1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 #include "cpregs.h" 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint32_t regidx = (uintptr_t)key; 218 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 222 /* The value array need not be initialized at this point */ 223 cpu->cpreg_array_len++; 224 } 225 } 226 227 static void count_cpreg(gpointer key, gpointer opaque) 228 { 229 ARMCPU *cpu = opaque; 230 const ARMCPRegInfo *ri; 231 232 ri = g_hash_table_lookup(cpu->cp_regs, key); 233 234 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 235 cpu->cpreg_array_len++; 236 } 237 } 238 239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 240 { 241 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 242 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 243 244 if (aidx > bidx) { 245 return 1; 246 } 247 if (aidx < bidx) { 248 return -1; 249 } 250 return 0; 251 } 252 253 void init_cpreg_list(ARMCPU *cpu) 254 { 255 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 256 * Note that we require cpreg_tuples[] to be sorted by key ID. 257 */ 258 GList *keys; 259 int arraylen; 260 261 keys = g_hash_table_get_keys(cpu->cp_regs); 262 keys = g_list_sort(keys, cpreg_key_compare); 263 264 cpu->cpreg_array_len = 0; 265 266 g_list_foreach(keys, count_cpreg, cpu); 267 268 arraylen = cpu->cpreg_array_len; 269 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 270 cpu->cpreg_values = g_new(uint64_t, arraylen); 271 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 272 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 273 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 274 cpu->cpreg_array_len = 0; 275 276 g_list_foreach(keys, add_cpreg_to_list, cpu); 277 278 assert(cpu->cpreg_array_len == arraylen); 279 280 g_list_free(keys); 281 } 282 283 /* 284 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 285 */ 286 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (!is_a64(env) && arm_current_el(env) == 3 && 291 arm_is_secure_below_el3(env)) { 292 return CP_ACCESS_TRAP_UNCATEGORIZED; 293 } 294 return CP_ACCESS_OK; 295 } 296 297 /* Some secure-only AArch32 registers trap to EL3 if used from 298 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 299 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 300 * We assume that the .access field is set to PL1_RW. 301 */ 302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 303 const ARMCPRegInfo *ri, 304 bool isread) 305 { 306 if (arm_current_el(env) == 3) { 307 return CP_ACCESS_OK; 308 } 309 if (arm_is_secure_below_el3(env)) { 310 if (env->cp15.scr_el3 & SCR_EEL2) { 311 return CP_ACCESS_TRAP_EL2; 312 } 313 return CP_ACCESS_TRAP_EL3; 314 } 315 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 316 return CP_ACCESS_TRAP_UNCATEGORIZED; 317 } 318 319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 320 { 321 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 322 } 323 324 /* Check for traps to "powerdown debug" registers, which are controlled 325 * by MDCR.TDOSA 326 */ 327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 328 bool isread) 329 { 330 int el = arm_current_el(env); 331 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 332 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 333 (arm_hcr_el2_eff(env) & HCR_TGE); 334 335 if (el < 2 && mdcr_el2_tdosa) { 336 return CP_ACCESS_TRAP_EL2; 337 } 338 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 339 return CP_ACCESS_TRAP_EL3; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps to "debug ROM" registers, which are controlled 345 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 346 */ 347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 348 bool isread) 349 { 350 int el = arm_current_el(env); 351 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 352 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 353 (arm_hcr_el2_eff(env) & HCR_TGE); 354 355 if (el < 2 && mdcr_el2_tdra) { 356 return CP_ACCESS_TRAP_EL2; 357 } 358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 359 return CP_ACCESS_TRAP_EL3; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps to general debug registers, which are controlled 365 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 366 */ 367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 368 bool isread) 369 { 370 int el = arm_current_el(env); 371 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 372 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 373 (arm_hcr_el2_eff(env) & HCR_TGE); 374 375 if (el < 2 && mdcr_el2_tda) { 376 return CP_ACCESS_TRAP_EL2; 377 } 378 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 379 return CP_ACCESS_TRAP_EL3; 380 } 381 return CP_ACCESS_OK; 382 } 383 384 /* Check for traps to performance monitor registers, which are controlled 385 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 386 */ 387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 int el = arm_current_el(env); 391 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 392 393 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 394 return CP_ACCESS_TRAP_EL2; 395 } 396 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 397 return CP_ACCESS_TRAP_EL3; 398 } 399 return CP_ACCESS_OK; 400 } 401 402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 if (arm_current_el(env) == 1) { 407 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 408 if (arm_hcr_el2_eff(env) & trap) { 409 return CP_ACCESS_TRAP_EL2; 410 } 411 } 412 return CP_ACCESS_OK; 413 } 414 415 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 430 return CP_ACCESS_TRAP_EL2; 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 440 return CP_ACCESS_TRAP_EL2; 441 } 442 return CP_ACCESS_OK; 443 } 444 445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 446 { 447 ARMCPU *cpu = env_archcpu(env); 448 449 raw_write(env, ri, value); 450 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 451 } 452 453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value) { 458 /* Unlike real hardware the qemu TLB uses virtual addresses, 459 * not modified virtual addresses, so this causes a TLB flush. 460 */ 461 tlb_flush(CPU(cpu)); 462 raw_write(env, ri, value); 463 } 464 } 465 466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 467 uint64_t value) 468 { 469 ARMCPU *cpu = env_archcpu(env); 470 471 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 472 && !extended_addresses_enabled(env)) { 473 /* For VMSA (when not using the LPAE long descriptor page table 474 * format) this register includes the ASID, so do a TLB flush. 475 * For PMSA it is purely a process ID and no action is needed. 476 */ 477 tlb_flush(CPU(cpu)); 478 } 479 raw_write(env, ri, value); 480 } 481 482 /* IS variants of TLB operations must affect all cores */ 483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 CPUState *cs = env_cpu(env); 487 488 tlb_flush_all_cpus_synced(cs); 489 } 490 491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 492 uint64_t value) 493 { 494 CPUState *cs = env_cpu(env); 495 496 tlb_flush_all_cpus_synced(cs); 497 } 498 499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 505 } 506 507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 508 uint64_t value) 509 { 510 CPUState *cs = env_cpu(env); 511 512 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 513 } 514 515 /* 516 * Non-IS variants of TLB operations are upgraded to 517 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 518 * force broadcast of these operations. 519 */ 520 static bool tlb_force_broadcast(CPUARMState *env) 521 { 522 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 523 } 524 525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate all (TLBIALL) */ 529 CPUState *cs = env_cpu(env); 530 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_all_cpus_synced(cs); 533 } else { 534 tlb_flush(cs); 535 } 536 } 537 538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 542 CPUState *cs = env_cpu(env); 543 544 value &= TARGET_PAGE_MASK; 545 if (tlb_force_broadcast(env)) { 546 tlb_flush_page_all_cpus_synced(cs, value); 547 } else { 548 tlb_flush_page(cs, value); 549 } 550 } 551 552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 553 uint64_t value) 554 { 555 /* Invalidate by ASID (TLBIASID) */ 556 CPUState *cs = env_cpu(env); 557 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_all_cpus_synced(cs); 560 } else { 561 tlb_flush(cs); 562 } 563 } 564 565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 569 CPUState *cs = env_cpu(env); 570 571 value &= TARGET_PAGE_MASK; 572 if (tlb_force_broadcast(env)) { 573 tlb_flush_page_all_cpus_synced(cs, value); 574 } else { 575 tlb_flush_page(cs, value); 576 } 577 } 578 579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 CPUState *cs = env_cpu(env); 583 584 tlb_flush_by_mmuidx(cs, 585 ARMMMUIdxBit_E10_1 | 586 ARMMMUIdxBit_E10_1_PAN | 587 ARMMMUIdxBit_E10_0); 588 } 589 590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 591 uint64_t value) 592 { 593 CPUState *cs = env_cpu(env); 594 595 tlb_flush_by_mmuidx_all_cpus_synced(cs, 596 ARMMMUIdxBit_E10_1 | 597 ARMMMUIdxBit_E10_1_PAN | 598 ARMMMUIdxBit_E10_0); 599 } 600 601 602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 603 uint64_t value) 604 { 605 CPUState *cs = env_cpu(env); 606 607 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 608 } 609 610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 CPUState *cs = env_cpu(env); 614 615 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 616 } 617 618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 CPUState *cs = env_cpu(env); 622 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 623 624 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 625 } 626 627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = env_cpu(env); 631 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 632 633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 634 ARMMMUIdxBit_E2); 635 } 636 637 static const ARMCPRegInfo cp_reginfo[] = { 638 /* Define the secure and non-secure FCSE identifier CP registers 639 * separately because there is no secure bank in V8 (no _EL3). This allows 640 * the secure register to be properly reset and migrated. There is also no 641 * v8 EL1 version of the register so the non-secure instance stands alone. 642 */ 643 { .name = "FCSEIDR", 644 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 645 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 646 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 647 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 648 { .name = "FCSEIDR_S", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 /* Define the secure and non-secure context identifier CP registers 654 * separately because there is no secure bank in V8 (no _EL3). This allows 655 * the secure register to be properly reset and migrated. In the 656 * non-secure case, the 32-bit register will have reset and migration 657 * disabled during registration as it is handled by the 64-bit instance. 658 */ 659 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 660 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .secure = ARM_CP_SECSTATE_NS, 663 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 664 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 665 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 666 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 667 .access = PL1_RW, .accessfn = access_tvm_trvm, 668 .secure = ARM_CP_SECSTATE_S, 669 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 670 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 671 }; 672 673 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 674 /* NB: Some of these registers exist in v8 but with more precise 675 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 676 */ 677 /* MMU Domain access control / MPU write buffer control */ 678 { .name = "DACR", 679 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 681 .writefn = dacr_write, .raw_writefn = raw_write, 682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 684 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 685 * For v6 and v5, these mappings are overly broad. 686 */ 687 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 688 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 689 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 690 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 691 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 692 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 /* Cache maintenance ops; some of this space may be overridden later. */ 696 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 697 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 698 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 699 }; 700 701 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 702 /* Not all pre-v6 cores implemented this WFI, so this is slightly 703 * over-broad. 704 */ 705 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 706 .access = PL1_W, .type = ARM_CP_WFI }, 707 }; 708 709 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 710 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 711 * is UNPREDICTABLE; we choose to NOP as most implementations do). 712 */ 713 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 714 .access = PL1_W, .type = ARM_CP_WFI }, 715 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 716 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 717 * OMAPCP will override this space. 718 */ 719 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 720 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 721 .resetvalue = 0 }, 722 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 723 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 724 .resetvalue = 0 }, 725 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 726 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 727 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 728 .resetvalue = 0 }, 729 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 730 * implementing it as RAZ means the "debug architecture version" bits 731 * will read as a reserved value, which should cause Linux to not try 732 * to use the debug hardware. 733 */ 734 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 735 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 736 /* MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 765 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 766 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 767 */ 768 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 769 /* VFP coprocessor: cp10 & cp11 [23:20] */ 770 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 771 772 if (!arm_feature(env, ARM_FEATURE_NEON)) { 773 /* ASEDIS [31] bit is RAO/WI */ 774 value |= (1 << 31); 775 } 776 777 /* VFPv3 and upwards with NEON implement 32 double precision 778 * registers (D0-D31). 779 */ 780 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 781 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 782 value |= (1 << 30); 783 } 784 } 785 value &= mask; 786 } 787 788 /* 789 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 790 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 791 */ 792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 793 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 794 value &= ~(0xf << 20); 795 value |= env->cp15.cpacr_el1 & (0xf << 20); 796 } 797 798 env->cp15.cpacr_el1 = value; 799 } 800 801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 802 { 803 /* 804 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 805 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 806 */ 807 uint64_t value = env->cp15.cpacr_el1; 808 809 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 810 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 811 value &= ~(0xf << 20); 812 } 813 return value; 814 } 815 816 817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 818 { 819 /* Call cpacr_write() so that we reset with the correct RAO bits set 820 * for our CPU features. 821 */ 822 cpacr_write(env, ri, 0); 823 } 824 825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 826 bool isread) 827 { 828 if (arm_feature(env, ARM_FEATURE_V8)) { 829 /* Check if CPACR accesses are to be trapped to EL2 */ 830 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 831 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 832 return CP_ACCESS_TRAP_EL2; 833 /* Check if CPACR accesses are to be trapped to EL3 */ 834 } else if (arm_current_el(env) < 3 && 835 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 836 return CP_ACCESS_TRAP_EL3; 837 } 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 /* Check if CPTR accesses are set to trap to EL3 */ 847 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 848 return CP_ACCESS_TRAP_EL3; 849 } 850 851 return CP_ACCESS_OK; 852 } 853 854 static const ARMCPRegInfo v6_cp_reginfo[] = { 855 /* prefetch by MVA in v6, NOP in v7 */ 856 { .name = "MVA_prefetch", 857 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 858 .access = PL1_W, .type = ARM_CP_NOP }, 859 /* We need to break the TB after ISB to execute self-modifying code 860 * correctly and also to take any pending interrupts immediately. 861 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 862 */ 863 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 864 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 865 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 866 .access = PL0_W, .type = ARM_CP_NOP }, 867 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 868 .access = PL0_W, .type = ARM_CP_NOP }, 869 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 870 .access = PL1_RW, .accessfn = access_tvm_trvm, 871 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 872 offsetof(CPUARMState, cp15.ifar_ns) }, 873 .resetvalue = 0, }, 874 /* Watchpoint Fault Address Register : should actually only be present 875 * for 1136, 1176, 11MPCore. 876 */ 877 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 878 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 879 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 880 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 882 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 883 }; 884 885 typedef struct pm_event { 886 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 887 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 888 bool (*supported)(CPUARMState *); 889 /* 890 * Retrieve the current count of the underlying event. The programmed 891 * counters hold a difference from the return value from this function 892 */ 893 uint64_t (*get_count)(CPUARMState *); 894 /* 895 * Return how many nanoseconds it will take (at a minimum) for count events 896 * to occur. A negative value indicates the counter will never overflow, or 897 * that the counter has otherwise arranged for the overflow bit to be set 898 * and the PMU interrupt to be raised on overflow. 899 */ 900 int64_t (*ns_per_count)(uint64_t); 901 } pm_event; 902 903 static bool event_always_supported(CPUARMState *env) 904 { 905 return true; 906 } 907 908 static uint64_t swinc_get_count(CPUARMState *env) 909 { 910 /* 911 * SW_INCR events are written directly to the pmevcntr's by writes to 912 * PMSWINC, so there is no underlying count maintained by the PMU itself 913 */ 914 return 0; 915 } 916 917 static int64_t swinc_ns_per(uint64_t ignored) 918 { 919 return -1; 920 } 921 922 /* 923 * Return the underlying cycle count for the PMU cycle counters. If we're in 924 * usermode, simply return 0. 925 */ 926 static uint64_t cycles_get_count(CPUARMState *env) 927 { 928 #ifndef CONFIG_USER_ONLY 929 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 #else 932 return cpu_get_host_ticks(); 933 #endif 934 } 935 936 #ifndef CONFIG_USER_ONLY 937 static int64_t cycles_ns_per(uint64_t cycles) 938 { 939 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 940 } 941 942 static bool instructions_supported(CPUARMState *env) 943 { 944 return icount_enabled() == 1; /* Precise instruction counting */ 945 } 946 947 static uint64_t instructions_get_count(CPUARMState *env) 948 { 949 return (uint64_t)icount_get_raw(); 950 } 951 952 static int64_t instructions_ns_per(uint64_t icount) 953 { 954 return icount_to_ns((int64_t)icount); 955 } 956 #endif 957 958 static bool pmu_8_1_events_supported(CPUARMState *env) 959 { 960 /* For events which are supported in any v8.1 PMU */ 961 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 962 } 963 964 static bool pmu_8_4_events_supported(CPUARMState *env) 965 { 966 /* For events which are supported in any v8.1 PMU */ 967 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 968 } 969 970 static uint64_t zero_event_get_count(CPUARMState *env) 971 { 972 /* For events which on QEMU never fire, so their count is always zero */ 973 return 0; 974 } 975 976 static int64_t zero_event_ns_per(uint64_t cycles) 977 { 978 /* An event which never fires can never overflow */ 979 return -1; 980 } 981 982 static const pm_event pm_events[] = { 983 { .number = 0x000, /* SW_INCR */ 984 .supported = event_always_supported, 985 .get_count = swinc_get_count, 986 .ns_per_count = swinc_ns_per, 987 }, 988 #ifndef CONFIG_USER_ONLY 989 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 990 .supported = instructions_supported, 991 .get_count = instructions_get_count, 992 .ns_per_count = instructions_ns_per, 993 }, 994 { .number = 0x011, /* CPU_CYCLES, Cycle */ 995 .supported = event_always_supported, 996 .get_count = cycles_get_count, 997 .ns_per_count = cycles_ns_per, 998 }, 999 #endif 1000 { .number = 0x023, /* STALL_FRONTEND */ 1001 .supported = pmu_8_1_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 { .number = 0x024, /* STALL_BACKEND */ 1006 .supported = pmu_8_1_events_supported, 1007 .get_count = zero_event_get_count, 1008 .ns_per_count = zero_event_ns_per, 1009 }, 1010 { .number = 0x03c, /* STALL */ 1011 .supported = pmu_8_4_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 }; 1016 1017 /* 1018 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1019 * events (i.e. the statistical profiling extension), this implementation 1020 * should first be updated to something sparse instead of the current 1021 * supported_event_map[] array. 1022 */ 1023 #define MAX_EVENT_ID 0x3c 1024 #define UNSUPPORTED_EVENT UINT16_MAX 1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1026 1027 /* 1028 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1029 * of ARM event numbers to indices in our pm_events array. 1030 * 1031 * Note: Events in the 0x40XX range are not currently supported. 1032 */ 1033 void pmu_init(ARMCPU *cpu) 1034 { 1035 unsigned int i; 1036 1037 /* 1038 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1039 * events to them 1040 */ 1041 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1042 supported_event_map[i] = UNSUPPORTED_EVENT; 1043 } 1044 cpu->pmceid0 = 0; 1045 cpu->pmceid1 = 0; 1046 1047 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1048 const pm_event *cnt = &pm_events[i]; 1049 assert(cnt->number <= MAX_EVENT_ID); 1050 /* We do not currently support events in the 0x40xx range */ 1051 assert(cnt->number <= 0x3f); 1052 1053 if (cnt->supported(&cpu->env)) { 1054 supported_event_map[cnt->number] = i; 1055 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1056 if (cnt->number & 0x20) { 1057 cpu->pmceid1 |= event_mask; 1058 } else { 1059 cpu->pmceid0 |= event_mask; 1060 } 1061 } 1062 } 1063 } 1064 1065 /* 1066 * Check at runtime whether a PMU event is supported for the current machine 1067 */ 1068 static bool event_supported(uint16_t number) 1069 { 1070 if (number > MAX_EVENT_ID) { 1071 return false; 1072 } 1073 return supported_event_map[number] != UNSUPPORTED_EVENT; 1074 } 1075 1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1077 bool isread) 1078 { 1079 /* Performance monitor registers user accessibility is controlled 1080 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1081 * trapping to EL2 or EL3 for other accesses. 1082 */ 1083 int el = arm_current_el(env); 1084 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1085 1086 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1087 return CP_ACCESS_TRAP; 1088 } 1089 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1090 return CP_ACCESS_TRAP_EL2; 1091 } 1092 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1093 return CP_ACCESS_TRAP_EL3; 1094 } 1095 1096 return CP_ACCESS_OK; 1097 } 1098 1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1100 const ARMCPRegInfo *ri, 1101 bool isread) 1102 { 1103 /* ER: event counter read trap control */ 1104 if (arm_feature(env, ARM_FEATURE_V8) 1105 && arm_current_el(env) == 0 1106 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1107 && isread) { 1108 return CP_ACCESS_OK; 1109 } 1110 1111 return pmreg_access(env, ri, isread); 1112 } 1113 1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* SW: software increment write trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1122 && !isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* ER: event counter read trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1137 return CP_ACCESS_OK; 1138 } 1139 1140 return pmreg_access(env, ri, isread); 1141 } 1142 1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1144 const ARMCPRegInfo *ri, 1145 bool isread) 1146 { 1147 /* CR: cycle counter read trap control */ 1148 if (arm_feature(env, ARM_FEATURE_V8) 1149 && arm_current_el(env) == 0 1150 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1151 && isread) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1159 * the current EL, security state, and register configuration. 1160 */ 1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1162 { 1163 uint64_t filter; 1164 bool e, p, u, nsk, nsu, nsh, m; 1165 bool enabled, prohibited, filtered; 1166 bool secure = arm_is_secure(env); 1167 int el = arm_current_el(env); 1168 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1169 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1170 1171 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1172 return false; 1173 } 1174 1175 if (!arm_feature(env, ARM_FEATURE_EL2) || 1176 (counter < hpmn || counter == 31)) { 1177 e = env->cp15.c9_pmcr & PMCRE; 1178 } else { 1179 e = mdcr_el2 & MDCR_HPME; 1180 } 1181 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1182 1183 if (!secure) { 1184 if (el == 2 && (counter < hpmn || counter == 31)) { 1185 prohibited = mdcr_el2 & MDCR_HPMD; 1186 } else { 1187 prohibited = false; 1188 } 1189 } else { 1190 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1191 !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (prohibited && counter == 31) { 1195 prohibited = env->cp15.c9_pmcr & PMCRDP; 1196 } 1197 1198 if (counter == 31) { 1199 filter = env->cp15.pmccfiltr_el0; 1200 } else { 1201 filter = env->cp15.c14_pmevtyper[counter]; 1202 } 1203 1204 p = filter & PMXEVTYPER_P; 1205 u = filter & PMXEVTYPER_U; 1206 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1207 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1208 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1209 m = arm_el_is_aa64(env, 1) && 1210 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1211 1212 if (el == 0) { 1213 filtered = secure ? u : u != nsu; 1214 } else if (el == 1) { 1215 filtered = secure ? p : p != nsk; 1216 } else if (el == 2) { 1217 filtered = !nsh; 1218 } else { /* EL3 */ 1219 filtered = m != p; 1220 } 1221 1222 if (counter != 31) { 1223 /* 1224 * If not checking PMCCNTR, ensure the counter is setup to an event we 1225 * support 1226 */ 1227 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1228 if (!event_supported(event)) { 1229 return false; 1230 } 1231 } 1232 1233 return enabled && !prohibited && !filtered; 1234 } 1235 1236 static void pmu_update_irq(CPUARMState *env) 1237 { 1238 ARMCPU *cpu = env_archcpu(env); 1239 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1240 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1241 } 1242 1243 /* 1244 * Ensure c15_ccnt is the guest-visible count so that operations such as 1245 * enabling/disabling the counter or filtering, modifying the count itself, 1246 * etc. can be done logically. This is essentially a no-op if the counter is 1247 * not enabled at the time of the call. 1248 */ 1249 static void pmccntr_op_start(CPUARMState *env) 1250 { 1251 uint64_t cycles = cycles_get_count(env); 1252 1253 if (pmu_counter_enabled(env, 31)) { 1254 uint64_t eff_cycles = cycles; 1255 if (env->cp15.c9_pmcr & PMCRD) { 1256 /* Increment once every 64 processor clock cycles */ 1257 eff_cycles /= 64; 1258 } 1259 1260 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1261 1262 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1263 1ull << 63 : 1ull << 31; 1264 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1265 env->cp15.c9_pmovsr |= (1 << 31); 1266 pmu_update_irq(env); 1267 } 1268 1269 env->cp15.c15_ccnt = new_pmccntr; 1270 } 1271 env->cp15.c15_ccnt_delta = cycles; 1272 } 1273 1274 /* 1275 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1276 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1277 * pmccntr_op_start. 1278 */ 1279 static void pmccntr_op_finish(CPUARMState *env) 1280 { 1281 if (pmu_counter_enabled(env, 31)) { 1282 #ifndef CONFIG_USER_ONLY 1283 /* Calculate when the counter will next overflow */ 1284 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1285 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1286 remaining_cycles = (uint32_t)remaining_cycles; 1287 } 1288 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1289 1290 if (overflow_in > 0) { 1291 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1292 overflow_in; 1293 ARMCPU *cpu = env_archcpu(env); 1294 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1295 } 1296 #endif 1297 1298 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1299 if (env->cp15.c9_pmcr & PMCRD) { 1300 /* Increment once every 64 processor clock cycles */ 1301 prev_cycles /= 64; 1302 } 1303 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1304 } 1305 } 1306 1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1308 { 1309 1310 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1311 uint64_t count = 0; 1312 if (event_supported(event)) { 1313 uint16_t event_idx = supported_event_map[event]; 1314 count = pm_events[event_idx].get_count(env); 1315 } 1316 1317 if (pmu_counter_enabled(env, counter)) { 1318 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1319 1320 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1321 env->cp15.c9_pmovsr |= (1 << counter); 1322 pmu_update_irq(env); 1323 } 1324 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1325 } 1326 env->cp15.c14_pmevcntr_delta[counter] = count; 1327 } 1328 1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1330 { 1331 if (pmu_counter_enabled(env, counter)) { 1332 #ifndef CONFIG_USER_ONLY 1333 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1334 uint16_t event_idx = supported_event_map[event]; 1335 uint64_t delta = UINT32_MAX - 1336 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1337 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1341 overflow_in; 1342 ARMCPU *cpu = env_archcpu(env); 1343 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1344 } 1345 #endif 1346 1347 env->cp15.c14_pmevcntr_delta[counter] -= 1348 env->cp15.c14_pmevcntr[counter]; 1349 } 1350 } 1351 1352 void pmu_op_start(CPUARMState *env) 1353 { 1354 unsigned int i; 1355 pmccntr_op_start(env); 1356 for (i = 0; i < pmu_num_counters(env); i++) { 1357 pmevcntr_op_start(env, i); 1358 } 1359 } 1360 1361 void pmu_op_finish(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_finish(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_finish(env, i); 1367 } 1368 } 1369 1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1371 { 1372 pmu_op_start(&cpu->env); 1373 } 1374 1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1376 { 1377 pmu_op_finish(&cpu->env); 1378 } 1379 1380 void arm_pmu_timer_cb(void *opaque) 1381 { 1382 ARMCPU *cpu = opaque; 1383 1384 /* 1385 * Update all the counter values based on the current underlying counts, 1386 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1387 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1388 * counter may expire. 1389 */ 1390 pmu_op_start(&cpu->env); 1391 pmu_op_finish(&cpu->env); 1392 } 1393 1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1395 uint64_t value) 1396 { 1397 pmu_op_start(env); 1398 1399 if (value & PMCRC) { 1400 /* The counter has been reset */ 1401 env->cp15.c15_ccnt = 0; 1402 } 1403 1404 if (value & PMCRP) { 1405 unsigned int i; 1406 for (i = 0; i < pmu_num_counters(env); i++) { 1407 env->cp15.c14_pmevcntr[i] = 0; 1408 } 1409 } 1410 1411 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1412 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1413 1414 pmu_op_finish(env); 1415 } 1416 1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1418 uint64_t value) 1419 { 1420 unsigned int i; 1421 for (i = 0; i < pmu_num_counters(env); i++) { 1422 /* Increment a counter's count iff: */ 1423 if ((value & (1 << i)) && /* counter's bit is set */ 1424 /* counter is enabled and not filtered */ 1425 pmu_counter_enabled(env, i) && 1426 /* counter is SW_INCR */ 1427 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1428 pmevcntr_op_start(env, i); 1429 1430 /* 1431 * Detect if this write causes an overflow since we can't predict 1432 * PMSWINC overflows like we can for other events 1433 */ 1434 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1435 1436 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1437 env->cp15.c9_pmovsr |= (1 << i); 1438 pmu_update_irq(env); 1439 } 1440 1441 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1442 1443 pmevcntr_op_finish(env, i); 1444 } 1445 } 1446 } 1447 1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1449 { 1450 uint64_t ret; 1451 pmccntr_op_start(env); 1452 ret = env->cp15.c15_ccnt; 1453 pmccntr_op_finish(env); 1454 return ret; 1455 } 1456 1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1458 uint64_t value) 1459 { 1460 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1461 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1462 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1463 * accessed. 1464 */ 1465 env->cp15.c9_pmselr = value & 0x1f; 1466 } 1467 1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1469 uint64_t value) 1470 { 1471 pmccntr_op_start(env); 1472 env->cp15.c15_ccnt = value; 1473 pmccntr_op_finish(env); 1474 } 1475 1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 uint64_t cur_val = pmccntr_read(env, NULL); 1480 1481 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1482 } 1483 1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmccntr_op_start(env); 1488 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1493 uint64_t value) 1494 { 1495 pmccntr_op_start(env); 1496 /* M is not accessible from AArch32 */ 1497 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1498 (value & PMCCFILTR); 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1503 { 1504 /* M is not visible in AArch32 */ 1505 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1506 } 1507 1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1509 uint64_t value) 1510 { 1511 value &= pmu_counter_mask(env); 1512 env->cp15.c9_pmcnten |= value; 1513 } 1514 1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 value &= pmu_counter_mask(env); 1519 env->cp15.c9_pmcnten &= ~value; 1520 } 1521 1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 value &= pmu_counter_mask(env); 1526 env->cp15.c9_pmovsr &= ~value; 1527 pmu_update_irq(env); 1528 } 1529 1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 value &= pmu_counter_mask(env); 1534 env->cp15.c9_pmovsr |= value; 1535 pmu_update_irq(env); 1536 } 1537 1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1539 uint64_t value, const uint8_t counter) 1540 { 1541 if (counter == 31) { 1542 pmccfiltr_write(env, ri, value); 1543 } else if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 1546 /* 1547 * If this counter's event type is changing, store the current 1548 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1549 * pmevcntr_op_finish has the correct baseline when it converts back to 1550 * a delta. 1551 */ 1552 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1553 PMXEVTYPER_EVTCOUNT; 1554 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1555 if (old_event != new_event) { 1556 uint64_t count = 0; 1557 if (event_supported(new_event)) { 1558 uint16_t event_idx = supported_event_map[new_event]; 1559 count = pm_events[event_idx].get_count(env); 1560 } 1561 env->cp15.c14_pmevcntr_delta[counter] = count; 1562 } 1563 1564 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1565 pmevcntr_op_finish(env, counter); 1566 } 1567 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1568 * PMSELR value is equal to or greater than the number of implemented 1569 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1570 */ 1571 } 1572 1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1574 const uint8_t counter) 1575 { 1576 if (counter == 31) { 1577 return env->cp15.pmccfiltr_el0; 1578 } else if (counter < pmu_num_counters(env)) { 1579 return env->cp15.c14_pmevtyper[counter]; 1580 } else { 1581 /* 1582 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1583 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1584 */ 1585 return 0; 1586 } 1587 } 1588 1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 pmevtyper_write(env, ri, value, counter); 1594 } 1595 1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 env->cp15.c14_pmevtyper[counter] = value; 1601 1602 /* 1603 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1604 * pmu_op_finish calls when loading saved state for a migration. Because 1605 * we're potentially updating the type of event here, the value written to 1606 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1607 * different counter type. Therefore, we need to set this value to the 1608 * current count for the counter type we're writing so that pmu_op_finish 1609 * has the correct count for its calculation. 1610 */ 1611 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1612 if (event_supported(event)) { 1613 uint16_t event_idx = supported_event_map[event]; 1614 env->cp15.c14_pmevcntr_delta[counter] = 1615 pm_events[event_idx].get_count(env); 1616 } 1617 } 1618 1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1622 return pmevtyper_read(env, ri, counter); 1623 } 1624 1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1629 } 1630 1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1634 } 1635 1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value, uint8_t counter) 1638 { 1639 if (counter < pmu_num_counters(env)) { 1640 pmevcntr_op_start(env, counter); 1641 env->cp15.c14_pmevcntr[counter] = value; 1642 pmevcntr_op_finish(env, counter); 1643 } 1644 /* 1645 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1646 * are CONSTRAINED UNPREDICTABLE. 1647 */ 1648 } 1649 1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1651 uint8_t counter) 1652 { 1653 if (counter < pmu_num_counters(env)) { 1654 uint64_t ret; 1655 pmevcntr_op_start(env, counter); 1656 ret = env->cp15.c14_pmevcntr[counter]; 1657 pmevcntr_op_finish(env, counter); 1658 return ret; 1659 } else { 1660 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1661 * are CONSTRAINED UNPREDICTABLE. */ 1662 return 0; 1663 } 1664 } 1665 1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1670 pmevcntr_write(env, ri, value, counter); 1671 } 1672 1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1676 return pmevcntr_read(env, ri, counter); 1677 } 1678 1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1680 uint64_t value) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 assert(counter < pmu_num_counters(env)); 1684 env->cp15.c14_pmevcntr[counter] = value; 1685 pmevcntr_write(env, ri, value, counter); 1686 } 1687 1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1689 { 1690 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1691 assert(counter < pmu_num_counters(env)); 1692 return env->cp15.c14_pmevcntr[counter]; 1693 } 1694 1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1699 } 1700 1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1704 } 1705 1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 if (arm_feature(env, ARM_FEATURE_V8)) { 1710 env->cp15.c9_pmuserenr = value & 0xf; 1711 } else { 1712 env->cp15.c9_pmuserenr = value & 1; 1713 } 1714 } 1715 1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 /* We have no event counters so only the C bit can be changed */ 1720 value &= pmu_counter_mask(env); 1721 env->cp15.c9_pminten |= value; 1722 pmu_update_irq(env); 1723 } 1724 1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 value &= pmu_counter_mask(env); 1729 env->cp15.c9_pminten &= ~value; 1730 pmu_update_irq(env); 1731 } 1732 1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 /* Note that even though the AArch64 view of this register has bits 1737 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1738 * architectural requirements for bits which are RES0 only in some 1739 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1740 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1741 */ 1742 raw_write(env, ri, value & ~0x1FULL); 1743 } 1744 1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1746 { 1747 /* Begin with base v8.0 state. */ 1748 uint32_t valid_mask = 0x3fff; 1749 ARMCPU *cpu = env_archcpu(env); 1750 1751 if (ri->state == ARM_CP_STATE_AA64) { 1752 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1753 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1754 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1755 } 1756 valid_mask &= ~SCR_NET; 1757 1758 if (cpu_isar_feature(aa64_ras, cpu)) { 1759 valid_mask |= SCR_TERR; 1760 } 1761 if (cpu_isar_feature(aa64_lor, cpu)) { 1762 valid_mask |= SCR_TLOR; 1763 } 1764 if (cpu_isar_feature(aa64_pauth, cpu)) { 1765 valid_mask |= SCR_API | SCR_APK; 1766 } 1767 if (cpu_isar_feature(aa64_sel2, cpu)) { 1768 valid_mask |= SCR_EEL2; 1769 } 1770 if (cpu_isar_feature(aa64_mte, cpu)) { 1771 valid_mask |= SCR_ATA; 1772 } 1773 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1774 valid_mask |= SCR_ENSCXT; 1775 } 1776 } else { 1777 valid_mask &= ~(SCR_RW | SCR_ST); 1778 if (cpu_isar_feature(aa32_ras, cpu)) { 1779 valid_mask |= SCR_TERR; 1780 } 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 if (hcr_el2 & HCR_AMO) { 1870 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1871 ret |= CPSR_A; 1872 } 1873 } 1874 1875 return ret; 1876 } 1877 1878 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1879 bool isread) 1880 { 1881 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1882 return CP_ACCESS_TRAP_EL2; 1883 } 1884 1885 return CP_ACCESS_OK; 1886 } 1887 1888 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1889 bool isread) 1890 { 1891 if (arm_feature(env, ARM_FEATURE_V8)) { 1892 return access_aa64_tid1(env, ri, isread); 1893 } 1894 1895 return CP_ACCESS_OK; 1896 } 1897 1898 static const ARMCPRegInfo v7_cp_reginfo[] = { 1899 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1900 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1901 .access = PL1_W, .type = ARM_CP_NOP }, 1902 /* Performance monitors are implementation defined in v7, 1903 * but with an ARM recommended set of registers, which we 1904 * follow. 1905 * 1906 * Performance registers fall into three categories: 1907 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1908 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1909 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1910 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1911 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1912 */ 1913 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1914 .access = PL0_RW, .type = ARM_CP_ALIAS, 1915 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1916 .writefn = pmcntenset_write, 1917 .accessfn = pmreg_access, 1918 .raw_writefn = raw_write }, 1919 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1921 .access = PL0_RW, .accessfn = pmreg_access, 1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1923 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1924 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1925 .access = PL0_RW, 1926 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1927 .accessfn = pmreg_access, 1928 .writefn = pmcntenclr_write, 1929 .type = ARM_CP_ALIAS }, 1930 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1932 .access = PL0_RW, .accessfn = pmreg_access, 1933 .type = ARM_CP_ALIAS, 1934 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1935 .writefn = pmcntenclr_write }, 1936 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1937 .access = PL0_RW, .type = ARM_CP_IO, 1938 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1939 .accessfn = pmreg_access, 1940 .writefn = pmovsr_write, 1941 .raw_writefn = raw_write }, 1942 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1944 .access = PL0_RW, .accessfn = pmreg_access, 1945 .type = ARM_CP_ALIAS | ARM_CP_IO, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1947 .writefn = pmovsr_write, 1948 .raw_writefn = raw_write }, 1949 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1955 .access = PL0_W, .accessfn = pmreg_access_swinc, 1956 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1957 .writefn = pmswinc_write }, 1958 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1959 .access = PL0_RW, .type = ARM_CP_ALIAS, 1960 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1961 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1962 .raw_writefn = raw_write}, 1963 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1964 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1965 .access = PL0_RW, .accessfn = pmreg_access_selr, 1966 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1967 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1968 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1969 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1970 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1971 .accessfn = pmreg_access_ccntr }, 1972 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1973 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1974 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1975 .type = ARM_CP_IO, 1976 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1977 .readfn = pmccntr_read, .writefn = pmccntr_write, 1978 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1979 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1980 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1981 .access = PL0_RW, .accessfn = pmreg_access, 1982 .type = ARM_CP_ALIAS | ARM_CP_IO, 1983 .resetvalue = 0, }, 1984 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1986 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1987 .access = PL0_RW, .accessfn = pmreg_access, 1988 .type = ARM_CP_IO, 1989 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1990 .resetvalue = 0, }, 1991 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access, 1999 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2000 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2006 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2007 .accessfn = pmreg_access_xevcntr, 2008 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2009 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2011 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2012 .resetvalue = 0, 2013 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2014 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2015 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2016 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2017 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2018 .resetvalue = 0, 2019 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2020 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2021 .access = PL1_RW, .accessfn = access_tpm, 2022 .type = ARM_CP_ALIAS | ARM_CP_IO, 2023 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2024 .resetvalue = 0, 2025 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2026 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2027 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2028 .access = PL1_RW, .accessfn = access_tpm, 2029 .type = ARM_CP_IO, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2031 .writefn = pmintenset_write, .raw_writefn = raw_write, 2032 .resetvalue = 0x0 }, 2033 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2034 .access = PL1_RW, .accessfn = access_tpm, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write, }, 2038 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2039 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2040 .access = PL1_RW, .accessfn = access_tpm, 2041 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2042 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2043 .writefn = pmintenclr_write }, 2044 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2046 .access = PL1_R, 2047 .accessfn = access_aa64_tid2, 2048 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2049 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2050 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2051 .access = PL1_RW, 2052 .accessfn = access_aa64_tid2, 2053 .writefn = csselr_write, .resetvalue = 0, 2054 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2055 offsetof(CPUARMState, cp15.csselr_ns) } }, 2056 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2057 * just RAZ for all cores: 2058 */ 2059 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2060 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2061 .access = PL1_R, .type = ARM_CP_CONST, 2062 .accessfn = access_aa64_tid1, 2063 .resetvalue = 0 }, 2064 /* Auxiliary fault status registers: these also are IMPDEF, and we 2065 * choose to RAZ/WI for all cores. 2066 */ 2067 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .type = ARM_CP_CONST, .resetvalue = 0 }, 2075 /* MAIR can just read-as-written because we don't implement caches 2076 * and so don't need to care about memory attributes. 2077 */ 2078 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL1_RW, .accessfn = access_tvm_trvm, 2081 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2082 .resetvalue = 0 }, 2083 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2084 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2085 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2086 .resetvalue = 0 }, 2087 /* For non-long-descriptor page tables these are PRRR and NMRR; 2088 * regardless they still act as reads-as-written for QEMU. 2089 */ 2090 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2091 * allows them to assign the correct fieldoffset based on the endianness 2092 * handled in the field definitions. 