1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "exec/page-protection.h" 17 #include "exec/mmap-lock.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/cputlb.h" 23 #include "exec/exec-all.h" 24 #include "exec/translation-block.h" 25 #include "hw/irq.h" 26 #include "system/cpu-timers.h" 27 #include "system/kvm.h" 28 #include "system/tcg.h" 29 #include "qapi/error.h" 30 #include "qemu/guest-random.h" 31 #ifdef CONFIG_TCG 32 #include "semihosting/common-semi.h" 33 #endif 34 #include "cpregs.h" 35 #include "target/arm/gtimer.h" 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 static void switch_mode(CPUARMState *env, int mode); 40 41 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 42 { 43 assert(ri->fieldoffset); 44 if (cpreg_field_is_64bit(ri)) { 45 return CPREG_FIELD64(env, ri); 46 } else { 47 return CPREG_FIELD32(env, ri); 48 } 49 } 50 51 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 52 { 53 assert(ri->fieldoffset); 54 if (cpreg_field_is_64bit(ri)) { 55 CPREG_FIELD64(env, ri) = value; 56 } else { 57 CPREG_FIELD32(env, ri) = value; 58 } 59 } 60 61 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 62 { 63 return (char *)env + ri->fieldoffset; 64 } 65 66 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 67 { 68 /* Raw read of a coprocessor register (as needed for migration, etc). */ 69 if (ri->type & ARM_CP_CONST) { 70 return ri->resetvalue; 71 } else if (ri->raw_readfn) { 72 return ri->raw_readfn(env, ri); 73 } else if (ri->readfn) { 74 return ri->readfn(env, ri); 75 } else { 76 return raw_read(env, ri); 77 } 78 } 79 80 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 81 uint64_t v) 82 { 83 /* 84 * Raw write of a coprocessor register (as needed for migration, etc). 85 * Note that constant registers are treated as write-ignored; the 86 * caller should check for success by whether a readback gives the 87 * value written. 88 */ 89 if (ri->type & ARM_CP_CONST) { 90 return; 91 } else if (ri->raw_writefn) { 92 ri->raw_writefn(env, ri, v); 93 } else if (ri->writefn) { 94 ri->writefn(env, ri, v); 95 } else { 96 raw_write(env, ri, v); 97 } 98 } 99 100 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 101 { 102 /* 103 * Return true if the regdef would cause an assertion if you called 104 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 105 * program bug for it not to have the NO_RAW flag). 106 * NB that returning false here doesn't necessarily mean that calling 107 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 108 * read/write access functions which are safe for raw use" from "has 109 * read/write access functions which have side effects but has forgotten 110 * to provide raw access functions". 111 * The tests here line up with the conditions in read/write_raw_cp_reg() 112 * and assertions in raw_read()/raw_write(). 113 */ 114 if ((ri->type & ARM_CP_CONST) || 115 ri->fieldoffset || 116 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 117 return false; 118 } 119 return true; 120 } 121 122 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 123 { 124 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 125 int i; 126 bool ok = true; 127 128 for (i = 0; i < cpu->cpreg_array_len; i++) { 129 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 130 const ARMCPRegInfo *ri; 131 uint64_t newval; 132 133 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 134 if (!ri) { 135 ok = false; 136 continue; 137 } 138 if (ri->type & ARM_CP_NO_RAW) { 139 continue; 140 } 141 142 newval = read_raw_cp_reg(&cpu->env, ri); 143 if (kvm_sync) { 144 /* 145 * Only sync if the previous list->cpustate sync succeeded. 146 * Rather than tracking the success/failure state for every 147 * item in the list, we just recheck "does the raw write we must 148 * have made in write_list_to_cpustate() read back OK" here. 149 */ 150 uint64_t oldval = cpu->cpreg_values[i]; 151 152 if (oldval == newval) { 153 continue; 154 } 155 156 write_raw_cp_reg(&cpu->env, ri, oldval); 157 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 158 continue; 159 } 160 161 write_raw_cp_reg(&cpu->env, ri, newval); 162 } 163 cpu->cpreg_values[i] = newval; 164 } 165 return ok; 166 } 167 168 bool write_list_to_cpustate(ARMCPU *cpu) 169 { 170 int i; 171 bool ok = true; 172 173 for (i = 0; i < cpu->cpreg_array_len; i++) { 174 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 175 uint64_t v = cpu->cpreg_values[i]; 176 const ARMCPRegInfo *ri; 177 178 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 179 if (!ri) { 180 ok = false; 181 continue; 182 } 183 if (ri->type & ARM_CP_NO_RAW) { 184 continue; 185 } 186 /* 187 * Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* 241 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 242 * Note that we require cpreg_tuples[] to be sorted by key ID. 243 */ 244 GList *keys; 245 int arraylen; 246 247 keys = g_hash_table_get_keys(cpu->cp_regs); 248 keys = g_list_sort(keys, cpreg_key_compare); 249 250 cpu->cpreg_array_len = 0; 251 252 g_list_foreach(keys, count_cpreg, cpu); 253 254 arraylen = cpu->cpreg_array_len; 255 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 259 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 260 cpu->cpreg_array_len = 0; 261 262 g_list_foreach(keys, add_cpreg_to_list, cpu); 263 264 assert(cpu->cpreg_array_len == arraylen); 265 266 g_list_free(keys); 267 } 268 269 static bool arm_pan_enabled(CPUARMState *env) 270 { 271 if (is_a64(env)) { 272 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 273 return false; 274 } 275 return env->pstate & PSTATE_PAN; 276 } else { 277 return env->uncached_cpsr & CPSR_PAN; 278 } 279 } 280 281 /* 282 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 283 */ 284 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 285 const ARMCPRegInfo *ri, 286 bool isread) 287 { 288 if (!is_a64(env) && arm_current_el(env) == 3 && 289 arm_is_secure_below_el3(env)) { 290 return CP_ACCESS_UNDEFINED; 291 } 292 return CP_ACCESS_OK; 293 } 294 295 /* 296 * Some secure-only AArch32 registers trap to EL3 if used from 297 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 298 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 299 * We assume that the .access field is set to PL1_RW. 300 */ 301 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 302 const ARMCPRegInfo *ri, 303 bool isread) 304 { 305 if (arm_current_el(env) == 3) { 306 return CP_ACCESS_OK; 307 } 308 if (arm_is_secure_below_el3(env)) { 309 if (env->cp15.scr_el3 & SCR_EEL2) { 310 return CP_ACCESS_TRAP_EL2; 311 } 312 return CP_ACCESS_TRAP_EL3; 313 } 314 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 315 return CP_ACCESS_UNDEFINED; 316 } 317 318 /* 319 * Check for traps to performance monitor registers, which are controlled 320 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 321 */ 322 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 int el = arm_current_el(env); 326 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 327 328 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 332 return CP_ACCESS_TRAP_EL3; 333 } 334 return CP_ACCESS_OK; 335 } 336 337 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 338 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 339 bool isread) 340 { 341 if (arm_current_el(env) == 1) { 342 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 343 if (arm_hcr_el2_eff(env) & trap) { 344 return CP_ACCESS_TRAP_EL2; 345 } 346 } 347 return CP_ACCESS_OK; 348 } 349 350 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 351 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 352 bool isread) 353 { 354 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 355 return CP_ACCESS_TRAP_EL2; 356 } 357 return CP_ACCESS_OK; 358 } 359 360 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 361 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 362 bool isread) 363 { 364 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 365 return CP_ACCESS_TRAP_EL2; 366 } 367 return CP_ACCESS_OK; 368 } 369 370 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 371 { 372 ARMCPU *cpu = env_archcpu(env); 373 374 raw_write(env, ri, value); 375 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 376 } 377 378 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 379 { 380 ARMCPU *cpu = env_archcpu(env); 381 382 if (raw_read(env, ri) != value) { 383 /* 384 * Unlike real hardware the qemu TLB uses virtual addresses, 385 * not modified virtual addresses, so this causes a TLB flush. 386 */ 387 tlb_flush(CPU(cpu)); 388 raw_write(env, ri, value); 389 } 390 } 391 392 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 393 uint64_t value) 394 { 395 ARMCPU *cpu = env_archcpu(env); 396 397 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 398 && !extended_addresses_enabled(env)) { 399 /* 400 * For VMSA (when not using the LPAE long descriptor page table 401 * format) this register includes the ASID, so do a TLB flush. 402 * For PMSA it is purely a process ID and no action is needed. 403 */ 404 tlb_flush(CPU(cpu)); 405 } 406 raw_write(env, ri, value); 407 } 408 409 int alle1_tlbmask(CPUARMState *env) 410 { 411 /* 412 * Note that the 'ALL' scope must invalidate both stage 1 and 413 * stage 2 translations, whereas most other scopes only invalidate 414 * stage 1 translations. 415 * 416 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 417 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 418 */ 419 return (ARMMMUIdxBit_E10_1 | 420 ARMMMUIdxBit_E10_1_PAN | 421 ARMMMUIdxBit_E10_0 | 422 ARMMMUIdxBit_Stage2 | 423 ARMMMUIdxBit_Stage2_S); 424 } 425 426 static const ARMCPRegInfo cp_reginfo[] = { 427 /* 428 * Define the secure and non-secure FCSE identifier CP registers 429 * separately because there is no secure bank in V8 (no _EL3). This allows 430 * the secure register to be properly reset and migrated. There is also no 431 * v8 EL1 version of the register so the non-secure instance stands alone. 432 */ 433 { .name = "FCSEIDR", 434 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 435 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 436 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 437 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 438 { .name = "FCSEIDR_S", 439 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 440 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 441 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 442 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 443 /* 444 * Define the secure and non-secure context identifier CP registers 445 * separately because there is no secure bank in V8 (no _EL3). This allows 446 * the secure register to be properly reset and migrated. In the 447 * non-secure case, the 32-bit register will have reset and migration 448 * disabled during registration as it is handled by the 64-bit instance. 449 */ 450 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 451 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 452 .access = PL1_RW, .accessfn = access_tvm_trvm, 453 .fgt = FGT_CONTEXTIDR_EL1, 454 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 455 .secure = ARM_CP_SECSTATE_NS, 456 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 457 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 458 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 459 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 460 .access = PL1_RW, .accessfn = access_tvm_trvm, 461 .secure = ARM_CP_SECSTATE_S, 462 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 463 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 464 }; 465 466 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 467 /* 468 * NB: Some of these registers exist in v8 but with more precise 469 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 470 */ 471 /* MMU Domain access control / MPU write buffer control */ 472 { .name = "DACR", 473 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 474 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 475 .writefn = dacr_write, .raw_writefn = raw_write, 476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 477 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 478 /* 479 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 480 * For v6 and v5, these mappings are overly broad. 481 */ 482 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 483 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 484 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 485 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 486 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 488 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 489 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 490 /* Cache maintenance ops; some of this space may be overridden later. */ 491 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 492 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 493 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 494 }; 495 496 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 497 /* 498 * Not all pre-v6 cores implemented this WFI, so this is slightly 499 * over-broad. 500 */ 501 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 502 .access = PL1_W, .type = ARM_CP_WFI }, 503 }; 504 505 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 506 /* 507 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 508 * is UNPREDICTABLE; we choose to NOP as most implementations do). 509 */ 510 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 511 .access = PL1_W, .type = ARM_CP_WFI }, 512 /* 513 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 514 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 515 * OMAPCP will override this space. 516 */ 517 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 518 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 519 .resetvalue = 0 }, 520 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 521 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 522 .resetvalue = 0 }, 523 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 524 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 525 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 526 .resetvalue = 0 }, 527 /* 528 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 529 * implementing it as RAZ means the "debug architecture version" bits 530 * will read as a reserved value, which should cause Linux to not try 531 * to use the debug hardware. 532 */ 533 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 534 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 535 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 536 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 537 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 538 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 539 }; 540 541 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 uint32_t mask = 0; 545 546 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 547 if (!arm_feature(env, ARM_FEATURE_V8)) { 548 /* 549 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 550 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 551 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 552 */ 553 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 554 /* VFP coprocessor: cp10 & cp11 [23:20] */ 555 mask |= R_CPACR_ASEDIS_MASK | 556 R_CPACR_D32DIS_MASK | 557 R_CPACR_CP11_MASK | 558 R_CPACR_CP10_MASK; 559 560 if (!arm_feature(env, ARM_FEATURE_NEON)) { 561 /* ASEDIS [31] bit is RAO/WI */ 562 value |= R_CPACR_ASEDIS_MASK; 563 } 564 565 /* 566 * VFPv3 and upwards with NEON implement 32 double precision 567 * registers (D0-D31). 568 */ 569 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 570 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 571 value |= R_CPACR_D32DIS_MASK; 572 } 573 } 574 value &= mask; 575 } 576 577 /* 578 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 579 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 580 */ 581 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 582 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 583 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 584 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 585 } 586 587 env->cp15.cpacr_el1 = value; 588 } 589 590 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 591 { 592 /* 593 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 594 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 595 */ 596 uint64_t value = env->cp15.cpacr_el1; 597 598 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 599 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 600 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 601 } 602 return value; 603 } 604 605 606 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 607 { 608 /* 609 * Call cpacr_write() so that we reset with the correct RAO bits set 610 * for our CPU features. 611 */ 612 cpacr_write(env, ri, 0); 613 } 614 615 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 616 bool isread) 617 { 618 if (arm_feature(env, ARM_FEATURE_V8)) { 619 /* Check if CPACR accesses are to be trapped to EL2 */ 620 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 621 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 622 return CP_ACCESS_TRAP_EL2; 623 /* Check if CPACR accesses are to be trapped to EL3 */ 624 } else if (arm_current_el(env) < 3 && 625 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 626 return CP_ACCESS_TRAP_EL3; 627 } 628 } 629 630 return CP_ACCESS_OK; 631 } 632 633 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 634 bool isread) 635 { 636 /* Check if CPTR accesses are set to trap to EL3 */ 637 if (arm_current_el(env) == 2 && 638 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 639 return CP_ACCESS_TRAP_EL3; 640 } 641 642 return CP_ACCESS_OK; 643 } 644 645 static const ARMCPRegInfo v6_cp_reginfo[] = { 646 /* prefetch by MVA in v6, NOP in v7 */ 647 { .name = "MVA_prefetch", 648 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 649 .access = PL1_W, .type = ARM_CP_NOP }, 650 /* 651 * We need to break the TB after ISB to execute self-modifying code 652 * correctly and also to take any pending interrupts immediately. 653 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 654 */ 655 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 656 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 657 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 658 .access = PL0_W, .type = ARM_CP_NOP }, 659 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 660 .access = PL0_W, .type = ARM_CP_NOP }, 661 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 662 .access = PL1_RW, .accessfn = access_tvm_trvm, 663 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 664 offsetof(CPUARMState, cp15.ifar_ns) }, 665 .resetvalue = 0, }, 666 /* 667 * Watchpoint Fault Address Register : should actually only be present 668 * for 1136, 1176, 11MPCore. 669 */ 670 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 671 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 672 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 673 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 674 .fgt = FGT_CPACR_EL1, 675 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 676 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 677 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 678 }; 679 680 typedef struct pm_event { 681 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 682 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 683 bool (*supported)(CPUARMState *); 684 /* 685 * Retrieve the current count of the underlying event. The programmed 686 * counters hold a difference from the return value from this function 687 */ 688 uint64_t (*get_count)(CPUARMState *); 689 /* 690 * Return how many nanoseconds it will take (at a minimum) for count events 691 * to occur. A negative value indicates the counter will never overflow, or 692 * that the counter has otherwise arranged for the overflow bit to be set 693 * and the PMU interrupt to be raised on overflow. 694 */ 695 int64_t (*ns_per_count)(uint64_t); 696 } pm_event; 697 698 static bool event_always_supported(CPUARMState *env) 699 { 700 return true; 701 } 702 703 static uint64_t swinc_get_count(CPUARMState *env) 704 { 705 /* 706 * SW_INCR events are written directly to the pmevcntr's by writes to 707 * PMSWINC, so there is no underlying count maintained by the PMU itself 708 */ 709 return 0; 710 } 711 712 static int64_t swinc_ns_per(uint64_t ignored) 713 { 714 return -1; 715 } 716 717 /* 718 * Return the underlying cycle count for the PMU cycle counters. If we're in 719 * usermode, simply return 0. 720 */ 721 static uint64_t cycles_get_count(CPUARMState *env) 722 { 723 #ifndef CONFIG_USER_ONLY 724 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 725 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 726 #else 727 return cpu_get_host_ticks(); 728 #endif 729 } 730 731 #ifndef CONFIG_USER_ONLY 732 static int64_t cycles_ns_per(uint64_t cycles) 733 { 734 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 735 } 736 737 static bool instructions_supported(CPUARMState *env) 738 { 739 /* Precise instruction counting */ 740 return icount_enabled() == ICOUNT_PRECISE; 741 } 742 743 static uint64_t instructions_get_count(CPUARMState *env) 744 { 745 assert(icount_enabled() == ICOUNT_PRECISE); 746 return (uint64_t)icount_get_raw(); 747 } 748 749 static int64_t instructions_ns_per(uint64_t icount) 750 { 751 assert(icount_enabled() == ICOUNT_PRECISE); 752 return icount_to_ns((int64_t)icount); 753 } 754 #endif 755 756 static bool pmuv3p1_events_supported(CPUARMState *env) 757 { 758 /* For events which are supported in any v8.1 PMU */ 759 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 760 } 761 762 static bool pmuv3p4_events_supported(CPUARMState *env) 763 { 764 /* For events which are supported in any v8.1 PMU */ 765 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 766 } 767 768 static uint64_t zero_event_get_count(CPUARMState *env) 769 { 770 /* For events which on QEMU never fire, so their count is always zero */ 771 return 0; 772 } 773 774 static int64_t zero_event_ns_per(uint64_t cycles) 775 { 776 /* An event which never fires can never overflow */ 777 return -1; 778 } 779 780 static const pm_event pm_events[] = { 781 { .number = 0x000, /* SW_INCR */ 782 .supported = event_always_supported, 783 .get_count = swinc_get_count, 784 .ns_per_count = swinc_ns_per, 785 }, 786 #ifndef CONFIG_USER_ONLY 787 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 788 .supported = instructions_supported, 789 .get_count = instructions_get_count, 790 .ns_per_count = instructions_ns_per, 791 }, 792 { .number = 0x011, /* CPU_CYCLES, Cycle */ 793 .supported = event_always_supported, 794 .get_count = cycles_get_count, 795 .ns_per_count = cycles_ns_per, 796 }, 797 #endif 798 { .number = 0x023, /* STALL_FRONTEND */ 799 .supported = pmuv3p1_events_supported, 800 .get_count = zero_event_get_count, 801 .ns_per_count = zero_event_ns_per, 802 }, 803 { .number = 0x024, /* STALL_BACKEND */ 804 .supported = pmuv3p1_events_supported, 805 .get_count = zero_event_get_count, 806 .ns_per_count = zero_event_ns_per, 807 }, 808 { .number = 0x03c, /* STALL */ 809 .supported = pmuv3p4_events_supported, 810 .get_count = zero_event_get_count, 811 .ns_per_count = zero_event_ns_per, 812 }, 813 }; 814 815 /* 816 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 817 * events (i.e. the statistical profiling extension), this implementation 818 * should first be updated to something sparse instead of the current 819 * supported_event_map[] array. 