCPU *cpu = arm_env_get_cpu(env); 5382 int i = ri->crm; 5383 5384 raw_write(env, ri, value); 5385 hw_breakpoint_update(cpu, i); 5386 } 5387 5388 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5389 uint64_t value) 5390 { 5391 ARMCPU *cpu = arm_env_get_cpu(env); 5392 int i = ri->crm; 5393 5394 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5395 * copy of BAS[0]. 5396 */ 5397 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5398 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5399 5400 raw_write(env, ri, value); 5401 hw_breakpoint_update(cpu, i); 5402 } 5403 5404 static void define_debug_regs(ARMCPU *cpu) 5405 { 5406 /* Define v7 and v8 architectural debug registers. 5407 * These are just dummy implementations for now. 5408 */ 5409 int i; 5410 int wrps, brps, ctx_cmps; 5411 ARMCPRegInfo dbgdidr = { 5412 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5413 .access = PL0_R, .accessfn = access_tda, 5414 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5415 }; 5416 5417 /* Note that all these register fields hold "number of Xs minus 1". */ 5418 brps = extract32(cpu->dbgdidr, 24, 4); 5419 wrps = extract32(cpu->dbgdidr, 28, 4); 5420 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5421 5422 assert(ctx_cmps <= brps); 5423 5424 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5425 * of the debug registers such as number of breakpoints; 5426 * check that if they both exist then they agree. 5427 */ 5428 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5429 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5430 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5431 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5432 } 5433 5434 define_one_arm_cp_reg(cpu, &dbgdidr); 5435 define_arm_cp_regs(cpu, debug_cp_reginfo); 5436 5437 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5438 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5439 } 5440 5441 for (i = 0; i < brps + 1; i++) { 5442 ARMCPRegInfo dbgregs[] = { 5443 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5444 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5445 .access = PL1_RW, .accessfn = access_tda, 5446 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5447 .writefn = dbgbvr_write, .raw_writefn = raw_write 5448 }, 5449 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5450 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5451 .access = PL1_RW, .accessfn = access_tda, 5452 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5453 .writefn = dbgbcr_write, .raw_writefn = raw_write 5454 }, 5455 REGINFO_SENTINEL 5456 }; 5457 define_arm_cp_regs(cpu, dbgregs); 5458 } 5459 5460 for (i = 0; i < wrps + 1; i++) { 5461 ARMCPRegInfo dbgregs[] = { 5462 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5463 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5464 .access = PL1_RW, .accessfn = access_tda, 5465 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5466 .writefn = dbgwvr_write, .raw_writefn = raw_write 5467 }, 5468 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5469 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5470 .access = PL1_RW, .accessfn = access_tda, 5471 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5472 .writefn = dbgwcr_write, .raw_writefn = raw_write 5473 }, 5474 REGINFO_SENTINEL 5475 }; 5476 define_arm_cp_regs(cpu, dbgregs); 5477 } 5478 } 5479 5480 /* We don't know until after realize whether there's a GICv3 5481 * attached, and that is what registers the gicv3 sysregs. 5482 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5483 * at runtime. 5484 */ 5485 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5486 { 5487 ARMCPU *cpu = arm_env_get_cpu(env); 5488 uint64_t pfr1 = cpu->id_pfr1; 5489 5490 if (env->gicv3state) { 5491 pfr1 |= 1 << 28; 5492 } 5493 return pfr1; 5494 } 5495 5496 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5497 { 5498 ARMCPU *cpu = arm_env_get_cpu(env); 5499 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5500 5501 if (env->gicv3state) { 5502 pfr0 |= 1 << 24; 5503 } 5504 return pfr0; 5505 } 5506 5507 /* Shared logic between LORID and the rest of the LOR* registers. 5508 * Secure state has already been delt with. 5509 */ 5510 static CPAccessResult access_lor_ns(CPUARMState *env) 5511 { 5512 int el = arm_current_el(env); 5513 5514 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5515 return CP_ACCESS_TRAP_EL2; 5516 } 5517 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5518 return CP_ACCESS_TRAP_EL3; 5519 } 5520 return CP_ACCESS_OK; 5521 } 5522 5523 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5524 bool isread) 5525 { 5526 if (arm_is_secure_below_el3(env)) { 5527 /* Access ok in secure mode. */ 5528 return CP_ACCESS_OK; 5529 } 5530 return access_lor_ns(env); 5531 } 5532 5533 static CPAccessResult access_lor_other(CPUARMState *env, 5534 const ARMCPRegInfo *ri, bool isread) 5535 { 5536 if (arm_is_secure_below_el3(env)) { 5537 /* Access denied in secure mode. */ 5538 return CP_ACCESS_TRAP; 5539 } 5540 return access_lor_ns(env); 5541 } 5542 5543 #ifdef TARGET_AARCH64 5544 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5545 bool isread) 5546 { 5547 int el = arm_current_el(env); 5548 5549 if (el < 2 && 5550 arm_feature(env, ARM_FEATURE_EL2) && 5551 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5552 return CP_ACCESS_TRAP_EL2; 5553 } 5554 if (el < 3 && 5555 arm_feature(env, ARM_FEATURE_EL3) && 5556 !(env->cp15.scr_el3 & SCR_APK)) { 5557 return CP_ACCESS_TRAP_EL3; 5558 } 5559 return CP_ACCESS_OK; 5560 } 5561 5562 static const ARMCPRegInfo pauth_reginfo[] = { 5563 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5564 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5565 .access = PL1_RW, .accessfn = access_pauth, 5566 .fieldoffset = offsetof(CPUARMState, apda_key.lo) }, 5567 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5569 .access = PL1_RW, .accessfn = access_pauth, 5570 .fieldoffset = offsetof(CPUARMState, apda_key.hi) }, 5571 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5573 .access = PL1_RW, .accessfn = access_pauth, 5574 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) }, 5575 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5576 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5577 .access = PL1_RW, .accessfn = access_pauth, 5578 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) }, 5579 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5580 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5581 .access = PL1_RW, .accessfn = access_pauth, 5582 .fieldoffset = offsetof(CPUARMState, apga_key.lo) }, 5583 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5585 .access = PL1_RW, .accessfn = access_pauth, 5586 .fieldoffset = offsetof(CPUARMState, apga_key.hi) }, 5587 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5589 .access = PL1_RW, .accessfn = access_pauth, 5590 .fieldoffset = offsetof(CPUARMState, apia_key.lo) }, 5591 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5593 .access = PL1_RW, .accessfn = access_pauth, 5594 .fieldoffset = offsetof(CPUARMState, apia_key.hi) }, 5595 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5596 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5597 .access = PL1_RW, .accessfn = access_pauth, 5598 .fieldoffset = offsetof(CPUARMState, apib_key.lo) }, 5599 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5601 .access = PL1_RW, .accessfn = access_pauth, 5602 .fieldoffset = offsetof(CPUARMState, apib_key.hi) }, 5603 REGINFO_SENTINEL 5604 }; 5605 #endif 5606 5607 void register_cp_regs_for_features(ARMCPU *cpu) 5608 { 5609 /* Register all the coprocessor registers based on feature bits */ 5610 CPUARMState *env = &cpu->env; 5611 if (arm_feature(env, ARM_FEATURE_M)) { 5612 /* M profile has no coprocessor registers */ 5613 return; 5614 } 5615 5616 define_arm_cp_regs(cpu, cp_reginfo); 5617 if (!arm_feature(env, ARM_FEATURE_V8)) { 5618 /* Must go early as it is full of wildcards that may be 5619 * overridden by later definitions. 5620 */ 5621 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5622 } 5623 5624 if (arm_feature(env, ARM_FEATURE_V6)) { 5625 /* The ID registers all have impdef reset values */ 5626 ARMCPRegInfo v6_idregs[] = { 5627 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5629 .access = PL1_R, .type = ARM_CP_CONST, 5630 .resetvalue = cpu->id_pfr0 }, 5631 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5632 * the value of the GIC field until after we define these regs. 5633 */ 5634 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5636 .access = PL1_R, .type = ARM_CP_NO_RAW, 5637 .readfn = id_pfr1_read, 5638 .writefn = arm_cp_write_ignore }, 5639 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5641 .access = PL1_R, .type = ARM_CP_CONST, 5642 .resetvalue = cpu->id_dfr0 }, 5643 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5645 .access = PL1_R, .type = ARM_CP_CONST, 5646 .resetvalue = cpu->id_afr0 }, 5647 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5649 .access = PL1_R, .type = ARM_CP_CONST, 5650 .resetvalue = cpu->id_mmfr0 }, 5651 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5653 .access = PL1_R, .type = ARM_CP_CONST, 5654 .resetvalue = cpu->id_mmfr1 }, 5655 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5657 .access = PL1_R, .type = ARM_CP_CONST, 5658 .resetvalue = cpu->id_mmfr2 }, 5659 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5661 .access = PL1_R, .type = ARM_CP_CONST, 5662 .resetvalue = cpu->id_mmfr3 }, 5663 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5665 .access = PL1_R, .type = ARM_CP_CONST, 5666 .resetvalue = cpu->isar.id_isar0 }, 5667 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5669 .access = PL1_R, .type = ARM_CP_CONST, 5670 .resetvalue = cpu->isar.id_isar1 }, 5671 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5673 .access = PL1_R, .type = ARM_CP_CONST, 5674 .resetvalue = cpu->isar.id_isar2 }, 5675 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5677 .access = PL1_R, .type = ARM_CP_CONST, 5678 .resetvalue = cpu->isar.id_isar3 }, 5679 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5681 .access = PL1_R, .type = ARM_CP_CONST, 5682 .resetvalue = cpu->isar.id_isar4 }, 5683 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5685 .access = PL1_R, .type = ARM_CP_CONST, 5686 .resetvalue = cpu->isar.id_isar5 }, 5687 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5689 .access = PL1_R, .type = ARM_CP_CONST, 5690 .resetvalue = cpu->id_mmfr4 }, 5691 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5693 .access = PL1_R, .type = ARM_CP_CONST, 5694 .resetvalue = cpu->isar.id_isar6 }, 5695 REGINFO_SENTINEL 5696 }; 5697 define_arm_cp_regs(cpu, v6_idregs); 5698 define_arm_cp_regs(cpu, v6_cp_reginfo); 5699 } else { 5700 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5701 } 5702 if (arm_feature(env, ARM_FEATURE_V6K)) { 5703 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5704 } 5705 if (arm_feature(env, ARM_FEATURE_V7MP) && 5706 !arm_feature(env, ARM_FEATURE_PMSA)) { 5707 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5708 } 5709 if (arm_feature(env, ARM_FEATURE_V7VE)) { 5710 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 5711 } 5712 if (arm_feature(env, ARM_FEATURE_V7)) { 5713 /* v7 performance monitor control register: same implementor 5714 * field as main ID register, and we implement four counters in 5715 * addition to the cycle count register. 5716 */ 5717 unsigned int i, pmcrn = 4; 5718 ARMCPRegInfo pmcr = { 5719 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5720 .access = PL0_RW, 5721 .type = ARM_CP_IO | ARM_CP_ALIAS, 5722 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5723 .accessfn = pmreg_access, .writefn = pmcr_write, 5724 .raw_writefn = raw_write, 5725 }; 5726 ARMCPRegInfo pmcr64 = { 5727 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5729 .access = PL0_RW, .accessfn = pmreg_access, 5730 .type = ARM_CP_IO, 5731 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5732 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 5733 .writefn = pmcr_write, .raw_writefn = raw_write, 5734 }; 5735 define_one_arm_cp_reg(cpu, &pmcr); 5736 define_one_arm_cp_reg(cpu, &pmcr64); 5737 for (i = 0; i < pmcrn; i++) { 5738 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 5739 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 5740 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 5741 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 5742 ARMCPRegInfo pmev_regs[] = { 5743 { .name = pmevcntr_name, .cp = 15, .crn = 15, 5744 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5745 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5746 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5747 .accessfn = pmreg_access }, 5748 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 5749 .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 8 | (3 & (i >> 3)), 5750 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5751 .type = ARM_CP_IO, 5752 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5753 .raw_readfn = pmevcntr_rawread, 5754 .raw_writefn = pmevcntr_rawwrite }, 5755 { .name = pmevtyper_name, .cp = 15, .crn = 15, 5756 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5757 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5758 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5759 .accessfn = pmreg_access }, 5760 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 5761 .opc0 = 3, .opc1 = 3, .crn = 15, .crm = 12 | (3 & (i >> 3)), 5762 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5763 .type = ARM_CP_IO, 5764 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5765 .raw_writefn = pmevtyper_rawwrite }, 5766 REGINFO_SENTINEL 5767 }; 5768 define_arm_cp_regs(cpu, pmev_regs); 5769 g_free(pmevcntr_name); 5770 g_free(pmevcntr_el0_name); 5771 g_free(pmevtyper_name); 5772 g_free(pmevtyper_el0_name); 5773 } 5774 ARMCPRegInfo clidr = { 5775 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 5776 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 5777 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 5778 }; 5779 define_one_arm_cp_reg(cpu, &clidr); 5780 define_arm_cp_regs(cpu, v7_cp_reginfo); 5781 define_debug_regs(cpu); 5782 } else { 5783 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 5784 } 5785 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 5786 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 5787 ARMCPRegInfo v81_pmu_regs[] = { 5788 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 5789 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 5790 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5791 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 5792 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 5793 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 5794 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5795 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 5796 REGINFO_SENTINEL 5797 }; 5798 define_arm_cp_regs(cpu, v81_pmu_regs); 5799 } 5800 if (arm_feature(env, ARM_FEATURE_V8)) { 5801 /* AArch64 ID registers, which all have impdef reset values. 5802 * Note that within the ID register ranges the unused slots 5803 * must all RAZ, not UNDEF; future architecture versions may 5804 * define new registers here. 5805 */ 5806 ARMCPRegInfo v8_idregs[] = { 5807 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 5808 * know the right value for the GIC field until after we 5809 * define these regs. 5810 */ 5811 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 5812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 5813 .access = PL1_R, .type = ARM_CP_NO_RAW, 5814 .readfn = id_aa64pfr0_read, 5815 .writefn = arm_cp_write_ignore }, 5816 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 5817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 5818 .access = PL1_R, .type = ARM_CP_CONST, 5819 .resetvalue = cpu->isar.id_aa64pfr1}, 5820 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 5822 .access = PL1_R, .type = ARM_CP_CONST, 5823 .resetvalue = 0 }, 5824 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 5826 .access = PL1_R, .type = ARM_CP_CONST, 5827 .resetvalue = 0 }, 5828 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 5830 .access = PL1_R, .type = ARM_CP_CONST, 5831 /* At present, only SVEver == 0 is defined anyway. */ 5832 .resetvalue = 0 }, 5833 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 5835 .access = PL1_R, .type = ARM_CP_CONST, 5836 .resetvalue = 0 }, 5837 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 5839 .access = PL1_R, .type = ARM_CP_CONST, 5840 .resetvalue = 0 }, 5841 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 5843 .access = PL1_R, .type = ARM_CP_CONST, 5844 .resetvalue = 0 }, 5845 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 5847 .access = PL1_R, .type = ARM_CP_CONST, 5848 .resetvalue = cpu->id_aa64dfr0 }, 5849 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 5850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 5851 .access = PL1_R, .type = ARM_CP_CONST, 5852 .resetvalue = cpu->id_aa64dfr1 }, 5853 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 5855 .access = PL1_R, .type = ARM_CP_CONST, 5856 .resetvalue = 0 }, 5857 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 5859 .access = PL1_R, .type = ARM_CP_CONST, 5860 .resetvalue = 0 }, 5861 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 5862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 5863 .access = PL1_R, .type = ARM_CP_CONST, 5864 .resetvalue = cpu->id_aa64afr0 }, 5865 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 5866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 5867 .access = PL1_R, .type = ARM_CP_CONST, 5868 .resetvalue = cpu->id_aa64afr1 }, 5869 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5870 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5871 .access = PL1_R, .type = ARM_CP_CONST, 5872 .resetvalue = 0 }, 5873 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5875 .access = PL1_R, .type = ARM_CP_CONST, 5876 .resetvalue = 0 }, 5877 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5878 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5879 .access = PL1_R, .type = ARM_CP_CONST, 5880 .resetvalue = cpu->isar.id_aa64isar0 }, 5881 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5883 .access = PL1_R, .type = ARM_CP_CONST, 5884 .resetvalue = cpu->isar.id_aa64isar1 }, 5885 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5887 .access = PL1_R, .type = ARM_CP_CONST, 5888 .resetvalue = 0 }, 5889 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5891 .access = PL1_R, .type = ARM_CP_CONST, 5892 .resetvalue = 0 }, 5893 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5895 .access = PL1_R, .type = ARM_CP_CONST, 5896 .resetvalue = 0 }, 5897 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5899 .access = PL1_R, .type = ARM_CP_CONST, 5900 .resetvalue = 0 }, 5901 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5903 .access = PL1_R, .type = ARM_CP_CONST, 5904 .resetvalue = 0 }, 5905 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5907 .access = PL1_R, .type = ARM_CP_CONST, 5908 .resetvalue = 0 }, 5909 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5911 .access = PL1_R, .type = ARM_CP_CONST, 5912 .resetvalue = cpu->isar.id_aa64mmfr0 }, 5913 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5915 .access = PL1_R, .type = ARM_CP_CONST, 5916 .resetvalue = cpu->isar.id_aa64mmfr1 }, 5917 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5919 .access = PL1_R, .type = ARM_CP_CONST, 5920 .resetvalue = 0 }, 5921 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5923 .access = PL1_R, .type = ARM_CP_CONST, 5924 .resetvalue = 0 }, 5925 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5927 .access = PL1_R, .type = ARM_CP_CONST, 5928 .resetvalue = 0 }, 5929 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5931 .access = PL1_R, .type = ARM_CP_CONST, 5932 .resetvalue = 0 }, 5933 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5935 .access = PL1_R, .type = ARM_CP_CONST, 5936 .resetvalue = 0 }, 5937 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5939 .access = PL1_R, .type = ARM_CP_CONST, 5940 .resetvalue = 0 }, 5941 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5943 .access = PL1_R, .type = ARM_CP_CONST, 5944 .resetvalue = cpu->isar.mvfr0 }, 5945 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5947 .access = PL1_R, .type = ARM_CP_CONST, 5948 .resetvalue = cpu->isar.mvfr1 }, 5949 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5951 .access = PL1_R, .type = ARM_CP_CONST, 5952 .resetvalue = cpu->isar.mvfr2 }, 5953 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5955 .access = PL1_R, .type = ARM_CP_CONST, 5956 .resetvalue = 0 }, 5957 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5959 .access = PL1_R, .type = ARM_CP_CONST, 5960 .resetvalue = 0 }, 5961 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5963 .access = PL1_R, .type = ARM_CP_CONST, 5964 .resetvalue = 0 }, 5965 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5967 .access = PL1_R, .type = ARM_CP_CONST, 5968 .resetvalue = 0 }, 5969 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5971 .access = PL1_R, .type = ARM_CP_CONST, 5972 .resetvalue = 0 }, 5973 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5974 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5975 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5976 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 5977 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5978 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5979 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5980 .resetvalue = cpu->pmceid0 }, 5981 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5982 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5983 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5984 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 5985 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5986 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5987 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5988 .resetvalue = cpu->pmceid1 }, 5989 REGINFO_SENTINEL 5990 }; 5991 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5992 if (!arm_feature(env, ARM_FEATURE_EL3) && 5993 !arm_feature(env, ARM_FEATURE_EL2)) { 5994 ARMCPRegInfo rvbar = { 5995 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5996 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5997 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5998 }; 5999 define_one_arm_cp_reg(cpu, &rvbar); 6000 } 6001 define_arm_cp_regs(cpu, v8_idregs); 6002 define_arm_cp_regs(cpu, v8_cp_reginfo); 6003 } 6004 if (arm_feature(env, ARM_FEATURE_EL2)) { 6005 uint64_t vmpidr_def = mpidr_read_val(env); 6006 ARMCPRegInfo vpidr_regs[] = { 6007 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6008 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6009 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6010 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6011 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6012 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6013 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6014 .access = PL2_RW, .resetvalue = cpu->midr, 6015 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6016 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6017 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6018 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6019 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6020 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6021 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6022 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6023 .access = PL2_RW, 6024 .resetvalue = vmpidr_def, 6025 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6026 REGINFO_SENTINEL 6027 }; 6028 define_arm_cp_regs(cpu, vpidr_regs); 6029 define_arm_cp_regs(cpu, el2_cp_reginfo); 6030 if (arm_feature(env, ARM_FEATURE_V8)) { 6031 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6032 } 6033 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6034 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6035 ARMCPRegInfo rvbar = { 6036 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6037 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6038 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6039 }; 6040 define_one_arm_cp_reg(cpu, &rvbar); 6041 } 6042 } else { 6043 /* If EL2 is missing but higher ELs are enabled, we need to 6044 * register the no_el2 reginfos. 6045 */ 6046 if (arm_feature(env, ARM_FEATURE_EL3)) { 6047 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6048 * of MIDR_EL1 and MPIDR_EL1. 6049 */ 6050 ARMCPRegInfo vpidr_regs[] = { 6051 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6052 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6053 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6054 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6055 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6056 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6057 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6058 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6059 .type = ARM_CP_NO_RAW, 6060 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6061 REGINFO_SENTINEL 6062 }; 6063 define_arm_cp_regs(cpu, vpidr_regs); 6064 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6065 if (arm_feature(env, ARM_FEATURE_V8)) { 6066 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6067 } 6068 } 6069 } 6070 if (arm_feature(env, ARM_FEATURE_EL3)) { 6071 define_arm_cp_regs(cpu, el3_cp_reginfo); 6072 ARMCPRegInfo el3_regs[] = { 6073 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6074 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6075 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6076 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6077 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6078 .access = PL3_RW, 6079 .raw_writefn = raw_write, .writefn = sctlr_write, 6080 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6081 .resetvalue = cpu->reset_sctlr }, 6082 REGINFO_SENTINEL 6083 }; 6084 6085 define_arm_cp_regs(cpu, el3_regs); 6086 } 6087 /* The behaviour of NSACR is sufficiently various that we don't 6088 * try to describe it in a single reginfo: 6089 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6090 * reads as constant 0xc00 from NS EL1 and NS EL2 6091 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6092 * if v7 without EL3, register doesn't exist 6093 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6094 */ 6095 if (arm_feature(env, ARM_FEATURE_EL3)) { 6096 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6097 ARMCPRegInfo nsacr = { 6098 .name = "NSACR", .type = ARM_CP_CONST, 6099 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6100 .access = PL1_RW, .accessfn = nsacr_access, 6101 .resetvalue = 0xc00 6102 }; 6103 define_one_arm_cp_reg(cpu, &nsacr); 6104 } else { 6105 ARMCPRegInfo nsacr = { 6106 .name = "NSACR", 6107 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6108 .access = PL3_RW | PL1_R, 6109 .resetvalue = 0, 6110 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6111 }; 6112 define_one_arm_cp_reg(cpu, &nsacr); 6113 } 6114 } else { 6115 if (arm_feature(env, ARM_FEATURE_V8)) { 6116 ARMCPRegInfo nsacr = { 6117 .name = "NSACR", .type = ARM_CP_CONST, 6118 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6119 .access = PL1_R, 6120 .resetvalue = 0xc00 6121 }; 6122 define_one_arm_cp_reg(cpu, &nsacr); 6123 } 6124 } 6125 6126 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6127 if (arm_feature(env, ARM_FEATURE_V6)) { 6128 /* PMSAv6 not implemented */ 6129 assert(arm_feature(env, ARM_FEATURE_V7)); 6130 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6131 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6132 } else { 6133 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6134 } 6135 } else { 6136 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6137 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6138 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6139 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6140 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6141 } 6142 } 6143 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6144 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6145 } 6146 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6147 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6148 } 6149 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6150 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6151 } 6152 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6153 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6154 } 6155 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6156 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6157 } 6158 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6159 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6160 } 6161 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6162 define_arm_cp_regs(cpu, omap_cp_reginfo); 6163 } 6164 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6165 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6166 } 6167 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6168 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6169 } 6170 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6171 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6172 } 6173 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6174 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6175 } 6176 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6177 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6178 * be read-only (ie write causes UNDEF exception). 6179 */ 6180 { 6181 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6182 /* Pre-v8 MIDR space. 6183 * Note that the MIDR isn't a simple constant register because 6184 * of the TI925 behaviour where writes to another register can 6185 * cause the MIDR value to change. 6186 * 6187 * Unimplemented registers in the c15 0 0 0 space default to 6188 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6189 * and friends override accordingly. 6190 */ 6191 { .name = "MIDR", 6192 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6193 .access = PL1_R, .resetvalue = cpu->midr, 6194 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6195 .readfn = midr_read, 6196 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6197 .type = ARM_CP_OVERRIDE }, 6198 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6199 { .name = "DUMMY", 6200 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6201 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6202 { .name = "DUMMY", 6203 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6204 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6205 { .name = "DUMMY", 6206 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6207 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6208 { .name = "DUMMY", 6209 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6210 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6211 { .name = "DUMMY", 6212 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6213 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6214 REGINFO_SENTINEL 6215 }; 6216 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6217 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6219 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6220 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6221 .readfn = midr_read }, 6222 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6223 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6224 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6225 .access = PL1_R, .resetvalue = cpu->midr }, 6226 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6227 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6228 .access = PL1_R, .resetvalue = cpu->midr }, 6229 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6231 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6232 REGINFO_SENTINEL 6233 }; 6234 ARMCPRegInfo id_cp_reginfo[] = { 6235 /* These are common to v8 and pre-v8 */ 6236 { .name = "CTR", 6237 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6238 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6239 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6240 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6241 .access = PL0_R, .accessfn = ctr_el0_access, 6242 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6243 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6244 { .name = "TCMTR", 6245 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6246 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6247 REGINFO_SENTINEL 6248 }; 6249 /* TLBTR is specific to VMSA */ 6250 ARMCPRegInfo id_tlbtr_reginfo = { 6251 .name = "TLBTR", 6252 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6253 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6254 }; 6255 /* MPUIR is specific to PMSA V6+ */ 6256 ARMCPRegInfo id_mpuir_reginfo = { 6257 .name = "MPUIR", 6258 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6259 .access = PL1_R, .type = ARM_CP_CONST, 6260 .resetvalue = cpu->pmsav7_dregion << 8 6261 }; 6262 ARMCPRegInfo crn0_wi_reginfo = { 6263 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6264 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6265 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6266 }; 6267 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6268 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6269 ARMCPRegInfo *r; 6270 /* Register the blanket "writes ignored" value first to cover the 6271 * whole space. Then update the specific ID registers to allow write 6272 * access, so that they ignore writes rather than causing them to 6273 * UNDEF. 