2093 */ 2094 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2095 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2098 offsetof(CPUARMState, cp15.mair0_ns) }, 2099 .resetfn = arm_cp_reset_ignore }, 2100 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2102 .access = PL1_RW, .accessfn = access_tvm_trvm, 2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2104 offsetof(CPUARMState, cp15.mair1_ns) }, 2105 .resetfn = arm_cp_reset_ignore }, 2106 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2108 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2109 /* 32 bit ITLB invalidates */ 2110 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2111 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2112 .writefn = tlbiall_write }, 2113 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2114 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2115 .writefn = tlbimva_write }, 2116 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiasid_write }, 2119 /* 32 bit DTLB invalidates */ 2120 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2121 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2122 .writefn = tlbiall_write }, 2123 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2124 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2125 .writefn = tlbimva_write }, 2126 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiasid_write }, 2129 /* 32 bit TLB invalidates */ 2130 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2132 .writefn = tlbiall_write }, 2133 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2135 .writefn = tlbimva_write }, 2136 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbiasid_write }, 2139 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbimvaa_write }, 2142 }; 2143 2144 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2145 /* 32 bit TLB invalidates, Inner Shareable */ 2146 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbiall_is_write }, 2149 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbimva_is_write }, 2152 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbiasid_is_write }, 2155 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbimvaa_is_write }, 2158 }; 2159 2160 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2161 /* PMOVSSET is not implemented in v7 before v7ve */ 2162 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2163 .access = PL0_RW, .accessfn = pmreg_access, 2164 .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2166 .writefn = pmovsset_write, 2167 .raw_writefn = raw_write }, 2168 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .type = ARM_CP_ALIAS | ARM_CP_IO, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2173 .writefn = pmovsset_write, 2174 .raw_writefn = raw_write }, 2175 }; 2176 2177 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2178 uint64_t value) 2179 { 2180 value &= 1; 2181 env->teecr = value; 2182 } 2183 2184 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2185 bool isread) 2186 { 2187 /* 2188 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2189 * at all, so we don't need to check whether we're v8A. 2190 */ 2191 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2192 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2193 return CP_ACCESS_TRAP_EL2; 2194 } 2195 return CP_ACCESS_OK; 2196 } 2197 2198 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2199 bool isread) 2200 { 2201 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2202 return CP_ACCESS_TRAP; 2203 } 2204 return teecr_access(env, ri, isread); 2205 } 2206 2207 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2208 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2209 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2210 .resetvalue = 0, 2211 .writefn = teecr_write, .accessfn = teecr_access }, 2212 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2213 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2214 .accessfn = teehbr_access, .resetvalue = 0 }, 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 }; 3094 3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3096 bool isread) 3097 { 3098 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3099 return CP_ACCESS_TRAP; 3100 } 3101 return CP_ACCESS_OK; 3102 } 3103 3104 #else 3105 3106 /* In user-mode most of the generic timer registers are inaccessible 3107 * however modern kernels (4.12+) allow access to cntvct_el0 3108 */ 3109 3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 ARMCPU *cpu = env_archcpu(env); 3113 3114 /* Currently we have no support for QEMUTimer in linux-user so we 3115 * can't call gt_get_countervalue(env), instead we directly 3116 * call the lower level functions. 3117 */ 3118 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3119 } 3120 3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3127 }, 3128 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3130 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3131 .readfn = gt_virt_cnt_read, 3132 }, 3133 }; 3134 3135 #endif 3136 3137 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3138 { 3139 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3140 raw_write(env, ri, value); 3141 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3142 raw_write(env, ri, value & 0xfffff6ff); 3143 } else { 3144 raw_write(env, ri, value & 0xfffff1ff); 3145 } 3146 } 3147 3148 #ifndef CONFIG_USER_ONLY 3149 /* get_phys_addr() isn't present for user-mode-only targets */ 3150 3151 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3152 bool isread) 3153 { 3154 if (ri->opc2 & 4) { 3155 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3156 * Secure EL1 (which can only happen if EL3 is AArch64). 3157 * They are simply UNDEF if executed from NS EL1. 3158 * They function normally from EL2 or EL3. 3159 */ 3160 if (arm_current_el(env) == 1) { 3161 if (arm_is_secure_below_el3(env)) { 3162 if (env->cp15.scr_el3 & SCR_EEL2) { 3163 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3164 } 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED; 3168 } 3169 } 3170 return CP_ACCESS_OK; 3171 } 3172 3173 #ifdef CONFIG_TCG 3174 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3175 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3176 { 3177 hwaddr phys_addr; 3178 target_ulong page_size; 3179 int prot; 3180 bool ret; 3181 uint64_t par64; 3182 bool format64 = false; 3183 MemTxAttrs attrs = {}; 3184 ARMMMUFaultInfo fi = {}; 3185 ARMCacheAttrs cacheattrs = {}; 3186 3187 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3188 &prot, &page_size, &fi, &cacheattrs); 3189 3190 /* 3191 * ATS operations only do S1 or S1+S2 translations, so we never 3192 * have to deal with the ARMCacheAttrs format for S2 only. 3193 */ 3194 assert(!cacheattrs.is_s2_format); 3195 3196 if (ret) { 3197 /* 3198 * Some kinds of translation fault must cause exceptions rather 3199 * than being reported in the PAR. 3200 */ 3201 int current_el = arm_current_el(env); 3202 int target_el; 3203 uint32_t syn, fsr, fsc; 3204 bool take_exc = false; 3205 3206 if (fi.s1ptw && current_el == 1 3207 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3208 /* 3209 * Synchronous stage 2 fault on an access made as part of the 3210 * translation table walk for AT S1E0* or AT S1E1* insn 3211 * executed from NS EL1. If this is a synchronous external abort 3212 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3213 * to EL3. Otherwise the fault is taken as an exception to EL2, 3214 * and HPFAR_EL2 holds the faulting IPA. 3215 */ 3216 if (fi.type == ARMFault_SyncExternalOnWalk && 3217 (env->cp15.scr_el3 & SCR_EA)) { 3218 target_el = 3; 3219 } else { 3220 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3221 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3222 env->cp15.hpfar_el2 |= HPFAR_NS; 3223 } 3224 target_el = 2; 3225 } 3226 take_exc = true; 3227 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3228 /* 3229 * Synchronous external aborts during a translation table walk 3230 * are taken as Data Abort exceptions. 3231 */ 3232 if (fi.stage2) { 3233 if (current_el == 3) { 3234 target_el = 3; 3235 } else { 3236 target_el = 2; 3237 } 3238 } else { 3239 target_el = exception_target_el(env); 3240 } 3241 take_exc = true; 3242 } 3243 3244 if (take_exc) { 3245 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3246 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3247 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3248 fsr = arm_fi_to_lfsc(&fi); 3249 fsc = extract32(fsr, 0, 6); 3250 } else { 3251 fsr = arm_fi_to_sfsc(&fi); 3252 fsc = 0x3f; 3253 } 3254 /* 3255 * Report exception with ESR indicating a fault due to a 3256 * translation table walk for a cache maintenance instruction. 3257 */ 3258 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3259 fi.ea, 1, fi.s1ptw, 1, fsc); 3260 env->exception.vaddress = value; 3261 env->exception.fsr = fsr; 3262 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3263 } 3264 } 3265 3266 if (is_a64(env)) { 3267 format64 = true; 3268 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3269 /* 3270 * ATS1Cxx: 3271 * * TTBCR.EAE determines whether the result is returned using the 3272 * 32-bit or the 64-bit PAR format 3273 * * Instructions executed in Hyp mode always use the 64bit format 3274 * 3275 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3276 * * The Non-secure TTBCR.EAE bit is set to 1 3277 * * The implementation includes EL2, and the value of HCR.VM is 1 3278 * 3279 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3280 * 3281 * ATS1Hx always uses the 64bit format. 3282 */ 3283 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3284 3285 if (arm_feature(env, ARM_FEATURE_EL2)) { 3286 if (mmu_idx == ARMMMUIdx_E10_0 || 3287 mmu_idx == ARMMMUIdx_E10_1 || 3288 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3289 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3290 } else { 3291 format64 |= arm_current_el(env) == 2; 3292 } 3293 } 3294 } 3295 3296 if (format64) { 3297 /* Create a 64-bit PAR */ 3298 par64 = (1 << 11); /* LPAE bit always set */ 3299 if (!ret) { 3300 par64 |= phys_addr & ~0xfffULL; 3301 if (!attrs.secure) { 3302 par64 |= (1 << 9); /* NS */ 3303 } 3304 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3305 par64 |= cacheattrs.shareability << 7; /* SH */ 3306 } else { 3307 uint32_t fsr = arm_fi_to_lfsc(&fi); 3308 3309 par64 |= 1; /* F */ 3310 par64 |= (fsr & 0x3f) << 1; /* FS */ 3311 if (fi.stage2) { 3312 par64 |= (1 << 9); /* S */ 3313 } 3314 if (fi.s1ptw) { 3315 par64 |= (1 << 8); /* PTW */ 3316 } 3317 } 3318 } else { 3319 /* fsr is a DFSR/IFSR value for the short descriptor 3320 * translation table format (with WnR always clear). 3321 * Convert it to a 32-bit PAR. 3322 */ 3323 if (!ret) { 3324 /* We do not set any attribute bits in the PAR */ 3325 if (page_size == (1 << 24) 3326 && arm_feature(env, ARM_FEATURE_V7)) { 3327 par64 = (phys_addr & 0xff000000) | (1 << 1); 3328 } else { 3329 par64 = phys_addr & 0xfffff000; 3330 } 3331 if (!attrs.secure) { 3332 par64 |= (1 << 9); /* NS */ 3333 } 3334 } else { 3335 uint32_t fsr = arm_fi_to_sfsc(&fi); 3336 3337 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3338 ((fsr & 0xf) << 1) | 1; 3339 } 3340 } 3341 return par64; 3342 } 3343 #endif /* CONFIG_TCG */ 3344 3345 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3346 { 3347 #ifdef CONFIG_TCG 3348 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3349 uint64_t par64; 3350 ARMMMUIdx mmu_idx; 3351 int el = arm_current_el(env); 3352 bool secure = arm_is_secure_below_el3(env); 3353 3354 switch (ri->opc2 & 6) { 3355 case 0: 3356 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3357 switch (el) { 3358 case 3: 3359 mmu_idx = ARMMMUIdx_SE3; 3360 break; 3361 case 2: 3362 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3363 /* fall through */ 3364 case 1: 3365 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3366 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3367 : ARMMMUIdx_Stage1_E1_PAN); 3368 } else { 3369 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3370 } 3371 break; 3372 default: 3373 g_assert_not_reached(); 3374 } 3375 break; 3376 case 2: 3377 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3378 switch (el) { 3379 case 3: 3380 mmu_idx = ARMMMUIdx_SE10_0; 3381 break; 3382 case 2: 3383 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3384 mmu_idx = ARMMMUIdx_Stage1_E0; 3385 break; 3386 case 1: 3387 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3388 break; 3389 default: 3390 g_assert_not_reached(); 3391 } 3392 break; 3393 case 4: 3394 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3395 mmu_idx = ARMMMUIdx_E10_1; 3396 break; 3397 case 6: 3398 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3399 mmu_idx = ARMMMUIdx_E10_0; 3400 break; 3401 default: 3402 g_assert_not_reached(); 3403 } 3404 3405 par64 = do_ats_write(env, value, access_type, mmu_idx); 3406 3407 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3408 #else 3409 /* Handled by hardware accelerator. */ 3410 g_assert_not_reached(); 3411 #endif /* CONFIG_TCG */ 3412 } 3413 3414 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3415 uint64_t value) 3416 { 3417 #ifdef CONFIG_TCG 3418 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3419 uint64_t par64; 3420 3421 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3422 3423 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3424 #else 3425 /* Handled by hardware accelerator. */ 3426 g_assert_not_reached(); 3427 #endif /* CONFIG_TCG */ 3428 } 3429 3430 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3431 bool isread) 3432 { 3433 if (arm_current_el(env) == 3 && 3434 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3435 return CP_ACCESS_TRAP; 3436 } 3437 return CP_ACCESS_OK; 3438 } 3439 3440 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3441 uint64_t value) 3442 { 3443 #ifdef CONFIG_TCG 3444 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3445 ARMMMUIdx mmu_idx; 3446 int secure = arm_is_secure_below_el3(env); 3447 3448 switch (ri->opc2 & 6) { 3449 case 0: 3450 switch (ri->opc1) { 3451 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3452 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3453 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3454 : ARMMMUIdx_Stage1_E1_PAN); 3455 } else { 3456 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3457 } 3458 break; 3459 case 4: /* AT S1E2R, AT S1E2W */ 3460 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3461 break; 3462 case 6: /* AT S1E3R, AT S1E3W */ 3463 mmu_idx = ARMMMUIdx_SE3; 3464 break; 3465 default: 3466 g_assert_not_reached(); 3467 } 3468 break; 3469 case 2: /* AT S1E0R, AT S1E0W */ 3470 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3471 break; 3472 case 4: /* AT S12E1R, AT S12E1W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3474 break; 3475 case 6: /* AT S12E0R, AT S12E0W */ 3476 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3477 break; 3478 default: 3479 g_assert_not_reached(); 3480 } 3481 3482 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3483 #else 3484 /* Handled by hardware accelerator. */ 3485 g_assert_not_reached(); 3486 #endif /* CONFIG_TCG */ 3487 } 3488 #endif 3489 3490 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3491 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3492 .access = PL1_RW, .resetvalue = 0, 3493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3494 offsetoflow32(CPUARMState, cp15.par_ns) }, 3495 .writefn = par_write }, 3496 #ifndef CONFIG_USER_ONLY 3497 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3498 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3499 .access = PL1_W, .accessfn = ats_access, 3500 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3501 #endif 3502 }; 3503 3504 /* Return basic MPU access permission bits. */ 3505 static uint32_t simple_mpu_ap_bits(uint32_t val) 3506 { 3507 uint32_t ret; 3508 uint32_t mask; 3509 int i; 3510 ret = 0; 3511 mask = 3; 3512 for (i = 0; i < 16; i += 2) { 3513 ret |= (val >> i) & mask; 3514 mask <<= 2; 3515 } 3516 return ret; 3517 } 3518 3519 /* Pad basic MPU access permission bits to extended format. */ 3520 static uint32_t extended_mpu_ap_bits(uint32_t val) 3521 { 3522 uint32_t ret; 3523 uint32_t mask; 3524 int i; 3525 ret = 0; 3526 mask = 3; 3527 for (i = 0; i < 16; i += 2) { 3528 ret |= (val & mask) << i; 3529 mask <<= 2; 3530 } 3531 return ret; 3532 } 3533 3534 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3535 uint64_t value) 3536 { 3537 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3538 } 3539 3540 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3541 { 3542 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3543 } 3544 3545 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3546 uint64_t value) 3547 { 3548 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3549 } 3550 3551 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3552 { 3553 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3554 } 3555 3556 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3557 { 3558 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3559 3560 if (!u32p) { 3561 return 0; 3562 } 3563 3564 u32p += env->pmsav7.rnr[M_REG_NS]; 3565 return *u32p; 3566 } 3567 3568 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3569 uint64_t value) 3570 { 3571 ARMCPU *cpu = env_archcpu(env); 3572 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3573 3574 if (!u32p) { 3575 return; 3576 } 3577 3578 u32p += env->pmsav7.rnr[M_REG_NS]; 3579 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3580 *u32p = value; 3581 } 3582 3583 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3584 uint64_t value) 3585 { 3586 ARMCPU *cpu = env_archcpu(env); 3587 uint32_t nrgs = cpu->pmsav7_dregion; 3588 3589 if (value >= nrgs) { 3590 qemu_log_mask(LOG_GUEST_ERROR, 3591 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3592 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3593 return; 3594 } 3595 3596 raw_write(env, ri, value); 3597 } 3598 3599 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3600 /* Reset for all these registers is handled in arm_cpu_reset(), 3601 * because the PMSAv7 is also used by M-profile CPUs, which do 3602 * not register cpregs but still need the state to be reset. 3603 */ 3604 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3605 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3606 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3607 .readfn = pmsav7_read, .writefn = pmsav7_write, 3608 .resetfn = arm_cp_reset_ignore }, 3609 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3610 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3611 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3612 .readfn = pmsav7_read, .writefn = pmsav7_write, 3613 .resetfn = arm_cp_reset_ignore }, 3614 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3615 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3616 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3617 .readfn = pmsav7_read, .writefn = pmsav7_write, 3618 .resetfn = arm_cp_reset_ignore }, 3619 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3620 .access = PL1_RW, 3621 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3622 .writefn = pmsav7_rgnr_write, 3623 .resetfn = arm_cp_reset_ignore }, 3624 }; 3625 3626 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3627 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3628 .access = PL1_RW, .type = ARM_CP_ALIAS, 3629 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3630 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3631 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3632 .access = PL1_RW, .type = ARM_CP_ALIAS, 3633 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3634 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3635 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3636 .access = PL1_RW, 3637 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3638 .resetvalue = 0, }, 3639 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3640 .access = PL1_RW, 3641 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3642 .resetvalue = 0, }, 3643 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3644 .access = PL1_RW, 3645 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3646 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3647 .access = PL1_RW, 3648 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3649 /* Protection region base and size registers */ 3650 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3651 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3652 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3653 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3654 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3656 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3659 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3662 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3665 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3668 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3671 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3672 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3673 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 }; 3828 3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3832 .access = PL1_RW, .accessfn = access_tvm_trvm, 3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3839 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3845 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3848 .access = PL1_RW, .accessfn = access_tvm_trvm, 3849 .writefn = vmsa_tcr_el12_write, 3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, .accessfn = access_tvm_trvm, 3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3855 .raw_writefn = vmsa_ttbcr_raw_write, 3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3858 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3859 }; 3860 3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3862 * qemu tlbs nor adjusting cached masks. 3863 */ 3864 static const ARMCPRegInfo ttbcr2_reginfo = { 3865 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3866 .access = PL1_RW, .accessfn = access_tvm_trvm, 3867 .type = ARM_CP_ALIAS, 3868 .bank_fieldoffsets = { 3869 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3871 }, 3872 }; 3873 3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 env->cp15.c15_ticonfig = value & 0xe7; 3878 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3879 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3880 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3881 } 3882 3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.c15_threadid = value & 0xffff; 3887 } 3888 3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 /* Wait-for-interrupt (deprecated) */ 3893 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3894 } 3895 3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3897 uint64_t value) 3898 { 3899 /* On OMAP there are registers indicating the max/min index of dcache lines 3900 * containing a dirty line; cache flush operations have to reset these. 3901 */ 3902 env->cp15.c15_i_max = 0x000; 3903 env->cp15.c15_i_min = 0xff0; 3904 } 3905 3906 static const ARMCPRegInfo omap_cp_reginfo[] = { 3907 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3909 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3910 .resetvalue = 0, }, 3911 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3912 .access = PL1_RW, .type = ARM_CP_NOP }, 3913 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, 3915 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3916 .writefn = omap_ticonfig_write }, 3917 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3918 .access = PL1_RW, 3919 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3920 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3921 .access = PL1_RW, .resetvalue = 0xff0, 3922 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3923 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3924 .access = PL1_RW, 3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3926 .writefn = omap_threadid_write }, 3927 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3928 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3929 .type = ARM_CP_NO_RAW, 3930 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3931 /* TODO: Peripheral port remap register: 3932 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3933 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3934 * when MMU is off. 3935 */ 3936 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3937 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3938 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3939 .writefn = omap_cachemaint_write }, 3940 { .name = "C9", .cp = 15, .crn = 9, 3941 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3942 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3943 }; 3944 3945 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3946 uint64_t value) 3947 { 3948 env->cp15.c15_cpar = value & 0x3fff; 3949 } 3950 3951 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3952 { .name = "XSCALE_CPAR", 3953 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3954 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3955 .writefn = xscale_cpar_write, }, 3956 { .name = "XSCALE_AUXCR", 3957 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3958 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3959 .resetvalue = 0, }, 3960 /* XScale specific cache-lockdown: since we have no cache we NOP these 3961 * and hope the guest does not really rely on cache behaviour. 3962 */ 3963 { .name = "XSCALE_LOCK_ICACHE_LINE", 3964 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3965 .access = PL1_W, .type = ARM_CP_NOP }, 3966 { .name = "XSCALE_UNLOCK_ICACHE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_DCACHE_LOCK", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3971 .access = PL1_RW, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_UNLOCK_DCACHE", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3974 .access = PL1_W, .type = ARM_CP_NOP }, 3975 }; 3976 3977 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3978 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3979 * implementation of this implementation-defined space. 3980 * Ideally this should eventually disappear in favour of actually 3981 * implementing the correct behaviour for all cores. 3982 */ 3983 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3984 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3985 .access = PL1_RW, 3986 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3987 .resetvalue = 0 }, 3988 }; 3989 3990 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3991 /* Cache status: RAZ because we have no cache so it's always clean */ 3992 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3993 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3994 .resetvalue = 0 }, 3995 }; 3996 3997 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3998 /* We never have a a block transfer operation in progress */ 3999 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4000 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4001 .resetvalue = 0 }, 4002 /* The cache ops themselves: these all NOP for QEMU */ 4003 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4004 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4005 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4006 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4007 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4008 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4009 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4010 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4012 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4014 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 }; 4016 4017 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4018 /* The cache test-and-clean instructions always return (1 << 30) 4019 * to indicate that there are no dirty cache lines. 4020 */ 4021 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4022 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4023 .resetvalue = (1 << 30) }, 4024 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4025 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4026 .resetvalue = (1 << 30) }, 4027 }; 4028 4029 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4030 /* Ignore ReadBuffer accesses */ 4031 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4032 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4033 .access = PL1_RW, .resetvalue = 0, 4034 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4035 }; 4036 4037 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4038 { 4039 unsigned int cur_el = arm_current_el(env); 4040 4041 if (arm_is_el2_enabled(env) && cur_el == 1) { 4042 return env->cp15.vpidr_el2; 4043 } 4044 return raw_read(env, ri); 4045 } 4046 4047 static uint64_t mpidr_read_val(CPUARMState *env) 4048 { 4049 ARMCPU *cpu = env_archcpu(env); 4050 uint64_t mpidr = cpu->mp_affinity; 4051 4052 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4053 mpidr |= (1U << 31); 4054 /* Cores which are uniprocessor (non-coherent) 4055 * but still implement the MP extensions set 4056 * bit 30. (For instance, Cortex-R5). 4057 */ 4058 if (cpu->mp_is_up) { 4059 mpidr |= (1u << 30); 4060 } 4061 } 4062 return mpidr; 4063 } 4064 4065 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4066 { 4067 unsigned int cur_el = arm_current_el(env); 4068 4069 if (arm_is_el2_enabled(env) && cur_el == 1) { 4070 return env->cp15.vmpidr_el2; 4071 } 4072 return mpidr_read_val(env); 4073 } 4074 4075 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4076 /* NOP AMAIR0/1 */ 4077 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4078 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4079 .access = PL1_RW, .accessfn = access_tvm_trvm, 4080 .type = ARM_CP_CONST, .resetvalue = 0 }, 4081 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4082 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4083 .access = PL1_RW, .accessfn = access_tvm_trvm, 4084 .type = ARM_CP_CONST, .resetvalue = 0 }, 4085 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4086 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4087 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4088 offsetof(CPUARMState, cp15.par_ns)} }, 4089 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4090 .access = PL1_RW, .accessfn = access_tvm_trvm, 4091 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4093 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4094 .writefn = vmsa_ttbr_write, }, 4095 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4096 .access = PL1_RW, .accessfn = access_tvm_trvm, 4097 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4099 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4100 .writefn = vmsa_ttbr_write, }, 4101 }; 4102 4103 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4104 { 4105 return vfp_get_fpcr(env); 4106 } 4107 4108 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4109 uint64_t value) 4110 { 4111 vfp_set_fpcr(env, value); 4112 } 4113 4114 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4115 { 4116 return vfp_get_fpsr(env); 4117 } 4118 4119 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4120 uint64_t value) 4121 { 4122 vfp_set_fpsr(env, value); 4123 } 4124 4125 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4126 bool isread) 4127 { 4128 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4129 return CP_ACCESS_TRAP; 4130 } 4131 return CP_ACCESS_OK; 4132 } 4133 4134 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 env->daif = value & PSTATE_DAIF; 4138 } 4139 4140 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4141 { 4142 return env->pstate & PSTATE_PAN; 4143 } 4144 4145 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4146 uint64_t value) 4147 { 4148 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4149 } 4150 4151 static const ARMCPRegInfo pan_reginfo = { 4152 .name = "PAN", .state = ARM_CP_STATE_AA64, 4153 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4154 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4155 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4156 }; 4157 4158 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4159 { 4160 return env->pstate & PSTATE_UAO; 4161 } 4162 4163 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4164 uint64_t value) 4165 { 4166 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4167 } 4168 4169 static const ARMCPRegInfo uao_reginfo = { 4170 .name = "UAO", .state = ARM_CP_STATE_AA64, 4171 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4172 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4173 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4174 }; 4175 4176 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4177 { 4178 return env->pstate & PSTATE_DIT; 4179 } 4180 4181 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4182 uint64_t value) 4183 { 4184 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4185 } 4186 4187 static const ARMCPRegInfo dit_reginfo = { 4188 .name = "DIT", .state = ARM_CP_STATE_AA64, 4189 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4190 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4191 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4192 }; 4193 4194 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4195 { 4196 return env->pstate & PSTATE_SSBS; 4197 } 4198 4199 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4200 uint64_t value) 4201 { 4202 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4203 } 4204 4205 static const ARMCPRegInfo ssbs_reginfo = { 4206 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4207 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4208 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4209 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4210 }; 4211 4212 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4213 const ARMCPRegInfo *ri, 4214 bool isread) 4215 { 4216 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4217 switch (arm_current_el(env)) { 4218 case 0: 4219 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4220 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4221 return CP_ACCESS_TRAP; 4222 } 4223 /* fall through */ 4224 case 1: 4225 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4226 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4227 return CP_ACCESS_TRAP_EL2; 4228 } 4229 break; 4230 } 4231 return CP_ACCESS_OK; 4232 } 4233 4234 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4235 const ARMCPRegInfo *ri, 4236 bool isread) 4237 { 4238 /* Cache invalidate/clean to Point of Unification... */ 4239 switch (arm_current_el(env)) { 4240 case 0: 4241 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4242 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4243 return CP_ACCESS_TRAP; 4244 } 4245 /* fall through */ 4246 case 1: 4247 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4248 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4249 return CP_ACCESS_TRAP_EL2; 4250 } 4251 break; 4252 } 4253 return CP_ACCESS_OK; 4254 } 4255 4256 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4257 * Page D4-1736 (DDI0487A.b) 4258 */ 4259 4260 static int vae1_tlbmask(CPUARMState *env) 4261 { 4262 uint64_t hcr = arm_hcr_el2_eff(env); 4263 uint16_t mask; 4264 4265 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4266 mask = ARMMMUIdxBit_E20_2 | 4267 ARMMMUIdxBit_E20_2_PAN | 4268 ARMMMUIdxBit_E20_0; 4269 } else { 4270 mask = ARMMMUIdxBit_E10_1 | 4271 ARMMMUIdxBit_E10_1_PAN | 4272 ARMMMUIdxBit_E10_0; 4273 } 4274 4275 if (arm_is_secure_below_el3(env)) { 4276 mask >>= ARM_MMU_IDX_A_NS; 4277 } 4278 4279 return mask; 4280 } 4281 4282 /* Return 56 if TBI is enabled, 64 otherwise. */ 4283 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4284 uint64_t addr) 4285 { 4286 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4287 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4288 int select = extract64(addr, 55, 1); 4289 4290 return (tbi >> select) & 1 ? 56 : 64; 4291 } 4292 4293 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4294 { 4295 uint64_t hcr = arm_hcr_el2_eff(env); 4296 ARMMMUIdx mmu_idx; 4297 4298 /* Only the regime of the mmu_idx below is significant. */ 4299 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4300 mmu_idx = ARMMMUIdx_E20_0; 4301 } else { 4302 mmu_idx = ARMMMUIdx_E10_0; 4303 } 4304 4305 if (arm_is_secure_below_el3(env)) { 4306 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4307 } 4308 4309 return tlbbits_for_regime(env, mmu_idx, addr); 4310 } 4311 4312 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 CPUState *cs = env_cpu(env); 4316 int mask = vae1_tlbmask(env); 4317 4318 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4319 } 4320 4321 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 if (tlb_force_broadcast(env)) { 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } else { 4330 tlb_flush_by_mmuidx(cs, mask); 4331 } 4332 } 4333 4334 static int alle1_tlbmask(CPUARMState *env) 4335 { 4336 /* 4337 * Note that the 'ALL' scope must invalidate both stage 1 and 4338 * stage 2 translations, whereas most other scopes only invalidate 4339 * stage 1 translations. 4340 */ 4341 if (arm_is_secure_below_el3(env)) { 4342 return ARMMMUIdxBit_SE10_1 | 4343 ARMMMUIdxBit_SE10_1_PAN | 4344 ARMMMUIdxBit_SE10_0; 4345 } else { 4346 return ARMMMUIdxBit_E10_1 | 4347 ARMMMUIdxBit_E10_1_PAN | 4348 ARMMMUIdxBit_E10_0; 4349 } 4350 } 4351 4352 static int e2_tlbmask(CPUARMState *env) 4353 { 4354 if (arm_is_secure_below_el3(env)) { 4355 return ARMMMUIdxBit_SE20_0 | 4356 ARMMMUIdxBit_SE20_2 | 4357 ARMMMUIdxBit_SE20_2_PAN | 4358 ARMMMUIdxBit_SE2; 4359 } else { 4360 return ARMMMUIdxBit_E20_0 | 4361 ARMMMUIdxBit_E20_2 | 4362 ARMMMUIdxBit_E20_2_PAN | 4363 ARMMMUIdxBit_E2; 4364 } 4365 } 4366 4367 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4368 uint64_t value) 4369 { 4370 CPUState *cs = env_cpu(env); 4371 int mask = alle1_tlbmask(env); 4372 4373 tlb_flush_by_mmuidx(cs, mask); 4374 } 4375 4376 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 CPUState *cs = env_cpu(env); 4380 int mask = e2_tlbmask(env); 4381 4382 tlb_flush_by_mmuidx(cs, mask); 4383 } 4384 4385 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 ARMCPU *cpu = env_archcpu(env); 4389 CPUState *cs = CPU(cpu); 4390 4391 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4392 } 4393 4394 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 CPUState *cs = env_cpu(env); 4398 int mask = alle1_tlbmask(env); 4399 4400 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4401 } 4402 4403 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 int mask = e2_tlbmask(env); 4408 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } 4411 4412 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4413 uint64_t value) 4414 { 4415 CPUState *cs = env_cpu(env); 4416 4417 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4418 } 4419 4420 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 /* Invalidate by VA, EL2 4424 * Currently handles both VAE2 and VALE2, since we don't support 4425 * flush-last-level-only. 4426 */ 4427 CPUState *cs = env_cpu(env); 4428 int mask = e2_tlbmask(env); 4429 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4430 4431 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4432 } 4433 4434 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4435 uint64_t value) 4436 { 4437 /* Invalidate by VA, EL3 4438 * Currently handles both VAE3 and VALE3, since we don't support 4439 * flush-last-level-only. 4440 */ 4441 ARMCPU *cpu = env_archcpu(env); 4442 CPUState *cs = CPU(cpu); 4443 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4444 4445 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4446 } 4447 4448 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4449 uint64_t value) 4450 { 4451 CPUState *cs = env_cpu(env); 4452 int mask = vae1_tlbmask(env); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 int bits = vae1_tlbbits(env, pageaddr); 4455 4456 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4457 } 4458 4459 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4460 uint64_t value) 4461 { 4462 /* Invalidate by VA, EL1&0 (AArch64 version). 4463 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4464 * since we don't support flush-for-specific-ASID-only or 4465 * flush-last-level-only. 4466 */ 4467 CPUState *cs = env_cpu(env); 4468 int mask = vae1_tlbmask(env); 4469 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4470 int bits = vae1_tlbbits(env, pageaddr); 4471 4472 if (tlb_force_broadcast(env)) { 4473 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4474 } else { 4475 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4476 } 4477 } 4478 4479 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4480 uint64_t value) 4481 { 4482 CPUState *cs = env_cpu(env); 4483 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4484 bool secure = arm_is_secure_below_el3(env); 4485 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4486 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4487 pageaddr); 4488 4489 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4490 } 4491 4492 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 CPUState *cs = env_cpu(env); 4496 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4497 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4500 ARMMMUIdxBit_SE3, bits); 4501 } 4502 4503 #ifdef TARGET_AARCH64 4504 typedef struct { 4505 uint64_t base; 4506 uint64_t length; 4507 } TLBIRange; 4508 4509 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4510 uint64_t value) 4511 { 4512 unsigned int page_size_granule, page_shift, num, scale, exponent; 4513 /* Extract one bit to represent the va selector in use. */ 4514 uint64_t select = sextract64(value, 36, 1); 4515 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4516 TLBIRange ret = { }; 4517 4518 page_size_granule = extract64(value, 46, 2); 4519 4520 /* The granule encoded in value must match the granule in use. */ 4521 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4522 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4523 page_size_granule); 4524 return ret; 4525 } 4526 4527 page_shift = (page_size_granule - 1) * 2 + 12; 4528 num = extract64(value, 39, 5); 4529 scale = extract64(value, 44, 2); 4530 exponent = (5 * scale) + 1; 4531 4532 ret.length = (num + 1) << (exponent + page_shift); 4533 4534 if (param.select) { 4535 ret.base = sextract64(value, 0, 37); 4536 } else { 4537 ret.base = extract64(value, 0, 37); 4538 } 4539 if (param.ds) { 4540 /* 4541 * With DS=1, BaseADDR is always shifted 16 so that it is able 4542 * to address all 52 va bits. The input address is perforce 4543 * aligned on a 64k boundary regardless of translation granule. 4544 */ 4545 page_shift = 16; 4546 } 4547 ret.base <<= page_shift; 4548 4549 return ret; 4550 } 4551 4552 static void do_rvae_write(CPUARMState *env, uint64_t value, 4553 int idxmap, bool synced) 4554 { 4555 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4556 TLBIRange range; 4557 int bits; 4558 4559 range = tlbi_aa64_get_range(env, one_idx, value); 4560 bits = tlbbits_for_regime(env, one_idx, range.base); 4561 4562 if (synced) { 4563 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4564 range.base, 4565 range.length, 4566 idxmap, 4567 bits); 4568 } else { 4569 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4570 range.length, idxmap, bits); 4571 } 4572 } 4573 4574 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4575 const ARMCPRegInfo *ri, 4576 uint64_t value) 4577 { 4578 /* 4579 * Invalidate by VA range, EL1&0. 4580 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4581 * since we don't support flush-for-specific-ASID-only or 4582 * flush-last-level-only. 4583 */ 4584 4585 do_rvae_write(env, value, vae1_tlbmask(env), 4586 tlb_force_broadcast(env)); 4587 } 4588 4589 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4590 const ARMCPRegInfo *ri, 4591 uint64_t value) 4592 { 4593 /* 4594 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4595 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4596 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4597 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4598 * shareable specific flushes. 4599 */ 4600 4601 do_rvae_write(env, value, vae1_tlbmask(env), true); 4602 } 4603 4604 static int vae2_tlbmask(CPUARMState *env) 4605 { 4606 return (arm_is_secure_below_el3(env) 4607 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4608 } 4609 4610 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4611 const ARMCPRegInfo *ri, 4612 uint64_t value) 4613 { 4614 /* 4615 * Invalidate by VA range, EL2. 4616 * Currently handles all of RVAE2 and RVALE2, 4617 * since we don't support flush-for-specific-ASID-only or 4618 * flush-last-level-only. 4619 */ 4620 4621 do_rvae_write(env, value, vae2_tlbmask(env), 4622 tlb_force_broadcast(env)); 4623 4624 4625 } 4626 4627 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4628 const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 /* 4632 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4633 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4634 * since we don't support flush-for-specific-ASID-only, 4635 * flush-last-level-only or inner/outer shareable specific flushes. 4636 */ 4637 4638 do_rvae_write(env, value, vae2_tlbmask(env), true); 4639 4640 } 4641 4642 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4643 const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 /* 4647 * Invalidate by VA range, EL3. 4648 * Currently handles all of RVAE3 and RVALE3, 4649 * since we don't support flush-for-specific-ASID-only or 4650 * flush-last-level-only. 4651 */ 4652 4653 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4654 tlb_force_broadcast(env)); 4655 } 4656 4657 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4658 const ARMCPRegInfo *ri, 4659 uint64_t value) 4660 { 4661 /* 4662 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4663 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4664 * since we don't support flush-for-specific-ASID-only, 4665 * flush-last-level-only or inner/outer specific flushes. 4666 */ 4667 4668 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4669 } 4670 #endif 4671 4672 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4673 bool isread) 4674 { 4675 int cur_el = arm_current_el(env); 4676 4677 if (cur_el < 2) { 4678 uint64_t hcr = arm_hcr_el2_eff(env); 4679 4680 if (cur_el == 0) { 4681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4682 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4683 return CP_ACCESS_TRAP_EL2; 4684 } 4685 } else { 4686 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4687 return CP_ACCESS_TRAP; 4688 } 4689 if (hcr & HCR_TDZ) { 4690 return CP_ACCESS_TRAP_EL2; 4691 } 4692 } 4693 } else if (hcr & HCR_TDZ) { 4694 return CP_ACCESS_TRAP_EL2; 4695 } 4696 } 4697 return CP_ACCESS_OK; 4698 } 4699 4700 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4701 { 4702 ARMCPU *cpu = env_archcpu(env); 4703 int dzp_bit = 1 << 4; 4704 4705 /* DZP indicates whether DC ZVA access is allowed */ 4706 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4707 dzp_bit = 0; 4708 } 4709 return cpu->dcz_blocksize | dzp_bit; 4710 } 4711 4712 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4713 bool isread) 4714 { 4715 if (!(env->pstate & PSTATE_SP)) { 4716 /* Access to SP_EL0 is undefined if it's being used as 4717 * the stack pointer. 4718 */ 4719 return CP_ACCESS_TRAP_UNCATEGORIZED; 4720 } 4721 return CP_ACCESS_OK; 4722 } 4723 4724 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4725 { 4726 return env->pstate & PSTATE_SP; 4727 } 4728 4729 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4730 { 4731 update_spsel(env, val); 4732 } 4733 4734 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4735 uint64_t value) 4736 { 4737 ARMCPU *cpu = env_archcpu(env); 4738 4739 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4740 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4741 value &= ~SCTLR_M; 4742 } 4743 4744 /* ??? Lots of these bits are not implemented. */ 4745 4746 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4747 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4748 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4749 } else { 4750 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4751 SCTLR_ATA0 | SCTLR_ATA); 4752 } 4753 } 4754 4755 if (raw_read(env, ri) == value) { 4756 /* Skip the TLB flush if nothing actually changed; Linux likes 4757 * to do a lot of pointless SCTLR writes. 