820 */ 821 #define MAX_EVENT_ID 0x3c 822 #define UNSUPPORTED_EVENT UINT16_MAX 823 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 824 825 /* 826 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 827 * of ARM event numbers to indices in our pm_events array. 828 * 829 * Note: Events in the 0x40XX range are not currently supported. 830 */ 831 void pmu_init(ARMCPU *cpu) 832 { 833 unsigned int i; 834 835 /* 836 * Empty supported_event_map and cpu->pmceid[01] before adding supported 837 * events to them 838 */ 839 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 840 supported_event_map[i] = UNSUPPORTED_EVENT; 841 } 842 cpu->pmceid0 = 0; 843 cpu->pmceid1 = 0; 844 845 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 846 const pm_event *cnt = &pm_events[i]; 847 assert(cnt->number <= MAX_EVENT_ID); 848 /* We do not currently support events in the 0x40xx range */ 849 assert(cnt->number <= 0x3f); 850 851 if (cnt->supported(&cpu->env)) { 852 supported_event_map[cnt->number] = i; 853 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 854 if (cnt->number & 0x20) { 855 cpu->pmceid1 |= event_mask; 856 } else { 857 cpu->pmceid0 |= event_mask; 858 } 859 } 860 } 861 } 862 863 /* 864 * Check at runtime whether a PMU event is supported for the current machine 865 */ 866 static bool event_supported(uint16_t number) 867 { 868 if (number > MAX_EVENT_ID) { 869 return false; 870 } 871 return supported_event_map[number] != UNSUPPORTED_EVENT; 872 } 873 874 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 875 bool isread) 876 { 877 /* 878 * Performance monitor registers user accessibility is controlled 879 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 880 * trapping to EL2 or EL3 for other accesses. 881 */ 882 int el = arm_current_el(env); 883 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 884 885 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 886 return CP_ACCESS_TRAP_EL1; 887 } 888 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 889 return CP_ACCESS_TRAP_EL2; 890 } 891 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 892 return CP_ACCESS_TRAP_EL3; 893 } 894 895 return CP_ACCESS_OK; 896 } 897 898 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 899 const ARMCPRegInfo *ri, 900 bool isread) 901 { 902 /* ER: event counter read trap control */ 903 if (arm_feature(env, ARM_FEATURE_V8) 904 && arm_current_el(env) == 0 905 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 906 && isread) { 907 return CP_ACCESS_OK; 908 } 909 910 return pmreg_access(env, ri, isread); 911 } 912 913 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 914 const ARMCPRegInfo *ri, 915 bool isread) 916 { 917 /* SW: software increment write trap control */ 918 if (arm_feature(env, ARM_FEATURE_V8) 919 && arm_current_el(env) == 0 920 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 921 && !isread) { 922 return CP_ACCESS_OK; 923 } 924 925 return pmreg_access(env, ri, isread); 926 } 927 928 static CPAccessResult pmreg_access_selr(CPUARMState *env, 929 const ARMCPRegInfo *ri, 930 bool isread) 931 { 932 /* ER: event counter read trap control */ 933 if (arm_feature(env, ARM_FEATURE_V8) 934 && arm_current_el(env) == 0 935 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 936 return CP_ACCESS_OK; 937 } 938 939 return pmreg_access(env, ri, isread); 940 } 941 942 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 943 const ARMCPRegInfo *ri, 944 bool isread) 945 { 946 /* CR: cycle counter read trap control */ 947 if (arm_feature(env, ARM_FEATURE_V8) 948 && arm_current_el(env) == 0 949 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 950 && isread) { 951 return CP_ACCESS_OK; 952 } 953 954 return pmreg_access(env, ri, isread); 955 } 956 957 /* 958 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 959 * We use these to decide whether we need to wrap a write to MDCR_EL2 960 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 961 */ 962 #define MDCR_EL2_PMU_ENABLE_BITS \ 963 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 964 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 965 966 /* 967 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 968 * the current EL, security state, and register configuration. 969 */ 970 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 971 { 972 uint64_t filter; 973 bool e, p, u, nsk, nsu, nsh, m; 974 bool enabled, prohibited = false, filtered; 975 bool secure = arm_is_secure(env); 976 int el = arm_current_el(env); 977 uint64_t mdcr_el2; 978 uint8_t hpmn; 979 980 /* 981 * We might be called for M-profile cores where MDCR_EL2 doesn't 982 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 983 * must be before we read that value. 984 */ 985 if (!arm_feature(env, ARM_FEATURE_PMU)) { 986 return false; 987 } 988 989 mdcr_el2 = arm_mdcr_el2_eff(env); 990 hpmn = mdcr_el2 & MDCR_HPMN; 991 992 if (!arm_feature(env, ARM_FEATURE_EL2) || 993 (counter < hpmn || counter == 31)) { 994 e = env->cp15.c9_pmcr & PMCRE; 995 } else { 996 e = mdcr_el2 & MDCR_HPME; 997 } 998 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 999 1000 /* Is event counting prohibited? */ 1001 if (el == 2 && (counter < hpmn || counter == 31)) { 1002 prohibited = mdcr_el2 & MDCR_HPMD; 1003 } 1004 if (secure) { 1005 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1006 } 1007 1008 if (counter == 31) { 1009 /* 1010 * The cycle counter defaults to running. PMCR.DP says "disable 1011 * the cycle counter when event counting is prohibited". 1012 * Some MDCR bits disable the cycle counter specifically. 1013 */ 1014 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1015 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1016 if (secure) { 1017 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1018 } 1019 if (el == 2) { 1020 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1021 } 1022 } 1023 } 1024 1025 if (counter == 31) { 1026 filter = env->cp15.pmccfiltr_el0; 1027 } else { 1028 filter = env->cp15.c14_pmevtyper[counter]; 1029 } 1030 1031 p = filter & PMXEVTYPER_P; 1032 u = filter & PMXEVTYPER_U; 1033 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1034 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1035 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1036 m = arm_el_is_aa64(env, 1) && 1037 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1038 1039 if (el == 0) { 1040 filtered = secure ? u : u != nsu; 1041 } else if (el == 1) { 1042 filtered = secure ? p : p != nsk; 1043 } else if (el == 2) { 1044 filtered = !nsh; 1045 } else { /* EL3 */ 1046 filtered = m != p; 1047 } 1048 1049 if (counter != 31) { 1050 /* 1051 * If not checking PMCCNTR, ensure the counter is setup to an event we 1052 * support 1053 */ 1054 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1055 if (!event_supported(event)) { 1056 return false; 1057 } 1058 } 1059 1060 return enabled && !prohibited && !filtered; 1061 } 1062 1063 static void pmu_update_irq(CPUARMState *env) 1064 { 1065 ARMCPU *cpu = env_archcpu(env); 1066 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1067 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1068 } 1069 1070 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1071 { 1072 /* 1073 * Return true if the clock divider is enabled and the cycle counter 1074 * is supposed to tick only once every 64 clock cycles. This is 1075 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1076 * (64-bit) cycle counter PMCR.D has no effect. 1077 */ 1078 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1079 } 1080 1081 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1082 { 1083 /* Return true if the specified event counter is configured to be 64 bit */ 1084 1085 /* This isn't intended to be used with the cycle counter */ 1086 assert(counter < 31); 1087 1088 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1089 return false; 1090 } 1091 1092 if (arm_feature(env, ARM_FEATURE_EL2)) { 1093 /* 1094 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1095 * current security state, so we don't use arm_mdcr_el2_eff() here. 1096 */ 1097 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1098 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1099 1100 if (counter >= hpmn) { 1101 return hlp; 1102 } 1103 } 1104 return env->cp15.c9_pmcr & PMCRLP; 1105 } 1106 1107 /* 1108 * Ensure c15_ccnt is the guest-visible count so that operations such as 1109 * enabling/disabling the counter or filtering, modifying the count itself, 1110 * etc. can be done logically. This is essentially a no-op if the counter is 1111 * not enabled at the time of the call. 1112 */ 1113 static void pmccntr_op_start(CPUARMState *env) 1114 { 1115 uint64_t cycles = cycles_get_count(env); 1116 1117 if (pmu_counter_enabled(env, 31)) { 1118 uint64_t eff_cycles = cycles; 1119 if (pmccntr_clockdiv_enabled(env)) { 1120 eff_cycles /= 64; 1121 } 1122 1123 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1124 1125 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1126 1ull << 63 : 1ull << 31; 1127 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1128 env->cp15.c9_pmovsr |= (1ULL << 31); 1129 pmu_update_irq(env); 1130 } 1131 1132 env->cp15.c15_ccnt = new_pmccntr; 1133 } 1134 env->cp15.c15_ccnt_delta = cycles; 1135 } 1136 1137 /* 1138 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1139 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1140 * pmccntr_op_start. 1141 */ 1142 static void pmccntr_op_finish(CPUARMState *env) 1143 { 1144 if (pmu_counter_enabled(env, 31)) { 1145 #ifndef CONFIG_USER_ONLY 1146 /* Calculate when the counter will next overflow */ 1147 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1148 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1149 remaining_cycles = (uint32_t)remaining_cycles; 1150 } 1151 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1152 1153 if (overflow_in > 0) { 1154 int64_t overflow_at; 1155 1156 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1157 overflow_in, &overflow_at)) { 1158 ARMCPU *cpu = env_archcpu(env); 1159 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1160 } 1161 } 1162 #endif 1163 1164 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1165 if (pmccntr_clockdiv_enabled(env)) { 1166 prev_cycles /= 64; 1167 } 1168 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1169 } 1170 } 1171 1172 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1173 { 1174 1175 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1176 uint64_t count = 0; 1177 if (event_supported(event)) { 1178 uint16_t event_idx = supported_event_map[event]; 1179 count = pm_events[event_idx].get_count(env); 1180 } 1181 1182 if (pmu_counter_enabled(env, counter)) { 1183 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1184 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1185 1ULL << 63 : 1ULL << 31; 1186 1187 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1188 env->cp15.c9_pmovsr |= (1 << counter); 1189 pmu_update_irq(env); 1190 } 1191 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1192 } 1193 env->cp15.c14_pmevcntr_delta[counter] = count; 1194 } 1195 1196 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1197 { 1198 if (pmu_counter_enabled(env, counter)) { 1199 #ifndef CONFIG_USER_ONLY 1200 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1201 uint16_t event_idx = supported_event_map[event]; 1202 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1203 int64_t overflow_in; 1204 1205 if (!pmevcntr_is_64_bit(env, counter)) { 1206 delta = (uint32_t)delta; 1207 } 1208 overflow_in = pm_events[event_idx].ns_per_count(delta); 1209 1210 if (overflow_in > 0) { 1211 int64_t overflow_at; 1212 1213 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1214 overflow_in, &overflow_at)) { 1215 ARMCPU *cpu = env_archcpu(env); 1216 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1217 } 1218 } 1219 #endif 1220 1221 env->cp15.c14_pmevcntr_delta[counter] -= 1222 env->cp15.c14_pmevcntr[counter]; 1223 } 1224 } 1225 1226 void pmu_op_start(CPUARMState *env) 1227 { 1228 unsigned int i; 1229 pmccntr_op_start(env); 1230 for (i = 0; i < pmu_num_counters(env); i++) { 1231 pmevcntr_op_start(env, i); 1232 } 1233 } 1234 1235 void pmu_op_finish(CPUARMState *env) 1236 { 1237 unsigned int i; 1238 pmccntr_op_finish(env); 1239 for (i = 0; i < pmu_num_counters(env); i++) { 1240 pmevcntr_op_finish(env, i); 1241 } 1242 } 1243 1244 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1245 { 1246 pmu_op_start(&cpu->env); 1247 } 1248 1249 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1250 { 1251 pmu_op_finish(&cpu->env); 1252 } 1253 1254 void arm_pmu_timer_cb(void *opaque) 1255 { 1256 ARMCPU *cpu = opaque; 1257 1258 /* 1259 * Update all the counter values based on the current underlying counts, 1260 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1261 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1262 * counter may expire. 1263 */ 1264 pmu_op_start(&cpu->env); 1265 pmu_op_finish(&cpu->env); 1266 } 1267 1268 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1269 uint64_t value) 1270 { 1271 pmu_op_start(env); 1272 1273 if (value & PMCRC) { 1274 /* The counter has been reset */ 1275 env->cp15.c15_ccnt = 0; 1276 } 1277 1278 if (value & PMCRP) { 1279 unsigned int i; 1280 for (i = 0; i < pmu_num_counters(env); i++) { 1281 env->cp15.c14_pmevcntr[i] = 0; 1282 } 1283 } 1284 1285 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1286 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1287 1288 pmu_op_finish(env); 1289 } 1290 1291 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1292 { 1293 uint64_t pmcr = env->cp15.c9_pmcr; 1294 1295 /* 1296 * If EL2 is implemented and enabled for the current security state, reads 1297 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1298 */ 1299 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1300 pmcr &= ~PMCRN_MASK; 1301 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1302 } 1303 1304 return pmcr; 1305 } 1306 1307 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1308 uint64_t value) 1309 { 1310 unsigned int i; 1311 uint64_t overflow_mask, new_pmswinc; 1312 1313 for (i = 0; i < pmu_num_counters(env); i++) { 1314 /* Increment a counter's count iff: */ 1315 if ((value & (1 << i)) && /* counter's bit is set */ 1316 /* counter is enabled and not filtered */ 1317 pmu_counter_enabled(env, i) && 1318 /* counter is SW_INCR */ 1319 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1320 pmevcntr_op_start(env, i); 1321 1322 /* 1323 * Detect if this write causes an overflow since we can't predict 1324 * PMSWINC overflows like we can for other events 1325 */ 1326 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1327 1328 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1329 1ULL << 63 : 1ULL << 31; 1330 1331 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1332 env->cp15.c9_pmovsr |= (1 << i); 1333 pmu_update_irq(env); 1334 } 1335 1336 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1337 1338 pmevcntr_op_finish(env, i); 1339 } 1340 } 1341 } 1342 1343 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1344 { 1345 uint64_t ret; 1346 pmccntr_op_start(env); 1347 ret = env->cp15.c15_ccnt; 1348 pmccntr_op_finish(env); 1349 return ret; 1350 } 1351 1352 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1353 uint64_t value) 1354 { 1355 /* 1356 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1357 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1358 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1359 * accessed. 1360 */ 1361 env->cp15.c9_pmselr = value & 0x1f; 1362 } 1363 1364 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1365 uint64_t value) 1366 { 1367 pmccntr_op_start(env); 1368 env->cp15.c15_ccnt = value; 1369 pmccntr_op_finish(env); 1370 } 1371 1372 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1373 uint64_t value) 1374 { 1375 uint64_t cur_val = pmccntr_read(env, NULL); 1376 1377 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1378 } 1379 1380 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1381 uint64_t value) 1382 { 1383 pmccntr_op_start(env); 1384 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1385 pmccntr_op_finish(env); 1386 } 1387 1388 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1389 uint64_t value) 1390 { 1391 pmccntr_op_start(env); 1392 /* M is not accessible from AArch32 */ 1393 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1394 (value & PMCCFILTR); 1395 pmccntr_op_finish(env); 1396 } 1397 1398 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1399 { 1400 /* M is not visible in AArch32 */ 1401 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1402 } 1403 1404 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 value &= pmu_counter_mask(env); 1409 env->cp15.c9_pmcnten |= value; 1410 pmu_op_finish(env); 1411 } 1412 1413 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1414 uint64_t value) 1415 { 1416 pmu_op_start(env); 1417 value &= pmu_counter_mask(env); 1418 env->cp15.c9_pmcnten &= ~value; 1419 pmu_op_finish(env); 1420 } 1421 1422 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1423 uint64_t value) 1424 { 1425 value &= pmu_counter_mask(env); 1426 env->cp15.c9_pmovsr &= ~value; 1427 pmu_update_irq(env); 1428 } 1429 1430 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1431 uint64_t value) 1432 { 1433 value &= pmu_counter_mask(env); 1434 env->cp15.c9_pmovsr |= value; 1435 pmu_update_irq(env); 1436 } 1437 1438 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1439 uint64_t value, const uint8_t counter) 1440 { 1441 if (counter == 31) { 1442 pmccfiltr_write(env, ri, value); 1443 } else if (counter < pmu_num_counters(env)) { 1444 pmevcntr_op_start(env, counter); 1445 1446 /* 1447 * If this counter's event type is changing, store the current 1448 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1449 * pmevcntr_op_finish has the correct baseline when it converts back to 1450 * a delta. 1451 */ 1452 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1453 PMXEVTYPER_EVTCOUNT; 1454 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1455 if (old_event != new_event) { 1456 uint64_t count = 0; 1457 if (event_supported(new_event)) { 1458 uint16_t event_idx = supported_event_map[new_event]; 1459 count = pm_events[event_idx].get_count(env); 1460 } 1461 env->cp15.c14_pmevcntr_delta[counter] = count; 1462 } 1463 1464 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1465 pmevcntr_op_finish(env, counter); 1466 } 1467 /* 1468 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1469 * PMSELR value is equal to or greater than the number of implemented 1470 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1471 */ 1472 } 1473 1474 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1475 const uint8_t counter) 1476 { 1477 if (counter == 31) { 1478 return env->cp15.pmccfiltr_el0; 1479 } else if (counter < pmu_num_counters(env)) { 1480 return env->cp15.c14_pmevtyper[counter]; 1481 } else { 1482 /* 1483 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1484 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1485 */ 1486 return 0; 1487 } 1488 } 1489 1490 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1491 uint64_t value) 1492 { 1493 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1494 pmevtyper_write(env, ri, value, counter); 1495 } 1496 1497 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1498 uint64_t value) 1499 { 1500 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1501 env->cp15.c14_pmevtyper[counter] = value; 1502 1503 /* 1504 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1505 * pmu_op_finish calls when loading saved state for a migration. Because 1506 * we're potentially updating the type of event here, the value written to 1507 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1508 * different counter type. Therefore, we need to set this value to the 1509 * current count for the counter type we're writing so that pmu_op_finish 1510 * has the correct count for its calculation. 1511 */ 1512 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1513 if (event_supported(event)) { 1514 uint16_t event_idx = supported_event_map[event]; 1515 env->cp15.c14_pmevcntr_delta[counter] = 1516 pm_events[event_idx].get_count(env); 1517 } 1518 } 1519 1520 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1521 { 1522 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1523 return pmevtyper_read(env, ri, counter); 1524 } 1525 1526 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1527 uint64_t value) 1528 { 1529 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1530 } 1531 1532 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1533 { 1534 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1535 } 1536 1537 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1538 uint64_t value, uint8_t counter) 1539 { 1540 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1541 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1542 value &= MAKE_64BIT_MASK(0, 32); 1543 } 1544 if (counter < pmu_num_counters(env)) { 1545 pmevcntr_op_start(env, counter); 1546 env->cp15.c14_pmevcntr[counter] = value; 1547 pmevcntr_op_finish(env, counter); 1548 } 1549 /* 1550 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1551 * are CONSTRAINED UNPREDICTABLE. 1552 */ 1553 } 1554 1555 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1556 uint8_t counter) 1557 { 1558 if (counter < pmu_num_counters(env)) { 1559 uint64_t ret; 1560 pmevcntr_op_start(env, counter); 1561 ret = env->cp15.c14_pmevcntr[counter]; 1562 pmevcntr_op_finish(env, counter); 1563 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1564 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1565 ret &= MAKE_64BIT_MASK(0, 32); 1566 } 1567 return ret; 1568 } else { 1569 /* 1570 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1571 * are CONSTRAINED UNPREDICTABLE. 