6274 */ 6275 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6276 for (r = id_pre_v8_midr_cp_reginfo; 6277 r->type != ARM_CP_SENTINEL; r++) { 6278 r->access = PL1_RW; 6279 } 6280 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6281 r->access = PL1_RW; 6282 } 6283 id_mpuir_reginfo.access = PL1_RW; 6284 id_tlbtr_reginfo.access = PL1_RW; 6285 } 6286 if (arm_feature(env, ARM_FEATURE_V8)) { 6287 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6288 } else { 6289 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6290 } 6291 define_arm_cp_regs(cpu, id_cp_reginfo); 6292 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6293 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6294 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6295 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6296 } 6297 } 6298 6299 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6300 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6301 } 6302 6303 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6304 ARMCPRegInfo auxcr_reginfo[] = { 6305 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6306 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6307 .access = PL1_RW, .type = ARM_CP_CONST, 6308 .resetvalue = cpu->reset_auxcr }, 6309 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6310 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6311 .access = PL2_RW, .type = ARM_CP_CONST, 6312 .resetvalue = 0 }, 6313 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6315 .access = PL3_RW, .type = ARM_CP_CONST, 6316 .resetvalue = 0 }, 6317 REGINFO_SENTINEL 6318 }; 6319 define_arm_cp_regs(cpu, auxcr_reginfo); 6320 if (arm_feature(env, ARM_FEATURE_V8)) { 6321 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6322 ARMCPRegInfo hactlr2_reginfo = { 6323 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6324 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6325 .access = PL2_RW, .type = ARM_CP_CONST, 6326 .resetvalue = 0 6327 }; 6328 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6329 } 6330 } 6331 6332 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6333 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6334 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6335 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6336 | extract64(cpu->reset_cbar, 32, 12); 6337 ARMCPRegInfo cbar_reginfo[] = { 6338 { .name = "CBAR", 6339 .type = ARM_CP_CONST, 6340 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6341 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6342 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6343 .type = ARM_CP_CONST, 6344 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6345 .access = PL1_R, .resetvalue = cbar32 }, 6346 REGINFO_SENTINEL 6347 }; 6348 /* We don't implement a r/w 64 bit CBAR currently */ 6349 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6350 define_arm_cp_regs(cpu, cbar_reginfo); 6351 } else { 6352 ARMCPRegInfo cbar = { 6353 .name = "CBAR", 6354 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6355 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6356 .fieldoffset = offsetof(CPUARMState, 6357 cp15.c15_config_base_address) 6358 }; 6359 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6360 cbar.access = PL1_R; 6361 cbar.fieldoffset = 0; 6362 cbar.type = ARM_CP_CONST; 6363 } 6364 define_one_arm_cp_reg(cpu, &cbar); 6365 } 6366 } 6367 6368 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6369 ARMCPRegInfo vbar_cp_reginfo[] = { 6370 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6371 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6372 .access = PL1_RW, .writefn = vbar_write, 6373 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6374 offsetof(CPUARMState, cp15.vbar_ns) }, 6375 .resetvalue = 0 }, 6376 REGINFO_SENTINEL 6377 }; 6378 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6379 } 6380 6381 /* Generic registers whose values depend on the implementation */ 6382 { 6383 ARMCPRegInfo sctlr = { 6384 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6385 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6386 .access = PL1_RW, 6387 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6388 offsetof(CPUARMState, cp15.sctlr_ns) }, 6389 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6390 .raw_writefn = raw_write, 6391 }; 6392 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6393 /* Normally we would always end the TB on an SCTLR write, but Linux 6394 * arch/arm/mach-pxa/sleep.S expects two instructions following 6395 * an MMU enable to execute from cache. Imitate this behaviour. 6396 */ 6397 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6398 } 6399 define_one_arm_cp_reg(cpu, &sctlr); 6400 } 6401 6402 if (cpu_isar_feature(aa64_lor, cpu)) { 6403 /* 6404 * A trivial implementation of ARMv8.1-LOR leaves all of these 6405 * registers fixed at 0, which indicates that there are zero 6406 * supported Limited Ordering regions. 6407 */ 6408 static const ARMCPRegInfo lor_reginfo[] = { 6409 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6410 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6411 .access = PL1_RW, .accessfn = access_lor_other, 6412 .type = ARM_CP_CONST, .resetvalue = 0 }, 6413 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6414 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6415 .access = PL1_RW, .accessfn = access_lor_other, 6416 .type = ARM_CP_CONST, .resetvalue = 0 }, 6417 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6418 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6419 .access = PL1_RW, .accessfn = access_lor_other, 6420 .type = ARM_CP_CONST, .resetvalue = 0 }, 6421 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6422 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6423 .access = PL1_RW, .accessfn = access_lor_other, 6424 .type = ARM_CP_CONST, .resetvalue = 0 }, 6425 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6426 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6427 .access = PL1_R, .accessfn = access_lorid, 6428 .type = ARM_CP_CONST, .resetvalue = 0 }, 6429 REGINFO_SENTINEL 6430 }; 6431 define_arm_cp_regs(cpu, lor_reginfo); 6432 } 6433 6434 if (cpu_isar_feature(aa64_sve, cpu)) { 6435 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6436 if (arm_feature(env, ARM_FEATURE_EL2)) { 6437 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6438 } else { 6439 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6440 } 6441 if (arm_feature(env, ARM_FEATURE_EL3)) { 6442 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6443 } 6444 } 6445 6446 #ifdef TARGET_AARCH64 6447 if (cpu_isar_feature(aa64_pauth, cpu)) { 6448 define_arm_cp_regs(cpu, pauth_reginfo); 6449 } 6450 #endif 6451 } 6452 6453 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6454 { 6455 CPUState *cs = CPU(cpu); 6456 CPUARMState *env = &cpu->env; 6457 6458 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6459 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6460 aarch64_fpu_gdb_set_reg, 6461 34, "aarch64-fpu.xml", 0); 6462 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6463 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6464 51, "arm-neon.xml", 0); 6465 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6466 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6467 35, "arm-vfp3.xml", 0); 6468 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6469 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6470 19, "arm-vfp.xml", 0); 6471 } 6472 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6473 arm_gen_dynamic_xml(cs), 6474 "system-registers.xml", 0); 6475 } 6476 6477 /* Sort alphabetically by type name, except for "any". */ 6478 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6479 { 6480 ObjectClass *class_a = (ObjectClass *)a; 6481 ObjectClass *class_b = (ObjectClass *)b; 6482 const char *name_a, *name_b; 6483 6484 name_a = object_class_get_name(class_a); 6485 name_b = object_class_get_name(class_b); 6486 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6487 return 1; 6488 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6489 return -1; 6490 } else { 6491 return strcmp(name_a, name_b); 6492 } 6493 } 6494 6495 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6496 { 6497 ObjectClass *oc = data; 6498 CPUListState *s = user_data; 6499 const char *typename; 6500 char *name; 6501 6502 typename = object_class_get_name(oc); 6503 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6504 (*s->cpu_fprintf)(s->file, " %s\n", 6505 name); 6506 g_free(name); 6507 } 6508 6509 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 6510 { 6511 CPUListState s = { 6512 .file = f, 6513 .cpu_fprintf = cpu_fprintf, 6514 }; 6515 GSList *list; 6516 6517 list = object_class_get_list(TYPE_ARM_CPU, false); 6518 list = g_slist_sort(list, arm_cpu_list_compare); 6519 (*cpu_fprintf)(f, "Available CPUs:\n"); 6520 g_slist_foreach(list, arm_cpu_list_entry, &s); 6521 g_slist_free(list); 6522 } 6523 6524 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6525 { 6526 ObjectClass *oc = data; 6527 CpuDefinitionInfoList **cpu_list = user_data; 6528 CpuDefinitionInfoList *entry; 6529 CpuDefinitionInfo *info; 6530 const char *typename; 6531 6532 typename = object_class_get_name(oc); 6533 info = g_malloc0(sizeof(*info)); 6534 info->name = g_strndup(typename, 6535 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6536 info->q_typename = g_strdup(typename); 6537 6538 entry = g_malloc0(sizeof(*entry)); 6539 entry->value = info; 6540 entry->next = *cpu_list; 6541 *cpu_list = entry; 6542 } 6543 6544 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 6545 { 6546 CpuDefinitionInfoList *cpu_list = NULL; 6547 GSList *list; 6548 6549 list = object_class_get_list(TYPE_ARM_CPU, false); 6550 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6551 g_slist_free(list); 6552 6553 return cpu_list; 6554 } 6555 6556 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6557 void *opaque, int state, int secstate, 6558 int crm, int opc1, int opc2, 6559 const char *name) 6560 { 6561 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6562 * add a single reginfo struct to the hash table. 6563 */ 6564 uint32_t *key = g_new(uint32_t, 1); 6565 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6566 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6567 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6568 6569 r2->name = g_strdup(name); 6570 /* Reset the secure state to the specific incoming state. This is 6571 * necessary as the register may have been defined with both states. 6572 */ 6573 r2->secure = secstate; 6574 6575 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6576 /* Register is banked (using both entries in array). 6577 * Overwriting fieldoffset as the array is only used to define 6578 * banked registers but later only fieldoffset is used. 6579 */ 6580 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6581 } 6582 6583 if (state == ARM_CP_STATE_AA32) { 6584 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6585 /* If the register is banked then we don't need to migrate or 6586 * reset the 32-bit instance in certain cases: 6587 * 6588 * 1) If the register has both 32-bit and 64-bit instances then we 6589 * can count on the 64-bit instance taking care of the 6590 * non-secure bank. 6591 * 2) If ARMv8 is enabled then we can count on a 64-bit version 6592 * taking care of the secure bank. This requires that separate 6593 * 32 and 64-bit definitions are provided. 6594 */ 6595 if ((r->state == ARM_CP_STATE_BOTH && ns) || 6596 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 6597 r2->type |= ARM_CP_ALIAS; 6598 } 6599 } else if ((secstate != r->secure) && !ns) { 6600 /* The register is not banked so we only want to allow migration of 6601 * the non-secure instance. 6602 */ 6603 r2->type |= ARM_CP_ALIAS; 6604 } 6605 6606 if (r->state == ARM_CP_STATE_BOTH) { 6607 /* We assume it is a cp15 register if the .cp field is left unset. 6608 */ 6609 if (r2->cp == 0) { 6610 r2->cp = 15; 6611 } 6612 6613 #ifdef HOST_WORDS_BIGENDIAN 6614 if (r2->fieldoffset) { 6615 r2->fieldoffset += sizeof(uint32_t); 6616 } 6617 #endif 6618 } 6619 } 6620 if (state == ARM_CP_STATE_AA64) { 6621 /* To allow abbreviation of ARMCPRegInfo 6622 * definitions, we treat cp == 0 as equivalent to 6623 * the value for "standard guest-visible sysreg". 6624 * STATE_BOTH definitions are also always "standard 6625 * sysreg" in their AArch64 view (the .cp value may 6626 * be non-zero for the benefit of the AArch32 view). 6627 */ 6628 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6629 r2->cp = CP_REG_ARM64_SYSREG_CP; 6630 } 6631 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6632 r2->opc0, opc1, opc2); 6633 } else { 6634 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6635 } 6636 if (opaque) { 6637 r2->opaque = opaque; 6638 } 6639 /* reginfo passed to helpers is correct for the actual access, 6640 * and is never ARM_CP_STATE_BOTH: 6641 */ 6642 r2->state = state; 6643 /* Make sure reginfo passed to helpers for wildcarded regs 6644 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6645 */ 6646 r2->crm = crm; 6647 r2->opc1 = opc1; 6648 r2->opc2 = opc2; 6649 /* By convention, for wildcarded registers only the first 6650 * entry is used for migration; the others are marked as 6651 * ALIAS so we don't try to transfer the register 6652 * multiple times. Special registers (ie NOP/WFI) are 6653 * never migratable and not even raw-accessible. 6654 */ 6655 if ((r->type & ARM_CP_SPECIAL)) { 6656 r2->type |= ARM_CP_NO_RAW; 6657 } 6658 if (((r->crm == CP_ANY) && crm != 0) || 6659 ((r->opc1 == CP_ANY) && opc1 != 0) || 6660 ((r->opc2 == CP_ANY) && opc2 != 0)) { 6661 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 6662 } 6663 6664 /* Check that raw accesses are either forbidden or handled. Note that 6665 * we can't assert this earlier because the setup of fieldoffset for 6666 * banked registers has to be done first. 6667 */ 6668 if (!(r2->type & ARM_CP_NO_RAW)) { 6669 assert(!raw_accessors_invalid(r2)); 6670 } 6671 6672 /* Overriding of an existing definition must be explicitly 6673 * requested. 6674 */ 6675 if (!(r->type & ARM_CP_OVERRIDE)) { 6676 ARMCPRegInfo *oldreg; 6677 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 6678 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 6679 fprintf(stderr, "Register redefined: cp=%d %d bit " 6680 "crn=%d crm=%d opc1=%d opc2=%d, " 6681 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 6682 r2->crn, r2->crm, r2->opc1, r2->opc2, 6683 oldreg->name, r2->name); 6684 g_assert_not_reached(); 6685 } 6686 } 6687 g_hash_table_insert(cpu->cp_regs, key, r2); 6688 } 6689 6690 6691 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 6692 const ARMCPRegInfo *r, void *opaque) 6693 { 6694 /* Define implementations of coprocessor registers. 6695 * We store these in a hashtable because typically 6696 * there are less than 150 registers in a space which 6697 * is 16*16*16*8*8 = 262144 in size. 6698 * Wildcarding is supported for the crm, opc1 and opc2 fields. 6699 * If a register is defined twice then the second definition is 6700 * used, so this can be used to define some generic registers and 6701 * then override them with implementation specific variations. 6702 * At least one of the original and the second definition should 6703 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 6704 * against accidental use. 6705 * 6706 * The state field defines whether the register is to be 6707 * visible in the AArch32 or AArch64 execution state. If the 6708 * state is set to ARM_CP_STATE_BOTH then we synthesise a 6709 * reginfo structure for the AArch32 view, which sees the lower 6710 * 32 bits of the 64 bit register. 6711 * 6712 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 6713 * be wildcarded. AArch64 registers are always considered to be 64 6714 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 6715 * the register, if any. 6716 */ 6717 int crm, opc1, opc2, state; 6718 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 6719 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 6720 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 6721 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 6722 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 6723 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 6724 /* 64 bit registers have only CRm and Opc1 fields */ 6725 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 6726 /* op0 only exists in the AArch64 encodings */ 6727 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 6728 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 6729 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 6730 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 6731 * encodes a minimum access level for the register. We roll this 6732 * runtime check into our general permission check code, so check 6733 * here that the reginfo's specified permissions are strict enough 6734 * to encompass the generic architectural permission check. 6735 */ 6736 if (r->state != ARM_CP_STATE_AA32) { 6737 int mask = 0; 6738 switch (r->opc1) { 6739 case 0: case 1: case 2: 6740 /* min_EL EL1 */ 6741 mask = PL1_RW; 6742 break; 6743 case 3: 6744 /* min_EL EL0 */ 6745 mask = PL0_RW; 6746 break; 6747 case 4: 6748 /* min_EL EL2 */ 6749 mask = PL2_RW; 6750 break; 6751 case 5: 6752 /* unallocated encoding, so not possible */ 6753 assert(false); 6754 break; 6755 case 6: 6756 /* min_EL EL3 */ 6757 mask = PL3_RW; 6758 break; 6759 case 7: 6760 /* min_EL EL1, secure mode only (we don't check the latter) */ 6761 mask = PL1_RW; 6762 break; 6763 default: 6764 /* broken reginfo with out-of-range opc1 */ 6765 assert(false); 6766 break; 6767 } 6768 /* assert our permissions are not too lax (stricter is fine) */ 6769 assert((r->access & ~mask) == 0); 6770 } 6771 6772 /* Check that the register definition has enough info to handle 6773 * reads and writes if they are permitted. 6774 */ 6775 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 6776 if (r->access & PL3_R) { 6777 assert((r->fieldoffset || 6778 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6779 r->readfn); 6780 } 6781 if (r->access & PL3_W) { 6782 assert((r->fieldoffset || 6783 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6784 r->writefn); 6785 } 6786 } 6787 /* Bad type field probably means missing sentinel at end of reg list */ 6788 assert(cptype_valid(r->type)); 6789 for (crm = crmmin; crm <= crmmax; crm++) { 6790 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 6791 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 6792 for (state = ARM_CP_STATE_AA32; 6793 state <= ARM_CP_STATE_AA64; state++) { 6794 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 6795 continue; 6796 } 6797 if (state == ARM_CP_STATE_AA32) { 6798 /* Under AArch32 CP registers can be common 6799 * (same for secure and non-secure world) or banked. 6800 */ 6801 char *name; 6802 6803 switch (r->secure) { 6804 case ARM_CP_SECSTATE_S: 6805 case ARM_CP_SECSTATE_NS: 6806 add_cpreg_to_hashtable(cpu, r, opaque, state, 6807 r->secure, crm, opc1, opc2, 6808 r->name); 6809 break; 6810 default: 6811 name = g_strdup_printf("%s_S", r->name); 6812 add_cpreg_to_hashtable(cpu, r, opaque, state, 6813 ARM_CP_SECSTATE_S, 6814 crm, opc1, opc2, name); 6815 g_free(name); 6816 add_cpreg_to_hashtable(cpu, r, opaque, state, 6817 ARM_CP_SECSTATE_NS, 6818 crm, opc1, opc2, r->name); 6819 break; 6820 } 6821 } else { 6822 /* AArch64 registers get mapped to non-secure instance 6823 * of AArch32 */ 6824 add_cpreg_to_hashtable(cpu, r, opaque, state, 6825 ARM_CP_SECSTATE_NS, 6826 crm, opc1, opc2, r->name); 6827 } 6828 } 6829 } 6830 } 6831 } 6832 } 6833 6834 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 6835 const ARMCPRegInfo *regs, void *opaque) 6836 { 6837 /* Define a whole list of registers */ 6838 const ARMCPRegInfo *r; 6839 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 6840 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 6841 } 6842 } 6843 6844 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 6845 { 6846 return g_hash_table_lookup(cpregs, &encoded_cp); 6847 } 6848 6849 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 6850 uint64_t value) 6851 { 6852 /* Helper coprocessor write function for write-ignore registers */ 6853 } 6854 6855 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 6856 { 6857 /* Helper coprocessor write function for read-as-zero registers */ 6858 return 0; 6859 } 6860 6861 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 6862 { 6863 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 6864 } 6865 6866 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 6867 { 6868 /* Return true if it is not valid for us to switch to 6869 * this CPU mode (ie all the UNPREDICTABLE cases in 6870 * the ARM ARM CPSRWriteByInstr pseudocode). 6871 */ 6872 6873 /* Changes to or from Hyp via MSR and CPS are illegal. */ 6874 if (write_type == CPSRWriteByInstr && 6875 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 6876 mode == ARM_CPU_MODE_HYP)) { 6877 return 1; 6878 } 6879 6880 switch (mode) { 6881 case ARM_CPU_MODE_USR: 6882 return 0; 6883 case ARM_CPU_MODE_SYS: 6884 case ARM_CPU_MODE_SVC: 6885 case ARM_CPU_MODE_ABT: 6886 case ARM_CPU_MODE_UND: 6887 case ARM_CPU_MODE_IRQ: 6888 case ARM_CPU_MODE_FIQ: 6889 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 6890 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 6891 */ 6892 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 6893 * and CPS are treated as illegal mode changes. 6894 */ 6895 if (write_type == CPSRWriteByInstr && 6896 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 6897 (arm_hcr_el2_eff(env) & HCR_TGE)) { 6898 return 1; 6899 } 6900 return 0; 6901 case ARM_CPU_MODE_HYP: 6902 return !arm_feature(env, ARM_FEATURE_EL2) 6903 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 6904 case ARM_CPU_MODE_MON: 6905 return arm_current_el(env) < 3; 6906 default: 6907 return 1; 6908 } 6909 } 6910 6911 uint32_t cpsr_read(CPUARMState *env) 6912 { 6913 int ZF; 6914 ZF = (env->ZF == 0); 6915 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 6916 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 6917 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 6918 | ((env->condexec_bits & 0xfc) << 8) 6919 | (env->GE << 16) | (env->daif & CPSR_AIF); 6920 } 6921 6922 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6923 CPSRWriteType write_type) 6924 { 6925 uint32_t changed_daif; 6926 6927 if (mask & CPSR_NZCV) { 6928 env->ZF = (~val) & CPSR_Z; 6929 env->NF = val; 6930 env->CF = (val >> 29) & 1; 6931 env->VF = (val << 3) & 0x80000000; 6932 } 6933 if (mask & CPSR_Q) 6934 env->QF = ((val & CPSR_Q) != 0); 6935 if (mask & CPSR_T) 6936 env->thumb = ((val & CPSR_T) != 0); 6937 if (mask & CPSR_IT_0_1) { 6938 env->condexec_bits &= ~3; 6939 env->condexec_bits |= (val >> 25) & 3; 6940 } 6941 if (mask & CPSR_IT_2_7) { 6942 env->condexec_bits &= 3; 6943 env->condexec_bits |= (val >> 8) & 0xfc; 6944 } 6945 if (mask & CPSR_GE) { 6946 env->GE = (val >> 16) & 0xf; 6947 } 6948 6949 /* In a V7 implementation that includes the security extensions but does 6950 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6951 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6952 * bits respectively. 6953 * 6954 * In a V8 implementation, it is permitted for privileged software to 6955 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6956 */ 6957 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6958 arm_feature(env, ARM_FEATURE_EL3) && 6959 !arm_feature(env, ARM_FEATURE_EL2) && 6960 !arm_is_secure(env)) { 6961 6962 changed_daif = (env->daif ^ val) & mask; 6963 6964 if (changed_daif & CPSR_A) { 6965 /* Check to see if we are allowed to change the masking of async 6966 * abort exceptions from a non-secure state. 6967 */ 6968 if (!(env->cp15.scr_el3 & SCR_AW)) { 6969 qemu_log_mask(LOG_GUEST_ERROR, 6970 "Ignoring attempt to switch CPSR_A flag from " 6971 "non-secure world with SCR.AW bit clear\n"); 6972 mask &= ~CPSR_A; 6973 } 6974 } 6975 6976 if (changed_daif & CPSR_F) { 6977 /* Check to see if we are allowed to change the masking of FIQ 6978 * exceptions from a non-secure state. 6979 */ 6980 if (!(env->cp15.scr_el3 & SCR_FW)) { 6981 qemu_log_mask(LOG_GUEST_ERROR, 6982 "Ignoring attempt to switch CPSR_F flag from " 6983 "non-secure world with SCR.FW bit clear\n"); 6984 mask &= ~CPSR_F; 6985 } 6986 6987 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6988 * If this bit is set software is not allowed to mask 6989 * FIQs, but is allowed to set CPSR_F to 0. 6990 */ 6991 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6992 (val & CPSR_F)) { 6993 qemu_log_mask(LOG_GUEST_ERROR, 6994 "Ignoring attempt to enable CPSR_F flag " 6995 "(non-maskable FIQ [NMFI] support enabled)\n"); 6996 mask &= ~CPSR_F; 6997 } 6998 } 6999 } 7000 7001 env->daif &= ~(CPSR_AIF & mask); 7002 env->daif |= val & CPSR_AIF & mask; 7003 7004 if (write_type != CPSRWriteRaw && 7005 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7006 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7007 /* Note that we can only get here in USR mode if this is a 7008 * gdb stub write; for this case we follow the architectural 7009 * behaviour for guest writes in USR mode of ignoring an attempt 7010 * to switch mode. (Those are caught by translate.c for writes 7011 * triggered by guest instructions.) 7012 */ 7013 mask &= ~CPSR_M; 7014 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7015 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7016 * v7, and has defined behaviour in v8: 7017 * + leave CPSR.M untouched 7018 * + allow changes to the other CPSR fields 7019 * + set PSTATE.IL 7020 * For user changes via the GDB stub, we don't set PSTATE.IL, 7021 * as this would be unnecessarily harsh for a user error. 7022 */ 7023 mask &= ~CPSR_M; 7024 if (write_type != CPSRWriteByGDBStub && 7025 arm_feature(env, ARM_FEATURE_V8)) { 7026 mask |= CPSR_IL; 7027 val |= CPSR_IL; 7028 } 7029 qemu_log_mask(LOG_GUEST_ERROR, 7030 "Illegal AArch32 mode switch attempt from %s to %s\n", 7031 aarch32_mode_name(env->uncached_cpsr), 7032 aarch32_mode_name(val)); 7033 } else { 7034 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7035 write_type == CPSRWriteExceptionReturn ? 7036 "Exception return from AArch32" : 7037 "AArch32 mode switch from", 7038 aarch32_mode_name(env->uncached_cpsr), 7039 aarch32_mode_name(val), env->regs[15]); 7040 switch_mode(env, val & CPSR_M); 7041 } 7042 } 7043 mask &= ~CACHED_CPSR_BITS; 7044 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7045 } 7046 7047 /* Sign/zero extend */ 7048 uint32_t HELPER(sxtb16)(uint32_t x) 7049 { 7050 uint32_t res; 7051 res = (uint16_t)(int8_t)x; 7052 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7053 return res; 7054 } 7055 7056 uint32_t HELPER(uxtb16)(uint32_t x) 7057 { 7058 uint32_t res; 7059 res = (uint16_t)(uint8_t)x; 7060 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7061 return res; 7062 } 7063 7064 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7065 { 7066 if (den == 0) 7067 return 0; 7068 if (num == INT_MIN && den == -1) 7069 return INT_MIN; 7070 return num / den; 7071 } 7072 7073 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7074 { 7075 if (den == 0) 7076 return 0; 7077 return num / den; 7078 } 7079 7080 uint32_t HELPER(rbit)(uint32_t x) 7081 { 7082 return revbit32(x); 7083 } 7084 7085 #if defined(CONFIG_USER_ONLY) 7086 7087 /* These should probably raise undefined insn exceptions. */ 7088 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 7089 { 7090 ARMCPU *cpu = arm_env_get_cpu(env); 7091 7092 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 7093 } 7094 7095 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 7096 { 7097 ARMCPU *cpu = arm_env_get_cpu(env); 7098 7099 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 7100 return 0; 7101 } 7102 7103 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7104 { 7105 /* translate.c should never generate calls here in user-only mode */ 7106 g_assert_not_reached(); 7107 } 7108 7109 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7110 { 7111 /* translate.c should never generate calls here in user-only mode */ 7112 g_assert_not_reached(); 7113 } 7114 7115 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 7116 { 7117 /* The TT instructions can be used by unprivileged code, but in 7118 * user-only emulation we don't have the MPU. 7119 * Luckily since we know we are NonSecure unprivileged (and that in 7120 * turn means that the A flag wasn't specified), all the bits in the 7121 * register must be zero: 7122 * IREGION: 0 because IRVALID is 0 7123 * IRVALID: 0 because NS 7124 * S: 0 because NS 7125 * NSRW: 0 because NS 7126 * NSR: 0 because NS 7127 * RW: 0 because unpriv and A flag not set 7128 * R: 0 because unpriv and A flag not set 7129 * SRVALID: 0 because NS 7130 * MRVALID: 0 because unpriv and A flag not set 7131 * SREGION: 0 becaus SRVALID is 0 7132 * MREGION: 0 because MRVALID is 0 7133 */ 7134 return 0; 7135 } 7136 7137 static void switch_mode(CPUARMState *env, int mode) 7138 { 7139 ARMCPU *cpu = arm_env_get_cpu(env); 7140 7141 if (mode != ARM_CPU_MODE_USR) { 7142 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7143 } 7144 } 7145 7146 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7147 uint32_t cur_el, bool secure) 7148 { 7149 return 1; 7150 } 7151 7152 void aarch64_sync_64_to_32(CPUARMState *env) 7153 { 7154 g_assert_not_reached(); 7155 } 7156 7157 #else 7158 7159 static void switch_mode(CPUARMState *env, int mode) 7160 { 7161 int old_mode; 7162 int i; 7163 7164 old_mode = env->uncached_cpsr & CPSR_M; 7165 if (mode == old_mode) 7166 return; 7167 7168 if (old_mode == ARM_CPU_MODE_FIQ) { 7169 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7170 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7171 } else if (mode == ARM_CPU_MODE_FIQ) { 7172 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7173 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7174 } 7175 7176 i = bank_number(old_mode); 7177 env->banked_r13[i] = env->regs[13]; 7178 env->banked_spsr[i] = env->spsr; 7179 7180 i = bank_number(mode); 7181 env->regs[13] = env->banked_r13[i]; 7182 env->spsr = env->banked_spsr[i]; 7183 7184 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7185 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7186 } 7187 7188 /* Physical Interrupt Target EL Lookup Table 7189 * 7190 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7191 * 7192 * The below multi-dimensional table is used for looking up the target 7193 * exception level given numerous condition criteria. Specifically, the 7194 * target EL is based on SCR and HCR routing controls as well as the 7195 * currently executing EL and secure state. 7196 * 7197 * Dimensions: 7198 * target_el_table[2][2][2][2][2][4] 7199 * | | | | | +--- Current EL 7200 * | | | | +------ Non-secure(0)/Secure(1) 7201 * | | | +--------- HCR mask override 7202 * | | +------------ SCR exec state control 7203 * | +--------------- SCR mask override 7204 * +------------------ 32-bit(0)/64-bit(1) EL3 7205 * 7206 * The table values are as such: 7207 * 0-3 = EL0-EL3 7208 * -1 = Cannot occur 7209 * 7210 * The ARM ARM target EL table includes entries indicating that an "exception 7211 * is not taken". The two cases where this is applicable are: 7212 * 1) An exception is taken from EL3 but the SCR does not have the exception 7213 * routed to EL3. 7214 * 2) An exception is taken from EL2 but the HCR does not have the exception 7215 * routed to EL2. 7216 * In these two cases, the below table contain a target of EL1. This value is 7217 * returned as it is expected that the consumer of the table data will check 7218 * for "target EL >= current EL" to ensure the exception is not taken. 7219 * 7220 * SCR HCR 7221 * 64 EA AMO From 7222 * BIT IRQ IMO Non-secure Secure 7223 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7224 */ 7225 static const int8_t target_el_table[2][2][2][2][2][4] = { 7226 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7227 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7228 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7229 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7230 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7231 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7232 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7233 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7234 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7235 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7236 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7237 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7238 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7239 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7240 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7241 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7242 }; 7243 7244 /* 7245 * Determine the target EL for physical exceptions 7246 */ 7247 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7248 uint32_t cur_el, bool secure) 7249 { 7250 CPUARMState *env = cs->env_ptr; 7251 bool rw; 7252 bool scr; 7253 bool hcr; 7254 int target_el; 7255 /* Is the highest EL AArch64? */ 7256 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7257 uint64_t hcr_el2; 7258 7259 if (arm_feature(env, ARM_FEATURE_EL3)) { 7260 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7261 } else { 7262 /* Either EL2 is the highest EL (and so the EL2 register width 7263 * is given by is64); or there is no EL2 or EL3, in which case 7264 * the value of 'rw' does not affect the table lookup anyway. 7265 */ 7266 rw = is64; 7267 } 7268 7269 hcr_el2 = arm_hcr_el2_eff(env); 7270 switch (excp_idx) { 7271 case EXCP_IRQ: 7272 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7273 hcr = hcr_el2 & HCR_IMO; 7274 break; 7275 case EXCP_FIQ: 7276 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7277 hcr = hcr_el2 & HCR_FMO; 7278 break; 7279 default: 7280 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7281 hcr = hcr_el2 & HCR_AMO; 7282 break; 7283 }; 7284 7285 /* Perform a table-lookup for the target EL given the current state */ 7286 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7287 7288 assert(target_el > 0); 7289 7290 return target_el; 7291 } 7292 7293 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 7294 ARMMMUIdx mmu_idx, bool ignfault) 7295 { 7296 CPUState *cs = CPU(cpu); 7297 CPUARMState *env = &cpu->env; 7298 MemTxAttrs attrs = {}; 7299 MemTxResult txres; 7300 target_ulong page_size; 7301 hwaddr physaddr; 7302 int prot; 7303 ARMMMUFaultInfo fi = {}; 7304 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7305 int exc; 7306 bool exc_secure; 7307 7308 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 7309 &attrs, &prot, &page_size, &fi, NULL)) { 7310 /* MPU/SAU lookup failed */ 7311 if (fi.type == ARMFault_QEMU_SFault) { 7312 qemu_log_mask(CPU_LOG_INT, 7313 "...SecureFault with SFSR.AUVIOL during stacking\n"); 7314 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7315 env->v7m.sfar = addr; 7316 exc = ARMV7M_EXCP_SECURE; 7317 exc_secure = false; 7318 } else { 7319 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 7320 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 7321 exc = ARMV7M_EXCP_MEM; 7322 exc_secure = secure; 7323 } 7324 goto pend_fault; 7325 } 7326 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 7327 attrs, &txres); 7328 if (txres != MEMTX_OK) { 7329 /* BusFault trying to write the data */ 7330 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 7331 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 7332 exc = ARMV7M_EXCP_BUS; 7333 exc_secure = false; 7334 goto pend_fault; 7335 } 7336 return true; 7337 7338 pend_fault: 7339 /* By pending the exception at this point we are making 7340 * the IMPDEF choice "overridden exceptions pended" (see the 7341 * MergeExcInfo() pseudocode). The other choice would be to not 7342 * pend them now and then make a choice about which to throw away 7343 * later if we have two derived exceptions. 