4758 */ 4759 return; 4760 } 4761 4762 raw_write(env, ri, value); 4763 4764 /* This may enable/disable the MMU, so do a TLB flush. */ 4765 tlb_flush(CPU(cpu)); 4766 4767 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4768 /* 4769 * Normally we would always end the TB on an SCTLR write; see the 4770 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4771 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4772 * of hflags from the translator, so do it here. 4773 */ 4774 arm_rebuild_hflags(env); 4775 } 4776 } 4777 4778 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4779 uint64_t value) 4780 { 4781 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4782 } 4783 4784 static const ARMCPRegInfo v8_cp_reginfo[] = { 4785 /* Minimal set of EL0-visible registers. This will need to be expanded 4786 * significantly for system emulation of AArch64 CPUs. 4787 */ 4788 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4789 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4790 .access = PL0_RW, .type = ARM_CP_NZCV }, 4791 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4793 .type = ARM_CP_NO_RAW, 4794 .access = PL0_RW, .accessfn = aa64_daif_access, 4795 .fieldoffset = offsetof(CPUARMState, daif), 4796 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4797 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4798 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4799 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4800 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4801 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4803 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4804 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4805 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4806 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4807 .access = PL0_R, .type = ARM_CP_NO_RAW, 4808 .readfn = aa64_dczid_read }, 4809 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4811 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4812 #ifndef CONFIG_USER_ONLY 4813 /* Avoid overhead of an access check that always passes in user-mode */ 4814 .accessfn = aa64_zva_access, 4815 #endif 4816 }, 4817 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4819 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4820 /* Cache ops: all NOPs since we don't emulate caches */ 4821 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4823 .access = PL1_W, .type = ARM_CP_NOP, 4824 .accessfn = aa64_cacheop_pou_access }, 4825 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4827 .access = PL1_W, .type = ARM_CP_NOP, 4828 .accessfn = aa64_cacheop_pou_access }, 4829 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4831 .access = PL0_W, .type = ARM_CP_NOP, 4832 .accessfn = aa64_cacheop_pou_access }, 4833 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4835 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4836 .type = ARM_CP_NOP }, 4837 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4839 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4840 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4842 .access = PL0_W, .type = ARM_CP_NOP, 4843 .accessfn = aa64_cacheop_poc_access }, 4844 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4846 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4847 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4849 .access = PL0_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_NOP, 4854 .accessfn = aa64_cacheop_poc_access }, 4855 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4858 /* TLBI operations */ 4859 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4861 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4862 .writefn = tlbi_aa64_vmalle1is_write }, 4863 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4865 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4866 .writefn = tlbi_aa64_vae1is_write }, 4867 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4869 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4870 .writefn = tlbi_aa64_vmalle1is_write }, 4871 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4873 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4874 .writefn = tlbi_aa64_vae1is_write }, 4875 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4877 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4878 .writefn = tlbi_aa64_vae1is_write }, 4879 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4881 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4882 .writefn = tlbi_aa64_vae1is_write }, 4883 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4886 .writefn = tlbi_aa64_vmalle1_write }, 4887 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4889 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4890 .writefn = tlbi_aa64_vae1_write }, 4891 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4893 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4894 .writefn = tlbi_aa64_vmalle1_write }, 4895 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4897 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4898 .writefn = tlbi_aa64_vae1_write }, 4899 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4901 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4902 .writefn = tlbi_aa64_vae1_write }, 4903 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4905 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4906 .writefn = tlbi_aa64_vae1_write }, 4907 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4909 .access = PL2_W, .type = ARM_CP_NOP }, 4910 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4912 .access = PL2_W, .type = ARM_CP_NOP }, 4913 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4915 .access = PL2_W, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_alle1is_write }, 4917 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4919 .access = PL2_W, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_alle1is_write }, 4921 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4923 .access = PL2_W, .type = ARM_CP_NOP }, 4924 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4926 .access = PL2_W, .type = ARM_CP_NOP }, 4927 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4929 .access = PL2_W, .type = ARM_CP_NO_RAW, 4930 .writefn = tlbi_aa64_alle1_write }, 4931 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW, 4934 .writefn = tlbi_aa64_alle1is_write }, 4935 #ifndef CONFIG_USER_ONLY 4936 /* 64 bit address translation operations */ 4937 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4939 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4940 .writefn = ats_write64 }, 4941 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4943 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4944 .writefn = ats_write64 }, 4945 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4947 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4948 .writefn = ats_write64 }, 4949 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4951 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4952 .writefn = ats_write64 }, 4953 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4956 .writefn = ats_write64 }, 4957 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4959 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4960 .writefn = ats_write64 }, 4961 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4963 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4964 .writefn = ats_write64 }, 4965 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4967 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4968 .writefn = ats_write64 }, 4969 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4970 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4972 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4976 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4979 .type = ARM_CP_ALIAS, 4980 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4981 .access = PL1_RW, .resetvalue = 0, 4982 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4983 .writefn = par_write }, 4984 #endif 4985 /* TLB invalidate last level of translation table walk */ 4986 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4987 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4988 .writefn = tlbimva_is_write }, 4989 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4990 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4991 .writefn = tlbimvaa_is_write }, 4992 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4993 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4994 .writefn = tlbimva_write }, 4995 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4996 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4997 .writefn = tlbimvaa_write }, 4998 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4999 .type = ARM_CP_NO_RAW, .access = PL2_W, 5000 .writefn = tlbimva_hyp_write }, 5001 { .name = "TLBIMVALHIS", 5002 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5003 .type = ARM_CP_NO_RAW, .access = PL2_W, 5004 .writefn = tlbimva_hyp_is_write }, 5005 { .name = "TLBIIPAS2", 5006 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5007 .type = ARM_CP_NOP, .access = PL2_W }, 5008 { .name = "TLBIIPAS2IS", 5009 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL2_W }, 5011 { .name = "TLBIIPAS2L", 5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5013 .type = ARM_CP_NOP, .access = PL2_W }, 5014 { .name = "TLBIIPAS2LIS", 5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5016 .type = ARM_CP_NOP, .access = PL2_W }, 5017 /* 32 bit cache operations */ 5018 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5020 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5021 .type = ARM_CP_NOP, .access = PL1_W }, 5022 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5023 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5024 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5025 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5026 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5027 .type = ARM_CP_NOP, .access = PL1_W }, 5028 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5029 .type = ARM_CP_NOP, .access = PL1_W }, 5030 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5031 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5032 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5033 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5034 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5035 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5036 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5038 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5039 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5040 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5042 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5044 /* MMU Domain access control / MPU write buffer control */ 5045 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5046 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5047 .writefn = dacr_write, .raw_writefn = raw_write, 5048 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5049 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5050 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5051 .type = ARM_CP_ALIAS, 5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5053 .access = PL1_RW, 5054 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5055 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5056 .type = ARM_CP_ALIAS, 5057 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5058 .access = PL1_RW, 5059 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5060 /* We rely on the access checks not allowing the guest to write to the 5061 * state field when SPSel indicates that it's being used as the stack 5062 * pointer. 5063 */ 5064 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5065 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5066 .access = PL1_RW, .accessfn = sp_el0_access, 5067 .type = ARM_CP_ALIAS, 5068 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5069 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5071 .access = PL2_RW, .type = ARM_CP_ALIAS, 5072 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5073 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5075 .type = ARM_CP_NO_RAW, 5076 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5077 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5079 .access = PL2_RW, 5080 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5081 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5082 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5084 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5085 .writefn = dacr_write, .raw_writefn = raw_write, 5086 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5087 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5089 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5090 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5091 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5092 .type = ARM_CP_ALIAS, 5093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5094 .access = PL2_RW, 5095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5096 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5097 .type = ARM_CP_ALIAS, 5098 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5099 .access = PL2_RW, 5100 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5101 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5102 .type = ARM_CP_ALIAS, 5103 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5104 .access = PL2_RW, 5105 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5106 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5107 .type = ARM_CP_ALIAS, 5108 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5109 .access = PL2_RW, 5110 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5111 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5113 .resetvalue = 0, 5114 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5115 { .name = "SDCR", .type = ARM_CP_ALIAS, 5116 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5117 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5118 .writefn = sdcr_write, 5119 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5120 }; 5121 5122 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5123 { 5124 ARMCPU *cpu = env_archcpu(env); 5125 5126 if (arm_feature(env, ARM_FEATURE_V8)) { 5127 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5128 } else { 5129 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5130 } 5131 5132 if (arm_feature(env, ARM_FEATURE_EL3)) { 5133 valid_mask &= ~HCR_HCD; 5134 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5135 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5136 * However, if we're using the SMC PSCI conduit then QEMU is 5137 * effectively acting like EL3 firmware and so the guest at 5138 * EL2 should retain the ability to prevent EL1 from being 5139 * able to make SMC calls into the ersatz firmware, so in 5140 * that case HCR.TSC should be read/write. 5141 */ 5142 valid_mask &= ~HCR_TSC; 5143 } 5144 5145 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5146 if (cpu_isar_feature(aa64_vh, cpu)) { 5147 valid_mask |= HCR_E2H; 5148 } 5149 if (cpu_isar_feature(aa64_ras, cpu)) { 5150 valid_mask |= HCR_TERR | HCR_TEA; 5151 } 5152 if (cpu_isar_feature(aa64_lor, cpu)) { 5153 valid_mask |= HCR_TLOR; 5154 } 5155 if (cpu_isar_feature(aa64_pauth, cpu)) { 5156 valid_mask |= HCR_API | HCR_APK; 5157 } 5158 if (cpu_isar_feature(aa64_mte, cpu)) { 5159 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5160 } 5161 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5162 valid_mask |= HCR_ENSCXT; 5163 } 5164 if (cpu_isar_feature(aa64_fwb, cpu)) { 5165 valid_mask |= HCR_FWB; 5166 } 5167 } 5168 5169 /* Clear RES0 bits. */ 5170 value &= valid_mask; 5171 5172 /* 5173 * These bits change the MMU setup: 5174 * HCR_VM enables stage 2 translation 5175 * HCR_PTW forbids certain page-table setups 5176 * HCR_DC disables stage1 and enables stage2 translation 5177 * HCR_DCT enables tagging on (disabled) stage1 translation 5178 * HCR_FWB changes the interpretation of stage2 descriptor bits 5179 */ 5180 if ((env->cp15.hcr_el2 ^ value) & 5181 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5182 tlb_flush(CPU(cpu)); 5183 } 5184 env->cp15.hcr_el2 = value; 5185 5186 /* 5187 * Updates to VI and VF require us to update the status of 5188 * virtual interrupts, which are the logical OR of these bits 5189 * and the state of the input lines from the GIC. (This requires 5190 * that we have the iothread lock, which is done by marking the 5191 * reginfo structs as ARM_CP_IO.) 5192 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5193 * possible for it to be taken immediately, because VIRQ and 5194 * VFIQ are masked unless running at EL0 or EL1, and HCR 5195 * can only be written at EL2. 5196 */ 5197 g_assert(qemu_mutex_iothread_locked()); 5198 arm_cpu_update_virq(cpu); 5199 arm_cpu_update_vfiq(cpu); 5200 arm_cpu_update_vserr(cpu); 5201 } 5202 5203 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5204 { 5205 do_hcr_write(env, value, 0); 5206 } 5207 5208 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5209 uint64_t value) 5210 { 5211 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5212 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5213 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5214 } 5215 5216 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5217 uint64_t value) 5218 { 5219 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5220 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5221 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5222 } 5223 5224 /* 5225 * Return the effective value of HCR_EL2. 5226 * Bits that are not included here: 5227 * RW (read from SCR_EL3.RW as needed) 5228 */ 5229 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5230 { 5231 uint64_t ret = env->cp15.hcr_el2; 5232 5233 if (!arm_is_el2_enabled(env)) { 5234 /* 5235 * "This register has no effect if EL2 is not enabled in the 5236 * current Security state". This is ARMv8.4-SecEL2 speak for 5237 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5238 * 5239 * Prior to that, the language was "In an implementation that 5240 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5241 * as if this field is 0 for all purposes other than a direct 5242 * read or write access of HCR_EL2". With lots of enumeration 5243 * on a per-field basis. In current QEMU, this is condition 5244 * is arm_is_secure_below_el3. 5245 * 5246 * Since the v8.4 language applies to the entire register, and 5247 * appears to be backward compatible, use that. 5248 */ 5249 return 0; 5250 } 5251 5252 /* 5253 * For a cpu that supports both aarch64 and aarch32, we can set bits 5254 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5255 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5256 */ 5257 if (!arm_el_is_aa64(env, 2)) { 5258 uint64_t aa32_valid; 5259 5260 /* 5261 * These bits are up-to-date as of ARMv8.6. 5262 * For HCR, it's easiest to list just the 2 bits that are invalid. 5263 * For HCR2, list those that are valid. 5264 */ 5265 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5266 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5267 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5268 ret &= aa32_valid; 5269 } 5270 5271 if (ret & HCR_TGE) { 5272 /* These bits are up-to-date as of ARMv8.6. */ 5273 if (ret & HCR_E2H) { 5274 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5275 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5276 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5277 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5278 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5279 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5280 } else { 5281 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5282 } 5283 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5284 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5285 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5286 HCR_TLOR); 5287 } 5288 5289 return ret; 5290 } 5291 5292 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5293 uint64_t value) 5294 { 5295 /* 5296 * For A-profile AArch32 EL3, if NSACR.CP10 5297 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5298 */ 5299 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5300 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5301 value &= ~(0x3 << 10); 5302 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5303 } 5304 env->cp15.cptr_el[2] = value; 5305 } 5306 5307 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5308 { 5309 /* 5310 * For A-profile AArch32 EL3, if NSACR.CP10 5311 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5312 */ 5313 uint64_t value = env->cp15.cptr_el[2]; 5314 5315 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5316 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5317 value |= 0x3 << 10; 5318 } 5319 return value; 5320 } 5321 5322 static const ARMCPRegInfo el2_cp_reginfo[] = { 5323 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5324 .type = ARM_CP_IO, 5325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5326 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5327 .writefn = hcr_write }, 5328 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5329 .type = ARM_CP_ALIAS | ARM_CP_IO, 5330 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5331 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5332 .writefn = hcr_writelow }, 5333 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5335 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5336 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5337 .type = ARM_CP_ALIAS, 5338 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5339 .access = PL2_RW, 5340 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5341 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5342 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5343 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5344 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5345 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5346 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5347 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5348 .type = ARM_CP_ALIAS, 5349 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5350 .access = PL2_RW, 5351 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5352 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5353 .type = ARM_CP_ALIAS, 5354 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5355 .access = PL2_RW, 5356 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5357 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5358 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5359 .access = PL2_RW, .writefn = vbar_write, 5360 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5361 .resetvalue = 0 }, 5362 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5363 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5364 .access = PL3_RW, .type = ARM_CP_ALIAS, 5365 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5366 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5367 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5368 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5369 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5370 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5371 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5372 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5373 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5374 .resetvalue = 0 }, 5375 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5376 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5377 .access = PL2_RW, .type = ARM_CP_ALIAS, 5378 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5379 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5380 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5381 .access = PL2_RW, .type = ARM_CP_CONST, 5382 .resetvalue = 0 }, 5383 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5384 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5385 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5386 .access = PL2_RW, .type = ARM_CP_CONST, 5387 .resetvalue = 0 }, 5388 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5389 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5390 .access = PL2_RW, .type = ARM_CP_CONST, 5391 .resetvalue = 0 }, 5392 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5393 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5394 .access = PL2_RW, .type = ARM_CP_CONST, 5395 .resetvalue = 0 }, 5396 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5397 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5398 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5399 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5400 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5401 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5402 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5403 .type = ARM_CP_ALIAS, 5404 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5405 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5406 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5407 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5408 .access = PL2_RW, 5409 /* no .writefn needed as this can't cause an ASID change; 5410 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5411 */ 5412 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5413 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5414 .cp = 15, .opc1 = 6, .crm = 2, 5415 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5416 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5417 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5418 .writefn = vttbr_write }, 5419 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5421 .access = PL2_RW, .writefn = vttbr_write, 5422 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5423 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5424 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5425 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5426 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5427 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5428 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5429 .access = PL2_RW, .resetvalue = 0, 5430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5431 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5432 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5433 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5434 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5435 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5436 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5437 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5438 { .name = "TLBIALLNSNH", 5439 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5440 .type = ARM_CP_NO_RAW, .access = PL2_W, 5441 .writefn = tlbiall_nsnh_write }, 5442 { .name = "TLBIALLNSNHIS", 5443 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5444 .type = ARM_CP_NO_RAW, .access = PL2_W, 5445 .writefn = tlbiall_nsnh_is_write }, 5446 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5447 .type = ARM_CP_NO_RAW, .access = PL2_W, 5448 .writefn = tlbiall_hyp_write }, 5449 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5450 .type = ARM_CP_NO_RAW, .access = PL2_W, 5451 .writefn = tlbiall_hyp_is_write }, 5452 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5453 .type = ARM_CP_NO_RAW, .access = PL2_W, 5454 .writefn = tlbimva_hyp_write }, 5455 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5456 .type = ARM_CP_NO_RAW, .access = PL2_W, 5457 .writefn = tlbimva_hyp_is_write }, 5458 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5460 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5461 .writefn = tlbi_aa64_alle2_write }, 5462 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5464 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5465 .writefn = tlbi_aa64_vae2_write }, 5466 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5468 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5469 .writefn = tlbi_aa64_vae2_write }, 5470 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5472 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5473 .writefn = tlbi_aa64_alle2is_write }, 5474 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5476 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5477 .writefn = tlbi_aa64_vae2is_write }, 5478 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5480 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5481 .writefn = tlbi_aa64_vae2is_write }, 5482 #ifndef CONFIG_USER_ONLY 5483 /* Unlike the other EL2-related AT operations, these must 5484 * UNDEF from EL3 if EL2 is not implemented, which is why we 5485 * define them here rather than with the rest of the AT ops. 5486 */ 5487 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5488 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5489 .access = PL2_W, .accessfn = at_s1e2_access, 5490 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5491 .writefn = ats_write64 }, 5492 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5494 .access = PL2_W, .accessfn = at_s1e2_access, 5495 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5496 .writefn = ats_write64 }, 5497 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5498 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5499 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5500 * to behave as if SCR.NS was 1. 5501 */ 5502 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5503 .access = PL2_W, 5504 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5505 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5506 .access = PL2_W, 5507 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5508 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5510 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5511 * reset values as IMPDEF. We choose to reset to 3 to comply with 5512 * both ARMv7 and ARMv8. 5513 */ 5514 .access = PL2_RW, .resetvalue = 3, 5515 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5516 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5517 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5518 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5519 .writefn = gt_cntvoff_write, 5520 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5521 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5522 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5523 .writefn = gt_cntvoff_write, 5524 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5525 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5527 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5528 .type = ARM_CP_IO, .access = PL2_RW, 5529 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5530 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5531 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5532 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5533 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5534 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5536 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5537 .resetfn = gt_hyp_timer_reset, 5538 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5539 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5540 .type = ARM_CP_IO, 5541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5542 .access = PL2_RW, 5543 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5544 .resetvalue = 0, 5545 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5546 #endif 5547 /* The only field of MDCR_EL2 that has a defined architectural reset value 5548 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5549 */ 5550 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5552 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5553 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5554 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5555 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5556 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5557 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5558 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5560 .access = PL2_RW, 5561 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5562 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5563 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5564 .access = PL2_RW, 5565 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5566 }; 5567 5568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5569 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5570 .type = ARM_CP_ALIAS | ARM_CP_IO, 5571 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5572 .access = PL2_RW, 5573 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5574 .writefn = hcr_writehigh }, 5575 }; 5576 5577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5578 bool isread) 5579 { 5580 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5581 return CP_ACCESS_OK; 5582 } 5583 return CP_ACCESS_TRAP_UNCATEGORIZED; 5584 } 5585 5586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5587 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5589 .access = PL2_RW, .accessfn = sel2_access, 5590 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5591 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5593 .access = PL2_RW, .accessfn = sel2_access, 5594 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5595 }; 5596 5597 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5598 bool isread) 5599 { 5600 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5601 * At Secure EL1 it traps to EL3 or EL2. 5602 */ 5603 if (arm_current_el(env) == 3) { 5604 return CP_ACCESS_OK; 5605 } 5606 if (arm_is_secure_below_el3(env)) { 5607 if (env->cp15.scr_el3 & SCR_EEL2) { 5608 return CP_ACCESS_TRAP_EL2; 5609 } 5610 return CP_ACCESS_TRAP_EL3; 5611 } 5612 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5613 if (isread) { 5614 return CP_ACCESS_OK; 5615 } 5616 return CP_ACCESS_TRAP_UNCATEGORIZED; 5617 } 5618 5619 static const ARMCPRegInfo el3_cp_reginfo[] = { 5620 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5621 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5622 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5623 .resetfn = scr_reset, .writefn = scr_write }, 5624 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5625 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5626 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5627 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5628 .writefn = scr_write }, 5629 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5631 .access = PL3_RW, .resetvalue = 0, 5632 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5633 { .name = "SDER", 5634 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5635 .access = PL3_RW, .resetvalue = 0, 5636 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5637 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5638 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5639 .writefn = vbar_write, .resetvalue = 0, 5640 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5641 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5643 .access = PL3_RW, .resetvalue = 0, 5644 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5645 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5647 .access = PL3_RW, 5648 /* no .writefn needed as this can't cause an ASID change; 5649 * we must provide a .raw_writefn and .resetfn because we handle 5650 * reset and migration for the AArch32 TTBCR(S), which might be 5651 * using mask and base_mask. 5652 */ 5653 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5654 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5655 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5656 .type = ARM_CP_ALIAS, 5657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5658 .access = PL3_RW, 5659 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5660 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5662 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5663 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5665 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5666 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5667 .type = ARM_CP_ALIAS, 5668 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5669 .access = PL3_RW, 5670 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5671 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5673 .access = PL3_RW, .writefn = vbar_write, 5674 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5675 .resetvalue = 0 }, 5676 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5677 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5678 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5679 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5680 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5682 .access = PL3_RW, .resetvalue = 0, 5683 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5684 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5686 .access = PL3_RW, .type = ARM_CP_CONST, 5687 .resetvalue = 0 }, 5688 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5689 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5690 .access = PL3_RW, .type = ARM_CP_CONST, 5691 .resetvalue = 0 }, 5692 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5693 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5694 .access = PL3_RW, .type = ARM_CP_CONST, 5695 .resetvalue = 0 }, 5696 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5698 .access = PL3_W, .type = ARM_CP_NO_RAW, 5699 .writefn = tlbi_aa64_alle3is_write }, 5700 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5702 .access = PL3_W, .type = ARM_CP_NO_RAW, 5703 .writefn = tlbi_aa64_vae3is_write }, 5704 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5706 .access = PL3_W, .type = ARM_CP_NO_RAW, 5707 .writefn = tlbi_aa64_vae3is_write }, 5708 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5710 .access = PL3_W, .type = ARM_CP_NO_RAW, 5711 .writefn = tlbi_aa64_alle3_write }, 5712 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5714 .access = PL3_W, .type = ARM_CP_NO_RAW, 5715 .writefn = tlbi_aa64_vae3_write }, 5716 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5718 .access = PL3_W, .type = ARM_CP_NO_RAW, 5719 .writefn = tlbi_aa64_vae3_write }, 5720 }; 5721 5722 #ifndef CONFIG_USER_ONLY 5723 /* Test if system register redirection is to occur in the current state. */ 5724 static bool redirect_for_e2h(CPUARMState *env) 5725 { 5726 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5727 } 5728 5729 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5730 { 5731 CPReadFn *readfn; 5732 5733 if (redirect_for_e2h(env)) { 5734 /* Switch to the saved EL2 version of the register. */ 5735 ri = ri->opaque; 5736 readfn = ri->readfn; 5737 } else { 5738 readfn = ri->orig_readfn; 5739 } 5740 if (readfn == NULL) { 5741 readfn = raw_read; 5742 } 5743 return readfn(env, ri); 5744 } 5745 5746 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5747 uint64_t value) 5748 { 5749 CPWriteFn *writefn; 5750 5751 if (redirect_for_e2h(env)) { 5752 /* Switch to the saved EL2 version of the register. */ 5753 ri = ri->opaque; 5754 writefn = ri->writefn; 5755 } else { 5756 writefn = ri->orig_writefn; 5757 } 5758 if (writefn == NULL) { 5759 writefn = raw_write; 5760 } 5761 writefn(env, ri, value); 5762 } 5763 5764 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5765 { 5766 struct E2HAlias { 5767 uint32_t src_key, dst_key, new_key; 5768 const char *src_name, *dst_name, *new_name; 5769 bool (*feature)(const ARMISARegisters *id); 5770 }; 5771 5772 #define K(op0, op1, crn, crm, op2) \ 5773 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5774 5775 static const struct E2HAlias aliases[] = { 5776 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5777 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5778 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5779 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5780 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5781 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5782 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5783 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5784 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5785 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5786 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5787 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5788 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5789 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5790 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5791 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5792 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5793 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5794 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5795 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5796 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5797 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5798 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5799 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5800 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5801 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5802 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5803 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5804 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5805 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5806 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5807 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5808 5809 /* 5810 * Note that redirection of ZCR is mentioned in the description 5811 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5812 * not in the summary table. 5813 */ 5814 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5815 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5816 5817 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5818 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5819 5820 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5821 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5822 isar_feature_aa64_scxtnum }, 5823 5824 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5825 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5826 }; 5827 #undef K 5828 5829 size_t i; 5830 5831 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5832 const struct E2HAlias *a = &aliases[i]; 5833 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5834 bool ok; 5835 5836 if (a->feature && !a->feature(&cpu->isar)) { 5837 continue; 5838 } 5839 5840 src_reg = g_hash_table_lookup(cpu->cp_regs, 5841 (gpointer)(uintptr_t)a->src_key); 5842 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5843 (gpointer)(uintptr_t)a->dst_key); 5844 g_assert(src_reg != NULL); 5845 g_assert(dst_reg != NULL); 5846 5847 /* Cross-compare names to detect typos in the keys. */ 5848 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5849 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5850 5851 /* None of the core system registers use opaque; we will. */ 5852 g_assert(src_reg->opaque == NULL); 5853 5854 /* Create alias before redirection so we dup the right data. */ 5855 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5856 5857 new_reg->name = a->new_name; 5858 new_reg->type |= ARM_CP_ALIAS; 5859 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5860 new_reg->access &= PL2_RW | PL3_RW; 5861 5862 ok = g_hash_table_insert(cpu->cp_regs, 5863 (gpointer)(uintptr_t)a->new_key, new_reg); 5864 g_assert(ok); 5865 5866 src_reg->opaque = dst_reg; 5867 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5868 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5869 if (!src_reg->raw_readfn) { 5870 src_reg->raw_readfn = raw_read; 5871 } 5872 if (!src_reg->raw_writefn) { 5873 src_reg->raw_writefn = raw_write; 5874 } 5875 src_reg->readfn = el2_e2h_read; 5876 src_reg->writefn = el2_e2h_write; 5877 } 5878 } 5879 #endif 5880 5881 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5882 bool isread) 5883 { 5884 int cur_el = arm_current_el(env); 5885 5886 if (cur_el < 2) { 5887 uint64_t hcr = arm_hcr_el2_eff(env); 5888 5889 if (cur_el == 0) { 5890 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5891 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5892 return CP_ACCESS_TRAP_EL2; 5893 } 5894 } else { 5895 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5896 return CP_ACCESS_TRAP; 5897 } 5898 if (hcr & HCR_TID2) { 5899 return CP_ACCESS_TRAP_EL2; 5900 } 5901 } 5902 } else if (hcr & HCR_TID2) { 5903 return CP_ACCESS_TRAP_EL2; 5904 } 5905 } 5906 5907 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5908 return CP_ACCESS_TRAP_EL2; 5909 } 5910 5911 return CP_ACCESS_OK; 5912 } 5913 5914 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5915 uint64_t value) 5916 { 5917 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5918 * read via a bit in OSLSR_EL1. 5919 */ 5920 int oslock; 5921 5922 if (ri->state == ARM_CP_STATE_AA32) { 5923 oslock = (value == 0xC5ACCE55); 5924 } else { 5925 oslock = value & 1; 5926 } 5927 5928 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5929 } 5930 5931 static const ARMCPRegInfo debug_cp_reginfo[] = { 5932 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5933 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5934 * unlike DBGDRAR it is never accessible from EL0. 5935 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5936 * accessor. 5937 */ 5938 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5939 .access = PL0_R, .accessfn = access_tdra, 5940 .type = ARM_CP_CONST, .resetvalue = 0 }, 5941 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5942 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5943 .access = PL1_R, .accessfn = access_tdra, 5944 .type = ARM_CP_CONST, .resetvalue = 0 }, 5945 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5946 .access = PL0_R, .accessfn = access_tdra, 5947 .type = ARM_CP_CONST, .resetvalue = 0 }, 5948 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5949 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5950 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5951 .access = PL1_RW, .accessfn = access_tda, 5952 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5953 .resetvalue = 0 }, 5954 /* 5955 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 5956 * Debug Communication Channel is not implemented. 5957 */ 5958 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 5959 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 5960 .access = PL0_R, .accessfn = access_tda, 5961 .type = ARM_CP_CONST, .resetvalue = 0 }, 5962 /* 5963 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 5964 * it is unlikely a guest will care. 5965 * We don't implement the configurable EL0 access. 5966 */ 5967 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 5968 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5969 .type = ARM_CP_ALIAS, 5970 .access = PL1_R, .accessfn = access_tda, 5971 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5972 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5973 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5974 .access = PL1_W, .type = ARM_CP_NO_RAW, 5975 .accessfn = access_tdosa, 5976 .writefn = oslar_write }, 5977 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5978 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5979 .access = PL1_R, .resetvalue = 10, 5980 .accessfn = access_tdosa, 5981 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5982 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5983 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5985 .access = PL1_RW, .accessfn = access_tdosa, 5986 .type = ARM_CP_NOP }, 5987 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5988 * implement vector catch debug events yet. 5989 */ 5990 { .name = "DBGVCR", 5991 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5992 .access = PL1_RW, .accessfn = access_tda, 5993 .type = ARM_CP_NOP }, 5994 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5995 * to save and restore a 32-bit guest's DBGVCR) 5996 */ 5997 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5998 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5999 .access = PL2_RW, .accessfn = access_tda, 6000 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 6001 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6002 * Channel but Linux may try to access this register. The 32-bit 6003 * alias is DBGDCCINT. 6004 */ 6005 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6006 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6007 .access = PL1_RW, .accessfn = access_tda, 6008 .type = ARM_CP_NOP }, 6009 }; 6010 6011 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6012 /* 64 bit access versions of the (dummy) debug registers */ 6013 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6014 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6015 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6016 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6017 }; 6018 6019 /* 6020 * Check for traps to RAS registers, which are controlled 6021 * by HCR_EL2.TERR and SCR_EL3.TERR. 6022 */ 6023 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6024 bool isread) 6025 { 6026 int el = arm_current_el(env); 6027 6028 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6029 return CP_ACCESS_TRAP_EL2; 6030 } 6031 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6032 return CP_ACCESS_TRAP_EL3; 6033 } 6034 return CP_ACCESS_OK; 6035 } 6036 6037 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6038 { 6039 int el = arm_current_el(env); 6040 6041 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6042 return env->cp15.vdisr_el2; 6043 } 6044 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6045 return 0; /* RAZ/WI */ 6046 } 6047 return env->cp15.disr_el1; 6048 } 6049 6050 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6051 { 6052 int el = arm_current_el(env); 6053 6054 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6055 env->cp15.vdisr_el2 = val; 6056 return; 6057 } 6058 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6059 return; /* RAZ/WI */ 6060 } 6061 env->cp15.disr_el1 = val; 6062 } 6063 6064 /* 6065 * Minimal RAS implementation with no Error Records. 6066 * Which means that all of the Error Record registers: 6067 * ERXADDR_EL1 6068 * ERXCTLR_EL1 6069 * ERXFR_EL1 6070 * ERXMISC0_EL1 6071 * ERXMISC1_EL1 6072 * ERXMISC2_EL1 6073 * ERXMISC3_EL1 6074 * ERXPFGCDN_EL1 (RASv1p1) 6075 * ERXPFGCTL_EL1 (RASv1p1) 6076 * ERXPFGF_EL1 (RASv1p1) 6077 * ERXSTATUS_EL1 6078 * and 6079 * ERRSELR_EL1 6080 * may generate UNDEFINED, which is the effect we get by not 6081 * listing them at all. 6082 */ 6083 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6084 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6086 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6087 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6088 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6089 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6090 .access = PL1_R, .accessfn = access_terr, 6091 .type = ARM_CP_CONST, .resetvalue = 0 }, 6092 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6093 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6094 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6095 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6096 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6097 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6098 }; 6099 6100 /* Return the exception level to which exceptions should be taken 6101 * via SVEAccessTrap. If an exception should be routed through 6102 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6103 * take care of raising that exception. 6104 * C.f. the ARM pseudocode function CheckSVEEnabled. 6105 */ 6106 int sve_exception_el(CPUARMState *env, int el) 6107 { 6108 #ifndef CONFIG_USER_ONLY 6109 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6110 6111 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6112 /* Check CPACR.ZEN. */ 6113 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6114 case 1: 6115 if (el != 0) { 6116 break; 6117 } 6118 /* fall through */ 6119 case 0: 6120 case 2: 6121 /* route_to_el2 */ 6122 return hcr_el2 & HCR_TGE ? 