1572 */ 1573 return 0; 1574 } 1575 } 1576 1577 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1581 pmevcntr_write(env, ri, value, counter); 1582 } 1583 1584 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1585 { 1586 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1587 return pmevcntr_read(env, ri, counter); 1588 } 1589 1590 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1591 uint64_t value) 1592 { 1593 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1594 assert(counter < pmu_num_counters(env)); 1595 env->cp15.c14_pmevcntr[counter] = value; 1596 pmevcntr_write(env, ri, value, counter); 1597 } 1598 1599 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1600 { 1601 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1602 assert(counter < pmu_num_counters(env)); 1603 return env->cp15.c14_pmevcntr[counter]; 1604 } 1605 1606 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1610 } 1611 1612 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1613 { 1614 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1615 } 1616 1617 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 if (arm_feature(env, ARM_FEATURE_V8)) { 1621 env->cp15.c9_pmuserenr = value & 0xf; 1622 } else { 1623 env->cp15.c9_pmuserenr = value & 1; 1624 } 1625 } 1626 1627 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1628 uint64_t value) 1629 { 1630 /* We have no event counters so only the C bit can be changed */ 1631 value &= pmu_counter_mask(env); 1632 env->cp15.c9_pminten |= value; 1633 pmu_update_irq(env); 1634 } 1635 1636 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1637 uint64_t value) 1638 { 1639 value &= pmu_counter_mask(env); 1640 env->cp15.c9_pminten &= ~value; 1641 pmu_update_irq(env); 1642 } 1643 1644 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 /* 1648 * Note that even though the AArch64 view of this register has bits 1649 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1650 * architectural requirements for bits which are RES0 only in some 1651 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1652 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1653 */ 1654 raw_write(env, ri, value & ~0x1FULL); 1655 } 1656 1657 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1658 { 1659 /* Begin with base v8.0 state. */ 1660 uint64_t valid_mask = 0x3fff; 1661 ARMCPU *cpu = env_archcpu(env); 1662 uint64_t changed; 1663 1664 /* 1665 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1666 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1667 * Instead, choose the format based on the mode of EL3. 1668 */ 1669 if (arm_el_is_aa64(env, 3)) { 1670 value |= SCR_FW | SCR_AW; /* RES1 */ 1671 valid_mask &= ~SCR_NET; /* RES0 */ 1672 1673 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1674 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1675 value |= SCR_RW; /* RAO/WI */ 1676 } 1677 if (cpu_isar_feature(aa64_ras, cpu)) { 1678 valid_mask |= SCR_TERR; 1679 } 1680 if (cpu_isar_feature(aa64_lor, cpu)) { 1681 valid_mask |= SCR_TLOR; 1682 } 1683 if (cpu_isar_feature(aa64_pauth, cpu)) { 1684 valid_mask |= SCR_API | SCR_APK; 1685 } 1686 if (cpu_isar_feature(aa64_sel2, cpu)) { 1687 valid_mask |= SCR_EEL2; 1688 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1689 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1690 value |= SCR_NS; 1691 } 1692 if (cpu_isar_feature(aa64_mte, cpu)) { 1693 valid_mask |= SCR_ATA; 1694 } 1695 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1696 valid_mask |= SCR_ENSCXT; 1697 } 1698 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1699 valid_mask |= SCR_EASE | SCR_NMEA; 1700 } 1701 if (cpu_isar_feature(aa64_sme, cpu)) { 1702 valid_mask |= SCR_ENTP2; 1703 } 1704 if (cpu_isar_feature(aa64_hcx, cpu)) { 1705 valid_mask |= SCR_HXEN; 1706 } 1707 if (cpu_isar_feature(aa64_fgt, cpu)) { 1708 valid_mask |= SCR_FGTEN; 1709 } 1710 if (cpu_isar_feature(aa64_rme, cpu)) { 1711 valid_mask |= SCR_NSE | SCR_GPF; 1712 } 1713 if (cpu_isar_feature(aa64_ecv, cpu)) { 1714 valid_mask |= SCR_ECVEN; 1715 } 1716 } else { 1717 valid_mask &= ~(SCR_RW | SCR_ST); 1718 if (cpu_isar_feature(aa32_ras, cpu)) { 1719 valid_mask |= SCR_TERR; 1720 } 1721 } 1722 1723 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1724 valid_mask &= ~SCR_HCE; 1725 1726 /* 1727 * On ARMv7, SMD (or SCD as it is called in v7) is only 1728 * supported if EL2 exists. The bit is UNK/SBZP when 1729 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1730 * when EL2 is unavailable. 1731 * On ARMv8, this bit is always available. 1732 */ 1733 if (arm_feature(env, ARM_FEATURE_V7) && 1734 !arm_feature(env, ARM_FEATURE_V8)) { 1735 valid_mask &= ~SCR_SMD; 1736 } 1737 } 1738 1739 /* Clear all-context RES0 bits. */ 1740 value &= valid_mask; 1741 changed = env->cp15.scr_el3 ^ value; 1742 env->cp15.scr_el3 = value; 1743 1744 /* 1745 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1746 * we must invalidate all TLBs below EL3. 1747 */ 1748 if (changed & (SCR_NS | SCR_NSE)) { 1749 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1750 ARMMMUIdxBit_E20_0 | 1751 ARMMMUIdxBit_E10_1 | 1752 ARMMMUIdxBit_E20_2 | 1753 ARMMMUIdxBit_E10_1_PAN | 1754 ARMMMUIdxBit_E20_2_PAN | 1755 ARMMMUIdxBit_E2)); 1756 } 1757 } 1758 1759 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1760 { 1761 /* 1762 * scr_write will set the RES1 bits on an AArch64-only CPU. 1763 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1764 */ 1765 scr_write(env, ri, 0); 1766 } 1767 1768 static CPAccessResult access_tid4(CPUARMState *env, 1769 const ARMCPRegInfo *ri, 1770 bool isread) 1771 { 1772 if (arm_current_el(env) == 1 && 1773 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1774 return CP_ACCESS_TRAP_EL2; 1775 } 1776 1777 return CP_ACCESS_OK; 1778 } 1779 1780 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1781 { 1782 ARMCPU *cpu = env_archcpu(env); 1783 1784 /* 1785 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1786 * bank 1787 */ 1788 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1789 ri->secure & ARM_CP_SECSTATE_S); 1790 1791 return cpu->ccsidr[index]; 1792 } 1793 1794 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 raw_write(env, ri, value & 0xf); 1798 } 1799 1800 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 CPUState *cs = env_cpu(env); 1803 bool el1 = arm_current_el(env) == 1; 1804 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1805 uint64_t ret = 0; 1806 1807 if (hcr_el2 & HCR_IMO) { 1808 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1809 ret |= CPSR_I; 1810 } 1811 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1812 ret |= ISR_IS; 1813 ret |= CPSR_I; 1814 } 1815 } else { 1816 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1817 ret |= CPSR_I; 1818 } 1819 1820 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1821 ret |= ISR_IS; 1822 ret |= CPSR_I; 1823 } 1824 } 1825 1826 if (hcr_el2 & HCR_FMO) { 1827 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1828 ret |= CPSR_F; 1829 } 1830 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1831 ret |= ISR_FS; 1832 ret |= CPSR_F; 1833 } 1834 } else { 1835 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1836 ret |= CPSR_F; 1837 } 1838 } 1839 1840 if (hcr_el2 & HCR_AMO) { 1841 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1842 ret |= CPSR_A; 1843 } 1844 } 1845 1846 return ret; 1847 } 1848 1849 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1850 bool isread) 1851 { 1852 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1853 return CP_ACCESS_TRAP_EL2; 1854 } 1855 1856 return CP_ACCESS_OK; 1857 } 1858 1859 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1860 bool isread) 1861 { 1862 if (arm_feature(env, ARM_FEATURE_V8)) { 1863 return access_aa64_tid1(env, ri, isread); 1864 } 1865 1866 return CP_ACCESS_OK; 1867 } 1868 1869 static const ARMCPRegInfo v7_cp_reginfo[] = { 1870 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1871 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1872 .access = PL1_W, .type = ARM_CP_NOP }, 1873 /* 1874 * Performance monitors are implementation defined in v7, 1875 * but with an ARM recommended set of registers, which we 1876 * follow. 1877 * 1878 * Performance registers fall into three categories: 1879 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1880 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1881 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1882 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1883 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1884 */ 1885 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1886 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1887 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1888 .writefn = pmcntenset_write, 1889 .accessfn = pmreg_access, 1890 .fgt = FGT_PMCNTEN, 1891 .raw_writefn = raw_write }, 1892 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1893 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1894 .access = PL0_RW, .accessfn = pmreg_access, 1895 .fgt = FGT_PMCNTEN, 1896 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1897 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1898 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1899 .access = PL0_RW, 1900 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1901 .accessfn = pmreg_access, 1902 .fgt = FGT_PMCNTEN, 1903 .writefn = pmcntenclr_write, 1904 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1905 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1907 .access = PL0_RW, .accessfn = pmreg_access, 1908 .fgt = FGT_PMCNTEN, 1909 .type = ARM_CP_ALIAS | ARM_CP_IO, 1910 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1911 .writefn = pmcntenclr_write }, 1912 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1913 .access = PL0_RW, .type = ARM_CP_IO, 1914 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1915 .accessfn = pmreg_access, 1916 .fgt = FGT_PMOVS, 1917 .writefn = pmovsr_write, 1918 .raw_writefn = raw_write }, 1919 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1921 .access = PL0_RW, .accessfn = pmreg_access, 1922 .fgt = FGT_PMOVS, 1923 .type = ARM_CP_ALIAS | ARM_CP_IO, 1924 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1925 .writefn = pmovsr_write, 1926 .raw_writefn = raw_write }, 1927 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1928 .access = PL0_W, .accessfn = pmreg_access_swinc, 1929 .fgt = FGT_PMSWINC_EL0, 1930 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1931 .writefn = pmswinc_write }, 1932 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1933 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1934 .access = PL0_W, .accessfn = pmreg_access_swinc, 1935 .fgt = FGT_PMSWINC_EL0, 1936 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1937 .writefn = pmswinc_write }, 1938 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1939 .access = PL0_RW, .type = ARM_CP_ALIAS, 1940 .fgt = FGT_PMSELR_EL0, 1941 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1942 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1943 .raw_writefn = raw_write}, 1944 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1945 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1946 .access = PL0_RW, .accessfn = pmreg_access_selr, 1947 .fgt = FGT_PMSELR_EL0, 1948 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1949 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1950 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1951 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1952 .fgt = FGT_PMCCNTR_EL0, 1953 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1954 .accessfn = pmreg_access_ccntr }, 1955 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1956 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1957 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1958 .fgt = FGT_PMCCNTR_EL0, 1959 .type = ARM_CP_IO, 1960 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1961 .readfn = pmccntr_read, .writefn = pmccntr_write, 1962 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1963 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1964 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1965 .access = PL0_RW, .accessfn = pmreg_access, 1966 .fgt = FGT_PMCCFILTR_EL0, 1967 .type = ARM_CP_ALIAS | ARM_CP_IO, 1968 .resetvalue = 0, }, 1969 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1971 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1972 .access = PL0_RW, .accessfn = pmreg_access, 1973 .fgt = FGT_PMCCFILTR_EL0, 1974 .type = ARM_CP_IO, 1975 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1976 .resetvalue = 0, }, 1977 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1978 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1979 .accessfn = pmreg_access, 1980 .fgt = FGT_PMEVTYPERN_EL0, 1981 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1982 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1983 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1984 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1985 .accessfn = pmreg_access, 1986 .fgt = FGT_PMEVTYPERN_EL0, 1987 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1988 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1989 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1990 .accessfn = pmreg_access_xevcntr, 1991 .fgt = FGT_PMEVCNTRN_EL0, 1992 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1993 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1994 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1995 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1996 .accessfn = pmreg_access_xevcntr, 1997 .fgt = FGT_PMEVCNTRN_EL0, 1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1999 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2000 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2001 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2002 .resetvalue = 0, 2003 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2004 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2007 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2011 .access = PL1_RW, .accessfn = access_tpm, 2012 .fgt = FGT_PMINTEN, 2013 .type = ARM_CP_ALIAS | ARM_CP_IO, 2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2015 .resetvalue = 0, 2016 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2017 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2019 .access = PL1_RW, .accessfn = access_tpm, 2020 .fgt = FGT_PMINTEN, 2021 .type = ARM_CP_IO, 2022 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2023 .writefn = pmintenset_write, .raw_writefn = raw_write, 2024 .resetvalue = 0x0 }, 2025 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2026 .access = PL1_RW, .accessfn = access_tpm, 2027 .fgt = FGT_PMINTEN, 2028 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2030 .writefn = pmintenclr_write, }, 2031 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2032 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2033 .access = PL1_RW, .accessfn = access_tpm, 2034 .fgt = FGT_PMINTEN, 2035 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2037 .writefn = pmintenclr_write }, 2038 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2039 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2040 .access = PL1_R, 2041 .accessfn = access_tid4, 2042 .fgt = FGT_CCSIDR_EL1, 2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2046 .access = PL1_RW, 2047 .accessfn = access_tid4, 2048 .fgt = FGT_CSSELR_EL1, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* 2053 * Auxiliary ID register: this actually has an IMPDEF value but for now 2054 * just RAZ for all cores: 2055 */ 2056 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2057 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2058 .access = PL1_R, .type = ARM_CP_CONST, 2059 .accessfn = access_aa64_tid1, 2060 .fgt = FGT_AIDR_EL1, 2061 .resetvalue = 0 }, 2062 /* 2063 * Auxiliary fault status registers: these also are IMPDEF, and we 2064 * choose to RAZ/WI for all cores. 2065 */ 2066 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2068 .access = PL1_RW, .accessfn = access_tvm_trvm, 2069 .fgt = FGT_AFSR0_EL1, 2070 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2071 .type = ARM_CP_CONST, .resetvalue = 0 }, 2072 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2073 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2074 .access = PL1_RW, .accessfn = access_tvm_trvm, 2075 .fgt = FGT_AFSR1_EL1, 2076 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2077 .type = ARM_CP_CONST, .resetvalue = 0 }, 2078 /* 2079 * MAIR can just read-as-written because we don't implement caches 2080 * and so don't need to care about memory attributes. 2081 */ 2082 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2084 .access = PL1_RW, .accessfn = access_tvm_trvm, 2085 .fgt = FGT_MAIR_EL1, 2086 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2087 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2088 .resetvalue = 0 }, 2089 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2090 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2092 .resetvalue = 0 }, 2093 /* 2094 * For non-long-descriptor page tables these are PRRR and NMRR; 2095 * regardless they still act as reads-as-written for QEMU. 2096 */ 2097 /* 2098 * MAIR0/1 are defined separately from their 64-bit counterpart which 2099 * allows them to assign the correct fieldoffset based on the endianness 2100 * handled in the field definitions. 2101 */ 2102 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2103 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2104 .access = PL1_RW, .accessfn = access_tvm_trvm, 2105 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2106 offsetof(CPUARMState, cp15.mair0_ns) }, 2107 .resetfn = arm_cp_reset_ignore }, 2108 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2109 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2110 .access = PL1_RW, .accessfn = access_tvm_trvm, 2111 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2112 offsetof(CPUARMState, cp15.mair1_ns) }, 2113 .resetfn = arm_cp_reset_ignore }, 2114 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2116 .fgt = FGT_ISR_EL1, 2117 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2118 }; 2119 2120 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2121 /* PMOVSSET is not implemented in v7 before v7ve */ 2122 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2123 .access = PL0_RW, .accessfn = pmreg_access, 2124 .fgt = FGT_PMOVS, 2125 .type = ARM_CP_ALIAS | ARM_CP_IO, 2126 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2127 .writefn = pmovsset_write, 2128 .raw_writefn = raw_write }, 2129 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2131 .access = PL0_RW, .accessfn = pmreg_access, 2132 .fgt = FGT_PMOVS, 2133 .type = ARM_CP_ALIAS | ARM_CP_IO, 2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2135 .writefn = pmovsset_write, 2136 .raw_writefn = raw_write }, 2137 }; 2138 2139 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2140 uint64_t value) 2141 { 2142 value &= 1; 2143 env->teecr = value; 2144 } 2145 2146 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2147 bool isread) 2148 { 2149 /* 2150 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2151 * at all, so we don't need to check whether we're v8A. 2152 */ 2153 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2154 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2155 return CP_ACCESS_TRAP_EL2; 2156 } 2157 return CP_ACCESS_OK; 2158 } 2159 2160 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2161 bool isread) 2162 { 2163 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2164 return CP_ACCESS_TRAP_EL1; 2165 } 2166 return teecr_access(env, ri, isread); 2167 } 2168 2169 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2170 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2171 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2172 .resetvalue = 0, 2173 .writefn = teecr_write, .accessfn = teecr_access }, 2174 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2175 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2176 .accessfn = teehbr_access, .resetvalue = 0 }, 2177 }; 2178 2179 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2180 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2182 .access = PL0_RW, 2183 .fgt = FGT_TPIDR_EL0, 2184 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2185 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2186 .access = PL0_RW, 2187 .fgt = FGT_TPIDR_EL0, 2188 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2189 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2190 .resetfn = arm_cp_reset_ignore }, 2191 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2193 .access = PL0_R | PL1_W, 2194 .fgt = FGT_TPIDRRO_EL0, 2195 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2196 .resetvalue = 0}, 2197 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2198 .access = PL0_R | PL1_W, 2199 .fgt = FGT_TPIDRRO_EL0, 2200 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2201 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2202 .resetfn = arm_cp_reset_ignore }, 2203 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2204 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2205 .access = PL1_RW, 2206 .fgt = FGT_TPIDR_EL1, 2207 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2208 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2209 .access = PL1_RW, 2210 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2211 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2212 .resetvalue = 0 }, 2213 }; 2214 2215 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2216 { 2217 ARMCPU *cpu = env_archcpu(env); 2218 2219 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2220 } 2221 2222 #ifndef CONFIG_USER_ONLY 2223 2224 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2225 bool isread) 2226 { 2227 /* 2228 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2229 * Writable only at the highest implemented exception level. 