7344 * The only case when we must not pend the exception but instead 7345 * throw it away is if we are doing the push of the callee registers 7346 * and we've already generated a derived exception. Even in this 7347 * case we will still update the fault status registers. 7348 */ 7349 if (!ignfault) { 7350 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 7351 } 7352 return false; 7353 } 7354 7355 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 7356 ARMMMUIdx mmu_idx) 7357 { 7358 CPUState *cs = CPU(cpu); 7359 CPUARMState *env = &cpu->env; 7360 MemTxAttrs attrs = {}; 7361 MemTxResult txres; 7362 target_ulong page_size; 7363 hwaddr physaddr; 7364 int prot; 7365 ARMMMUFaultInfo fi = {}; 7366 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7367 int exc; 7368 bool exc_secure; 7369 uint32_t value; 7370 7371 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 7372 &attrs, &prot, &page_size, &fi, NULL)) { 7373 /* MPU/SAU lookup failed */ 7374 if (fi.type == ARMFault_QEMU_SFault) { 7375 qemu_log_mask(CPU_LOG_INT, 7376 "...SecureFault with SFSR.AUVIOL during unstack\n"); 7377 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7378 env->v7m.sfar = addr; 7379 exc = ARMV7M_EXCP_SECURE; 7380 exc_secure = false; 7381 } else { 7382 qemu_log_mask(CPU_LOG_INT, 7383 "...MemManageFault with CFSR.MUNSTKERR\n"); 7384 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 7385 exc = ARMV7M_EXCP_MEM; 7386 exc_secure = secure; 7387 } 7388 goto pend_fault; 7389 } 7390 7391 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 7392 attrs, &txres); 7393 if (txres != MEMTX_OK) { 7394 /* BusFault trying to read the data */ 7395 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 7396 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 7397 exc = ARMV7M_EXCP_BUS; 7398 exc_secure = false; 7399 goto pend_fault; 7400 } 7401 7402 *dest = value; 7403 return true; 7404 7405 pend_fault: 7406 /* By pending the exception at this point we are making 7407 * the IMPDEF choice "overridden exceptions pended" (see the 7408 * MergeExcInfo() pseudocode). The other choice would be to not 7409 * pend them now and then make a choice about which to throw away 7410 * later if we have two derived exceptions. 7411 */ 7412 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 7413 return false; 7414 } 7415 7416 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 7417 * This may change the current stack pointer between Main and Process 7418 * stack pointers if it is done for the CONTROL register for the current 7419 * security state. 7420 */ 7421 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 7422 bool new_spsel, 7423 bool secstate) 7424 { 7425 bool old_is_psp = v7m_using_psp(env); 7426 7427 env->v7m.control[secstate] = 7428 deposit32(env->v7m.control[secstate], 7429 R_V7M_CONTROL_SPSEL_SHIFT, 7430 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 7431 7432 if (secstate == env->v7m.secure) { 7433 bool new_is_psp = v7m_using_psp(env); 7434 uint32_t tmp; 7435 7436 if (old_is_psp != new_is_psp) { 7437 tmp = env->v7m.other_sp; 7438 env->v7m.other_sp = env->regs[13]; 7439 env->regs[13] = tmp; 7440 } 7441 } 7442 } 7443 7444 /* Write to v7M CONTROL.SPSEL bit. This may change the current 7445 * stack pointer between Main and Process stack pointers. 7446 */ 7447 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 7448 { 7449 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 7450 } 7451 7452 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 7453 { 7454 /* Write a new value to v7m.exception, thus transitioning into or out 7455 * of Handler mode; this may result in a change of active stack pointer. 7456 */ 7457 bool new_is_psp, old_is_psp = v7m_using_psp(env); 7458 uint32_t tmp; 7459 7460 env->v7m.exception = new_exc; 7461 7462 new_is_psp = v7m_using_psp(env); 7463 7464 if (old_is_psp != new_is_psp) { 7465 tmp = env->v7m.other_sp; 7466 env->v7m.other_sp = env->regs[13]; 7467 env->regs[13] = tmp; 7468 } 7469 } 7470 7471 /* Switch M profile security state between NS and S */ 7472 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 7473 { 7474 uint32_t new_ss_msp, new_ss_psp; 7475 7476 if (env->v7m.secure == new_secstate) { 7477 return; 7478 } 7479 7480 /* All the banked state is accessed by looking at env->v7m.secure 7481 * except for the stack pointer; rearrange the SP appropriately. 7482 */ 7483 new_ss_msp = env->v7m.other_ss_msp; 7484 new_ss_psp = env->v7m.other_ss_psp; 7485 7486 if (v7m_using_psp(env)) { 7487 env->v7m.other_ss_psp = env->regs[13]; 7488 env->v7m.other_ss_msp = env->v7m.other_sp; 7489 } else { 7490 env->v7m.other_ss_msp = env->regs[13]; 7491 env->v7m.other_ss_psp = env->v7m.other_sp; 7492 } 7493 7494 env->v7m.secure = new_secstate; 7495 7496 if (v7m_using_psp(env)) { 7497 env->regs[13] = new_ss_psp; 7498 env->v7m.other_sp = new_ss_msp; 7499 } else { 7500 env->regs[13] = new_ss_msp; 7501 env->v7m.other_sp = new_ss_psp; 7502 } 7503 } 7504 7505 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7506 { 7507 /* Handle v7M BXNS: 7508 * - if the return value is a magic value, do exception return (like BX) 7509 * - otherwise bit 0 of the return value is the target security state 7510 */ 7511 uint32_t min_magic; 7512 7513 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7514 /* Covers FNC_RETURN and EXC_RETURN magic */ 7515 min_magic = FNC_RETURN_MIN_MAGIC; 7516 } else { 7517 /* EXC_RETURN magic only */ 7518 min_magic = EXC_RETURN_MIN_MAGIC; 7519 } 7520 7521 if (dest >= min_magic) { 7522 /* This is an exception return magic value; put it where 7523 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 7524 * Note that if we ever add gen_ss_advance() singlestep support to 7525 * M profile this should count as an "instruction execution complete" 7526 * event (compare gen_bx_excret_final_code()). 7527 */ 7528 env->regs[15] = dest & ~1; 7529 env->thumb = dest & 1; 7530 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 7531 /* notreached */ 7532 } 7533 7534 /* translate.c should have made BXNS UNDEF unless we're secure */ 7535 assert(env->v7m.secure); 7536 7537 switch_v7m_security_state(env, dest & 1); 7538 env->thumb = 1; 7539 env->regs[15] = dest & ~1; 7540 } 7541 7542 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7543 { 7544 /* Handle v7M BLXNS: 7545 * - bit 0 of the destination address is the target security state 7546 */ 7547 7548 /* At this point regs[15] is the address just after the BLXNS */ 7549 uint32_t nextinst = env->regs[15] | 1; 7550 uint32_t sp = env->regs[13] - 8; 7551 uint32_t saved_psr; 7552 7553 /* translate.c will have made BLXNS UNDEF unless we're secure */ 7554 assert(env->v7m.secure); 7555 7556 if (dest & 1) { 7557 /* target is Secure, so this is just a normal BLX, 7558 * except that the low bit doesn't indicate Thumb/not. 7559 */ 7560 env->regs[14] = nextinst; 7561 env->thumb = 1; 7562 env->regs[15] = dest & ~1; 7563 return; 7564 } 7565 7566 /* Target is non-secure: first push a stack frame */ 7567 if (!QEMU_IS_ALIGNED(sp, 8)) { 7568 qemu_log_mask(LOG_GUEST_ERROR, 7569 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 7570 } 7571 7572 if (sp < v7m_sp_limit(env)) { 7573 raise_exception(env, EXCP_STKOF, 0, 1); 7574 } 7575 7576 saved_psr = env->v7m.exception; 7577 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 7578 saved_psr |= XPSR_SFPA; 7579 } 7580 7581 /* Note that these stores can throw exceptions on MPU faults */ 7582 cpu_stl_data(env, sp, nextinst); 7583 cpu_stl_data(env, sp + 4, saved_psr); 7584 7585 env->regs[13] = sp; 7586 env->regs[14] = 0xfeffffff; 7587 if (arm_v7m_is_handler_mode(env)) { 7588 /* Write a dummy value to IPSR, to avoid leaking the current secure 7589 * exception number to non-secure code. This is guaranteed not 7590 * to cause write_v7m_exception() to actually change stacks. 7591 */ 7592 write_v7m_exception(env, 1); 7593 } 7594 switch_v7m_security_state(env, 0); 7595 env->thumb = 1; 7596 env->regs[15] = dest; 7597 } 7598 7599 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 7600 bool spsel) 7601 { 7602 /* Return a pointer to the location where we currently store the 7603 * stack pointer for the requested security state and thread mode. 7604 * This pointer will become invalid if the CPU state is updated 7605 * such that the stack pointers are switched around (eg changing 7606 * the SPSEL control bit). 7607 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 7608 * Unlike that pseudocode, we require the caller to pass us in the 7609 * SPSEL control bit value; this is because we also use this 7610 * function in handling of pushing of the callee-saves registers 7611 * part of the v8M stack frame (pseudocode PushCalleeStack()), 7612 * and in the tailchain codepath the SPSEL bit comes from the exception 7613 * return magic LR value from the previous exception. The pseudocode 7614 * opencodes the stack-selection in PushCalleeStack(), but we prefer 7615 * to make this utility function generic enough to do the job. 7616 */ 7617 bool want_psp = threadmode && spsel; 7618 7619 if (secure == env->v7m.secure) { 7620 if (want_psp == v7m_using_psp(env)) { 7621 return &env->regs[13]; 7622 } else { 7623 return &env->v7m.other_sp; 7624 } 7625 } else { 7626 if (want_psp) { 7627 return &env->v7m.other_ss_psp; 7628 } else { 7629 return &env->v7m.other_ss_msp; 7630 } 7631 } 7632 } 7633 7634 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 7635 uint32_t *pvec) 7636 { 7637 CPUState *cs = CPU(cpu); 7638 CPUARMState *env = &cpu->env; 7639 MemTxResult result; 7640 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 7641 uint32_t vector_entry; 7642 MemTxAttrs attrs = {}; 7643 ARMMMUIdx mmu_idx; 7644 bool exc_secure; 7645 7646 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 7647 7648 /* We don't do a get_phys_addr() here because the rules for vector 7649 * loads are special: they always use the default memory map, and 7650 * the default memory map permits reads from all addresses. 7651 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 7652 * that we want this special case which would always say "yes", 7653 * we just do the SAU lookup here followed by a direct physical load. 7654 */ 7655 attrs.secure = targets_secure; 7656 attrs.user = false; 7657 7658 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7659 V8M_SAttributes sattrs = {}; 7660 7661 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 7662 if (sattrs.ns) { 7663 attrs.secure = false; 7664 } else if (!targets_secure) { 7665 /* NS access to S memory */ 7666 goto load_fail; 7667 } 7668 } 7669 7670 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 7671 attrs, &result); 7672 if (result != MEMTX_OK) { 7673 goto load_fail; 7674 } 7675 *pvec = vector_entry; 7676 return true; 7677 7678 load_fail: 7679 /* All vector table fetch fails are reported as HardFault, with 7680 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 7681 * technically the underlying exception is a MemManage or BusFault 7682 * that is escalated to HardFault.) This is a terminal exception, 7683 * so we will either take the HardFault immediately or else enter 7684 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 7685 */ 7686 exc_secure = targets_secure || 7687 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 7688 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 7689 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 7690 return false; 7691 } 7692 7693 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7694 bool ignore_faults) 7695 { 7696 /* For v8M, push the callee-saves register part of the stack frame. 7697 * Compare the v8M pseudocode PushCalleeStack(). 7698 * In the tailchaining case this may not be the current stack. 7699 */ 7700 CPUARMState *env = &cpu->env; 7701 uint32_t *frame_sp_p; 7702 uint32_t frameptr; 7703 ARMMMUIdx mmu_idx; 7704 bool stacked_ok; 7705 uint32_t limit; 7706 bool want_psp; 7707 7708 if (dotailchain) { 7709 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 7710 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 7711 !mode; 7712 7713 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 7714 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 7715 lr & R_V7M_EXCRET_SPSEL_MASK); 7716 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 7717 if (want_psp) { 7718 limit = env->v7m.psplim[M_REG_S]; 7719 } else { 7720 limit = env->v7m.msplim[M_REG_S]; 7721 } 7722 } else { 7723 mmu_idx = arm_mmu_idx(env); 7724 frame_sp_p = &env->regs[13]; 7725 limit = v7m_sp_limit(env); 7726 } 7727 7728 frameptr = *frame_sp_p - 0x28; 7729 if (frameptr < limit) { 7730 /* 7731 * Stack limit failure: set SP to the limit value, and generate 7732 * STKOF UsageFault. Stack pushes below the limit must not be 7733 * performed. It is IMPDEF whether pushes above the limit are 7734 * performed; we choose not to. 7735 */ 7736 qemu_log_mask(CPU_LOG_INT, 7737 "...STKOF during callee-saves register stacking\n"); 7738 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7739 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7740 env->v7m.secure); 7741 *frame_sp_p = limit; 7742 return true; 7743 } 7744 7745 /* Write as much of the stack frame as we can. A write failure may 7746 * cause us to pend a derived exception. 7747 */ 7748 stacked_ok = 7749 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 7750 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 7751 ignore_faults) && 7752 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 7753 ignore_faults) && 7754 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 7755 ignore_faults) && 7756 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 7757 ignore_faults) && 7758 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 7759 ignore_faults) && 7760 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 7761 ignore_faults) && 7762 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 7763 ignore_faults) && 7764 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 7765 ignore_faults); 7766 7767 /* Update SP regardless of whether any of the stack accesses failed. */ 7768 *frame_sp_p = frameptr; 7769 7770 return !stacked_ok; 7771 } 7772 7773 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7774 bool ignore_stackfaults) 7775 { 7776 /* Do the "take the exception" parts of exception entry, 7777 * but not the pushing of state to the stack. This is 7778 * similar to the pseudocode ExceptionTaken() function. 7779 */ 7780 CPUARMState *env = &cpu->env; 7781 uint32_t addr; 7782 bool targets_secure; 7783 int exc; 7784 bool push_failed = false; 7785 7786 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 7787 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 7788 targets_secure ? "secure" : "nonsecure", exc); 7789 7790 if (arm_feature(env, ARM_FEATURE_V8)) { 7791 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 7792 (lr & R_V7M_EXCRET_S_MASK)) { 7793 /* The background code (the owner of the registers in the 7794 * exception frame) is Secure. This means it may either already 7795 * have or now needs to push callee-saves registers. 7796 */ 7797 if (targets_secure) { 7798 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 7799 /* We took an exception from Secure to NonSecure 7800 * (which means the callee-saved registers got stacked) 7801 * and are now tailchaining to a Secure exception. 7802 * Clear DCRS so eventual return from this Secure 7803 * exception unstacks the callee-saved registers. 7804 */ 7805 lr &= ~R_V7M_EXCRET_DCRS_MASK; 7806 } 7807 } else { 7808 /* We're going to a non-secure exception; push the 7809 * callee-saves registers to the stack now, if they're 7810 * not already saved. 7811 */ 7812 if (lr & R_V7M_EXCRET_DCRS_MASK && 7813 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 7814 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 7815 ignore_stackfaults); 7816 } 7817 lr |= R_V7M_EXCRET_DCRS_MASK; 7818 } 7819 } 7820 7821 lr &= ~R_V7M_EXCRET_ES_MASK; 7822 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7823 lr |= R_V7M_EXCRET_ES_MASK; 7824 } 7825 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 7826 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 7827 lr |= R_V7M_EXCRET_SPSEL_MASK; 7828 } 7829 7830 /* Clear registers if necessary to prevent non-secure exception 7831 * code being able to see register values from secure code. 7832 * Where register values become architecturally UNKNOWN we leave 7833 * them with their previous values. 7834 */ 7835 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7836 if (!targets_secure) { 7837 /* Always clear the caller-saved registers (they have been 7838 * pushed to the stack earlier in v7m_push_stack()). 7839 * Clear callee-saved registers if the background code is 7840 * Secure (in which case these regs were saved in 7841 * v7m_push_callee_stack()). 7842 */ 7843 int i; 7844 7845 for (i = 0; i < 13; i++) { 7846 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 7847 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 7848 env->regs[i] = 0; 7849 } 7850 } 7851 /* Clear EAPSR */ 7852 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 7853 } 7854 } 7855 } 7856 7857 if (push_failed && !ignore_stackfaults) { 7858 /* Derived exception on callee-saves register stacking: 7859 * we might now want to take a different exception which 7860 * targets a different security state, so try again from the top. 7861 */ 7862 qemu_log_mask(CPU_LOG_INT, 7863 "...derived exception on callee-saves register stacking"); 7864 v7m_exception_taken(cpu, lr, true, true); 7865 return; 7866 } 7867 7868 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 7869 /* Vector load failed: derived exception */ 7870 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 7871 v7m_exception_taken(cpu, lr, true, true); 7872 return; 7873 } 7874 7875 /* Now we've done everything that might cause a derived exception 7876 * we can go ahead and activate whichever exception we're going to 7877 * take (which might now be the derived exception). 7878 */ 7879 armv7m_nvic_acknowledge_irq(env->nvic); 7880 7881 /* Switch to target security state -- must do this before writing SPSEL */ 7882 switch_v7m_security_state(env, targets_secure); 7883 write_v7m_control_spsel(env, 0); 7884 arm_clear_exclusive(env); 7885 /* Clear IT bits */ 7886 env->condexec_bits = 0; 7887 env->regs[14] = lr; 7888 env->regs[15] = addr & 0xfffffffe; 7889 env->thumb = addr & 1; 7890 } 7891 7892 static bool v7m_push_stack(ARMCPU *cpu) 7893 { 7894 /* Do the "set up stack frame" part of exception entry, 7895 * similar to pseudocode PushStack(). 7896 * Return true if we generate a derived exception (and so 7897 * should ignore further stack faults trying to process 7898 * that derived exception.) 7899 */ 7900 bool stacked_ok; 7901 CPUARMState *env = &cpu->env; 7902 uint32_t xpsr = xpsr_read(env); 7903 uint32_t frameptr = env->regs[13]; 7904 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 7905 7906 /* Align stack pointer if the guest wants that */ 7907 if ((frameptr & 4) && 7908 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 7909 frameptr -= 4; 7910 xpsr |= XPSR_SPREALIGN; 7911 } 7912 7913 frameptr -= 0x20; 7914 7915 if (arm_feature(env, ARM_FEATURE_V8)) { 7916 uint32_t limit = v7m_sp_limit(env); 7917 7918 if (frameptr < limit) { 7919 /* 7920 * Stack limit failure: set SP to the limit value, and generate 7921 * STKOF UsageFault. Stack pushes below the limit must not be 7922 * performed. It is IMPDEF whether pushes above the limit are 7923 * performed; we choose not to. 7924 */ 7925 qemu_log_mask(CPU_LOG_INT, 7926 "...STKOF during stacking\n"); 7927 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7928 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7929 env->v7m.secure); 7930 env->regs[13] = limit; 7931 return true; 7932 } 7933 } 7934 7935 /* Write as much of the stack frame as we can. If we fail a stack 7936 * write this will result in a derived exception being pended 7937 * (which may be taken in preference to the one we started with 7938 * if it has higher priority). 7939 */ 7940 stacked_ok = 7941 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 7942 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 7943 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 7944 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 7945 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 7946 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 7947 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 7948 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 7949 7950 /* Update SP regardless of whether any of the stack accesses failed. */ 7951 env->regs[13] = frameptr; 7952 7953 return !stacked_ok; 7954 } 7955 7956 static void do_v7m_exception_exit(ARMCPU *cpu) 7957 { 7958 CPUARMState *env = &cpu->env; 7959 uint32_t excret; 7960 uint32_t xpsr; 7961 bool ufault = false; 7962 bool sfault = false; 7963 bool return_to_sp_process; 7964 bool return_to_handler; 7965 bool rettobase = false; 7966 bool exc_secure = false; 7967 bool return_to_secure; 7968 7969 /* If we're not in Handler mode then jumps to magic exception-exit 7970 * addresses don't have magic behaviour. However for the v8M 7971 * security extensions the magic secure-function-return has to 7972 * work in thread mode too, so to avoid doing an extra check in 7973 * the generated code we allow exception-exit magic to also cause the 7974 * internal exception and bring us here in thread mode. Correct code 7975 * will never try to do this (the following insn fetch will always 7976 * fault) so we the overhead of having taken an unnecessary exception 7977 * doesn't matter. 7978 */ 7979 if (!arm_v7m_is_handler_mode(env)) { 7980 return; 7981 } 7982 7983 /* In the spec pseudocode ExceptionReturn() is called directly 7984 * from BXWritePC() and gets the full target PC value including 7985 * bit zero. In QEMU's implementation we treat it as a normal 7986 * jump-to-register (which is then caught later on), and so split 7987 * the target value up between env->regs[15] and env->thumb in 7988 * gen_bx(). Reconstitute it. 7989 */ 7990 excret = env->regs[15]; 7991 if (env->thumb) { 7992 excret |= 1; 7993 } 7994 7995 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7996 " previous exception %d\n", 7997 excret, env->v7m.exception); 7998 7999 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 8000 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 8001 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 8002 excret); 8003 } 8004 8005 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8006 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 8007 * we pick which FAULTMASK to clear. 8008 */ 8009 if (!env->v7m.secure && 8010 ((excret & R_V7M_EXCRET_ES_MASK) || 8011 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 8012 sfault = 1; 8013 /* For all other purposes, treat ES as 0 (R_HXSR) */ 8014 excret &= ~R_V7M_EXCRET_ES_MASK; 8015 } 8016 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 8017 } 8018 8019 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 8020 /* Auto-clear FAULTMASK on return from other than NMI. 8021 * If the security extension is implemented then this only 8022 * happens if the raw execution priority is >= 0; the 8023 * value of the ES bit in the exception return value indicates 8024 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 8025 */ 8026 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8027 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 8028 env->v7m.faultmask[exc_secure] = 0; 8029 } 8030 } else { 8031 env->v7m.faultmask[M_REG_NS] = 0; 8032 } 8033 } 8034 8035 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 8036 exc_secure)) { 8037 case -1: 8038 /* attempt to exit an exception that isn't active */ 8039 ufault = true; 8040 break; 8041 case 0: 8042 /* still an irq active now */ 8043 break; 8044 case 1: 8045 /* we returned to base exception level, no nesting. 8046 * (In the pseudocode this is written using "NestedActivation != 1" 8047 * where we have 'rettobase == false'.) 8048 */ 8049 rettobase = true; 8050 break; 8051 default: 8052 g_assert_not_reached(); 8053 } 8054 8055 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 8056 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 8057 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 8058 (excret & R_V7M_EXCRET_S_MASK); 8059 8060 if (arm_feature(env, ARM_FEATURE_V8)) { 8061 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8062 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 8063 * we choose to take the UsageFault. 8064 */ 8065 if ((excret & R_V7M_EXCRET_S_MASK) || 8066 (excret & R_V7M_EXCRET_ES_MASK) || 8067 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 8068 ufault = true; 8069 } 8070 } 8071 if (excret & R_V7M_EXCRET_RES0_MASK) { 8072 ufault = true; 8073 } 8074 } else { 8075 /* For v7M we only recognize certain combinations of the low bits */ 8076 switch (excret & 0xf) { 8077 case 1: /* Return to Handler */ 8078 break; 8079 case 13: /* Return to Thread using Process stack */ 8080 case 9: /* Return to Thread using Main stack */ 8081 /* We only need to check NONBASETHRDENA for v7M, because in 8082 * v8M this bit does not exist (it is RES1). 8083 */ 8084 if (!rettobase && 8085 !(env->v7m.ccr[env->v7m.secure] & 8086 R_V7M_CCR_NONBASETHRDENA_MASK)) { 8087 ufault = true; 8088 } 8089 break; 8090 default: 8091 ufault = true; 8092 } 8093 } 8094 8095 /* 8096 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 8097 * Handler mode (and will be until we write the new XPSR.Interrupt 8098 * field) this does not switch around the current stack pointer. 8099 * We must do this before we do any kind of tailchaining, including 8100 * for the derived exceptions on integrity check failures, or we will 8101 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 8102 */ 8103 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 8104 8105 if (sfault) { 8106 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 8107 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8108 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8109 "stackframe: failed EXC_RETURN.ES validity check\n"); 8110 v7m_exception_taken(cpu, excret, true, false); 8111 return; 8112 } 8113 8114 if (ufault) { 8115 /* Bad exception return: instead of popping the exception 8116 * stack, directly take a usage fault on the current stack. 8117 */ 8118 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8119 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8120 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 8121 "stackframe: failed exception return integrity check\n"); 8122 v7m_exception_taken(cpu, excret, true, false); 8123 return; 8124 } 8125 8126 /* 8127 * Tailchaining: if there is currently a pending exception that 8128 * is high enough priority to preempt execution at the level we're 8129 * about to return to, then just directly take that exception now, 8130 * avoiding an unstack-and-then-stack. Note that now we have 8131 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 8132 * our current execution priority is already the execution priority we are 8133 * returning to -- none of the state we would unstack or set based on 8134 * the EXCRET value affects it. 8135 */ 8136 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 8137 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 8138 v7m_exception_taken(cpu, excret, true, false); 8139 return; 8140 } 8141 8142 switch_v7m_security_state(env, return_to_secure); 8143 8144 { 8145 /* The stack pointer we should be reading the exception frame from 8146 * depends on bits in the magic exception return type value (and 8147 * for v8M isn't necessarily the stack pointer we will eventually 8148 * end up resuming execution with). Get a pointer to the location 8149 * in the CPU state struct where the SP we need is currently being 8150 * stored; we will use and modify it in place. 8151 * We use this limited C variable scope so we don't accidentally 8152 * use 'frame_sp_p' after we do something that makes it invalid. 8153 */ 8154 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 8155 return_to_secure, 8156 !return_to_handler, 8157 return_to_sp_process); 8158 uint32_t frameptr = *frame_sp_p; 8159 bool pop_ok = true; 8160 ARMMMUIdx mmu_idx; 8161 bool return_to_priv = return_to_handler || 8162 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 8163 8164 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 8165 return_to_priv); 8166 8167 if (!QEMU_IS_ALIGNED(frameptr, 8) && 8168 arm_feature(env, ARM_FEATURE_V8)) { 8169 qemu_log_mask(LOG_GUEST_ERROR, 8170 "M profile exception return with non-8-aligned SP " 8171 "for destination state is UNPREDICTABLE\n"); 8172 } 8173 8174 /* Do we need to pop callee-saved registers? */ 8175 if (return_to_secure && 8176 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 8177 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 8178 uint32_t expected_sig = 0xfefa125b; 8179 uint32_t actual_sig; 8180 8181 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 8182 8183 if (pop_ok && expected_sig != actual_sig) { 8184 /* Take a SecureFault on the current stack */ 8185 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 8186 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8187 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8188 "stackframe: failed exception return integrity " 8189 "signature check\n"); 8190 v7m_exception_taken(cpu, excret, true, false); 8191 return; 8192 } 8193 8194 pop_ok = pop_ok && 8195 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 8196 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 8197 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 8198 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 8199 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 8200 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 8201 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 8202 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 8203 8204 frameptr += 0x28; 8205 } 8206 8207 /* Pop registers */ 8208 pop_ok = pop_ok && 8209 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 8210 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 8211 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 8212 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 8213 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 8214 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 8215 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 8216 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 8217 8218 if (!pop_ok) { 8219 /* v7m_stack_read() pended a fault, so take it (as a tail 8220 * chained exception on the same stack frame) 8221 */ 8222 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 8223 v7m_exception_taken(cpu, excret, true, false); 8224 return; 8225 } 8226 8227 /* Returning from an exception with a PC with bit 0 set is defined 8228 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 8229 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 8230 * the lsbit, and there are several RTOSes out there which incorrectly 8231 * assume the r15 in the stack frame should be a Thumb-style "lsbit 8232 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 8233 * complain about the badly behaved guest. 8234 */ 8235 if (env->regs[15] & 1) { 8236 env->regs[15] &= ~1U; 8237 if (!arm_feature(env, ARM_FEATURE_V8)) { 8238 qemu_log_mask(LOG_GUEST_ERROR, 8239 "M profile return from interrupt with misaligned " 8240 "PC is UNPREDICTABLE on v7M\n"); 8241 } 8242 } 8243 8244 if (arm_feature(env, ARM_FEATURE_V8)) { 8245 /* For v8M we have to check whether the xPSR exception field 8246 * matches the EXCRET value for return to handler/thread 8247 * before we commit to changing the SP and xPSR. 8248 */ 8249 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 8250 if (return_to_handler != will_be_handler) { 8251 /* Take an INVPC UsageFault on the current stack. 8252 * By this point we will have switched to the security state 8253 * for the background state, so this UsageFault will target 8254 * that state. 8255 */ 8256 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8257 env->v7m.secure); 8258 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8259 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 8260 "stackframe: failed exception return integrity " 8261 "check\n"); 8262 v7m_exception_taken(cpu, excret, true, false); 8263 return; 8264 } 8265 } 8266 8267 /* Commit to consuming the stack frame */ 8268 frameptr += 0x20; 8269 /* Undo stack alignment (the SPREALIGN bit indicates that the original 8270 * pre-exception SP was not 8-aligned and we added a padding word to 8271 * align it, so we undo this by ORing in the bit that increases it 8272 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 8273 * would work too but a logical OR is how the pseudocode specifies it.) 8274 */ 8275 if (xpsr & XPSR_SPREALIGN) { 8276 frameptr |= 4; 8277 } 8278 *frame_sp_p = frameptr; 8279 } 8280 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 8281 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 8282 8283 /* The restored xPSR exception field will be zero if we're 8284 * resuming in Thread mode. If that doesn't match what the 8285 * exception return excret specified then this is a UsageFault. 8286 * v7M requires we make this check here; v8M did it earlier. 8287 */ 8288 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 8289 /* Take an INVPC UsageFault by pushing the stack again; 8290 * we know we're v7M so this is never a Secure UsageFault. 