2 : 1; 6123 } 6124 6125 /* Check CPACR.FPEN. */ 6126 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6127 case 1: 6128 if (el != 0) { 6129 break; 6130 } 6131 /* fall through */ 6132 case 0: 6133 case 2: 6134 return 0; 6135 } 6136 } 6137 6138 /* 6139 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6140 */ 6141 if (el <= 2) { 6142 if (hcr_el2 & HCR_E2H) { 6143 /* Check CPTR_EL2.ZEN. */ 6144 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6145 case 1: 6146 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6147 break; 6148 } 6149 /* fall through */ 6150 case 0: 6151 case 2: 6152 return 2; 6153 } 6154 6155 /* Check CPTR_EL2.FPEN. */ 6156 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6157 case 1: 6158 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6159 break; 6160 } 6161 /* fall through */ 6162 case 0: 6163 case 2: 6164 return 0; 6165 } 6166 } else if (arm_is_el2_enabled(env)) { 6167 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6168 return 2; 6169 } 6170 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6171 return 0; 6172 } 6173 } 6174 } 6175 6176 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6177 if (arm_feature(env, ARM_FEATURE_EL3) 6178 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6179 return 3; 6180 } 6181 #endif 6182 return 0; 6183 } 6184 6185 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6186 { 6187 uint32_t end_len; 6188 6189 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6190 end_len = start_len; 6191 6192 if (!test_bit(start_len, cpu->sve_vq_map)) { 6193 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6194 assert(end_len < start_len); 6195 } 6196 return end_len; 6197 } 6198 6199 /* 6200 * Given that SVE is enabled, return the vector length for EL. 6201 */ 6202 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6203 { 6204 ARMCPU *cpu = env_archcpu(env); 6205 uint32_t zcr_len = cpu->sve_max_vq - 1; 6206 6207 if (el <= 1 && 6208 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6209 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6210 } 6211 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6212 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6213 } 6214 if (arm_feature(env, ARM_FEATURE_EL3)) { 6215 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6216 } 6217 6218 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6219 } 6220 6221 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6222 uint64_t value) 6223 { 6224 int cur_el = arm_current_el(env); 6225 int old_len = sve_zcr_len_for_el(env, cur_el); 6226 int new_len; 6227 6228 /* Bits other than [3:0] are RAZ/WI. */ 6229 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6230 raw_write(env, ri, value & 0xf); 6231 6232 /* 6233 * Because we arrived here, we know both FP and SVE are enabled; 6234 * otherwise we would have trapped access to the ZCR_ELn register. 6235 */ 6236 new_len = sve_zcr_len_for_el(env, cur_el); 6237 if (new_len < old_len) { 6238 aarch64_sve_narrow_vq(env, new_len + 1); 6239 } 6240 } 6241 6242 static const ARMCPRegInfo zcr_reginfo[] = { 6243 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6244 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6245 .access = PL1_RW, .type = ARM_CP_SVE, 6246 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6247 .writefn = zcr_write, .raw_writefn = raw_write }, 6248 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6250 .access = PL2_RW, .type = ARM_CP_SVE, 6251 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6252 .writefn = zcr_write, .raw_writefn = raw_write }, 6253 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6255 .access = PL3_RW, .type = ARM_CP_SVE, 6256 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6257 .writefn = zcr_write, .raw_writefn = raw_write }, 6258 }; 6259 6260 void hw_watchpoint_update(ARMCPU *cpu, int n) 6261 { 6262 CPUARMState *env = &cpu->env; 6263 vaddr len = 0; 6264 vaddr wvr = env->cp15.dbgwvr[n]; 6265 uint64_t wcr = env->cp15.dbgwcr[n]; 6266 int mask; 6267 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6268 6269 if (env->cpu_watchpoint[n]) { 6270 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6271 env->cpu_watchpoint[n] = NULL; 6272 } 6273 6274 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6275 /* E bit clear : watchpoint disabled */ 6276 return; 6277 } 6278 6279 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6280 case 0: 6281 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6282 return; 6283 case 1: 6284 flags |= BP_MEM_READ; 6285 break; 6286 case 2: 6287 flags |= BP_MEM_WRITE; 6288 break; 6289 case 3: 6290 flags |= BP_MEM_ACCESS; 6291 break; 6292 } 6293 6294 /* Attempts to use both MASK and BAS fields simultaneously are 6295 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6296 * thus generating a watchpoint for every byte in the masked region. 6297 */ 6298 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6299 if (mask == 1 || mask == 2) { 6300 /* Reserved values of MASK; we must act as if the mask value was 6301 * some non-reserved value, or as if the watchpoint were disabled. 6302 * We choose the latter. 6303 */ 6304 return; 6305 } else if (mask) { 6306 /* Watchpoint covers an aligned area up to 2GB in size */ 6307 len = 1ULL << mask; 6308 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6309 * whether the watchpoint fires when the unmasked bits match; we opt 6310 * to generate the exceptions. 6311 */ 6312 wvr &= ~(len - 1); 6313 } else { 6314 /* Watchpoint covers bytes defined by the byte address select bits */ 6315 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6316 int basstart; 6317 6318 if (extract64(wvr, 2, 1)) { 6319 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6320 * ignored, and BAS[3:0] define which bytes to watch. 6321 */ 6322 bas &= 0xf; 6323 } 6324 6325 if (bas == 0) { 6326 /* This must act as if the watchpoint is disabled */ 6327 return; 6328 } 6329 6330 /* The BAS bits are supposed to be programmed to indicate a contiguous 6331 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6332 * we fire for each byte in the word/doubleword addressed by the WVR. 6333 * We choose to ignore any non-zero bits after the first range of 1s. 6334 */ 6335 basstart = ctz32(bas); 6336 len = cto32(bas >> basstart); 6337 wvr += basstart; 6338 } 6339 6340 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6341 &env->cpu_watchpoint[n]); 6342 } 6343 6344 void hw_watchpoint_update_all(ARMCPU *cpu) 6345 { 6346 int i; 6347 CPUARMState *env = &cpu->env; 6348 6349 /* Completely clear out existing QEMU watchpoints and our array, to 6350 * avoid possible stale entries following migration load. 6351 */ 6352 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6353 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6354 6355 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6356 hw_watchpoint_update(cpu, i); 6357 } 6358 } 6359 6360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6361 uint64_t value) 6362 { 6363 ARMCPU *cpu = env_archcpu(env); 6364 int i = ri->crm; 6365 6366 /* 6367 * Bits [1:0] are RES0. 6368 * 6369 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6370 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6371 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6372 * whether the RESS bits are ignored when comparing an address. 6373 * 6374 * Therefore we are allowed to compare the entire register, which lets 6375 * us avoid considering whether or not FEAT_LVA is actually enabled. 6376 */ 6377 value &= ~3ULL; 6378 6379 raw_write(env, ri, value); 6380 hw_watchpoint_update(cpu, i); 6381 } 6382 6383 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6384 uint64_t value) 6385 { 6386 ARMCPU *cpu = env_archcpu(env); 6387 int i = ri->crm; 6388 6389 raw_write(env, ri, value); 6390 hw_watchpoint_update(cpu, i); 6391 } 6392 6393 void hw_breakpoint_update(ARMCPU *cpu, int n) 6394 { 6395 CPUARMState *env = &cpu->env; 6396 uint64_t bvr = env->cp15.dbgbvr[n]; 6397 uint64_t bcr = env->cp15.dbgbcr[n]; 6398 vaddr addr; 6399 int bt; 6400 int flags = BP_CPU; 6401 6402 if (env->cpu_breakpoint[n]) { 6403 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6404 env->cpu_breakpoint[n] = NULL; 6405 } 6406 6407 if (!extract64(bcr, 0, 1)) { 6408 /* E bit clear : watchpoint disabled */ 6409 return; 6410 } 6411 6412 bt = extract64(bcr, 20, 4); 6413 6414 switch (bt) { 6415 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6416 case 5: /* linked address mismatch (reserved if AArch64) */ 6417 qemu_log_mask(LOG_UNIMP, 6418 "arm: address mismatch breakpoint types not implemented\n"); 6419 return; 6420 case 0: /* unlinked address match */ 6421 case 1: /* linked address match */ 6422 { 6423 /* 6424 * Bits [1:0] are RES0. 6425 * 6426 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6427 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6428 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6429 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6430 * whether the RESS bits are ignored when comparing an address. 6431 * Therefore we are allowed to compare the entire register, which 6432 * lets us avoid considering whether FEAT_LVA is actually enabled. 6433 * 6434 * The BAS field is used to allow setting breakpoints on 16-bit 6435 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6436 * a bp will fire if the addresses covered by the bp and the addresses 6437 * covered by the insn overlap but the insn doesn't start at the 6438 * start of the bp address range. We choose to require the insn and 6439 * the bp to have the same address. The constraints on writing to 6440 * BAS enforced in dbgbcr_write mean we have only four cases: 6441 * 0b0000 => no breakpoint 6442 * 0b0011 => breakpoint on addr 6443 * 0b1100 => breakpoint on addr + 2 6444 * 0b1111 => breakpoint on addr 6445 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6446 */ 6447 int bas = extract64(bcr, 5, 4); 6448 addr = bvr & ~3ULL; 6449 if (bas == 0) { 6450 return; 6451 } 6452 if (bas == 0xc) { 6453 addr += 2; 6454 } 6455 break; 6456 } 6457 case 2: /* unlinked context ID match */ 6458 case 8: /* unlinked VMID match (reserved if no EL2) */ 6459 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6460 qemu_log_mask(LOG_UNIMP, 6461 "arm: unlinked context breakpoint types not implemented\n"); 6462 return; 6463 case 9: /* linked VMID match (reserved if no EL2) */ 6464 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6465 case 3: /* linked context ID match */ 6466 default: 6467 /* We must generate no events for Linked context matches (unless 6468 * they are linked to by some other bp/wp, which is handled in 6469 * updates for the linking bp/wp). We choose to also generate no events 6470 * for reserved values. 6471 */ 6472 return; 6473 } 6474 6475 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6476 } 6477 6478 void hw_breakpoint_update_all(ARMCPU *cpu) 6479 { 6480 int i; 6481 CPUARMState *env = &cpu->env; 6482 6483 /* Completely clear out existing QEMU breakpoints and our array, to 6484 * avoid possible stale entries following migration load. 6485 */ 6486 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6487 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6488 6489 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6490 hw_breakpoint_update(cpu, i); 6491 } 6492 } 6493 6494 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6495 uint64_t value) 6496 { 6497 ARMCPU *cpu = env_archcpu(env); 6498 int i = ri->crm; 6499 6500 raw_write(env, ri, value); 6501 hw_breakpoint_update(cpu, i); 6502 } 6503 6504 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6505 uint64_t value) 6506 { 6507 ARMCPU *cpu = env_archcpu(env); 6508 int i = ri->crm; 6509 6510 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6511 * copy of BAS[0]. 6512 */ 6513 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6514 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6515 6516 raw_write(env, ri, value); 6517 hw_breakpoint_update(cpu, i); 6518 } 6519 6520 static void define_debug_regs(ARMCPU *cpu) 6521 { 6522 /* Define v7 and v8 architectural debug registers. 6523 * These are just dummy implementations for now. 6524 */ 6525 int i; 6526 int wrps, brps, ctx_cmps; 6527 6528 /* 6529 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6530 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6531 * the register must not exist for this cpu. 6532 */ 6533 if (cpu->isar.dbgdidr != 0) { 6534 ARMCPRegInfo dbgdidr = { 6535 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6536 .opc1 = 0, .opc2 = 0, 6537 .access = PL0_R, .accessfn = access_tda, 6538 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6539 }; 6540 define_one_arm_cp_reg(cpu, &dbgdidr); 6541 } 6542 6543 /* Note that all these register fields hold "number of Xs minus 1". */ 6544 brps = arm_num_brps(cpu); 6545 wrps = arm_num_wrps(cpu); 6546 ctx_cmps = arm_num_ctx_cmps(cpu); 6547 6548 assert(ctx_cmps <= brps); 6549 6550 define_arm_cp_regs(cpu, debug_cp_reginfo); 6551 6552 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6553 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6554 } 6555 6556 for (i = 0; i < brps; i++) { 6557 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i); 6558 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i); 6559 ARMCPRegInfo dbgregs[] = { 6560 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH, 6561 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6562 .access = PL1_RW, .accessfn = access_tda, 6563 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6564 .writefn = dbgbvr_write, .raw_writefn = raw_write 6565 }, 6566 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH, 6567 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6568 .access = PL1_RW, .accessfn = access_tda, 6569 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6570 .writefn = dbgbcr_write, .raw_writefn = raw_write 6571 }, 6572 }; 6573 define_arm_cp_regs(cpu, dbgregs); 6574 g_free(dbgbvr_el1_name); 6575 g_free(dbgbcr_el1_name); 6576 } 6577 6578 for (i = 0; i < wrps; i++) { 6579 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i); 6580 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i); 6581 ARMCPRegInfo dbgregs[] = { 6582 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH, 6583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6584 .access = PL1_RW, .accessfn = access_tda, 6585 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6586 .writefn = dbgwvr_write, .raw_writefn = raw_write 6587 }, 6588 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH, 6589 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6590 .access = PL1_RW, .accessfn = access_tda, 6591 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6592 .writefn = dbgwcr_write, .raw_writefn = raw_write 6593 }, 6594 }; 6595 define_arm_cp_regs(cpu, dbgregs); 6596 g_free(dbgwvr_el1_name); 6597 g_free(dbgwcr_el1_name); 6598 } 6599 } 6600 6601 static void define_pmu_regs(ARMCPU *cpu) 6602 { 6603 /* 6604 * v7 performance monitor control register: same implementor 6605 * field as main ID register, and we implement four counters in 6606 * addition to the cycle count register. 6607 */ 6608 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6609 ARMCPRegInfo pmcr = { 6610 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6611 .access = PL0_RW, 6612 .type = ARM_CP_IO | ARM_CP_ALIAS, 6613 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6614 .accessfn = pmreg_access, .writefn = pmcr_write, 6615 .raw_writefn = raw_write, 6616 }; 6617 ARMCPRegInfo pmcr64 = { 6618 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6619 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6620 .access = PL0_RW, .accessfn = pmreg_access, 6621 .type = ARM_CP_IO, 6622 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6623 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6624 PMCRLC, 6625 .writefn = pmcr_write, .raw_writefn = raw_write, 6626 }; 6627 define_one_arm_cp_reg(cpu, &pmcr); 6628 define_one_arm_cp_reg(cpu, &pmcr64); 6629 for (i = 0; i < pmcrn; i++) { 6630 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6631 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6632 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6633 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6634 ARMCPRegInfo pmev_regs[] = { 6635 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6636 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6637 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6638 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6639 .accessfn = pmreg_access_xevcntr }, 6640 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6641 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6642 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6643 .type = ARM_CP_IO, 6644 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6645 .raw_readfn = pmevcntr_rawread, 6646 .raw_writefn = pmevcntr_rawwrite }, 6647 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6648 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6649 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6650 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6651 .accessfn = pmreg_access }, 6652 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6653 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6654 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6655 .type = ARM_CP_IO, 6656 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6657 .raw_writefn = pmevtyper_rawwrite }, 6658 }; 6659 define_arm_cp_regs(cpu, pmev_regs); 6660 g_free(pmevcntr_name); 6661 g_free(pmevcntr_el0_name); 6662 g_free(pmevtyper_name); 6663 g_free(pmevtyper_el0_name); 6664 } 6665 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6666 ARMCPRegInfo v81_pmu_regs[] = { 6667 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6668 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6669 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6670 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6671 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6672 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6673 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6674 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6675 }; 6676 define_arm_cp_regs(cpu, v81_pmu_regs); 6677 } 6678 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6679 static const ARMCPRegInfo v84_pmmir = { 6680 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6681 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6682 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6683 .resetvalue = 0 6684 }; 6685 define_one_arm_cp_reg(cpu, &v84_pmmir); 6686 } 6687 } 6688 6689 /* We don't know until after realize whether there's a GICv3 6690 * attached, and that is what registers the gicv3 sysregs. 6691 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6692 * at runtime. 6693 */ 6694 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6695 { 6696 ARMCPU *cpu = env_archcpu(env); 6697 uint64_t pfr1 = cpu->isar.id_pfr1; 6698 6699 if (env->gicv3state) { 6700 pfr1 |= 1 << 28; 6701 } 6702 return pfr1; 6703 } 6704 6705 #ifndef CONFIG_USER_ONLY 6706 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6707 { 6708 ARMCPU *cpu = env_archcpu(env); 6709 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6710 6711 if (env->gicv3state) { 6712 pfr0 |= 1 << 24; 6713 } 6714 return pfr0; 6715 } 6716 #endif 6717 6718 /* Shared logic between LORID and the rest of the LOR* registers. 6719 * Secure state exclusion has already been dealt with. 6720 */ 6721 static CPAccessResult access_lor_ns(CPUARMState *env, 6722 const ARMCPRegInfo *ri, bool isread) 6723 { 6724 int el = arm_current_el(env); 6725 6726 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6727 return CP_ACCESS_TRAP_EL2; 6728 } 6729 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6730 return CP_ACCESS_TRAP_EL3; 6731 } 6732 return CP_ACCESS_OK; 6733 } 6734 6735 static CPAccessResult access_lor_other(CPUARMState *env, 6736 const ARMCPRegInfo *ri, bool isread) 6737 { 6738 if (arm_is_secure_below_el3(env)) { 6739 /* Access denied in secure mode. */ 6740 return CP_ACCESS_TRAP; 6741 } 6742 return access_lor_ns(env, ri, isread); 6743 } 6744 6745 /* 6746 * A trivial implementation of ARMv8.1-LOR leaves all of these 6747 * registers fixed at 0, which indicates that there are zero 6748 * supported Limited Ordering regions. 6749 */ 6750 static const ARMCPRegInfo lor_reginfo[] = { 6751 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6753 .access = PL1_RW, .accessfn = access_lor_other, 6754 .type = ARM_CP_CONST, .resetvalue = 0 }, 6755 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6757 .access = PL1_RW, .accessfn = access_lor_other, 6758 .type = ARM_CP_CONST, .resetvalue = 0 }, 6759 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6761 .access = PL1_RW, .accessfn = access_lor_other, 6762 .type = ARM_CP_CONST, .resetvalue = 0 }, 6763 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6765 .access = PL1_RW, .accessfn = access_lor_other, 6766 .type = ARM_CP_CONST, .resetvalue = 0 }, 6767 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6769 .access = PL1_R, .accessfn = access_lor_ns, 6770 .type = ARM_CP_CONST, .resetvalue = 0 }, 6771 }; 6772 6773 #ifdef TARGET_AARCH64 6774 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6775 bool isread) 6776 { 6777 int el = arm_current_el(env); 6778 6779 if (el < 2 && 6780 arm_feature(env, ARM_FEATURE_EL2) && 6781 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6782 return CP_ACCESS_TRAP_EL2; 6783 } 6784 if (el < 3 && 6785 arm_feature(env, ARM_FEATURE_EL3) && 6786 !(env->cp15.scr_el3 & SCR_APK)) { 6787 return CP_ACCESS_TRAP_EL3; 6788 } 6789 return CP_ACCESS_OK; 6790 } 6791 6792 static const ARMCPRegInfo pauth_reginfo[] = { 6793 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6795 .access = PL1_RW, .accessfn = access_pauth, 6796 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6797 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6798 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6799 .access = PL1_RW, .accessfn = access_pauth, 6800 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6801 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6803 .access = PL1_RW, .accessfn = access_pauth, 6804 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6805 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6806 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6807 .access = PL1_RW, .accessfn = access_pauth, 6808 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6809 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6810 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6811 .access = PL1_RW, .accessfn = access_pauth, 6812 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6813 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6815 .access = PL1_RW, .accessfn = access_pauth, 6816 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6817 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6819 .access = PL1_RW, .accessfn = access_pauth, 6820 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6821 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6823 .access = PL1_RW, .accessfn = access_pauth, 6824 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6825 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6827 .access = PL1_RW, .accessfn = access_pauth, 6828 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6829 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6830 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6831 .access = PL1_RW, .accessfn = access_pauth, 6832 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6833 }; 6834 6835 static const ARMCPRegInfo tlbirange_reginfo[] = { 6836 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6838 .access = PL1_W, .type = ARM_CP_NO_RAW, 6839 .writefn = tlbi_aa64_rvae1is_write }, 6840 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6841 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6842 .access = PL1_W, .type = ARM_CP_NO_RAW, 6843 .writefn = tlbi_aa64_rvae1is_write }, 6844 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6846 .access = PL1_W, .type = ARM_CP_NO_RAW, 6847 .writefn = tlbi_aa64_rvae1is_write }, 6848 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6850 .access = PL1_W, .type = ARM_CP_NO_RAW, 6851 .writefn = tlbi_aa64_rvae1is_write }, 6852 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6854 .access = PL1_W, .type = ARM_CP_NO_RAW, 6855 .writefn = tlbi_aa64_rvae1is_write }, 6856 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6858 .access = PL1_W, .type = ARM_CP_NO_RAW, 6859 .writefn = tlbi_aa64_rvae1is_write }, 6860 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6862 .access = PL1_W, .type = ARM_CP_NO_RAW, 6863 .writefn = tlbi_aa64_rvae1is_write }, 6864 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6866 .access = PL1_W, .type = ARM_CP_NO_RAW, 6867 .writefn = tlbi_aa64_rvae1is_write }, 6868 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6870 .access = PL1_W, .type = ARM_CP_NO_RAW, 6871 .writefn = tlbi_aa64_rvae1_write }, 6872 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6874 .access = PL1_W, .type = ARM_CP_NO_RAW, 6875 .writefn = tlbi_aa64_rvae1_write }, 6876 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6878 .access = PL1_W, .type = ARM_CP_NO_RAW, 6879 .writefn = tlbi_aa64_rvae1_write }, 6880 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6882 .access = PL1_W, .type = ARM_CP_NO_RAW, 6883 .writefn = tlbi_aa64_rvae1_write }, 6884 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6885 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6886 .access = PL2_W, .type = ARM_CP_NOP }, 6887 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6889 .access = PL2_W, .type = ARM_CP_NOP }, 6890 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6892 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6893 .writefn = tlbi_aa64_rvae2is_write }, 6894 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6896 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6897 .writefn = tlbi_aa64_rvae2is_write }, 6898 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6900 .access = PL2_W, .type = ARM_CP_NOP }, 6901 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6903 .access = PL2_W, .type = ARM_CP_NOP }, 6904 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6906 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6907 .writefn = tlbi_aa64_rvae2is_write }, 6908 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6910 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6911 .writefn = tlbi_aa64_rvae2is_write }, 6912 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6914 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6915 .writefn = tlbi_aa64_rvae2_write }, 6916 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6918 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6919 .writefn = tlbi_aa64_rvae2_write }, 6920 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6921 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6922 .access = PL3_W, .type = ARM_CP_NO_RAW, 6923 .writefn = tlbi_aa64_rvae3is_write }, 6924 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6926 .access = PL3_W, .type = ARM_CP_NO_RAW, 6927 .writefn = tlbi_aa64_rvae3is_write }, 6928 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6930 .access = PL3_W, .type = ARM_CP_NO_RAW, 6931 .writefn = tlbi_aa64_rvae3is_write }, 6932 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6934 .access = PL3_W, .type = ARM_CP_NO_RAW, 6935 .writefn = tlbi_aa64_rvae3is_write }, 6936 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6938 .access = PL3_W, .type = ARM_CP_NO_RAW, 6939 .writefn = tlbi_aa64_rvae3_write }, 6940 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6942 .access = PL3_W, .type = ARM_CP_NO_RAW, 6943 .writefn = tlbi_aa64_rvae3_write }, 6944 }; 6945 6946 static const ARMCPRegInfo tlbios_reginfo[] = { 6947 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6948 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6949 .access = PL1_W, .type = ARM_CP_NO_RAW, 6950 .writefn = tlbi_aa64_vmalle1is_write }, 6951 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6953 .access = PL1_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_vae1is_write }, 6955 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6957 .access = PL1_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_vmalle1is_write }, 6959 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6961 .access = PL1_W, .type = ARM_CP_NO_RAW, 6962 .writefn = tlbi_aa64_vae1is_write }, 6963 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6965 .access = PL1_W, .type = ARM_CP_NO_RAW, 6966 .writefn = tlbi_aa64_vae1is_write }, 6967 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6969 .access = PL1_W, .type = ARM_CP_NO_RAW, 6970 .writefn = tlbi_aa64_vae1is_write }, 6971 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6974 .writefn = tlbi_aa64_alle2is_write }, 6975 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6978 .writefn = tlbi_aa64_vae2is_write }, 6979 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6981 .access = PL2_W, .type = ARM_CP_NO_RAW, 6982 .writefn = tlbi_aa64_alle1is_write }, 6983 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6986 .writefn = tlbi_aa64_vae2is_write }, 6987 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6989 .access = PL2_W, .type = ARM_CP_NO_RAW, 6990 .writefn = tlbi_aa64_alle1is_write }, 6991 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6993 .access = PL2_W, .type = ARM_CP_NOP }, 6994 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6996 .access = PL2_W, .type = ARM_CP_NOP }, 6997 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6999 .access = PL2_W, .type = ARM_CP_NOP }, 7000 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7002 .access = PL2_W, .type = ARM_CP_NOP }, 7003 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7004 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7005 .access = PL3_W, .type = ARM_CP_NO_RAW, 7006 .writefn = tlbi_aa64_alle3is_write }, 7007 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7009 .access = PL3_W, .type = ARM_CP_NO_RAW, 7010 .writefn = tlbi_aa64_vae3is_write }, 7011 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7012 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7013 .access = PL3_W, .type = ARM_CP_NO_RAW, 7014 .writefn = tlbi_aa64_vae3is_write }, 7015 }; 7016 7017 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7018 { 7019 Error *err = NULL; 7020 uint64_t ret; 7021 7022 /* Success sets NZCV = 0000. */ 7023 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7024 7025 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7026 /* 7027 * ??? Failed, for unknown reasons in the crypto subsystem. 7028 * The best we can do is log the reason and return the 7029 * timed-out indication to the guest. There is no reason 7030 * we know to expect this failure to be transitory, so the 7031 * guest may well hang retrying the operation. 7032 */ 7033 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7034 ri->name, error_get_pretty(err)); 7035 error_free(err); 7036 7037 env->ZF = 0; /* NZCF = 0100 */ 7038 return 0; 7039 } 7040 return ret; 7041 } 7042 7043 /* We do not support re-seeding, so the two registers operate the same. */ 7044 static const ARMCPRegInfo rndr_reginfo[] = { 7045 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7046 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7047 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7048 .access = PL0_R, .readfn = rndr_readfn }, 7049 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7050 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7051 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7052 .access = PL0_R, .readfn = rndr_readfn }, 7053 }; 7054 7055 #ifndef CONFIG_USER_ONLY 7056 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7057 uint64_t value) 7058 { 7059 ARMCPU *cpu = env_archcpu(env); 7060 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7061 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7062 uint64_t vaddr_in = (uint64_t) value; 7063 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7064 void *haddr; 7065 int mem_idx = cpu_mmu_index(env, false); 7066 7067 /* This won't be crossing page boundaries */ 7068 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7069 if (haddr) { 7070 7071 ram_addr_t offset; 7072 MemoryRegion *mr; 7073 7074 /* RCU lock is already being held */ 7075 mr = memory_region_from_host(haddr, &offset); 7076 7077 if (mr) { 7078 memory_region_writeback(mr, offset, dline_size); 7079 } 7080 } 7081 } 7082 7083 static const ARMCPRegInfo dcpop_reg[] = { 7084 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7086 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7087 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7088 }; 7089 7090 static const ARMCPRegInfo dcpodp_reg[] = { 7091 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7093 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7094 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7095 }; 7096 #endif /*CONFIG_USER_ONLY*/ 7097 7098 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7099 bool isread) 7100 { 7101 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7102 return CP_ACCESS_TRAP_EL2; 7103 } 7104 7105 return CP_ACCESS_OK; 7106 } 7107 7108 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7109 bool isread) 7110 { 7111 int el = arm_current_el(env); 7112 7113 if (el < 2 && arm_is_el2_enabled(env)) { 7114 uint64_t hcr = arm_hcr_el2_eff(env); 7115 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7116 return CP_ACCESS_TRAP_EL2; 7117 } 7118 } 7119 if (el < 3 && 7120 arm_feature(env, ARM_FEATURE_EL3) && 7121 !(env->cp15.scr_el3 & SCR_ATA)) { 7122 return CP_ACCESS_TRAP_EL3; 7123 } 7124 return CP_ACCESS_OK; 7125 } 7126 7127 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7128 { 7129 return env->pstate & PSTATE_TCO; 7130 } 7131 7132 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7133 { 7134 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7135 } 7136 7137 static const ARMCPRegInfo mte_reginfo[] = { 7138 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7140 .access = PL1_RW, .accessfn = access_mte, 7141 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7142 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7144 .access = PL1_RW, .accessfn = access_mte, 7145 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7146 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7147 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7148 .access = PL2_RW, .accessfn = access_mte, 7149 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7150 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7152 .access = PL3_RW, 7153 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7154 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7156 .access = PL1_RW, .accessfn = access_mte, 7157 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7158 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7160 .access = PL1_RW, .accessfn = access_mte, 7161 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7162 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7163 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7164 .access = PL1_R, .accessfn = access_aa64_tid5, 7165 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7166 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7167 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7168 .type = ARM_CP_NO_RAW, 7169 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7170 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7171 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7172 .type = ARM_CP_NOP, .access = PL1_W, 7173 .accessfn = aa64_cacheop_poc_access }, 7174 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7175 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7176 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7177 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7179 .type = ARM_CP_NOP, .access = PL1_W, 7180 .accessfn = aa64_cacheop_poc_access }, 7181 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7183 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7184 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7186 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7187 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7189 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7190 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7191 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7192 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7193 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7195 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7196 }; 7197 7198 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7199 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7200 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7201 .type = ARM_CP_CONST, .access = PL0_RW, }, 7202 }; 7203 7204 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7205 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7207 .type = ARM_CP_NOP, .access = PL0_W, 7208 .accessfn = aa64_cacheop_poc_access }, 7209 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7211 .type = ARM_CP_NOP, .access = PL0_W, 7212 .accessfn = aa64_cacheop_poc_access }, 7213 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7214 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7215 .type = ARM_CP_NOP, .access = PL0_W, 7216 .accessfn = aa64_cacheop_poc_access }, 7217 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7218 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7219 .type = ARM_CP_NOP, .access = PL0_W, 7220 .accessfn = aa64_cacheop_poc_access }, 7221 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7223 .type = ARM_CP_NOP, .access = PL0_W, 7224 .accessfn = aa64_cacheop_poc_access }, 7225 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7227 .type = ARM_CP_NOP, .access = PL0_W, 7228 .accessfn = aa64_cacheop_poc_access }, 7229 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7231 .type = ARM_CP_NOP, .access = PL0_W, 7232 .accessfn = aa64_cacheop_poc_access }, 7233 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7235 .type = ARM_CP_NOP, .access = PL0_W, 7236 .accessfn = aa64_cacheop_poc_access }, 7237 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7238 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7239 .access = PL0_W, .type = ARM_CP_DC_GVA, 7240 #ifndef CONFIG_USER_ONLY 7241 /* Avoid overhead of an access check that always passes in user-mode */ 7242 .accessfn = aa64_zva_access, 7243 #endif 7244 }, 7245 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7247 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7248 #ifndef CONFIG_USER_ONLY 7249 /* Avoid overhead of an access check that always passes in user-mode */ 7250 .accessfn = aa64_zva_access, 7251 #endif 7252 }, 7253 }; 7254 7255 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7256 bool isread) 7257 { 7258 uint64_t hcr = arm_hcr_el2_eff(env); 7259 int el = arm_current_el(env); 7260 7261 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7262 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7263 if (hcr & HCR_TGE) { 7264 return CP_ACCESS_TRAP_EL2; 7265 } 7266 return CP_ACCESS_TRAP; 7267 } 7268 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7269 return CP_ACCESS_TRAP_EL2; 7270 } 7271 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7272 return CP_ACCESS_TRAP_EL2; 7273 } 7274 if (el < 3 7275 && arm_feature(env, ARM_FEATURE_EL3) 7276 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7277 return CP_ACCESS_TRAP_EL3; 7278 } 7279 return CP_ACCESS_OK; 7280 } 7281 7282 static const ARMCPRegInfo scxtnum_reginfo[] = { 7283 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7285 .access = PL0_RW, .accessfn = access_scxtnum, 7286 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7287 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7289 .access = PL1_RW, .accessfn = access_scxtnum, 7290 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7291 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7293 .access = PL2_RW, .accessfn = access_scxtnum, 7294 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7295 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7296 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7297 .access = PL3_RW, 7298 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7299 }; 7300 #endif /* TARGET_AARCH64 */ 7301 7302 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7303 bool isread) 7304 { 7305 int el = arm_current_el(env); 7306 7307 if (el == 0) { 7308 uint64_t sctlr = arm_sctlr(env, el); 7309 if (!(sctlr & SCTLR_EnRCTX)) { 7310 return CP_ACCESS_TRAP; 7311 } 7312 } else if (el == 1) { 7313 uint64_t hcr = arm_hcr_el2_eff(env); 7314 if (hcr & HCR_NV) { 7315 return CP_ACCESS_TRAP_EL2; 7316 } 7317 } 7318 return CP_ACCESS_OK; 7319 } 7320 7321 static const ARMCPRegInfo predinv_reginfo[] = { 7322 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7324 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7325 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7327 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7328 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7329 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7330 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7331 /* 7332 * Note the AArch32 opcodes have a different OPC1. 7333 */ 7334 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7335 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7336 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7337 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7338 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7339 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7340 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7341 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7342 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7343 }; 7344 7345 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7346 { 7347 /* Read the high 32 bits of the current CCSIDR */ 7348 return extract64(ccsidr_read(env, ri), 32, 32); 7349 } 7350 7351 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7352 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7353 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7354 .access = PL1_R, 7355 .accessfn = access_aa64_tid2, 7356 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7357 }; 7358 7359 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7360 bool isread) 7361 { 7362 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7363 return CP_ACCESS_TRAP_EL2; 7364 } 7365 7366 return CP_ACCESS_OK; 7367 } 7368 7369 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7370 bool isread) 7371 { 7372 if (arm_feature(env, ARM_FEATURE_V8)) { 7373 return access_aa64_tid3(env, ri, isread); 7374 } 7375 7376 return CP_ACCESS_OK; 7377 } 7378 7379 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7380 bool isread) 7381 { 7382 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7383 return CP_ACCESS_TRAP_EL2; 7384 } 7385 7386 return CP_ACCESS_OK; 7387 } 7388 7389 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7390 const ARMCPRegInfo *ri, bool isread) 7391 { 7392 /* 7393 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7394 * in v7A, not in v8A. 7395 */ 7396 if (!arm_feature(env, ARM_FEATURE_V8) && 7397 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7398 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7399 return CP_ACCESS_TRAP_EL2; 7400 } 7401 return CP_ACCESS_OK; 7402 } 7403 7404 static const ARMCPRegInfo jazelle_regs[] = { 7405 { .name = "JIDR", 7406 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7407 .access = PL1_R, .accessfn = access_jazelle, 7408 .type = ARM_CP_CONST, .resetvalue = 0 }, 7409 { .name = "JOSCR", 7410 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7411 .accessfn = access_joscr_jmcr, 7412 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7413 { .name = "JMCR", 7414 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7415 .accessfn = access_joscr_jmcr, 7416 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7417 }; 7418 7419 static const ARMCPRegInfo contextidr_el2 = { 7420 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7422 .access = PL2_RW, 7423 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7424 }; 7425 7426 static const ARMCPRegInfo vhe_reginfo[] = { 7427 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7429 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7430 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7431 #ifndef CONFIG_USER_ONLY 7432 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7434 .fieldoffset = 7435 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7436 .type = ARM_CP_IO, .access = PL2_RW, 7437 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7438 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7439 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7440 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7441 .resetfn = gt_hv_timer_reset, 7442 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7443 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7444 .type = ARM_CP_IO, 7445 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7446 .access = PL2_RW, 7447 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7448 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7449 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7451 .type = ARM_CP_IO | ARM_CP_ALIAS, 7452 .access = PL2_RW, .accessfn = e2h_access, 7453 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7454 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7455 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7457 .type = ARM_CP_IO | ARM_CP_ALIAS, 7458 .access = PL2_RW, .accessfn = e2h_access, 7459 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7460 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7461 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7463 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7464 .access = PL2_RW, .accessfn = e2h_access, 7465 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7466 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7468 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7469 .access = PL2_RW, .accessfn = e2h_access, 7470 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7471 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7472 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7473 .type = ARM_CP_IO | ARM_CP_ALIAS, 7474 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7475 .access = PL2_RW, .accessfn = e2h_access, 7476 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7477 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7479 .type = ARM_CP_IO | ARM_CP_ALIAS, 7480 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7481 .access = PL2_RW, .accessfn = e2h_access, 7482 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7483 #endif 7484 }; 7485 7486 #ifndef CONFIG_USER_ONLY 7487 static const ARMCPRegInfo ats1e1_reginfo[] = { 7488 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7490 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7491 .writefn = ats_write64 }, 7492 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7494 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7495 .writefn = ats_write64 }, 7496 }; 7497 7498 static const ARMCPRegInfo ats1cp_reginfo[] = { 7499 { .name = "ATS1CPRP", 7500 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7501 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7502 .writefn = ats_write }, 7503 { .name = "ATS1CPWP", 7504 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7505 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7506 .writefn = ats_write }, 7507 }; 7508 #endif 7509 7510 /* 7511 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7512 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7513 * is non-zero, which is never for ARMv7, optionally in ARMv8 7514 * and mandatorily for ARMv8.2 and up. 7515 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7516 * implementation is RAZ/WI we can ignore this detail, as we 7517 * do for ACTLR. 7518 */ 7519 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7520 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7521 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7522 .access = PL1_RW, .accessfn = access_tacr, 7523 .type = ARM_CP_CONST, .resetvalue = 0 }, 7524 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7525 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7526 .access = PL2_RW, .type = ARM_CP_CONST, 7527 .resetvalue = 0 }, 7528 }; 7529 7530 void register_cp_regs_for_features(ARMCPU *cpu) 7531 { 7532 /* Register all the coprocessor registers based on feature bits */ 7533 CPUARMState *env = &cpu->env; 7534 if (arm_feature(env, ARM_FEATURE_M)) { 7535 /* M profile has no coprocessor registers */ 7536 return; 7537 } 7538 7539 define_arm_cp_regs(cpu, cp_reginfo); 7540 if (!arm_feature(env, ARM_FEATURE_V8)) { 7541 /* Must go early as it is full of wildcards that may be 7542 * overridden by later definitions. 7543 */ 7544 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7545 } 7546 7547 if (arm_feature(env, ARM_FEATURE_V6)) { 7548 /* The ID registers all have impdef reset values */ 7549 ARMCPRegInfo v6_idregs[] = { 7550 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7552 .access = PL1_R, .type = ARM_CP_CONST, 7553 .accessfn = access_aa32_tid3, 7554 .resetvalue = cpu->isar.id_pfr0 }, 7555 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7556 * the value of the GIC field until after we define these regs. 7557 */ 7558 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7560 .access = PL1_R, .type = ARM_CP_NO_RAW, 7561 .accessfn = access_aa32_tid3, 7562 .readfn = id_pfr1_read, 7563 .writefn = arm_cp_write_ignore }, 7564 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa32_tid3, 7568 .resetvalue = cpu->isar.id_dfr0 }, 7569 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7571 .access = PL1_R, .type = ARM_CP_CONST, 7572 .accessfn = access_aa32_tid3, 7573 .resetvalue = cpu->id_afr0 }, 7574 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa32_tid3, 7578 .resetvalue = cpu->isar.id_mmfr0 }, 7579 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->isar.id_mmfr1 }, 7584 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa32_tid3, 7588 .resetvalue = cpu->isar.id_mmfr2 }, 7589 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_mmfr3 }, 7594 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa32_tid3, 7598 .resetvalue = cpu->isar.id_isar0 }, 7599 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa32_tid3, 7603 .resetvalue = cpu->isar.id_isar1 }, 7604 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa32_tid3, 7608 .resetvalue = cpu->isar.id_isar2 }, 7609 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa32_tid3, 7613 .resetvalue = cpu->isar.id_isar3 }, 7614 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa32_tid3, 7618 .resetvalue = cpu->isar.id_isar4 }, 7619 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa32_tid3, 7623 .resetvalue = cpu->isar.id_isar5 }, 7624 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa32_tid3, 7628 .resetvalue = cpu->isar.id_mmfr4 }, 7629 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa32_tid3, 7633 .resetvalue = cpu->isar.id_isar6 }, 7634 }; 7635 define_arm_cp_regs(cpu, v6_idregs); 7636 define_arm_cp_regs(cpu, v6_cp_reginfo); 7637 } else { 7638 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7639 } 7640 if (arm_feature(env, ARM_FEATURE_V6K)) { 7641 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7642 } 7643 if (arm_feature(env, ARM_FEATURE_V7MP) && 7644 !arm_feature(env, ARM_FEATURE_PMSA)) { 7645 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7646 } 7647 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7648 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7649 } 7650 if (arm_feature(env, ARM_FEATURE_V7)) { 7651 ARMCPRegInfo clidr = { 7652 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7653 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa64_tid2, 7656 .resetvalue = cpu->clidr 7657 }; 7658 define_one_arm_cp_reg(cpu, &clidr); 7659 define_arm_cp_regs(cpu, v7_cp_reginfo); 7660 define_debug_regs(cpu); 7661 define_pmu_regs(cpu); 7662 } else { 7663 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7664 } 7665 if (arm_feature(env, ARM_FEATURE_V8)) { 7666 /* AArch64 ID registers, which all have impdef reset values. 