2230 */ 2231 int el = arm_current_el(env); 2232 uint64_t hcr; 2233 uint32_t cntkctl; 2234 2235 switch (el) { 2236 case 0: 2237 hcr = arm_hcr_el2_eff(env); 2238 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2239 cntkctl = env->cp15.cnthctl_el2; 2240 } else { 2241 cntkctl = env->cp15.c14_cntkctl; 2242 } 2243 if (!extract32(cntkctl, 0, 2)) { 2244 return CP_ACCESS_TRAP_EL1; 2245 } 2246 break; 2247 case 1: 2248 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2249 arm_is_secure_below_el3(env)) { 2250 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2251 return CP_ACCESS_UNDEFINED; 2252 } 2253 break; 2254 case 2: 2255 case 3: 2256 break; 2257 } 2258 2259 if (!isread && el < arm_highest_el(env)) { 2260 return CP_ACCESS_UNDEFINED; 2261 } 2262 2263 return CP_ACCESS_OK; 2264 } 2265 2266 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2267 bool isread) 2268 { 2269 unsigned int cur_el = arm_current_el(env); 2270 bool has_el2 = arm_is_el2_enabled(env); 2271 uint64_t hcr = arm_hcr_el2_eff(env); 2272 2273 switch (cur_el) { 2274 case 0: 2275 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2276 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2277 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2278 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2279 } 2280 2281 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2282 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2283 return CP_ACCESS_TRAP_EL1; 2284 } 2285 /* fall through */ 2286 case 1: 2287 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2288 if (has_el2 && timeridx == GTIMER_PHYS && 2289 (hcr & HCR_E2H 2290 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2291 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2292 return CP_ACCESS_TRAP_EL2; 2293 } 2294 if (has_el2 && timeridx == GTIMER_VIRT) { 2295 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2296 return CP_ACCESS_TRAP_EL2; 2297 } 2298 } 2299 break; 2300 } 2301 return CP_ACCESS_OK; 2302 } 2303 2304 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2305 bool isread) 2306 { 2307 unsigned int cur_el = arm_current_el(env); 2308 bool has_el2 = arm_is_el2_enabled(env); 2309 uint64_t hcr = arm_hcr_el2_eff(env); 2310 2311 switch (cur_el) { 2312 case 0: 2313 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2314 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2315 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2316 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2317 } 2318 2319 /* 2320 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2321 * EL0 if EL0[PV]TEN is zero. 2322 */ 2323 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2324 return CP_ACCESS_TRAP_EL1; 2325 } 2326 /* fall through */ 2327 2328 case 1: 2329 if (has_el2 && timeridx == GTIMER_PHYS) { 2330 if (hcr & HCR_E2H) { 2331 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2332 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 } else { 2336 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2337 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2338 return CP_ACCESS_TRAP_EL2; 2339 } 2340 } 2341 } 2342 if (has_el2 && timeridx == GTIMER_VIRT) { 2343 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2344 return CP_ACCESS_TRAP_EL2; 2345 } 2346 } 2347 break; 2348 } 2349 return CP_ACCESS_OK; 2350 } 2351 2352 static CPAccessResult gt_pct_access(CPUARMState *env, 2353 const ARMCPRegInfo *ri, 2354 bool isread) 2355 { 2356 return gt_counter_access(env, GTIMER_PHYS, isread); 2357 } 2358 2359 static CPAccessResult gt_vct_access(CPUARMState *env, 2360 const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 return gt_counter_access(env, GTIMER_VIRT, isread); 2364 } 2365 2366 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2367 bool isread) 2368 { 2369 return gt_timer_access(env, GTIMER_PHYS, isread); 2370 } 2371 2372 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2373 bool isread) 2374 { 2375 return gt_timer_access(env, GTIMER_VIRT, isread); 2376 } 2377 2378 static CPAccessResult gt_stimer_access(CPUARMState *env, 2379 const ARMCPRegInfo *ri, 2380 bool isread) 2381 { 2382 /* 2383 * The AArch64 register view of the secure physical timer is 2384 * always accessible from EL3, and configurably accessible from 2385 * Secure EL1. 2386 */ 2387 switch (arm_current_el(env)) { 2388 case 1: 2389 if (!arm_is_secure(env)) { 2390 return CP_ACCESS_UNDEFINED; 2391 } 2392 if (arm_is_el2_enabled(env)) { 2393 return CP_ACCESS_UNDEFINED; 2394 } 2395 if (!(env->cp15.scr_el3 & SCR_ST)) { 2396 return CP_ACCESS_TRAP_EL3; 2397 } 2398 return CP_ACCESS_OK; 2399 case 0: 2400 case 2: 2401 return CP_ACCESS_UNDEFINED; 2402 case 3: 2403 return CP_ACCESS_OK; 2404 default: 2405 g_assert_not_reached(); 2406 } 2407 } 2408 2409 static CPAccessResult gt_sel2timer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* 2414 * The AArch64 register view of the secure EL2 timers are mostly 2415 * accessible from EL3 and EL2 although can also be trapped to EL2 2416 * from EL1 depending on nested virt config. 2417 */ 2418 switch (arm_current_el(env)) { 2419 case 0: /* UNDEFINED */ 2420 return CP_ACCESS_UNDEFINED; 2421 case 1: 2422 if (!arm_is_secure(env)) { 2423 /* UNDEFINED */ 2424 return CP_ACCESS_UNDEFINED; 2425 } else if (arm_hcr_el2_eff(env) & HCR_NV) { 2426 /* Aarch64.SystemAccessTrap(EL2, 0x18) */ 2427 return CP_ACCESS_TRAP_EL2; 2428 } 2429 /* UNDEFINED */ 2430 return CP_ACCESS_UNDEFINED; 2431 case 2: 2432 if (!arm_is_secure(env)) { 2433 /* UNDEFINED */ 2434 return CP_ACCESS_UNDEFINED; 2435 } 2436 return CP_ACCESS_OK; 2437 case 3: 2438 if (env->cp15.scr_el3 & SCR_EEL2) { 2439 return CP_ACCESS_OK; 2440 } else { 2441 return CP_ACCESS_UNDEFINED; 2442 } 2443 default: 2444 g_assert_not_reached(); 2445 } 2446 } 2447 2448 uint64_t gt_get_countervalue(CPUARMState *env) 2449 { 2450 ARMCPU *cpu = env_archcpu(env); 2451 2452 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2453 } 2454 2455 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2456 { 2457 CPUARMState *env = &cpu->env; 2458 uint64_t cnthctl = env->cp15.cnthctl_el2; 2459 ARMSecuritySpace ss = arm_security_space(env); 2460 /* ISTATUS && !IMASK */ 2461 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2462 2463 /* 2464 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2465 * It is RES0 in Secure and NonSecure state. 2466 */ 2467 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2468 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2469 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2470 irqstate = 0; 2471 } 2472 2473 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2474 trace_arm_gt_update_irq(timeridx, irqstate); 2475 } 2476 2477 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2478 { 2479 /* 2480 * Changing security state between Root and Secure/NonSecure, which may 2481 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2482 * mask bits. Update the IRQ state accordingly. 2483 */ 2484 gt_update_irq(cpu, GTIMER_VIRT); 2485 gt_update_irq(cpu, GTIMER_PHYS); 2486 } 2487 2488 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2489 { 2490 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2491 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2492 arm_is_el2_enabled(env) && 2493 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2494 return env->cp15.cntpoff_el2; 2495 } 2496 return 0; 2497 } 2498 2499 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx) 2500 { 2501 /* 2502 * Return the timer offset to use for indirect accesses to the timer. 2503 * This is the Offset value as defined in D12.2.4.1 "Operation of the 2504 * CompareValue views of the timers". 2505 * 2506 * The condition here is not always the same as the condition for 2507 * whether to apply an offset register when doing a direct read of 2508 * the counter sysreg; those conditions are described in the 2509 * access pseudocode for each counter register. 2510 */ 2511 switch (timeridx) { 2512 case GTIMER_PHYS: 2513 return gt_phys_raw_cnt_offset(env); 2514 case GTIMER_VIRT: 2515 return env->cp15.cntvoff_el2; 2516 case GTIMER_HYP: 2517 case GTIMER_SEC: 2518 case GTIMER_HYPVIRT: 2519 case GTIMER_S_EL2_PHYS: 2520 case GTIMER_S_EL2_VIRT: 2521 return 0; 2522 default: 2523 g_assert_not_reached(); 2524 } 2525 } 2526 2527 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx) 2528 { 2529 /* 2530 * Return the timer offset to use for direct accesses to the 2531 * counter registers CNTPCT and CNTVCT, and for direct accesses 2532 * to the CNT*_TVAL registers. 2533 * 2534 * This isn't exactly the same as the indirect-access offset, 2535 * because here we also care about what EL the register access 2536 * is being made from. 2537 * 2538 * This corresponds to the access pseudocode for the registers. 2539 */ 2540 uint64_t hcr; 2541 2542 switch (timeridx) { 2543 case GTIMER_PHYS: 2544 if (arm_current_el(env) >= 2) { 2545 return 0; 2546 } 2547 return gt_phys_raw_cnt_offset(env); 2548 case GTIMER_VIRT: 2549 switch (arm_current_el(env)) { 2550 case 2: 2551 hcr = arm_hcr_el2_eff(env); 2552 if (hcr & HCR_E2H) { 2553 return 0; 2554 } 2555 break; 2556 case 0: 2557 hcr = arm_hcr_el2_eff(env); 2558 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2559 return 0; 2560 } 2561 break; 2562 } 2563 return env->cp15.cntvoff_el2; 2564 case GTIMER_HYP: 2565 case GTIMER_SEC: 2566 case GTIMER_HYPVIRT: 2567 case GTIMER_S_EL2_PHYS: 2568 case GTIMER_S_EL2_VIRT: 2569 return 0; 2570 default: 2571 g_assert_not_reached(); 2572 } 2573 } 2574 2575 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2576 { 2577 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2578 2579 if (gt->ctl & 1) { 2580 /* 2581 * Timer enabled: calculate and set current ISTATUS, irq, and 2582 * reset timer to when ISTATUS next has to change 2583 */ 2584 uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx); 2585 uint64_t count = gt_get_countervalue(&cpu->env); 2586 /* Note that this must be unsigned 64 bit arithmetic: */ 2587 int istatus = count - offset >= gt->cval; 2588 uint64_t nexttick; 2589 2590 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2591 2592 if (istatus) { 2593 /* 2594 * Next transition is when (count - offset) rolls back over to 0. 2595 * If offset > count then this is when count == offset; 2596 * if offset <= count then this is when count == offset + 2^64 2597 * For the latter case we set nexttick to an "as far in future 2598 * as possible" value and let the code below handle it. 2599 */ 2600 if (offset > count) { 2601 nexttick = offset; 2602 } else { 2603 nexttick = UINT64_MAX; 2604 } 2605 } else { 2606 /* 2607 * Next transition is when (count - offset) == cval, i.e. 2608 * when count == (cval + offset). 2609 * If that would overflow, then again we set up the next interrupt 2610 * for "as far in the future as possible" for the code below. 2611 */ 2612 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2613 nexttick = UINT64_MAX; 2614 } 2615 } 2616 /* 2617 * Note that the desired next expiry time might be beyond the 2618 * signed-64-bit range of a QEMUTimer -- in this case we just 2619 * set the timer for as far in the future as possible. When the 2620 * timer expires we will reset the timer for any remaining period. 2621 */ 2622 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2623 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2624 } else { 2625 timer_mod(cpu->gt_timer[timeridx], nexttick); 2626 } 2627 trace_arm_gt_recalc(timeridx, nexttick); 2628 } else { 2629 /* Timer disabled: ISTATUS and timer output always clear */ 2630 gt->ctl &= ~4; 2631 timer_del(cpu->gt_timer[timeridx]); 2632 trace_arm_gt_recalc_disabled(timeridx); 2633 } 2634 gt_update_irq(cpu, timeridx); 2635 } 2636 2637 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2638 int timeridx) 2639 { 2640 ARMCPU *cpu = env_archcpu(env); 2641 2642 timer_del(cpu->gt_timer[timeridx]); 2643 } 2644 2645 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2646 { 2647 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS); 2648 return gt_get_countervalue(env) - offset; 2649 } 2650 2651 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2652 { 2653 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT); 2654 return gt_get_countervalue(env) - offset; 2655 } 2656 2657 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2658 int timeridx, 2659 uint64_t value) 2660 { 2661 trace_arm_gt_cval_write(timeridx, value); 2662 env->cp15.c14_timer[timeridx].cval = value; 2663 gt_recalc_timer(env_archcpu(env), timeridx); 2664 } 2665 2666 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset) 2667 { 2668 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2669 (gt_get_countervalue(env) - offset)); 2670 } 2671 2672 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2673 int timeridx) 2674 { 2675 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2676 2677 return do_tval_read(env, timeridx, offset); 2678 } 2679 2680 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value, 2681 uint64_t offset) 2682 { 2683 trace_arm_gt_tval_write(timeridx, value); 2684 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2685 sextract64(value, 0, 32); 2686 gt_recalc_timer(env_archcpu(env), timeridx); 2687 } 2688 2689 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 int timeridx, 2691 uint64_t value) 2692 { 2693 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2694 2695 do_tval_write(env, timeridx, value, offset); 2696 } 2697 2698 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2699 int timeridx, 2700 uint64_t value) 2701 { 2702 ARMCPU *cpu = env_archcpu(env); 2703 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2704 2705 trace_arm_gt_ctl_write(timeridx, value); 2706 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2707 if ((oldval ^ value) & 1) { 2708 /* Enable toggled */ 2709 gt_recalc_timer(cpu, timeridx); 2710 } else if ((oldval ^ value) & 2) { 2711 /* 2712 * IMASK toggled: don't need to recalculate, 2713 * just set the interrupt line based on ISTATUS 2714 */ 2715 trace_arm_gt_imask_toggle(timeridx); 2716 gt_update_irq(cpu, timeridx); 2717 } 2718 } 2719 2720 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2721 { 2722 gt_timer_reset(env, ri, GTIMER_PHYS); 2723 } 2724 2725 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 gt_cval_write(env, ri, GTIMER_PHYS, value); 2729 } 2730 2731 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2732 { 2733 return gt_tval_read(env, ri, GTIMER_PHYS); 2734 } 2735 2736 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2737 uint64_t value) 2738 { 2739 gt_tval_write(env, ri, GTIMER_PHYS, value); 2740 } 2741 2742 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2746 } 2747 2748 static int gt_phys_redir_timeridx(CPUARMState *env) 2749 { 2750 switch (arm_mmu_idx(env)) { 2751 case ARMMMUIdx_E20_0: 2752 case ARMMMUIdx_E20_2: 2753 case ARMMMUIdx_E20_2_PAN: 2754 return GTIMER_HYP; 2755 default: 2756 return GTIMER_PHYS; 2757 } 2758 } 2759 2760 static int gt_virt_redir_timeridx(CPUARMState *env) 2761 { 2762 switch (arm_mmu_idx(env)) { 2763 case ARMMMUIdx_E20_0: 2764 case ARMMMUIdx_E20_2: 2765 case ARMMMUIdx_E20_2_PAN: 2766 return GTIMER_HYPVIRT; 2767 default: 2768 return GTIMER_VIRT; 2769 } 2770 } 2771 2772 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2773 const ARMCPRegInfo *ri) 2774 { 2775 int timeridx = gt_phys_redir_timeridx(env); 2776 return env->cp15.c14_timer[timeridx].cval; 2777 } 2778 2779 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2780 uint64_t value) 2781 { 2782 int timeridx = gt_phys_redir_timeridx(env); 2783 gt_cval_write(env, ri, timeridx, value); 2784 } 2785 2786 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2787 const ARMCPRegInfo *ri) 2788 { 2789 int timeridx = gt_phys_redir_timeridx(env); 2790 return gt_tval_read(env, ri, timeridx); 2791 } 2792 2793 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 int timeridx = gt_phys_redir_timeridx(env); 2797 gt_tval_write(env, ri, timeridx, value); 2798 } 2799 2800 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2801 const ARMCPRegInfo *ri) 2802 { 2803 int timeridx = gt_phys_redir_timeridx(env); 2804 return env->cp15.c14_timer[timeridx].ctl; 2805 } 2806 2807 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2808 uint64_t value) 2809 { 2810 int timeridx = gt_phys_redir_timeridx(env); 2811 gt_ctl_write(env, ri, timeridx, value); 2812 } 2813 2814 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2815 { 2816 gt_timer_reset(env, ri, GTIMER_VIRT); 2817 } 2818 2819 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2820 uint64_t value) 2821 { 2822 gt_cval_write(env, ri, GTIMER_VIRT, value); 2823 } 2824 2825 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2826 { 2827 /* 2828 * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0 2829 * we always apply CNTVOFF_EL2. Special case that here rather 2830 * than going into the generic gt_tval_read() and then having 2831 * to re-detect that it's this register. 2832 * Note that the accessfn/perms mean we know we're at EL2 or EL3 here. 2833 */ 2834 return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2); 2835 } 2836 2837 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 /* Similarly for writes to CNTV_TVAL_EL02 */ 2841 do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2); 2842 } 2843 2844 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2845 uint64_t value) 2846 { 2847 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2848 } 2849 2850 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 ARMCPU *cpu = env_archcpu(env); 2854 uint32_t oldval = env->cp15.cnthctl_el2; 2855 uint32_t valid_mask = 2856 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2857 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2858 R_CNTHCTL_EVNTEN_MASK | 2859 R_CNTHCTL_EVNTDIR_MASK | 2860 R_CNTHCTL_EVNTI_MASK | 2861 R_CNTHCTL_EL0VTEN_MASK | 2862 R_CNTHCTL_EL0PTEN_MASK | 2863 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2864 R_CNTHCTL_EL1PTEN_MASK; 2865 2866 if (cpu_isar_feature(aa64_rme, cpu)) { 2867 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2868 } 2869 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2870 valid_mask |= 2871 R_CNTHCTL_EL1TVT_MASK | 2872 R_CNTHCTL_EL1TVCT_MASK | 2873 R_CNTHCTL_EL1NVPCT_MASK | 2874 R_CNTHCTL_EL1NVVCT_MASK | 2875 R_CNTHCTL_EVNTIS_MASK; 2876 } 2877 if (cpu_isar_feature(aa64_ecv, cpu)) { 2878 valid_mask |= R_CNTHCTL_ECV_MASK; 2879 } 2880 2881 /* Clear RES0 bits */ 2882 value &= valid_mask; 2883 2884 raw_write(env, ri, value); 2885 2886 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2887 gt_update_irq(cpu, GTIMER_VIRT); 2888 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2889 gt_update_irq(cpu, GTIMER_PHYS); 2890 } 2891 } 2892 2893 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2894 uint64_t value) 2895 { 2896 ARMCPU *cpu = env_archcpu(env); 2897 2898 trace_arm_gt_cntvoff_write(value); 2899 raw_write(env, ri, value); 2900 gt_recalc_timer(cpu, GTIMER_VIRT); 2901 } 2902 2903 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2904 const ARMCPRegInfo *ri) 2905 { 2906 int timeridx = gt_virt_redir_timeridx(env); 2907 return env->cp15.c14_timer[timeridx].cval; 2908 } 2909 2910 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2911 uint64_t value) 2912 { 2913 int timeridx = gt_virt_redir_timeridx(env); 2914 gt_cval_write(env, ri, timeridx, value); 2915 } 2916 2917 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2918 const ARMCPRegInfo *ri) 2919 { 2920 int timeridx = gt_virt_redir_timeridx(env); 2921 return gt_tval_read(env, ri, timeridx); 2922 } 2923 2924 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2925 uint64_t value) 2926 { 2927 int timeridx = gt_virt_redir_timeridx(env); 2928 gt_tval_write(env, ri, timeridx, value); 2929 } 2930 2931 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2932 const ARMCPRegInfo *ri) 2933 { 2934 int timeridx = gt_virt_redir_timeridx(env); 2935 return env->cp15.c14_timer[timeridx].ctl; 2936 } 2937 2938 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2939 uint64_t value) 2940 { 2941 int timeridx = gt_virt_redir_timeridx(env); 2942 gt_ctl_write(env, ri, timeridx, value); 2943 } 2944 2945 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2946 { 2947 gt_timer_reset(env, ri, GTIMER_HYP); 2948 } 2949 2950 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 gt_cval_write(env, ri, GTIMER_HYP, value); 2954 } 2955 2956 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2957 { 2958 return gt_tval_read(env, ri, GTIMER_HYP); 2959 } 2960 2961 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2962 uint64_t value) 2963 { 2964 gt_tval_write(env, ri, GTIMER_HYP, value); 2965 } 2966 2967 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 gt_ctl_write(env, ri, GTIMER_HYP, value); 2971 } 2972 2973 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2974 { 2975 gt_timer_reset(env, ri, GTIMER_SEC); 2976 } 2977 2978 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 gt_cval_write(env, ri, GTIMER_SEC, value); 2982 } 2983 2984 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2985 { 2986 return gt_tval_read(env, ri, GTIMER_SEC); 2987 } 2988 2989 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2990 uint64_t value) 2991 { 2992 gt_tval_write(env, ri, GTIMER_SEC, value); 2993 } 2994 2995 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2996 uint64_t value) 2997 { 2998 gt_ctl_write(env, ri, GTIMER_SEC, value); 2999 } 3000 3001 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3002 { 3003 gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS); 3004 } 3005 3006 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3007 uint64_t value) 3008 { 3009 gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3010 } 3011 3012 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3013 { 3014 return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS); 3015 } 3016 3017 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3018 uint64_t value) 3019 { 3020 gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3021 } 3022 3023 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value); 3027 } 3028 3029 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3030 { 3031 gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT); 3032 } 3033 3034 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3035 uint64_t value) 3036 { 3037 gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3038 } 3039 3040 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3041 { 3042 return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT); 3043 } 3044 3045 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3046 uint64_t value) 3047 { 3048 gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3049 } 3050 3051 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3052 uint64_t value) 3053 { 3054 gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value); 3055 } 3056 3057 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3058 { 3059 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3060 } 3061 3062 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3063 uint64_t value) 3064 { 3065 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3066 } 3067 3068 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3069 { 3070 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3071 } 3072 3073 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3074 uint64_t value) 3075 { 3076 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3077 } 3078 3079 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3080 uint64_t value) 3081 { 3082 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3083 } 3084 3085 void arm_gt_ptimer_cb(void *opaque) 3086 { 3087 ARMCPU *cpu = opaque; 3088 3089 gt_recalc_timer(cpu, GTIMER_PHYS); 3090 } 3091 3092 void arm_gt_vtimer_cb(void *opaque) 3093 { 3094 ARMCPU *cpu = opaque; 3095 3096 gt_recalc_timer(cpu, GTIMER_VIRT); 3097 } 3098 3099 void arm_gt_htimer_cb(void *opaque) 3100 { 3101 ARMCPU *cpu = opaque; 3102 3103 gt_recalc_timer(cpu, GTIMER_HYP); 3104 } 3105 3106 void arm_gt_stimer_cb(void *opaque) 3107 { 3108 ARMCPU *cpu = opaque; 3109 3110 gt_recalc_timer(cpu, GTIMER_SEC); 3111 } 3112 3113 void arm_gt_sel2timer_cb(void *opaque) 3114 { 3115 ARMCPU *cpu = opaque; 3116 3117 gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS); 3118 } 3119 3120 void arm_gt_sel2vtimer_cb(void *opaque) 3121 { 3122 ARMCPU *cpu = opaque; 3123 3124 gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT); 3125 } 3126 3127 void arm_gt_hvtimer_cb(void *opaque) 3128 { 3129 ARMCPU *cpu = opaque; 3130 3131 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3132 } 3133 3134 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3135 /* 3136 * Note that CNTFRQ is purely reads-as-written for the benefit 3137 * of software; writing it doesn't actually change the timer frequency. 