8291 */ 8292 bool ignore_stackfaults; 8293 8294 assert(!arm_feature(env, ARM_FEATURE_V8)); 8295 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 8296 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8297 ignore_stackfaults = v7m_push_stack(cpu); 8298 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 8299 "failed exception return integrity check\n"); 8300 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 8301 return; 8302 } 8303 8304 /* Otherwise, we have a successful exception exit. */ 8305 arm_clear_exclusive(env); 8306 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 8307 } 8308 8309 static bool do_v7m_function_return(ARMCPU *cpu) 8310 { 8311 /* v8M security extensions magic function return. 8312 * We may either: 8313 * (1) throw an exception (longjump) 8314 * (2) return true if we successfully handled the function return 8315 * (3) return false if we failed a consistency check and have 8316 * pended a UsageFault that needs to be taken now 8317 * 8318 * At this point the magic return value is split between env->regs[15] 8319 * and env->thumb. We don't bother to reconstitute it because we don't 8320 * need it (all values are handled the same way). 8321 */ 8322 CPUARMState *env = &cpu->env; 8323 uint32_t newpc, newpsr, newpsr_exc; 8324 8325 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 8326 8327 { 8328 bool threadmode, spsel; 8329 TCGMemOpIdx oi; 8330 ARMMMUIdx mmu_idx; 8331 uint32_t *frame_sp_p; 8332 uint32_t frameptr; 8333 8334 /* Pull the return address and IPSR from the Secure stack */ 8335 threadmode = !arm_v7m_is_handler_mode(env); 8336 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 8337 8338 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 8339 frameptr = *frame_sp_p; 8340 8341 /* These loads may throw an exception (for MPU faults). We want to 8342 * do them as secure, so work out what MMU index that is. 8343 */ 8344 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 8345 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 8346 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 8347 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 8348 8349 /* Consistency checks on new IPSR */ 8350 newpsr_exc = newpsr & XPSR_EXCP; 8351 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 8352 (env->v7m.exception == 1 && newpsr_exc != 0))) { 8353 /* Pend the fault and tell our caller to take it */ 8354 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8355 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8356 env->v7m.secure); 8357 qemu_log_mask(CPU_LOG_INT, 8358 "...taking INVPC UsageFault: " 8359 "IPSR consistency check failed\n"); 8360 return false; 8361 } 8362 8363 *frame_sp_p = frameptr + 8; 8364 } 8365 8366 /* This invalidates frame_sp_p */ 8367 switch_v7m_security_state(env, true); 8368 env->v7m.exception = newpsr_exc; 8369 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8370 if (newpsr & XPSR_SFPA) { 8371 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 8372 } 8373 xpsr_write(env, 0, XPSR_IT); 8374 env->thumb = newpc & 1; 8375 env->regs[15] = newpc & ~1; 8376 8377 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 8378 return true; 8379 } 8380 8381 static void arm_log_exception(int idx) 8382 { 8383 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8384 const char *exc = NULL; 8385 static const char * const excnames[] = { 8386 [EXCP_UDEF] = "Undefined Instruction", 8387 [EXCP_SWI] = "SVC", 8388 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8389 [EXCP_DATA_ABORT] = "Data Abort", 8390 [EXCP_IRQ] = "IRQ", 8391 [EXCP_FIQ] = "FIQ", 8392 [EXCP_BKPT] = "Breakpoint", 8393 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8394 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8395 [EXCP_HVC] = "Hypervisor Call", 8396 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8397 [EXCP_SMC] = "Secure Monitor Call", 8398 [EXCP_VIRQ] = "Virtual IRQ", 8399 [EXCP_VFIQ] = "Virtual FIQ", 8400 [EXCP_SEMIHOST] = "Semihosting call", 8401 [EXCP_NOCP] = "v7M NOCP UsageFault", 8402 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8403 [EXCP_STKOF] = "v8M STKOF UsageFault", 8404 }; 8405 8406 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8407 exc = excnames[idx]; 8408 } 8409 if (!exc) { 8410 exc = "unknown"; 8411 } 8412 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8413 } 8414 } 8415 8416 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 8417 uint32_t addr, uint16_t *insn) 8418 { 8419 /* Load a 16-bit portion of a v7M instruction, returning true on success, 8420 * or false on failure (in which case we will have pended the appropriate 8421 * exception). 8422 * We need to do the instruction fetch's MPU and SAU checks 8423 * like this because there is no MMU index that would allow 8424 * doing the load with a single function call. Instead we must 8425 * first check that the security attributes permit the load 8426 * and that they don't mismatch on the two halves of the instruction, 8427 * and then we do the load as a secure load (ie using the security 8428 * attributes of the address, not the CPU, as architecturally required). 8429 */ 8430 CPUState *cs = CPU(cpu); 8431 CPUARMState *env = &cpu->env; 8432 V8M_SAttributes sattrs = {}; 8433 MemTxAttrs attrs = {}; 8434 ARMMMUFaultInfo fi = {}; 8435 MemTxResult txres; 8436 target_ulong page_size; 8437 hwaddr physaddr; 8438 int prot; 8439 8440 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 8441 if (!sattrs.nsc || sattrs.ns) { 8442 /* This must be the second half of the insn, and it straddles a 8443 * region boundary with the second half not being S&NSC. 8444 */ 8445 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8446 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8447 qemu_log_mask(CPU_LOG_INT, 8448 "...really SecureFault with SFSR.INVEP\n"); 8449 return false; 8450 } 8451 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 8452 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 8453 /* the MPU lookup failed */ 8454 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 8455 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 8456 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 8457 return false; 8458 } 8459 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 8460 attrs, &txres); 8461 if (txres != MEMTX_OK) { 8462 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 8463 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 8464 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 8465 return false; 8466 } 8467 return true; 8468 } 8469 8470 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 8471 { 8472 /* Check whether this attempt to execute code in a Secure & NS-Callable 8473 * memory region is for an SG instruction; if so, then emulate the 8474 * effect of the SG instruction and return true. Otherwise pend 8475 * the correct kind of exception and return false. 8476 */ 8477 CPUARMState *env = &cpu->env; 8478 ARMMMUIdx mmu_idx; 8479 uint16_t insn; 8480 8481 /* We should never get here unless get_phys_addr_pmsav8() caused 8482 * an exception for NS executing in S&NSC memory. 8483 */ 8484 assert(!env->v7m.secure); 8485 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 8486 8487 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 8488 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 8489 8490 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 8491 return false; 8492 } 8493 8494 if (!env->thumb) { 8495 goto gen_invep; 8496 } 8497 8498 if (insn != 0xe97f) { 8499 /* Not an SG instruction first half (we choose the IMPDEF 8500 * early-SG-check option). 8501 */ 8502 goto gen_invep; 8503 } 8504 8505 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 8506 return false; 8507 } 8508 8509 if (insn != 0xe97f) { 8510 /* Not an SG instruction second half (yes, both halves of the SG 8511 * insn have the same hex value) 8512 */ 8513 goto gen_invep; 8514 } 8515 8516 /* OK, we have confirmed that we really have an SG instruction. 8517 * We know we're NS in S memory so don't need to repeat those checks. 8518 */ 8519 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 8520 ", executing it\n", env->regs[15]); 8521 env->regs[14] &= ~1; 8522 switch_v7m_security_state(env, true); 8523 xpsr_write(env, 0, XPSR_IT); 8524 env->regs[15] += 4; 8525 return true; 8526 8527 gen_invep: 8528 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8529 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8530 qemu_log_mask(CPU_LOG_INT, 8531 "...really SecureFault with SFSR.INVEP\n"); 8532 return false; 8533 } 8534 8535 void arm_v7m_cpu_do_interrupt(CPUState *cs) 8536 { 8537 ARMCPU *cpu = ARM_CPU(cs); 8538 CPUARMState *env = &cpu->env; 8539 uint32_t lr; 8540 bool ignore_stackfaults; 8541 8542 arm_log_exception(cs->exception_index); 8543 8544 /* For exceptions we just mark as pending on the NVIC, and let that 8545 handle it. */ 8546 switch (cs->exception_index) { 8547 case EXCP_UDEF: 8548 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8549 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 8550 break; 8551 case EXCP_NOCP: 8552 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8553 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 8554 break; 8555 case EXCP_INVSTATE: 8556 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8557 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 8558 break; 8559 case EXCP_STKOF: 8560 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8561 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8562 break; 8563 case EXCP_SWI: 8564 /* The PC already points to the next instruction. */ 8565 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 8566 break; 8567 case EXCP_PREFETCH_ABORT: 8568 case EXCP_DATA_ABORT: 8569 /* Note that for M profile we don't have a guest facing FSR, but 8570 * the env->exception.fsr will be populated by the code that 8571 * raises the fault, in the A profile short-descriptor format. 8572 */ 8573 switch (env->exception.fsr & 0xf) { 8574 case M_FAKE_FSR_NSC_EXEC: 8575 /* Exception generated when we try to execute code at an address 8576 * which is marked as Secure & Non-Secure Callable and the CPU 8577 * is in the Non-Secure state. The only instruction which can 8578 * be executed like this is SG (and that only if both halves of 8579 * the SG instruction have the same security attributes.) 8580 * Everything else must generate an INVEP SecureFault, so we 8581 * emulate the SG instruction here. 8582 */ 8583 if (v7m_handle_execute_nsc(cpu)) { 8584 return; 8585 } 8586 break; 8587 case M_FAKE_FSR_SFAULT: 8588 /* Various flavours of SecureFault for attempts to execute or 8589 * access data in the wrong security state. 8590 */ 8591 switch (cs->exception_index) { 8592 case EXCP_PREFETCH_ABORT: 8593 if (env->v7m.secure) { 8594 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 8595 qemu_log_mask(CPU_LOG_INT, 8596 "...really SecureFault with SFSR.INVTRAN\n"); 8597 } else { 8598 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8599 qemu_log_mask(CPU_LOG_INT, 8600 "...really SecureFault with SFSR.INVEP\n"); 8601 } 8602 break; 8603 case EXCP_DATA_ABORT: 8604 /* This must be an NS access to S memory */ 8605 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 8606 qemu_log_mask(CPU_LOG_INT, 8607 "...really SecureFault with SFSR.AUVIOL\n"); 8608 break; 8609 } 8610 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8611 break; 8612 case 0x8: /* External Abort */ 8613 switch (cs->exception_index) { 8614 case EXCP_PREFETCH_ABORT: 8615 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 8616 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 8617 break; 8618 case EXCP_DATA_ABORT: 8619 env->v7m.cfsr[M_REG_NS] |= 8620 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 8621 env->v7m.bfar = env->exception.vaddress; 8622 qemu_log_mask(CPU_LOG_INT, 8623 "...with CFSR.PRECISERR and BFAR 0x%x\n", 8624 env->v7m.bfar); 8625 break; 8626 } 8627 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 8628 break; 8629 default: 8630 /* All other FSR values are either MPU faults or "can't happen 8631 * for M profile" cases. 8632 */ 8633 switch (cs->exception_index) { 8634 case EXCP_PREFETCH_ABORT: 8635 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 8636 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 8637 break; 8638 case EXCP_DATA_ABORT: 8639 env->v7m.cfsr[env->v7m.secure] |= 8640 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 8641 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 8642 qemu_log_mask(CPU_LOG_INT, 8643 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 8644 env->v7m.mmfar[env->v7m.secure]); 8645 break; 8646 } 8647 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 8648 env->v7m.secure); 8649 break; 8650 } 8651 break; 8652 case EXCP_BKPT: 8653 if (semihosting_enabled()) { 8654 int nr; 8655 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 8656 if (nr == 0xab) { 8657 env->regs[15] += 2; 8658 qemu_log_mask(CPU_LOG_INT, 8659 "...handling as semihosting call 0x%x\n", 8660 env->regs[0]); 8661 env->regs[0] = do_arm_semihosting(env); 8662 return; 8663 } 8664 } 8665 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 8666 break; 8667 case EXCP_IRQ: 8668 break; 8669 case EXCP_EXCEPTION_EXIT: 8670 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 8671 /* Must be v8M security extension function return */ 8672 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 8673 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 8674 if (do_v7m_function_return(cpu)) { 8675 return; 8676 } 8677 } else { 8678 do_v7m_exception_exit(cpu); 8679 return; 8680 } 8681 break; 8682 default: 8683 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8684 return; /* Never happens. Keep compiler happy. */ 8685 } 8686 8687 if (arm_feature(env, ARM_FEATURE_V8)) { 8688 lr = R_V7M_EXCRET_RES1_MASK | 8689 R_V7M_EXCRET_DCRS_MASK | 8690 R_V7M_EXCRET_FTYPE_MASK; 8691 /* The S bit indicates whether we should return to Secure 8692 * or NonSecure (ie our current state). 8693 * The ES bit indicates whether we're taking this exception 8694 * to Secure or NonSecure (ie our target state). We set it 8695 * later, in v7m_exception_taken(). 8696 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 8697 * This corresponds to the ARM ARM pseudocode for v8M setting 8698 * some LR bits in PushStack() and some in ExceptionTaken(); 8699 * the distinction matters for the tailchain cases where we 8700 * can take an exception without pushing the stack. 8701 */ 8702 if (env->v7m.secure) { 8703 lr |= R_V7M_EXCRET_S_MASK; 8704 } 8705 } else { 8706 lr = R_V7M_EXCRET_RES1_MASK | 8707 R_V7M_EXCRET_S_MASK | 8708 R_V7M_EXCRET_DCRS_MASK | 8709 R_V7M_EXCRET_FTYPE_MASK | 8710 R_V7M_EXCRET_ES_MASK; 8711 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 8712 lr |= R_V7M_EXCRET_SPSEL_MASK; 8713 } 8714 } 8715 if (!arm_v7m_is_handler_mode(env)) { 8716 lr |= R_V7M_EXCRET_MODE_MASK; 8717 } 8718 8719 ignore_stackfaults = v7m_push_stack(cpu); 8720 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 8721 } 8722 8723 /* Function used to synchronize QEMU's AArch64 register set with AArch32 8724 * register set. This is necessary when switching between AArch32 and AArch64 8725 * execution state. 8726 */ 8727 void aarch64_sync_32_to_64(CPUARMState *env) 8728 { 8729 int i; 8730 uint32_t mode = env->uncached_cpsr & CPSR_M; 8731 8732 /* We can blanket copy R[0:7] to X[0:7] */ 8733 for (i = 0; i < 8; i++) { 8734 env->xregs[i] = env->regs[i]; 8735 } 8736 8737 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8738 * Otherwise, they come from the banked user regs. 8739 */ 8740 if (mode == ARM_CPU_MODE_FIQ) { 8741 for (i = 8; i < 13; i++) { 8742 env->xregs[i] = env->usr_regs[i - 8]; 8743 } 8744 } else { 8745 for (i = 8; i < 13; i++) { 8746 env->xregs[i] = env->regs[i]; 8747 } 8748 } 8749 8750 /* Registers x13-x23 are the various mode SP and FP registers. Registers 8751 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8752 * from the mode banked register. 8753 */ 8754 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8755 env->xregs[13] = env->regs[13]; 8756 env->xregs[14] = env->regs[14]; 8757 } else { 8758 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8759 /* HYP is an exception in that it is copied from r14 */ 8760 if (mode == ARM_CPU_MODE_HYP) { 8761 env->xregs[14] = env->regs[14]; 8762 } else { 8763 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8764 } 8765 } 8766 8767 if (mode == ARM_CPU_MODE_HYP) { 8768 env->xregs[15] = env->regs[13]; 8769 } else { 8770 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8771 } 8772 8773 if (mode == ARM_CPU_MODE_IRQ) { 8774 env->xregs[16] = env->regs[14]; 8775 env->xregs[17] = env->regs[13]; 8776 } else { 8777 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8778 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8779 } 8780 8781 if (mode == ARM_CPU_MODE_SVC) { 8782 env->xregs[18] = env->regs[14]; 8783 env->xregs[19] = env->regs[13]; 8784 } else { 8785 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8786 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8787 } 8788 8789 if (mode == ARM_CPU_MODE_ABT) { 8790 env->xregs[20] = env->regs[14]; 8791 env->xregs[21] = env->regs[13]; 8792 } else { 8793 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8794 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8795 } 8796 8797 if (mode == ARM_CPU_MODE_UND) { 8798 env->xregs[22] = env->regs[14]; 8799 env->xregs[23] = env->regs[13]; 8800 } else { 8801 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8802 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8803 } 8804 8805 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8806 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8807 * FIQ bank for r8-r14. 8808 */ 8809 if (mode == ARM_CPU_MODE_FIQ) { 8810 for (i = 24; i < 31; i++) { 8811 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8812 } 8813 } else { 8814 for (i = 24; i < 29; i++) { 8815 env->xregs[i] = env->fiq_regs[i - 24]; 8816 } 8817 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8818 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8819 } 8820 8821 env->pc = env->regs[15]; 8822 } 8823 8824 /* Function used to synchronize QEMU's AArch32 register set with AArch64 8825 * register set. This is necessary when switching between AArch32 and AArch64 8826 * execution state. 8827 */ 8828 void aarch64_sync_64_to_32(CPUARMState *env) 8829 { 8830 int i; 8831 uint32_t mode = env->uncached_cpsr & CPSR_M; 8832 8833 /* We can blanket copy X[0:7] to R[0:7] */ 8834 for (i = 0; i < 8; i++) { 8835 env->regs[i] = env->xregs[i]; 8836 } 8837 8838 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8839 * Otherwise, we copy x8-x12 into the banked user regs. 8840 */ 8841 if (mode == ARM_CPU_MODE_FIQ) { 8842 for (i = 8; i < 13; i++) { 8843 env->usr_regs[i - 8] = env->xregs[i]; 8844 } 8845 } else { 8846 for (i = 8; i < 13; i++) { 8847 env->regs[i] = env->xregs[i]; 8848 } 8849 } 8850 8851 /* Registers r13 & r14 depend on the current mode. 8852 * If we are in a given mode, we copy the corresponding x registers to r13 8853 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8854 * for the mode. 8855 */ 8856 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8857 env->regs[13] = env->xregs[13]; 8858 env->regs[14] = env->xregs[14]; 8859 } else { 8860 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8861 8862 /* HYP is an exception in that it does not have its own banked r14 but 8863 * shares the USR r14 8864 */ 8865 if (mode == ARM_CPU_MODE_HYP) { 8866 env->regs[14] = env->xregs[14]; 8867 } else { 8868 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8869 } 8870 } 8871 8872 if (mode == ARM_CPU_MODE_HYP) { 8873 env->regs[13] = env->xregs[15]; 8874 } else { 8875 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8876 } 8877 8878 if (mode == ARM_CPU_MODE_IRQ) { 8879 env->regs[14] = env->xregs[16]; 8880 env->regs[13] = env->xregs[17]; 8881 } else { 8882 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8883 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8884 } 8885 8886 if (mode == ARM_CPU_MODE_SVC) { 8887 env->regs[14] = env->xregs[18]; 8888 env->regs[13] = env->xregs[19]; 8889 } else { 8890 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8891 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8892 } 8893 8894 if (mode == ARM_CPU_MODE_ABT) { 8895 env->regs[14] = env->xregs[20]; 8896 env->regs[13] = env->xregs[21]; 8897 } else { 8898 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8899 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8900 } 8901 8902 if (mode == ARM_CPU_MODE_UND) { 8903 env->regs[14] = env->xregs[22]; 8904 env->regs[13] = env->xregs[23]; 8905 } else { 8906 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8907 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8908 } 8909 8910 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8911 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8912 * FIQ bank for r8-r14. 8913 */ 8914 if (mode == ARM_CPU_MODE_FIQ) { 8915 for (i = 24; i < 31; i++) { 8916 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8917 } 8918 } else { 8919 for (i = 24; i < 29; i++) { 8920 env->fiq_regs[i - 24] = env->xregs[i]; 8921 } 8922 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8923 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8924 } 8925 8926 env->regs[15] = env->pc; 8927 } 8928 8929 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8930 uint32_t mask, uint32_t offset, 8931 uint32_t newpc) 8932 { 8933 /* Change the CPU state so as to actually take the exception. */ 8934 switch_mode(env, new_mode); 8935 /* 8936 * For exceptions taken to AArch32 we must clear the SS bit in both 8937 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8938 */ 8939 env->uncached_cpsr &= ~PSTATE_SS; 8940 env->spsr = cpsr_read(env); 8941 /* Clear IT bits. */ 8942 env->condexec_bits = 0; 8943 /* Switch to the new mode, and to the correct instruction set. */ 8944 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8945 /* Set new mode endianness */ 8946 env->uncached_cpsr &= ~CPSR_E; 8947 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8948 env->uncached_cpsr |= CPSR_E; 8949 } 8950 /* J and IL must always be cleared for exception entry */ 8951 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8952 env->daif |= mask; 8953 8954 if (new_mode == ARM_CPU_MODE_HYP) { 8955 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8956 env->elr_el[2] = env->regs[15]; 8957 } else { 8958 /* 8959 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8960 * and we should just guard the thumb mode on V4 8961 */ 8962 if (arm_feature(env, ARM_FEATURE_V4T)) { 8963 env->thumb = 8964 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8965 } 8966 env->regs[14] = env->regs[15] + offset; 8967 } 8968 env->regs[15] = newpc; 8969 } 8970 8971 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8972 { 8973 /* 8974 * Handle exception entry to Hyp mode; this is sufficiently 8975 * different to entry to other AArch32 modes that we handle it 8976 * separately here. 8977 * 8978 * The vector table entry used is always the 0x14 Hyp mode entry point, 8979 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8980 * The offset applied to the preferred return address is always zero 8981 * (see DDI0487C.a section G1.12.3). 8982 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8983 */ 8984 uint32_t addr, mask; 8985 ARMCPU *cpu = ARM_CPU(cs); 8986 CPUARMState *env = &cpu->env; 8987 8988 switch (cs->exception_index) { 8989 case EXCP_UDEF: 8990 addr = 0x04; 8991 break; 8992 case EXCP_SWI: 8993 addr = 0x14; 8994 break; 8995 case EXCP_BKPT: 8996 /* Fall through to prefetch abort. */ 8997 case EXCP_PREFETCH_ABORT: 8998 env->cp15.ifar_s = env->exception.vaddress; 8999 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9000 (uint32_t)env->exception.vaddress); 9001 addr = 0x0c; 9002 break; 9003 case EXCP_DATA_ABORT: 9004 env->cp15.dfar_s = env->exception.vaddress; 9005 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9006 (uint32_t)env->exception.vaddress); 9007 addr = 0x10; 9008 break; 9009 case EXCP_IRQ: 9010 addr = 0x18; 9011 break; 9012 case EXCP_FIQ: 9013 addr = 0x1c; 9014 break; 9015 case EXCP_HVC: 9016 addr = 0x08; 9017 break; 9018 case EXCP_HYP_TRAP: 9019 addr = 0x14; 9020 default: 9021 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9022 } 9023 9024 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9025 if (!arm_feature(env, ARM_FEATURE_V8)) { 9026 /* 9027 * QEMU syndrome values are v8-style. v7 has the IL bit 9028 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9029 * If this is a v7 CPU, squash the IL bit in those cases. 9030 */ 9031 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9032 (cs->exception_index == EXCP_DATA_ABORT && 9033 !(env->exception.syndrome & ARM_EL_ISV)) || 9034 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9035 env->exception.syndrome &= ~ARM_EL_IL; 9036 } 9037 } 9038 env->cp15.esr_el[2] = env->exception.syndrome; 9039 } 9040 9041 if (arm_current_el(env) != 2 && addr < 0x14) { 9042 addr = 0x14; 9043 } 9044 9045 mask = 0; 9046 if (!(env->cp15.scr_el3 & SCR_EA)) { 9047 mask |= CPSR_A; 9048 } 9049 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9050 mask |= CPSR_I; 9051 } 9052 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9053 mask |= CPSR_F; 9054 } 9055 9056 addr += env->cp15.hvbar; 9057 9058 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9059 } 9060 9061 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9062 { 9063 ARMCPU *cpu = ARM_CPU(cs); 9064 CPUARMState *env = &cpu->env; 9065 uint32_t addr; 9066 uint32_t mask; 9067 int new_mode; 9068 uint32_t offset; 9069 uint32_t moe; 9070 9071 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9072 switch (syn_get_ec(env->exception.syndrome)) { 9073 case EC_BREAKPOINT: 9074 case EC_BREAKPOINT_SAME_EL: 9075 moe = 1; 9076 break; 9077 case EC_WATCHPOINT: 9078 case EC_WATCHPOINT_SAME_EL: 9079 moe = 10; 9080 break; 9081 case EC_AA32_BKPT: 9082 moe = 3; 9083 break; 9084 case EC_VECTORCATCH: 9085 moe = 5; 9086 break; 9087 default: 9088 moe = 0; 9089 break; 9090 } 9091 9092 if (moe) { 9093 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9094 } 9095 9096 if (env->exception.target_el == 2) { 9097 arm_cpu_do_interrupt_aarch32_hyp(cs); 9098 return; 9099 } 9100 9101 switch (cs->exception_index) { 9102 case EXCP_UDEF: 9103 new_mode = ARM_CPU_MODE_UND; 9104 addr = 0x04; 9105 mask = CPSR_I; 9106 if (env->thumb) 9107 offset = 2; 9108 else 9109 offset = 4; 9110 break; 9111 case EXCP_SWI: 9112 new_mode = ARM_CPU_MODE_SVC; 9113 addr = 0x08; 9114 mask = CPSR_I; 9115 /* The PC already points to the next instruction. */ 9116 offset = 0; 9117 break; 9118 case EXCP_BKPT: 9119 /* Fall through to prefetch abort. */ 9120 case EXCP_PREFETCH_ABORT: 9121 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9122 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9123 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9124 env->exception.fsr, (uint32_t)env->exception.vaddress); 9125 new_mode = ARM_CPU_MODE_ABT; 9126 addr = 0x0c; 9127 mask = CPSR_A | CPSR_I; 9128 offset = 4; 9129 break; 9130 case EXCP_DATA_ABORT: 9131 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9132 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9133 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9134 env->exception.fsr, 9135 (uint32_t)env->exception.vaddress); 9136 new_mode = ARM_CPU_MODE_ABT; 9137 addr = 0x10; 9138 mask = CPSR_A | CPSR_I; 9139 offset = 8; 9140 break; 9141 case EXCP_IRQ: 9142 new_mode = ARM_CPU_MODE_IRQ; 9143 addr = 0x18; 9144 /* Disable IRQ and imprecise data aborts. */ 9145 mask = CPSR_A | CPSR_I; 9146 offset = 4; 9147 if (env->cp15.scr_el3 & SCR_IRQ) { 9148 /* IRQ routed to monitor mode */ 9149 new_mode = ARM_CPU_MODE_MON; 9150 mask |= CPSR_F; 9151 } 9152 break; 9153 case EXCP_FIQ: 9154 new_mode = ARM_CPU_MODE_FIQ; 9155 addr = 0x1c; 9156 /* Disable FIQ, IRQ and imprecise data aborts. */ 9157 mask = CPSR_A | CPSR_I | CPSR_F; 9158 if (env->cp15.scr_el3 & SCR_FIQ) { 9159 /* FIQ routed to monitor mode */ 9160 new_mode = ARM_CPU_MODE_MON; 9161 } 9162 offset = 4; 9163 break; 9164 case EXCP_VIRQ: 9165 new_mode = ARM_CPU_MODE_IRQ; 9166 addr = 0x18; 9167 /* Disable IRQ and imprecise data aborts. */ 9168 mask = CPSR_A | CPSR_I; 9169 offset = 4; 9170 break; 9171 case EXCP_VFIQ: 9172 new_mode = ARM_CPU_MODE_FIQ; 9173 addr = 0x1c; 9174 /* Disable FIQ, IRQ and imprecise data aborts. */ 9175 mask = CPSR_A | CPSR_I | CPSR_F; 9176 offset = 4; 9177 break; 9178 case EXCP_SMC: 9179 new_mode = ARM_CPU_MODE_MON; 9180 addr = 0x08; 9181 mask = CPSR_A | CPSR_I | CPSR_F; 9182 offset = 0; 9183 break; 9184 default: 9185 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9186 return; /* Never happens. Keep compiler happy. */ 9187 } 9188 9189 if (new_mode == ARM_CPU_MODE_MON) { 9190 addr += env->cp15.mvbar; 9191 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9192 /* High vectors. When enabled, base address cannot be remapped. */ 9193 addr += 0xffff0000; 9194 } else { 9195 /* ARM v7 architectures provide a vector base address register to remap 9196 * the interrupt vector table. 9197 * This register is only followed in non-monitor mode, and is banked. 9198 * Note: only bits 31:5 are valid. 9199 */ 9200 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9201 } 9202 9203 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9204 env->cp15.scr_el3 &= ~SCR_NS; 9205 } 9206 9207 take_aarch32_exception(env, new_mode, mask, offset, addr); 9208 } 9209 9210 /* Handle exception entry to a target EL which is using AArch64 */ 9211 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9212 { 9213 ARMCPU *cpu = ARM_CPU(cs); 9214 CPUARMState *env = &cpu->env; 9215 unsigned int new_el = env->exception.target_el; 9216 target_ulong addr = env->cp15.vbar_el[new_el]; 9217 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9218 unsigned int cur_el = arm_current_el(env); 9219 9220 /* 9221 * Note that new_el can never be 0. If cur_el is 0, then 9222 * el0_a64 is is_a64(), else el0_a64 is ignored. 9223 */ 9224 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9225 9226 if (cur_el < new_el) { 9227 /* Entry vector offset depends on whether the implemented EL 9228 * immediately lower than the target level is using AArch32 or AArch64 9229 */ 9230 bool is_aa64; 9231 9232 switch (new_el) { 9233 case 3: 9234 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9235 break; 9236 case 2: 9237 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 9238 break; 9239 case 1: 9240 is_aa64 = is_a64(env); 9241 break; 9242 default: 9243 g_assert_not_reached(); 9244 } 9245 9246 if (is_aa64) { 9247 addr += 0x400; 9248 } else { 9249 addr += 0x600; 9250 } 9251 } else if (pstate_read(env) & PSTATE_SP) { 9252 addr += 0x200; 9253 } 9254 9255 switch (cs->exception_index) { 9256 case EXCP_PREFETCH_ABORT: 9257 case EXCP_DATA_ABORT: 9258 env->cp15.far_el[new_el] = env->exception.vaddress; 9259 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9260 env->cp15.far_el[new_el]); 9261 /* fall through */ 9262 case EXCP_BKPT: 9263 case EXCP_UDEF: 9264 case EXCP_SWI: 9265 case EXCP_HVC: 9266 case EXCP_HYP_TRAP: 9267 case EXCP_SMC: 9268 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9269 /* 9270 * QEMU internal FP/SIMD syndromes from AArch32 include the 9271 * TA and coproc fields which are only exposed if the exception 9272 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9273 * AArch64 format syndrome. 9274 */ 9275 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9276 } 9277 env->cp15.esr_el[new_el] = env->exception.syndrome; 9278 break; 9279 case EXCP_IRQ: 9280 case EXCP_VIRQ: 9281 addr += 0x80; 9282 break; 9283 case EXCP_FIQ: 9284 case EXCP_VFIQ: 9285 addr += 0x100; 9286 break; 9287 case EXCP_SEMIHOST: 9288 qemu_log_mask(CPU_LOG_INT, 9289 "...handling as semihosting call 0x%" PRIx64 "\n", 9290 env->xregs[0]); 9291 env->xregs[0] = do_arm_semihosting(env); 9292 return; 9293 default: 9294 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9295 } 9296 9297 if (is_a64(env)) { 9298 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 9299 aarch64_save_sp(env, arm_current_el(env)); 9300 env->elr_el[new_el] = env->pc; 9301 } else { 9302 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 9303 env->elr_el[new_el] = env->regs[15]; 9304 9305 aarch64_sync_32_to_64(env); 9306 9307 env->condexec_bits = 0; 9308 } 9309 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9310 env->elr_el[new_el]); 9311 9312 pstate_write(env, PSTATE_DAIF | new_mode); 9313 env->aarch64 = 1; 9314 aarch64_restore_sp(env, new_el); 9315 9316 env->pc = addr; 9317 9318 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9319 new_el, env->pc, pstate_read(env)); 9320 } 9321 9322 static inline bool check_for_semihosting(CPUState *cs) 9323 { 9324 /* Check whether this exception is a semihosting call; if so 9325 * then handle it and return true; otherwise return false. 9326 */ 9327 ARMCPU *cpu = ARM_CPU(cs); 9328 CPUARMState *env = &cpu->env; 9329 9330 if (is_a64(env)) { 9331 if (cs->exception_index == EXCP_SEMIHOST) { 9332 /* This is always the 64-bit semihosting exception. 9333 * The "is this usermode" and "is semihosting enabled" 9334 * checks have been done at translate time. 9335 */ 9336 qemu_log_mask(CPU_LOG_INT, 9337 "...handling as semihosting call 0x%" PRIx64 "\n", 9338 env->xregs[0]); 9339 env->xregs[0] = do_arm_semihosting(env); 9340 return true; 9341 } 9342 return false; 9343 } else { 9344 uint32_t imm; 9345 9346 /* Only intercept calls from privileged modes, to provide some 9347 * semblance of security. 9348 */ 9349 if (cs->exception_index != EXCP_SEMIHOST && 9350 (!semihosting_enabled() || 9351 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 9352 return false; 9353 } 9354 9355 switch (cs->exception_index) { 9356 case EXCP_SEMIHOST: 9357 /* This is always a semihosting call; the "is this usermode" 9358 * and "is semihosting enabled" checks have been done at 9359 * translate time. 9360 */ 9361 break; 9362 case EXCP_SWI: 9363 /* Check for semihosting interrupt. */ 9364 if (env->thumb) { 9365 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 9366 & 0xff; 9367 if (imm == 0xab) { 9368 break; 9369 } 9370 } else { 9371 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 9372 & 0xffffff; 9373 if (imm == 0x123456) { 9374 break; 9375 } 9376 } 9377 return false; 9378 case EXCP_BKPT: 9379 /* See if this is a semihosting syscall. */ 9380 if (env->thumb) { 9381 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 9382 & 0xff; 9383 if (imm == 0xab) { 9384 env->regs[15] += 2; 9385 break; 9386 } 9387 } 9388 return false; 9389 default: 9390 return false; 9391 } 9392 9393 qemu_log_mask(CPU_LOG_INT, 9394 "...handling as semihosting call 0x%x\n", 9395 env->regs[0]); 9396 env->regs[0] = do_arm_semihosting(env); 9397 return true; 9398 } 9399 } 9400 9401 /* Handle a CPU exception for A and R profile CPUs. 9402 * Do any appropriate logging, handle PSCI calls, and then hand off 9403 * to the AArch64-entry or AArch32-entry function depending on the 9404 * target exception level's register width. 