7667 * Note that within the ID register ranges the unused slots 7668 * must all RAZ, not UNDEF; future architecture versions may 7669 * define new registers here. 7670 */ 7671 ARMCPRegInfo v8_idregs[] = { 7672 /* 7673 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7674 * emulation because we don't know the right value for the 7675 * GIC field until after we define these regs. 7676 */ 7677 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7679 .access = PL1_R, 7680 #ifdef CONFIG_USER_ONLY 7681 .type = ARM_CP_CONST, 7682 .resetvalue = cpu->isar.id_aa64pfr0 7683 #else 7684 .type = ARM_CP_NO_RAW, 7685 .accessfn = access_aa64_tid3, 7686 .readfn = id_aa64pfr0_read, 7687 .writefn = arm_cp_write_ignore 7688 #endif 7689 }, 7690 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7692 .access = PL1_R, .type = ARM_CP_CONST, 7693 .accessfn = access_aa64_tid3, 7694 .resetvalue = cpu->isar.id_aa64pfr1}, 7695 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7697 .access = PL1_R, .type = ARM_CP_CONST, 7698 .accessfn = access_aa64_tid3, 7699 .resetvalue = 0 }, 7700 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7702 .access = PL1_R, .type = ARM_CP_CONST, 7703 .accessfn = access_aa64_tid3, 7704 .resetvalue = 0 }, 7705 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7707 .access = PL1_R, .type = ARM_CP_CONST, 7708 .accessfn = access_aa64_tid3, 7709 .resetvalue = cpu->isar.id_aa64zfr0 }, 7710 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7712 .access = PL1_R, .type = ARM_CP_CONST, 7713 .accessfn = access_aa64_tid3, 7714 .resetvalue = 0 }, 7715 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7717 .access = PL1_R, .type = ARM_CP_CONST, 7718 .accessfn = access_aa64_tid3, 7719 .resetvalue = 0 }, 7720 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7722 .access = PL1_R, .type = ARM_CP_CONST, 7723 .accessfn = access_aa64_tid3, 7724 .resetvalue = 0 }, 7725 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7727 .access = PL1_R, .type = ARM_CP_CONST, 7728 .accessfn = access_aa64_tid3, 7729 .resetvalue = cpu->isar.id_aa64dfr0 }, 7730 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7732 .access = PL1_R, .type = ARM_CP_CONST, 7733 .accessfn = access_aa64_tid3, 7734 .resetvalue = cpu->isar.id_aa64dfr1 }, 7735 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7737 .access = PL1_R, .type = ARM_CP_CONST, 7738 .accessfn = access_aa64_tid3, 7739 .resetvalue = 0 }, 7740 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7742 .access = PL1_R, .type = ARM_CP_CONST, 7743 .accessfn = access_aa64_tid3, 7744 .resetvalue = 0 }, 7745 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7747 .access = PL1_R, .type = ARM_CP_CONST, 7748 .accessfn = access_aa64_tid3, 7749 .resetvalue = cpu->id_aa64afr0 }, 7750 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7752 .access = PL1_R, .type = ARM_CP_CONST, 7753 .accessfn = access_aa64_tid3, 7754 .resetvalue = cpu->id_aa64afr1 }, 7755 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7757 .access = PL1_R, .type = ARM_CP_CONST, 7758 .accessfn = access_aa64_tid3, 7759 .resetvalue = 0 }, 7760 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa64_tid3, 7764 .resetvalue = 0 }, 7765 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7767 .access = PL1_R, .type = ARM_CP_CONST, 7768 .accessfn = access_aa64_tid3, 7769 .resetvalue = cpu->isar.id_aa64isar0 }, 7770 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7772 .access = PL1_R, .type = ARM_CP_CONST, 7773 .accessfn = access_aa64_tid3, 7774 .resetvalue = cpu->isar.id_aa64isar1 }, 7775 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7777 .access = PL1_R, .type = ARM_CP_CONST, 7778 .accessfn = access_aa64_tid3, 7779 .resetvalue = 0 }, 7780 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7782 .access = PL1_R, .type = ARM_CP_CONST, 7783 .accessfn = access_aa64_tid3, 7784 .resetvalue = 0 }, 7785 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7787 .access = PL1_R, .type = ARM_CP_CONST, 7788 .accessfn = access_aa64_tid3, 7789 .resetvalue = 0 }, 7790 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7792 .access = PL1_R, .type = ARM_CP_CONST, 7793 .accessfn = access_aa64_tid3, 7794 .resetvalue = 0 }, 7795 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7797 .access = PL1_R, .type = ARM_CP_CONST, 7798 .accessfn = access_aa64_tid3, 7799 .resetvalue = 0 }, 7800 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7802 .access = PL1_R, .type = ARM_CP_CONST, 7803 .accessfn = access_aa64_tid3, 7804 .resetvalue = 0 }, 7805 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7807 .access = PL1_R, .type = ARM_CP_CONST, 7808 .accessfn = access_aa64_tid3, 7809 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7810 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7812 .access = PL1_R, .type = ARM_CP_CONST, 7813 .accessfn = access_aa64_tid3, 7814 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7815 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7817 .access = PL1_R, .type = ARM_CP_CONST, 7818 .accessfn = access_aa64_tid3, 7819 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7820 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7822 .access = PL1_R, .type = ARM_CP_CONST, 7823 .accessfn = access_aa64_tid3, 7824 .resetvalue = 0 }, 7825 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7827 .access = PL1_R, .type = ARM_CP_CONST, 7828 .accessfn = access_aa64_tid3, 7829 .resetvalue = 0 }, 7830 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7832 .access = PL1_R, .type = ARM_CP_CONST, 7833 .accessfn = access_aa64_tid3, 7834 .resetvalue = 0 }, 7835 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7837 .access = PL1_R, .type = ARM_CP_CONST, 7838 .accessfn = access_aa64_tid3, 7839 .resetvalue = 0 }, 7840 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7842 .access = PL1_R, .type = ARM_CP_CONST, 7843 .accessfn = access_aa64_tid3, 7844 .resetvalue = 0 }, 7845 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7847 .access = PL1_R, .type = ARM_CP_CONST, 7848 .accessfn = access_aa64_tid3, 7849 .resetvalue = cpu->isar.mvfr0 }, 7850 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7852 .access = PL1_R, .type = ARM_CP_CONST, 7853 .accessfn = access_aa64_tid3, 7854 .resetvalue = cpu->isar.mvfr1 }, 7855 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7857 .access = PL1_R, .type = ARM_CP_CONST, 7858 .accessfn = access_aa64_tid3, 7859 .resetvalue = cpu->isar.mvfr2 }, 7860 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7862 .access = PL1_R, .type = ARM_CP_CONST, 7863 .accessfn = access_aa64_tid3, 7864 .resetvalue = 0 }, 7865 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7867 .access = PL1_R, .type = ARM_CP_CONST, 7868 .accessfn = access_aa64_tid3, 7869 .resetvalue = cpu->isar.id_pfr2 }, 7870 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7872 .access = PL1_R, .type = ARM_CP_CONST, 7873 .accessfn = access_aa64_tid3, 7874 .resetvalue = 0 }, 7875 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7877 .access = PL1_R, .type = ARM_CP_CONST, 7878 .accessfn = access_aa64_tid3, 7879 .resetvalue = 0 }, 7880 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = 0 }, 7885 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7886 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7887 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7888 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7889 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7891 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7892 .resetvalue = cpu->pmceid0 }, 7893 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7894 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7895 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7896 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7897 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7898 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7899 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7900 .resetvalue = cpu->pmceid1 }, 7901 }; 7902 #ifdef CONFIG_USER_ONLY 7903 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7904 { .name = "ID_AA64PFR0_EL1", 7905 .exported_bits = 0x000f000f00ff0000, 7906 .fixed_bits = 0x0000000000000011 }, 7907 { .name = "ID_AA64PFR1_EL1", 7908 .exported_bits = 0x00000000000000f0 }, 7909 { .name = "ID_AA64PFR*_EL1_RESERVED", 7910 .is_glob = true }, 7911 { .name = "ID_AA64ZFR0_EL1" }, 7912 { .name = "ID_AA64MMFR0_EL1", 7913 .fixed_bits = 0x00000000ff000000 }, 7914 { .name = "ID_AA64MMFR1_EL1" }, 7915 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7916 .is_glob = true }, 7917 { .name = "ID_AA64DFR0_EL1", 7918 .fixed_bits = 0x0000000000000006 }, 7919 { .name = "ID_AA64DFR1_EL1" }, 7920 { .name = "ID_AA64DFR*_EL1_RESERVED", 7921 .is_glob = true }, 7922 { .name = "ID_AA64AFR*", 7923 .is_glob = true }, 7924 { .name = "ID_AA64ISAR0_EL1", 7925 .exported_bits = 0x00fffffff0fffff0 }, 7926 { .name = "ID_AA64ISAR1_EL1", 7927 .exported_bits = 0x000000f0ffffffff }, 7928 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7929 .is_glob = true }, 7930 }; 7931 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7932 #endif 7933 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7934 if (!arm_feature(env, ARM_FEATURE_EL3) && 7935 !arm_feature(env, ARM_FEATURE_EL2)) { 7936 ARMCPRegInfo rvbar = { 7937 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7938 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7939 .access = PL1_R, 7940 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7941 }; 7942 define_one_arm_cp_reg(cpu, &rvbar); 7943 } 7944 define_arm_cp_regs(cpu, v8_idregs); 7945 define_arm_cp_regs(cpu, v8_cp_reginfo); 7946 } 7947 7948 /* 7949 * Register the base EL2 cpregs. 7950 * Pre v8, these registers are implemented only as part of the 7951 * Virtualization Extensions (EL2 present). Beginning with v8, 7952 * if EL2 is missing but EL3 is enabled, mostly these become 7953 * RES0 from EL3, with some specific exceptions. 7954 */ 7955 if (arm_feature(env, ARM_FEATURE_EL2) 7956 || (arm_feature(env, ARM_FEATURE_EL3) 7957 && arm_feature(env, ARM_FEATURE_V8))) { 7958 uint64_t vmpidr_def = mpidr_read_val(env); 7959 ARMCPRegInfo vpidr_regs[] = { 7960 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7961 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7962 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7963 .resetvalue = cpu->midr, 7964 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7965 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7968 .access = PL2_RW, .resetvalue = cpu->midr, 7969 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7970 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7971 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7972 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7973 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7974 .resetvalue = vmpidr_def, 7975 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7976 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7977 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7978 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7979 .access = PL2_RW, .resetvalue = vmpidr_def, 7980 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7981 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7982 }; 7983 define_arm_cp_regs(cpu, vpidr_regs); 7984 define_arm_cp_regs(cpu, el2_cp_reginfo); 7985 if (arm_feature(env, ARM_FEATURE_V8)) { 7986 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7987 } 7988 if (cpu_isar_feature(aa64_sel2, cpu)) { 7989 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7990 } 7991 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7992 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7993 ARMCPRegInfo rvbar = { 7994 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7996 .access = PL2_R, 7997 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7998 }; 7999 define_one_arm_cp_reg(cpu, &rvbar); 8000 } 8001 } 8002 8003 /* Register the base EL3 cpregs. */ 8004 if (arm_feature(env, ARM_FEATURE_EL3)) { 8005 define_arm_cp_regs(cpu, el3_cp_reginfo); 8006 ARMCPRegInfo el3_regs[] = { 8007 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8008 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8009 .access = PL3_R, 8010 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8011 }, 8012 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8013 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8014 .access = PL3_RW, 8015 .raw_writefn = raw_write, .writefn = sctlr_write, 8016 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8017 .resetvalue = cpu->reset_sctlr }, 8018 }; 8019 8020 define_arm_cp_regs(cpu, el3_regs); 8021 } 8022 /* The behaviour of NSACR is sufficiently various that we don't 8023 * try to describe it in a single reginfo: 8024 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8025 * reads as constant 0xc00 from NS EL1 and NS EL2 8026 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8027 * if v7 without EL3, register doesn't exist 8028 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8029 */ 8030 if (arm_feature(env, ARM_FEATURE_EL3)) { 8031 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8032 static const ARMCPRegInfo nsacr = { 8033 .name = "NSACR", .type = ARM_CP_CONST, 8034 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8035 .access = PL1_RW, .accessfn = nsacr_access, 8036 .resetvalue = 0xc00 8037 }; 8038 define_one_arm_cp_reg(cpu, &nsacr); 8039 } else { 8040 static const ARMCPRegInfo nsacr = { 8041 .name = "NSACR", 8042 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8043 .access = PL3_RW | PL1_R, 8044 .resetvalue = 0, 8045 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8046 }; 8047 define_one_arm_cp_reg(cpu, &nsacr); 8048 } 8049 } else { 8050 if (arm_feature(env, ARM_FEATURE_V8)) { 8051 static const ARMCPRegInfo nsacr = { 8052 .name = "NSACR", .type = ARM_CP_CONST, 8053 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8054 .access = PL1_R, 8055 .resetvalue = 0xc00 8056 }; 8057 define_one_arm_cp_reg(cpu, &nsacr); 8058 } 8059 } 8060 8061 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8062 if (arm_feature(env, ARM_FEATURE_V6)) { 8063 /* PMSAv6 not implemented */ 8064 assert(arm_feature(env, ARM_FEATURE_V7)); 8065 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8066 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8067 } else { 8068 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8069 } 8070 } else { 8071 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8072 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8073 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8074 if (cpu_isar_feature(aa32_hpd, cpu)) { 8075 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8076 } 8077 } 8078 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8079 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8080 } 8081 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8082 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8083 } 8084 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8085 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8086 } 8087 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8088 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8089 } 8090 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8091 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8092 } 8093 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8094 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8095 } 8096 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8097 define_arm_cp_regs(cpu, omap_cp_reginfo); 8098 } 8099 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8100 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8101 } 8102 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8103 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8104 } 8105 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8106 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8107 } 8108 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8109 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8110 } 8111 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8112 define_arm_cp_regs(cpu, jazelle_regs); 8113 } 8114 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8115 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8116 * be read-only (ie write causes UNDEF exception). 8117 */ 8118 { 8119 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8120 /* Pre-v8 MIDR space. 8121 * Note that the MIDR isn't a simple constant register because 8122 * of the TI925 behaviour where writes to another register can 8123 * cause the MIDR value to change. 8124 * 8125 * Unimplemented registers in the c15 0 0 0 space default to 8126 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8127 * and friends override accordingly. 8128 */ 8129 { .name = "MIDR", 8130 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8131 .access = PL1_R, .resetvalue = cpu->midr, 8132 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8133 .readfn = midr_read, 8134 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8135 .type = ARM_CP_OVERRIDE }, 8136 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8137 { .name = "DUMMY", 8138 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8140 { .name = "DUMMY", 8141 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8142 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8143 { .name = "DUMMY", 8144 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8146 { .name = "DUMMY", 8147 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8148 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8149 { .name = "DUMMY", 8150 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8151 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8152 }; 8153 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8154 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8156 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8157 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8158 .readfn = midr_read }, 8159 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8160 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8161 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8162 .access = PL1_R, .resetvalue = cpu->midr }, 8163 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8164 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8165 .access = PL1_R, .resetvalue = cpu->midr }, 8166 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8168 .access = PL1_R, 8169 .accessfn = access_aa64_tid1, 8170 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8171 }; 8172 ARMCPRegInfo id_cp_reginfo[] = { 8173 /* These are common to v8 and pre-v8 */ 8174 { .name = "CTR", 8175 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8176 .access = PL1_R, .accessfn = ctr_el0_access, 8177 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8178 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8179 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8180 .access = PL0_R, .accessfn = ctr_el0_access, 8181 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8182 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8183 { .name = "TCMTR", 8184 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8185 .access = PL1_R, 8186 .accessfn = access_aa32_tid1, 8187 .type = ARM_CP_CONST, .resetvalue = 0 }, 8188 }; 8189 /* TLBTR is specific to VMSA */ 8190 ARMCPRegInfo id_tlbtr_reginfo = { 8191 .name = "TLBTR", 8192 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8193 .access = PL1_R, 8194 .accessfn = access_aa32_tid1, 8195 .type = ARM_CP_CONST, .resetvalue = 0, 8196 }; 8197 /* MPUIR is specific to PMSA V6+ */ 8198 ARMCPRegInfo id_mpuir_reginfo = { 8199 .name = "MPUIR", 8200 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8201 .access = PL1_R, .type = ARM_CP_CONST, 8202 .resetvalue = cpu->pmsav7_dregion << 8 8203 }; 8204 static const ARMCPRegInfo crn0_wi_reginfo = { 8205 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8206 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8207 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8208 }; 8209 #ifdef CONFIG_USER_ONLY 8210 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8211 { .name = "MIDR_EL1", 8212 .exported_bits = 0x00000000ffffffff }, 8213 { .name = "REVIDR_EL1" }, 8214 }; 8215 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8216 #endif 8217 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8218 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8219 size_t i; 8220 /* Register the blanket "writes ignored" value first to cover the 8221 * whole space. Then update the specific ID registers to allow write 8222 * access, so that they ignore writes rather than causing them to 8223 * UNDEF. 8224 */ 8225 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8226 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8227 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8228 } 8229 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8230 id_cp_reginfo[i].access = PL1_RW; 8231 } 8232 id_mpuir_reginfo.access = PL1_RW; 8233 id_tlbtr_reginfo.access = PL1_RW; 8234 } 8235 if (arm_feature(env, ARM_FEATURE_V8)) { 8236 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8237 } else { 8238 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8239 } 8240 define_arm_cp_regs(cpu, id_cp_reginfo); 8241 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8242 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8243 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8244 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8245 } 8246 } 8247 8248 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8249 ARMCPRegInfo mpidr_cp_reginfo[] = { 8250 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8251 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8252 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8253 }; 8254 #ifdef CONFIG_USER_ONLY 8255 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8256 { .name = "MPIDR_EL1", 8257 .fixed_bits = 0x0000000080000000 }, 8258 }; 8259 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8260 #endif 8261 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8262 } 8263 8264 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8265 ARMCPRegInfo auxcr_reginfo[] = { 8266 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8267 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8268 .access = PL1_RW, .accessfn = access_tacr, 8269 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8270 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8271 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8272 .access = PL2_RW, .type = ARM_CP_CONST, 8273 .resetvalue = 0 }, 8274 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8275 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8276 .access = PL3_RW, .type = ARM_CP_CONST, 8277 .resetvalue = 0 }, 8278 }; 8279 define_arm_cp_regs(cpu, auxcr_reginfo); 8280 if (cpu_isar_feature(aa32_ac2, cpu)) { 8281 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8282 } 8283 } 8284 8285 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8286 /* 8287 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8288 * There are two flavours: 8289 * (1) older 32-bit only cores have a simple 32-bit CBAR 8290 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8291 * 32-bit register visible to AArch32 at a different encoding 8292 * to the "flavour 1" register and with the bits rearranged to 8293 * be able to squash a 64-bit address into the 32-bit view. 8294 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8295 * in future if we support AArch32-only configs of some of the 8296 * AArch64 cores we might need to add a specific feature flag 8297 * to indicate cores with "flavour 2" CBAR. 8298 */ 8299 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8300 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8301 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8302 | extract64(cpu->reset_cbar, 32, 12); 8303 ARMCPRegInfo cbar_reginfo[] = { 8304 { .name = "CBAR", 8305 .type = ARM_CP_CONST, 8306 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8307 .access = PL1_R, .resetvalue = cbar32 }, 8308 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8309 .type = ARM_CP_CONST, 8310 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8311 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8312 }; 8313 /* We don't implement a r/w 64 bit CBAR currently */ 8314 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8315 define_arm_cp_regs(cpu, cbar_reginfo); 8316 } else { 8317 ARMCPRegInfo cbar = { 8318 .name = "CBAR", 8319 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8320 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8321 .fieldoffset = offsetof(CPUARMState, 8322 cp15.c15_config_base_address) 8323 }; 8324 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8325 cbar.access = PL1_R; 8326 cbar.fieldoffset = 0; 8327 cbar.type = ARM_CP_CONST; 8328 } 8329 define_one_arm_cp_reg(cpu, &cbar); 8330 } 8331 } 8332 8333 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8334 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8335 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8336 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8337 .access = PL1_RW, .writefn = vbar_write, 8338 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8339 offsetof(CPUARMState, cp15.vbar_ns) }, 8340 .resetvalue = 0 }, 8341 }; 8342 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8343 } 8344 8345 /* Generic registers whose values depend on the implementation */ 8346 { 8347 ARMCPRegInfo sctlr = { 8348 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8349 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8350 .access = PL1_RW, .accessfn = access_tvm_trvm, 8351 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8352 offsetof(CPUARMState, cp15.sctlr_ns) }, 8353 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8354 .raw_writefn = raw_write, 8355 }; 8356 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8357 /* Normally we would always end the TB on an SCTLR write, but Linux 8358 * arch/arm/mach-pxa/sleep.S expects two instructions following 8359 * an MMU enable to execute from cache. Imitate this behaviour. 8360 */ 8361 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8362 } 8363 define_one_arm_cp_reg(cpu, &sctlr); 8364 } 8365 8366 if (cpu_isar_feature(aa64_lor, cpu)) { 8367 define_arm_cp_regs(cpu, lor_reginfo); 8368 } 8369 if (cpu_isar_feature(aa64_pan, cpu)) { 8370 define_one_arm_cp_reg(cpu, &pan_reginfo); 8371 } 8372 #ifndef CONFIG_USER_ONLY 8373 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8374 define_arm_cp_regs(cpu, ats1e1_reginfo); 8375 } 8376 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8377 define_arm_cp_regs(cpu, ats1cp_reginfo); 8378 } 8379 #endif 8380 if (cpu_isar_feature(aa64_uao, cpu)) { 8381 define_one_arm_cp_reg(cpu, &uao_reginfo); 8382 } 8383 8384 if (cpu_isar_feature(aa64_dit, cpu)) { 8385 define_one_arm_cp_reg(cpu, &dit_reginfo); 8386 } 8387 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8388 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8389 } 8390 if (cpu_isar_feature(any_ras, cpu)) { 8391 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8392 } 8393 8394 if (cpu_isar_feature(aa64_vh, cpu) || 8395 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8396 define_one_arm_cp_reg(cpu, &contextidr_el2); 8397 } 8398 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8399 define_arm_cp_regs(cpu, vhe_reginfo); 8400 } 8401 8402 if (cpu_isar_feature(aa64_sve, cpu)) { 8403 define_arm_cp_regs(cpu, zcr_reginfo); 8404 } 8405 8406 #ifdef TARGET_AARCH64 8407 if (cpu_isar_feature(aa64_pauth, cpu)) { 8408 define_arm_cp_regs(cpu, pauth_reginfo); 8409 } 8410 if (cpu_isar_feature(aa64_rndr, cpu)) { 8411 define_arm_cp_regs(cpu, rndr_reginfo); 8412 } 8413 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8414 define_arm_cp_regs(cpu, tlbirange_reginfo); 8415 } 8416 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8417 define_arm_cp_regs(cpu, tlbios_reginfo); 8418 } 8419 #ifndef CONFIG_USER_ONLY 8420 /* Data Cache clean instructions up to PoP */ 8421 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8422 define_one_arm_cp_reg(cpu, dcpop_reg); 8423 8424 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8425 define_one_arm_cp_reg(cpu, dcpodp_reg); 8426 } 8427 } 8428 #endif /*CONFIG_USER_ONLY*/ 8429 8430 /* 8431 * If full MTE is enabled, add all of the system registers. 8432 * If only "instructions available at EL0" are enabled, 8433 * then define only a RAZ/WI version of PSTATE.TCO. 8434 */ 8435 if (cpu_isar_feature(aa64_mte, cpu)) { 8436 define_arm_cp_regs(cpu, mte_reginfo); 8437 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8438 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8439 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8440 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8441 } 8442 8443 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8444 define_arm_cp_regs(cpu, scxtnum_reginfo); 8445 } 8446 #endif 8447 8448 if (cpu_isar_feature(any_predinv, cpu)) { 8449 define_arm_cp_regs(cpu, predinv_reginfo); 8450 } 8451 8452 if (cpu_isar_feature(any_ccidx, cpu)) { 8453 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8454 } 8455 8456 #ifndef CONFIG_USER_ONLY 8457 /* 8458 * Register redirections and aliases must be done last, 8459 * after the registers from the other extensions have been defined. 8460 */ 8461 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8462 define_arm_vh_e2h_redirects_aliases(cpu); 8463 } 8464 #endif 8465 } 8466 8467 /* Sort alphabetically by type name, except for "any". */ 8468 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8469 { 8470 ObjectClass *class_a = (ObjectClass *)a; 8471 ObjectClass *class_b = (ObjectClass *)b; 8472 const char *name_a, *name_b; 8473 8474 name_a = object_class_get_name(class_a); 8475 name_b = object_class_get_name(class_b); 8476 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8477 return 1; 8478 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8479 return -1; 8480 } else { 8481 return strcmp(name_a, name_b); 8482 } 8483 } 8484 8485 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8486 { 8487 ObjectClass *oc = data; 8488 const char *typename; 8489 char *name; 8490 8491 typename = object_class_get_name(oc); 8492 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8493 qemu_printf(" %s\n", name); 8494 g_free(name); 8495 } 8496 8497 void arm_cpu_list(void) 8498 { 8499 GSList *list; 8500 8501 list = object_class_get_list(TYPE_ARM_CPU, false); 8502 list = g_slist_sort(list, arm_cpu_list_compare); 8503 qemu_printf("Available CPUs:\n"); 8504 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8505 g_slist_free(list); 8506 } 8507 8508 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8509 { 8510 ObjectClass *oc = data; 8511 CpuDefinitionInfoList **cpu_list = user_data; 8512 CpuDefinitionInfo *info; 8513 const char *typename; 8514 8515 typename = object_class_get_name(oc); 8516 info = g_malloc0(sizeof(*info)); 8517 info->name = g_strndup(typename, 8518 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8519 info->q_typename = g_strdup(typename); 8520 8521 QAPI_LIST_PREPEND(*cpu_list, info); 8522 } 8523 8524 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8525 { 8526 CpuDefinitionInfoList *cpu_list = NULL; 8527 GSList *list; 8528 8529 list = object_class_get_list(TYPE_ARM_CPU, false); 8530 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8531 g_slist_free(list); 8532 8533 return cpu_list; 8534 } 8535 8536 /* 8537 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8538 * add a single reginfo struct to the hash table. 8539 */ 8540 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8541 void *opaque, CPState state, 8542 CPSecureState secstate, 8543 int crm, int opc1, int opc2, 8544 const char *name) 8545 { 8546 CPUARMState *env = &cpu->env; 8547 uint32_t key; 8548 ARMCPRegInfo *r2; 8549 bool is64 = r->type & ARM_CP_64BIT; 8550 bool ns = secstate & ARM_CP_SECSTATE_NS; 8551 int cp = r->cp; 8552 size_t name_len; 8553 bool make_const; 8554 8555 switch (state) { 8556 case ARM_CP_STATE_AA32: 8557 /* We assume it is a cp15 register if the .cp field is left unset. */ 8558 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8559 cp = 15; 8560 } 8561 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8562 break; 8563 case ARM_CP_STATE_AA64: 8564 /* 8565 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8566 * cp == 0 as equivalent to the value for "standard guest-visible 8567 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8568 * in their AArch64 view (the .cp value may be non-zero for the 8569 * benefit of the AArch32 view). 8570 */ 8571 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8572 cp = CP_REG_ARM64_SYSREG_CP; 8573 } 8574 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8575 break; 8576 default: 8577 g_assert_not_reached(); 8578 } 8579 8580 /* Overriding of an existing definition must be explicitly requested. */ 8581 if (!(r->type & ARM_CP_OVERRIDE)) { 8582 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8583 if (oldreg) { 8584 assert(oldreg->type & ARM_CP_OVERRIDE); 8585 } 8586 } 8587 8588 /* 8589 * Eliminate registers that are not present because the EL is missing. 8590 * Doing this here makes it easier to put all registers for a given 8591 * feature into the same ARMCPRegInfo array and define them all at once. 8592 */ 8593 make_const = false; 8594 if (arm_feature(env, ARM_FEATURE_EL3)) { 8595 /* 8596 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8597 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8598 */ 8599 int min_el = ctz32(r->access) / 2; 8600 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8601 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8602 return; 8603 } 8604 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8605 } 8606 } else { 8607 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8608 ? PL2_RW : PL1_RW); 8609 if ((r->access & max_el) == 0) { 8610 return; 8611 } 8612 } 8613 8614 /* Combine cpreg and name into one allocation. */ 8615 name_len = strlen(name) + 1; 8616 r2 = g_malloc(sizeof(*r2) + name_len); 8617 *r2 = *r; 8618 r2->name = memcpy(r2 + 1, name, name_len); 8619 8620 /* 8621 * Update fields to match the instantiation, overwiting wildcards 8622 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8623 */ 8624 r2->cp = cp; 8625 r2->crm = crm; 8626 r2->opc1 = opc1; 8627 r2->opc2 = opc2; 8628 r2->state = state; 8629 r2->secure = secstate; 8630 if (opaque) { 8631 r2->opaque = opaque; 8632 } 8633 8634 if (make_const) { 8635 /* This should not have been a very special register to begin. */ 8636 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8637 assert(old_special == 0 || old_special == ARM_CP_NOP); 8638 /* 8639 * Set the special function to CONST, retaining the other flags. 8640 * This is important for e.g. ARM_CP_SVE so that we still 8641 * take the SVE trap if CPTR_EL3.EZ == 0. 8642 */ 8643 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8644 /* 8645 * Usually, these registers become RES0, but there are a few 8646 * special cases like VPIDR_EL2 which have a constant non-zero 8647 * value with writes ignored. 8648 */ 8649 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8650 r2->resetvalue = 0; 8651 } 8652 /* 8653 * ARM_CP_CONST has precedence, so removing the callbacks and 8654 * offsets are not strictly necessary, but it is potentially 8655 * less confusing to debug later. 8656 */ 8657 r2->readfn = NULL; 8658 r2->writefn = NULL; 8659 r2->raw_readfn = NULL; 8660 r2->raw_writefn = NULL; 8661 r2->resetfn = NULL; 8662 r2->fieldoffset = 0; 8663 r2->bank_fieldoffsets[0] = 0; 8664 r2->bank_fieldoffsets[1] = 0; 8665 } else { 8666 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8667 8668 if (isbanked) { 8669 /* 8670 * Register is banked (using both entries in array). 8671 * Overwriting fieldoffset as the array is only used to define 8672 * banked registers but later only fieldoffset is used. 8673 */ 8674 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8675 } 8676 if (state == ARM_CP_STATE_AA32) { 8677 if (isbanked) { 8678 /* 8679 * If the register is banked then we don't need to migrate or 8680 * reset the 32-bit instance in certain cases: 8681 * 8682 * 1) If the register has both 32-bit and 64-bit instances 8683 * then we can count on the 64-bit instance taking care 8684 * of the non-secure bank. 8685 * 2) If ARMv8 is enabled then we can count on a 64-bit 8686 * version taking care of the secure bank. This requires 8687 * that separate 32 and 64-bit definitions are provided. 8688 */ 8689 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8690 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8691 r2->type |= ARM_CP_ALIAS; 8692 } 8693 } else if ((secstate != r->secure) && !ns) { 8694 /* 8695 * The register is not banked so we only want to allow 8696 * migration of the non-secure instance. 8697 */ 8698 r2->type |= ARM_CP_ALIAS; 8699 } 8700 8701 if (HOST_BIG_ENDIAN && 8702 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8703 r2->fieldoffset += sizeof(uint32_t); 8704 } 8705 } 8706 } 8707 8708 /* 8709 * By convention, for wildcarded registers only the first 8710 * entry is used for migration; the others are marked as 8711 * ALIAS so we don't try to transfer the register 8712 * multiple times. Special registers (ie NOP/WFI) are 8713 * never migratable and not even raw-accessible. 8714 */ 8715 if (r2->type & ARM_CP_SPECIAL_MASK) { 8716 r2->type |= ARM_CP_NO_RAW; 8717 } 8718 if (((r->crm == CP_ANY) && crm != 0) || 8719 ((r->opc1 == CP_ANY) && opc1 != 0) || 8720 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8721 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8722 } 8723 8724 /* 8725 * Check that raw accesses are either forbidden or handled. Note that 8726 * we can't assert this earlier because the setup of fieldoffset for 8727 * banked registers has to be done first. 8728 */ 8729 if (!(r2->type & ARM_CP_NO_RAW)) { 8730 assert(!raw_accessors_invalid(r2)); 8731 } 8732 8733 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8734 } 8735 8736 8737 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8738 const ARMCPRegInfo *r, void *opaque) 8739 { 8740 /* Define implementations of coprocessor registers. 8741 * We store these in a hashtable because typically 8742 * there are less than 150 registers in a space which 8743 * is 16*16*16*8*8 = 262144 in size. 8744 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8745 * If a register is defined twice then the second definition is 8746 * used, so this can be used to define some generic registers and 8747 * then override them with implementation specific variations. 8748 * At least one of the original and the second definition should 8749 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8750 * against accidental use. 8751 * 8752 * The state field defines whether the register is to be 8753 * visible in the AArch32 or AArch64 execution state. If the 8754 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8755 * reginfo structure for the AArch32 view, which sees the lower 8756 * 32 bits of the 64 bit register. 8757 * 8758 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8759 * be wildcarded. AArch64 registers are always considered to be 64 8760 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8761 * the register, if any. 8762 */ 8763 int crm, opc1, opc2; 8764 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8765 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8766 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8767 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8768 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8769 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8770 CPState state; 8771 8772 /* 64 bit registers have only CRm and Opc1 fields */ 8773 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8774 /* op0 only exists in the AArch64 encodings */ 8775 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8776 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8777 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8778 /* 8779 * This API is only for Arm's system coprocessors (14 and 15) or 8780 * (M-profile or v7A-and-earlier only) for implementation defined 8781 * coprocessors in the range 0..7. Our decode assumes this, since 8782 * 8..13 can be used for other insns including VFP and Neon. See 8783 * valid_cp() in translate.c. Assert here that we haven't tried 8784 * to use an invalid coprocessor number. 8785 */ 8786 switch (r->state) { 8787 case ARM_CP_STATE_BOTH: 8788 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8789 if (r->cp == 0) { 8790 break; 8791 } 8792 /* fall through */ 8793 case ARM_CP_STATE_AA32: 8794 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8795 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8796 assert(r->cp >= 14 && r->cp <= 15); 8797 } else { 8798 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8799 } 8800 break; 8801 case ARM_CP_STATE_AA64: 8802 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8803 break; 8804 default: 8805 g_assert_not_reached(); 8806 } 8807 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8808 * encodes a minimum access level for the register. We roll this 8809 * runtime check into our general permission check code, so check 8810 * here that the reginfo's specified permissions are strict enough 8811 * to encompass the generic architectural permission check. 8812 */ 8813 if (r->state != ARM_CP_STATE_AA32) { 8814 CPAccessRights mask; 8815 switch (r->opc1) { 8816 case 0: 8817 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8818 mask = PL0U_R | PL1_RW; 8819 break; 8820 case 1: case 2: 8821 /* min_EL EL1 */ 8822 mask = PL1_RW; 8823 break; 8824 case 3: 8825 /* min_EL EL0 */ 8826 mask = PL0_RW; 8827 break; 8828 case 4: 8829 case 5: 8830 /* min_EL EL2 */ 8831 mask = PL2_RW; 8832 break; 8833 case 6: 8834 /* min_EL EL3 */ 8835 mask = PL3_RW; 8836 break; 8837 case 7: 8838 /* min_EL EL1, secure mode only (we don't check the latter) */ 8839 mask = PL1_RW; 8840 break; 8841 default: 8842 /* broken reginfo with out-of-range opc1 */ 8843 g_assert_not_reached(); 8844 } 8845 /* assert our permissions are not too lax (stricter is fine) */ 8846 assert((r->access & ~mask) == 0); 8847 } 8848 8849 /* Check that the register definition has enough info to handle 8850 * reads and writes if they are permitted. 8851 */ 8852 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8853 if (r->access & PL3_R) { 8854 assert((r->fieldoffset || 8855 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8856 r->readfn); 8857 } 8858 if (r->access & PL3_W) { 8859 assert((r->fieldoffset || 8860 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8861 r->writefn); 8862 } 8863 } 8864 8865 for (crm = crmmin; crm <= crmmax; crm++) { 8866 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8867 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8868 for (state = ARM_CP_STATE_AA32; 8869 state <= ARM_CP_STATE_AA64; state++) { 8870 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8871 continue; 8872 } 8873 if (state == ARM_CP_STATE_AA32) { 8874 /* Under AArch32 CP registers can be common 8875 * (same for secure and non-secure world) or banked. 8876 */ 8877 char *name; 8878 8879 switch (r->secure) { 8880 case ARM_CP_SECSTATE_S: 8881 case ARM_CP_SECSTATE_NS: 8882 add_cpreg_to_hashtable(cpu, r, opaque, state, 8883 r->secure, crm, opc1, opc2, 8884 r->name); 8885 break; 8886 case ARM_CP_SECSTATE_BOTH: 8887 name = g_strdup_printf("%s_S", r->name); 8888 add_cpreg_to_hashtable(cpu, r, opaque, state, 8889 ARM_CP_SECSTATE_S, 8890 crm, opc1, opc2, name); 8891 g_free(name); 8892 add_cpreg_to_hashtable(cpu, r, opaque, state, 8893 ARM_CP_SECSTATE_NS, 8894 crm, opc1, opc2, r->name); 8895 break; 8896 default: 8897 g_assert_not_reached(); 8898 } 8899 } else { 8900 /* AArch64 registers get mapped to non-secure instance 8901 * of AArch32 */ 8902 add_cpreg_to_hashtable(cpu, r, opaque, state, 8903 ARM_CP_SECSTATE_NS, 8904 crm, opc1, opc2, r->name); 8905 } 8906 } 8907 } 8908 } 8909 } 8910 } 8911 8912 /* Define a whole list of registers */ 8913 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8914 void *opaque, size_t len) 8915 { 8916 size_t i; 8917 for (i = 0; i < len; ++i) { 8918 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8919 } 8920 } 8921 8922 /* 8923 * Modify ARMCPRegInfo for access from userspace. 8924 * 8925 * This is a data driven modification directed by 8926 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8927 * user-space cannot alter any values and dynamic values pertaining to 8928 * execution state are hidden from user space view anyway. 8929 */ 8930 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8931 const ARMCPRegUserSpaceInfo *mods, 8932 size_t mods_len) 8933 { 8934 for (size_t mi = 0; mi < mods_len; ++mi) { 8935 const ARMCPRegUserSpaceInfo *m = mods + mi; 8936 GPatternSpec *pat = NULL; 8937 8938 if (m->is_glob) { 8939 pat = g_pattern_spec_new(m->name); 8940 } 8941 for (size_t ri = 0; ri < regs_len; ++ri) { 8942 ARMCPRegInfo *r = regs + ri; 8943 8944 if (pat && g_pattern_match_string(pat, r->name)) { 8945 r->type = ARM_CP_CONST; 8946 r->access = PL0U_R; 8947 r->resetvalue = 0; 8948 /* continue */ 8949 } else if (strcmp(r->name, m->name) == 0) { 8950 r->type = ARM_CP_CONST; 8951 r->access = PL0U_R; 8952 r->resetvalue &= m->exported_bits; 8953 r->resetvalue |= m->fixed_bits; 8954 break; 8955 } 8956 } 8957 if (pat) { 8958 g_pattern_spec_free(pat); 8959 } 8960 } 8961 } 8962 8963 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8964 { 8965 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8966 } 8967 8968 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8969 uint64_t value) 8970 { 8971 /* Helper coprocessor write function for write-ignore registers */ 8972 } 8973 8974 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8975 { 8976 /* Helper coprocessor write function for read-as-zero registers */ 8977 return 0; 8978 } 8979 8980 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8981 { 8982 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8983 } 8984 8985 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8986 { 8987 /* Return true if it is not valid for us to switch to 8988 * this CPU mode (ie all the UNPREDICTABLE cases in 8989 * the ARM ARM CPSRWriteByInstr pseudocode). 8990 */ 8991 8992 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8993 if (write_type == CPSRWriteByInstr && 8994 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8995 mode == ARM_CPU_MODE_HYP)) { 8996 return 1; 8997 } 8998 8999 switch (mode) { 9000 case ARM_CPU_MODE_USR: 9001 return 0; 9002 case ARM_CPU_MODE_SYS: 9003 case ARM_CPU_MODE_SVC: 9004 case ARM_CPU_MODE_ABT: 9005 case ARM_CPU_MODE_UND: 9006 case ARM_CPU_MODE_IRQ: 9007 case ARM_CPU_MODE_FIQ: 9008 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9009 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9010 */ 9011 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9012 * and CPS are treated as illegal mode changes. 9013 */ 9014 if (write_type == CPSRWriteByInstr && 9015 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9016 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9017 return 1; 9018 } 9019 return 0; 9020 case ARM_CPU_MODE_HYP: 9021 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9022 case ARM_CPU_MODE_MON: 9023 return arm_current_el(env) < 3; 9024 default: 9025 return 1; 9026 } 9027 } 9028 9029 uint32_t cpsr_read(CPUARMState *env) 9030 { 9031 int ZF; 9032 ZF = (env->ZF == 0); 9033 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9034 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9035 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9036 | ((env->condexec_bits & 0xfc) << 8) 9037 | (env->GE << 16) | (env->daif & CPSR_AIF); 9038 } 9039 9040 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9041 CPSRWriteType write_type) 9042 { 9043 uint32_t changed_daif; 9044 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9045 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9046 9047 if (mask & CPSR_NZCV) { 9048 env->ZF = (~val) & CPSR_Z; 9049 env->NF = val; 9050 env->CF = (val >> 29) & 1; 9051 env->VF = (val << 3) & 0x80000000; 9052 } 9053 if (mask & CPSR_Q) 9054 env->QF = ((val & CPSR_Q) != 0); 9055 if (mask & CPSR_T) 9056 env->thumb = ((val & CPSR_T) != 0); 9057 if (mask & CPSR_IT_0_1) { 9058 env->condexec_bits &= ~3; 9059 env->condexec_bits |= (val >> 25) & 3; 9060 } 9061 if (mask & CPSR_IT_2_7) { 9062 env->condexec_bits &= 3; 9063 env->condexec_bits |= (val >> 8) & 0xfc; 9064 } 9065 if (mask & CPSR_GE) { 9066 env->GE = (val >> 16) & 0xf; 9067 } 9068 9069 /* In a V7 implementation that includes the security extensions but does 9070 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9071 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9072 * bits respectively. 9073 * 9074 * In a V8 implementation, it is permitted for privileged software to 9075 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9076 */ 9077 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9078 arm_feature(env, ARM_FEATURE_EL3) && 9079 !arm_feature(env, ARM_FEATURE_EL2) && 9080 !arm_is_secure(env)) { 9081 9082 changed_daif = (env->daif ^ val) & mask; 9083 9084 if (changed_daif & CPSR_A) { 9085 /* Check to see if we are allowed to change the masking of async 9086 * abort exceptions from a non-secure state. 9087 */ 9088 if (!