3138 * Our reset value matches the fixed frequency we implement the timer at. 3139 */ 3140 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3141 .type = ARM_CP_ALIAS, 3142 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3143 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3144 }, 3145 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3146 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3147 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3148 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3149 .resetfn = arm_gt_cntfrq_reset, 3150 }, 3151 /* overall control: mostly access permissions */ 3152 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3153 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3154 .access = PL1_RW, 3155 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3156 .resetvalue = 0, 3157 }, 3158 /* per-timer control */ 3159 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3160 .secure = ARM_CP_SECSTATE_NS, 3161 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3162 .accessfn = gt_ptimer_access, 3163 .fieldoffset = offsetoflow32(CPUARMState, 3164 cp15.c14_timer[GTIMER_PHYS].ctl), 3165 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3166 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3167 }, 3168 { .name = "CNTP_CTL_S", 3169 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3170 .secure = ARM_CP_SECSTATE_S, 3171 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3172 .accessfn = gt_ptimer_access, 3173 .fieldoffset = offsetoflow32(CPUARMState, 3174 cp15.c14_timer[GTIMER_SEC].ctl), 3175 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3176 }, 3177 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3178 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3179 .type = ARM_CP_IO, .access = PL0_RW, 3180 .accessfn = gt_ptimer_access, 3181 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3182 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3183 .resetvalue = 0, 3184 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3185 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3186 }, 3187 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3188 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3189 .accessfn = gt_vtimer_access, 3190 .fieldoffset = offsetoflow32(CPUARMState, 3191 cp15.c14_timer[GTIMER_VIRT].ctl), 3192 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3193 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3194 }, 3195 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3196 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3197 .type = ARM_CP_IO, .access = PL0_RW, 3198 .accessfn = gt_vtimer_access, 3199 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3200 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3201 .resetvalue = 0, 3202 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3203 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3204 }, 3205 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3206 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3207 .secure = ARM_CP_SECSTATE_NS, 3208 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3209 .accessfn = gt_ptimer_access, 3210 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3211 }, 3212 { .name = "CNTP_TVAL_S", 3213 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3214 .secure = ARM_CP_SECSTATE_S, 3215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3216 .accessfn = gt_ptimer_access, 3217 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3218 }, 3219 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3222 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3223 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3224 }, 3225 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3226 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3227 .accessfn = gt_vtimer_access, 3228 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3229 }, 3230 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3231 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3233 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3234 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3235 }, 3236 /* The counter itself */ 3237 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3238 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3239 .accessfn = gt_pct_access, 3240 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3241 }, 3242 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3243 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3244 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3245 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3246 }, 3247 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3248 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3249 .accessfn = gt_vct_access, 3250 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3251 }, 3252 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3254 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3255 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3256 }, 3257 /* Comparison value, indicating when the timer goes off */ 3258 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3259 .secure = ARM_CP_SECSTATE_NS, 3260 .access = PL0_RW, 3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3263 .accessfn = gt_ptimer_access, 3264 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3265 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3266 }, 3267 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3268 .secure = ARM_CP_SECSTATE_S, 3269 .access = PL0_RW, 3270 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3272 .accessfn = gt_ptimer_access, 3273 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3274 }, 3275 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3276 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3277 .access = PL0_RW, 3278 .type = ARM_CP_IO, 3279 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3281 .resetvalue = 0, .accessfn = gt_ptimer_access, 3282 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3283 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3284 }, 3285 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3286 .access = PL0_RW, 3287 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3288 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3289 .accessfn = gt_vtimer_access, 3290 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3291 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3292 }, 3293 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3294 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3295 .access = PL0_RW, 3296 .type = ARM_CP_IO, 3297 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3299 .resetvalue = 0, .accessfn = gt_vtimer_access, 3300 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3301 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3302 }, 3303 /* 3304 * Secure timer -- this is actually restricted to only EL3 3305 * and configurably Secure-EL1 via the accessfn. 3306 */ 3307 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3308 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3309 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3310 .accessfn = gt_stimer_access, 3311 .readfn = gt_sec_tval_read, 3312 .writefn = gt_sec_tval_write, 3313 .resetfn = gt_sec_timer_reset, 3314 }, 3315 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3316 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3317 .type = ARM_CP_IO, .access = PL1_RW, 3318 .accessfn = gt_stimer_access, 3319 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3320 .resetvalue = 0, 3321 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3322 }, 3323 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3325 .type = ARM_CP_IO, .access = PL1_RW, 3326 .accessfn = gt_stimer_access, 3327 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3328 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3329 }, 3330 }; 3331 3332 /* 3333 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3334 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3335 * so our implementations here are identical to the normal registers. 3336 */ 3337 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3338 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3339 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3340 .accessfn = gt_vct_access, 3341 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3342 }, 3343 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3346 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3347 }, 3348 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3349 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3350 .accessfn = gt_pct_access, 3351 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3352 }, 3353 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3355 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3356 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3357 }, 3358 }; 3359 3360 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3361 const ARMCPRegInfo *ri, 3362 bool isread) 3363 { 3364 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3365 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3366 return CP_ACCESS_TRAP_EL3; 3367 } 3368 return CP_ACCESS_OK; 3369 } 3370 3371 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3372 uint64_t value) 3373 { 3374 ARMCPU *cpu = env_archcpu(env); 3375 3376 trace_arm_gt_cntpoff_write(value); 3377 raw_write(env, ri, value); 3378 gt_recalc_timer(cpu, GTIMER_PHYS); 3379 } 3380 3381 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3382 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3384 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3385 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3386 .nv2_redirect_offset = 0x1a8, 3387 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3388 }; 3389 #else 3390 3391 /* 3392 * In user-mode most of the generic timer registers are inaccessible 3393 * however modern kernels (4.12+) allow access to cntvct_el0 3394 */ 3395 3396 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3397 { 3398 ARMCPU *cpu = env_archcpu(env); 3399 3400 /* 3401 * Currently we have no support for QEMUTimer in linux-user so we 3402 * can't call gt_get_countervalue(env), instead we directly 3403 * call the lower level functions. 3404 */ 3405 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3406 } 3407 3408 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3409 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3410 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3411 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3412 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3413 .resetfn = arm_gt_cntfrq_reset, 3414 }, 3415 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3416 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3417 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3418 .readfn = gt_virt_cnt_read, 3419 }, 3420 }; 3421 3422 /* 3423 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3424 * is exposed to userspace by Linux. 3425 */ 3426 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3427 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3429 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3430 .readfn = gt_virt_cnt_read, 3431 }, 3432 }; 3433 3434 #endif 3435 3436 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3437 { 3438 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3439 raw_write(env, ri, value); 3440 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3441 raw_write(env, ri, value & 0xfffff6ff); 3442 } else { 3443 raw_write(env, ri, value & 0xfffff1ff); 3444 } 3445 } 3446 3447 #ifndef CONFIG_USER_ONLY 3448 /* get_phys_addr() isn't present for user-mode-only targets */ 3449 3450 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3451 bool isread) 3452 { 3453 if (ri->opc2 & 4) { 3454 /* 3455 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3456 * Secure EL1 (which can only happen if EL3 is AArch64). 3457 * They are simply UNDEF if executed from NS EL1. 3458 * They function normally from EL2 or EL3. 3459 */ 3460 if (arm_current_el(env) == 1) { 3461 if (arm_is_secure_below_el3(env)) { 3462 if (env->cp15.scr_el3 & SCR_EEL2) { 3463 return CP_ACCESS_TRAP_EL2; 3464 } 3465 return CP_ACCESS_TRAP_EL3; 3466 } 3467 return CP_ACCESS_UNDEFINED; 3468 } 3469 } 3470 return CP_ACCESS_OK; 3471 } 3472 3473 #ifdef CONFIG_TCG 3474 static int par_el1_shareability(GetPhysAddrResult *res) 3475 { 3476 /* 3477 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3478 * memory -- see pseudocode PAREncodeShareability(). 3479 */ 3480 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3481 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3482 return 2; 3483 } 3484 return res->cacheattrs.shareability; 3485 } 3486 3487 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3488 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3489 ARMSecuritySpace ss) 3490 { 3491 bool ret; 3492 uint64_t par64; 3493 bool format64 = false; 3494 ARMMMUFaultInfo fi = {}; 3495 GetPhysAddrResult res = {}; 3496 3497 /* 3498 * I_MXTJT: Granule protection checks are not performed on the final 3499 * address of a successful translation. This is a translation not a 3500 * memory reference, so "memop = none = 0". 3501 */ 3502 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3503 mmu_idx, ss, &res, &fi); 3504 3505 /* 3506 * ATS operations only do S1 or S1+S2 translations, so we never 3507 * have to deal with the ARMCacheAttrs format for S2 only. 3508 */ 3509 assert(!res.cacheattrs.is_s2_format); 3510 3511 if (ret) { 3512 /* 3513 * Some kinds of translation fault must cause exceptions rather 3514 * than being reported in the PAR. 3515 */ 3516 int current_el = arm_current_el(env); 3517 int target_el; 3518 uint32_t syn, fsr, fsc; 3519 bool take_exc = false; 3520 3521 if (fi.s1ptw && current_el == 1 3522 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3523 /* 3524 * Synchronous stage 2 fault on an access made as part of the 3525 * translation table walk for AT S1E0* or AT S1E1* insn 3526 * executed from NS EL1. If this is a synchronous external abort 3527 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3528 * to EL3. Otherwise the fault is taken as an exception to EL2, 3529 * and HPFAR_EL2 holds the faulting IPA. 3530 */ 3531 if (fi.type == ARMFault_SyncExternalOnWalk && 3532 (env->cp15.scr_el3 & SCR_EA)) { 3533 target_el = 3; 3534 } else { 3535 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3536 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3537 env->cp15.hpfar_el2 |= HPFAR_NS; 3538 } 3539 target_el = 2; 3540 } 3541 take_exc = true; 3542 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3543 /* 3544 * Synchronous external aborts during a translation table walk 3545 * are taken as Data Abort exceptions. 3546 */ 3547 if (fi.stage2) { 3548 if (current_el == 3) { 3549 target_el = 3; 3550 } else { 3551 target_el = 2; 3552 } 3553 } else { 3554 target_el = exception_target_el(env); 3555 } 3556 take_exc = true; 3557 } 3558 3559 if (take_exc) { 3560 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3561 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3562 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3563 fsr = arm_fi_to_lfsc(&fi); 3564 fsc = extract32(fsr, 0, 6); 3565 } else { 3566 fsr = arm_fi_to_sfsc(&fi); 3567 fsc = 0x3f; 3568 } 3569 /* 3570 * Report exception with ESR indicating a fault due to a 3571 * translation table walk for a cache maintenance instruction. 3572 */ 3573 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3574 fi.ea, 1, fi.s1ptw, 1, fsc); 3575 env->exception.vaddress = value; 3576 env->exception.fsr = fsr; 3577 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3578 } 3579 } 3580 3581 if (is_a64(env)) { 3582 format64 = true; 3583 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3584 /* 3585 * ATS1Cxx: 3586 * * TTBCR.EAE determines whether the result is returned using the 3587 * 32-bit or the 64-bit PAR format 3588 * * Instructions executed in Hyp mode always use the 64bit format 3589 * 3590 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3591 * * The Non-secure TTBCR.EAE bit is set to 1 3592 * * The implementation includes EL2, and the value of HCR.VM is 1 3593 * 3594 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3595 * 3596 * ATS1Hx always uses the 64bit format. 3597 */ 3598 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3599 3600 if (arm_feature(env, ARM_FEATURE_EL2)) { 3601 if (mmu_idx == ARMMMUIdx_E10_0 || 3602 mmu_idx == ARMMMUIdx_E10_1 || 3603 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3604 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3605 } else { 3606 format64 |= arm_current_el(env) == 2; 3607 } 3608 } 3609 } 3610 3611 if (format64) { 3612 /* Create a 64-bit PAR */ 3613 par64 = (1 << 11); /* LPAE bit always set */ 3614 if (!ret) { 3615 par64 |= res.f.phys_addr & ~0xfffULL; 3616 if (!res.f.attrs.secure) { 3617 par64 |= (1 << 9); /* NS */ 3618 } 3619 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3620 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3621 } else { 3622 uint32_t fsr = arm_fi_to_lfsc(&fi); 3623 3624 par64 |= 1; /* F */ 3625 par64 |= (fsr & 0x3f) << 1; /* FS */ 3626 if (fi.stage2) { 3627 par64 |= (1 << 9); /* S */ 3628 } 3629 if (fi.s1ptw) { 3630 par64 |= (1 << 8); /* PTW */ 3631 } 3632 } 3633 } else { 3634 /* 3635 * fsr is a DFSR/IFSR value for the short descriptor 3636 * translation table format (with WnR always clear). 3637 * Convert it to a 32-bit PAR. 3638 */ 3639 if (!ret) { 3640 /* We do not set any attribute bits in the PAR */ 3641 if (res.f.lg_page_size == 24 3642 && arm_feature(env, ARM_FEATURE_V7)) { 3643 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3644 } else { 3645 par64 = res.f.phys_addr & 0xfffff000; 3646 } 3647 if (!res.f.attrs.secure) { 3648 par64 |= (1 << 9); /* NS */ 3649 } 3650 } else { 3651 uint32_t fsr = arm_fi_to_sfsc(&fi); 3652 3653 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3654 ((fsr & 0xf) << 1) | 1; 3655 } 3656 } 3657 return par64; 3658 } 3659 #endif /* CONFIG_TCG */ 3660 3661 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3662 { 3663 #ifdef CONFIG_TCG 3664 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3665 uint64_t par64; 3666 ARMMMUIdx mmu_idx; 3667 int el = arm_current_el(env); 3668 ARMSecuritySpace ss = arm_security_space(env); 3669 3670 switch (ri->opc2 & 6) { 3671 case 0: 3672 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3673 switch (el) { 3674 case 3: 3675 if (ri->crm == 9 && arm_pan_enabled(env)) { 3676 mmu_idx = ARMMMUIdx_E30_3_PAN; 3677 } else { 3678 mmu_idx = ARMMMUIdx_E3; 3679 } 3680 break; 3681 case 2: 3682 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3683 /* fall through */ 3684 case 1: 3685 if (ri->crm == 9 && arm_pan_enabled(env)) { 3686 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3687 } else { 3688 mmu_idx = ARMMMUIdx_Stage1_E1; 3689 } 3690 break; 3691 default: 3692 g_assert_not_reached(); 3693 } 3694 break; 3695 case 2: 3696 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3697 switch (el) { 3698 case 3: 3699 mmu_idx = ARMMMUIdx_E30_0; 3700 break; 3701 case 2: 3702 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3703 mmu_idx = ARMMMUIdx_Stage1_E0; 3704 break; 3705 case 1: 3706 mmu_idx = ARMMMUIdx_Stage1_E0; 3707 break; 3708 default: 3709 g_assert_not_reached(); 3710 } 3711 break; 3712 case 4: 3713 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3714 mmu_idx = ARMMMUIdx_E10_1; 3715 ss = ARMSS_NonSecure; 3716 break; 3717 case 6: 3718 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3719 mmu_idx = ARMMMUIdx_E10_0; 3720 ss = ARMSS_NonSecure; 3721 break; 3722 default: 3723 g_assert_not_reached(); 3724 } 3725 3726 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3727 3728 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3729 #else 3730 /* Handled by hardware accelerator. */ 3731 g_assert_not_reached(); 3732 #endif /* CONFIG_TCG */ 3733 } 3734 3735 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3736 uint64_t value) 3737 { 3738 #ifdef CONFIG_TCG 3739 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3740 uint64_t par64; 3741 3742 /* There is no SecureEL2 for AArch32. */ 3743 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3744 ARMSS_NonSecure); 3745 3746 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3747 #else 3748 /* Handled by hardware accelerator. */ 3749 g_assert_not_reached(); 3750 #endif /* CONFIG_TCG */ 3751 } 3752 3753 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3754 bool isread) 3755 { 3756 /* 3757 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3758 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3759 * only happen when executing at EL3 because that combination also causes an 3760 * illegal exception return. We don't need to check FEAT_RME either, because 3761 * scr_write() ensures that the NSE bit is not set otherwise. 3762 */ 3763 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3764 return CP_ACCESS_UNDEFINED; 3765 } 3766 return CP_ACCESS_OK; 3767 } 3768 3769 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3770 bool isread) 3771 { 3772 if (arm_current_el(env) == 3 && 3773 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3774 return CP_ACCESS_UNDEFINED; 3775 } 3776 return at_e012_access(env, ri, isread); 3777 } 3778 3779 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3780 bool isread) 3781 { 3782 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3783 return CP_ACCESS_TRAP_EL2; 3784 } 3785 return at_e012_access(env, ri, isread); 3786 } 3787 3788 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3789 uint64_t value) 3790 { 3791 #ifdef CONFIG_TCG 3792 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3793 ARMMMUIdx mmu_idx; 3794 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3795 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3796 bool for_el3 = false; 3797 ARMSecuritySpace ss; 3798 3799 switch (ri->opc2 & 6) { 3800 case 0: 3801 switch (ri->opc1) { 3802 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3803 if (ri->crm == 9 && arm_pan_enabled(env)) { 3804 mmu_idx = regime_e20 ? 