9405 */ 9406 void arm_cpu_do_interrupt(CPUState *cs) 9407 { 9408 ARMCPU *cpu = ARM_CPU(cs); 9409 CPUARMState *env = &cpu->env; 9410 unsigned int new_el = env->exception.target_el; 9411 9412 assert(!arm_feature(env, ARM_FEATURE_M)); 9413 9414 arm_log_exception(cs->exception_index); 9415 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9416 new_el); 9417 if (qemu_loglevel_mask(CPU_LOG_INT) 9418 && !excp_is_internal(cs->exception_index)) { 9419 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9420 syn_get_ec(env->exception.syndrome), 9421 env->exception.syndrome); 9422 } 9423 9424 if (arm_is_psci_call(cpu, cs->exception_index)) { 9425 arm_handle_psci_call(cpu); 9426 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9427 return; 9428 } 9429 9430 /* Semihosting semantics depend on the register width of the 9431 * code that caused the exception, not the target exception level, 9432 * so must be handled here. 9433 */ 9434 if (check_for_semihosting(cs)) { 9435 return; 9436 } 9437 9438 /* Hooks may change global state so BQL should be held, also the 9439 * BQL needs to be held for any modification of 9440 * cs->interrupt_request. 9441 */ 9442 g_assert(qemu_mutex_iothread_locked()); 9443 9444 arm_call_pre_el_change_hook(cpu); 9445 9446 assert(!excp_is_internal(cs->exception_index)); 9447 if (arm_el_is_aa64(env, new_el)) { 9448 arm_cpu_do_interrupt_aarch64(cs); 9449 } else { 9450 arm_cpu_do_interrupt_aarch32(cs); 9451 } 9452 9453 arm_call_el_change_hook(cpu); 9454 9455 if (!kvm_enabled()) { 9456 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9457 } 9458 } 9459 9460 /* Return the exception level which controls this address translation regime */ 9461 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9462 { 9463 switch (mmu_idx) { 9464 case ARMMMUIdx_S2NS: 9465 case ARMMMUIdx_S1E2: 9466 return 2; 9467 case ARMMMUIdx_S1E3: 9468 return 3; 9469 case ARMMMUIdx_S1SE0: 9470 return arm_el_is_aa64(env, 3) ? 1 : 3; 9471 case ARMMMUIdx_S1SE1: 9472 case ARMMMUIdx_S1NSE0: 9473 case ARMMMUIdx_S1NSE1: 9474 case ARMMMUIdx_MPrivNegPri: 9475 case ARMMMUIdx_MUserNegPri: 9476 case ARMMMUIdx_MPriv: 9477 case ARMMMUIdx_MUser: 9478 case ARMMMUIdx_MSPrivNegPri: 9479 case ARMMMUIdx_MSUserNegPri: 9480 case ARMMMUIdx_MSPriv: 9481 case ARMMMUIdx_MSUser: 9482 return 1; 9483 default: 9484 g_assert_not_reached(); 9485 } 9486 } 9487 9488 /* Return the SCTLR value which controls this address translation regime */ 9489 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9490 { 9491 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9492 } 9493 9494 /* Return true if the specified stage of address translation is disabled */ 9495 static inline bool regime_translation_disabled(CPUARMState *env, 9496 ARMMMUIdx mmu_idx) 9497 { 9498 if (arm_feature(env, ARM_FEATURE_M)) { 9499 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9500 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9501 case R_V7M_MPU_CTRL_ENABLE_MASK: 9502 /* Enabled, but not for HardFault and NMI */ 9503 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9504 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9505 /* Enabled for all cases */ 9506 return false; 9507 case 0: 9508 default: 9509 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9510 * we warned about that in armv7m_nvic.c when the guest set it. 9511 */ 9512 return true; 9513 } 9514 } 9515 9516 if (mmu_idx == ARMMMUIdx_S2NS) { 9517 /* HCR.DC means HCR.VM behaves as 1 */ 9518 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9519 } 9520 9521 if (env->cp15.hcr_el2 & HCR_TGE) { 9522 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9523 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9524 return true; 9525 } 9526 } 9527 9528 if ((env->cp15.hcr_el2 & HCR_DC) && 9529 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 9530 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9531 return true; 9532 } 9533 9534 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9535 } 9536 9537 static inline bool regime_translation_big_endian(CPUARMState *env, 9538 ARMMMUIdx mmu_idx) 9539 { 9540 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9541 } 9542 9543 /* Return the TCR controlling this translation regime */ 9544 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9545 { 9546 if (mmu_idx == ARMMMUIdx_S2NS) { 9547 return &env->cp15.vtcr_el2; 9548 } 9549 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9550 } 9551 9552 /* Convert a possible stage1+2 MMU index into the appropriate 9553 * stage 1 MMU index 9554 */ 9555 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9556 { 9557 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9558 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 9559 } 9560 return mmu_idx; 9561 } 9562 9563 /* Return the TTBR associated with this translation regime */ 9564 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9565 int ttbrn) 9566 { 9567 if (mmu_idx == ARMMMUIdx_S2NS) { 9568 return env->cp15.vttbr_el2; 9569 } 9570 if (ttbrn == 0) { 9571 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9572 } else { 9573 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9574 } 9575 } 9576 9577 /* Return true if the translation regime is using LPAE format page tables */ 9578 static inline bool regime_using_lpae_format(CPUARMState *env, 9579 ARMMMUIdx mmu_idx) 9580 { 9581 int el = regime_el(env, mmu_idx); 9582 if (el == 2 || arm_el_is_aa64(env, el)) { 9583 return true; 9584 } 9585 if (arm_feature(env, ARM_FEATURE_LPAE) 9586 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9587 return true; 9588 } 9589 return false; 9590 } 9591 9592 /* Returns true if the stage 1 translation regime is using LPAE format page 9593 * tables. Used when raising alignment exceptions, whose FSR changes depending 9594 * on whether the long or short descriptor format is in use. */ 9595 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9596 { 9597 mmu_idx = stage_1_mmu_idx(mmu_idx); 9598 9599 return regime_using_lpae_format(env, mmu_idx); 9600 } 9601 9602 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9603 { 9604 switch (mmu_idx) { 9605 case ARMMMUIdx_S1SE0: 9606 case ARMMMUIdx_S1NSE0: 9607 case ARMMMUIdx_MUser: 9608 case ARMMMUIdx_MSUser: 9609 case ARMMMUIdx_MUserNegPri: 9610 case ARMMMUIdx_MSUserNegPri: 9611 return true; 9612 default: 9613 return false; 9614 case ARMMMUIdx_S12NSE0: 9615 case ARMMMUIdx_S12NSE1: 9616 g_assert_not_reached(); 9617 } 9618 } 9619 9620 /* Translate section/page access permissions to page 9621 * R/W protection flags 9622 * 9623 * @env: CPUARMState 9624 * @mmu_idx: MMU index indicating required translation regime 9625 * @ap: The 3-bit access permissions (AP[2:0]) 9626 * @domain_prot: The 2-bit domain access permissions 9627 */ 9628 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9629 int ap, int domain_prot) 9630 { 9631 bool is_user = regime_is_user(env, mmu_idx); 9632 9633 if (domain_prot == 3) { 9634 return PAGE_READ | PAGE_WRITE; 9635 } 9636 9637 switch (ap) { 9638 case 0: 9639 if (arm_feature(env, ARM_FEATURE_V7)) { 9640 return 0; 9641 } 9642 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9643 case SCTLR_S: 9644 return is_user ? 0 : PAGE_READ; 9645 case SCTLR_R: 9646 return PAGE_READ; 9647 default: 9648 return 0; 9649 } 9650 case 1: 9651 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9652 case 2: 9653 if (is_user) { 9654 return PAGE_READ; 9655 } else { 9656 return PAGE_READ | PAGE_WRITE; 9657 } 9658 case 3: 9659 return PAGE_READ | PAGE_WRITE; 9660 case 4: /* Reserved. */ 9661 return 0; 9662 case 5: 9663 return is_user ? 0 : PAGE_READ; 9664 case 6: 9665 return PAGE_READ; 9666 case 7: 9667 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9668 return 0; 9669 } 9670 return PAGE_READ; 9671 default: 9672 g_assert_not_reached(); 9673 } 9674 } 9675 9676 /* Translate section/page access permissions to page 9677 * R/W protection flags. 9678 * 9679 * @ap: The 2-bit simple AP (AP[2:1]) 9680 * @is_user: TRUE if accessing from PL0 9681 */ 9682 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9683 { 9684 switch (ap) { 9685 case 0: 9686 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9687 case 1: 9688 return PAGE_READ | PAGE_WRITE; 9689 case 2: 9690 return is_user ? 0 : PAGE_READ; 9691 case 3: 9692 return PAGE_READ; 9693 default: 9694 g_assert_not_reached(); 9695 } 9696 } 9697 9698 static inline int 9699 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9700 { 9701 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9702 } 9703 9704 /* Translate S2 section/page access permissions to protection flags 9705 * 9706 * @env: CPUARMState 9707 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9708 * @xn: XN (execute-never) bit 9709 */ 9710 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9711 { 9712 int prot = 0; 9713 9714 if (s2ap & 1) { 9715 prot |= PAGE_READ; 9716 } 9717 if (s2ap & 2) { 9718 prot |= PAGE_WRITE; 9719 } 9720 if (!xn) { 9721 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9722 prot |= PAGE_EXEC; 9723 } 9724 } 9725 return prot; 9726 } 9727 9728 /* Translate section/page access permissions to protection flags 9729 * 9730 * @env: CPUARMState 9731 * @mmu_idx: MMU index indicating required translation regime 9732 * @is_aa64: TRUE if AArch64 9733 * @ap: The 2-bit simple AP (AP[2:1]) 9734 * @ns: NS (non-secure) bit 9735 * @xn: XN (execute-never) bit 9736 * @pxn: PXN (privileged execute-never) bit 9737 */ 9738 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9739 int ap, int ns, int xn, int pxn) 9740 { 9741 bool is_user = regime_is_user(env, mmu_idx); 9742 int prot_rw, user_rw; 9743 bool have_wxn; 9744 int wxn = 0; 9745 9746 assert(mmu_idx != ARMMMUIdx_S2NS); 9747 9748 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9749 if (is_user) { 9750 prot_rw = user_rw; 9751 } else { 9752 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9753 } 9754 9755 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9756 return prot_rw; 9757 } 9758 9759 /* TODO have_wxn should be replaced with 9760 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9761 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9762 * compatible processors have EL2, which is required for [U]WXN. 9763 */ 9764 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9765 9766 if (have_wxn) { 9767 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9768 } 9769 9770 if (is_aa64) { 9771 switch (regime_el(env, mmu_idx)) { 9772 case 1: 9773 if (!is_user) { 9774 xn = pxn || (user_rw & PAGE_WRITE); 9775 } 9776 break; 9777 case 2: 9778 case 3: 9779 break; 9780 } 9781 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9782 switch (regime_el(env, mmu_idx)) { 9783 case 1: 9784 case 3: 9785 if (is_user) { 9786 xn = xn || !(user_rw & PAGE_READ); 9787 } else { 9788 int uwxn = 0; 9789 if (have_wxn) { 9790 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9791 } 9792 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9793 (uwxn && (user_rw & PAGE_WRITE)); 9794 } 9795 break; 9796 case 2: 9797 break; 9798 } 9799 } else { 9800 xn = wxn = 0; 9801 } 9802 9803 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9804 return prot_rw; 9805 } 9806 return prot_rw | PAGE_EXEC; 9807 } 9808 9809 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9810 uint32_t *table, uint32_t address) 9811 { 9812 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9813 TCR *tcr = regime_tcr(env, mmu_idx); 9814 9815 if (address & tcr->mask) { 9816 if (tcr->raw_tcr & TTBCR_PD1) { 9817 /* Translation table walk disabled for TTBR1 */ 9818 return false; 9819 } 9820 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9821 } else { 9822 if (tcr->raw_tcr & TTBCR_PD0) { 9823 /* Translation table walk disabled for TTBR0 */ 9824 return false; 9825 } 9826 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9827 } 9828 *table |= (address >> 18) & 0x3ffc; 9829 return true; 9830 } 9831 9832 /* Translate a S1 pagetable walk through S2 if needed. */ 9833 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9834 hwaddr addr, MemTxAttrs txattrs, 9835 ARMMMUFaultInfo *fi) 9836 { 9837 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9838 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9839 target_ulong s2size; 9840 hwaddr s2pa; 9841 int s2prot; 9842 int ret; 9843 ARMCacheAttrs cacheattrs = {}; 9844 ARMCacheAttrs *pcacheattrs = NULL; 9845 9846 if (env->cp15.hcr_el2 & HCR_PTW) { 9847 /* 9848 * PTW means we must fault if this S1 walk touches S2 Device 9849 * memory; otherwise we don't care about the attributes and can 9850 * save the S2 translation the effort of computing them. 9851 */ 9852 pcacheattrs = &cacheattrs; 9853 } 9854 9855 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9856 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9857 if (ret) { 9858 assert(fi->type != ARMFault_None); 9859 fi->s2addr = addr; 9860 fi->stage2 = true; 9861 fi->s1ptw = true; 9862 return ~0; 9863 } 9864 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9865 /* Access was to Device memory: generate Permission fault */ 9866 fi->type = ARMFault_Permission; 9867 fi->s2addr = addr; 9868 fi->stage2 = true; 9869 fi->s1ptw = true; 9870 return ~0; 9871 } 9872 addr = s2pa; 9873 } 9874 return addr; 9875 } 9876 9877 /* All loads done in the course of a page table walk go through here. */ 9878 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9879 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9880 { 9881 ARMCPU *cpu = ARM_CPU(cs); 9882 CPUARMState *env = &cpu->env; 9883 MemTxAttrs attrs = {}; 9884 MemTxResult result = MEMTX_OK; 9885 AddressSpace *as; 9886 uint32_t data; 9887 9888 attrs.secure = is_secure; 9889 as = arm_addressspace(cs, attrs); 9890 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9891 if (fi->s1ptw) { 9892 return 0; 9893 } 9894 if (regime_translation_big_endian(env, mmu_idx)) { 9895 data = address_space_ldl_be(as, addr, attrs, &result); 9896 } else { 9897 data = address_space_ldl_le(as, addr, attrs, &result); 9898 } 9899 if (result == MEMTX_OK) { 9900 return data; 9901 } 9902 fi->type = ARMFault_SyncExternalOnWalk; 9903 fi->ea = arm_extabort_type(result); 9904 return 0; 9905 } 9906 9907 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9908 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9909 { 9910 ARMCPU *cpu = ARM_CPU(cs); 9911 CPUARMState *env = &cpu->env; 9912 MemTxAttrs attrs = {}; 9913 MemTxResult result = MEMTX_OK; 9914 AddressSpace *as; 9915 uint64_t data; 9916 9917 attrs.secure = is_secure; 9918 as = arm_addressspace(cs, attrs); 9919 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9920 if (fi->s1ptw) { 9921 return 0; 9922 } 9923 if (regime_translation_big_endian(env, mmu_idx)) { 9924 data = address_space_ldq_be(as, addr, attrs, &result); 9925 } else { 9926 data = address_space_ldq_le(as, addr, attrs, &result); 9927 } 9928 if (result == MEMTX_OK) { 9929 return data; 9930 } 9931 fi->type = ARMFault_SyncExternalOnWalk; 9932 fi->ea = arm_extabort_type(result); 9933 return 0; 9934 } 9935 9936 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9937 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9938 hwaddr *phys_ptr, int *prot, 9939 target_ulong *page_size, 9940 ARMMMUFaultInfo *fi) 9941 { 9942 CPUState *cs = CPU(arm_env_get_cpu(env)); 9943 int level = 1; 9944 uint32_t table; 9945 uint32_t desc; 9946 int type; 9947 int ap; 9948 int domain = 0; 9949 int domain_prot; 9950 hwaddr phys_addr; 9951 uint32_t dacr; 9952 9953 /* Pagetable walk. */ 9954 /* Lookup l1 descriptor. */ 9955 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9956 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9957 fi->type = ARMFault_Translation; 9958 goto do_fault; 9959 } 9960 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9961 mmu_idx, fi); 9962 if (fi->type != ARMFault_None) { 9963 goto do_fault; 9964 } 9965 type = (desc & 3); 9966 domain = (desc >> 5) & 0x0f; 9967 if (regime_el(env, mmu_idx) == 1) { 9968 dacr = env->cp15.dacr_ns; 9969 } else { 9970 dacr = env->cp15.dacr_s; 9971 } 9972 domain_prot = (dacr >> (domain * 2)) & 3; 9973 if (type == 0) { 9974 /* Section translation fault. */ 9975 fi->type = ARMFault_Translation; 9976 goto do_fault; 9977 } 9978 if (type != 2) { 9979 level = 2; 9980 } 9981 if (domain_prot == 0 || domain_prot == 2) { 9982 fi->type = ARMFault_Domain; 9983 goto do_fault; 9984 } 9985 if (type == 2) { 9986 /* 1Mb section. */ 9987 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9988 ap = (desc >> 10) & 3; 9989 *page_size = 1024 * 1024; 9990 } else { 9991 /* Lookup l2 entry. */ 9992 if (type == 1) { 9993 /* Coarse pagetable. */ 9994 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9995 } else { 9996 /* Fine pagetable. */ 9997 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9998 } 9999 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10000 mmu_idx, fi); 10001 if (fi->type != ARMFault_None) { 10002 goto do_fault; 10003 } 10004 switch (desc & 3) { 10005 case 0: /* Page translation fault. */ 10006 fi->type = ARMFault_Translation; 10007 goto do_fault; 10008 case 1: /* 64k page. */ 10009 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10010 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10011 *page_size = 0x10000; 10012 break; 10013 case 2: /* 4k page. */ 10014 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10015 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10016 *page_size = 0x1000; 10017 break; 10018 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10019 if (type == 1) { 10020 /* ARMv6/XScale extended small page format */ 10021 if (arm_feature(env, ARM_FEATURE_XSCALE) 10022 || arm_feature(env, ARM_FEATURE_V6)) { 10023 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10024 *page_size = 0x1000; 10025 } else { 10026 /* UNPREDICTABLE in ARMv5; we choose to take a 10027 * page translation fault. 10028 */ 10029 fi->type = ARMFault_Translation; 10030 goto do_fault; 10031 } 10032 } else { 10033 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10034 *page_size = 0x400; 10035 } 10036 ap = (desc >> 4) & 3; 10037 break; 10038 default: 10039 /* Never happens, but compiler isn't smart enough to tell. */ 10040 abort(); 10041 } 10042 } 10043 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10044 *prot |= *prot ? PAGE_EXEC : 0; 10045 if (!(*prot & (1 << access_type))) { 10046 /* Access permission fault. */ 10047 fi->type = ARMFault_Permission; 10048 goto do_fault; 10049 } 10050 *phys_ptr = phys_addr; 10051 return false; 10052 do_fault: 10053 fi->domain = domain; 10054 fi->level = level; 10055 return true; 10056 } 10057 10058 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10059 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10060 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10061 target_ulong *page_size, ARMMMUFaultInfo *fi) 10062 { 10063 CPUState *cs = CPU(arm_env_get_cpu(env)); 10064 int level = 1; 10065 uint32_t table; 10066 uint32_t desc; 10067 uint32_t xn; 10068 uint32_t pxn = 0; 10069 int type; 10070 int ap; 10071 int domain = 0; 10072 int domain_prot; 10073 hwaddr phys_addr; 10074 uint32_t dacr; 10075 bool ns; 10076 10077 /* Pagetable walk. */ 10078 /* Lookup l1 descriptor. */ 10079 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10080 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10081 fi->type = ARMFault_Translation; 10082 goto do_fault; 10083 } 10084 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10085 mmu_idx, fi); 10086 if (fi->type != ARMFault_None) { 10087 goto do_fault; 10088 } 10089 type = (desc & 3); 10090 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10091 /* Section translation fault, or attempt to use the encoding 10092 * which is Reserved on implementations without PXN. 10093 */ 10094 fi->type = ARMFault_Translation; 10095 goto do_fault; 10096 } 10097 if ((type == 1) || !(desc & (1 << 18))) { 10098 /* Page or Section. */ 10099 domain = (desc >> 5) & 0x0f; 10100 } 10101 if (regime_el(env, mmu_idx) == 1) { 10102 dacr = env->cp15.dacr_ns; 10103 } else { 10104 dacr = env->cp15.dacr_s; 10105 } 10106 if (type == 1) { 10107 level = 2; 10108 } 10109 domain_prot = (dacr >> (domain * 2)) & 3; 10110 if (domain_prot == 0 || domain_prot == 2) { 10111 /* Section or Page domain fault */ 10112 fi->type = ARMFault_Domain; 10113 goto do_fault; 10114 } 10115 if (type != 1) { 10116 if (desc & (1 << 18)) { 10117 /* Supersection. */ 10118 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10119 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10120 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10121 *page_size = 0x1000000; 10122 } else { 10123 /* Section. */ 10124 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10125 *page_size = 0x100000; 10126 } 10127 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10128 xn = desc & (1 << 4); 10129 pxn = desc & 1; 10130 ns = extract32(desc, 19, 1); 10131 } else { 10132 if (arm_feature(env, ARM_FEATURE_PXN)) { 10133 pxn = (desc >> 2) & 1; 10134 } 10135 ns = extract32(desc, 3, 1); 10136 /* Lookup l2 entry. */ 10137 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10138 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10139 mmu_idx, fi); 10140 if (fi->type != ARMFault_None) { 10141 goto do_fault; 10142 } 10143 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10144 switch (desc & 3) { 10145 case 0: /* Page translation fault. */ 10146 fi->type = ARMFault_Translation; 10147 goto do_fault; 10148 case 1: /* 64k page. */ 10149 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10150 xn = desc & (1 << 15); 10151 *page_size = 0x10000; 10152 break; 10153 case 2: case 3: /* 4k page. */ 10154 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10155 xn = desc & 1; 10156 *page_size = 0x1000; 10157 break; 10158 default: 10159 /* Never happens, but compiler isn't smart enough to tell. */ 10160 abort(); 10161 } 10162 } 10163 if (domain_prot == 3) { 10164 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10165 } else { 10166 if (pxn && !regime_is_user(env, mmu_idx)) { 10167 xn = 1; 10168 } 10169 if (xn && access_type == MMU_INST_FETCH) { 10170 fi->type = ARMFault_Permission; 10171 goto do_fault; 10172 } 10173 10174 if (arm_feature(env, ARM_FEATURE_V6K) && 10175 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10176 /* The simplified model uses AP[0] as an access control bit. */ 10177 if ((ap & 1) == 0) { 10178 /* Access flag fault. */ 10179 fi->type = ARMFault_AccessFlag; 10180 goto do_fault; 10181 } 10182 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10183 } else { 10184 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10185 } 10186 if (*prot && !xn) { 10187 *prot |= PAGE_EXEC; 10188 } 10189 if (!(*prot & (1 << access_type))) { 10190 /* Access permission fault. */ 10191 fi->type = ARMFault_Permission; 10192 goto do_fault; 10193 } 10194 } 10195 if (ns) { 10196 /* The NS bit will (as required by the architecture) have no effect if 10197 * the CPU doesn't support TZ or this is a non-secure translation 10198 * regime, because the attribute will already be non-secure. 10199 */ 10200 attrs->secure = false; 10201 } 10202 *phys_ptr = phys_addr; 10203 return false; 10204 do_fault: 10205 fi->domain = domain; 10206 fi->level = level; 10207 return true; 10208 } 10209 10210 /* 10211 * check_s2_mmu_setup 10212 * @cpu: ARMCPU 10213 * @is_aa64: True if the translation regime is in AArch64 state 10214 * @startlevel: Suggested starting level 10215 * @inputsize: Bitsize of IPAs 10216 * @stride: Page-table stride (See the ARM ARM) 10217 * 10218 * Returns true if the suggested S2 translation parameters are OK and 10219 * false otherwise. 10220 */ 10221 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10222 int inputsize, int stride) 10223 { 10224 const int grainsize = stride + 3; 10225 int startsizecheck; 10226 10227 /* Negative levels are never allowed. */ 10228 if (level < 0) { 10229 return false; 10230 } 10231 10232 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10233 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10234 return false; 10235 } 10236 10237 if (is_aa64) { 10238 CPUARMState *env = &cpu->env; 10239 unsigned int pamax = arm_pamax(cpu); 10240 10241 switch (stride) { 10242 case 13: /* 64KB Pages. */ 10243 if (level == 0 || (level == 1 && pamax <= 42)) { 10244 return false; 10245 } 10246 break; 10247 case 11: /* 16KB Pages. */ 10248 if (level == 0 || (level == 1 && pamax <= 40)) { 10249 return false; 10250 } 10251 break; 10252 case 9: /* 4KB Pages. */ 10253 if (level == 0 && pamax <= 42) { 10254 return false; 10255 } 10256 break; 10257 default: 10258 g_assert_not_reached(); 10259 } 10260 10261 /* Inputsize checks. */ 10262 if (inputsize > pamax && 10263 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10264 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10265 return false; 10266 } 10267 } else { 10268 /* AArch32 only supports 4KB pages. Assert on that. */ 10269 assert(stride == 9); 10270 10271 if (level == 0) { 10272 return false; 10273 } 10274 } 10275 return true; 10276 } 10277 10278 /* Translate from the 4-bit stage 2 representation of 10279 * memory attributes (without cache-allocation hints) to 10280 * the 8-bit representation of the stage 1 MAIR registers 10281 * (which includes allocation hints). 10282 * 10283 * ref: shared/translation/attrs/S2AttrDecode() 10284 * .../S2ConvertAttrsHints() 10285 */ 10286 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10287 { 10288 uint8_t hiattr = extract32(s2attrs, 2, 2); 10289 uint8_t loattr = extract32(s2attrs, 0, 2); 10290 uint8_t hihint = 0, lohint = 0; 10291 10292 if (hiattr != 0) { /* normal memory */ 10293 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10294 hiattr = loattr = 1; /* non-cacheable */ 10295 } else { 10296 if (hiattr != 1) { /* Write-through or write-back */ 10297 hihint = 3; /* RW allocate */ 10298 } 10299 if (loattr != 1) { /* Write-through or write-back */ 10300 lohint = 3; /* RW allocate */ 10301 } 10302 } 10303 } 10304 10305 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10306 } 10307 10308 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 10309 ARMMMUIdx mmu_idx) 10310 { 10311 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10312 uint32_t el = regime_el(env, mmu_idx); 10313 bool tbi, tbid, epd, hpd, using16k, using64k; 10314 int select, tsz; 10315 10316 /* 10317 * Bit 55 is always between the two regions, and is canonical for 10318 * determining if address tagging is enabled. 10319 */ 10320 select = extract64(va, 55, 1); 10321 10322 if (el > 1) { 10323 tsz = extract32(tcr, 0, 6); 10324 using64k = extract32(tcr, 14, 1); 10325 using16k = extract32(tcr, 15, 1); 10326 if (mmu_idx == ARMMMUIdx_S2NS) { 10327 /* VTCR_EL2 */ 10328 tbi = tbid = hpd = false; 10329 } else { 10330 tbi = extract32(tcr, 20, 1); 10331 hpd = extract32(tcr, 24, 1); 10332 tbid = extract32(tcr, 29, 1); 10333 } 10334 epd = false; 10335 } else if (!select) { 10336 tsz = extract32(tcr, 0, 6); 10337 epd = extract32(tcr, 7, 1); 10338 using64k = extract32(tcr, 14, 1); 10339 using16k = extract32(tcr, 15, 1); 10340 tbi = extract64(tcr, 37, 1); 10341 hpd = extract64(tcr, 41, 1); 10342 tbid = extract64(tcr, 51, 1); 10343 } else { 10344 int tg = extract32(tcr, 30, 2); 10345 using16k = tg == 1; 10346 using64k = tg == 3; 10347 tsz = extract32(tcr, 16, 6); 10348 epd = extract32(tcr, 23, 1); 10349 tbi = extract64(tcr, 38, 1); 10350 hpd = extract64(tcr, 42, 1); 10351 tbid = extract64(tcr, 52, 1); 10352 } 10353 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10354 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10355 10356 return (ARMVAParameters) { 10357 .tsz = tsz, 10358 .select = select, 10359 .tbi = tbi, 10360 .tbid = tbid, 10361 .epd = epd, 10362 .hpd = hpd, 10363 .using16k = using16k, 10364 .using64k = using64k, 10365 }; 10366 } 10367 10368 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10369 ARMMMUIdx mmu_idx, bool data) 10370 { 10371 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 10372 10373 /* Present TBI as a composite with TBID. */ 10374 ret.tbi &= (data || !ret.tbid); 10375 return ret; 10376 } 10377 10378 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10379 ARMMMUIdx mmu_idx) 10380 { 10381 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10382 uint32_t el = regime_el(env, mmu_idx); 10383 int select, tsz; 10384 bool epd, hpd; 10385 10386 if (mmu_idx == ARMMMUIdx_S2NS) { 10387 /* VTCR */ 10388 bool sext = extract32(tcr, 4, 1); 10389 bool sign = extract32(tcr, 3, 1); 10390 10391 /* 10392 * If the sign-extend bit is not the same as t0sz[3], the result 10393 * is unpredictable. Flag this as a guest error. 10394 */ 10395 if (sign != sext) { 10396 qemu_log_mask(LOG_GUEST_ERROR, 10397 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10398 } 10399 tsz = sextract32(tcr, 0, 4) + 8; 10400 select = 0; 10401 hpd = false; 10402 epd = false; 10403 } else if (el == 2) { 10404 /* HTCR */ 10405 tsz = extract32(tcr, 0, 3); 10406 select = 0; 10407 hpd = extract64(tcr, 24, 1); 10408 epd = false; 10409 } else { 10410 int t0sz = extract32(tcr, 0, 3); 10411 int t1sz = extract32(tcr, 16, 3); 10412 10413 if (t1sz == 0) { 10414 select = va > (0xffffffffu >> t0sz); 10415 } else { 10416 /* Note that we will detect errors later. */ 10417 select = va >= ~(0xffffffffu >> t1sz); 10418 } 10419 if (!select) { 10420 tsz = t0sz; 10421 epd = extract32(tcr, 7, 1); 10422 hpd = extract64(tcr, 41, 1); 10423 } else { 10424 tsz = t1sz; 10425 epd = extract32(tcr, 23, 1); 10426 hpd = extract64(tcr, 42, 1); 10427 } 10428 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10429 hpd &= extract32(tcr, 6, 1); 10430 } 10431 10432 return (ARMVAParameters) { 10433 .tsz = tsz, 10434 .select = select, 10435 .epd = epd, 10436 .hpd = hpd, 10437 }; 10438 } 10439 10440 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10441 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10442 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10443 target_ulong *page_size_ptr, 10444 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10445 { 10446 ARMCPU *cpu = arm_env_get_cpu(env); 10447 CPUState *cs = CPU(cpu); 10448 /* Read an LPAE long-descriptor translation table. */ 10449 ARMFaultType fault_type = ARMFault_Translation; 10450 uint32_t level; 10451 ARMVAParameters param; 10452 uint64_t ttbr; 10453 hwaddr descaddr, indexmask, indexmask_grainsize; 10454 uint32_t tableattrs; 10455 target_ulong page_size; 10456 uint32_t attrs; 10457 int32_t stride; 10458 int addrsize, inputsize; 10459 TCR *tcr = regime_tcr(env, mmu_idx); 10460 int ap, ns, xn, pxn; 10461 uint32_t el = regime_el(env, mmu_idx); 10462 bool ttbr1_valid; 10463 uint64_t descaddrmask; 10464 bool aarch64 = arm_el_is_aa64(env, el); 10465 10466 /* TODO: 10467 * This code does not handle the different format TCR for VTCR_EL2. 10468 * This code also does not support shareability levels. 10469 * Attribute and permission bit handling should also be checked when adding 10470 * support for those page table walks. 10471 */ 10472 if (aarch64) { 10473 param = aa64_va_parameters(env, address, mmu_idx, 10474 access_type != MMU_INST_FETCH); 10475 level = 0; 10476 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 10477 * invalid. 10478 */ 10479 ttbr1_valid = (el < 2); 10480 addrsize = 64 - 8 * param.tbi; 10481 inputsize = 64 - param.tsz; 10482 } else { 10483 param = aa32_va_parameters(env, address, mmu_idx); 10484 level = 1; 10485 /* There is no TTBR1 for EL2 */ 10486 ttbr1_valid = (el != 2); 10487 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 10488 inputsize = addrsize - param.tsz; 10489 } 10490 10491 /* 10492 * We determined the region when collecting the parameters, but we 10493 * have not yet validated that the address is valid for the region. 10494 * Extract the top bits and verify that they all match select. 10495 * 10496 * For aa32, if inputsize == addrsize, then we have selected the 10497 * region by exclusion in aa32_va_parameters and there is no more 10498 * validation to do here. 10499 */ 10500 if (inputsize < addrsize) { 10501 target_ulong top_bits = sextract64(address, inputsize, 10502 addrsize - inputsize); 10503 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 10504 /* The gap between the two regions is a Translation fault */ 10505 fault_type = ARMFault_Translation; 10506 goto do_fault; 10507 } 10508 } 10509 10510 if (param.using64k) { 10511 stride = 13; 10512 } else if (param.using16k) { 10513 stride = 11; 10514 } else { 10515 stride = 9; 10516 } 10517 10518 /* Note that QEMU ignores shareability and cacheability attributes, 10519 * so we don't need to do anything with the SH, ORGN, IRGN fields 10520 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10521 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10522 * implement any ASID-like capability so we can ignore it (instead 10523 * we will always flush the TLB any time the ASID is changed). 10524 */ 10525 ttbr = regime_ttbr(env, mmu_idx, param.select); 10526 10527 /* Here we should have set up all the parameters for the translation: 10528 * inputsize, ttbr, epd, stride, tbi 10529 */ 10530 10531 if (param.epd) { 10532 /* Translation table walk disabled => Translation fault on TLB miss 10533 * Note: This is always 0 on 64-bit EL2 and EL3. 10534 */ 10535 goto do_fault; 10536 } 10537 10538 if (mmu_idx != ARMMMUIdx_S2NS) { 10539 /* The starting level depends on the virtual address size (which can 10540 * be up to 48 bits) and the translation granule size. It indicates 10541 * the number of strides (stride bits at a time) needed to 10542 * consume the bits of the input address. In the pseudocode this is: 10543 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10544 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10545 * our 'stride + 3' and 'stride' is our 'stride'. 