(env->cp15.scr_el3 & SCR_AW)) { 9089 qemu_log_mask(LOG_GUEST_ERROR, 9090 "Ignoring attempt to switch CPSR_A flag from " 9091 "non-secure world with SCR.AW bit clear\n"); 9092 mask &= ~CPSR_A; 9093 } 9094 } 9095 9096 if (changed_daif & CPSR_F) { 9097 /* Check to see if we are allowed to change the masking of FIQ 9098 * exceptions from a non-secure state. 9099 */ 9100 if (!(env->cp15.scr_el3 & SCR_FW)) { 9101 qemu_log_mask(LOG_GUEST_ERROR, 9102 "Ignoring attempt to switch CPSR_F flag from " 9103 "non-secure world with SCR.FW bit clear\n"); 9104 mask &= ~CPSR_F; 9105 } 9106 9107 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9108 * If this bit is set software is not allowed to mask 9109 * FIQs, but is allowed to set CPSR_F to 0. 9110 */ 9111 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9112 (val & CPSR_F)) { 9113 qemu_log_mask(LOG_GUEST_ERROR, 9114 "Ignoring attempt to enable CPSR_F flag " 9115 "(non-maskable FIQ [NMFI] support enabled)\n"); 9116 mask &= ~CPSR_F; 9117 } 9118 } 9119 } 9120 9121 env->daif &= ~(CPSR_AIF & mask); 9122 env->daif |= val & CPSR_AIF & mask; 9123 9124 if (write_type != CPSRWriteRaw && 9125 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9126 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9127 /* Note that we can only get here in USR mode if this is a 9128 * gdb stub write; for this case we follow the architectural 9129 * behaviour for guest writes in USR mode of ignoring an attempt 9130 * to switch mode. (Those are caught by translate.c for writes 9131 * triggered by guest instructions.) 9132 */ 9133 mask &= ~CPSR_M; 9134 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9135 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9136 * v7, and has defined behaviour in v8: 9137 * + leave CPSR.M untouched 9138 * + allow changes to the other CPSR fields 9139 * + set PSTATE.IL 9140 * For user changes via the GDB stub, we don't set PSTATE.IL, 9141 * as this would be unnecessarily harsh for a user error. 9142 */ 9143 mask &= ~CPSR_M; 9144 if (write_type != CPSRWriteByGDBStub && 9145 arm_feature(env, ARM_FEATURE_V8)) { 9146 mask |= CPSR_IL; 9147 val |= CPSR_IL; 9148 } 9149 qemu_log_mask(LOG_GUEST_ERROR, 9150 "Illegal AArch32 mode switch attempt from %s to %s\n", 9151 aarch32_mode_name(env->uncached_cpsr), 9152 aarch32_mode_name(val)); 9153 } else { 9154 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9155 write_type == CPSRWriteExceptionReturn ? 9156 "Exception return from AArch32" : 9157 "AArch32 mode switch from", 9158 aarch32_mode_name(env->uncached_cpsr), 9159 aarch32_mode_name(val), env->regs[15]); 9160 switch_mode(env, val & CPSR_M); 9161 } 9162 } 9163 mask &= ~CACHED_CPSR_BITS; 9164 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9165 if (rebuild_hflags) { 9166 arm_rebuild_hflags(env); 9167 } 9168 } 9169 9170 /* Sign/zero extend */ 9171 uint32_t HELPER(sxtb16)(uint32_t x) 9172 { 9173 uint32_t res; 9174 res = (uint16_t)(int8_t)x; 9175 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9176 return res; 9177 } 9178 9179 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9180 { 9181 /* 9182 * Take a division-by-zero exception if necessary; otherwise return 9183 * to get the usual non-trapping division behaviour (result of 0) 9184 */ 9185 if (arm_feature(env, ARM_FEATURE_M) 9186 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9187 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9188 } 9189 } 9190 9191 uint32_t HELPER(uxtb16)(uint32_t x) 9192 { 9193 uint32_t res; 9194 res = (uint16_t)(uint8_t)x; 9195 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9196 return res; 9197 } 9198 9199 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9200 { 9201 if (den == 0) { 9202 handle_possible_div0_trap(env, GETPC()); 9203 return 0; 9204 } 9205 if (num == INT_MIN && den == -1) { 9206 return INT_MIN; 9207 } 9208 return num / den; 9209 } 9210 9211 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9212 { 9213 if (den == 0) { 9214 handle_possible_div0_trap(env, GETPC()); 9215 return 0; 9216 } 9217 return num / den; 9218 } 9219 9220 uint32_t HELPER(rbit)(uint32_t x) 9221 { 9222 return revbit32(x); 9223 } 9224 9225 #ifdef CONFIG_USER_ONLY 9226 9227 static void switch_mode(CPUARMState *env, int mode) 9228 { 9229 ARMCPU *cpu = env_archcpu(env); 9230 9231 if (mode != ARM_CPU_MODE_USR) { 9232 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9233 } 9234 } 9235 9236 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9237 uint32_t cur_el, bool secure) 9238 { 9239 return 1; 9240 } 9241 9242 void aarch64_sync_64_to_32(CPUARMState *env) 9243 { 9244 g_assert_not_reached(); 9245 } 9246 9247 #else 9248 9249 static void switch_mode(CPUARMState *env, int mode) 9250 { 9251 int old_mode; 9252 int i; 9253 9254 old_mode = env->uncached_cpsr & CPSR_M; 9255 if (mode == old_mode) 9256 return; 9257 9258 if (old_mode == ARM_CPU_MODE_FIQ) { 9259 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9260 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9261 } else if (mode == ARM_CPU_MODE_FIQ) { 9262 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9263 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9264 } 9265 9266 i = bank_number(old_mode); 9267 env->banked_r13[i] = env->regs[13]; 9268 env->banked_spsr[i] = env->spsr; 9269 9270 i = bank_number(mode); 9271 env->regs[13] = env->banked_r13[i]; 9272 env->spsr = env->banked_spsr[i]; 9273 9274 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9275 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9276 } 9277 9278 /* Physical Interrupt Target EL Lookup Table 9279 * 9280 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9281 * 9282 * The below multi-dimensional table is used for looking up the target 9283 * exception level given numerous condition criteria. Specifically, the 9284 * target EL is based on SCR and HCR routing controls as well as the 9285 * currently executing EL and secure state. 9286 * 9287 * Dimensions: 9288 * target_el_table[2][2][2][2][2][4] 9289 * | | | | | +--- Current EL 9290 * | | | | +------ Non-secure(0)/Secure(1) 9291 * | | | +--------- HCR mask override 9292 * | | +------------ SCR exec state control 9293 * | +--------------- SCR mask override 9294 * +------------------ 32-bit(0)/64-bit(1) EL3 9295 * 9296 * The table values are as such: 9297 * 0-3 = EL0-EL3 9298 * -1 = Cannot occur 9299 * 9300 * The ARM ARM target EL table includes entries indicating that an "exception 9301 * is not taken". The two cases where this is applicable are: 9302 * 1) An exception is taken from EL3 but the SCR does not have the exception 9303 * routed to EL3. 9304 * 2) An exception is taken from EL2 but the HCR does not have the exception 9305 * routed to EL2. 9306 * In these two cases, the below table contain a target of EL1. This value is 9307 * returned as it is expected that the consumer of the table data will check 9308 * for "target EL >= current EL" to ensure the exception is not taken. 9309 * 9310 * SCR HCR 9311 * 64 EA AMO From 9312 * BIT IRQ IMO Non-secure Secure 9313 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9314 */ 9315 static const int8_t target_el_table[2][2][2][2][2][4] = { 9316 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9317 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9318 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9319 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9320 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9321 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9322 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9323 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9324 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9325 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9326 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9327 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9328 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9329 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9330 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9331 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9332 }; 9333 9334 /* 9335 * Determine the target EL for physical exceptions 9336 */ 9337 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9338 uint32_t cur_el, bool secure) 9339 { 9340 CPUARMState *env = cs->env_ptr; 9341 bool rw; 9342 bool scr; 9343 bool hcr; 9344 int target_el; 9345 /* Is the highest EL AArch64? */ 9346 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9347 uint64_t hcr_el2; 9348 9349 if (arm_feature(env, ARM_FEATURE_EL3)) { 9350 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9351 } else { 9352 /* Either EL2 is the highest EL (and so the EL2 register width 9353 * is given by is64); or there is no EL2 or EL3, in which case 9354 * the value of 'rw' does not affect the table lookup anyway. 9355 */ 9356 rw = is64; 9357 } 9358 9359 hcr_el2 = arm_hcr_el2_eff(env); 9360 switch (excp_idx) { 9361 case EXCP_IRQ: 9362 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9363 hcr = hcr_el2 & HCR_IMO; 9364 break; 9365 case EXCP_FIQ: 9366 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9367 hcr = hcr_el2 & HCR_FMO; 9368 break; 9369 default: 9370 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9371 hcr = hcr_el2 & HCR_AMO; 9372 break; 9373 }; 9374 9375 /* 9376 * For these purposes, TGE and AMO/IMO/FMO both force the 9377 * interrupt to EL2. Fold TGE into the bit extracted above. 9378 */ 9379 hcr |= (hcr_el2 & HCR_TGE) != 0; 9380 9381 /* Perform a table-lookup for the target EL given the current state */ 9382 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9383 9384 assert(target_el > 0); 9385 9386 return target_el; 9387 } 9388 9389 void arm_log_exception(CPUState *cs) 9390 { 9391 int idx = cs->exception_index; 9392 9393 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9394 const char *exc = NULL; 9395 static const char * const excnames[] = { 9396 [EXCP_UDEF] = "Undefined Instruction", 9397 [EXCP_SWI] = "SVC", 9398 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9399 [EXCP_DATA_ABORT] = "Data Abort", 9400 [EXCP_IRQ] = "IRQ", 9401 [EXCP_FIQ] = "FIQ", 9402 [EXCP_BKPT] = "Breakpoint", 9403 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9404 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9405 [EXCP_HVC] = "Hypervisor Call", 9406 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9407 [EXCP_SMC] = "Secure Monitor Call", 9408 [EXCP_VIRQ] = "Virtual IRQ", 9409 [EXCP_VFIQ] = "Virtual FIQ", 9410 [EXCP_SEMIHOST] = "Semihosting call", 9411 [EXCP_NOCP] = "v7M NOCP UsageFault", 9412 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9413 [EXCP_STKOF] = "v8M STKOF UsageFault", 9414 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9415 [EXCP_LSERR] = "v8M LSERR UsageFault", 9416 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9417 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9418 [EXCP_VSERR] = "Virtual SERR", 9419 }; 9420 9421 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9422 exc = excnames[idx]; 9423 } 9424 if (!exc) { 9425 exc = "unknown"; 9426 } 9427 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9428 idx, exc, cs->cpu_index); 9429 } 9430 } 9431 9432 /* 9433 * Function used to synchronize QEMU's AArch64 register set with AArch32 9434 * register set. This is necessary when switching between AArch32 and AArch64 9435 * execution state. 9436 */ 9437 void aarch64_sync_32_to_64(CPUARMState *env) 9438 { 9439 int i; 9440 uint32_t mode = env->uncached_cpsr & CPSR_M; 9441 9442 /* We can blanket copy R[0:7] to X[0:7] */ 9443 for (i = 0; i < 8; i++) { 9444 env->xregs[i] = env->regs[i]; 9445 } 9446 9447 /* 9448 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9449 * Otherwise, they come from the banked user regs. 9450 */ 9451 if (mode == ARM_CPU_MODE_FIQ) { 9452 for (i = 8; i < 13; i++) { 9453 env->xregs[i] = env->usr_regs[i - 8]; 9454 } 9455 } else { 9456 for (i = 8; i < 13; i++) { 9457 env->xregs[i] = env->regs[i]; 9458 } 9459 } 9460 9461 /* 9462 * Registers x13-x23 are the various mode SP and FP registers. Registers 9463 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9464 * from the mode banked register. 9465 */ 9466 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9467 env->xregs[13] = env->regs[13]; 9468 env->xregs[14] = env->regs[14]; 9469 } else { 9470 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9471 /* HYP is an exception in that it is copied from r14 */ 9472 if (mode == ARM_CPU_MODE_HYP) { 9473 env->xregs[14] = env->regs[14]; 9474 } else { 9475 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9476 } 9477 } 9478 9479 if (mode == ARM_CPU_MODE_HYP) { 9480 env->xregs[15] = env->regs[13]; 9481 } else { 9482 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9483 } 9484 9485 if (mode == ARM_CPU_MODE_IRQ) { 9486 env->xregs[16] = env->regs[14]; 9487 env->xregs[17] = env->regs[13]; 9488 } else { 9489 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9490 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9491 } 9492 9493 if (mode == ARM_CPU_MODE_SVC) { 9494 env->xregs[18] = env->regs[14]; 9495 env->xregs[19] = env->regs[13]; 9496 } else { 9497 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9498 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9499 } 9500 9501 if (mode == ARM_CPU_MODE_ABT) { 9502 env->xregs[20] = env->regs[14]; 9503 env->xregs[21] = env->regs[13]; 9504 } else { 9505 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9506 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9507 } 9508 9509 if (mode == ARM_CPU_MODE_UND) { 9510 env->xregs[22] = env->regs[14]; 9511 env->xregs[23] = env->regs[13]; 9512 } else { 9513 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9514 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9515 } 9516 9517 /* 9518 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9519 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9520 * FIQ bank for r8-r14. 9521 */ 9522 if (mode == ARM_CPU_MODE_FIQ) { 9523 for (i = 24; i < 31; i++) { 9524 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9525 } 9526 } else { 9527 for (i = 24; i < 29; i++) { 9528 env->xregs[i] = env->fiq_regs[i - 24]; 9529 } 9530 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9531 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9532 } 9533 9534 env->pc = env->regs[15]; 9535 } 9536 9537 /* 9538 * Function used to synchronize QEMU's AArch32 register set with AArch64 9539 * register set. This is necessary when switching between AArch32 and AArch64 9540 * execution state. 9541 */ 9542 void aarch64_sync_64_to_32(CPUARMState *env) 9543 { 9544 int i; 9545 uint32_t mode = env->uncached_cpsr & CPSR_M; 9546 9547 /* We can blanket copy X[0:7] to R[0:7] */ 9548 for (i = 0; i < 8; i++) { 9549 env->regs[i] = env->xregs[i]; 9550 } 9551 9552 /* 9553 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9554 * Otherwise, we copy x8-x12 into the banked user regs. 9555 */ 9556 if (mode == ARM_CPU_MODE_FIQ) { 9557 for (i = 8; i < 13; i++) { 9558 env->usr_regs[i - 8] = env->xregs[i]; 9559 } 9560 } else { 9561 for (i = 8; i < 13; i++) { 9562 env->regs[i] = env->xregs[i]; 9563 } 9564 } 9565 9566 /* 9567 * Registers r13 & r14 depend on the current mode. 9568 * If we are in a given mode, we copy the corresponding x registers to r13 9569 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9570 * for the mode. 9571 */ 9572 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9573 env->regs[13] = env->xregs[13]; 9574 env->regs[14] = env->xregs[14]; 9575 } else { 9576 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9577 9578 /* 9579 * HYP is an exception in that it does not have its own banked r14 but 9580 * shares the USR r14 9581 */ 9582 if (mode == ARM_CPU_MODE_HYP) { 9583 env->regs[14] = env->xregs[14]; 9584 } else { 9585 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9586 } 9587 } 9588 9589 if (mode == ARM_CPU_MODE_HYP) { 9590 env->regs[13] = env->xregs[15]; 9591 } else { 9592 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9593 } 9594 9595 if (mode == ARM_CPU_MODE_IRQ) { 9596 env->regs[14] = env->xregs[16]; 9597 env->regs[13] = env->xregs[17]; 9598 } else { 9599 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9600 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9601 } 9602 9603 if (mode == ARM_CPU_MODE_SVC) { 9604 env->regs[14] = env->xregs[18]; 9605 env->regs[13] = env->xregs[19]; 9606 } else { 9607 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9608 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9609 } 9610 9611 if (mode == ARM_CPU_MODE_ABT) { 9612 env->regs[14] = env->xregs[20]; 9613 env->regs[13] = env->xregs[21]; 9614 } else { 9615 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9616 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9617 } 9618 9619 if (mode == ARM_CPU_MODE_UND) { 9620 env->regs[14] = env->xregs[22]; 9621 env->regs[13] = env->xregs[23]; 9622 } else { 9623 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9624 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9625 } 9626 9627 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9628 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9629 * FIQ bank for r8-r14. 9630 */ 9631 if (mode == ARM_CPU_MODE_FIQ) { 9632 for (i = 24; i < 31; i++) { 9633 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9634 } 9635 } else { 9636 for (i = 24; i < 29; i++) { 9637 env->fiq_regs[i - 24] = env->xregs[i]; 9638 } 9639 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9640 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9641 } 9642 9643 env->regs[15] = env->pc; 9644 } 9645 9646 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9647 uint32_t mask, uint32_t offset, 9648 uint32_t newpc) 9649 { 9650 int new_el; 9651 9652 /* Change the CPU state so as to actually take the exception. */ 9653 switch_mode(env, new_mode); 9654 9655 /* 9656 * For exceptions taken to AArch32 we must clear the SS bit in both 9657 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9658 */ 9659 env->pstate &= ~PSTATE_SS; 9660 env->spsr = cpsr_read(env); 9661 /* Clear IT bits. */ 9662 env->condexec_bits = 0; 9663 /* Switch to the new mode, and to the correct instruction set. */ 9664 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9665 9666 /* This must be after mode switching. */ 9667 new_el = arm_current_el(env); 9668 9669 /* Set new mode endianness */ 9670 env->uncached_cpsr &= ~CPSR_E; 9671 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9672 env->uncached_cpsr |= CPSR_E; 9673 } 9674 /* J and IL must always be cleared for exception entry */ 9675 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9676 env->daif |= mask; 9677 9678 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9679 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9680 env->uncached_cpsr |= CPSR_SSBS; 9681 } else { 9682 env->uncached_cpsr &= ~CPSR_SSBS; 9683 } 9684 } 9685 9686 if (new_mode == ARM_CPU_MODE_HYP) { 9687 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9688 env->elr_el[2] = env->regs[15]; 9689 } else { 9690 /* CPSR.PAN is normally preserved preserved unless... */ 9691 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9692 switch (new_el) { 9693 case 3: 9694 if (!arm_is_secure_below_el3(env)) { 9695 /* ... the target is EL3, from non-secure state. */ 9696 env->uncached_cpsr &= ~CPSR_PAN; 9697 break; 9698 } 9699 /* ... the target is EL3, from secure state ... */ 9700 /* fall through */ 9701 case 1: 9702 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9703 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9704 env->uncached_cpsr |= CPSR_PAN; 9705 } 9706 break; 9707 } 9708 } 9709 /* 9710 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9711 * and we should just guard the thumb mode on V4 9712 */ 9713 if (arm_feature(env, ARM_FEATURE_V4T)) { 9714 env->thumb = 9715 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9716 } 9717 env->regs[14] = env->regs[15] + offset; 9718 } 9719 env->regs[15] = newpc; 9720 arm_rebuild_hflags(env); 9721 } 9722 9723 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9724 { 9725 /* 9726 * Handle exception entry to Hyp mode; this is sufficiently 9727 * different to entry to other AArch32 modes that we handle it 9728 * separately here. 9729 * 9730 * The vector table entry used is always the 0x14 Hyp mode entry point, 9731 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9732 * The offset applied to the preferred return address is always zero 9733 * (see DDI0487C.a section G1.12.3). 9734 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9735 */ 9736 uint32_t addr, mask; 9737 ARMCPU *cpu = ARM_CPU(cs); 9738 CPUARMState *env = &cpu->env; 9739 9740 switch (cs->exception_index) { 9741 case EXCP_UDEF: 9742 addr = 0x04; 9743 break; 9744 case EXCP_SWI: 9745 addr = 0x08; 9746 break; 9747 case EXCP_BKPT: 9748 /* Fall through to prefetch abort. */ 9749 case EXCP_PREFETCH_ABORT: 9750 env->cp15.ifar_s = env->exception.vaddress; 9751 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9752 (uint32_t)env->exception.vaddress); 9753 addr = 0x0c; 9754 break; 9755 case EXCP_DATA_ABORT: 9756 env->cp15.dfar_s = env->exception.vaddress; 9757 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9758 (uint32_t)env->exception.vaddress); 9759 addr = 0x10; 9760 break; 9761 case EXCP_IRQ: 9762 addr = 0x18; 9763 break; 9764 case EXCP_FIQ: 9765 addr = 0x1c; 9766 break; 9767 case EXCP_HVC: 9768 addr = 0x08; 9769 break; 9770 case EXCP_HYP_TRAP: 9771 addr = 0x14; 9772 break; 9773 default: 9774 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9775 } 9776 9777 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9778 if (!arm_feature(env, ARM_FEATURE_V8)) { 9779 /* 9780 * QEMU syndrome values are v8-style. v7 has the IL bit 9781 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9782 * If this is a v7 CPU, squash the IL bit in those cases. 9783 */ 9784 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9785 (cs->exception_index == EXCP_DATA_ABORT && 9786 !(env->exception.syndrome & ARM_EL_ISV)) || 9787 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9788 env->exception.syndrome &= ~ARM_EL_IL; 9789 } 9790 } 9791 env->cp15.esr_el[2] = env->exception.syndrome; 9792 } 9793 9794 if (arm_current_el(env) != 2 && addr < 0x14) { 9795 addr = 0x14; 9796 } 9797 9798 mask = 0; 9799 if (!(env->cp15.scr_el3 & SCR_EA)) { 9800 mask |= CPSR_A; 9801 } 9802 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9803 mask |= CPSR_I; 9804 } 9805 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9806 mask |= CPSR_F; 9807 } 9808 9809 addr += env->cp15.hvbar; 9810 9811 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9812 } 9813 9814 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9815 { 9816 ARMCPU *cpu = ARM_CPU(cs); 9817 CPUARMState *env = &cpu->env; 9818 uint32_t addr; 9819 uint32_t mask; 9820 int new_mode; 9821 uint32_t offset; 9822 uint32_t moe; 9823 9824 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9825 switch (syn_get_ec(env->exception.syndrome)) { 9826 case EC_BREAKPOINT: 9827 case EC_BREAKPOINT_SAME_EL: 9828 moe = 1; 9829 break; 9830 case EC_WATCHPOINT: 9831 case EC_WATCHPOINT_SAME_EL: 9832 moe = 10; 9833 break; 9834 case EC_AA32_BKPT: 9835 moe = 3; 9836 break; 9837 case EC_VECTORCATCH: 9838 moe = 5; 9839 break; 9840 default: 9841 moe = 0; 9842 break; 9843 } 9844 9845 if (moe) { 9846 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9847 } 9848 9849 if (env->exception.target_el == 2) { 9850 arm_cpu_do_interrupt_aarch32_hyp(cs); 9851 return; 9852 } 9853 9854 switch (cs->exception_index) { 9855 case EXCP_UDEF: 9856 new_mode = ARM_CPU_MODE_UND; 9857 addr = 0x04; 9858 mask = CPSR_I; 9859 if (env->thumb) 9860 offset = 2; 9861 else 9862 offset = 4; 9863 break; 9864 case EXCP_SWI: 9865 new_mode = ARM_CPU_MODE_SVC; 9866 addr = 0x08; 9867 mask = CPSR_I; 9868 /* The PC already points to the next instruction. */ 9869 offset = 0; 9870 break; 9871 case EXCP_BKPT: 9872 /* Fall through to prefetch abort. */ 9873 case EXCP_PREFETCH_ABORT: 9874 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9875 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9876 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9877 env->exception.fsr, (uint32_t)env->exception.vaddress); 9878 new_mode = ARM_CPU_MODE_ABT; 9879 addr = 0x0c; 9880 mask = CPSR_A | CPSR_I; 9881 offset = 4; 9882 break; 9883 case EXCP_DATA_ABORT: 9884 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9885 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9886 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9887 env->exception.fsr, 9888 (uint32_t)env->exception.vaddress); 9889 new_mode = ARM_CPU_MODE_ABT; 9890 addr = 0x10; 9891 mask = CPSR_A | CPSR_I; 9892 offset = 8; 9893 break; 9894 case EXCP_IRQ: 9895 new_mode = ARM_CPU_MODE_IRQ; 9896 addr = 0x18; 9897 /* Disable IRQ and imprecise data aborts. */ 9898 mask = CPSR_A | CPSR_I; 9899 offset = 4; 9900 if (env->cp15.scr_el3 & SCR_IRQ) { 9901 /* IRQ routed to monitor mode */ 9902 new_mode = ARM_CPU_MODE_MON; 9903 mask |= CPSR_F; 9904 } 9905 break; 9906 case EXCP_FIQ: 9907 new_mode = ARM_CPU_MODE_FIQ; 9908 addr = 0x1c; 9909 /* Disable FIQ, IRQ and imprecise data aborts. */ 9910 mask = CPSR_A | CPSR_I | CPSR_F; 9911 if (env->cp15.scr_el3 & SCR_FIQ) { 9912 /* FIQ routed to monitor mode */ 9913 new_mode = ARM_CPU_MODE_MON; 9914 } 9915 offset = 4; 9916 break; 9917 case EXCP_VIRQ: 9918 new_mode = ARM_CPU_MODE_IRQ; 9919 addr = 0x18; 9920 /* Disable IRQ and imprecise data aborts. */ 9921 mask = CPSR_A | CPSR_I; 9922 offset = 4; 9923 break; 9924 case EXCP_VFIQ: 9925 new_mode = ARM_CPU_MODE_FIQ; 9926 addr = 0x1c; 9927 /* Disable FIQ, IRQ and imprecise data aborts. */ 9928 mask = CPSR_A | CPSR_I | CPSR_F; 9929 offset = 4; 9930 break; 9931 case EXCP_VSERR: 9932 { 9933 /* 9934 * Note that this is reported as a data abort, but the DFAR 9935 * has an UNKNOWN value. Construct the SError syndrome from 9936 * AET and ExT fields. 9937 */ 9938 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9939 9940 if (extended_addresses_enabled(env)) { 9941 env->exception.fsr = arm_fi_to_lfsc(&fi); 9942 } else { 9943 env->exception.fsr = arm_fi_to_sfsc(&fi); 9944 } 9945 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9946 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9947 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9948 env->exception.fsr); 9949 9950 new_mode = ARM_CPU_MODE_ABT; 9951 addr = 0x10; 9952 mask = CPSR_A | CPSR_I; 9953 offset = 8; 9954 } 9955 break; 9956 case EXCP_SMC: 9957 new_mode = ARM_CPU_MODE_MON; 9958 addr = 0x08; 9959 mask = CPSR_A | CPSR_I | CPSR_F; 9960 offset = 0; 9961 break; 9962 default: 9963 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9964 return; /* Never happens. Keep compiler happy. */ 9965 } 9966 9967 if (new_mode == ARM_CPU_MODE_MON) { 9968 addr += env->cp15.mvbar; 9969 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9970 /* High vectors. When enabled, base address cannot be remapped. */ 9971 addr += 0xffff0000; 9972 } else { 9973 /* ARM v7 architectures provide a vector base address register to remap 9974 * the interrupt vector table. 9975 * This register is only followed in non-monitor mode, and is banked. 9976 * Note: only bits 31:5 are valid. 9977 */ 9978 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9979 } 9980 9981 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9982 env->cp15.scr_el3 &= ~SCR_NS; 9983 } 9984 9985 take_aarch32_exception(env, new_mode, mask, offset, addr); 9986 } 9987 9988 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9989 { 9990 /* 9991 * Return the register number of the AArch64 view of the AArch32 9992 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9993 * be that of the AArch32 mode the exception came from. 9994 */ 9995 int mode = env->uncached_cpsr & CPSR_M; 9996 9997 switch (aarch32_reg) { 9998 case 0 ... 7: 9999 return aarch32_reg; 10000 case 8 ... 12: 10001 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10002 case 13: 10003 switch (mode) { 10004 case ARM_CPU_MODE_USR: 10005 case ARM_CPU_MODE_SYS: 10006 return 13; 10007 case ARM_CPU_MODE_HYP: 10008 return 15; 10009 case ARM_CPU_MODE_IRQ: 10010 return 17; 10011 case ARM_CPU_MODE_SVC: 10012 return 19; 10013 case ARM_CPU_MODE_ABT: 10014 return 21; 10015 case ARM_CPU_MODE_UND: 10016 return 23; 10017 case ARM_CPU_MODE_FIQ: 10018 return 29; 10019 default: 10020 g_assert_not_reached(); 10021 } 10022 case 14: 10023 switch (mode) { 10024 case ARM_CPU_MODE_USR: 10025 case ARM_CPU_MODE_SYS: 10026 case ARM_CPU_MODE_HYP: 10027 return 14; 10028 case ARM_CPU_MODE_IRQ: 10029 return 16; 10030 case ARM_CPU_MODE_SVC: 10031 return 18; 10032 case ARM_CPU_MODE_ABT: 10033 return 20; 10034 case ARM_CPU_MODE_UND: 10035 return 22; 10036 case ARM_CPU_MODE_FIQ: 10037 return 30; 10038 default: 10039 g_assert_not_reached(); 10040 } 10041 case 15: 10042 return 31; 10043 default: 10044 g_assert_not_reached(); 10045 } 10046 } 10047 10048 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10049 { 10050 uint32_t ret = cpsr_read(env); 10051 10052 /* Move DIT to the correct location for SPSR_ELx */ 10053 if (ret & CPSR_DIT) { 10054 ret &= ~CPSR_DIT; 10055 ret |= PSTATE_DIT; 10056 } 10057 /* Merge PSTATE.SS into SPSR_ELx */ 10058 ret |= env->pstate & PSTATE_SS; 10059 10060 return ret; 10061 } 10062 10063 /* Handle exception entry to a target EL which is using AArch64 */ 10064 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10065 { 10066 ARMCPU *cpu = ARM_CPU(cs); 10067 CPUARMState *env = &cpu->env; 10068 unsigned int new_el = env->exception.target_el; 10069 target_ulong addr = env->cp15.vbar_el[new_el]; 10070 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10071 unsigned int old_mode; 10072 unsigned int cur_el = arm_current_el(env); 10073 int rt; 10074 10075 /* 10076 * Note that new_el can never be 0. If cur_el is 0, then 10077 * el0_a64 is is_a64(), else el0_a64 is ignored. 10078 */ 10079 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10080 10081 if (cur_el < new_el) { 10082 /* Entry vector offset depends on whether the implemented EL 10083 * immediately lower than the target level is using AArch32 or AArch64 10084 */ 10085 bool is_aa64; 10086 uint64_t hcr; 10087 10088 switch (new_el) { 10089 case 3: 10090 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10091 break; 10092 case 2: 10093 hcr = arm_hcr_el2_eff(env); 10094 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10095 is_aa64 = (hcr & HCR_RW) != 0; 10096 break; 10097 } 10098 /* fall through */ 10099 case 1: 10100 is_aa64 = is_a64(env); 10101 break; 10102 default: 10103 g_assert_not_reached(); 10104 } 10105 10106 if (is_aa64) { 10107 addr += 0x400; 10108 } else { 10109 addr += 0x600; 10110 } 10111 } else if (pstate_read(env) & PSTATE_SP) { 10112 addr += 0x200; 10113 } 10114 10115 switch (cs->exception_index) { 10116 case EXCP_PREFETCH_ABORT: 10117 case EXCP_DATA_ABORT: 10118 env->cp15.far_el[new_el] = env->exception.vaddress; 10119 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10120 env->cp15.far_el[new_el]); 10121 /* fall through */ 10122 case EXCP_BKPT: 10123 case EXCP_UDEF: 10124 case EXCP_SWI: 10125 case EXCP_HVC: 10126 case EXCP_HYP_TRAP: 10127 case EXCP_SMC: 10128 switch (syn_get_ec(env->exception.syndrome)) { 10129 case EC_ADVSIMDFPACCESSTRAP: 10130 /* 10131 * QEMU internal FP/SIMD syndromes from AArch32 include the 10132 * TA and coproc fields which are only exposed if the exception 10133 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10134 * AArch64 format syndrome. 10135 */ 10136 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10137 break; 10138 case EC_CP14RTTRAP: 10139 case EC_CP15RTTRAP: 10140 case EC_CP14DTTRAP: 10141 /* 10142 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10143 * the raw register field from the insn; when taking this to 10144 * AArch64 we must convert it to the AArch64 view of the register 10145 * number. Notice that we read a 4-bit AArch32 register number and 10146 * write back a 5-bit AArch64 one. 10147 */ 10148 rt = extract32(env->exception.syndrome, 5, 4); 10149 rt = aarch64_regnum(env, rt); 10150 env->exception.syndrome = deposit32(env->exception.syndrome, 10151 5, 5, rt); 10152 break; 10153 case EC_CP15RRTTRAP: 10154 case EC_CP14RRTTRAP: 10155 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10156 rt = extract32(env->exception.syndrome, 5, 4); 10157 rt = aarch64_regnum(env, rt); 10158 env->exception.syndrome = deposit32(env->exception.syndrome, 10159 5, 5, rt); 10160 rt = extract32(env->exception.syndrome, 10, 4); 10161 rt = aarch64_regnum(env, rt); 10162 env->exception.syndrome = deposit32(env->exception.syndrome, 10163 10, 5, rt); 10164 break; 10165 } 10166 env->cp15.esr_el[new_el] = env->exception.syndrome; 10167 break; 10168 case EXCP_IRQ: 10169 case EXCP_VIRQ: 10170 addr += 0x80; 10171 break; 10172 case EXCP_FIQ: 10173 case EXCP_VFIQ: 10174 addr += 0x100; 10175 break; 10176 case EXCP_VSERR: 10177 addr += 0x180; 10178 /* Construct the SError syndrome from IDS and ISS fields. */ 10179 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10180 env->cp15.esr_el[new_el] = env->exception.syndrome; 10181 break; 10182 default: 10183 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10184 } 10185 10186 if (is_a64(env)) { 10187 old_mode = pstate_read(env); 10188 aarch64_save_sp(env, arm_current_el(env)); 10189 env->elr_el[new_el] = env->pc; 10190 } else { 10191 old_mode = cpsr_read_for_spsr_elx(env); 10192 env->elr_el[new_el] = env->regs[15]; 10193 10194 aarch64_sync_32_to_64(env); 10195 10196 env->condexec_bits = 0; 10197 } 10198 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10199 10200 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10201 env->elr_el[new_el]); 10202 10203 if (cpu_isar_feature(aa64_pan, cpu)) { 10204 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10205 new_mode |= old_mode & PSTATE_PAN; 10206 switch (new_el) { 10207 case 2: 10208 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10209 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10210 != (HCR_E2H | HCR_TGE)) { 10211 break; 10212 } 10213 /* fall through */ 10214 case 1: 10215 /* ... the target is EL1 ... */ 10216 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10217 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10218 new_mode |= PSTATE_PAN; 10219 } 10220 break; 10221 } 10222 } 10223 if (cpu_isar_feature(aa64_mte, cpu)) { 10224 new_mode |= PSTATE_TCO; 10225 } 10226 10227 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10228 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10229 new_mode |= PSTATE_SSBS; 10230 } else { 10231 new_mode &= ~PSTATE_SSBS; 10232 } 10233 } 10234 10235 pstate_write(env, PSTATE_DAIF | new_mode); 10236 env->aarch64 = true; 10237 aarch64_restore_sp(env, new_el); 10238 helper_rebuild_hflags_a64(env, new_el); 10239 10240 env->pc = addr; 10241 10242 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10243 new_el, env->pc, pstate_read(env)); 10244 } 10245 10246 /* 10247 * Do semihosting call and set the appropriate return value. All the 10248 * permission and validity checks have been done at translate time. 10249 * 10250 * We only see semihosting exceptions in TCG only as they are not 10251 * trapped to the hypervisor in KVM. 10252 */ 10253 #ifdef CONFIG_TCG 10254 static void handle_semihosting(CPUState *cs) 10255 { 10256 ARMCPU *cpu = ARM_CPU(cs); 10257 CPUARMState *env = &cpu->env; 10258 10259 if (is_a64(env)) { 10260 qemu_log_mask(CPU_LOG_INT, 10261 "...handling as semihosting call 0x%" PRIx64 "\n", 10262 env->xregs[0]); 10263 env->xregs[0] = do_common_semihosting(cs); 10264 env->pc += 4; 10265 } else { 10266 qemu_log_mask(CPU_LOG_INT, 10267 "...handling as semihosting call 0x%x\n", 10268 env->regs[0]); 10269 env->regs[0] = do_common_semihosting(cs); 10270 env->regs[15] += env->thumb ? 2 : 4; 10271 } 10272 } 10273 #endif 10274 10275 /* Handle a CPU exception for A and R profile CPUs. 10276 * Do any appropriate logging, handle PSCI calls, and then hand off 10277 * to the AArch64-entry or AArch32-entry function depending on the 10278 * target exception level's register width. 10279 * 10280 * Note: this is used for both TCG (as the do_interrupt tcg op), 10281 * and KVM to re-inject guest debug exceptions, and to 10282 * inject a Synchronous-External-Abort. 10283 */ 10284 void arm_cpu_do_interrupt(CPUState *cs) 10285 { 10286 ARMCPU *cpu = ARM_CPU(cs); 10287 CPUARMState *env = &cpu->env; 10288 unsigned int new_el = env->exception.target_el; 10289 10290 assert(!arm_feature(env, ARM_FEATURE_M)); 10291 10292 arm_log_exception(cs); 10293 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10294 new_el); 10295 if (qemu_loglevel_mask(CPU_LOG_INT) 10296 && !excp_is_internal(cs->exception_index)) { 10297 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10298 syn_get_ec(env->exception.syndrome), 10299 env->exception.syndrome); 10300 } 10301 10302 if (arm_is_psci_call(cpu, cs->exception_index)) { 10303 arm_handle_psci_call(cpu); 10304 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10305 return; 10306 } 10307 10308 /* 10309 * Semihosting semantics depend on the register width of the code 10310 * that caused the exception, not the target exception level, so 10311 * must be handled here. 10312 */ 10313 #ifdef CONFIG_TCG 10314 if (cs->exception_index == EXCP_SEMIHOST) { 10315 handle_semihosting(cs); 10316 return; 10317 } 10318 #endif 10319 10320 /* Hooks may change global state so BQL should be held, also the 10321 * BQL needs to be held for any modification of 10322 * cs->interrupt_request. 10323 */ 10324 g_assert(qemu_mutex_iothread_locked()); 10325 10326 arm_call_pre_el_change_hook(cpu); 10327 10328 assert(!excp_is_internal(cs->exception_index)); 10329 if (arm_el_is_aa64(env, new_el)) { 10330 arm_cpu_do_interrupt_aarch64(cs); 10331 } else { 10332 arm_cpu_do_interrupt_aarch32(cs); 10333 } 10334 10335 arm_call_el_change_hook(cpu); 10336 10337 if (!kvm_enabled()) { 10338 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10339 } 10340 } 10341 #endif /* !CONFIG_USER_ONLY */ 10342 10343 uint64_t arm_sctlr(CPUARMState *env, int el) 10344 { 10345 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10346 if (el == 0) { 10347 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10348 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10349 ? 2 : 1; 10350 } 10351 return env->cp15.sctlr_el[el]; 10352 } 10353 10354 /* Return the SCTLR value which controls this address translation regime */ 10355 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10356 { 10357 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10358 } 10359 10360 #ifndef CONFIG_USER_ONLY 10361 10362 /* Return true if the specified stage of address translation is disabled */ 10363 static inline bool regime_translation_disabled(CPUARMState *env, 10364 ARMMMUIdx mmu_idx) 10365 { 10366 uint64_t hcr_el2; 10367 10368 if (arm_feature(env, ARM_FEATURE_M)) { 10369 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10370 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10371 case R_V7M_MPU_CTRL_ENABLE_MASK: 10372 /* Enabled, but not for HardFault and NMI */ 10373 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10374 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10375 /* Enabled for all cases */ 10376 return false; 10377 case 0: 10378 default: 10379 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10380 * we warned about that in armv7m_nvic.c when the guest set it. 10381 */ 10382 return true; 10383 } 10384 } 10385 10386 hcr_el2 = arm_hcr_el2_eff(env); 10387 10388 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10389 /* HCR.DC means HCR.VM behaves as 1 */ 10390 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10391 } 10392 10393 if (hcr_el2 & HCR_TGE) { 10394 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10395 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10396 return true; 10397 } 10398 } 10399 10400 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10401 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10402 return true; 10403 } 10404 10405 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10406 } 10407 10408 static inline bool regime_translation_big_endian(CPUARMState *env, 10409 ARMMMUIdx mmu_idx) 10410 { 10411 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10412 } 10413 10414 /* Return the TTBR associated with this translation regime */ 10415 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10416 int ttbrn) 10417 { 10418 if (mmu_idx == ARMMMUIdx_Stage2) { 10419 return env->cp15.vttbr_el2; 10420 } 10421 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10422 return env->cp15.vsttbr_el2; 10423 } 10424 if (ttbrn == 0) { 10425 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10426 } else { 10427 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10428 } 10429 } 10430 10431 #endif /* !CONFIG_USER_ONLY */ 10432 10433 /* Convert a possible stage1+2 MMU index into the appropriate 10434 * stage 1 MMU index 10435 */ 10436 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10437 { 10438 switch (mmu_idx) { 10439 case ARMMMUIdx_SE10_0: 10440 return ARMMMUIdx_Stage1_SE0; 10441 case ARMMMUIdx_SE10_1: 10442 return ARMMMUIdx_Stage1_SE1; 10443 case ARMMMUIdx_SE10_1_PAN: 10444 return ARMMMUIdx_Stage1_SE1_PAN; 10445 case ARMMMUIdx_E10_0: 10446 return ARMMMUIdx_Stage1_E0; 10447 case ARMMMUIdx_E10_1: 10448 return ARMMMUIdx_Stage1_E1; 10449 case ARMMMUIdx_E10_1_PAN: 10450 return ARMMMUIdx_Stage1_E1_PAN; 10451 default: 10452 return mmu_idx; 10453 } 10454 } 10455 10456 /* Return true if the translation regime is using LPAE format page tables */ 10457 static inline bool regime_using_lpae_format(CPUARMState *env, 10458 ARMMMUIdx mmu_idx) 10459 { 10460 int el = regime_el(env, mmu_idx); 10461 if (el == 2 || arm_el_is_aa64(env, el)) { 10462 return true; 10463 } 10464 if (arm_feature(env, ARM_FEATURE_LPAE) 10465 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10466 return true; 10467 } 10468 return false; 10469 } 10470 10471 /* Returns true if the stage 1 translation regime is using LPAE format page 10472 * tables. Used when raising alignment exceptions, whose FSR changes depending 10473 * on whether the long or short descriptor format is in use. */ 10474 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10475 { 10476 mmu_idx = stage_1_mmu_idx(mmu_idx); 10477 10478 return regime_using_lpae_format(env, mmu_idx); 10479 } 10480 10481 #ifndef CONFIG_USER_ONLY 10482 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10483 { 10484 switch (mmu_idx) { 10485 case ARMMMUIdx_SE10_0: 10486 case ARMMMUIdx_E20_0: 10487 case ARMMMUIdx_SE20_0: 10488 case ARMMMUIdx_Stage1_E0: 10489 case ARMMMUIdx_Stage1_SE0: 10490 case ARMMMUIdx_MUser: 10491 case ARMMMUIdx_MSUser: 10492 case ARMMMUIdx_MUserNegPri: 10493 case ARMMMUIdx_MSUserNegPri: 10494 return true; 10495 default: 10496 return false; 10497 case ARMMMUIdx_E10_0: 10498 case ARMMMUIdx_E10_1: 10499 case ARMMMUIdx_E10_1_PAN: 10500 g_assert_not_reached(); 10501 } 10502 } 10503 10504 /* Translate section/page access permissions to page 10505 * R/W protection flags 10506 * 10507 * @env: CPUARMState 10508 * @mmu_idx: MMU index indicating required translation regime 10509 * @ap: The 3-bit access permissions (AP[2:0]) 10510 * @domain_prot: The 2-bit domain access permissions 10511 */ 10512 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10513 int ap, int domain_prot) 10514 { 10515 bool is_user = regime_is_user(env, mmu_idx); 10516 10517 if (domain_prot == 3) { 10518 return PAGE_READ | PAGE_WRITE; 10519 } 10520 10521 switch (ap) { 10522 case 0: 10523 if (arm_feature(env, ARM_FEATURE_V7)) { 10524 return 0; 10525 } 10526 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10527 case SCTLR_S: 10528 return is_user ? 0 : PAGE_READ; 10529 case SCTLR_R: 10530 return PAGE_READ; 10531 default: 10532 return 0; 10533 } 10534 case 1: 10535 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10536 case 2: 10537 if (is_user) { 10538 return PAGE_READ; 10539 } else { 10540 return PAGE_READ | PAGE_WRITE; 10541 } 10542 case 3: 10543 return PAGE_READ | PAGE_WRITE; 10544 case 4: /* Reserved. */ 10545 return 0; 10546 case 5: 10547 return is_user ? 0 : PAGE_READ; 10548 case 6: 10549 return PAGE_READ; 10550 case 7: 10551 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10552 return 0; 10553 } 10554 return PAGE_READ; 10555 default: 10556 g_assert_not_reached(); 10557 } 10558 } 10559 10560 /* Translate section/page access permissions to page 10561 * R/W protection flags. 10562 * 10563 * @ap: The 2-bit simple AP (AP[2:1]) 10564 * @is_user: TRUE if accessing from PL0 10565 */ 10566 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10567 { 10568 switch (ap) { 10569 case 0: 10570 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10571 case 1: 10572 return PAGE_READ | PAGE_WRITE; 10573 case 2: 10574 return is_user ? 0 : PAGE_READ; 10575 case 3: 10576 return PAGE_READ; 10577 default: 10578 g_assert_not_reached(); 10579 } 10580 } 10581 10582 static inline int 10583 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10584 { 10585 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10586 } 10587 10588 /* Translate S2 section/page access permissions to protection flags 10589 * 10590 * @env: CPUARMState 10591 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10592 * @xn: XN (execute-never) bits 10593 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10594 */ 10595 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10596 { 10597 int prot = 0; 10598 10599 if (s2ap & 1) { 10600 prot |= PAGE_READ; 10601 } 10602 if (s2ap & 2) { 10603 prot |= PAGE_WRITE; 10604 } 10605 10606 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10607 switch (xn) { 10608 case 0: 10609 prot |= PAGE_EXEC; 10610 break; 10611 case 1: 10612 if (s1_is_el0) { 10613 prot |= PAGE_EXEC; 10614 } 10615 break; 10616 case 2: 10617 break; 10618 case 3: 10619 if (!s1_is_el0) { 10620 prot |= PAGE_EXEC; 10621 } 10622 break; 10623 default: 10624 g_assert_not_reached(); 10625 } 10626 } else { 10627 if (!extract32(xn, 1, 1)) { 10628 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10629 prot |= PAGE_EXEC; 10630 } 10631 } 10632 } 10633 return prot; 10634 } 10635 10636 /* Translate section/page access permissions to protection flags 10637 * 10638 * @env: CPUARMState 10639 * @mmu_idx: MMU index indicating required translation regime 10640 * @is_aa64: TRUE if AArch64 10641 * @ap: The 2-bit simple AP (AP[2:1]) 10642 * @ns: NS (non-secure) bit 10643 * @xn: XN (execute-never) bit 10644 * @pxn: PXN (privileged execute-never) bit 10645 */ 10646 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10647 int ap, int ns, int xn, int pxn) 10648 { 10649 bool is_user = regime_is_user(env, mmu_idx); 10650 int prot_rw, user_rw; 10651 bool have_wxn; 10652 int wxn = 0; 10653 10654 assert(mmu_idx != ARMMMUIdx_Stage2); 10655 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10656 10657 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10658 if (is_user) { 10659 prot_rw = user_rw; 10660 } else { 10661 if (user_rw && regime_is_pan(env, mmu_idx)) { 10662 /* PAN forbids data accesses but doesn't affect insn fetch */ 10663 prot_rw = 0; 10664 } else { 10665 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10666 } 10667 } 10668 10669 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10670 return prot_rw; 10671 } 10672 10673 /* TODO have_wxn should be replaced with 10674 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10675 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10676 * compatible processors have EL2, which is required for [U]WXN. 10677 */ 10678 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10679 10680 if (have_wxn) { 10681 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10682 } 10683 10684 if (is_aa64) { 10685 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10686 xn = pxn || (user_rw & PAGE_WRITE); 10687 } 10688 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10689 switch (regime_el(env, mmu_idx)) { 10690 case 1: 10691 case 3: 10692 if (is_user) { 10693 xn = xn || !(user_rw & PAGE_READ); 10694 } else { 10695 int uwxn = 0; 10696 if (have_wxn) { 10697 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10698 } 10699 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10700 (uwxn && (user_rw & PAGE_WRITE)); 10701 } 10702 break; 10703 case 2: 10704 break; 10705 } 10706 } else { 10707 xn = wxn = 0; 10708 } 10709 10710 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10711 return prot_rw; 10712 } 10713 return prot_rw | PAGE_EXEC; 10714 } 10715 10716 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10717 uint32_t *table, uint32_t address) 10718 { 10719 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10720 TCR *tcr = regime_tcr(env, mmu_idx); 10721 10722 if (address & tcr->mask) { 10723 if (tcr->raw_tcr & TTBCR_PD1) { 10724 /* Translation table walk disabled for TTBR1 */ 10725 return false; 10726 } 10727 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10728 } else { 10729 if (tcr->raw_tcr & TTBCR_PD0) { 10730 /* Translation table walk disabled for TTBR0 */ 10731 return false; 10732 } 10733 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10734 } 10735 *table |= (address >> 18) & 0x3ffc; 10736 return true; 10737 } 10738 10739 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs) 10740 { 10741 /* 10742 * For an S1 page table walk, the stage 1 attributes are always 10743 * some form of "this is Normal memory". The combined S1+S2 10744 * attributes are therefore only Device if stage 2 specifies Device. 10745 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00, 10746 * ie when cacheattrs.attrs bits [3:2] are 0b00. 10747 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie 10748 * when cacheattrs.attrs bit [2] is 0. 10749 */ 10750 assert(cacheattrs.is_s2_format); 10751 if (arm_hcr_el2_eff(env) & HCR_FWB) { 10752 return (cacheattrs.attrs & 0x4) == 0; 10753 } else { 10754 return (cacheattrs.attrs & 0xc) == 0; 10755 } 10756 } 10757 10758 /* Translate a S1 pagetable walk through S2 if needed. */ 10759 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10760 hwaddr addr, bool *is_secure, 10761 ARMMMUFaultInfo *fi) 10762 { 10763 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10764 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10765 target_ulong s2size; 10766 hwaddr s2pa; 10767 int s2prot; 10768 int ret; 10769 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10770 : ARMMMUIdx_Stage2; 10771 ARMCacheAttrs cacheattrs = {}; 10772 MemTxAttrs txattrs = {}; 10773 10774 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10775 &s2pa, &txattrs, &s2prot, &s2size, fi, 10776 &cacheattrs); 10777 if (ret) { 10778 assert(fi->type != ARMFault_None); 10779 fi->s2addr = addr; 10780 fi->stage2 = true; 10781 fi->s1ptw = true; 10782 fi->s1ns = !