3805 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3806 } else { 3807 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3808 } 3809 break; 3810 case 4: /* AT S1E2R, AT S1E2W */ 3811 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3812 break; 3813 case 6: /* AT S1E3R, AT S1E3W */ 3814 mmu_idx = ARMMMUIdx_E3; 3815 for_el3 = true; 3816 break; 3817 default: 3818 g_assert_not_reached(); 3819 } 3820 break; 3821 case 2: /* AT S1E0R, AT S1E0W */ 3822 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3823 break; 3824 case 4: /* AT S12E1R, AT S12E1W */ 3825 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3826 break; 3827 case 6: /* AT S12E0R, AT S12E0W */ 3828 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3829 break; 3830 default: 3831 g_assert_not_reached(); 3832 } 3833 3834 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3835 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3836 #else 3837 /* Handled by hardware accelerator. */ 3838 g_assert_not_reached(); 3839 #endif /* CONFIG_TCG */ 3840 } 3841 #endif 3842 3843 /* Return basic MPU access permission bits. */ 3844 static uint32_t simple_mpu_ap_bits(uint32_t val) 3845 { 3846 uint32_t ret; 3847 uint32_t mask; 3848 int i; 3849 ret = 0; 3850 mask = 3; 3851 for (i = 0; i < 16; i += 2) { 3852 ret |= (val >> i) & mask; 3853 mask <<= 2; 3854 } 3855 return ret; 3856 } 3857 3858 /* Pad basic MPU access permission bits to extended format. */ 3859 static uint32_t extended_mpu_ap_bits(uint32_t val) 3860 { 3861 uint32_t ret; 3862 uint32_t mask; 3863 int i; 3864 ret = 0; 3865 mask = 3; 3866 for (i = 0; i < 16; i += 2) { 3867 ret |= (val & mask) << i; 3868 mask <<= 2; 3869 } 3870 return ret; 3871 } 3872 3873 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3874 uint64_t value) 3875 { 3876 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3877 } 3878 3879 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3880 { 3881 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3882 } 3883 3884 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3888 } 3889 3890 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3891 { 3892 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3893 } 3894 3895 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3896 { 3897 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3898 3899 if (!u32p) { 3900 return 0; 3901 } 3902 3903 u32p += env->pmsav7.rnr[M_REG_NS]; 3904 return *u32p; 3905 } 3906 3907 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3908 uint64_t value) 3909 { 3910 ARMCPU *cpu = env_archcpu(env); 3911 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3912 3913 if (!u32p) { 3914 return; 3915 } 3916 3917 u32p += env->pmsav7.rnr[M_REG_NS]; 3918 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3919 *u32p = value; 3920 } 3921 3922 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3923 uint64_t value) 3924 { 3925 ARMCPU *cpu = env_archcpu(env); 3926 uint32_t nrgs = cpu->pmsav7_dregion; 3927 3928 if (value >= nrgs) { 3929 qemu_log_mask(LOG_GUEST_ERROR, 3930 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3931 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3932 return; 3933 } 3934 3935 raw_write(env, ri, value); 3936 } 3937 3938 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3939 uint64_t value) 3940 { 3941 ARMCPU *cpu = env_archcpu(env); 3942 3943 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3944 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3945 } 3946 3947 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3948 { 3949 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3950 } 3951 3952 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3953 uint64_t value) 3954 { 3955 ARMCPU *cpu = env_archcpu(env); 3956 3957 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3958 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3959 } 3960 3961 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3962 { 3963 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3964 } 3965 3966 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3967 uint64_t value) 3968 { 3969 ARMCPU *cpu = env_archcpu(env); 3970 3971 /* 3972 * Ignore writes that would select not implemented region. 3973 * This is architecturally UNPREDICTABLE. 3974 */ 3975 if (value >= cpu->pmsav7_dregion) { 3976 return; 3977 } 3978 3979 env->pmsav7.rnr[M_REG_NS] = value; 3980 } 3981 3982 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3983 uint64_t value) 3984 { 3985 ARMCPU *cpu = env_archcpu(env); 3986 3987 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3988 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3989 } 3990 3991 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3992 { 3993 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3994 } 3995 3996 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3997 uint64_t value) 3998 { 3999 ARMCPU *cpu = env_archcpu(env); 4000 4001 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4002 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4003 } 4004 4005 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4006 { 4007 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4008 } 4009 4010 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4011 uint64_t value) 4012 { 4013 uint32_t n; 4014 uint32_t bit; 4015 ARMCPU *cpu = env_archcpu(env); 4016 4017 /* Ignore writes to unimplemented regions */ 4018 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4019 value &= MAKE_64BIT_MASK(0, rmax); 4020 4021 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4022 4023 /* Register alias is only valid for first 32 indexes */ 4024 for (n = 0; n < rmax; ++n) { 4025 bit = extract32(value, n, 1); 4026 env->pmsav8.hprlar[n] = deposit32( 4027 env->pmsav8.hprlar[n], 0, 1, bit); 4028 } 4029 } 4030 4031 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4032 { 4033 uint32_t n; 4034 uint32_t result = 0x0; 4035 ARMCPU *cpu = env_archcpu(env); 4036 4037 /* Register alias is only valid for first 32 indexes */ 4038 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4039 if (env->pmsav8.hprlar[n] & 0x1) { 4040 result |= (0x1 << n); 4041 } 4042 } 4043 return result; 4044 } 4045 4046 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4047 uint64_t value) 4048 { 4049 ARMCPU *cpu = env_archcpu(env); 4050 4051 /* 4052 * Ignore writes that would select not implemented region. 4053 * This is architecturally UNPREDICTABLE. 4054 */ 4055 if (value >= cpu->pmsav8r_hdregion) { 4056 return; 4057 } 4058 4059 env->pmsav8.hprselr = value; 4060 } 4061 4062 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4063 uint64_t value) 4064 { 4065 ARMCPU *cpu = env_archcpu(env); 4066 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4067 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4068 4069 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4070 4071 if (ri->opc1 & 4) { 4072 if (index >= cpu->pmsav8r_hdregion) { 4073 return; 4074 } 4075 if (ri->opc2 & 0x1) { 4076 env->pmsav8.hprlar[index] = value; 4077 } else { 4078 env->pmsav8.hprbar[index] = value; 4079 } 4080 } else { 4081 if (index >= cpu->pmsav7_dregion) { 4082 return; 4083 } 4084 if (ri->opc2 & 0x1) { 4085 env->pmsav8.rlar[M_REG_NS][index] = value; 4086 } else { 4087 env->pmsav8.rbar[M_REG_NS][index] = value; 4088 } 4089 } 4090 } 4091 4092 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4093 { 4094 ARMCPU *cpu = env_archcpu(env); 4095 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4096 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4097 4098 if (ri->opc1 & 4) { 4099 if (index >= cpu->pmsav8r_hdregion) { 4100 return 0x0; 4101 } 4102 if (ri->opc2 & 0x1) { 4103 return env->pmsav8.hprlar[index]; 4104 } else { 4105 return env->pmsav8.hprbar[index]; 4106 } 4107 } else { 4108 if (index >= cpu->pmsav7_dregion) { 4109 return 0x0; 4110 } 4111 if (ri->opc2 & 0x1) { 4112 return env->pmsav8.rlar[M_REG_NS][index]; 4113 } else { 4114 return env->pmsav8.rbar[M_REG_NS][index]; 4115 } 4116 } 4117 } 4118 4119 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4120 { .name = "PRBAR", 4121 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4122 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4123 .accessfn = access_tvm_trvm, 4124 .readfn = prbar_read, .writefn = prbar_write }, 4125 { .name = "PRLAR", 4126 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4127 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4128 .accessfn = access_tvm_trvm, 4129 .readfn = prlar_read, .writefn = prlar_write }, 4130 { .name = "PRSELR", .resetvalue = 0, 4131 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4132 .access = PL1_RW, .accessfn = access_tvm_trvm, 4133 .writefn = prselr_write, 4134 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4135 { .name = "HPRBAR", .resetvalue = 0, 4136 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4137 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4138 .readfn = hprbar_read, .writefn = hprbar_write }, 4139 { .name = "HPRLAR", 4140 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4141 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4142 .readfn = hprlar_read, .writefn = hprlar_write }, 4143 { .name = "HPRSELR", .resetvalue = 0, 4144 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4145 .access = PL2_RW, 4146 .writefn = hprselr_write, 4147 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4148 { .name = "HPRENR", 4149 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4150 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4151 .readfn = hprenr_read, .writefn = hprenr_write }, 4152 }; 4153 4154 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4155 /* 4156 * Reset for all these registers is handled in arm_cpu_reset(), 4157 * because the PMSAv7 is also used by M-profile CPUs, which do 4158 * not register cpregs but still need the state to be reset. 4159 */ 4160 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4161 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4162 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4163 .readfn = pmsav7_read, .writefn = pmsav7_write, 4164 .resetfn = arm_cp_reset_ignore }, 4165 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4166 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4167 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4168 .readfn = pmsav7_read, .writefn = pmsav7_write, 4169 .resetfn = arm_cp_reset_ignore }, 4170 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4171 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4172 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4173 .readfn = pmsav7_read, .writefn = pmsav7_write, 4174 .resetfn = arm_cp_reset_ignore }, 4175 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4176 .access = PL1_RW, 4177 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4178 .writefn = pmsav7_rgnr_write, 4179 .resetfn = arm_cp_reset_ignore }, 4180 }; 4181 4182 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4183 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4184 .access = PL1_RW, .type = ARM_CP_ALIAS, 4185 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4186 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4187 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4188 .access = PL1_RW, .type = ARM_CP_ALIAS, 4189 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4190 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4191 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4192 .access = PL1_RW, 4193 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4194 .resetvalue = 0, }, 4195 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4196 .access = PL1_RW, 4197 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4198 .resetvalue = 0, }, 4199 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4200 .access = PL1_RW, 4201 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4202 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4203 .access = PL1_RW, 4204 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4205 /* Protection region base and size registers */ 4206 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4207 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4208 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4209 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4210 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4211 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4212 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4213 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4214 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4215 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4216 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4217 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4218 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4219 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4220 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4221 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4222 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4223 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4224 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4225 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4226 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4227 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4228 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4229 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4230 }; 4231 4232 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4233 uint64_t value) 4234 { 4235 ARMCPU *cpu = env_archcpu(env); 4236 4237 if (!arm_feature(env, ARM_FEATURE_V8)) { 4238 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4239 /* 4240 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4241 * using Long-descriptor translation table format 4242 */ 4243 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4244 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4245 /* 4246 * In an implementation that includes the Security Extensions 4247 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4248 * Short-descriptor translation table format. 4249 */ 4250 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4251 } else { 4252 value &= TTBCR_N; 4253 } 4254 } 4255 4256 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4257 /* 4258 * With LPAE the TTBCR could result in a change of ASID 4259 * via the TTBCR.A1 bit, so do a TLB flush. 4260 */ 4261 tlb_flush(CPU(cpu)); 4262 } 4263 raw_write(env, ri, value); 4264 } 4265 4266 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4267 uint64_t value) 4268 { 4269 ARMCPU *cpu = env_archcpu(env); 4270 4271 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4272 tlb_flush(CPU(cpu)); 4273 raw_write(env, ri, value); 4274 } 4275 4276 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4277 uint64_t value) 4278 { 4279 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4280 if (cpreg_field_is_64bit(ri) && 4281 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4282 ARMCPU *cpu = env_archcpu(env); 4283 tlb_flush(CPU(cpu)); 4284 } 4285 raw_write(env, ri, value); 4286 } 4287 4288 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4289 uint64_t value) 4290 { 4291 /* 4292 * If we are running with E2&0 regime, then an ASID is active. 4293 * Flush if that might be changing. Note we're not checking 4294 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4295 * holds the active ASID, only checking the field that might. 4296 */ 4297 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4298 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4299 uint16_t mask = ARMMMUIdxBit_E20_2 | 4300 ARMMMUIdxBit_E20_2_PAN | 4301 ARMMMUIdxBit_E20_0; 4302 tlb_flush_by_mmuidx(env_cpu(env), mask); 4303 } 4304 raw_write(env, ri, value); 4305 } 4306 4307 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4308 uint64_t value) 4309 { 4310 ARMCPU *cpu = env_archcpu(env); 4311 CPUState *cs = CPU(cpu); 4312 4313 /* 4314 * A change in VMID to the stage2 page table (Stage2) invalidates 4315 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4316 */ 4317 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4318 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4319 } 4320 raw_write(env, ri, value); 4321 } 4322 4323 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4324 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4325 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4326 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4327 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4328 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4329 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4330 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4331 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4332 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4333 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4335 offsetof(CPUARMState, cp15.dfar_ns) } }, 4336 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4337 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4338 .access = PL1_RW, .accessfn = access_tvm_trvm, 4339 .fgt = FGT_FAR_EL1, 4340 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4341 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4342 .resetvalue = 0, }, 4343 }; 4344 4345 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4346 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4347 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4348 .access = PL1_RW, .accessfn = access_tvm_trvm, 4349 .fgt = FGT_ESR_EL1, 4350 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4351 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4352 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4353 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4354 .access = PL1_RW, .accessfn = access_tvm_trvm, 4355 .fgt = FGT_TTBR0_EL1, 4356 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4357 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4358 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4359 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4360 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4361 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4362 .access = PL1_RW, .accessfn = access_tvm_trvm, 4363 .fgt = FGT_TTBR1_EL1, 4364 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4365 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4366 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4367 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4368 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4369 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4370 .access = PL1_RW, .accessfn = access_tvm_trvm, 4371 .fgt = FGT_TCR_EL1, 4372 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4373 .writefn = vmsa_tcr_el12_write, 4374 .raw_writefn = raw_write, 4375 .resetvalue = 0, 4376 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4377 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4378 .access = PL1_RW, .accessfn = access_tvm_trvm, 4379 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4380 .raw_writefn = raw_write, 4381 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4382 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4383 }; 4384 4385 /* 4386 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4387 * qemu tlbs nor adjusting cached masks. 4388 */ 4389 static const ARMCPRegInfo ttbcr2_reginfo = { 4390 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4391 .access = PL1_RW, .accessfn = access_tvm_trvm, 4392 .type = ARM_CP_ALIAS, 4393 .bank_fieldoffsets = { 4394 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4395 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4396 }, 4397 }; 4398 4399 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4400 uint64_t value) 4401 { 4402 env->cp15.c15_ticonfig = value & 0xe7; 4403 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4404 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4405 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4406 } 4407 4408 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4409 uint64_t value) 4410 { 4411 env->cp15.c15_threadid = value & 0xffff; 4412 } 4413 4414 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4415 uint64_t value) 4416 { 4417 /* Wait-for-interrupt (deprecated) */ 4418 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4419 } 4420 4421 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4422 uint64_t value) 4423 { 4424 /* 4425 * On OMAP there are registers indicating the max/min index of dcache lines 4426 * containing a dirty line; cache flush operations have to reset these. 4427 */ 4428 env->cp15.c15_i_max = 0x000; 4429 env->cp15.c15_i_min = 0xff0; 4430 } 4431 4432 static const ARMCPRegInfo omap_cp_reginfo[] = { 4433 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4434 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4435 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4436 .resetvalue = 0, }, 4437 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4438 .access = PL1_RW, .type = ARM_CP_NOP }, 4439 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4440 .access = PL1_RW, 4441 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4442 .writefn = omap_ticonfig_write }, 4443 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4444 .access = PL1_RW, 4445 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4446 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4447 .access = PL1_RW, .resetvalue = 0xff0, 4448 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4449 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4450 .access = PL1_RW, 4451 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4452 .writefn = omap_threadid_write }, 4453 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4454 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4455 .type = ARM_CP_NO_RAW, 4456 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4457 /* 4458 * TODO: Peripheral port remap register: 4459 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4460 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4461 * when MMU is off. 4462 */ 4463 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4464 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4465 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4466 .writefn = omap_cachemaint_write }, 4467 { .name = "C9", .cp = 15, .crn = 9, 4468 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4469 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4470 }; 4471 4472 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4473 uint64_t value) 4474 { 4475 env->cp15.c15_cpar = value & 0x3fff; 4476 } 4477 4478 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4479 { .name = "XSCALE_CPAR", 4480 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4481 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4482 .writefn = xscale_cpar_write, }, 4483 { .name = "XSCALE_AUXCR", 4484 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4485 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4486 .resetvalue = 0, }, 4487 /* 4488 * XScale specific cache-lockdown: since we have no cache we NOP these 4489 * and hope the guest does not really rely on cache behaviour. 4490 */ 4491 { .name = "XSCALE_LOCK_ICACHE_LINE", 4492 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4493 .access = PL1_W, .type = ARM_CP_NOP }, 4494 { .name = "XSCALE_UNLOCK_ICACHE", 4495 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4496 .access = PL1_W, .type = ARM_CP_NOP }, 4497 { .name = "XSCALE_DCACHE_LOCK", 4498 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4499 .access = PL1_RW, .type = ARM_CP_NOP }, 4500 { .name = "XSCALE_UNLOCK_DCACHE", 4501 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4502 .access = PL1_W, .type = ARM_CP_NOP }, 4503 }; 4504 4505 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4506 /* 4507 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4508 * implementation of this implementation-defined space. 4509 * Ideally this should eventually disappear in favour of actually 4510 * implementing the correct behaviour for all cores. 