10546 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10547 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10548 * = 4 - (inputsize - 4) / stride; 10549 */ 10550 level = 4 - (inputsize - 4) / stride; 10551 } else { 10552 /* For stage 2 translations the starting level is specified by the 10553 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10554 */ 10555 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10556 uint32_t startlevel; 10557 bool ok; 10558 10559 if (!aarch64 || stride == 9) { 10560 /* AArch32 or 4KB pages */ 10561 startlevel = 2 - sl0; 10562 } else { 10563 /* 16KB or 64KB pages */ 10564 startlevel = 3 - sl0; 10565 } 10566 10567 /* Check that the starting level is valid. */ 10568 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10569 inputsize, stride); 10570 if (!ok) { 10571 fault_type = ARMFault_Translation; 10572 goto do_fault; 10573 } 10574 level = startlevel; 10575 } 10576 10577 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10578 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10579 10580 /* Now we can extract the actual base address from the TTBR */ 10581 descaddr = extract64(ttbr, 0, 48); 10582 descaddr &= ~indexmask; 10583 10584 /* The address field in the descriptor goes up to bit 39 for ARMv7 10585 * but up to bit 47 for ARMv8, but we use the descaddrmask 10586 * up to bit 39 for AArch32, because we don't need other bits in that case 10587 * to construct next descriptor address (anyway they should be all zeroes). 10588 */ 10589 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10590 ~indexmask_grainsize; 10591 10592 /* Secure accesses start with the page table in secure memory and 10593 * can be downgraded to non-secure at any step. Non-secure accesses 10594 * remain non-secure. We implement this by just ORing in the NSTable/NS 10595 * bits at each step. 10596 */ 10597 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10598 for (;;) { 10599 uint64_t descriptor; 10600 bool nstable; 10601 10602 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10603 descaddr &= ~7ULL; 10604 nstable = extract32(tableattrs, 4, 1); 10605 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10606 if (fi->type != ARMFault_None) { 10607 goto do_fault; 10608 } 10609 10610 if (!(descriptor & 1) || 10611 (!(descriptor & 2) && (level == 3))) { 10612 /* Invalid, or the Reserved level 3 encoding */ 10613 goto do_fault; 10614 } 10615 descaddr = descriptor & descaddrmask; 10616 10617 if ((descriptor & 2) && (level < 3)) { 10618 /* Table entry. The top five bits are attributes which may 10619 * propagate down through lower levels of the table (and 10620 * which are all arranged so that 0 means "no effect", so 10621 * we can gather them up by ORing in the bits at each level). 10622 */ 10623 tableattrs |= extract64(descriptor, 59, 5); 10624 level++; 10625 indexmask = indexmask_grainsize; 10626 continue; 10627 } 10628 /* Block entry at level 1 or 2, or page entry at level 3. 10629 * These are basically the same thing, although the number 10630 * of bits we pull in from the vaddr varies. 10631 */ 10632 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10633 descaddr |= (address & (page_size - 1)); 10634 /* Extract attributes from the descriptor */ 10635 attrs = extract64(descriptor, 2, 10) 10636 | (extract64(descriptor, 52, 12) << 10); 10637 10638 if (mmu_idx == ARMMMUIdx_S2NS) { 10639 /* Stage 2 table descriptors do not include any attribute fields */ 10640 break; 10641 } 10642 /* Merge in attributes from table descriptors */ 10643 attrs |= nstable << 3; /* NS */ 10644 if (param.hpd) { 10645 /* HPD disables all the table attributes except NSTable. */ 10646 break; 10647 } 10648 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10649 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10650 * means "force PL1 access only", which means forcing AP[1] to 0. 10651 */ 10652 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10653 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10654 break; 10655 } 10656 /* Here descaddr is the final physical address, and attributes 10657 * are all in attrs. 10658 */ 10659 fault_type = ARMFault_AccessFlag; 10660 if ((attrs & (1 << 8)) == 0) { 10661 /* Access flag */ 10662 goto do_fault; 10663 } 10664 10665 ap = extract32(attrs, 4, 2); 10666 xn = extract32(attrs, 12, 1); 10667 10668 if (mmu_idx == ARMMMUIdx_S2NS) { 10669 ns = true; 10670 *prot = get_S2prot(env, ap, xn); 10671 } else { 10672 ns = extract32(attrs, 3, 1); 10673 pxn = extract32(attrs, 11, 1); 10674 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10675 } 10676 10677 fault_type = ARMFault_Permission; 10678 if (!(*prot & (1 << access_type))) { 10679 goto do_fault; 10680 } 10681 10682 if (ns) { 10683 /* The NS bit will (as required by the architecture) have no effect if 10684 * the CPU doesn't support TZ or this is a non-secure translation 10685 * regime, because the attribute will already be non-secure. 10686 */ 10687 txattrs->secure = false; 10688 } 10689 10690 if (cacheattrs != NULL) { 10691 if (mmu_idx == ARMMMUIdx_S2NS) { 10692 cacheattrs->attrs = convert_stage2_attrs(env, 10693 extract32(attrs, 0, 4)); 10694 } else { 10695 /* Index into MAIR registers for cache attributes */ 10696 uint8_t attrindx = extract32(attrs, 0, 3); 10697 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10698 assert(attrindx <= 7); 10699 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10700 } 10701 cacheattrs->shareability = extract32(attrs, 6, 2); 10702 } 10703 10704 *phys_ptr = descaddr; 10705 *page_size_ptr = page_size; 10706 return false; 10707 10708 do_fault: 10709 fi->type = fault_type; 10710 fi->level = level; 10711 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10712 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 10713 return true; 10714 } 10715 10716 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 10717 ARMMMUIdx mmu_idx, 10718 int32_t address, int *prot) 10719 { 10720 if (!arm_feature(env, ARM_FEATURE_M)) { 10721 *prot = PAGE_READ | PAGE_WRITE; 10722 switch (address) { 10723 case 0xF0000000 ... 0xFFFFFFFF: 10724 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 10725 /* hivecs execing is ok */ 10726 *prot |= PAGE_EXEC; 10727 } 10728 break; 10729 case 0x00000000 ... 0x7FFFFFFF: 10730 *prot |= PAGE_EXEC; 10731 break; 10732 } 10733 } else { 10734 /* Default system address map for M profile cores. 10735 * The architecture specifies which regions are execute-never; 10736 * at the MPU level no other checks are defined. 10737 */ 10738 switch (address) { 10739 case 0x00000000 ... 0x1fffffff: /* ROM */ 10740 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10741 case 0x60000000 ... 0x7fffffff: /* RAM */ 10742 case 0x80000000 ... 0x9fffffff: /* RAM */ 10743 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10744 break; 10745 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10746 case 0xa0000000 ... 0xbfffffff: /* Device */ 10747 case 0xc0000000 ... 0xdfffffff: /* Device */ 10748 case 0xe0000000 ... 0xffffffff: /* System */ 10749 *prot = PAGE_READ | PAGE_WRITE; 10750 break; 10751 default: 10752 g_assert_not_reached(); 10753 } 10754 } 10755 } 10756 10757 static bool pmsav7_use_background_region(ARMCPU *cpu, 10758 ARMMMUIdx mmu_idx, bool is_user) 10759 { 10760 /* Return true if we should use the default memory map as a 10761 * "background" region if there are no hits against any MPU regions. 10762 */ 10763 CPUARMState *env = &cpu->env; 10764 10765 if (is_user) { 10766 return false; 10767 } 10768 10769 if (arm_feature(env, ARM_FEATURE_M)) { 10770 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10771 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10772 } else { 10773 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10774 } 10775 } 10776 10777 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10778 { 10779 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10780 return arm_feature(env, ARM_FEATURE_M) && 10781 extract32(address, 20, 12) == 0xe00; 10782 } 10783 10784 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10785 { 10786 /* True if address is in the M profile system region 10787 * 0xe0000000 - 0xffffffff 10788 */ 10789 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10790 } 10791 10792 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10793 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10794 hwaddr *phys_ptr, int *prot, 10795 target_ulong *page_size, 10796 ARMMMUFaultInfo *fi) 10797 { 10798 ARMCPU *cpu = arm_env_get_cpu(env); 10799 int n; 10800 bool is_user = regime_is_user(env, mmu_idx); 10801 10802 *phys_ptr = address; 10803 *page_size = TARGET_PAGE_SIZE; 10804 *prot = 0; 10805 10806 if (regime_translation_disabled(env, mmu_idx) || 10807 m_is_ppb_region(env, address)) { 10808 /* MPU disabled or M profile PPB access: use default memory map. 10809 * The other case which uses the default memory map in the 10810 * v7M ARM ARM pseudocode is exception vector reads from the vector 10811 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10812 * which always does a direct read using address_space_ldl(), rather 10813 * than going via this function, so we don't need to check that here. 10814 */ 10815 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10816 } else { /* MPU enabled */ 10817 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10818 /* region search */ 10819 uint32_t base = env->pmsav7.drbar[n]; 10820 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10821 uint32_t rmask; 10822 bool srdis = false; 10823 10824 if (!(env->pmsav7.drsr[n] & 0x1)) { 10825 continue; 10826 } 10827 10828 if (!rsize) { 10829 qemu_log_mask(LOG_GUEST_ERROR, 10830 "DRSR[%d]: Rsize field cannot be 0\n", n); 10831 continue; 10832 } 10833 rsize++; 10834 rmask = (1ull << rsize) - 1; 10835 10836 if (base & rmask) { 10837 qemu_log_mask(LOG_GUEST_ERROR, 10838 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10839 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10840 n, base, rmask); 10841 continue; 10842 } 10843 10844 if (address < base || address > base + rmask) { 10845 /* 10846 * Address not in this region. We must check whether the 10847 * region covers addresses in the same page as our address. 10848 * In that case we must not report a size that covers the 10849 * whole page for a subsequent hit against a different MPU 10850 * region or the background region, because it would result in 10851 * incorrect TLB hits for subsequent accesses to addresses that 10852 * are in this MPU region. 10853 */ 10854 if (ranges_overlap(base, rmask, 10855 address & TARGET_PAGE_MASK, 10856 TARGET_PAGE_SIZE)) { 10857 *page_size = 1; 10858 } 10859 continue; 10860 } 10861 10862 /* Region matched */ 10863 10864 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10865 int i, snd; 10866 uint32_t srdis_mask; 10867 10868 rsize -= 3; /* sub region size (power of 2) */ 10869 snd = ((address - base) >> rsize) & 0x7; 10870 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10871 10872 srdis_mask = srdis ? 0x3 : 0x0; 10873 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10874 /* This will check in groups of 2, 4 and then 8, whether 10875 * the subregion bits are consistent. rsize is incremented 10876 * back up to give the region size, considering consistent 10877 * adjacent subregions as one region. Stop testing if rsize 10878 * is already big enough for an entire QEMU page. 10879 */ 10880 int snd_rounded = snd & ~(i - 1); 10881 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10882 snd_rounded + 8, i); 10883 if (srdis_mask ^ srdis_multi) { 10884 break; 10885 } 10886 srdis_mask = (srdis_mask << i) | srdis_mask; 10887 rsize++; 10888 } 10889 } 10890 if (srdis) { 10891 continue; 10892 } 10893 if (rsize < TARGET_PAGE_BITS) { 10894 *page_size = 1 << rsize; 10895 } 10896 break; 10897 } 10898 10899 if (n == -1) { /* no hits */ 10900 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10901 /* background fault */ 10902 fi->type = ARMFault_Background; 10903 return true; 10904 } 10905 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10906 } else { /* a MPU hit! */ 10907 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10908 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10909 10910 if (m_is_system_region(env, address)) { 10911 /* System space is always execute never */ 10912 xn = 1; 10913 } 10914 10915 if (is_user) { /* User mode AP bit decoding */ 10916 switch (ap) { 10917 case 0: 10918 case 1: 10919 case 5: 10920 break; /* no access */ 10921 case 3: 10922 *prot |= PAGE_WRITE; 10923 /* fall through */ 10924 case 2: 10925 case 6: 10926 *prot |= PAGE_READ | PAGE_EXEC; 10927 break; 10928 case 7: 10929 /* for v7M, same as 6; for R profile a reserved value */ 10930 if (arm_feature(env, ARM_FEATURE_M)) { 10931 *prot |= PAGE_READ | PAGE_EXEC; 10932 break; 10933 } 10934 /* fall through */ 10935 default: 10936 qemu_log_mask(LOG_GUEST_ERROR, 10937 "DRACR[%d]: Bad value for AP bits: 0x%" 10938 PRIx32 "\n", n, ap); 10939 } 10940 } else { /* Priv. mode AP bits decoding */ 10941 switch (ap) { 10942 case 0: 10943 break; /* no access */ 10944 case 1: 10945 case 2: 10946 case 3: 10947 *prot |= PAGE_WRITE; 10948 /* fall through */ 10949 case 5: 10950 case 6: 10951 *prot |= PAGE_READ | PAGE_EXEC; 10952 break; 10953 case 7: 10954 /* for v7M, same as 6; for R profile a reserved value */ 10955 if (arm_feature(env, ARM_FEATURE_M)) { 10956 *prot |= PAGE_READ | PAGE_EXEC; 10957 break; 10958 } 10959 /* fall through */ 10960 default: 10961 qemu_log_mask(LOG_GUEST_ERROR, 10962 "DRACR[%d]: Bad value for AP bits: 0x%" 10963 PRIx32 "\n", n, ap); 10964 } 10965 } 10966 10967 /* execute never */ 10968 if (xn) { 10969 *prot &= ~PAGE_EXEC; 10970 } 10971 } 10972 } 10973 10974 fi->type = ARMFault_Permission; 10975 fi->level = 1; 10976 return !(*prot & (1 << access_type)); 10977 } 10978 10979 static bool v8m_is_sau_exempt(CPUARMState *env, 10980 uint32_t address, MMUAccessType access_type) 10981 { 10982 /* The architecture specifies that certain address ranges are 10983 * exempt from v8M SAU/IDAU checks. 10984 */ 10985 return 10986 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10987 (address >= 0xe0000000 && address <= 0xe0002fff) || 10988 (address >= 0xe000e000 && address <= 0xe000efff) || 10989 (address >= 0xe002e000 && address <= 0xe002efff) || 10990 (address >= 0xe0040000 && address <= 0xe0041fff) || 10991 (address >= 0xe00ff000 && address <= 0xe00fffff); 10992 } 10993 10994 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 10995 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10996 V8M_SAttributes *sattrs) 10997 { 10998 /* Look up the security attributes for this address. Compare the 10999 * pseudocode SecurityCheck() function. 11000 * We assume the caller has zero-initialized *sattrs. 11001 */ 11002 ARMCPU *cpu = arm_env_get_cpu(env); 11003 int r; 11004 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11005 int idau_region = IREGION_NOTVALID; 11006 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11007 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11008 11009 if (cpu->idau) { 11010 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11011 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11012 11013 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11014 &idau_nsc); 11015 } 11016 11017 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11018 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11019 return; 11020 } 11021 11022 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11023 sattrs->ns = !regime_is_secure(env, mmu_idx); 11024 return; 11025 } 11026 11027 if (idau_region != IREGION_NOTVALID) { 11028 sattrs->irvalid = true; 11029 sattrs->iregion = idau_region; 11030 } 11031 11032 switch (env->sau.ctrl & 3) { 11033 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11034 break; 11035 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11036 sattrs->ns = true; 11037 break; 11038 default: /* SAU.ENABLE == 1 */ 11039 for (r = 0; r < cpu->sau_sregion; r++) { 11040 if (env->sau.rlar[r] & 1) { 11041 uint32_t base = env->sau.rbar[r] & ~0x1f; 11042 uint32_t limit = env->sau.rlar[r] | 0x1f; 11043 11044 if (base <= address && limit >= address) { 11045 if (base > addr_page_base || limit < addr_page_limit) { 11046 sattrs->subpage = true; 11047 } 11048 if (sattrs->srvalid) { 11049 /* If we hit in more than one region then we must report 11050 * as Secure, not NS-Callable, with no valid region 11051 * number info. 11052 */ 11053 sattrs->ns = false; 11054 sattrs->nsc = false; 11055 sattrs->sregion = 0; 11056 sattrs->srvalid = false; 11057 break; 11058 } else { 11059 if (env->sau.rlar[r] & 2) { 11060 sattrs->nsc = true; 11061 } else { 11062 sattrs->ns = true; 11063 } 11064 sattrs->srvalid = true; 11065 sattrs->sregion = r; 11066 } 11067 } else { 11068 /* 11069 * Address not in this region. We must check whether the 11070 * region covers addresses in the same page as our address. 11071 * In that case we must not report a size that covers the 11072 * whole page for a subsequent hit against a different MPU 11073 * region or the background region, because it would result 11074 * in incorrect TLB hits for subsequent accesses to 11075 * addresses that are in this MPU region. 11076 */ 11077 if (limit >= base && 11078 ranges_overlap(base, limit - base + 1, 11079 addr_page_base, 11080 TARGET_PAGE_SIZE)) { 11081 sattrs->subpage = true; 11082 } 11083 } 11084 } 11085 } 11086 break; 11087 } 11088 11089 /* 11090 * The IDAU will override the SAU lookup results if it specifies 11091 * higher security than the SAU does. 11092 */ 11093 if (!idau_ns) { 11094 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11095 sattrs->ns = false; 11096 sattrs->nsc = idau_nsc; 11097 } 11098 } 11099 } 11100 11101 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11102 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11103 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11104 int *prot, bool *is_subpage, 11105 ARMMMUFaultInfo *fi, uint32_t *mregion) 11106 { 11107 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11108 * that a full phys-to-virt translation does). 11109 * mregion is (if not NULL) set to the region number which matched, 11110 * or -1 if no region number is returned (MPU off, address did not 11111 * hit a region, address hit in multiple regions). 11112 * We set is_subpage to true if the region hit doesn't cover the 11113 * entire TARGET_PAGE the address is within. 11114 */ 11115 ARMCPU *cpu = arm_env_get_cpu(env); 11116 bool is_user = regime_is_user(env, mmu_idx); 11117 uint32_t secure = regime_is_secure(env, mmu_idx); 11118 int n; 11119 int matchregion = -1; 11120 bool hit = false; 11121 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11122 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11123 11124 *is_subpage = false; 11125 *phys_ptr = address; 11126 *prot = 0; 11127 if (mregion) { 11128 *mregion = -1; 11129 } 11130 11131 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11132 * was an exception vector read from the vector table (which is always 11133 * done using the default system address map), because those accesses 11134 * are done in arm_v7m_load_vector(), which always does a direct 11135 * read using address_space_ldl(), rather than going via this function. 11136 */ 11137 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11138 hit = true; 11139 } else if (m_is_ppb_region(env, address)) { 11140 hit = true; 11141 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11142 hit = true; 11143 } else { 11144 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11145 /* region search */ 11146 /* Note that the base address is bits [31:5] from the register 11147 * with bits [4:0] all zeroes, but the limit address is bits 11148 * [31:5] from the register with bits [4:0] all ones. 11149 */ 11150 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11151 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11152 11153 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11154 /* Region disabled */ 11155 continue; 11156 } 11157 11158 if (address < base || address > limit) { 11159 /* 11160 * Address not in this region. We must check whether the 11161 * region covers addresses in the same page as our address. 11162 * In that case we must not report a size that covers the 11163 * whole page for a subsequent hit against a different MPU 11164 * region or the background region, because it would result in 11165 * incorrect TLB hits for subsequent accesses to addresses that 11166 * are in this MPU region. 11167 */ 11168 if (limit >= base && 11169 ranges_overlap(base, limit - base + 1, 11170 addr_page_base, 11171 TARGET_PAGE_SIZE)) { 11172 *is_subpage = true; 11173 } 11174 continue; 11175 } 11176 11177 if (base > addr_page_base || limit < addr_page_limit) { 11178 *is_subpage = true; 11179 } 11180 11181 if (hit) { 11182 /* Multiple regions match -- always a failure (unlike 11183 * PMSAv7 where highest-numbered-region wins) 11184 */ 11185 fi->type = ARMFault_Permission; 11186 fi->level = 1; 11187 return true; 11188 } 11189 11190 matchregion = n; 11191 hit = true; 11192 } 11193 } 11194 11195 if (!hit) { 11196 /* background fault */ 11197 fi->type = ARMFault_Background; 11198 return true; 11199 } 11200 11201 if (matchregion == -1) { 11202 /* hit using the background region */ 11203 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11204 } else { 11205 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11206 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11207 11208 if (m_is_system_region(env, address)) { 11209 /* System space is always execute never */ 11210 xn = 1; 11211 } 11212 11213 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11214 if (*prot && !xn) { 11215 *prot |= PAGE_EXEC; 11216 } 11217 /* We don't need to look the attribute up in the MAIR0/MAIR1 11218 * registers because that only tells us about cacheability. 11219 */ 11220 if (mregion) { 11221 *mregion = matchregion; 11222 } 11223 } 11224 11225 fi->type = ARMFault_Permission; 11226 fi->level = 1; 11227 return !(*prot & (1 << access_type)); 11228 } 11229 11230 11231 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11232 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11233 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11234 int *prot, target_ulong *page_size, 11235 ARMMMUFaultInfo *fi) 11236 { 11237 uint32_t secure = regime_is_secure(env, mmu_idx); 11238 V8M_SAttributes sattrs = {}; 11239 bool ret; 11240 bool mpu_is_subpage; 11241 11242 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11243 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11244 if (access_type == MMU_INST_FETCH) { 11245 /* Instruction fetches always use the MMU bank and the 11246 * transaction attribute determined by the fetch address, 11247 * regardless of CPU state. This is painful for QEMU 11248 * to handle, because it would mean we need to encode 11249 * into the mmu_idx not just the (user, negpri) information 11250 * for the current security state but also that for the 11251 * other security state, which would balloon the number 11252 * of mmu_idx values needed alarmingly. 11253 * Fortunately we can avoid this because it's not actually 11254 * possible to arbitrarily execute code from memory with 11255 * the wrong security attribute: it will always generate 11256 * an exception of some kind or another, apart from the 11257 * special case of an NS CPU executing an SG instruction 11258 * in S&NSC memory. So we always just fail the translation 11259 * here and sort things out in the exception handler 11260 * (including possibly emulating an SG instruction). 11261 */ 11262 if (sattrs.ns != !secure) { 11263 if (sattrs.nsc) { 11264 fi->type = ARMFault_QEMU_NSCExec; 11265 } else { 11266 fi->type = ARMFault_QEMU_SFault; 11267 } 11268 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11269 *phys_ptr = address; 11270 *prot = 0; 11271 return true; 11272 } 11273 } else { 11274 /* For data accesses we always use the MMU bank indicated 11275 * by the current CPU state, but the security attributes 11276 * might downgrade a secure access to nonsecure. 11277 */ 11278 if (sattrs.ns) { 11279 txattrs->secure = false; 11280 } else if (!secure) { 11281 /* NS access to S memory must fault. 11282 * Architecturally we should first check whether the 11283 * MPU information for this address indicates that we 11284 * are doing an unaligned access to Device memory, which 11285 * should generate a UsageFault instead. QEMU does not 11286 * currently check for that kind of unaligned access though. 11287 * If we added it we would need to do so as a special case 11288 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11289 */ 11290 fi->type = ARMFault_QEMU_SFault; 11291 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11292 *phys_ptr = address; 11293 *prot = 0; 11294 return true; 11295 } 11296 } 11297 } 11298 11299 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11300 txattrs, prot, &mpu_is_subpage, fi, NULL); 11301 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11302 return ret; 11303 } 11304 11305 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11306 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11307 hwaddr *phys_ptr, int *prot, 11308 ARMMMUFaultInfo *fi) 11309 { 11310 int n; 11311 uint32_t mask; 11312 uint32_t base; 11313 bool is_user = regime_is_user(env, mmu_idx); 11314 11315 if (regime_translation_disabled(env, mmu_idx)) { 11316 /* MPU disabled. */ 11317 *phys_ptr = address; 11318 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11319 return false; 11320 } 11321 11322 *phys_ptr = address; 11323 for (n = 7; n >= 0; n--) { 11324 base = env->cp15.c6_region[n]; 11325 if ((base & 1) == 0) { 11326 continue; 11327 } 11328 mask = 1 << ((base >> 1) & 0x1f); 11329 /* Keep this shift separate from the above to avoid an 11330 (undefined) << 32. */ 11331 mask = (mask << 1) - 1; 11332 if (((base ^ address) & ~mask) == 0) { 11333 break; 11334 } 11335 } 11336 if (n < 0) { 11337 fi->type = ARMFault_Background; 11338 return true; 11339 } 11340 11341 if (access_type == MMU_INST_FETCH) { 11342 mask = env->cp15.pmsav5_insn_ap; 11343 } else { 11344 mask = env->cp15.pmsav5_data_ap; 11345 } 11346 mask = (mask >> (n * 4)) & 0xf; 11347 switch (mask) { 11348 case 0: 11349 fi->type = ARMFault_Permission; 11350 fi->level = 1; 11351 return true; 11352 case 1: 11353 if (is_user) { 11354 fi->type = ARMFault_Permission; 11355 fi->level = 1; 11356 return true; 11357 } 11358 *prot = PAGE_READ | PAGE_WRITE; 11359 break; 11360 case 2: 11361 *prot = PAGE_READ; 11362 if (!is_user) { 11363 *prot |= PAGE_WRITE; 11364 } 11365 break; 11366 case 3: 11367 *prot = PAGE_READ | PAGE_WRITE; 11368 break; 11369 case 5: 11370 if (is_user) { 11371 fi->type = ARMFault_Permission; 11372 fi->level = 1; 11373 return true; 11374 } 11375 *prot = PAGE_READ; 11376 break; 11377 case 6: 11378 *prot = PAGE_READ; 11379 break; 11380 default: 11381 /* Bad permission. */ 11382 fi->type = ARMFault_Permission; 11383 fi->level = 1; 11384 return true; 11385 } 11386 *prot |= PAGE_EXEC; 11387 return false; 11388 } 11389 11390 /* Combine either inner or outer cacheability attributes for normal 11391 * memory, according to table D4-42 and pseudocode procedure 11392 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11393 * 11394 * NB: only stage 1 includes allocation hints (RW bits), leading to 11395 * some asymmetry. 11396 */ 11397 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11398 { 11399 if (s1 == 4 || s2 == 4) { 11400 /* non-cacheable has precedence */ 11401 return 4; 11402 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11403 /* stage 1 write-through takes precedence */ 11404 return s1; 11405 } else if (extract32(s2, 2, 2) == 2) { 11406 /* stage 2 write-through takes precedence, but the allocation hint 11407 * is still taken from stage 1 11408 */ 11409 return (2 << 2) | extract32(s1, 0, 2); 11410 } else { /* write-back */ 11411 return s1; 11412 } 11413 } 11414 11415 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11416 * and CombineS1S2Desc() 11417 * 11418 * @s1: Attributes from stage 1 walk 11419 * @s2: Attributes from stage 2 walk 11420 */ 11421 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11422 { 11423 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11424 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11425 ARMCacheAttrs ret; 11426 11427 /* Combine shareability attributes (table D4-43) */ 11428 if (s1.shareability == 2 || s2.shareability == 2) { 11429 /* if either are outer-shareable, the result is outer-shareable */ 11430 ret.shareability = 2; 11431 } else if (s1.shareability == 3 || s2.shareability == 3) { 11432 /* if either are inner-shareable, the result is inner-shareable */ 11433 ret.shareability = 3; 11434 } else { 11435 /* both non-shareable */ 11436 ret.shareability = 0; 11437 } 11438 11439 /* Combine memory type and cacheability attributes */ 11440 if (s1hi == 0 || s2hi == 0) { 11441 /* Device has precedence over normal */ 11442 if (s1lo == 0 || s2lo == 0) { 11443 /* nGnRnE has precedence over anything */ 11444 ret.attrs = 0; 11445 } else if (s1lo == 4 || s2lo == 4) { 11446 /* non-Reordering has precedence over Reordering */ 11447 ret.attrs = 4; /* nGnRE */ 11448 } else if (s1lo == 8 || s2lo == 8) { 11449 /* non-Gathering has precedence over Gathering */ 11450 ret.attrs = 8; /* nGRE */ 11451 } else { 11452 ret.attrs = 0xc; /* GRE */ 11453 } 11454 11455 /* Any location for which the resultant memory type is any 11456 * type of Device memory is always treated as Outer Shareable. 11457 */ 11458 ret.shareability = 2; 11459 } else { /* Normal memory */ 11460 /* Outer/inner cacheability combine independently */ 11461 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11462 | combine_cacheattr_nibble(s1lo, s2lo); 11463 11464 if (ret.attrs == 0x44) { 11465 /* Any location for which the resultant memory type is Normal 11466 * Inner Non-cacheable, Outer Non-cacheable is always treated 11467 * as Outer Shareable. 11468 */ 11469 ret.shareability = 2; 11470 } 11471 } 11472 11473 return ret; 11474 } 11475 11476 11477 /* get_phys_addr - get the physical address for this virtual address 11478 * 11479 * Find the physical address corresponding to the given virtual address, 11480 * by doing a translation table walk on MMU based systems or using the 11481 * MPU state on MPU based systems. 11482 * 11483 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11484 * prot and page_size may not be filled in, and the populated fsr value provides 11485 * information on why the translation aborted, in the format of a 11486 * DFSR/IFSR fault register, with the following caveats: 11487 * * we honour the short vs long DFSR format differences. 11488 * * the WnR bit is never set (the caller must do this). 11489 * * for PSMAv5 based systems we don't bother to return a full FSR format 11490 * value. 11491 * 11492 * @env: CPUARMState 11493 * @address: virtual address to get physical address for 11494 * @access_type: 0 for read, 1 for write, 2 for execute 11495 * @mmu_idx: MMU index indicating required translation regime 11496 * @phys_ptr: set to the physical address corresponding to the virtual address 11497 * @attrs: set to the memory transaction attributes to use 11498 * @prot: set to the permissions for the page containing phys_ptr 11499 * @page_size: set to the size of the page containing phys_ptr 11500 * @fi: set to fault info if the translation fails 11501 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11502 */ 11503 static bool get_phys_addr(CPUARMState *env, target_ulong address, 11504 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11505 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11506 target_ulong *page_size, 11507 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11508 { 11509 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 11510 /* Call ourselves recursively to do the stage 1 and then stage 2 11511 * translations. 11512 */ 11513 if (arm_feature(env, ARM_FEATURE_EL2)) { 11514 hwaddr ipa; 11515 int s2_prot; 11516 int ret; 11517 ARMCacheAttrs cacheattrs2 = {}; 11518 11519 ret = get_phys_addr(env, address, access_type, 11520 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11521 prot, page_size, fi, cacheattrs); 11522 11523 /* If S1 fails or S2 is disabled, return early. */ 11524 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 11525 *phys_ptr = ipa; 11526 return ret; 11527 } 11528 11529 /* S1 is done. Now do S2 translation. */ 11530 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 11531 phys_ptr, attrs, &s2_prot, 11532 page_size, fi, 11533 cacheattrs != NULL ? &cacheattrs2 : NULL); 11534 fi->s2addr = ipa; 11535 /* Combine the S1 and S2 perms. */ 11536 *prot &= s2_prot; 11537 11538 /* Combine the S1 and S2 cache attributes, if needed */ 11539 if (!ret && cacheattrs != NULL) { 11540 if (env->cp15.hcr_el2 & HCR_DC) { 11541 /* 11542 * HCR.DC forces the first stage attributes to 11543 * Normal Non-Shareable, 11544 * Inner Write-Back Read-Allocate Write-Allocate, 11545 * Outer Write-Back Read-Allocate Write-Allocate. 11546 */ 11547 cacheattrs->attrs = 0xff; 11548 cacheattrs->shareability = 0; 11549 } 11550 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11551 } 11552 11553 return ret; 11554 } else { 11555 /* 11556 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11557 */ 11558 mmu_idx = stage_1_mmu_idx(mmu_idx); 11559 } 11560 } 11561 11562 /* The page table entries may downgrade secure to non-secure, but 11563 * cannot upgrade an non-secure translation regime's attributes 11564 * to secure. 11565 */ 11566 attrs->secure = regime_is_secure(env, mmu_idx); 11567 attrs->user = regime_is_user(env, mmu_idx); 11568 11569 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11570 * In v7 and earlier it affects all stage 1 translations. 11571 */ 11572 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 11573 && !arm_feature(env, ARM_FEATURE_V8)) { 11574 if (regime_el(env, mmu_idx) == 3) { 11575 address += env->cp15.fcseidr_s; 11576 } else { 11577 address += env->cp15.fcseidr_ns; 11578 } 11579 } 11580 11581 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11582 bool ret; 11583 *page_size = TARGET_PAGE_SIZE; 11584 11585 if (arm_feature(env, ARM_FEATURE_V8)) { 11586 /* PMSAv8 */ 11587 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11588 phys_ptr, attrs, prot, page_size, fi); 11589 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11590 /* PMSAv7 */ 11591 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11592 phys_ptr, prot, page_size, fi); 11593 } else { 11594 /* Pre-v7 MPU */ 11595 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11596 phys_ptr, prot, fi); 11597 } 11598 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11599 " mmu_idx %u -> %s (prot %c%c%c)\n", 11600 access_type == MMU_DATA_LOAD ? "reading" : 11601 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11602 (uint32_t)address, mmu_idx, 11603 ret ? "Miss" : "Hit", 11604 *prot & PAGE_READ ? 