*is_secure; 10783 return ~0; 10784 } 10785 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10786 ptw_attrs_are_device(env, cacheattrs)) { 10787 /* 10788 * PTW set and S1 walk touched S2 Device memory: 10789 * generate Permission fault. 10790 */ 10791 fi->type = ARMFault_Permission; 10792 fi->s2addr = addr; 10793 fi->stage2 = true; 10794 fi->s1ptw = true; 10795 fi->s1ns = !*is_secure; 10796 return ~0; 10797 } 10798 10799 if (arm_is_secure_below_el3(env)) { 10800 /* Check if page table walk is to secure or non-secure PA space. */ 10801 if (*is_secure) { 10802 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10803 } else { 10804 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10805 } 10806 } else { 10807 assert(!*is_secure); 10808 } 10809 10810 addr = s2pa; 10811 } 10812 return addr; 10813 } 10814 10815 /* All loads done in the course of a page table walk go through here. */ 10816 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10817 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10818 { 10819 ARMCPU *cpu = ARM_CPU(cs); 10820 CPUARMState *env = &cpu->env; 10821 MemTxAttrs attrs = {}; 10822 MemTxResult result = MEMTX_OK; 10823 AddressSpace *as; 10824 uint32_t data; 10825 10826 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10827 attrs.secure = is_secure; 10828 as = arm_addressspace(cs, attrs); 10829 if (fi->s1ptw) { 10830 return 0; 10831 } 10832 if (regime_translation_big_endian(env, mmu_idx)) { 10833 data = address_space_ldl_be(as, addr, attrs, &result); 10834 } else { 10835 data = address_space_ldl_le(as, addr, attrs, &result); 10836 } 10837 if (result == MEMTX_OK) { 10838 return data; 10839 } 10840 fi->type = ARMFault_SyncExternalOnWalk; 10841 fi->ea = arm_extabort_type(result); 10842 return 0; 10843 } 10844 10845 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10846 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10847 { 10848 ARMCPU *cpu = ARM_CPU(cs); 10849 CPUARMState *env = &cpu->env; 10850 MemTxAttrs attrs = {}; 10851 MemTxResult result = MEMTX_OK; 10852 AddressSpace *as; 10853 uint64_t data; 10854 10855 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10856 attrs.secure = is_secure; 10857 as = arm_addressspace(cs, attrs); 10858 if (fi->s1ptw) { 10859 return 0; 10860 } 10861 if (regime_translation_big_endian(env, mmu_idx)) { 10862 data = address_space_ldq_be(as, addr, attrs, &result); 10863 } else { 10864 data = address_space_ldq_le(as, addr, attrs, &result); 10865 } 10866 if (result == MEMTX_OK) { 10867 return data; 10868 } 10869 fi->type = ARMFault_SyncExternalOnWalk; 10870 fi->ea = arm_extabort_type(result); 10871 return 0; 10872 } 10873 10874 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10875 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10876 hwaddr *phys_ptr, int *prot, 10877 target_ulong *page_size, 10878 ARMMMUFaultInfo *fi) 10879 { 10880 CPUState *cs = env_cpu(env); 10881 int level = 1; 10882 uint32_t table; 10883 uint32_t desc; 10884 int type; 10885 int ap; 10886 int domain = 0; 10887 int domain_prot; 10888 hwaddr phys_addr; 10889 uint32_t dacr; 10890 10891 /* Pagetable walk. */ 10892 /* Lookup l1 descriptor. */ 10893 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10894 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10895 fi->type = ARMFault_Translation; 10896 goto do_fault; 10897 } 10898 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10899 mmu_idx, fi); 10900 if (fi->type != ARMFault_None) { 10901 goto do_fault; 10902 } 10903 type = (desc & 3); 10904 domain = (desc >> 5) & 0x0f; 10905 if (regime_el(env, mmu_idx) == 1) { 10906 dacr = env->cp15.dacr_ns; 10907 } else { 10908 dacr = env->cp15.dacr_s; 10909 } 10910 domain_prot = (dacr >> (domain * 2)) & 3; 10911 if (type == 0) { 10912 /* Section translation fault. */ 10913 fi->type = ARMFault_Translation; 10914 goto do_fault; 10915 } 10916 if (type != 2) { 10917 level = 2; 10918 } 10919 if (domain_prot == 0 || domain_prot == 2) { 10920 fi->type = ARMFault_Domain; 10921 goto do_fault; 10922 } 10923 if (type == 2) { 10924 /* 1Mb section. */ 10925 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10926 ap = (desc >> 10) & 3; 10927 *page_size = 1024 * 1024; 10928 } else { 10929 /* Lookup l2 entry. */ 10930 if (type == 1) { 10931 /* Coarse pagetable. */ 10932 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10933 } else { 10934 /* Fine pagetable. */ 10935 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10936 } 10937 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10938 mmu_idx, fi); 10939 if (fi->type != ARMFault_None) { 10940 goto do_fault; 10941 } 10942 switch (desc & 3) { 10943 case 0: /* Page translation fault. */ 10944 fi->type = ARMFault_Translation; 10945 goto do_fault; 10946 case 1: /* 64k page. */ 10947 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10948 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10949 *page_size = 0x10000; 10950 break; 10951 case 2: /* 4k page. */ 10952 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10953 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10954 *page_size = 0x1000; 10955 break; 10956 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10957 if (type == 1) { 10958 /* ARMv6/XScale extended small page format */ 10959 if (arm_feature(env, ARM_FEATURE_XSCALE) 10960 || arm_feature(env, ARM_FEATURE_V6)) { 10961 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10962 *page_size = 0x1000; 10963 } else { 10964 /* UNPREDICTABLE in ARMv5; we choose to take a 10965 * page translation fault. 10966 */ 10967 fi->type = ARMFault_Translation; 10968 goto do_fault; 10969 } 10970 } else { 10971 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10972 *page_size = 0x400; 10973 } 10974 ap = (desc >> 4) & 3; 10975 break; 10976 default: 10977 /* Never happens, but compiler isn't smart enough to tell. */ 10978 g_assert_not_reached(); 10979 } 10980 } 10981 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10982 *prot |= *prot ? PAGE_EXEC : 0; 10983 if (!(*prot & (1 << access_type))) { 10984 /* Access permission fault. */ 10985 fi->type = ARMFault_Permission; 10986 goto do_fault; 10987 } 10988 *phys_ptr = phys_addr; 10989 return false; 10990 do_fault: 10991 fi->domain = domain; 10992 fi->level = level; 10993 return true; 10994 } 10995 10996 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10997 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10998 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10999 target_ulong *page_size, ARMMMUFaultInfo *fi) 11000 { 11001 CPUState *cs = env_cpu(env); 11002 ARMCPU *cpu = env_archcpu(env); 11003 int level = 1; 11004 uint32_t table; 11005 uint32_t desc; 11006 uint32_t xn; 11007 uint32_t pxn = 0; 11008 int type; 11009 int ap; 11010 int domain = 0; 11011 int domain_prot; 11012 hwaddr phys_addr; 11013 uint32_t dacr; 11014 bool ns; 11015 11016 /* Pagetable walk. */ 11017 /* Lookup l1 descriptor. */ 11018 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11019 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11020 fi->type = ARMFault_Translation; 11021 goto do_fault; 11022 } 11023 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11024 mmu_idx, fi); 11025 if (fi->type != ARMFault_None) { 11026 goto do_fault; 11027 } 11028 type = (desc & 3); 11029 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 11030 /* Section translation fault, or attempt to use the encoding 11031 * which is Reserved on implementations without PXN. 11032 */ 11033 fi->type = ARMFault_Translation; 11034 goto do_fault; 11035 } 11036 if ((type == 1) || !(desc & (1 << 18))) { 11037 /* Page or Section. */ 11038 domain = (desc >> 5) & 0x0f; 11039 } 11040 if (regime_el(env, mmu_idx) == 1) { 11041 dacr = env->cp15.dacr_ns; 11042 } else { 11043 dacr = env->cp15.dacr_s; 11044 } 11045 if (type == 1) { 11046 level = 2; 11047 } 11048 domain_prot = (dacr >> (domain * 2)) & 3; 11049 if (domain_prot == 0 || domain_prot == 2) { 11050 /* Section or Page domain fault */ 11051 fi->type = ARMFault_Domain; 11052 goto do_fault; 11053 } 11054 if (type != 1) { 11055 if (desc & (1 << 18)) { 11056 /* Supersection. */ 11057 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11058 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11059 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11060 *page_size = 0x1000000; 11061 } else { 11062 /* Section. */ 11063 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11064 *page_size = 0x100000; 11065 } 11066 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11067 xn = desc & (1 << 4); 11068 pxn = desc & 1; 11069 ns = extract32(desc, 19, 1); 11070 } else { 11071 if (cpu_isar_feature(aa32_pxn, cpu)) { 11072 pxn = (desc >> 2) & 1; 11073 } 11074 ns = extract32(desc, 3, 1); 11075 /* Lookup l2 entry. */ 11076 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11077 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11078 mmu_idx, fi); 11079 if (fi->type != ARMFault_None) { 11080 goto do_fault; 11081 } 11082 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11083 switch (desc & 3) { 11084 case 0: /* Page translation fault. */ 11085 fi->type = ARMFault_Translation; 11086 goto do_fault; 11087 case 1: /* 64k page. */ 11088 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11089 xn = desc & (1 << 15); 11090 *page_size = 0x10000; 11091 break; 11092 case 2: case 3: /* 4k page. */ 11093 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11094 xn = desc & 1; 11095 *page_size = 0x1000; 11096 break; 11097 default: 11098 /* Never happens, but compiler isn't smart enough to tell. */ 11099 g_assert_not_reached(); 11100 } 11101 } 11102 if (domain_prot == 3) { 11103 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11104 } else { 11105 if (pxn && !regime_is_user(env, mmu_idx)) { 11106 xn = 1; 11107 } 11108 if (xn && access_type == MMU_INST_FETCH) { 11109 fi->type = ARMFault_Permission; 11110 goto do_fault; 11111 } 11112 11113 if (arm_feature(env, ARM_FEATURE_V6K) && 11114 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11115 /* The simplified model uses AP[0] as an access control bit. */ 11116 if ((ap & 1) == 0) { 11117 /* Access flag fault. */ 11118 fi->type = ARMFault_AccessFlag; 11119 goto do_fault; 11120 } 11121 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11122 } else { 11123 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11124 } 11125 if (*prot && !xn) { 11126 *prot |= PAGE_EXEC; 11127 } 11128 if (!(*prot & (1 << access_type))) { 11129 /* Access permission fault. */ 11130 fi->type = ARMFault_Permission; 11131 goto do_fault; 11132 } 11133 } 11134 if (ns) { 11135 /* The NS bit will (as required by the architecture) have no effect if 11136 * the CPU doesn't support TZ or this is a non-secure translation 11137 * regime, because the attribute will already be non-secure. 11138 */ 11139 attrs->secure = false; 11140 } 11141 *phys_ptr = phys_addr; 11142 return false; 11143 do_fault: 11144 fi->domain = domain; 11145 fi->level = level; 11146 return true; 11147 } 11148 11149 /* 11150 * check_s2_mmu_setup 11151 * @cpu: ARMCPU 11152 * @is_aa64: True if the translation regime is in AArch64 state 11153 * @startlevel: Suggested starting level 11154 * @inputsize: Bitsize of IPAs 11155 * @stride: Page-table stride (See the ARM ARM) 11156 * 11157 * Returns true if the suggested S2 translation parameters are OK and 11158 * false otherwise. 11159 */ 11160 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11161 int inputsize, int stride, int outputsize) 11162 { 11163 const int grainsize = stride + 3; 11164 int startsizecheck; 11165 11166 /* 11167 * Negative levels are usually not allowed... 11168 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11169 * begins with level -1. Note that previous feature tests will have 11170 * eliminated this combination if it is not enabled. 11171 */ 11172 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11173 return false; 11174 } 11175 11176 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11177 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11178 return false; 11179 } 11180 11181 if (is_aa64) { 11182 switch (stride) { 11183 case 13: /* 64KB Pages. */ 11184 if (level == 0 || (level == 1 && outputsize <= 42)) { 11185 return false; 11186 } 11187 break; 11188 case 11: /* 16KB Pages. */ 11189 if (level == 0 || (level == 1 && outputsize <= 40)) { 11190 return false; 11191 } 11192 break; 11193 case 9: /* 4KB Pages. */ 11194 if (level == 0 && outputsize <= 42) { 11195 return false; 11196 } 11197 break; 11198 default: 11199 g_assert_not_reached(); 11200 } 11201 11202 /* Inputsize checks. */ 11203 if (inputsize > outputsize && 11204 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11205 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11206 return false; 11207 } 11208 } else { 11209 /* AArch32 only supports 4KB pages. Assert on that. */ 11210 assert(stride == 9); 11211 11212 if (level == 0) { 11213 return false; 11214 } 11215 } 11216 return true; 11217 } 11218 11219 /* Translate from the 4-bit stage 2 representation of 11220 * memory attributes (without cache-allocation hints) to 11221 * the 8-bit representation of the stage 1 MAIR registers 11222 * (which includes allocation hints). 11223 * 11224 * ref: shared/translation/attrs/S2AttrDecode() 11225 * .../S2ConvertAttrsHints() 11226 */ 11227 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11228 { 11229 uint8_t hiattr = extract32(s2attrs, 2, 2); 11230 uint8_t loattr = extract32(s2attrs, 0, 2); 11231 uint8_t hihint = 0, lohint = 0; 11232 11233 if (hiattr != 0) { /* normal memory */ 11234 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11235 hiattr = loattr = 1; /* non-cacheable */ 11236 } else { 11237 if (hiattr != 1) { /* Write-through or write-back */ 11238 hihint = 3; /* RW allocate */ 11239 } 11240 if (loattr != 1) { /* Write-through or write-back */ 11241 lohint = 3; /* RW allocate */ 11242 } 11243 } 11244 } 11245 11246 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11247 } 11248 #endif /* !CONFIG_USER_ONLY */ 11249 11250 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11251 static const uint8_t pamax_map[] = { 11252 [0] = 32, 11253 [1] = 36, 11254 [2] = 40, 11255 [3] = 42, 11256 [4] = 44, 11257 [5] = 48, 11258 [6] = 52, 11259 }; 11260 11261 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11262 unsigned int arm_pamax(ARMCPU *cpu) 11263 { 11264 unsigned int parange = 11265 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11266 11267 /* 11268 * id_aa64mmfr0 is a read-only register so values outside of the 11269 * supported mappings can be considered an implementation error. 11270 */ 11271 assert(parange < ARRAY_SIZE(pamax_map)); 11272 return pamax_map[parange]; 11273 } 11274 11275 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11276 { 11277 if (regime_has_2_ranges(mmu_idx)) { 11278 return extract64(tcr, 37, 2); 11279 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11280 return 0; /* VTCR_EL2 */ 11281 } else { 11282 /* Replicate the single TBI bit so we always have 2 bits. */ 11283 return extract32(tcr, 20, 1) * 3; 11284 } 11285 } 11286 11287 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11288 { 11289 if (regime_has_2_ranges(mmu_idx)) { 11290 return extract64(tcr, 51, 2); 11291 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11292 return 0; /* VTCR_EL2 */ 11293 } else { 11294 /* Replicate the single TBID bit so we always have 2 bits. */ 11295 return extract32(tcr, 29, 1) * 3; 11296 } 11297 } 11298 11299 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11300 { 11301 if (regime_has_2_ranges(mmu_idx)) { 11302 return extract64(tcr, 57, 2); 11303 } else { 11304 /* Replicate the single TCMA bit so we always have 2 bits. */ 11305 return extract32(tcr, 30, 1) * 3; 11306 } 11307 } 11308 11309 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11310 ARMMMUIdx mmu_idx, bool data) 11311 { 11312 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11313 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11314 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11315 ARMCPU *cpu = env_archcpu(env); 11316 11317 if (!regime_has_2_ranges(mmu_idx)) { 11318 select = 0; 11319 tsz = extract32(tcr, 0, 6); 11320 using64k = extract32(tcr, 14, 1); 11321 using16k = extract32(tcr, 15, 1); 11322 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11323 /* VTCR_EL2 */ 11324 hpd = false; 11325 } else { 11326 hpd = extract32(tcr, 24, 1); 11327 } 11328 epd = false; 11329 sh = extract32(tcr, 12, 2); 11330 ps = extract32(tcr, 16, 3); 11331 ds = extract64(tcr, 32, 1); 11332 } else { 11333 /* 11334 * Bit 55 is always between the two regions, and is canonical for 11335 * determining if address tagging is enabled. 11336 */ 11337 select = extract64(va, 55, 1); 11338 if (!select) { 11339 tsz = extract32(tcr, 0, 6); 11340 epd = extract32(tcr, 7, 1); 11341 sh = extract32(tcr, 12, 2); 11342 using64k = extract32(tcr, 14, 1); 11343 using16k = extract32(tcr, 15, 1); 11344 hpd = extract64(tcr, 41, 1); 11345 } else { 11346 int tg = extract32(tcr, 30, 2); 11347 using16k = tg == 1; 11348 using64k = tg == 3; 11349 tsz = extract32(tcr, 16, 6); 11350 epd = extract32(tcr, 23, 1); 11351 sh = extract32(tcr, 28, 2); 11352 hpd = extract64(tcr, 42, 1); 11353 } 11354 ps = extract64(tcr, 32, 3); 11355 ds = extract64(tcr, 59, 1); 11356 } 11357 11358 if (cpu_isar_feature(aa64_st, cpu)) { 11359 max_tsz = 48 - using64k; 11360 } else { 11361 max_tsz = 39; 11362 } 11363 11364 /* 11365 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11366 * adjust the effective value of DS, as documented. 11367 */ 11368 min_tsz = 16; 11369 if (using64k) { 11370 if (cpu_isar_feature(aa64_lva, cpu)) { 11371 min_tsz = 12; 11372 } 11373 ds = false; 11374 } else if (ds) { 11375 switch (mmu_idx) { 11376 case ARMMMUIdx_Stage2: 11377 case ARMMMUIdx_Stage2_S: 11378 if (using16k) { 11379 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11380 } else { 11381 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11382 } 11383 break; 11384 default: 11385 if (using16k) { 11386 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11387 } else { 11388 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11389 } 11390 break; 11391 } 11392 if (ds) { 11393 min_tsz = 12; 11394 } 11395 } 11396 11397 if (tsz > max_tsz) { 11398 tsz = max_tsz; 11399 tsz_oob = true; 11400 } else if (tsz < min_tsz) { 11401 tsz = min_tsz; 11402 tsz_oob = true; 11403 } else { 11404 tsz_oob = false; 11405 } 11406 11407 /* Present TBI as a composite with TBID. */ 11408 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11409 if (!data) { 11410 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11411 } 11412 tbi = (tbi >> select) & 1; 11413 11414 return (ARMVAParameters) { 11415 .tsz = tsz, 11416 .ps = ps, 11417 .sh = sh, 11418 .select = select, 11419 .tbi = tbi, 11420 .epd = epd, 11421 .hpd = hpd, 11422 .using16k = using16k, 11423 .using64k = using64k, 11424 .tsz_oob = tsz_oob, 11425 .ds = ds, 11426 }; 11427 } 11428 11429 #ifndef CONFIG_USER_ONLY 11430 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11431 ARMMMUIdx mmu_idx) 11432 { 11433 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11434 uint32_t el = regime_el(env, mmu_idx); 11435 int select, tsz; 11436 bool epd, hpd; 11437 11438 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11439 11440 if (mmu_idx == ARMMMUIdx_Stage2) { 11441 /* VTCR */ 11442 bool sext = extract32(tcr, 4, 1); 11443 bool sign = extract32(tcr, 3, 1); 11444 11445 /* 11446 * If the sign-extend bit is not the same as t0sz[3], the result 11447 * is unpredictable. Flag this as a guest error. 11448 */ 11449 if (sign != sext) { 11450 qemu_log_mask(LOG_GUEST_ERROR, 11451 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11452 } 11453 tsz = sextract32(tcr, 0, 4) + 8; 11454 select = 0; 11455 hpd = false; 11456 epd = false; 11457 } else if (el == 2) { 11458 /* HTCR */ 11459 tsz = extract32(tcr, 0, 3); 11460 select = 0; 11461 hpd = extract64(tcr, 24, 1); 11462 epd = false; 11463 } else { 11464 int t0sz = extract32(tcr, 0, 3); 11465 int t1sz = extract32(tcr, 16, 3); 11466 11467 if (t1sz == 0) { 11468 select = va > (0xffffffffu >> t0sz); 11469 } else { 11470 /* Note that we will detect errors later. */ 11471 select = va >= ~(0xffffffffu >> t1sz); 11472 } 11473 if (!select) { 11474 tsz = t0sz; 11475 epd = extract32(tcr, 7, 1); 11476 hpd = extract64(tcr, 41, 1); 11477 } else { 11478 tsz = t1sz; 11479 epd = extract32(tcr, 23, 1); 11480 hpd = extract64(tcr, 42, 1); 11481 } 11482 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11483 hpd &= extract32(tcr, 6, 1); 11484 } 11485 11486 return (ARMVAParameters) { 11487 .tsz = tsz, 11488 .select = select, 11489 .epd = epd, 11490 .hpd = hpd, 11491 }; 11492 } 11493 11494 /** 11495 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11496 * 11497 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11498 * prot and page_size may not be filled in, and the populated fsr value provides 11499 * information on why the translation aborted, in the format of a long-format 11500 * DFSR/IFSR fault register, with the following caveats: 11501 * * the WnR bit is never set (the caller must do this). 11502 * 11503 * @env: CPUARMState 11504 * @address: virtual address to get physical address for 11505 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11506 * @mmu_idx: MMU index indicating required translation regime 11507 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11508 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11509 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11510 * @phys_ptr: set to the physical address corresponding to the virtual address 11511 * @attrs: set to the memory transaction attributes to use 11512 * @prot: set to the permissions for the page containing phys_ptr 11513 * @page_size_ptr: set to the size of the page containing phys_ptr 11514 * @fi: set to fault info if the translation fails 11515 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11516 */ 11517 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11518 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11519 bool s1_is_el0, 11520 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11521 target_ulong *page_size_ptr, 11522 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11523 { 11524 ARMCPU *cpu = env_archcpu(env); 11525 CPUState *cs = CPU(cpu); 11526 /* Read an LPAE long-descriptor translation table. */ 11527 ARMFaultType fault_type = ARMFault_Translation; 11528 uint32_t level; 11529 ARMVAParameters param; 11530 uint64_t ttbr; 11531 hwaddr descaddr, indexmask, indexmask_grainsize; 11532 uint32_t tableattrs; 11533 target_ulong page_size; 11534 uint32_t attrs; 11535 int32_t stride; 11536 int addrsize, inputsize, outputsize; 11537 TCR *tcr = regime_tcr(env, mmu_idx); 11538 int ap, ns, xn, pxn; 11539 uint32_t el = regime_el(env, mmu_idx); 11540 uint64_t descaddrmask; 11541 bool aarch64 = arm_el_is_aa64(env, el); 11542 bool guarded = false; 11543 11544 /* TODO: This code does not support shareability levels. */ 11545 if (aarch64) { 11546 int ps; 11547 11548 param = aa64_va_parameters(env, address, mmu_idx, 11549 access_type != MMU_INST_FETCH); 11550 level = 0; 11551 11552 /* 11553 * If TxSZ is programmed to a value larger than the maximum, 11554 * or smaller than the effective minimum, it is IMPLEMENTATION 11555 * DEFINED whether we behave as if the field were programmed 11556 * within bounds, or if a level 0 Translation fault is generated. 11557 * 11558 * With FEAT_LVA, fault on less than minimum becomes required, 11559 * so our choice is to always raise the fault. 11560 */ 11561 if (param.tsz_oob) { 11562 fault_type = ARMFault_Translation; 11563 goto do_fault; 11564 } 11565 11566 addrsize = 64 - 8 * param.tbi; 11567 inputsize = 64 - param.tsz; 11568 11569 /* 11570 * Bound PS by PARANGE to find the effective output address size. 11571 * ID_AA64MMFR0 is a read-only register so values outside of the 11572 * supported mappings can be considered an implementation error. 11573 */ 11574 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11575 ps = MIN(ps, param.ps); 11576 assert(ps < ARRAY_SIZE(pamax_map)); 11577 outputsize = pamax_map[ps]; 11578 } else { 11579 param = aa32_va_parameters(env, address, mmu_idx); 11580 level = 1; 11581 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11582 inputsize = addrsize - param.tsz; 11583 outputsize = 40; 11584 } 11585 11586 /* 11587 * We determined the region when collecting the parameters, but we 11588 * have not yet validated that the address is valid for the region. 11589 * Extract the top bits and verify that they all match select. 11590 * 11591 * For aa32, if inputsize == addrsize, then we have selected the 11592 * region by exclusion in aa32_va_parameters and there is no more 11593 * validation to do here. 11594 */ 11595 if (inputsize < addrsize) { 11596 target_ulong top_bits = sextract64(address, inputsize, 11597 addrsize - inputsize); 11598 if (-top_bits != param.select) { 11599 /* The gap between the two regions is a Translation fault */ 11600 fault_type = ARMFault_Translation; 11601 goto do_fault; 11602 } 11603 } 11604 11605 if (param.using64k) { 11606 stride = 13; 11607 } else if (param.using16k) { 11608 stride = 11; 11609 } else { 11610 stride = 9; 11611 } 11612 11613 /* Note that QEMU ignores shareability and cacheability attributes, 11614 * so we don't need to do anything with the SH, ORGN, IRGN fields 11615 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11616 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11617 * implement any ASID-like capability so we can ignore it (instead 11618 * we will always flush the TLB any time the ASID is changed). 11619 */ 11620 ttbr = regime_ttbr(env, mmu_idx, param.select); 11621 11622 /* Here we should have set up all the parameters for the translation: 11623 * inputsize, ttbr, epd, stride, tbi 11624 */ 11625 11626 if (param.epd) { 11627 /* Translation table walk disabled => Translation fault on TLB miss 11628 * Note: This is always 0 on 64-bit EL2 and EL3. 11629 */ 11630 goto do_fault; 11631 } 11632 11633 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11634 /* The starting level depends on the virtual address size (which can 11635 * be up to 48 bits) and the translation granule size. It indicates 11636 * the number of strides (stride bits at a time) needed to 11637 * consume the bits of the input address. In the pseudocode this is: 11638 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11639 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11640 * our 'stride + 3' and 'stride' is our 'stride'. 11641 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11642 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11643 * = 4 - (inputsize - 4) / stride; 11644 */ 11645 level = 4 - (inputsize - 4) / stride; 11646 } else { 11647 /* For stage 2 translations the starting level is specified by the 11648 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11649 */ 11650 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11651 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11652 uint32_t startlevel; 11653 bool ok; 11654 11655 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11656 if (param.ds && stride == 9 && sl2) { 11657 if (sl0 != 0) { 11658 level = 0; 11659 fault_type = ARMFault_Translation; 11660 goto do_fault; 11661 } 11662 startlevel = -1; 11663 } else if (!aarch64 || stride == 9) { 11664 /* AArch32 or 4KB pages */ 11665 startlevel = 2 - sl0; 11666 11667 if (cpu_isar_feature(aa64_st, cpu)) { 11668 startlevel &= 3; 11669 } 11670 } else { 11671 /* 16KB or 64KB pages */ 11672 startlevel = 3 - sl0; 11673 } 11674 11675 /* Check that the starting level is valid. */ 11676 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11677 inputsize, stride, outputsize); 11678 if (!ok) { 11679 fault_type = ARMFault_Translation; 11680 goto do_fault; 11681 } 11682 level = startlevel; 11683 } 11684 11685 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11686 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11687 11688 /* Now we can extract the actual base address from the TTBR */ 11689 descaddr = extract64(ttbr, 0, 48); 11690 11691 /* 11692 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11693 * 11694 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11695 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11696 * but we've just cleared the bits above 47, so simplify the test. 11697 */ 11698 if (outputsize > 48) { 11699 descaddr |= extract64(ttbr, 2, 4) << 48; 11700 } else if (descaddr >> outputsize) { 11701 level = 0; 11702 fault_type = ARMFault_AddressSize; 11703 goto do_fault; 11704 } 11705 11706 /* 11707 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11708 * and also to mask out CnP (bit 0) which could validly be non-zero. 11709 */ 11710 descaddr &= ~indexmask; 11711 11712 /* 11713 * For AArch32, the address field in the descriptor goes up to bit 39 11714 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11715 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11716 * bits as part of the address, which will be checked via outputsize. 11717 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11718 * the highest bits of a 52-bit output are placed elsewhere. 11719 */ 11720 if (param.ds) { 11721 descaddrmask = MAKE_64BIT_MASK(0, 50); 11722 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11723 descaddrmask = MAKE_64BIT_MASK(0, 48); 11724 } else { 11725 descaddrmask = MAKE_64BIT_MASK(0, 40); 11726 } 11727 descaddrmask &= ~indexmask_grainsize; 11728 11729 /* Secure accesses start with the page table in secure memory and 11730 * can be downgraded to non-secure at any step. Non-secure accesses 11731 * remain non-secure. We implement this by just ORing in the NSTable/NS 11732 * bits at each step. 11733 */ 11734 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11735 for (;;) { 11736 uint64_t descriptor; 11737 bool nstable; 11738 11739 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11740 descaddr &= ~7ULL; 11741 nstable = extract32(tableattrs, 4, 1); 11742 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11743 if (fi->type != ARMFault_None) { 11744 goto do_fault; 11745 } 11746 11747 if (!(descriptor & 1) || 11748 (!(descriptor & 2) && (level == 3))) { 11749 /* Invalid, or the Reserved level 3 encoding */ 11750 goto do_fault; 11751 } 11752 11753 descaddr = descriptor & descaddrmask; 11754 11755 /* 11756 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11757 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11758 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11759 * raise AddressSizeFault. 11760 */ 11761 if (outputsize > 48) { 11762 if (param.ds) { 11763 descaddr |= extract64(descriptor, 8, 2) << 50; 11764 } else { 11765 descaddr |= extract64(descriptor, 12, 4) << 48; 11766 } 11767 } else if (descaddr >> outputsize) { 11768 fault_type = ARMFault_AddressSize; 11769 goto do_fault; 11770 } 11771 11772 if ((descriptor & 2) && (level < 3)) { 11773 /* Table entry. The top five bits are attributes which may 11774 * propagate down through lower levels of the table (and 11775 * which are all arranged so that 0 means "no effect", so 11776 * we can gather them up by ORing in the bits at each level). 11777 */ 11778 tableattrs |= extract64(descriptor, 59, 5); 11779 level++; 11780 indexmask = indexmask_grainsize; 11781 continue; 11782 } 11783 /* 11784 * Block entry at level 1 or 2, or page entry at level 3. 11785 * These are basically the same thing, although the number 11786 * of bits we pull in from the vaddr varies. Note that although 11787 * descaddrmask masks enough of the low bits of the descriptor 11788 * to give a correct page or table address, the address field 11789 * in a block descriptor is smaller; so we need to explicitly 11790 * clear the lower bits here before ORing in the low vaddr bits. 11791 */ 11792 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11793 descaddr &= ~(page_size - 1); 11794 descaddr |= (address & (page_size - 1)); 11795 /* Extract attributes from the descriptor */ 11796 attrs = extract64(descriptor, 2, 10) 11797 | (extract64(descriptor, 52, 12) << 10); 11798 11799 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11800 /* Stage 2 table descriptors do not include any attribute fields */ 11801 break; 11802 } 11803 /* Merge in attributes from table descriptors */ 11804 attrs |= nstable << 3; /* NS */ 11805 guarded = extract64(descriptor, 50, 1); /* GP */ 11806 if (param.hpd) { 11807 /* HPD disables all the table attributes except NSTable. */ 11808 break; 11809 } 11810 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11811 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11812 * means "force PL1 access only", which means forcing AP[1] to 0. 11813 */ 11814 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11815 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11816 break; 11817 } 11818 /* Here descaddr is the final physical address, and attributes 11819 * are all in attrs. 11820 */ 11821 fault_type = ARMFault_AccessFlag; 11822 if ((attrs & (1 << 8)) == 0) { 11823 /* Access flag */ 11824 goto do_fault; 11825 } 11826 11827 ap = extract32(attrs, 4, 2); 11828 11829 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11830 ns = mmu_idx == ARMMMUIdx_Stage2; 11831 xn = extract32(attrs, 11, 2); 11832 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11833 } else { 11834 ns = extract32(attrs, 3, 1); 11835 xn = extract32(attrs, 12, 1); 11836 pxn = extract32(attrs, 11, 1); 11837 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11838 } 11839 11840 fault_type = ARMFault_Permission; 11841 if (!(*prot & (1 << access_type))) { 11842 goto do_fault; 11843 } 11844 11845 if (ns) { 11846 /* The NS bit will (as required by the architecture) have no effect if 11847 * the CPU doesn't support TZ or this is a non-secure translation 11848 * regime, because the attribute will already be non-secure. 11849 */ 11850 txattrs->secure = false; 11851 } 11852 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11853 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11854 arm_tlb_bti_gp(txattrs) = true; 11855 } 11856 11857 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11858 cacheattrs->is_s2_format = true; 11859 cacheattrs->attrs = extract32(attrs, 0, 4); 11860 } else { 11861 /* Index into MAIR registers for cache attributes */ 11862 uint8_t attrindx = extract32(attrs, 0, 3); 11863 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11864 assert(attrindx <= 7); 11865 cacheattrs->is_s2_format = false; 11866 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11867 } 11868 11869 /* 11870 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11871 * was re-purposed for output address bits. The SH attribute in 11872 * that case comes from TCR_ELx, which we extracted earlier. 11873 */ 11874 if (param.ds) { 11875 cacheattrs->shareability = param.sh; 11876 } else { 11877 cacheattrs->shareability = extract32(attrs, 6, 2); 11878 } 11879 11880 *phys_ptr = descaddr; 11881 *page_size_ptr = page_size; 11882 return false; 11883 11884 do_fault: 11885 fi->type = fault_type; 11886 fi->level = level; 11887 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11888 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11889 mmu_idx == ARMMMUIdx_Stage2_S); 11890 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11891 return true; 11892 } 11893 11894 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11895 ARMMMUIdx mmu_idx, 11896 int32_t address, int *prot) 11897 { 11898 if (!arm_feature(env, ARM_FEATURE_M)) { 11899 *prot = PAGE_READ | PAGE_WRITE; 11900 switch (address) { 11901 case 0xF0000000 ... 0xFFFFFFFF: 11902 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11903 /* hivecs execing is ok */ 11904 *prot |= PAGE_EXEC; 11905 } 11906 break; 11907 case 0x00000000 ... 0x7FFFFFFF: 11908 *prot |= PAGE_EXEC; 11909 break; 11910 } 11911 } else { 11912 /* Default system address map for M profile cores. 11913 * The architecture specifies which regions are execute-never; 11914 * at the MPU level no other checks are defined. 11915 */ 11916 switch (address) { 11917 case 0x00000000 ... 0x1fffffff: /* ROM */ 11918 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11919 case 0x60000000 ... 0x7fffffff: /* RAM */ 11920 case 0x80000000 ... 0x9fffffff: /* RAM */ 11921 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11922 break; 11923 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11924 case 0xa0000000 ... 0xbfffffff: /* Device */ 11925 case 0xc0000000 ... 0xdfffffff: /* Device */ 11926 case 0xe0000000 ... 0xffffffff: /* System */ 11927 *prot = PAGE_READ | PAGE_WRITE; 11928 break; 11929 default: 11930 g_assert_not_reached(); 11931 } 11932 } 11933 } 11934 11935 static bool pmsav7_use_background_region(ARMCPU *cpu, 11936 ARMMMUIdx mmu_idx, bool is_user) 11937 { 11938 /* Return true if we should use the default memory map as a 11939 * "background" region if there are no hits against any MPU regions. 11940 */ 11941 CPUARMState *env = &cpu->env; 11942 11943 if (is_user) { 11944 return false; 11945 } 11946 11947 if (arm_feature(env, ARM_FEATURE_M)) { 11948 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11949 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11950 } else { 11951 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11952 } 11953 } 11954 11955 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11956 { 11957 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11958 return arm_feature(env, ARM_FEATURE_M) && 11959 extract32(address, 20, 12) == 0xe00; 11960 } 11961 11962 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11963 { 11964 /* True if address is in the M profile system region 11965 * 0xe0000000 - 0xffffffff 11966 */ 11967 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11968 } 11969 11970 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11971 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11972 hwaddr *phys_ptr, int *prot, 11973 target_ulong *page_size, 11974 ARMMMUFaultInfo *fi) 11975 { 11976 ARMCPU *cpu = env_archcpu(env); 11977 int n; 11978 bool is_user = regime_is_user(env, mmu_idx); 11979 11980 *phys_ptr = address; 11981 *page_size = TARGET_PAGE_SIZE; 11982 *prot = 0; 11983 11984 if (regime_translation_disabled(env, mmu_idx) || 11985 m_is_ppb_region(env, address)) { 11986 /* MPU disabled or M profile PPB access: use default memory map. 11987 * The other case which uses the default memory map in the 11988 * v7M ARM ARM pseudocode is exception vector reads from the vector 11989 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11990 * which always does a direct read using address_space_ldl(), rather 11991 * than going via this function, so we don't need to check that here. 11992 */ 11993 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11994 } else { /* MPU enabled */ 11995 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11996 /* region search */ 11997 uint32_t base = env->pmsav7.drbar[n]; 11998 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11999 uint32_t rmask; 12000 bool srdis = false; 12001 12002 if (!(env->pmsav7.drsr[n] & 0x1)) { 12003 continue; 12004 } 12005 12006 if (!rsize) { 12007 qemu_log_mask(LOG_GUEST_ERROR, 12008 "DRSR[%d]: Rsize field cannot be 0\n", n); 12009 continue; 12010 } 12011 rsize++; 12012 rmask = (1ull << rsize) - 1; 12013 12014 if (base & rmask) { 12015 qemu_log_mask(LOG_GUEST_ERROR, 12016 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 12017 "to DRSR region size, mask = 0x%" PRIx32 "\n", 12018 n, base, rmask); 12019 continue; 12020 } 12021 12022 if (address < base || address > base + rmask) { 12023 /* 12024 * Address not in this region. We must check whether the 12025 * region covers addresses in the same page as our address. 12026 * In that case we must not report a size that covers the 12027 * whole page for a subsequent hit against a different MPU 12028 * region or the background region, because it would result in 12029 * incorrect TLB hits for subsequent accesses to addresses that 12030 * are in this MPU region. 12031 */ 12032 if (ranges_overlap(base, rmask, 12033 address & TARGET_PAGE_MASK, 12034 TARGET_PAGE_SIZE)) { 12035 *page_size = 1; 12036 } 12037 continue; 12038 } 12039 12040 /* Region matched */ 12041 12042 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 12043 int i, snd; 12044 uint32_t srdis_mask; 12045 12046 rsize -= 3; /* sub region size (power of 2) */ 12047 snd = ((address - base) >> rsize) & 0x7; 12048 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 12049 12050 srdis_mask = srdis ? 0x3 : 0x0; 12051 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 12052 /* This will check in groups of 2, 4 and then 8, whether 12053 * the subregion bits are consistent. rsize is incremented 12054 * back up to give the region size, considering consistent 12055 * adjacent subregions as one region. Stop testing if rsize 12056 * is already big enough for an entire QEMU page. 12057 */ 12058 int snd_rounded = snd & ~(i - 1); 12059 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 12060 snd_rounded + 8, i); 12061 if (srdis_mask ^ srdis_multi) { 12062 break; 12063 } 12064 srdis_mask = (srdis_mask << i) | srdis_mask; 12065 rsize++; 12066 } 12067 } 12068 if (srdis) { 12069 continue; 12070 } 12071 if (rsize < TARGET_PAGE_BITS) { 12072 *page_size = 1 << rsize; 12073 } 12074 break; 12075 } 12076 12077 if (n == -1) { /* no hits */ 12078 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12079 /* background fault */ 12080 fi->type = ARMFault_Background; 12081 return true; 12082 } 12083 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12084 } else { /* a MPU hit! */ 12085 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12086 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12087 12088 if (m_is_system_region(env, address)) { 12089 /* System space is always execute never */ 12090 xn = 1; 12091 } 12092 12093 if (is_user) { /* User mode AP bit decoding */ 12094 switch (ap) { 12095 case 0: 12096 case 1: 12097 case 5: 12098 break; /* no access */ 12099 case 3: 12100 *prot |= PAGE_WRITE; 12101 /* fall through */ 12102 case 2: 12103 case 6: 12104 *prot |= PAGE_READ | PAGE_EXEC; 12105 break; 12106 case 7: 12107 /* for v7M, same as 6; for R profile a reserved value */ 12108 if (arm_feature(env, ARM_FEATURE_M)) { 12109 *prot |= PAGE_READ | PAGE_EXEC; 12110 break; 12111 } 12112 /* fall through */ 12113 default: 12114 qemu_log_mask(LOG_GUEST_ERROR, 12115 "DRACR[%d]: Bad value for AP bits: 0x%" 12116 PRIx32 "\n", n, ap); 12117 } 12118 } else { /* Priv. mode AP bits decoding */ 12119 switch (ap) { 12120 case 0: 12121 break; /* no access */ 12122 case 1: 12123 case 2: 12124 case 3: 12125 *prot |= PAGE_WRITE; 12126 /* fall through */ 12127 case 5: 12128 case 6: 12129 *prot |= PAGE_READ | PAGE_EXEC; 12130 break; 12131 case 7: 12132 /* for v7M, same as 6; for R profile a reserved value */ 12133 if (arm_feature(env, ARM_FEATURE_M)) { 12134 *prot |= PAGE_READ | PAGE_EXEC; 12135 break; 12136 } 12137 /* fall through */ 12138 default: 12139 qemu_log_mask(LOG_GUEST_ERROR, 12140 "DRACR[%d]: Bad value for AP bits: 0x%" 12141 PRIx32 "\n", n, ap); 12142 } 12143 } 12144 12145 /* execute never */ 12146 if (xn) { 12147 *prot &= ~PAGE_EXEC; 12148 } 12149 } 12150 } 12151 12152 fi->type = ARMFault_Permission; 12153 fi->level = 1; 12154 return !(*prot & (1 << access_type)); 12155 } 12156 12157 static bool v8m_is_sau_exempt(CPUARMState *env, 12158 uint32_t address, MMUAccessType access_type) 12159 { 12160 /* The architecture specifies that certain address ranges are 12161 * exempt from v8M SAU/IDAU checks. 12162 */ 12163 return 12164 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12165 (address >= 0xe0000000 && address <= 0xe0002fff) || 12166 (address >= 0xe000e000 && address <= 0xe000efff) || 12167 (address >= 0xe002e000 && address <= 0xe002efff) || 12168 (address >= 0xe0040000 && address <= 0xe0041fff) || 12169 (address >= 0xe00ff000 && address <= 0xe00fffff); 12170 } 12171 12172 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12173 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12174 V8M_SAttributes *sattrs) 12175 { 12176 /* Look up the security attributes for this address. Compare the 12177 * pseudocode SecurityCheck() function. 12178 * We assume the caller has zero-initialized *sattrs. 12179 */ 12180 ARMCPU *cpu = env_archcpu(env); 12181 int r; 12182 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12183 int idau_region = IREGION_NOTVALID; 12184 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12185 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12186 12187 if (cpu->idau) { 12188 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12189 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12190 12191 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12192 &idau_nsc); 12193 } 12194 12195 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12196 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12197 return; 12198 } 12199 12200 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12201 sattrs->ns = !regime_is_secure(env, mmu_idx); 12202 return; 12203 } 12204 12205 if (idau_region != IREGION_NOTVALID) { 12206 sattrs->irvalid = true; 12207 sattrs->iregion = idau_region; 12208 } 12209 12210 switch (env->sau.ctrl & 3) { 12211 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12212 break; 12213 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12214 sattrs->ns = true; 12215 break; 12216 default: /* SAU.ENABLE == 1 */ 12217 for (r = 0; r < cpu->sau_sregion; r++) { 12218 if (env->sau.rlar[r] & 1) { 12219 uint32_t base = env->sau.rbar[r] & ~0x1f; 12220 uint32_t limit = env->sau.rlar[r] | 0x1f; 12221 12222 if (base <= address && limit >= address) { 12223 if (base > addr_page_base || limit < addr_page_limit) { 12224 sattrs->subpage = true; 12225 } 12226 if (sattrs->srvalid) { 12227 /* If we hit in more than one region then we must report 12228 * as Secure, not NS-Callable, with no valid region 12229 * number info. 12230 */ 12231 sattrs->ns = false; 12232 sattrs->nsc = false; 12233 sattrs->sregion = 0; 12234 sattrs->srvalid = false; 12235 break; 12236 } else { 12237 if (env->sau.rlar[r] & 2) { 12238 sattrs->nsc = true; 12239 } else { 12240 sattrs->ns = true; 12241 } 12242 sattrs->srvalid = true; 12243 sattrs->sregion = r; 12244 } 12245 } else { 12246 /* 12247 * Address not in this region. We must check whether the 12248 * region covers addresses in the same page as our address. 12249 * In that case we must not report a size that covers the 12250 * whole page for a subsequent hit against a different MPU 12251 * region or the background region, because it would result 12252 * in incorrect TLB hits for subsequent accesses to 12253 * addresses that are in this MPU region. 12254 */ 12255 if (limit >= base && 12256 ranges_overlap(base, limit - base + 1, 12257 addr_page_base, 12258 TARGET_PAGE_SIZE)) { 12259 sattrs->subpage = true; 12260 } 12261 } 12262 } 12263 } 12264 break; 12265 } 12266 12267 /* 12268 * The IDAU will override the SAU lookup results if it specifies 12269 * higher security than the SAU does. 12270 */ 12271 if (!idau_ns) { 12272 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12273 sattrs->ns = false; 12274 sattrs->nsc = idau_nsc; 12275 } 12276 } 12277 } 12278 12279 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12280 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12281 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12282 int *prot, bool *is_subpage, 12283 ARMMMUFaultInfo *fi, uint32_t *mregion) 12284 { 12285 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12286 * that a full phys-to-virt translation does). 12287 * mregion is (if not NULL) set to the region number which matched, 12288 * or -1 if no region number is returned (MPU off, address did not 12289 * hit a region, address hit in multiple regions). 12290 * We set is_subpage to true if the region hit doesn't cover the 12291 * entire TARGET_PAGE the address is within. 12292 */ 12293 ARMCPU *cpu = env_archcpu(env); 12294 bool is_user = regime_is_user(env, mmu_idx); 12295 uint32_t secure = regime_is_secure(env, mmu_idx); 12296 int n; 12297 int matchregion = -1; 12298 bool hit = false; 12299 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12300 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12301 12302 *is_subpage = false; 12303 *phys_ptr = address; 12304 *prot = 0; 12305 if (mregion) { 12306 *mregion = -1; 12307 } 12308 12309 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12310 * was an exception vector read from the vector table (which is always 12311 * done using the default system address map), because those accesses 12312 * are done in arm_v7m_load_vector(), which always does a direct 12313 * read using address_space_ldl(), rather than going via this function. 12314 */ 12315 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12316 hit = true; 12317 } else if (m_is_ppb_region(env, address)) { 12318 hit = true; 12319 } else { 12320 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12321 hit = true; 12322 } 12323 12324 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12325 /* region search */ 12326 /* Note that the base address is bits [31:5] from the register 12327 * with bits [4:0] all zeroes, but the limit address is bits 12328 * [31:5] from the register with bits [4:0] all ones. 12329 */ 12330 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12331 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12332 12333 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12334 /* Region disabled */ 12335 continue; 12336 } 12337 12338 if (address < base || address > limit) { 12339 /* 12340 * Address not in this region. We must check whether the 12341 * region covers addresses in the same page as our address. 12342 * In that case we must not report a size that covers the 12343 * whole page for a subsequent hit against a different MPU 12344 * region or the background region, because it would result in 12345 * incorrect TLB hits for subsequent accesses to addresses that 12346 * are in this MPU region. 12347 */ 12348 if (limit >= base && 12349 ranges_overlap(base, limit - base + 1, 12350 addr_page_base, 12351 TARGET_PAGE_SIZE)) { 12352 *is_subpage = true; 12353 } 12354 continue; 12355 } 12356 12357 if (base > addr_page_base || limit < addr_page_limit) { 12358 *is_subpage = true; 12359 } 12360 12361 if (matchregion != -1) { 12362 /* Multiple regions match -- always a failure (unlike 12363 * PMSAv7 where highest-numbered-region wins) 12364 */ 12365 fi->type = ARMFault_Permission; 12366 fi->level = 1; 12367 return true; 12368 } 12369 12370 matchregion = n; 12371 hit = true; 12372 } 12373 } 12374 12375 if (!hit) { 12376 /* background fault */ 12377 fi->type = ARMFault_Background; 12378 return true; 12379 } 12380 12381 if (matchregion == -1) { 12382 /* hit using the background region */ 12383 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12384 } else { 12385 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12386 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12387 bool pxn = false; 12388 12389 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12390 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12391 } 12392 12393 if (m_is_system_region(env, address)) { 12394 /* System space is always execute never */ 12395 xn = 1; 12396 } 12397 12398 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12399 if (*prot && !xn && !