4511 */ 4512 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4513 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4514 .access = PL1_RW, 4515 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4516 .resetvalue = 0 }, 4517 }; 4518 4519 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4520 /* Cache status: RAZ because we have no cache so it's always clean */ 4521 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4522 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4523 .resetvalue = 0 }, 4524 }; 4525 4526 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4527 /* We never have a block transfer operation in progress */ 4528 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4529 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4530 .resetvalue = 0 }, 4531 /* The cache ops themselves: these all NOP for QEMU */ 4532 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4533 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4534 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4535 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4536 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4537 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4538 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4539 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4540 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4541 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4542 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4543 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4544 }; 4545 4546 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4547 /* 4548 * The cache test-and-clean instructions always return (1 << 30) 4549 * to indicate that there are no dirty cache lines. 4550 */ 4551 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4552 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4553 .resetvalue = (1 << 30) }, 4554 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4555 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4556 .resetvalue = (1 << 30) }, 4557 }; 4558 4559 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4560 /* Ignore ReadBuffer accesses */ 4561 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4562 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4563 .access = PL1_RW, .resetvalue = 0, 4564 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4565 }; 4566 4567 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4568 { 4569 unsigned int cur_el = arm_current_el(env); 4570 4571 if (arm_is_el2_enabled(env) && cur_el == 1) { 4572 return env->cp15.vpidr_el2; 4573 } 4574 return raw_read(env, ri); 4575 } 4576 4577 static uint64_t mpidr_read_val(CPUARMState *env) 4578 { 4579 ARMCPU *cpu = env_archcpu(env); 4580 uint64_t mpidr = cpu->mp_affinity; 4581 4582 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4583 mpidr |= (1U << 31); 4584 /* 4585 * Cores which are uniprocessor (non-coherent) 4586 * but still implement the MP extensions set 4587 * bit 30. (For instance, Cortex-R5). 4588 */ 4589 if (cpu->mp_is_up) { 4590 mpidr |= (1u << 30); 4591 } 4592 } 4593 return mpidr; 4594 } 4595 4596 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4597 { 4598 unsigned int cur_el = arm_current_el(env); 4599 4600 if (arm_is_el2_enabled(env) && cur_el == 1) { 4601 return env->cp15.vmpidr_el2; 4602 } 4603 return mpidr_read_val(env); 4604 } 4605 4606 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4607 /* NOP AMAIR0/1 */ 4608 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4609 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4610 .access = PL1_RW, .accessfn = access_tvm_trvm, 4611 .fgt = FGT_AMAIR_EL1, 4612 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4613 .type = ARM_CP_CONST, .resetvalue = 0 }, 4614 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4615 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4616 .access = PL1_RW, .accessfn = access_tvm_trvm, 4617 .type = ARM_CP_CONST, .resetvalue = 0 }, 4618 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4619 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4620 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4621 offsetof(CPUARMState, cp15.par_ns)} }, 4622 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4623 .access = PL1_RW, .accessfn = access_tvm_trvm, 4624 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4625 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4626 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4627 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4628 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4629 .access = PL1_RW, .accessfn = access_tvm_trvm, 4630 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4631 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4632 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4633 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4634 }; 4635 4636 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4637 { 4638 return vfp_get_fpcr(env); 4639 } 4640 4641 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4642 uint64_t value) 4643 { 4644 vfp_set_fpcr(env, value); 4645 } 4646 4647 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4648 { 4649 return vfp_get_fpsr(env); 4650 } 4651 4652 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 vfp_set_fpsr(env, value); 4656 } 4657 4658 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4659 bool isread) 4660 { 4661 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4662 return CP_ACCESS_TRAP_EL1; 4663 } 4664 return CP_ACCESS_OK; 4665 } 4666 4667 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4668 uint64_t value) 4669 { 4670 env->daif = value & PSTATE_DAIF; 4671 } 4672 4673 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4674 { 4675 return env->pstate & PSTATE_PAN; 4676 } 4677 4678 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4679 uint64_t value) 4680 { 4681 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4682 } 4683 4684 static const ARMCPRegInfo pan_reginfo = { 4685 .name = "PAN", .state = ARM_CP_STATE_AA64, 4686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4687 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4688 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4689 }; 4690 4691 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4692 { 4693 return env->pstate & PSTATE_UAO; 4694 } 4695 4696 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4697 uint64_t value) 4698 { 4699 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4700 } 4701 4702 static const ARMCPRegInfo uao_reginfo = { 4703 .name = "UAO", .state = ARM_CP_STATE_AA64, 4704 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4705 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4706 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4707 }; 4708 4709 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4710 { 4711 return env->pstate & PSTATE_DIT; 4712 } 4713 4714 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4715 uint64_t value) 4716 { 4717 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4718 } 4719 4720 static const ARMCPRegInfo dit_reginfo = { 4721 .name = "DIT", .state = ARM_CP_STATE_AA64, 4722 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4723 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4724 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4725 }; 4726 4727 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4728 { 4729 return env->pstate & PSTATE_SSBS; 4730 } 4731 4732 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4733 uint64_t value) 4734 { 4735 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4736 } 4737 4738 static const ARMCPRegInfo ssbs_reginfo = { 4739 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4740 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4741 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4742 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4743 }; 4744 4745 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4746 const ARMCPRegInfo *ri, 4747 bool isread) 4748 { 4749 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4750 switch (arm_current_el(env)) { 4751 case 0: 4752 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4753 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4754 return CP_ACCESS_TRAP_EL1; 4755 } 4756 /* fall through */ 4757 case 1: 4758 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4759 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4760 return CP_ACCESS_TRAP_EL2; 4761 } 4762 break; 4763 } 4764 return CP_ACCESS_OK; 4765 } 4766 4767 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4768 { 4769 /* Cache invalidate/clean to Point of Unification... */ 4770 switch (arm_current_el(env)) { 4771 case 0: 4772 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4773 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4774 return CP_ACCESS_TRAP_EL1; 4775 } 4776 /* fall through */ 4777 case 1: 4778 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4779 if (arm_hcr_el2_eff(env) & hcrflags) { 4780 return CP_ACCESS_TRAP_EL2; 4781 } 4782 break; 4783 } 4784 return CP_ACCESS_OK; 4785 } 4786 4787 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4788 bool isread) 4789 { 4790 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4791 } 4792 4793 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4794 bool isread) 4795 { 4796 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4797 } 4798 4799 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4800 bool isread) 4801 { 4802 int cur_el = arm_current_el(env); 4803 4804 if (cur_el < 2) { 4805 uint64_t hcr = arm_hcr_el2_eff(env); 4806 4807 if (cur_el == 0) { 4808 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4809 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4810 return CP_ACCESS_TRAP_EL2; 4811 } 4812 } else { 4813 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4814 return CP_ACCESS_TRAP_EL1; 4815 } 4816 if (hcr & HCR_TDZ) { 4817 return CP_ACCESS_TRAP_EL2; 4818 } 4819 } 4820 } else if (hcr & HCR_TDZ) { 4821 return CP_ACCESS_TRAP_EL2; 4822 } 4823 } 4824 return CP_ACCESS_OK; 4825 } 4826 4827 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4828 { 4829 ARMCPU *cpu = env_archcpu(env); 4830 int dzp_bit = 1 << 4; 4831 4832 /* DZP indicates whether DC ZVA access is allowed */ 4833 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4834 dzp_bit = 0; 4835 } 4836 return cpu->dcz_blocksize | dzp_bit; 4837 } 4838 4839 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4840 bool isread) 4841 { 4842 if (!(env->pstate & PSTATE_SP)) { 4843 /* 4844 * Access to SP_EL0 is undefined if it's being used as 4845 * the stack pointer. 4846 */ 4847 return CP_ACCESS_UNDEFINED; 4848 } 4849 return CP_ACCESS_OK; 4850 } 4851 4852 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4853 { 4854 return env->pstate & PSTATE_SP; 4855 } 4856 4857 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4858 { 4859 update_spsel(env, val); 4860 } 4861 4862 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4863 uint64_t value) 4864 { 4865 ARMCPU *cpu = env_archcpu(env); 4866 4867 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4868 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4869 value &= ~SCTLR_M; 4870 } 4871 4872 /* ??? Lots of these bits are not implemented. */ 4873 4874 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4875 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4876 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4877 } else { 4878 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4879 SCTLR_ATA0 | SCTLR_ATA); 4880 } 4881 } 4882 4883 if (raw_read(env, ri) == value) { 4884 /* 4885 * Skip the TLB flush if nothing actually changed; Linux likes 4886 * to do a lot of pointless SCTLR writes. 4887 */ 4888 return; 4889 } 4890 4891 raw_write(env, ri, value); 4892 4893 /* This may enable/disable the MMU, so do a TLB flush. */ 4894 tlb_flush(CPU(cpu)); 4895 4896 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4897 /* 4898 * Normally we would always end the TB on an SCTLR write; see the 4899 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4900 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4901 * of hflags from the translator, so do it here. 4902 */ 4903 arm_rebuild_hflags(env); 4904 } 4905 } 4906 4907 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4908 uint64_t value) 4909 { 4910 /* 4911 * Some MDCR_EL3 bits affect whether PMU counters are running: 4912 * if we are trying to change any of those then we must 4913 * bracket this update with PMU start/finish calls. 4914 */ 4915 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4916 4917 if (pmu_op) { 4918 pmu_op_start(env); 4919 } 4920 env->cp15.mdcr_el3 = value; 4921 if (pmu_op) { 4922 pmu_op_finish(env); 4923 } 4924 } 4925 4926 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4927 uint64_t value) 4928 { 4929 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4930 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4931 } 4932 4933 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4934 uint64_t value) 4935 { 4936 /* 4937 * Some MDCR_EL2 bits affect whether PMU counters are running: 4938 * if we are trying to change any of those then we must 4939 * bracket this update with PMU start/finish calls. 4940 */ 4941 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4942 4943 if (pmu_op) { 4944 pmu_op_start(env); 4945 } 4946 env->cp15.mdcr_el2 = value; 4947 if (pmu_op) { 4948 pmu_op_finish(env); 4949 } 4950 } 4951 4952 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4953 bool isread) 4954 { 4955 if (arm_current_el(env) == 1) { 4956 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4957 4958 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4959 return CP_ACCESS_TRAP_EL2; 4960 } 4961 } 4962 return CP_ACCESS_OK; 4963 } 4964 4965 #ifdef CONFIG_USER_ONLY 4966 /* 4967 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4968 * code to get around W^X restrictions, where one region is writable and the 4969 * other is executable. 4970 * 4971 * Since the executable region is never written to we cannot detect code 4972 * changes when running in user mode, and rely on the emulated JIT telling us 4973 * that the code has changed by executing this instruction. 4974 */ 4975 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4976 uint64_t value) 4977 { 4978 uint64_t icache_line_mask, start_address, end_address; 4979 const ARMCPU *cpu; 4980 4981 cpu = env_archcpu(env); 4982 4983 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4984 start_address = value & ~icache_line_mask; 4985 end_address = value | icache_line_mask; 4986 4987 mmap_lock(); 4988 4989 tb_invalidate_phys_range(start_address, end_address); 4990 4991 mmap_unlock(); 4992 } 4993 #endif 4994 4995 static const ARMCPRegInfo v8_cp_reginfo[] = { 4996 /* 4997 * Minimal set of EL0-visible registers. This will need to be expanded 4998 * significantly for system emulation of AArch64 CPUs. 4999 */ 5000 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5001 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5002 .access = PL0_RW, .type = ARM_CP_NZCV }, 5003 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5004 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5005 .type = ARM_CP_NO_RAW, 5006 .access = PL0_RW, .accessfn = aa64_daif_access, 5007 .fieldoffset = offsetof(CPUARMState, daif), 5008 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5009 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5011 .access = PL0_RW, .type = ARM_CP_FPU, 5012 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5013 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5015 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5016 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5017 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5019 .access = PL0_R, .type = ARM_CP_NO_RAW, 5020 .fgt = FGT_DCZID_EL0, 5021 .readfn = aa64_dczid_read }, 5022 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5023 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5024 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5025 #ifndef CONFIG_USER_ONLY 5026 /* Avoid overhead of an access check that always passes in user-mode */ 5027 .accessfn = aa64_zva_access, 5028 .fgt = FGT_DCZVA, 5029 #endif 5030 }, 5031 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5033 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5034 /* 5035 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5036 * don't emulate caches. 5037 */ 5038 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5040 .access = PL1_W, .type = ARM_CP_NOP, 5041 .fgt = FGT_ICIALLUIS, 5042 .accessfn = access_ticab }, 5043 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5045 .access = PL1_W, .type = ARM_CP_NOP, 5046 .fgt = FGT_ICIALLU, 5047 .accessfn = access_tocu }, 5048 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5050 .access = PL0_W, 5051 .fgt = FGT_ICIVAU, 5052 .accessfn = access_tocu, 5053 #ifdef CONFIG_USER_ONLY 5054 .type = ARM_CP_NO_RAW, 5055 .writefn = ic_ivau_write 5056 #else 5057 .type = ARM_CP_NOP 5058 #endif 5059 }, 5060 /* Cache ops: all NOPs since we don't emulate caches */ 5061 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5063 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5064 .fgt = FGT_DCIVAC, 5065 .type = ARM_CP_NOP }, 5066 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5068 .fgt = FGT_DCISW, 5069 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5070 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5071 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5072 .access = PL0_W, .type = ARM_CP_NOP, 5073 .fgt = FGT_DCCVAC, 5074 .accessfn = aa64_cacheop_poc_access }, 5075 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5076 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5077 .fgt = FGT_DCCSW, 5078 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5079 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5081 .access = PL0_W, .type = ARM_CP_NOP, 5082 .fgt = FGT_DCCVAU, 5083 .accessfn = access_tocu }, 5084 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5085 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5086 .access = PL0_W, .type = ARM_CP_NOP, 5087 .fgt = FGT_DCCIVAC, 5088 .accessfn = aa64_cacheop_poc_access }, 5089 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5091 .fgt = FGT_DCCISW, 5092 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5093 #ifndef CONFIG_USER_ONLY 5094 /* 64 bit address translation operations */ 5095 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5097 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5098 .fgt = FGT_ATS1E1R, 5099 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5100 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5102 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5103 .fgt = FGT_ATS1E1W, 5104 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5105 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5107 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5108 .fgt = FGT_ATS1E0R, 5109 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5110 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5111 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5112 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5113 .fgt = FGT_ATS1E0W, 5114 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5115 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5116 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5117 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5118 .accessfn = at_e012_access, .writefn = ats_write64 }, 5119 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5120 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5121 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5122 .accessfn = at_e012_access, .writefn = ats_write64 }, 5123 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5124 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5125 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5126 .accessfn = at_e012_access, .writefn = ats_write64 }, 5127 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5128 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5129 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5130 .accessfn = at_e012_access, .writefn = ats_write64 }, 5131 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5132 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5133 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5134 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5135 .writefn = ats_write64 }, 5136 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5137 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5138 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5139 .writefn = ats_write64 }, 5140 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5141 .type = ARM_CP_ALIAS, 5142 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5143 .access = PL1_RW, .resetvalue = 0, 5144 .fgt = FGT_PAR_EL1, 5145 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5146 .writefn = par_write }, 5147 #endif 5148 /* 32 bit cache operations */ 5149 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5150 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5151 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5152 .type = ARM_CP_NOP, .access = PL1_W }, 5153 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5154 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5155 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5156 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5157 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5158 .type = ARM_CP_NOP, .access = PL1_W }, 5159 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5160 .type = ARM_CP_NOP, .access = PL1_W }, 5161 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5162 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5163 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5164 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5165 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5167 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5168 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5169 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5171 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5172 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5173 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5174 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5175 /* MMU Domain access control / MPU write buffer control */ 5176 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5177 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5178 .writefn = dacr_write, .raw_writefn = raw_write, 5179 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5180 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5181 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5182 .type = ARM_CP_ALIAS, 5183 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5184 .access = PL1_RW, .accessfn = access_nv1, 5185 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5186 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5187 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5188 .type = ARM_CP_ALIAS, 5189 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5190 .access = PL1_RW, .accessfn = access_nv1, 5191 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5192 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5193 /* 5194 * We rely on the access checks not allowing the guest to write to the 5195 * state field when SPSel indicates that it's being used as the stack 5196 * pointer. 