'r' : '-', 11605 *prot & PAGE_WRITE ? 'w' : '-', 11606 *prot & PAGE_EXEC ? 'x' : '-'); 11607 11608 return ret; 11609 } 11610 11611 /* Definitely a real MMU, not an MPU */ 11612 11613 if (regime_translation_disabled(env, mmu_idx)) { 11614 /* MMU disabled. */ 11615 *phys_ptr = address; 11616 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11617 *page_size = TARGET_PAGE_SIZE; 11618 return 0; 11619 } 11620 11621 if (regime_using_lpae_format(env, mmu_idx)) { 11622 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11623 phys_ptr, attrs, prot, page_size, 11624 fi, cacheattrs); 11625 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11626 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11627 phys_ptr, attrs, prot, page_size, fi); 11628 } else { 11629 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11630 phys_ptr, prot, page_size, fi); 11631 } 11632 } 11633 11634 /* Walk the page table and (if the mapping exists) add the page 11635 * to the TLB. Return false on success, or true on failure. Populate 11636 * fsr with ARM DFSR/IFSR fault register format value on failure. 11637 */ 11638 bool arm_tlb_fill(CPUState *cs, vaddr address, 11639 MMUAccessType access_type, int mmu_idx, 11640 ARMMMUFaultInfo *fi) 11641 { 11642 ARMCPU *cpu = ARM_CPU(cs); 11643 CPUARMState *env = &cpu->env; 11644 hwaddr phys_addr; 11645 target_ulong page_size; 11646 int prot; 11647 int ret; 11648 MemTxAttrs attrs = {}; 11649 11650 ret = get_phys_addr(env, address, access_type, 11651 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 11652 &attrs, &prot, &page_size, fi, NULL); 11653 if (!ret) { 11654 /* 11655 * Map a single [sub]page. Regions smaller than our declared 11656 * target page size are handled specially, so for those we 11657 * pass in the exact addresses. 11658 */ 11659 if (page_size >= TARGET_PAGE_SIZE) { 11660 phys_addr &= TARGET_PAGE_MASK; 11661 address &= TARGET_PAGE_MASK; 11662 } 11663 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 11664 prot, mmu_idx, page_size); 11665 return 0; 11666 } 11667 11668 return ret; 11669 } 11670 11671 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11672 MemTxAttrs *attrs) 11673 { 11674 ARMCPU *cpu = ARM_CPU(cs); 11675 CPUARMState *env = &cpu->env; 11676 hwaddr phys_addr; 11677 target_ulong page_size; 11678 int prot; 11679 bool ret; 11680 ARMMMUFaultInfo fi = {}; 11681 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11682 11683 *attrs = (MemTxAttrs) {}; 11684 11685 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11686 attrs, &prot, &page_size, &fi, NULL); 11687 11688 if (ret) { 11689 return -1; 11690 } 11691 return phys_addr; 11692 } 11693 11694 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 11695 { 11696 uint32_t mask; 11697 unsigned el = arm_current_el(env); 11698 11699 /* First handle registers which unprivileged can read */ 11700 11701 switch (reg) { 11702 case 0 ... 7: /* xPSR sub-fields */ 11703 mask = 0; 11704 if ((reg & 1) && el) { 11705 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 11706 } 11707 if (!(reg & 4)) { 11708 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 11709 } 11710 /* EPSR reads as zero */ 11711 return xpsr_read(env) & mask; 11712 break; 11713 case 20: /* CONTROL */ 11714 return env->v7m.control[env->v7m.secure]; 11715 case 0x94: /* CONTROL_NS */ 11716 /* We have to handle this here because unprivileged Secure code 11717 * can read the NS CONTROL register. 11718 */ 11719 if (!env->v7m.secure) { 11720 return 0; 11721 } 11722 return env->v7m.control[M_REG_NS]; 11723 } 11724 11725 if (el == 0) { 11726 return 0; /* unprivileged reads others as zero */ 11727 } 11728 11729 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11730 switch (reg) { 11731 case 0x88: /* MSP_NS */ 11732 if (!env->v7m.secure) { 11733 return 0; 11734 } 11735 return env->v7m.other_ss_msp; 11736 case 0x89: /* PSP_NS */ 11737 if (!env->v7m.secure) { 11738 return 0; 11739 } 11740 return env->v7m.other_ss_psp; 11741 case 0x8a: /* MSPLIM_NS */ 11742 if (!env->v7m.secure) { 11743 return 0; 11744 } 11745 return env->v7m.msplim[M_REG_NS]; 11746 case 0x8b: /* PSPLIM_NS */ 11747 if (!env->v7m.secure) { 11748 return 0; 11749 } 11750 return env->v7m.psplim[M_REG_NS]; 11751 case 0x90: /* PRIMASK_NS */ 11752 if (!env->v7m.secure) { 11753 return 0; 11754 } 11755 return env->v7m.primask[M_REG_NS]; 11756 case 0x91: /* BASEPRI_NS */ 11757 if (!env->v7m.secure) { 11758 return 0; 11759 } 11760 return env->v7m.basepri[M_REG_NS]; 11761 case 0x93: /* FAULTMASK_NS */ 11762 if (!env->v7m.secure) { 11763 return 0; 11764 } 11765 return env->v7m.faultmask[M_REG_NS]; 11766 case 0x98: /* SP_NS */ 11767 { 11768 /* This gives the non-secure SP selected based on whether we're 11769 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11770 */ 11771 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11772 11773 if (!env->v7m.secure) { 11774 return 0; 11775 } 11776 if (!arm_v7m_is_handler_mode(env) && spsel) { 11777 return env->v7m.other_ss_psp; 11778 } else { 11779 return env->v7m.other_ss_msp; 11780 } 11781 } 11782 default: 11783 break; 11784 } 11785 } 11786 11787 switch (reg) { 11788 case 8: /* MSP */ 11789 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 11790 case 9: /* PSP */ 11791 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 11792 case 10: /* MSPLIM */ 11793 if (!arm_feature(env, ARM_FEATURE_V8)) { 11794 goto bad_reg; 11795 } 11796 return env->v7m.msplim[env->v7m.secure]; 11797 case 11: /* PSPLIM */ 11798 if (!arm_feature(env, ARM_FEATURE_V8)) { 11799 goto bad_reg; 11800 } 11801 return env->v7m.psplim[env->v7m.secure]; 11802 case 16: /* PRIMASK */ 11803 return env->v7m.primask[env->v7m.secure]; 11804 case 17: /* BASEPRI */ 11805 case 18: /* BASEPRI_MAX */ 11806 return env->v7m.basepri[env->v7m.secure]; 11807 case 19: /* FAULTMASK */ 11808 return env->v7m.faultmask[env->v7m.secure]; 11809 default: 11810 bad_reg: 11811 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 11812 " register %d\n", reg); 11813 return 0; 11814 } 11815 } 11816 11817 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 11818 { 11819 /* We're passed bits [11..0] of the instruction; extract 11820 * SYSm and the mask bits. 11821 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 11822 * we choose to treat them as if the mask bits were valid. 11823 * NB that the pseudocode 'mask' variable is bits [11..10], 11824 * whereas ours is [11..8]. 11825 */ 11826 uint32_t mask = extract32(maskreg, 8, 4); 11827 uint32_t reg = extract32(maskreg, 0, 8); 11828 11829 if (arm_current_el(env) == 0 && reg > 7) { 11830 /* only xPSR sub-fields may be written by unprivileged */ 11831 return; 11832 } 11833 11834 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11835 switch (reg) { 11836 case 0x88: /* MSP_NS */ 11837 if (!env->v7m.secure) { 11838 return; 11839 } 11840 env->v7m.other_ss_msp = val; 11841 return; 11842 case 0x89: /* PSP_NS */ 11843 if (!env->v7m.secure) { 11844 return; 11845 } 11846 env->v7m.other_ss_psp = val; 11847 return; 11848 case 0x8a: /* MSPLIM_NS */ 11849 if (!env->v7m.secure) { 11850 return; 11851 } 11852 env->v7m.msplim[M_REG_NS] = val & ~7; 11853 return; 11854 case 0x8b: /* PSPLIM_NS */ 11855 if (!env->v7m.secure) { 11856 return; 11857 } 11858 env->v7m.psplim[M_REG_NS] = val & ~7; 11859 return; 11860 case 0x90: /* PRIMASK_NS */ 11861 if (!env->v7m.secure) { 11862 return; 11863 } 11864 env->v7m.primask[M_REG_NS] = val & 1; 11865 return; 11866 case 0x91: /* BASEPRI_NS */ 11867 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11868 return; 11869 } 11870 env->v7m.basepri[M_REG_NS] = val & 0xff; 11871 return; 11872 case 0x93: /* FAULTMASK_NS */ 11873 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11874 return; 11875 } 11876 env->v7m.faultmask[M_REG_NS] = val & 1; 11877 return; 11878 case 0x94: /* CONTROL_NS */ 11879 if (!env->v7m.secure) { 11880 return; 11881 } 11882 write_v7m_control_spsel_for_secstate(env, 11883 val & R_V7M_CONTROL_SPSEL_MASK, 11884 M_REG_NS); 11885 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11886 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 11887 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 11888 } 11889 return; 11890 case 0x98: /* SP_NS */ 11891 { 11892 /* This gives the non-secure SP selected based on whether we're 11893 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11894 */ 11895 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11896 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 11897 uint32_t limit; 11898 11899 if (!env->v7m.secure) { 11900 return; 11901 } 11902 11903 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 11904 11905 if (val < limit) { 11906 CPUState *cs = CPU(arm_env_get_cpu(env)); 11907 11908 cpu_restore_state(cs, GETPC(), true); 11909 raise_exception(env, EXCP_STKOF, 0, 1); 11910 } 11911 11912 if (is_psp) { 11913 env->v7m.other_ss_psp = val; 11914 } else { 11915 env->v7m.other_ss_msp = val; 11916 } 11917 return; 11918 } 11919 default: 11920 break; 11921 } 11922 } 11923 11924 switch (reg) { 11925 case 0 ... 7: /* xPSR sub-fields */ 11926 /* only APSR is actually writable */ 11927 if (!(reg & 4)) { 11928 uint32_t apsrmask = 0; 11929 11930 if (mask & 8) { 11931 apsrmask |= XPSR_NZCV | XPSR_Q; 11932 } 11933 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 11934 apsrmask |= XPSR_GE; 11935 } 11936 xpsr_write(env, val, apsrmask); 11937 } 11938 break; 11939 case 8: /* MSP */ 11940 if (v7m_using_psp(env)) { 11941 env->v7m.other_sp = val; 11942 } else { 11943 env->regs[13] = val; 11944 } 11945 break; 11946 case 9: /* PSP */ 11947 if (v7m_using_psp(env)) { 11948 env->regs[13] = val; 11949 } else { 11950 env->v7m.other_sp = val; 11951 } 11952 break; 11953 case 10: /* MSPLIM */ 11954 if (!arm_feature(env, ARM_FEATURE_V8)) { 11955 goto bad_reg; 11956 } 11957 env->v7m.msplim[env->v7m.secure] = val & ~7; 11958 break; 11959 case 11: /* PSPLIM */ 11960 if (!arm_feature(env, ARM_FEATURE_V8)) { 11961 goto bad_reg; 11962 } 11963 env->v7m.psplim[env->v7m.secure] = val & ~7; 11964 break; 11965 case 16: /* PRIMASK */ 11966 env->v7m.primask[env->v7m.secure] = val & 1; 11967 break; 11968 case 17: /* BASEPRI */ 11969 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11970 goto bad_reg; 11971 } 11972 env->v7m.basepri[env->v7m.secure] = val & 0xff; 11973 break; 11974 case 18: /* BASEPRI_MAX */ 11975 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11976 goto bad_reg; 11977 } 11978 val &= 0xff; 11979 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 11980 || env->v7m.basepri[env->v7m.secure] == 0)) { 11981 env->v7m.basepri[env->v7m.secure] = val; 11982 } 11983 break; 11984 case 19: /* FAULTMASK */ 11985 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11986 goto bad_reg; 11987 } 11988 env->v7m.faultmask[env->v7m.secure] = val & 1; 11989 break; 11990 case 20: /* CONTROL */ 11991 /* Writing to the SPSEL bit only has an effect if we are in 11992 * thread mode; other bits can be updated by any privileged code. 11993 * write_v7m_control_spsel() deals with updating the SPSEL bit in 11994 * env->v7m.control, so we only need update the others. 11995 * For v7M, we must just ignore explicit writes to SPSEL in handler 11996 * mode; for v8M the write is permitted but will have no effect. 11997 */ 11998 if (arm_feature(env, ARM_FEATURE_V8) || 11999 !arm_v7m_is_handler_mode(env)) { 12000 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 12001 } 12002 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 12003 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 12004 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 12005 } 12006 break; 12007 default: 12008 bad_reg: 12009 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 12010 " register %d\n", reg); 12011 return; 12012 } 12013 } 12014 12015 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 12016 { 12017 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 12018 bool forceunpriv = op & 1; 12019 bool alt = op & 2; 12020 V8M_SAttributes sattrs = {}; 12021 uint32_t tt_resp; 12022 bool r, rw, nsr, nsrw, mrvalid; 12023 int prot; 12024 ARMMMUFaultInfo fi = {}; 12025 MemTxAttrs attrs = {}; 12026 hwaddr phys_addr; 12027 ARMMMUIdx mmu_idx; 12028 uint32_t mregion; 12029 bool targetpriv; 12030 bool targetsec = env->v7m.secure; 12031 bool is_subpage; 12032 12033 /* Work out what the security state and privilege level we're 12034 * interested in is... 12035 */ 12036 if (alt) { 12037 targetsec = !targetsec; 12038 } 12039 12040 if (forceunpriv) { 12041 targetpriv = false; 12042 } else { 12043 targetpriv = arm_v7m_is_handler_mode(env) || 12044 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 12045 } 12046 12047 /* ...and then figure out which MMU index this is */ 12048 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 12049 12050 /* We know that the MPU and SAU don't care about the access type 12051 * for our purposes beyond that we don't want to claim to be 12052 * an insn fetch, so we arbitrarily call this a read. 12053 */ 12054 12055 /* MPU region info only available for privileged or if 12056 * inspecting the other MPU state. 12057 */ 12058 if (arm_current_el(env) != 0 || alt) { 12059 /* We can ignore the return value as prot is always set */ 12060 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 12061 &phys_addr, &attrs, &prot, &is_subpage, 12062 &fi, &mregion); 12063 if (mregion == -1) { 12064 mrvalid = false; 12065 mregion = 0; 12066 } else { 12067 mrvalid = true; 12068 } 12069 r = prot & PAGE_READ; 12070 rw = prot & PAGE_WRITE; 12071 } else { 12072 r = false; 12073 rw = false; 12074 mrvalid = false; 12075 mregion = 0; 12076 } 12077 12078 if (env->v7m.secure) { 12079 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 12080 nsr = sattrs.ns && r; 12081 nsrw = sattrs.ns && rw; 12082 } else { 12083 sattrs.ns = true; 12084 nsr = false; 12085 nsrw = false; 12086 } 12087 12088 tt_resp = (sattrs.iregion << 24) | 12089 (sattrs.irvalid << 23) | 12090 ((!sattrs.ns) << 22) | 12091 (nsrw << 21) | 12092 (nsr << 20) | 12093 (rw << 19) | 12094 (r << 18) | 12095 (sattrs.srvalid << 17) | 12096 (mrvalid << 16) | 12097 (sattrs.sregion << 8) | 12098 mregion; 12099 12100 return tt_resp; 12101 } 12102 12103 #endif 12104 12105 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 12106 { 12107 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 12108 * Note that we do not implement the (architecturally mandated) 12109 * alignment fault for attempts to use this on Device memory 12110 * (which matches the usual QEMU behaviour of not implementing either 12111 * alignment faults or any memory attribute handling). 12112 */ 12113 12114 ARMCPU *cpu = arm_env_get_cpu(env); 12115 uint64_t blocklen = 4 << cpu->dcz_blocksize; 12116 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 12117 12118 #ifndef CONFIG_USER_ONLY 12119 { 12120 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 12121 * the block size so we might have to do more than one TLB lookup. 12122 * We know that in fact for any v8 CPU the page size is at least 4K 12123 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 12124 * 1K as an artefact of legacy v5 subpage support being present in the 12125 * same QEMU executable. 12126 */ 12127 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 12128 void *hostaddr[maxidx]; 12129 int try, i; 12130 unsigned mmu_idx = cpu_mmu_index(env, false); 12131 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 12132 12133 for (try = 0; try < 2; try++) { 12134 12135 for (i = 0; i < maxidx; i++) { 12136 hostaddr[i] = tlb_vaddr_to_host(env, 12137 vaddr + TARGET_PAGE_SIZE * i, 12138 1, mmu_idx); 12139 if (!hostaddr[i]) { 12140 break; 12141 } 12142 } 12143 if (i == maxidx) { 12144 /* If it's all in the TLB it's fair game for just writing to; 12145 * we know we don't need to update dirty status, etc. 12146 */ 12147 for (i = 0; i < maxidx - 1; i++) { 12148 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 12149 } 12150 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 12151 return; 12152 } 12153 /* OK, try a store and see if we can populate the tlb. This 12154 * might cause an exception if the memory isn't writable, 12155 * in which case we will longjmp out of here. We must for 12156 * this purpose use the actual register value passed to us 12157 * so that we get the fault address right. 12158 */ 12159 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 12160 /* Now we can populate the other TLB entries, if any */ 12161 for (i = 0; i < maxidx; i++) { 12162 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 12163 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 12164 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 12165 } 12166 } 12167 } 12168 12169 /* Slow path (probably attempt to do this to an I/O device or 12170 * similar, or clearing of a block of code we have translations 12171 * cached for). Just do a series of byte writes as the architecture 12172 * demands. It's not worth trying to use a cpu_physical_memory_map(), 12173 * memset(), unmap() sequence here because: 12174 * + we'd need to account for the blocksize being larger than a page 12175 * + the direct-RAM access case is almost always going to be dealt 12176 * with in the fastpath code above, so there's no speed benefit 12177 * + we would have to deal with the map returning NULL because the 12178 * bounce buffer was in use 12179 */ 12180 for (i = 0; i < blocklen; i++) { 12181 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 12182 } 12183 } 12184 #else 12185 memset(g2h(vaddr), 0, blocklen); 12186 #endif 12187 } 12188 12189 /* Note that signed overflow is undefined in C. The following routines are 12190 careful to use unsigned types where modulo arithmetic is required. 12191 Failure to do so _will_ break on newer gcc. */ 12192 12193 /* Signed saturating arithmetic. */ 12194 12195 /* Perform 16-bit signed saturating addition. */ 12196 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12197 { 12198 uint16_t res; 12199 12200 res = a + b; 12201 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12202 if (a & 0x8000) 12203 res = 0x8000; 12204 else 12205 res = 0x7fff; 12206 } 12207 return res; 12208 } 12209 12210 /* Perform 8-bit signed saturating addition. */ 12211 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12212 { 12213 uint8_t res; 12214 12215 res = a + b; 12216 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12217 if (a & 0x80) 12218 res = 0x80; 12219 else 12220 res = 0x7f; 12221 } 12222 return res; 12223 } 12224 12225 /* Perform 16-bit signed saturating subtraction. */ 12226 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12227 { 12228 uint16_t res; 12229 12230 res = a - b; 12231 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12232 if (a & 0x8000) 12233 res = 0x8000; 12234 else 12235 res = 0x7fff; 12236 } 12237 return res; 12238 } 12239 12240 /* Perform 8-bit signed saturating subtraction. */ 12241 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12242 { 12243 uint8_t res; 12244 12245 res = a - b; 12246 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12247 if (a & 0x80) 12248 res = 0x80; 12249 else 12250 res = 0x7f; 12251 } 12252 return res; 12253 } 12254 12255 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12256 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12257 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12258 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12259 #define PFX q 12260 12261 #include "op_addsub.h" 12262 12263 /* Unsigned saturating arithmetic. */ 12264 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12265 { 12266 uint16_t res; 12267 res = a + b; 12268 if (res < a) 12269 res = 0xffff; 12270 return res; 12271 } 12272 12273 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12274 { 12275 if (a > b) 12276 return a - b; 12277 else 12278 return 0; 12279 } 12280 12281 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12282 { 12283 uint8_t res; 12284 res = a + b; 12285 if (res < a) 12286 res = 0xff; 12287 return res; 12288 } 12289 12290 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12291 { 12292 if (a > b) 12293 return a - b; 12294 else 12295 return 0; 12296 } 12297 12298 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12299 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12300 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12301 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12302 #define PFX uq 12303 12304 #include "op_addsub.h" 12305 12306 /* Signed modulo arithmetic. */ 12307 #define SARITH16(a, b, n, op) do { \ 12308 int32_t sum; \ 12309 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12310 RESULT(sum, n, 16); \ 12311 if (sum >= 0) \ 12312 ge |= 3 << (n * 2); \ 12313 } while(0) 12314 12315 #define SARITH8(a, b, n, op) do { \ 12316 int32_t sum; \ 12317 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12318 RESULT(sum, n, 8); \ 12319 if (sum >= 0) \ 12320 ge |= 1 << n; \ 12321 } while(0) 12322 12323 12324 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12325 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12326 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12327 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12328 #define PFX s 12329 #define ARITH_GE 12330 12331 #include "op_addsub.h" 12332 12333 /* Unsigned modulo arithmetic. */ 12334 #define ADD16(a, b, n) do { \ 12335 uint32_t sum; \ 12336 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12337 RESULT(sum, n, 16); \ 12338 if ((sum >> 16) == 1) \ 12339 ge |= 3 << (n * 2); \ 12340 } while(0) 12341 12342 #define ADD8(a, b, n) do { \ 12343 uint32_t sum; \ 12344 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12345 RESULT(sum, n, 8); \ 12346 if ((sum >> 8) == 1) \ 12347 ge |= 1 << n; \ 12348 } while(0) 12349 12350 #define SUB16(a, b, n) do { \ 12351 uint32_t sum; \ 12352 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12353 RESULT(sum, n, 16); \ 12354 if ((sum >> 16) == 0) \ 12355 ge |= 3 << (n * 2); \ 12356 } while(0) 12357 12358 #define SUB8(a, b, n) do { \ 12359 uint32_t sum; \ 12360 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12361 RESULT(sum, n, 8); \ 12362 if ((sum >> 8) == 0) \ 12363 ge |= 1 << n; \ 12364 } while(0) 12365 12366 #define PFX u 12367 #define ARITH_GE 12368 12369 #include "op_addsub.h" 12370 12371 /* Halved signed arithmetic. */ 12372 #define ADD16(a, b, n) \ 12373 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12374 #define SUB16(a, b, n) \ 12375 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12376 #define ADD8(a, b, n) \ 12377 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12378 #define SUB8(a, b, n) \ 12379 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12380 #define PFX sh 12381 12382 #include "op_addsub.h" 12383 12384 /* Halved unsigned arithmetic. */ 12385 #define ADD16(a, b, n) \ 12386 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12387 #define SUB16(a, b, n) \ 12388 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12389 #define ADD8(a, b, n) \ 12390 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12391 #define SUB8(a, b, n) \ 12392 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12393 #define PFX uh 12394 12395 #include "op_addsub.h" 12396 12397 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12398 { 12399 if (a > b) 12400 return a - b; 12401 else 12402 return b - a; 12403 } 12404 12405 /* Unsigned sum of absolute byte differences. */ 12406 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12407 { 12408 uint32_t sum; 12409 sum = do_usad(a, b); 12410 sum += do_usad(a >> 8, b >> 8); 12411 sum += do_usad(a >> 16, b >>16); 12412 sum += do_usad(a >> 24, b >> 24); 12413 return sum; 12414 } 12415 12416 /* For ARMv6 SEL instruction. */ 12417 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12418 { 12419 uint32_t mask; 12420 12421 mask = 0; 12422 if (flags & 1) 12423 mask |= 0xff; 12424 if (flags & 2) 12425 mask |= 0xff00; 12426 if (flags & 4) 12427 mask |= 0xff0000; 12428 if (flags & 8) 12429 mask |= 0xff000000; 12430 return (a & mask) | (b & ~mask); 12431 } 12432 12433 /* VFP support. We follow the convention used for VFP instructions: 12434 Single precision routines have a "s" suffix, double precision a 12435 "d" suffix. */ 12436 12437 /* Convert host exception flags to vfp form. */ 12438 static inline int vfp_exceptbits_from_host(int host_bits) 12439 { 12440 int target_bits = 0; 12441 12442 if (host_bits & float_flag_invalid) 12443 target_bits |= 1; 12444 if (host_bits & float_flag_divbyzero) 12445 target_bits |= 2; 12446 if (host_bits & float_flag_overflow) 12447 target_bits |= 4; 12448 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 12449 target_bits |= 8; 12450 if (host_bits & float_flag_inexact) 12451 target_bits |= 0x10; 12452 if (host_bits & float_flag_input_denormal) 12453 target_bits |= 0x80; 12454 return target_bits; 12455 } 12456 12457 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 12458 { 12459 int i; 12460 uint32_t fpscr; 12461 12462 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 12463 | (env->vfp.vec_len << 16) 12464 | (env->vfp.vec_stride << 20); 12465 12466 i = get_float_exception_flags(&env->vfp.fp_status); 12467 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 12468 /* FZ16 does not generate an input denormal exception. */ 12469 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 12470 & ~float_flag_input_denormal); 12471 12472 fpscr |= vfp_exceptbits_from_host(i); 12473 return fpscr; 12474 } 12475 12476 uint32_t vfp_get_fpscr(CPUARMState *env) 12477 { 12478 return HELPER(vfp_get_fpscr)(env); 12479 } 12480 12481 /* Convert vfp exception flags to target form. */ 12482 static inline int vfp_exceptbits_to_host(int target_bits) 12483 { 12484 int host_bits = 0; 12485 12486 if (target_bits & 1) 12487 host_bits |= float_flag_invalid; 12488 if (target_bits & 2) 12489 host_bits |= float_flag_divbyzero; 12490 if (target_bits & 4) 12491 host_bits |= float_flag_overflow; 12492 if (target_bits & 8) 12493 host_bits |= float_flag_underflow; 12494 if (target_bits & 0x10) 12495 host_bits |= float_flag_inexact; 12496 if (target_bits & 0x80) 12497 host_bits |= float_flag_input_denormal; 12498 return host_bits; 12499 } 12500 12501 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 12502 { 12503 int i; 12504 uint32_t changed; 12505 12506 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 12507 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) { 12508 val &= ~FPCR_FZ16; 12509 } 12510 12511 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 12512 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 12513 env->vfp.vec_len = (val >> 16) & 7; 12514 env->vfp.vec_stride = (val >> 20) & 3; 12515 12516 changed ^= val; 12517 if (changed & (3 << 22)) { 12518 i = (val >> 22) & 3; 12519 switch (i) { 12520 case FPROUNDING_TIEEVEN: 12521 i = float_round_nearest_even; 12522 break; 12523 case FPROUNDING_POSINF: 12524 i = float_round_up; 12525 break; 12526 case FPROUNDING_NEGINF: 12527 i = float_round_down; 12528 break; 12529 case FPROUNDING_ZERO: 12530 i = float_round_to_zero; 12531 break; 12532 } 12533 set_float_rounding_mode(i, &env->vfp.fp_status); 12534 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 12535 } 12536 if (changed & FPCR_FZ16) { 12537 bool ftz_enabled = val & FPCR_FZ16; 12538 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 12539 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 12540 } 12541 if (changed & FPCR_FZ) { 12542 bool ftz_enabled = val & FPCR_FZ; 12543 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 12544 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 12545 } 12546 if (changed & FPCR_DN) { 12547 bool dnan_enabled = val & FPCR_DN; 12548 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 12549 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 12550 } 12551 12552 /* The exception flags are ORed together when we read fpscr so we 12553 * only need to preserve the current state in one of our 12554 * float_status values. 12555 */ 12556 i = vfp_exceptbits_to_host(val); 12557 set_float_exception_flags(i, &env->vfp.fp_status); 12558 set_float_exception_flags(0, &env->vfp.fp_status_f16); 12559 set_float_exception_flags(0, &env->vfp.standard_fp_status); 12560 } 12561 12562 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 12563 { 12564 HELPER(vfp_set_fpscr)(env, val); 12565 } 12566 12567 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 12568 12569 #define VFP_BINOP(name) \ 12570 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 12571 { \ 12572 float_status *fpst = fpstp; \ 12573 return float32_ ## name(a, b, fpst); \ 12574 } \ 12575 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 12576 { \ 12577 float_status *fpst = fpstp; \ 12578 return float64_ ## name(a, b, fpst); \ 12579 } 12580 VFP_BINOP(add) 12581 VFP_BINOP(sub) 12582 VFP_BINOP(mul) 12583 VFP_BINOP(div) 12584 VFP_BINOP(min) 12585 VFP_BINOP(max) 12586 VFP_BINOP(minnum) 12587 VFP_BINOP(maxnum) 12588 #undef VFP_BINOP 12589 12590 float32 VFP_HELPER(neg, s)(float32 a) 12591 { 12592 return float32_chs(a); 12593 } 12594 12595 float64 VFP_HELPER(neg, d)(float64 a) 12596 { 12597 return float64_chs(a); 12598 } 12599 12600 float32 VFP_HELPER(abs, s)(float32 a) 12601 { 12602 return float32_abs(a); 12603 } 12604 12605 float64 VFP_HELPER(abs, d)(float64 a) 12606 { 12607 return float64_abs(a); 12608 } 12609 12610 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 12611 { 12612 return float32_sqrt(a, &env->vfp.fp_status); 12613 } 12614 12615 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 12616 { 12617 return float64_sqrt(a, &env->vfp.fp_status); 12618 } 12619 12620 /* XXX: check quiet/signaling case */ 12621 #define DO_VFP_cmp(p, type) \ 12622 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 12623 { \ 12624 uint32_t flags; \ 12625 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 12626 case 0: flags = 0x6; break; \ 12627 case -1: flags = 0x8; break; \ 12628 case 1: flags = 0x2; break; \ 12629 default: case 2: flags = 0x3; break; \ 12630 } \ 12631 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 12632 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 12633 } \ 12634 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 12635 { \ 12636 uint32_t flags; \ 12637 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 12638 case 0: flags = 0x6; break; \ 12639 case -1: flags = 0x8; break; \ 12640 case 1: flags = 0x2; break; \ 12641 default: case 2: flags = 0x3; break; \ 12642 } \ 12643 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 12644 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 12645 } 12646 DO_VFP_cmp(s, float32) 12647 DO_VFP_cmp(d, float64) 12648 #undef DO_VFP_cmp 12649 12650 /* Integer to float and float to integer conversions */ 12651 12652 #define CONV_ITOF(name, ftype, fsz, sign) \ 12653 ftype HELPER(name)(uint32_t x, void *fpstp) \ 12654 { \ 12655 float_status *fpst = fpstp; \ 12656 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 12657 } 12658 12659 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 12660 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 12661 { \ 12662 float_status *fpst = fpstp; \ 12663 if (float##fsz##_is_any_nan(x)) { \ 12664 float_raise(float_flag_invalid, fpst); \ 12665 return 0; \ 12666 } \ 12667 return float##fsz##_to_##sign##int32##round(x, fpst); \ 12668 } 12669 12670 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 12671 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 12672 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 12673 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 12674 12675 FLOAT_CONVS(si, h, uint32_t, 16, ) 12676 FLOAT_CONVS(si, s, float32, 32, ) 12677 FLOAT_CONVS(si, d, float64, 64, ) 12678 FLOAT_CONVS(ui, h, uint32_t, 16, u) 12679 FLOAT_CONVS(ui, s, float32, 32, u) 12680 FLOAT_CONVS(ui, d, float64, 64, u) 12681 12682 #undef CONV_ITOF 12683 #undef CONV_FTOI 12684 #undef FLOAT_CONVS 12685 12686 /* floating point conversion */ 12687 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 12688 { 12689 return float32_to_float64(x, &env->vfp.fp_status); 12690 } 12691 12692 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 12693 { 12694 return float64_to_float32(x, &env->vfp.fp_status); 12695 } 12696 12697 /* VFP3 fixed point conversion. */ 12698 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12699 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 12700 void *fpstp) \ 12701 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 12702 12703 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \ 12704 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \ 12705 void *fpst) \ 12706 { \ 12707 if (unlikely(float##fsz##_is_any_nan(x))) { \ 12708 float_raise(float_flag_invalid, fpst); \ 12709 return 0; \ 12710 } \ 12711 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 12712 } 12713 12714 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 12715 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12716 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12717 float_round_to_zero, _round_to_zero) \ 12718 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12719 get_float_rounding_mode(fpst), ) 12720 12721 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 12722 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12723 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12724 get_float_rounding_mode(fpst), ) 12725 12726 VFP_CONV_FIX(sh, d, 64, 64, int16) 12727 VFP_CONV_FIX(sl, d, 64, 64, int32) 12728 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 12729 VFP_CONV_FIX(uh, d, 64, 64, uint16) 12730 VFP_CONV_FIX(ul, d, 64, 64, uint32) 12731 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 12732 VFP_CONV_FIX(sh, s, 32, 32, int16) 12733 VFP_CONV_FIX(sl, s, 32, 32, int32) 12734 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 12735 VFP_CONV_FIX(uh, s, 32, 32, uint16) 12736 VFP_CONV_FIX(ul, s, 32, 32, uint32) 12737 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 12738 12739 #undef VFP_CONV_FIX 12740 #undef VFP_CONV_FIX_FLOAT 12741 #undef VFP_CONV_FLOAT_FIX_ROUND 12742 #undef VFP_CONV_FIX_A64 12743 12744 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 12745 { 12746 return int32_to_float16_scalbn(x, -shift, fpst); 12747 } 12748 12749 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 12750 { 12751 return uint32_to_float16_scalbn(x, -shift, fpst); 12752 } 12753 12754 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 12755 { 12756 return int64_to_float16_scalbn(x, -shift, fpst); 12757 } 12758 12759 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 12760 { 12761 return uint64_to_float16_scalbn(x, -shift, fpst); 12762 } 12763 12764 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 12765 { 12766 if (unlikely(float16_is_any_nan(x))) { 12767 float_raise(float_flag_invalid, fpst); 12768 return 0; 12769 } 12770 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst), 12771 shift, fpst); 12772 } 12773 12774 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 12775 { 12776 if (unlikely(float16_is_any_nan(x))) { 12777 float_raise(float_flag_invalid, fpst); 12778 return 0; 12779 } 12780 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst), 12781 shift, fpst); 12782 } 12783 12784 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 12785 { 12786 if (unlikely(float16_is_any_nan(x))) { 12787 float_raise(float_flag_invalid, fpst); 12788 return 0; 12789 } 12790 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst), 12791 shift, fpst); 12792 } 12793 12794 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 12795 { 12796 if (unlikely(float16_is_any_nan(x))) { 12797 float_raise(float_flag_invalid, fpst); 12798 return 0; 12799 } 12800 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst), 12801 shift, fpst); 12802 } 12803 12804 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 12805 { 12806 if (unlikely(float16_is_any_nan(x))) { 12807 float_raise(float_flag_invalid, fpst); 12808 return 0; 12809 } 12810 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst), 12811 shift, fpst); 12812 } 12813 12814 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 12815 { 12816 if (unlikely(float16_is_any_nan(x))) { 12817 float_raise(float_flag_invalid, fpst); 12818 return 0; 12819 } 12820 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst), 12821 shift, fpst); 12822 } 12823 12824 /* Set the current fp rounding mode and return the old one. 12825 * The argument is a softfloat float_round_ value. 