(pxn && !is_user)) { 12400 *prot |= PAGE_EXEC; 12401 } 12402 /* We don't need to look the attribute up in the MAIR0/MAIR1 12403 * registers because that only tells us about cacheability. 12404 */ 12405 if (mregion) { 12406 *mregion = matchregion; 12407 } 12408 } 12409 12410 fi->type = ARMFault_Permission; 12411 fi->level = 1; 12412 return !(*prot & (1 << access_type)); 12413 } 12414 12415 12416 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12417 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12418 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12419 int *prot, target_ulong *page_size, 12420 ARMMMUFaultInfo *fi) 12421 { 12422 uint32_t secure = regime_is_secure(env, mmu_idx); 12423 V8M_SAttributes sattrs = {}; 12424 bool ret; 12425 bool mpu_is_subpage; 12426 12427 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12428 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12429 if (access_type == MMU_INST_FETCH) { 12430 /* Instruction fetches always use the MMU bank and the 12431 * transaction attribute determined by the fetch address, 12432 * regardless of CPU state. This is painful for QEMU 12433 * to handle, because it would mean we need to encode 12434 * into the mmu_idx not just the (user, negpri) information 12435 * for the current security state but also that for the 12436 * other security state, which would balloon the number 12437 * of mmu_idx values needed alarmingly. 12438 * Fortunately we can avoid this because it's not actually 12439 * possible to arbitrarily execute code from memory with 12440 * the wrong security attribute: it will always generate 12441 * an exception of some kind or another, apart from the 12442 * special case of an NS CPU executing an SG instruction 12443 * in S&NSC memory. So we always just fail the translation 12444 * here and sort things out in the exception handler 12445 * (including possibly emulating an SG instruction). 12446 */ 12447 if (sattrs.ns != !secure) { 12448 if (sattrs.nsc) { 12449 fi->type = ARMFault_QEMU_NSCExec; 12450 } else { 12451 fi->type = ARMFault_QEMU_SFault; 12452 } 12453 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12454 *phys_ptr = address; 12455 *prot = 0; 12456 return true; 12457 } 12458 } else { 12459 /* For data accesses we always use the MMU bank indicated 12460 * by the current CPU state, but the security attributes 12461 * might downgrade a secure access to nonsecure. 12462 */ 12463 if (sattrs.ns) { 12464 txattrs->secure = false; 12465 } else if (!secure) { 12466 /* NS access to S memory must fault. 12467 * Architecturally we should first check whether the 12468 * MPU information for this address indicates that we 12469 * are doing an unaligned access to Device memory, which 12470 * should generate a UsageFault instead. QEMU does not 12471 * currently check for that kind of unaligned access though. 12472 * If we added it we would need to do so as a special case 12473 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12474 */ 12475 fi->type = ARMFault_QEMU_SFault; 12476 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12477 *phys_ptr = address; 12478 *prot = 0; 12479 return true; 12480 } 12481 } 12482 } 12483 12484 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12485 txattrs, prot, &mpu_is_subpage, fi, NULL); 12486 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12487 return ret; 12488 } 12489 12490 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12491 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12492 hwaddr *phys_ptr, int *prot, 12493 ARMMMUFaultInfo *fi) 12494 { 12495 int n; 12496 uint32_t mask; 12497 uint32_t base; 12498 bool is_user = regime_is_user(env, mmu_idx); 12499 12500 if (regime_translation_disabled(env, mmu_idx)) { 12501 /* MPU disabled. */ 12502 *phys_ptr = address; 12503 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12504 return false; 12505 } 12506 12507 *phys_ptr = address; 12508 for (n = 7; n >= 0; n--) { 12509 base = env->cp15.c6_region[n]; 12510 if ((base & 1) == 0) { 12511 continue; 12512 } 12513 mask = 1 << ((base >> 1) & 0x1f); 12514 /* Keep this shift separate from the above to avoid an 12515 (undefined) << 32. */ 12516 mask = (mask << 1) - 1; 12517 if (((base ^ address) & ~mask) == 0) { 12518 break; 12519 } 12520 } 12521 if (n < 0) { 12522 fi->type = ARMFault_Background; 12523 return true; 12524 } 12525 12526 if (access_type == MMU_INST_FETCH) { 12527 mask = env->cp15.pmsav5_insn_ap; 12528 } else { 12529 mask = env->cp15.pmsav5_data_ap; 12530 } 12531 mask = (mask >> (n * 4)) & 0xf; 12532 switch (mask) { 12533 case 0: 12534 fi->type = ARMFault_Permission; 12535 fi->level = 1; 12536 return true; 12537 case 1: 12538 if (is_user) { 12539 fi->type = ARMFault_Permission; 12540 fi->level = 1; 12541 return true; 12542 } 12543 *prot = PAGE_READ | PAGE_WRITE; 12544 break; 12545 case 2: 12546 *prot = PAGE_READ; 12547 if (!is_user) { 12548 *prot |= PAGE_WRITE; 12549 } 12550 break; 12551 case 3: 12552 *prot = PAGE_READ | PAGE_WRITE; 12553 break; 12554 case 5: 12555 if (is_user) { 12556 fi->type = ARMFault_Permission; 12557 fi->level = 1; 12558 return true; 12559 } 12560 *prot = PAGE_READ; 12561 break; 12562 case 6: 12563 *prot = PAGE_READ; 12564 break; 12565 default: 12566 /* Bad permission. */ 12567 fi->type = ARMFault_Permission; 12568 fi->level = 1; 12569 return true; 12570 } 12571 *prot |= PAGE_EXEC; 12572 return false; 12573 } 12574 12575 /* Combine either inner or outer cacheability attributes for normal 12576 * memory, according to table D4-42 and pseudocode procedure 12577 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12578 * 12579 * NB: only stage 1 includes allocation hints (RW bits), leading to 12580 * some asymmetry. 12581 */ 12582 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12583 { 12584 if (s1 == 4 || s2 == 4) { 12585 /* non-cacheable has precedence */ 12586 return 4; 12587 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12588 /* stage 1 write-through takes precedence */ 12589 return s1; 12590 } else if (extract32(s2, 2, 2) == 2) { 12591 /* stage 2 write-through takes precedence, but the allocation hint 12592 * is still taken from stage 1 12593 */ 12594 return (2 << 2) | extract32(s1, 0, 2); 12595 } else { /* write-back */ 12596 return s1; 12597 } 12598 } 12599 12600 /* 12601 * Combine the memory type and cacheability attributes of 12602 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the 12603 * combined attributes in MAIR_EL1 format. 12604 */ 12605 static uint8_t combined_attrs_nofwb(CPUARMState *env, 12606 ARMCacheAttrs s1, ARMCacheAttrs s2) 12607 { 12608 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs; 12609 12610 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs); 12611 12612 s1lo = extract32(s1.attrs, 0, 4); 12613 s2lo = extract32(s2_mair_attrs, 0, 4); 12614 s1hi = extract32(s1.attrs, 4, 4); 12615 s2hi = extract32(s2_mair_attrs, 4, 4); 12616 12617 /* Combine memory type and cacheability attributes */ 12618 if (s1hi == 0 || s2hi == 0) { 12619 /* Device has precedence over normal */ 12620 if (s1lo == 0 || s2lo == 0) { 12621 /* nGnRnE has precedence over anything */ 12622 ret_attrs = 0; 12623 } else if (s1lo == 4 || s2lo == 4) { 12624 /* non-Reordering has precedence over Reordering */ 12625 ret_attrs = 4; /* nGnRE */ 12626 } else if (s1lo == 8 || s2lo == 8) { 12627 /* non-Gathering has precedence over Gathering */ 12628 ret_attrs = 8; /* nGRE */ 12629 } else { 12630 ret_attrs = 0xc; /* GRE */ 12631 } 12632 } else { /* Normal memory */ 12633 /* Outer/inner cacheability combine independently */ 12634 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12635 | combine_cacheattr_nibble(s1lo, s2lo); 12636 } 12637 return ret_attrs; 12638 } 12639 12640 static uint8_t force_cacheattr_nibble_wb(uint8_t attr) 12641 { 12642 /* 12643 * Given the 4 bits specifying the outer or inner cacheability 12644 * in MAIR format, return a value specifying Normal Write-Back, 12645 * with the allocation and transient hints taken from the input 12646 * if the input specified some kind of cacheable attribute. 12647 */ 12648 if (attr == 0 || attr == 4) { 12649 /* 12650 * 0 == an UNPREDICTABLE encoding 12651 * 4 == Non-cacheable 12652 * Either way, force Write-Back RW allocate non-transient 12653 */ 12654 return 0xf; 12655 } 12656 /* Change WriteThrough to WriteBack, keep allocation and transient hints */ 12657 return attr | 4; 12658 } 12659 12660 /* 12661 * Combine the memory type and cacheability attributes of 12662 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the 12663 * combined attributes in MAIR_EL1 format. 12664 */ 12665 static uint8_t combined_attrs_fwb(CPUARMState *env, 12666 ARMCacheAttrs s1, ARMCacheAttrs s2) 12667 { 12668 switch (s2.attrs) { 12669 case 7: 12670 /* Use stage 1 attributes */ 12671 return s1.attrs; 12672 case 6: 12673 /* 12674 * Force Normal Write-Back. Note that if S1 is Normal cacheable 12675 * then we take the allocation hints from it; otherwise it is 12676 * RW allocate, non-transient. 12677 */ 12678 if ((s1.attrs & 0xf0) == 0) { 12679 /* S1 is Device */ 12680 return 0xff; 12681 } 12682 /* Need to check the Inner and Outer nibbles separately */ 12683 return force_cacheattr_nibble_wb(s1.attrs & 0xf) | 12684 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4; 12685 case 5: 12686 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */ 12687 if ((s1.attrs & 0xf0) == 0) { 12688 return s1.attrs; 12689 } 12690 return 0x44; 12691 case 0 ... 3: 12692 /* Force Device, of subtype specified by S2 */ 12693 return s2.attrs << 2; 12694 default: 12695 /* 12696 * RESERVED values (including RES0 descriptor bit [5] being nonzero); 12697 * arbitrarily force Device. 12698 */ 12699 return 0; 12700 } 12701 } 12702 12703 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12704 * and CombineS1S2Desc() 12705 * 12706 * @env: CPUARMState 12707 * @s1: Attributes from stage 1 walk 12708 * @s2: Attributes from stage 2 walk 12709 */ 12710 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env, 12711 ARMCacheAttrs s1, ARMCacheAttrs s2) 12712 { 12713 ARMCacheAttrs ret; 12714 bool tagged = false; 12715 12716 assert(s2.is_s2_format && !s1.is_s2_format); 12717 ret.is_s2_format = false; 12718 12719 if (s1.attrs == 0xf0) { 12720 tagged = true; 12721 s1.attrs = 0xff; 12722 } 12723 12724 /* Combine shareability attributes (table D4-43) */ 12725 if (s1.shareability == 2 || s2.shareability == 2) { 12726 /* if either are outer-shareable, the result is outer-shareable */ 12727 ret.shareability = 2; 12728 } else if (s1.shareability == 3 || s2.shareability == 3) { 12729 /* if either are inner-shareable, the result is inner-shareable */ 12730 ret.shareability = 3; 12731 } else { 12732 /* both non-shareable */ 12733 ret.shareability = 0; 12734 } 12735 12736 /* Combine memory type and cacheability attributes */ 12737 if (arm_hcr_el2_eff(env) & HCR_FWB) { 12738 ret.attrs = combined_attrs_fwb(env, s1, s2); 12739 } else { 12740 ret.attrs = combined_attrs_nofwb(env, s1, s2); 12741 } 12742 12743 /* 12744 * Any location for which the resultant memory type is any 12745 * type of Device memory is always treated as Outer Shareable. 12746 * Any location for which the resultant memory type is Normal 12747 * Inner Non-cacheable, Outer Non-cacheable is always treated 12748 * as Outer Shareable. 12749 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC 12750 */ 12751 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) { 12752 ret.shareability = 2; 12753 } 12754 12755 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12756 if (tagged && ret.attrs == 0xff) { 12757 ret.attrs = 0xf0; 12758 } 12759 12760 return ret; 12761 } 12762 12763 12764 /* get_phys_addr - get the physical address for this virtual address 12765 * 12766 * Find the physical address corresponding to the given virtual address, 12767 * by doing a translation table walk on MMU based systems or using the 12768 * MPU state on MPU based systems. 12769 * 12770 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12771 * prot and page_size may not be filled in, and the populated fsr value provides 12772 * information on why the translation aborted, in the format of a 12773 * DFSR/IFSR fault register, with the following caveats: 12774 * * we honour the short vs long DFSR format differences. 12775 * * the WnR bit is never set (the caller must do this). 12776 * * for PSMAv5 based systems we don't bother to return a full FSR format 12777 * value. 12778 * 12779 * @env: CPUARMState 12780 * @address: virtual address to get physical address for 12781 * @access_type: 0 for read, 1 for write, 2 for execute 12782 * @mmu_idx: MMU index indicating required translation regime 12783 * @phys_ptr: set to the physical address corresponding to the virtual address 12784 * @attrs: set to the memory transaction attributes to use 12785 * @prot: set to the permissions for the page containing phys_ptr 12786 * @page_size: set to the size of the page containing phys_ptr 12787 * @fi: set to fault info if the translation fails 12788 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12789 */ 12790 bool get_phys_addr(CPUARMState *env, target_ulong address, 12791 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12792 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12793 target_ulong *page_size, 12794 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12795 { 12796 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12797 12798 if (mmu_idx != s1_mmu_idx) { 12799 /* Call ourselves recursively to do the stage 1 and then stage 2 12800 * translations if mmu_idx is a two-stage regime. 12801 */ 12802 if (arm_feature(env, ARM_FEATURE_EL2)) { 12803 hwaddr ipa; 12804 int s2_prot; 12805 int ret; 12806 bool ipa_secure; 12807 ARMCacheAttrs cacheattrs2 = {}; 12808 ARMMMUIdx s2_mmu_idx; 12809 bool is_el0; 12810 12811 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12812 attrs, prot, page_size, fi, cacheattrs); 12813 12814 /* If S1 fails or S2 is disabled, return early. */ 12815 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12816 *phys_ptr = ipa; 12817 return ret; 12818 } 12819 12820 ipa_secure = attrs->secure; 12821 if (arm_is_secure_below_el3(env)) { 12822 if (ipa_secure) { 12823 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 12824 } else { 12825 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 12826 } 12827 } else { 12828 assert(!ipa_secure); 12829 } 12830 12831 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12832 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12833 12834 /* S1 is done. Now do S2 translation. */ 12835 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12836 phys_ptr, attrs, &s2_prot, 12837 page_size, fi, &cacheattrs2); 12838 fi->s2addr = ipa; 12839 /* Combine the S1 and S2 perms. */ 12840 *prot &= s2_prot; 12841 12842 /* If S2 fails, return early. */ 12843 if (ret) { 12844 return ret; 12845 } 12846 12847 /* Combine the S1 and S2 cache attributes. */ 12848 if (arm_hcr_el2_eff(env) & HCR_DC) { 12849 /* 12850 * HCR.DC forces the first stage attributes to 12851 * Normal Non-Shareable, 12852 * Inner Write-Back Read-Allocate Write-Allocate, 12853 * Outer Write-Back Read-Allocate Write-Allocate. 12854 * Do not overwrite Tagged within attrs. 12855 */ 12856 if (cacheattrs->attrs != 0xf0) { 12857 cacheattrs->attrs = 0xff; 12858 } 12859 cacheattrs->shareability = 0; 12860 } 12861 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2); 12862 12863 /* Check if IPA translates to secure or non-secure PA space. */ 12864 if (arm_is_secure_below_el3(env)) { 12865 if (ipa_secure) { 12866 attrs->secure = 12867 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12868 } else { 12869 attrs->secure = 12870 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12871 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW))); 12872 } 12873 } 12874 return 0; 12875 } else { 12876 /* 12877 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12878 */ 12879 mmu_idx = stage_1_mmu_idx(mmu_idx); 12880 } 12881 } 12882 12883 /* The page table entries may downgrade secure to non-secure, but 12884 * cannot upgrade an non-secure translation regime's attributes 12885 * to secure. 12886 */ 12887 attrs->secure = regime_is_secure(env, mmu_idx); 12888 attrs->user = regime_is_user(env, mmu_idx); 12889 12890 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12891 * In v7 and earlier it affects all stage 1 translations. 12892 */ 12893 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12894 && !arm_feature(env, ARM_FEATURE_V8)) { 12895 if (regime_el(env, mmu_idx) == 3) { 12896 address += env->cp15.fcseidr_s; 12897 } else { 12898 address += env->cp15.fcseidr_ns; 12899 } 12900 } 12901 12902 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12903 bool ret; 12904 *page_size = TARGET_PAGE_SIZE; 12905 12906 if (arm_feature(env, ARM_FEATURE_V8)) { 12907 /* PMSAv8 */ 12908 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12909 phys_ptr, attrs, prot, page_size, fi); 12910 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12911 /* PMSAv7 */ 12912 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12913 phys_ptr, prot, page_size, fi); 12914 } else { 12915 /* Pre-v7 MPU */ 12916 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12917 phys_ptr, prot, fi); 12918 } 12919 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12920 " mmu_idx %u -> %s (prot %c%c%c)\n", 12921 access_type == MMU_DATA_LOAD ? "reading" : 12922 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12923 (uint32_t)address, mmu_idx, 12924 ret ? "Miss" : "Hit", 12925 *prot & PAGE_READ ? 'r' : '-', 12926 *prot & PAGE_WRITE ? 'w' : '-', 12927 *prot & PAGE_EXEC ? 'x' : '-'); 12928 12929 return ret; 12930 } 12931 12932 /* Definitely a real MMU, not an MPU */ 12933 12934 if (regime_translation_disabled(env, mmu_idx)) { 12935 uint64_t hcr; 12936 uint8_t memattr; 12937 12938 /* 12939 * MMU disabled. S1 addresses within aa64 translation regimes are 12940 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12941 */ 12942 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12943 int r_el = regime_el(env, mmu_idx); 12944 if (arm_el_is_aa64(env, r_el)) { 12945 int pamax = arm_pamax(env_archcpu(env)); 12946 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12947 int addrtop, tbi; 12948 12949 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12950 if (access_type == MMU_INST_FETCH) { 12951 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12952 } 12953 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12954 addrtop = (tbi ? 55 : 63); 12955 12956 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12957 fi->type = ARMFault_AddressSize; 12958 fi->level = 0; 12959 fi->stage2 = false; 12960 return 1; 12961 } 12962 12963 /* 12964 * When TBI is disabled, we've just validated that all of the 12965 * bits above PAMax are zero, so logically we only need to 12966 * clear the top byte for TBI. But it's clearer to follow 12967 * the pseudocode set of addrdesc.paddress. 12968 */ 12969 address = extract64(address, 0, 52); 12970 } 12971 } 12972 *phys_ptr = address; 12973 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12974 *page_size = TARGET_PAGE_SIZE; 12975 12976 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12977 hcr = arm_hcr_el2_eff(env); 12978 cacheattrs->shareability = 0; 12979 cacheattrs->is_s2_format = false; 12980 if (hcr & HCR_DC) { 12981 if (hcr & HCR_DCT) { 12982 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12983 } else { 12984 memattr = 0xff; /* Normal, WB, RWA */ 12985 } 12986 } else if (access_type == MMU_INST_FETCH) { 12987 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12988 memattr = 0xee; /* Normal, WT, RA, NT */ 12989 } else { 12990 memattr = 0x44; /* Normal, NC, No */ 12991 } 12992 cacheattrs->shareability = 2; /* outer sharable */ 12993 } else { 12994 memattr = 0x00; /* Device, nGnRnE */ 12995 } 12996 cacheattrs->attrs = memattr; 12997 return 0; 12998 } 12999 13000 if (regime_using_lpae_format(env, mmu_idx)) { 13001 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 13002 phys_ptr, attrs, prot, page_size, 13003 fi, cacheattrs); 13004 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 13005 return get_phys_addr_v6(env, address, access_type, mmu_idx, 13006 phys_ptr, attrs, prot, page_size, fi); 13007 } else { 13008 return get_phys_addr_v5(env, address, access_type, mmu_idx, 13009 phys_ptr, prot, page_size, fi); 13010 } 13011 } 13012 13013 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 13014 MemTxAttrs *attrs) 13015 { 13016 ARMCPU *cpu = ARM_CPU(cs); 13017 CPUARMState *env = &cpu->env; 13018 hwaddr phys_addr; 13019 target_ulong page_size; 13020 int prot; 13021 bool ret; 13022 ARMMMUFaultInfo fi = {}; 13023 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13024 ARMCacheAttrs cacheattrs = {}; 13025 13026 *attrs = (MemTxAttrs) {}; 13027 13028 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 13029 attrs, &prot, &page_size, &fi, &cacheattrs); 13030 13031 if (ret) { 13032 return -1; 13033 } 13034 return phys_addr; 13035 } 13036 13037 #endif 13038 13039 /* Note that signed overflow is undefined in C. The following routines are 13040 careful to use unsigned types where modulo arithmetic is required. 13041 Failure to do so _will_ break on newer gcc. */ 13042 13043 /* Signed saturating arithmetic. */ 13044 13045 /* Perform 16-bit signed saturating addition. */ 13046 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 13047 { 13048 uint16_t res; 13049 13050 res = a + b; 13051 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 13052 if (a & 0x8000) 13053 res = 0x8000; 13054 else 13055 res = 0x7fff; 13056 } 13057 return res; 13058 } 13059 13060 /* Perform 8-bit signed saturating addition. */ 13061 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 13062 { 13063 uint8_t res; 13064 13065 res = a + b; 13066 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 13067 if (a & 0x80) 13068 res = 0x80; 13069 else 13070 res = 0x7f; 13071 } 13072 return res; 13073 } 13074 13075 /* Perform 16-bit signed saturating subtraction. */ 13076 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 13077 { 13078 uint16_t res; 13079 13080 res = a - b; 13081 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 13082 if (a & 0x8000) 13083 res = 0x8000; 13084 else 13085 res = 0x7fff; 13086 } 13087 return res; 13088 } 13089 13090 /* Perform 8-bit signed saturating subtraction. */ 13091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 13092 { 13093 uint8_t res; 13094 13095 res = a - b; 13096 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 13097 if (a & 0x80) 13098 res = 0x80; 13099 else 13100 res = 0x7f; 13101 } 13102 return res; 13103 } 13104 13105 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 13106 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 13107 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 13108 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 13109 #define PFX q 13110 13111 #include "op_addsub.h" 13112 13113 /* Unsigned saturating arithmetic. */ 13114 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 13115 { 13116 uint16_t res; 13117 res = a + b; 13118 if (res < a) 13119 res = 0xffff; 13120 return res; 13121 } 13122 13123 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 13124 { 13125 if (a > b) 13126 return a - b; 13127 else 13128 return 0; 13129 } 13130 13131 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13132 { 13133 uint8_t res; 13134 res = a + b; 13135 if (res < a) 13136 res = 0xff; 13137 return res; 13138 } 13139 13140 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13141 { 13142 if (a > b) 13143 return a - b; 13144 else 13145 return 0; 13146 } 13147 13148 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13149 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13150 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13151 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13152 #define PFX uq 13153 13154 #include "op_addsub.h" 13155 13156 /* Signed modulo arithmetic. */ 13157 #define SARITH16(a, b, n, op) do { \ 13158 int32_t sum; \ 13159 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13160 RESULT(sum, n, 16); \ 13161 if (sum >= 0) \ 13162 ge |= 3 << (n * 2); \ 13163 } while(0) 13164 13165 #define SARITH8(a, b, n, op) do { \ 13166 int32_t sum; \ 13167 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13168 RESULT(sum, n, 8); \ 13169 if (sum >= 0) \ 13170 ge |= 1 << n; \ 13171 } while(0) 13172 13173 13174 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13175 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13176 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13177 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13178 #define PFX s 13179 #define ARITH_GE 13180 13181 #include "op_addsub.h" 13182 13183 /* Unsigned modulo arithmetic. */ 13184 #define ADD16(a, b, n) do { \ 13185 uint32_t sum; \ 13186 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13187 RESULT(sum, n, 16); \ 13188 if ((sum >> 16) == 1) \ 13189 ge |= 3 << (n * 2); \ 13190 } while(0) 13191 13192 #define ADD8(a, b, n) do { \ 13193 uint32_t sum; \ 13194 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13195 RESULT(sum, n, 8); \ 13196 if ((sum >> 8) == 1) \ 13197 ge |= 1 << n; \ 13198 } while(0) 13199 13200 #define SUB16(a, b, n) do { \ 13201 uint32_t sum; \ 13202 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13203 RESULT(sum, n, 16); \ 13204 if ((sum >> 16) == 0) \ 13205 ge |= 3 << (n * 2); \ 13206 } while(0) 13207 13208 #define SUB8(a, b, n) do { \ 13209 uint32_t sum; \ 13210 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13211 RESULT(sum, n, 8); \ 13212 if ((sum >> 8) == 0) \ 13213 ge |= 1 << n; \ 13214 } while(0) 13215 13216 #define PFX u 13217 #define ARITH_GE 13218 13219 #include "op_addsub.h" 13220 13221 /* Halved signed arithmetic. */ 13222 #define ADD16(a, b, n) \ 13223 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13224 #define SUB16(a, b, n) \ 13225 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13226 #define ADD8(a, b, n) \ 13227 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13228 #define SUB8(a, b, n) \ 13229 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13230 #define PFX sh 13231 13232 #include "op_addsub.h" 13233 13234 /* Halved unsigned arithmetic. */ 13235 #define ADD16(a, b, n) \ 13236 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13237 #define SUB16(a, b, n) \ 13238 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13239 #define ADD8(a, b, n) \ 13240 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13241 #define SUB8(a, b, n) \ 13242 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13243 #define PFX uh 13244 13245 #include "op_addsub.h" 13246 13247 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13248 { 13249 if (a > b) 13250 return a - b; 13251 else 13252 return b - a; 13253 } 13254 13255 /* Unsigned sum of absolute byte differences. */ 13256 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13257 { 13258 uint32_t sum; 13259 sum = do_usad(a, b); 13260 sum += do_usad(a >> 8, b >> 8); 13261 sum += do_usad(a >> 16, b >> 16); 13262 sum += do_usad(a >> 24, b >> 24); 13263 return sum; 13264 } 13265 13266 /* For ARMv6 SEL instruction. */ 13267 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13268 { 13269 uint32_t mask; 13270 13271 mask = 0; 13272 if (flags & 1) 13273 mask |= 0xff; 13274 if (flags & 2) 13275 mask |= 0xff00; 13276 if (flags & 4) 13277 mask |= 0xff0000; 13278 if (flags & 8) 13279 mask |= 0xff000000; 13280 return (a & mask) | (b & ~mask); 13281 } 13282 13283 /* CRC helpers. 13284 * The upper bytes of val (above the number specified by 'bytes') must have 13285 * been zeroed out by the caller. 13286 */ 13287 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13288 { 13289 uint8_t buf[4]; 13290 13291 stl_le_p(buf, val); 13292 13293 /* zlib crc32 converts the accumulator and output to one's complement. */ 13294 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13295 } 13296 13297 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13298 { 13299 uint8_t buf[4]; 13300 13301 stl_le_p(buf, val); 13302 13303 /* Linux crc32c converts the output to one's complement. */ 13304 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13305 } 13306 13307 /* Return the exception level to which FP-disabled exceptions should 13308 * be taken, or 0 if FP is enabled. 13309 */ 13310 int fp_exception_el(CPUARMState *env, int cur_el) 13311 { 13312 #ifndef CONFIG_USER_ONLY 13313 uint64_t hcr_el2; 13314 13315 /* CPACR and the CPTR registers don't exist before v6, so FP is 13316 * always accessible 13317 */ 13318 if (!arm_feature(env, ARM_FEATURE_V6)) { 13319 return 0; 13320 } 13321 13322 if (arm_feature(env, ARM_FEATURE_M)) { 13323 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13324 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13325 return 1; 13326 } 13327 13328 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13329 if (!extract32(env->v7m.nsacr, 10, 1)) { 13330 /* FP insns cause a NOCP UsageFault taken to Secure */ 13331 return 3; 13332 } 13333 } 13334 13335 return 0; 13336 } 13337 13338 hcr_el2 = arm_hcr_el2_eff(env); 13339 13340 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13341 * 0, 2 : trap EL0 and EL1/PL1 accesses 13342 * 1 : trap only EL0 accesses 13343 * 3 : trap no accesses 13344 * This register is ignored if E2H+TGE are both set. 13345 */ 13346 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13347 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13348 13349 switch (fpen) { 13350 case 0: 13351 case 2: 13352 if (cur_el == 0 || cur_el == 1) { 13353 /* Trap to PL1, which might be EL1 or EL3 */ 13354 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13355 return 3; 13356 } 13357 return 1; 13358 } 13359 if (cur_el == 3 && !is_a64(env)) { 13360 /* Secure PL1 running at EL3 */ 13361 return 3; 13362 } 13363 break; 13364 case 1: 13365 if (cur_el == 0) { 13366 return 1; 13367 } 13368 break; 13369 case 3: 13370 break; 13371 } 13372 } 13373 13374 /* 13375 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13376 * to control non-secure access to the FPU. It doesn't have any 13377 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13378 */ 13379 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13380 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13381 if (!extract32(env->cp15.nsacr, 10, 1)) { 13382 /* FP insns act as UNDEF */ 13383 return cur_el == 2 ? 2 : 1; 13384 } 13385 } 13386 13387 /* 13388 * CPTR_EL2 is present in v7VE or v8, and changes format 13389 * with HCR_EL2.E2H (regardless of TGE). 13390 */ 13391 if (cur_el <= 2) { 13392 if (hcr_el2 & HCR_E2H) { 13393 /* Check CPTR_EL2.FPEN. */ 13394 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13395 case 1: 13396 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13397 break; 13398 } 13399 /* fall through */ 13400 case 0: 13401 case 2: 13402 return 2; 13403 } 13404 } else if (arm_is_el2_enabled(env)) { 13405 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13406 return 2; 13407 } 13408 } 13409 } 13410 13411 /* CPTR_EL3 : present in v8 */ 13412 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13413 /* Trap all FP ops to EL3 */ 13414 return 3; 13415 } 13416 #endif 13417 return 0; 13418 } 13419 13420 /* Return the exception level we're running at if this is our mmu_idx */ 13421 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13422 { 13423 if (mmu_idx & ARM_MMU_IDX_M) { 13424 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13425 } 13426 13427 switch (mmu_idx) { 13428 case ARMMMUIdx_E10_0: 13429 case ARMMMUIdx_E20_0: 13430 case ARMMMUIdx_SE10_0: 13431 case ARMMMUIdx_SE20_0: 13432 return 0; 13433 case ARMMMUIdx_E10_1: 13434 case ARMMMUIdx_E10_1_PAN: 13435 case ARMMMUIdx_SE10_1: 13436 case ARMMMUIdx_SE10_1_PAN: 13437 return 1; 13438 case ARMMMUIdx_E2: 13439 case ARMMMUIdx_E20_2: 13440 case ARMMMUIdx_E20_2_PAN: 13441 case ARMMMUIdx_SE2: 13442 case ARMMMUIdx_SE20_2: 13443 case ARMMMUIdx_SE20_2_PAN: 13444 return 2; 13445 case ARMMMUIdx_SE3: 13446 return 3; 13447 default: 13448 g_assert_not_reached(); 13449 } 13450 } 13451 13452 #ifndef CONFIG_TCG 13453 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13454 { 13455 g_assert_not_reached(); 13456 } 13457 #endif 13458 13459 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13460 { 13461 ARMMMUIdx idx; 13462 uint64_t hcr; 13463 13464 if (arm_feature(env, ARM_FEATURE_M)) { 13465 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13466 } 13467 13468 /* See ARM pseudo-function ELIsInHost. */ 13469 switch (el) { 13470 case 0: 13471 hcr = arm_hcr_el2_eff(env); 13472 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13473 idx = ARMMMUIdx_E20_0; 13474 } else { 13475 idx = ARMMMUIdx_E10_0; 13476 } 13477 break; 13478 case 1: 13479 if (env->pstate & PSTATE_PAN) { 13480 idx = ARMMMUIdx_E10_1_PAN; 13481 } else { 13482 idx = ARMMMUIdx_E10_1; 13483 } 13484 break; 13485 case 2: 13486 /* Note that TGE does not apply at EL2. */ 13487 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13488 if (env->pstate & PSTATE_PAN) { 13489 idx = ARMMMUIdx_E20_2_PAN; 13490 } else { 13491 idx = ARMMMUIdx_E20_2; 13492 } 13493 } else { 13494 idx = ARMMMUIdx_E2; 13495 } 13496 break; 13497 case 3: 13498 return ARMMMUIdx_SE3; 13499 default: 13500 g_assert_not_reached(); 13501 } 13502 13503 if (arm_is_secure_below_el3(env)) { 13504 idx &= ~ARM_MMU_IDX_A_NS; 13505 } 13506 13507 return idx; 13508 } 13509 13510 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13511 { 13512 return arm_mmu_idx_el(env, arm_current_el(env)); 13513 } 13514 13515 #ifndef CONFIG_USER_ONLY 13516 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13517 { 13518 return stage_1_mmu_idx(arm_mmu_idx(env)); 13519 } 13520 #endif 13521 13522 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13523 ARMMMUIdx mmu_idx, 13524 CPUARMTBFlags flags) 13525 { 13526 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13527 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13528 13529 if (arm_singlestep_active(env)) { 13530 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13531 } 13532 return flags; 13533 } 13534 13535 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13536 ARMMMUIdx mmu_idx, 13537 CPUARMTBFlags flags) 13538 { 13539 bool sctlr_b = arm_sctlr_b(env); 13540 13541 if (sctlr_b) { 13542 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13543 } 13544 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13545 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13546 } 13547 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13548 13549 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13550 } 13551 13552 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13553 ARMMMUIdx mmu_idx) 13554 { 13555 CPUARMTBFlags flags = {}; 13556 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13557 13558 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13559 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13560 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13561 } 13562 13563 if (arm_v7m_is_handler_mode(env)) { 13564 DP_TBFLAG_M32(flags, HANDLER, 1); 13565 } 13566 13567 /* 13568 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13569 * is suppressing them because the requested execution priority 13570 * is less than 0. 13571 */ 13572 if (arm_feature(env, ARM_FEATURE_V8) && 13573 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13574 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13575 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13576 } 13577 13578 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13579 } 13580 13581 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13582 { 13583 CPUARMTBFlags flags = {}; 13584 13585 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13586 return flags; 13587 } 13588 13589 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13590 ARMMMUIdx mmu_idx) 13591 { 13592 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13593 int el = arm_current_el(env); 13594 13595 if (arm_sctlr(env, el) & SCTLR_A) { 13596 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13597 } 13598 13599 if (arm_el_is_aa64(env, 1)) { 13600 DP_TBFLAG_A32(flags, VFPEN, 1); 13601 } 13602 13603 if (el < 2 && env->cp15.hstr_el2 && 13604 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13605 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13606 } 13607 13608 if (env->uncached_cpsr & CPSR_IL) { 13609 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13610 } 13611 13612 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13613 } 13614 13615 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13616 ARMMMUIdx mmu_idx) 13617 { 13618 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13619 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13620 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13621 uint64_t sctlr; 13622 int tbii, tbid; 13623 13624 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13625 13626 /* Get control bits for tagged addresses. */ 13627 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13628 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13629 13630 DP_TBFLAG_A64(flags, TBII, tbii); 13631 DP_TBFLAG_A64(flags, TBID, tbid); 13632 13633 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13634 int sve_el = sve_exception_el(env, el); 13635 uint32_t zcr_len; 13636 13637 /* 13638 * If SVE is disabled, but FP is enabled, 13639 * then the effective len is 0. 13640 */ 13641 if (sve_el != 0 && fp_el == 0) { 13642 zcr_len = 0; 13643 } else { 13644 zcr_len = sve_zcr_len_for_el(env, el); 13645 } 13646 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13647 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13648 } 13649 13650 sctlr = regime_sctlr(env, stage1); 13651 13652 if (sctlr & SCTLR_A) { 13653 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13654 } 13655 13656 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13657 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13658 } 13659 13660 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13661 /* 13662 * In order to save space in flags, we record only whether 13663 * pauth is "inactive", meaning all insns are implemented as 13664 * a nop, or "active" when some action must be performed. 13665 * The decision of which action to take is left to a helper. 13666 */ 13667 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13668 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13669 } 13670 } 13671 13672 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13673 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13674 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13675 DP_TBFLAG_A64(flags, BT, 1); 13676 } 13677 } 13678 13679 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13680 if (!(env->pstate & PSTATE_UAO)) { 13681 switch (mmu_idx) { 13682 case ARMMMUIdx_E10_1: 13683 case ARMMMUIdx_E10_1_PAN: 13684 case ARMMMUIdx_SE10_1: 13685 case ARMMMUIdx_SE10_1_PAN: 13686 /* TODO: ARMv8.3-NV */ 13687 DP_TBFLAG_A64(flags, UNPRIV, 1); 13688 break; 13689 case ARMMMUIdx_E20_2: 13690 case ARMMMUIdx_E20_2_PAN: 13691 case ARMMMUIdx_SE20_2: 13692 case ARMMMUIdx_SE20_2_PAN: 13693 /* 13694 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13695 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13696 */ 13697 if (env->cp15.hcr_el2 & HCR_TGE) { 13698 DP_TBFLAG_A64(flags, UNPRIV, 1); 13699 } 13700 break; 13701 default: 13702 break; 13703 } 13704 } 13705 13706 if (env->pstate & PSTATE_IL) { 13707 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13708 } 13709 13710 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13711 /* 13712 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13713 * if all accesses must be Unchecked: 13714 * 1) If no TBI, then there are no tags in the address to check, 13715 * 2) If Tag Check Override, then all accesses are Unchecked, 13716 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13717 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13718 */ 13719 if (allocation_tag_access_enabled(env, el, sctlr)) { 13720 DP_TBFLAG_A64(flags, ATA, 1); 13721 if (tbid 13722 && !(env->pstate & PSTATE_TCO) 13723 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13724 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13725 } 13726 } 13727 /* And again for unprivileged accesses, if required. */ 13728 if (EX_TBFLAG_A64(flags, UNPRIV) 13729 && tbid 13730 && !(env->pstate & PSTATE_TCO) 13731 && (sctlr & SCTLR_TCF0) 13732 && allocation_tag_access_enabled(env, 0, sctlr)) { 13733 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13734 } 13735 /* Cache TCMA as well as TBI. */ 13736 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13737 } 13738 13739 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13740 } 13741 13742 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13743 { 13744 int el = arm_current_el(env); 13745 int fp_el = fp_exception_el(env, el); 13746 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13747 13748 if (is_a64(env)) { 13749 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13750 } else if (arm_feature(env, ARM_FEATURE_M)) { 13751 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13752 } else { 13753 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13754 } 13755 } 13756 13757 void arm_rebuild_hflags(CPUARMState *env) 13758 { 13759 env->hflags = rebuild_hflags_internal(env); 13760 } 13761 13762 /* 13763 * If we have triggered a EL state change we can't rely on the 13764 * translator having passed it to us, we need to recompute. 13765 */ 13766 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13767 { 13768 int el = arm_current_el(env); 13769 int fp_el = fp_exception_el(env, el); 13770 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13771 13772 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13773 } 13774 13775 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13776 { 13777 int fp_el = fp_exception_el(env, el); 13778 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13779 13780 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13781 } 13782 13783 /* 13784 * If we have triggered a EL state change we can't rely on the 13785 * translator having passed it to us, we need to recompute. 13786 */ 13787 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13788 { 13789 int el = arm_current_el(env); 13790 int fp_el = fp_exception_el(env, el); 13791 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13792 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13793 } 13794 13795 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13796 { 13797 int fp_el = fp_exception_el(env, el); 13798 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13799 13800 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13801 } 13802 13803 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13804 { 13805 int fp_el = fp_exception_el(env, el); 13806 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13807 13808 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13809 } 13810 13811 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13812 { 13813 #ifdef CONFIG_DEBUG_TCG 13814 CPUARMTBFlags c = env->hflags; 13815 CPUARMTBFlags r = rebuild_hflags_internal(env); 13816 13817 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13818 fprintf(stderr, "TCG hflags mismatch " 13819 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13820 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13821 c.flags, c.flags2, r.flags, r.flags2); 13822 abort(); 13823 } 13824 #endif 13825 } 13826 13827 static bool mve_no_pred(CPUARMState *env) 13828 { 13829 /* 13830 * Return true if there is definitely no predication of MVE 13831 * instructions by VPR or LTPSIZE. (Returning false even if there 13832 * isn't any predication is OK; generated code will just be 13833 * a little worse.) 13834 * If the CPU does not implement MVE then this TB flag is always 0. 13835 * 13836 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13837 * logic in gen_update_fp_context() needs to be updated to match. 13838 * 13839 * We do not include the effect of the ECI bits here -- they are 13840 * tracked in other TB flags. This simplifies the logic for 13841 * "when did we emit code that changes the MVE_NO_PRED TB flag 13842 * and thus need to end the TB?". 13843 */ 13844 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13845 return false; 13846 } 13847 if (env->v7m.vpr) { 13848 return false; 13849 } 13850 if (env->v7m.ltpsize < 4) { 13851 return false; 13852 } 13853 return true; 13854 } 13855 13856 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13857 target_ulong *cs_base, uint32_t *pflags) 13858 { 13859 CPUARMTBFlags flags; 13860 13861 assert_hflags_rebuild_correctly(env); 13862 flags = env->hflags; 13863 13864 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13865 *pc = env->pc; 13866 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13867 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13868 } 13869 } else { 13870 *pc = env->regs[15]; 13871 13872 if (arm_feature(env, ARM_FEATURE_M)) { 13873 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13874 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13875 != env->v7m.secure) { 13876 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13877 } 13878 13879 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13880 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13881 (env->v7m.secure && 13882 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13883 /* 13884 * ASPEN is set, but FPCA/SFPA indicate that there is no 13885 * active FP context; we must create a new FP context before 13886 * executing any FP insn. 13887 */ 13888 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13889 } 13890 13891 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13892 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13893 DP_TBFLAG_M32(flags, LSPACT, 1); 13894 } 13895 13896 if (mve_no_pred(env)) { 13897 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13898 } 13899 } else { 13900 /* 13901 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13902 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13903 */ 13904 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13905 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13906 } else { 13907 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13908 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13909 } 13910 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13911 DP_TBFLAG_A32(flags, VFPEN, 1); 13912 } 13913 } 13914 13915 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13916 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13917 } 13918 13919 /* 13920 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13921 * states defined in the ARM ARM for software singlestep: 13922 * SS_ACTIVE PSTATE.SS State 13923 * 0 x Inactive (the TB flag for SS is always 0) 13924 * 1 0 Active-pending 13925 * 1 1 Active-not-pending 13926 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13927 */ 13928 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13929 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13930 } 13931 13932 *pflags = flags.flags; 13933 *cs_base = flags.flags2; 13934 } 13935 13936 #ifdef TARGET_AARCH64 13937 /* 13938 * The manual says that when SVE is enabled and VQ is widened the 13939 * implementation is allowed to zero the previously inaccessible 13940 * portion of the registers. The corollary to that is that when 13941 * SVE is enabled and VQ is narrowed we are also allowed to zero 13942 * the now inaccessible portion of the registers. 13943 * 13944 * The intent of this is that no predicate bit beyond VQ is ever set. 13945 * Which means that some operations on predicate registers themselves 13946 * may operate on full uint64_t or even unrolled across the maximum 13947 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13948 * may well be cheaper than conditionals to restrict the operation 13949 * to the relevant portion of a uint16_t[16]. 13950 */ 13951 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13952 { 13953 int i, j; 13954 uint64_t pmask; 13955 13956 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13957 assert(vq <= env_archcpu(env)->sve_max_vq); 13958 13959 /* Zap the high bits of the zregs. */ 13960 for (i = 0; i < 32; i++) { 13961 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13962 } 13963 13964 /* Zap the high bits of the pregs and ffr. */ 13965 pmask = 0; 13966 if (vq & 3) { 13967 pmask = ~(-1ULL << (16 * (vq & 3))); 13968 } 13969 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13970 for (i = 0; i < 17; ++i) { 13971 env->vfp.pregs[i].p[j] &= pmask; 13972 } 13973 pmask = 0; 13974 } 13975 } 13976 13977 /* 13978 * Notice a change in SVE vector size when changing EL. 13979 */ 13980 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13981 int new_el, bool el0_a64) 13982 { 13983 ARMCPU *cpu = env_archcpu(env); 13984 int old_len, new_len; 13985 bool old_a64, new_a64; 13986 13987 /* Nothing to do if no SVE. */ 13988 if (!cpu_isar_feature(aa64_sve, cpu)) { 13989 return; 13990 } 13991 13992 /* Nothing to do if FP is disabled in either EL. */ 13993 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13994 return; 13995 } 13996 13997 /* 13998 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13999 * at ELx, or not available because the EL is in AArch32 state, then 14000 * for all purposes other than a direct read, the ZCR_ELx.LEN field 14001 * has an effective value of 0". 14002 * 14003 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 14004 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 14005 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 14006 * we already have the correct register contents when encountering the 14007 * vq0->vq0 transition between EL0->EL1. 14008 */ 14009 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 14010 old_len = (old_a64 && !sve_exception_el(env, old_el) 14011 ? sve_zcr_len_for_el(env, old_el) : 0); 14012 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 14013 new_len = (new_a64 && !sve_exception_el(env, new_el) 14014 ? sve_zcr_len_for_el(env, new_el) : 0); 14015 14016 /* When changing vector length, clear inaccessible state. */ 14017 if (new_len < old_len) { 14018 aarch64_sve_narrow_vq(env, new_len + 1); 14019 } 14020 } 14021 #endif 14022