12826 */ 12827 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 12828 { 12829 float_status *fp_status = fpstp; 12830 12831 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12832 set_float_rounding_mode(rmode, fp_status); 12833 12834 return prev_rmode; 12835 } 12836 12837 /* Set the current fp rounding mode in the standard fp status and return 12838 * the old one. This is for NEON instructions that need to change the 12839 * rounding mode but wish to use the standard FPSCR values for everything 12840 * else. Always set the rounding mode back to the correct value after 12841 * modifying it. 12842 * The argument is a softfloat float_round_ value. 12843 */ 12844 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 12845 { 12846 float_status *fp_status = &env->vfp.standard_fp_status; 12847 12848 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12849 set_float_rounding_mode(rmode, fp_status); 12850 12851 return prev_rmode; 12852 } 12853 12854 /* Half precision conversions. */ 12855 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12856 { 12857 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12858 * it would affect flushing input denormals. 12859 */ 12860 float_status *fpst = fpstp; 12861 flag save = get_flush_inputs_to_zero(fpst); 12862 set_flush_inputs_to_zero(false, fpst); 12863 float32 r = float16_to_float32(a, !ahp_mode, fpst); 12864 set_flush_inputs_to_zero(save, fpst); 12865 return r; 12866 } 12867 12868 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 12869 { 12870 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12871 * it would affect flushing output denormals. 12872 */ 12873 float_status *fpst = fpstp; 12874 flag save = get_flush_to_zero(fpst); 12875 set_flush_to_zero(false, fpst); 12876 float16 r = float32_to_float16(a, !ahp_mode, fpst); 12877 set_flush_to_zero(save, fpst); 12878 return r; 12879 } 12880 12881 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12882 { 12883 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12884 * it would affect flushing input denormals. 12885 */ 12886 float_status *fpst = fpstp; 12887 flag save = get_flush_inputs_to_zero(fpst); 12888 set_flush_inputs_to_zero(false, fpst); 12889 float64 r = float16_to_float64(a, !ahp_mode, fpst); 12890 set_flush_inputs_to_zero(save, fpst); 12891 return r; 12892 } 12893 12894 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 12895 { 12896 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12897 * it would affect flushing output denormals. 12898 */ 12899 float_status *fpst = fpstp; 12900 flag save = get_flush_to_zero(fpst); 12901 set_flush_to_zero(false, fpst); 12902 float16 r = float64_to_float16(a, !ahp_mode, fpst); 12903 set_flush_to_zero(save, fpst); 12904 return r; 12905 } 12906 12907 #define float32_two make_float32(0x40000000) 12908 #define float32_three make_float32(0x40400000) 12909 #define float32_one_point_five make_float32(0x3fc00000) 12910 12911 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 12912 { 12913 float_status *s = &env->vfp.standard_fp_status; 12914 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12915 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12916 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12917 float_raise(float_flag_input_denormal, s); 12918 } 12919 return float32_two; 12920 } 12921 return float32_sub(float32_two, float32_mul(a, b, s), s); 12922 } 12923 12924 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 12925 { 12926 float_status *s = &env->vfp.standard_fp_status; 12927 float32 product; 12928 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12929 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12930 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12931 float_raise(float_flag_input_denormal, s); 12932 } 12933 return float32_one_point_five; 12934 } 12935 product = float32_mul(a, b, s); 12936 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 12937 } 12938 12939 /* NEON helpers. */ 12940 12941 /* Constants 256 and 512 are used in some helpers; we avoid relying on 12942 * int->float conversions at run-time. */ 12943 #define float64_256 make_float64(0x4070000000000000LL) 12944 #define float64_512 make_float64(0x4080000000000000LL) 12945 #define float16_maxnorm make_float16(0x7bff) 12946 #define float32_maxnorm make_float32(0x7f7fffff) 12947 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 12948 12949 /* Reciprocal functions 12950 * 12951 * The algorithm that must be used to calculate the estimate 12952 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 12953 */ 12954 12955 /* See RecipEstimate() 12956 * 12957 * input is a 9 bit fixed point number 12958 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 12959 * result range 256 .. 511 for a number from 1.0 to 511/256. 12960 */ 12961 12962 static int recip_estimate(int input) 12963 { 12964 int a, b, r; 12965 assert(256 <= input && input < 512); 12966 a = (input * 2) + 1; 12967 b = (1 << 19) / a; 12968 r = (b + 1) >> 1; 12969 assert(256 <= r && r < 512); 12970 return r; 12971 } 12972 12973 /* 12974 * Common wrapper to call recip_estimate 12975 * 12976 * The parameters are exponent and 64 bit fraction (without implicit 12977 * bit) where the binary point is nominally at bit 52. Returns a 12978 * float64 which can then be rounded to the appropriate size by the 12979 * callee. 12980 */ 12981 12982 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 12983 { 12984 uint32_t scaled, estimate; 12985 uint64_t result_frac; 12986 int result_exp; 12987 12988 /* Handle sub-normals */ 12989 if (*exp == 0) { 12990 if (extract64(frac, 51, 1) == 0) { 12991 *exp = -1; 12992 frac <<= 2; 12993 } else { 12994 frac <<= 1; 12995 } 12996 } 12997 12998 /* scaled = UInt('1':fraction<51:44>) */ 12999 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 13000 estimate = recip_estimate(scaled); 13001 13002 result_exp = exp_off - *exp; 13003 result_frac = deposit64(0, 44, 8, estimate); 13004 if (result_exp == 0) { 13005 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 13006 } else if (result_exp == -1) { 13007 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 13008 result_exp = 0; 13009 } 13010 13011 *exp = result_exp; 13012 13013 return result_frac; 13014 } 13015 13016 static bool round_to_inf(float_status *fpst, bool sign_bit) 13017 { 13018 switch (fpst->float_rounding_mode) { 13019 case float_round_nearest_even: /* Round to Nearest */ 13020 return true; 13021 case float_round_up: /* Round to +Inf */ 13022 return !sign_bit; 13023 case float_round_down: /* Round to -Inf */ 13024 return sign_bit; 13025 case float_round_to_zero: /* Round to Zero */ 13026 return false; 13027 } 13028 13029 g_assert_not_reached(); 13030 } 13031 13032 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 13033 { 13034 float_status *fpst = fpstp; 13035 float16 f16 = float16_squash_input_denormal(input, fpst); 13036 uint32_t f16_val = float16_val(f16); 13037 uint32_t f16_sign = float16_is_neg(f16); 13038 int f16_exp = extract32(f16_val, 10, 5); 13039 uint32_t f16_frac = extract32(f16_val, 0, 10); 13040 uint64_t f64_frac; 13041 13042 if (float16_is_any_nan(f16)) { 13043 float16 nan = f16; 13044 if (float16_is_signaling_nan(f16, fpst)) { 13045 float_raise(float_flag_invalid, fpst); 13046 nan = float16_silence_nan(f16, fpst); 13047 } 13048 if (fpst->default_nan_mode) { 13049 nan = float16_default_nan(fpst); 13050 } 13051 return nan; 13052 } else if (float16_is_infinity(f16)) { 13053 return float16_set_sign(float16_zero, float16_is_neg(f16)); 13054 } else if (float16_is_zero(f16)) { 13055 float_raise(float_flag_divbyzero, fpst); 13056 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 13057 } else if (float16_abs(f16) < (1 << 8)) { 13058 /* Abs(value) < 2.0^-16 */ 13059 float_raise(float_flag_overflow | float_flag_inexact, fpst); 13060 if (round_to_inf(fpst, f16_sign)) { 13061 return float16_set_sign(float16_infinity, f16_sign); 13062 } else { 13063 return float16_set_sign(float16_maxnorm, f16_sign); 13064 } 13065 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 13066 float_raise(float_flag_underflow, fpst); 13067 return float16_set_sign(float16_zero, float16_is_neg(f16)); 13068 } 13069 13070 f64_frac = call_recip_estimate(&f16_exp, 29, 13071 ((uint64_t) f16_frac) << (52 - 10)); 13072 13073 /* result = sign : result_exp<4:0> : fraction<51:42> */ 13074 f16_val = deposit32(0, 15, 1, f16_sign); 13075 f16_val = deposit32(f16_val, 10, 5, f16_exp); 13076 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 13077 return make_float16(f16_val); 13078 } 13079 13080 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 13081 { 13082 float_status *fpst = fpstp; 13083 float32 f32 = float32_squash_input_denormal(input, fpst); 13084 uint32_t f32_val = float32_val(f32); 13085 bool f32_sign = float32_is_neg(f32); 13086 int f32_exp = extract32(f32_val, 23, 8); 13087 uint32_t f32_frac = extract32(f32_val, 0, 23); 13088 uint64_t f64_frac; 13089 13090 if (float32_is_any_nan(f32)) { 13091 float32 nan = f32; 13092 if (float32_is_signaling_nan(f32, fpst)) { 13093 float_raise(float_flag_invalid, fpst); 13094 nan = float32_silence_nan(f32, fpst); 13095 } 13096 if (fpst->default_nan_mode) { 13097 nan = float32_default_nan(fpst); 13098 } 13099 return nan; 13100 } else if (float32_is_infinity(f32)) { 13101 return float32_set_sign(float32_zero, float32_is_neg(f32)); 13102 } else if (float32_is_zero(f32)) { 13103 float_raise(float_flag_divbyzero, fpst); 13104 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 13105 } else if (float32_abs(f32) < (1ULL << 21)) { 13106 /* Abs(value) < 2.0^-128 */ 13107 float_raise(float_flag_overflow | float_flag_inexact, fpst); 13108 if (round_to_inf(fpst, f32_sign)) { 13109 return float32_set_sign(float32_infinity, f32_sign); 13110 } else { 13111 return float32_set_sign(float32_maxnorm, f32_sign); 13112 } 13113 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 13114 float_raise(float_flag_underflow, fpst); 13115 return float32_set_sign(float32_zero, float32_is_neg(f32)); 13116 } 13117 13118 f64_frac = call_recip_estimate(&f32_exp, 253, 13119 ((uint64_t) f32_frac) << (52 - 23)); 13120 13121 /* result = sign : result_exp<7:0> : fraction<51:29> */ 13122 f32_val = deposit32(0, 31, 1, f32_sign); 13123 f32_val = deposit32(f32_val, 23, 8, f32_exp); 13124 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 13125 return make_float32(f32_val); 13126 } 13127 13128 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 13129 { 13130 float_status *fpst = fpstp; 13131 float64 f64 = float64_squash_input_denormal(input, fpst); 13132 uint64_t f64_val = float64_val(f64); 13133 bool f64_sign = float64_is_neg(f64); 13134 int f64_exp = extract64(f64_val, 52, 11); 13135 uint64_t f64_frac = extract64(f64_val, 0, 52); 13136 13137 /* Deal with any special cases */ 13138 if (float64_is_any_nan(f64)) { 13139 float64 nan = f64; 13140 if (float64_is_signaling_nan(f64, fpst)) { 13141 float_raise(float_flag_invalid, fpst); 13142 nan = float64_silence_nan(f64, fpst); 13143 } 13144 if (fpst->default_nan_mode) { 13145 nan = float64_default_nan(fpst); 13146 } 13147 return nan; 13148 } else if (float64_is_infinity(f64)) { 13149 return float64_set_sign(float64_zero, float64_is_neg(f64)); 13150 } else if (float64_is_zero(f64)) { 13151 float_raise(float_flag_divbyzero, fpst); 13152 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 13153 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 13154 /* Abs(value) < 2.0^-1024 */ 13155 float_raise(float_flag_overflow | float_flag_inexact, fpst); 13156 if (round_to_inf(fpst, f64_sign)) { 13157 return float64_set_sign(float64_infinity, f64_sign); 13158 } else { 13159 return float64_set_sign(float64_maxnorm, f64_sign); 13160 } 13161 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 13162 float_raise(float_flag_underflow, fpst); 13163 return float64_set_sign(float64_zero, float64_is_neg(f64)); 13164 } 13165 13166 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 13167 13168 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 13169 f64_val = deposit64(0, 63, 1, f64_sign); 13170 f64_val = deposit64(f64_val, 52, 11, f64_exp); 13171 f64_val = deposit64(f64_val, 0, 52, f64_frac); 13172 return make_float64(f64_val); 13173 } 13174 13175 /* The algorithm that must be used to calculate the estimate 13176 * is specified by the ARM ARM. 13177 */ 13178 13179 static int do_recip_sqrt_estimate(int a) 13180 { 13181 int b, estimate; 13182 13183 assert(128 <= a && a < 512); 13184 if (a < 256) { 13185 a = a * 2 + 1; 13186 } else { 13187 a = (a >> 1) << 1; 13188 a = (a + 1) * 2; 13189 } 13190 b = 512; 13191 while (a * (b + 1) * (b + 1) < (1 << 28)) { 13192 b += 1; 13193 } 13194 estimate = (b + 1) / 2; 13195 assert(256 <= estimate && estimate < 512); 13196 13197 return estimate; 13198 } 13199 13200 13201 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 13202 { 13203 int estimate; 13204 uint32_t scaled; 13205 13206 if (*exp == 0) { 13207 while (extract64(frac, 51, 1) == 0) { 13208 frac = frac << 1; 13209 *exp -= 1; 13210 } 13211 frac = extract64(frac, 0, 51) << 1; 13212 } 13213 13214 if (*exp & 1) { 13215 /* scaled = UInt('01':fraction<51:45>) */ 13216 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 13217 } else { 13218 /* scaled = UInt('1':fraction<51:44>) */ 13219 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 13220 } 13221 estimate = do_recip_sqrt_estimate(scaled); 13222 13223 *exp = (exp_off - *exp) / 2; 13224 return extract64(estimate, 0, 8) << 44; 13225 } 13226 13227 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 13228 { 13229 float_status *s = fpstp; 13230 float16 f16 = float16_squash_input_denormal(input, s); 13231 uint16_t val = float16_val(f16); 13232 bool f16_sign = float16_is_neg(f16); 13233 int f16_exp = extract32(val, 10, 5); 13234 uint16_t f16_frac = extract32(val, 0, 10); 13235 uint64_t f64_frac; 13236 13237 if (float16_is_any_nan(f16)) { 13238 float16 nan = f16; 13239 if (float16_is_signaling_nan(f16, s)) { 13240 float_raise(float_flag_invalid, s); 13241 nan = float16_silence_nan(f16, s); 13242 } 13243 if (s->default_nan_mode) { 13244 nan = float16_default_nan(s); 13245 } 13246 return nan; 13247 } else if (float16_is_zero(f16)) { 13248 float_raise(float_flag_divbyzero, s); 13249 return float16_set_sign(float16_infinity, f16_sign); 13250 } else if (f16_sign) { 13251 float_raise(float_flag_invalid, s); 13252 return float16_default_nan(s); 13253 } else if (float16_is_infinity(f16)) { 13254 return float16_zero; 13255 } 13256 13257 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 13258 * preserving the parity of the exponent. */ 13259 13260 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 13261 13262 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 13263 13264 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 13265 val = deposit32(0, 15, 1, f16_sign); 13266 val = deposit32(val, 10, 5, f16_exp); 13267 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 13268 return make_float16(val); 13269 } 13270 13271 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 13272 { 13273 float_status *s = fpstp; 13274 float32 f32 = float32_squash_input_denormal(input, s); 13275 uint32_t val = float32_val(f32); 13276 uint32_t f32_sign = float32_is_neg(f32); 13277 int f32_exp = extract32(val, 23, 8); 13278 uint32_t f32_frac = extract32(val, 0, 23); 13279 uint64_t f64_frac; 13280 13281 if (float32_is_any_nan(f32)) { 13282 float32 nan = f32; 13283 if (float32_is_signaling_nan(f32, s)) { 13284 float_raise(float_flag_invalid, s); 13285 nan = float32_silence_nan(f32, s); 13286 } 13287 if (s->default_nan_mode) { 13288 nan = float32_default_nan(s); 13289 } 13290 return nan; 13291 } else if (float32_is_zero(f32)) { 13292 float_raise(float_flag_divbyzero, s); 13293 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 13294 } else if (float32_is_neg(f32)) { 13295 float_raise(float_flag_invalid, s); 13296 return float32_default_nan(s); 13297 } else if (float32_is_infinity(f32)) { 13298 return float32_zero; 13299 } 13300 13301 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 13302 * preserving the parity of the exponent. */ 13303 13304 f64_frac = ((uint64_t) f32_frac) << 29; 13305 13306 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 13307 13308 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 13309 val = deposit32(0, 31, 1, f32_sign); 13310 val = deposit32(val, 23, 8, f32_exp); 13311 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 13312 return make_float32(val); 13313 } 13314 13315 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 13316 { 13317 float_status *s = fpstp; 13318 float64 f64 = float64_squash_input_denormal(input, s); 13319 uint64_t val = float64_val(f64); 13320 bool f64_sign = float64_is_neg(f64); 13321 int f64_exp = extract64(val, 52, 11); 13322 uint64_t f64_frac = extract64(val, 0, 52); 13323 13324 if (float64_is_any_nan(f64)) { 13325 float64 nan = f64; 13326 if (float64_is_signaling_nan(f64, s)) { 13327 float_raise(float_flag_invalid, s); 13328 nan = float64_silence_nan(f64, s); 13329 } 13330 if (s->default_nan_mode) { 13331 nan = float64_default_nan(s); 13332 } 13333 return nan; 13334 } else if (float64_is_zero(f64)) { 13335 float_raise(float_flag_divbyzero, s); 13336 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 13337 } else if (float64_is_neg(f64)) { 13338 float_raise(float_flag_invalid, s); 13339 return float64_default_nan(s); 13340 } else if (float64_is_infinity(f64)) { 13341 return float64_zero; 13342 } 13343 13344 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 13345 13346 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 13347 val = deposit64(0, 61, 1, f64_sign); 13348 val = deposit64(val, 52, 11, f64_exp); 13349 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 13350 return make_float64(val); 13351 } 13352 13353 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 13354 { 13355 /* float_status *s = fpstp; */ 13356 int input, estimate; 13357 13358 if ((a & 0x80000000) == 0) { 13359 return 0xffffffff; 13360 } 13361 13362 input = extract32(a, 23, 9); 13363 estimate = recip_estimate(input); 13364 13365 return deposit32(0, (32 - 9), 9, estimate); 13366 } 13367 13368 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 13369 { 13370 int estimate; 13371 13372 if ((a & 0xc0000000) == 0) { 13373 return 0xffffffff; 13374 } 13375 13376 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 13377 13378 return deposit32(0, 23, 9, estimate); 13379 } 13380 13381 /* VFPv4 fused multiply-accumulate */ 13382 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 13383 { 13384 float_status *fpst = fpstp; 13385 return float32_muladd(a, b, c, 0, fpst); 13386 } 13387 13388 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 13389 { 13390 float_status *fpst = fpstp; 13391 return float64_muladd(a, b, c, 0, fpst); 13392 } 13393 13394 /* ARMv8 round to integral */ 13395 float32 HELPER(rints_exact)(float32 x, void *fp_status) 13396 { 13397 return float32_round_to_int(x, fp_status); 13398 } 13399 13400 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 13401 { 13402 return float64_round_to_int(x, fp_status); 13403 } 13404 13405 float32 HELPER(rints)(float32 x, void *fp_status) 13406 { 13407 int old_flags = get_float_exception_flags(fp_status), new_flags; 13408 float32 ret; 13409 13410 ret = float32_round_to_int(x, fp_status); 13411 13412 /* Suppress any inexact exceptions the conversion produced */ 13413 if (!(old_flags & float_flag_inexact)) { 13414 new_flags = get_float_exception_flags(fp_status); 13415 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 13416 } 13417 13418 return ret; 13419 } 13420 13421 float64 HELPER(rintd)(float64 x, void *fp_status) 13422 { 13423 int old_flags = get_float_exception_flags(fp_status), new_flags; 13424 float64 ret; 13425 13426 ret = float64_round_to_int(x, fp_status); 13427 13428 new_flags = get_float_exception_flags(fp_status); 13429 13430 /* Suppress any inexact exceptions the conversion produced */ 13431 if (!(old_flags & float_flag_inexact)) { 13432 new_flags = get_float_exception_flags(fp_status); 13433 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 13434 } 13435 13436 return ret; 13437 } 13438 13439 /* Convert ARM rounding mode to softfloat */ 13440 int arm_rmode_to_sf(int rmode) 13441 { 13442 switch (rmode) { 13443 case FPROUNDING_TIEAWAY: 13444 rmode = float_round_ties_away; 13445 break; 13446 case FPROUNDING_ODD: 13447 /* FIXME: add support for TIEAWAY and ODD */ 13448 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 13449 rmode); 13450 /* fall through for now */ 13451 case FPROUNDING_TIEEVEN: 13452 default: 13453 rmode = float_round_nearest_even; 13454 break; 13455 case FPROUNDING_POSINF: 13456 rmode = float_round_up; 13457 break; 13458 case FPROUNDING_NEGINF: 13459 rmode = float_round_down; 13460 break; 13461 case FPROUNDING_ZERO: 13462 rmode = float_round_to_zero; 13463 break; 13464 } 13465 return rmode; 13466 } 13467 13468 /* CRC helpers. 13469 * The upper bytes of val (above the number specified by 'bytes') must have 13470 * been zeroed out by the caller. 13471 */ 13472 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13473 { 13474 uint8_t buf[4]; 13475 13476 stl_le_p(buf, val); 13477 13478 /* zlib crc32 converts the accumulator and output to one's complement. */ 13479 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13480 } 13481 13482 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13483 { 13484 uint8_t buf[4]; 13485 13486 stl_le_p(buf, val); 13487 13488 /* Linux crc32c converts the output to one's complement. */ 13489 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13490 } 13491 13492 /* Return the exception level to which FP-disabled exceptions should 13493 * be taken, or 0 if FP is enabled. 13494 */ 13495 int fp_exception_el(CPUARMState *env, int cur_el) 13496 { 13497 #ifndef CONFIG_USER_ONLY 13498 int fpen; 13499 13500 /* CPACR and the CPTR registers don't exist before v6, so FP is 13501 * always accessible 13502 */ 13503 if (!arm_feature(env, ARM_FEATURE_V6)) { 13504 return 0; 13505 } 13506 13507 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13508 * 0, 2 : trap EL0 and EL1/PL1 accesses 13509 * 1 : trap only EL0 accesses 13510 * 3 : trap no accesses 13511 */ 13512 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13513 switch (fpen) { 13514 case 0: 13515 case 2: 13516 if (cur_el == 0 || cur_el == 1) { 13517 /* Trap to PL1, which might be EL1 or EL3 */ 13518 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13519 return 3; 13520 } 13521 return 1; 13522 } 13523 if (cur_el == 3 && !is_a64(env)) { 13524 /* Secure PL1 running at EL3 */ 13525 return 3; 13526 } 13527 break; 13528 case 1: 13529 if (cur_el == 0) { 13530 return 1; 13531 } 13532 break; 13533 case 3: 13534 break; 13535 } 13536 13537 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13538 * check because zero bits in the registers mean "don't trap". 13539 */ 13540 13541 /* CPTR_EL2 : present in v7VE or v8 */ 13542 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13543 && !arm_is_secure_below_el3(env)) { 13544 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13545 return 2; 13546 } 13547 13548 /* CPTR_EL3 : present in v8 */ 13549 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13550 /* Trap all FP ops to EL3 */ 13551 return 3; 13552 } 13553 #endif 13554 return 0; 13555 } 13556 13557 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 13558 bool secstate, bool priv) 13559 { 13560 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; 13561 13562 if (priv) { 13563 mmu_idx |= ARM_MMU_IDX_M_PRIV; 13564 } 13565 13566 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) { 13567 mmu_idx |= ARM_MMU_IDX_M_NEGPRI; 13568 } 13569 13570 if (secstate) { 13571 mmu_idx |= ARM_MMU_IDX_M_S; 13572 } 13573 13574 return mmu_idx; 13575 } 13576 13577 /* Return the MMU index for a v7M CPU in the specified security state */ 13578 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13579 { 13580 bool priv = arm_current_el(env) != 0; 13581 13582 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); 13583 } 13584 13585 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13586 { 13587 int el; 13588 13589 if (arm_feature(env, ARM_FEATURE_M)) { 13590 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13591 } 13592 13593 el = arm_current_el(env); 13594 if (el < 2 && arm_is_secure_below_el3(env)) { 13595 return ARMMMUIdx_S1SE0 + el; 13596 } else { 13597 return ARMMMUIdx_S12NSE0 + el; 13598 } 13599 } 13600 13601 int cpu_mmu_index(CPUARMState *env, bool ifetch) 13602 { 13603 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 13604 } 13605 13606 #ifndef CONFIG_USER_ONLY 13607 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13608 { 13609 return stage_1_mmu_idx(arm_mmu_idx(env)); 13610 } 13611 #endif 13612 13613 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13614 target_ulong *cs_base, uint32_t *pflags) 13615 { 13616 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13617 int current_el = arm_current_el(env); 13618 int fp_el = fp_exception_el(env, current_el); 13619 uint32_t flags = 0; 13620 13621 if (is_a64(env)) { 13622 ARMCPU *cpu = arm_env_get_cpu(env); 13623 13624 *pc = env->pc; 13625 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13626 13627 #ifndef CONFIG_USER_ONLY 13628 /* 13629 * Get control bits for tagged addresses. Note that the 13630 * translator only uses this for instruction addresses. 13631 */ 13632 { 13633 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13634 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 13635 int tbii, tbid; 13636 13637 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 13638 if (regime_el(env, stage1) < 2) { 13639 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 13640 tbid = (p1.tbi << 1) | p0.tbi; 13641 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 13642 } else { 13643 tbid = p0.tbi; 13644 tbii = tbid & !p0.tbid; 13645 } 13646 13647 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13648 } 13649 #endif 13650 13651 if (cpu_isar_feature(aa64_sve, cpu)) { 13652 int sve_el = sve_exception_el(env, current_el); 13653 uint32_t zcr_len; 13654 13655 /* If SVE is disabled, but FP is enabled, 13656 * then the effective len is 0. 13657 */ 13658 if (sve_el != 0 && fp_el == 0) { 13659 zcr_len = 0; 13660 } else { 13661 zcr_len = sve_zcr_len_for_el(env, current_el); 13662 } 13663 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13664 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13665 } 13666 13667 if (cpu_isar_feature(aa64_pauth, cpu)) { 13668 /* 13669 * In order to save space in flags, we record only whether 13670 * pauth is "inactive", meaning all insns are implemented as 13671 * a nop, or "active" when some action must be performed. 13672 * The decision of which action to take is left to a helper. 13673 */ 13674 uint64_t sctlr; 13675 if (current_el == 0) { 13676 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 13677 sctlr = env->cp15.sctlr_el[1]; 13678 } else { 13679 sctlr = env->cp15.sctlr_el[current_el]; 13680 } 13681 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13682 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13683 } 13684 } 13685 } else { 13686 *pc = env->regs[15]; 13687 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 13688 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 13689 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 13690 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 13691 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 13692 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 13693 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 13694 || arm_el_is_aa64(env, 1)) { 13695 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13696 } 13697 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar); 13698 } 13699 13700 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13701 13702 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13703 * states defined in the ARM ARM for software singlestep: 13704 * SS_ACTIVE PSTATE.SS State 13705 * 0 x Inactive (the TB flag for SS is always 0) 13706 * 1 0 Active-pending 13707 * 1 1 Active-not-pending 13708 */ 13709 if (arm_singlestep_active(env)) { 13710 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 13711 if (is_a64(env)) { 13712 if (env->pstate & PSTATE_SS) { 13713 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13714 } 13715 } else { 13716 if (env->uncached_cpsr & PSTATE_SS) { 13717 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13718 } 13719 } 13720 } 13721 if (arm_cpu_data_is_big_endian(env)) { 13722 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13723 } 13724 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 13725 13726 if (arm_v7m_is_handler_mode(env)) { 13727 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 13728 } 13729 13730 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 13731 * suppressing them because the requested execution priority is less than 0. 13732 */ 13733 if (arm_feature(env, ARM_FEATURE_V8) && 13734 arm_feature(env, ARM_FEATURE_M) && 13735 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13736 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13737 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 13738 } 13739 13740 *pflags = flags; 13741 *cs_base = 0; 13742 } 13743 13744 #ifdef TARGET_AARCH64 13745 /* 13746 * The manual says that when SVE is enabled and VQ is widened the 13747 * implementation is allowed to zero the previously inaccessible 13748 * portion of the registers. The corollary to that is that when 13749 * SVE is enabled and VQ is narrowed we are also allowed to zero 13750 * the now inaccessible portion of the registers. 13751 * 13752 * The intent of this is that no predicate bit beyond VQ is ever set. 13753 * Which means that some operations on predicate registers themselves 13754 * may operate on full uint64_t or even unrolled across the maximum 13755 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13756 * may well be cheaper than conditionals to restrict the operation 13757 * to the relevant portion of a uint16_t[16]. 13758 */ 13759 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13760 { 13761 int i, j; 13762 uint64_t pmask; 13763 13764 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13765 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 13766 13767 /* Zap the high bits of the zregs. */ 13768 for (i = 0; i < 32; i++) { 13769 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13770 } 13771 13772 /* Zap the high bits of the pregs and ffr. */ 13773 pmask = 0; 13774 if (vq & 3) { 13775 pmask = ~(-1ULL << (16 * (vq & 3))); 13776 } 13777 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13778 for (i = 0; i < 17; ++i) { 13779 env->vfp.pregs[i].p[j] &= pmask; 13780 } 13781 pmask = 0; 13782 } 13783 } 13784 13785 /* 13786 * Notice a change in SVE vector size when changing EL. 13787 */ 13788 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13789 int new_el, bool el0_a64) 13790 { 13791 ARMCPU *cpu = arm_env_get_cpu(env); 13792 int old_len, new_len; 13793 bool old_a64, new_a64; 13794 13795 /* Nothing to do if no SVE. */ 13796 if (!cpu_isar_feature(aa64_sve, cpu)) { 13797 return; 13798 } 13799 13800 /* Nothing to do if FP is disabled in either EL. */ 13801 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13802 return; 13803 } 13804 13805 /* 13806 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13807 * at ELx, or not available because the EL is in AArch32 state, then 13808 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13809 * has an effective value of 0". 13810 * 13811 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13812 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13813 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13814 * we already have the correct register contents when encountering the 13815 * vq0->vq0 transition between EL0->EL1. 13816 */ 13817 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13818 old_len = (old_a64 && !sve_exception_el(env, old_el) 13819 ? sve_zcr_len_for_el(env, old_el) : 0); 13820 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13821 new_len = (new_a64 && !sve_exception_el(env, new_el) 13822 ? sve_zcr_len_for_el(env, new_el) : 0); 13823 13824 /* When changing vector length, clear inaccessible state. */ 13825 if (new_len < old_len) { 13826 aarch64_sve_narrow_vq(env, new_len + 1); 13827 } 13828 } 13829 #endif 13830