5197 */ 5198 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5199 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5200 .access = PL1_RW, .accessfn = sp_el0_access, 5201 .type = ARM_CP_ALIAS, 5202 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5203 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5204 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5205 .nv2_redirect_offset = 0x240, 5206 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5207 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5208 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5210 .type = ARM_CP_NO_RAW, 5211 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5212 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5213 .type = ARM_CP_ALIAS, 5214 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5215 .access = PL2_RW, 5216 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5217 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5218 .type = ARM_CP_ALIAS, 5219 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5220 .access = PL2_RW, 5221 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5222 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5223 .type = ARM_CP_ALIAS, 5224 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5225 .access = PL2_RW, 5226 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5227 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5228 .type = ARM_CP_ALIAS, 5229 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5230 .access = PL2_RW, 5231 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5232 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5233 .type = ARM_CP_IO, 5234 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5235 .resetvalue = 0, 5236 .access = PL3_RW, 5237 .writefn = mdcr_el3_write, 5238 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5239 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5240 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5241 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5242 .writefn = sdcr_write, 5243 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5244 }; 5245 5246 /* These are present only when EL1 supports AArch32 */ 5247 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5248 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5249 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5250 .access = PL2_RW, 5251 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5252 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5253 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5254 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5255 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5256 .writefn = dacr_write, .raw_writefn = raw_write, 5257 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5258 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5260 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5261 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5262 }; 5263 5264 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5265 { 5266 ARMCPU *cpu = env_archcpu(env); 5267 5268 if (arm_feature(env, ARM_FEATURE_V8)) { 5269 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5270 } else { 5271 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5272 } 5273 5274 if (arm_feature(env, ARM_FEATURE_EL3)) { 5275 valid_mask &= ~HCR_HCD; 5276 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5277 /* 5278 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5279 * However, if we're using the SMC PSCI conduit then QEMU is 5280 * effectively acting like EL3 firmware and so the guest at 5281 * EL2 should retain the ability to prevent EL1 from being 5282 * able to make SMC calls into the ersatz firmware, so in 5283 * that case HCR.TSC should be read/write. 5284 */ 5285 valid_mask &= ~HCR_TSC; 5286 } 5287 5288 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5289 if (cpu_isar_feature(aa64_vh, cpu)) { 5290 valid_mask |= HCR_E2H; 5291 } 5292 if (cpu_isar_feature(aa64_ras, cpu)) { 5293 valid_mask |= HCR_TERR | HCR_TEA; 5294 } 5295 if (cpu_isar_feature(aa64_lor, cpu)) { 5296 valid_mask |= HCR_TLOR; 5297 } 5298 if (cpu_isar_feature(aa64_pauth, cpu)) { 5299 valid_mask |= HCR_API | HCR_APK; 5300 } 5301 if (cpu_isar_feature(aa64_mte, cpu)) { 5302 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5303 } 5304 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5305 valid_mask |= HCR_ENSCXT; 5306 } 5307 if (cpu_isar_feature(aa64_fwb, cpu)) { 5308 valid_mask |= HCR_FWB; 5309 } 5310 if (cpu_isar_feature(aa64_rme, cpu)) { 5311 valid_mask |= HCR_GPF; 5312 } 5313 if (cpu_isar_feature(aa64_nv, cpu)) { 5314 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5315 } 5316 if (cpu_isar_feature(aa64_nv2, cpu)) { 5317 valid_mask |= HCR_NV2; 5318 } 5319 } 5320 5321 if (cpu_isar_feature(any_evt, cpu)) { 5322 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5323 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5324 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5325 } 5326 5327 /* Clear RES0 bits. */ 5328 value &= valid_mask; 5329 5330 /* RW is RAO/WI if EL1 is AArch64 only */ 5331 if (!cpu_isar_feature(aa64_aa32_el1, cpu)) { 5332 value |= HCR_RW; 5333 } 5334 5335 /* 5336 * These bits change the MMU setup: 5337 * HCR_VM enables stage 2 translation 5338 * HCR_PTW forbids certain page-table setups 5339 * HCR_DC disables stage1 and enables stage2 translation 5340 * HCR_DCT enables tagging on (disabled) stage1 translation 5341 * HCR_FWB changes the interpretation of stage2 descriptor bits 5342 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5343 */ 5344 if ((env->cp15.hcr_el2 ^ value) & 5345 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5346 tlb_flush(CPU(cpu)); 5347 } 5348 env->cp15.hcr_el2 = value; 5349 5350 /* 5351 * Updates to VI and VF require us to update the status of 5352 * virtual interrupts, which are the logical OR of these bits 5353 * and the state of the input lines from the GIC. (This requires 5354 * that we have the BQL, which is done by marking the 5355 * reginfo structs as ARM_CP_IO.) 5356 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5357 * VFNMI, it is never possible for it to be taken immediately 5358 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5359 * at EL0 or EL1, and HCR can only be written at EL2. 5360 */ 5361 g_assert(bql_locked()); 5362 arm_cpu_update_virq(cpu); 5363 arm_cpu_update_vfiq(cpu); 5364 arm_cpu_update_vserr(cpu); 5365 if (cpu_isar_feature(aa64_nmi, cpu)) { 5366 arm_cpu_update_vinmi(cpu); 5367 arm_cpu_update_vfnmi(cpu); 5368 } 5369 } 5370 5371 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5372 { 5373 do_hcr_write(env, value, 0); 5374 } 5375 5376 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5377 uint64_t value) 5378 { 5379 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5380 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5381 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5382 } 5383 5384 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5385 uint64_t value) 5386 { 5387 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5388 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5389 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5390 } 5391 5392 static void hcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 5393 { 5394 /* hcr_write will set the RES1 bits on an AArch64-only CPU */ 5395 hcr_write(env, ri, 0); 5396 } 5397 5398 /* 5399 * Return the effective value of HCR_EL2, at the given security state. 5400 * Bits that are not included here: 5401 * RW (read from SCR_EL3.RW as needed) 5402 */ 5403 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5404 { 5405 uint64_t ret = env->cp15.hcr_el2; 5406 5407 assert(space != ARMSS_Root); 5408 5409 if (!arm_is_el2_enabled_secstate(env, space)) { 5410 /* 5411 * "This register has no effect if EL2 is not enabled in the 5412 * current Security state". This is ARMv8.4-SecEL2 speak for 5413 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5414 * 5415 * Prior to that, the language was "In an implementation that 5416 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5417 * as if this field is 0 for all purposes other than a direct 5418 * read or write access of HCR_EL2". With lots of enumeration 5419 * on a per-field basis. In current QEMU, this is condition 5420 * is arm_is_secure_below_el3. 5421 * 5422 * Since the v8.4 language applies to the entire register, and 5423 * appears to be backward compatible, use that. 5424 */ 5425 return 0; 5426 } 5427 5428 /* 5429 * For a cpu that supports both aarch64 and aarch32, we can set bits 5430 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5431 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5432 */ 5433 if (!arm_el_is_aa64(env, 2)) { 5434 uint64_t aa32_valid; 5435 5436 /* 5437 * These bits are up-to-date as of ARMv8.6. 5438 * For HCR, it's easiest to list just the 2 bits that are invalid. 5439 * For HCR2, list those that are valid. 5440 */ 5441 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5442 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5443 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5444 ret &= aa32_valid; 5445 } 5446 5447 if (ret & HCR_TGE) { 5448 /* These bits are up-to-date as of ARMv8.6. */ 5449 if (ret & HCR_E2H) { 5450 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5451 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5452 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5453 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5454 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5455 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5456 } else { 5457 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5458 } 5459 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5460 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5461 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5462 HCR_TLOR); 5463 } 5464 5465 return ret; 5466 } 5467 5468 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5469 { 5470 if (arm_feature(env, ARM_FEATURE_M)) { 5471 return 0; 5472 } 5473 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5474 } 5475 5476 /* 5477 * Corresponds to ARM pseudocode function ELIsInHost(). 5478 */ 5479 bool el_is_in_host(CPUARMState *env, int el) 5480 { 5481 uint64_t mask; 5482 5483 /* 5484 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5485 * Perform the simplest bit tests first, and validate EL2 afterward. 5486 */ 5487 if (el & 1) { 5488 return false; /* EL1 or EL3 */ 5489 } 5490 5491 /* 5492 * Note that hcr_write() checks isar_feature_aa64_vh(), 5493 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5494 */ 5495 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5496 if ((env->cp15.hcr_el2 & mask) != mask) { 5497 return false; 5498 } 5499 5500 /* TGE and/or E2H set: double check those bits are currently legal. */ 5501 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5502 } 5503 5504 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5505 uint64_t value) 5506 { 5507 ARMCPU *cpu = env_archcpu(env); 5508 uint64_t valid_mask = 0; 5509 5510 /* FEAT_MOPS adds MSCEn and MCE2 */ 5511 if (cpu_isar_feature(aa64_mops, cpu)) { 5512 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5513 } 5514 5515 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5516 if (cpu_isar_feature(aa64_nmi, cpu)) { 5517 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5518 } 5519 /* FEAT_CMOW adds CMOW */ 5520 if (cpu_isar_feature(aa64_cmow, cpu)) { 5521 valid_mask |= HCRX_CMOW; 5522 } 5523 /* FEAT_XS adds FGTnXS, FnXS */ 5524 if (cpu_isar_feature(aa64_xs, cpu)) { 5525 valid_mask |= HCRX_FGTNXS | HCRX_FNXS; 5526 } 5527 5528 /* Clear RES0 bits. */ 5529 env->cp15.hcrx_el2 = value & valid_mask; 5530 5531 /* 5532 * Updates to VINMI and VFNMI require us to update the status of 5533 * virtual NMI, which are the logical OR of these bits 5534 * and the state of the input lines from the GIC. (This requires 5535 * that we have the BQL, which is done by marking the 5536 * reginfo structs as ARM_CP_IO.) 5537 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5538 * possible for it to be taken immediately, because VINMI and 5539 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5540 * can only be written at EL2. 5541 */ 5542 if (cpu_isar_feature(aa64_nmi, cpu)) { 5543 g_assert(bql_locked()); 5544 arm_cpu_update_vinmi(cpu); 5545 arm_cpu_update_vfnmi(cpu); 5546 } 5547 } 5548 5549 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5550 bool isread) 5551 { 5552 if (arm_current_el(env) == 2 5553 && arm_feature(env, ARM_FEATURE_EL3) 5554 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5555 return CP_ACCESS_TRAP_EL3; 5556 } 5557 return CP_ACCESS_OK; 5558 } 5559 5560 static const ARMCPRegInfo hcrx_el2_reginfo = { 5561 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5562 .type = ARM_CP_IO, 5563 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5564 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5565 .nv2_redirect_offset = 0xa0, 5566 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5567 }; 5568 5569 /* Return the effective value of HCRX_EL2. */ 5570 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5571 { 5572 /* 5573 * The bits in this register behave as 0 for all purposes other than 5574 * direct reads of the register if SCR_EL3.HXEn is 0. 5575 * If EL2 is not enabled in the current security state, then the 5576 * bit may behave as if 0, or as if 1, depending on the bit. 5577 * For the moment, we treat the EL2-disabled case as taking 5578 * priority over the HXEn-disabled case. This is true for the only 5579 * bit for a feature which we implement where the answer is different 5580 * for the two cases (MSCEn for FEAT_MOPS). 5581 * This may need to be revisited for future bits. 5582 */ 5583 if (!arm_is_el2_enabled(env)) { 5584 uint64_t hcrx = 0; 5585 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5586 /* MSCEn behaves as 1 if EL2 is not enabled */ 5587 hcrx |= HCRX_MSCEN; 5588 } 5589 return hcrx; 5590 } 5591 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5592 return 0; 5593 } 5594 return env->cp15.hcrx_el2; 5595 } 5596 5597 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5598 uint64_t value) 5599 { 5600 /* 5601 * For A-profile AArch32 EL3, if NSACR.CP10 5602 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5603 */ 5604 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5605 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5606 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5607 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5608 } 5609 env->cp15.cptr_el[2] = value; 5610 } 5611 5612 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5613 { 5614 /* 5615 * For A-profile AArch32 EL3, if NSACR.CP10 5616 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5617 */ 5618 uint64_t value = env->cp15.cptr_el[2]; 5619 5620 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5621 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5622 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5623 } 5624 return value; 5625 } 5626 5627 static const ARMCPRegInfo el2_cp_reginfo[] = { 5628 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5629 .type = ARM_CP_IO, 5630 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5631 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5632 .nv2_redirect_offset = 0x78, 5633 .resetfn = hcr_reset, 5634 .writefn = hcr_write, .raw_writefn = raw_write }, 5635 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5636 .type = ARM_CP_ALIAS | ARM_CP_IO, 5637 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5638 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5639 .writefn = hcr_writelow }, 5640 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5641 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5642 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5643 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5644 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5645 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5646 .access = PL2_RW, 5647 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5648 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5649 .type = ARM_CP_NV2_REDIRECT, 5650 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5651 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5652 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5653 .type = ARM_CP_NV2_REDIRECT, 5654 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5655 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5656 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5657 .type = ARM_CP_ALIAS, 5658 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5659 .access = PL2_RW, 5660 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5661 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5662 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5663 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5664 .access = PL2_RW, 5665 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5666 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5667 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5668 .access = PL2_RW, .writefn = vbar_write, 5669 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5670 .resetvalue = 0 }, 5671 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5672 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5673 .access = PL3_RW, .type = ARM_CP_ALIAS, 5674 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5675 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5676 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5677 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5678 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5679 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5680 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5681 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5682 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5683 .resetvalue = 0 }, 5684 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5685 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5686 .access = PL2_RW, .type = ARM_CP_ALIAS, 5687 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5688 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5689 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5690 .access = PL2_RW, .type = ARM_CP_CONST, 5691 .resetvalue = 0 }, 5692 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5693 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5694 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5695 .access = PL2_RW, .type = ARM_CP_CONST, 5696 .resetvalue = 0 }, 5697 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5698 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5699 .access = PL2_RW, .type = ARM_CP_CONST, 5700 .resetvalue = 0 }, 5701 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5702 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5703 .access = PL2_RW, .type = ARM_CP_CONST, 5704 .resetvalue = 0 }, 5705 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5706 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5707 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5708 .raw_writefn = raw_write, 5709 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5710 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5711 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5712 .type = ARM_CP_ALIAS, 5713 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5714 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5715 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5716 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5717 .access = PL2_RW, 5718 .nv2_redirect_offset = 0x40, 5719 /* no .writefn needed as this can't cause an ASID change */ 5720 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5721 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5722 .cp = 15, .opc1 = 6, .crm = 2, 5723 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5724 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5725 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5726 .writefn = vttbr_write, .raw_writefn = raw_write }, 5727 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5729 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5730 .nv2_redirect_offset = 0x20, 5731 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5732 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5733 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5734 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5735 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5736 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5737 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5738 .access = PL2_RW, .resetvalue = 0, 5739 .nv2_redirect_offset = 0x90, 5740 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5741 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5742 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5743 .access = PL2_RW, .resetvalue = 0, 5744 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5745 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5746 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5747 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5748 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5749 #ifndef CONFIG_USER_ONLY 5750 /* 5751 * Unlike the other EL2-related AT operations, these must 5752 * UNDEF from EL3 if EL2 is not implemented, which is why we 5753 * define them here rather than with the rest of the AT ops. 5754 */ 5755 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5756 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5757 .access = PL2_W, .accessfn = at_s1e2_access, 5758 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5759 .writefn = ats_write64 }, 5760 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5762 .access = PL2_W, .accessfn = at_s1e2_access, 5763 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5764 .writefn = ats_write64 }, 5765 /* 5766 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5767 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5768 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5769 * to behave as if SCR.NS was 1. 5770 */ 5771 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5772 .access = PL2_W, 5773 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5774 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5775 .access = PL2_W, 5776 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5777 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5778 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5779 /* 5780 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5781 * reset values as IMPDEF. We choose to reset to 3 to comply with 5782 * both ARMv7 and ARMv8. 5783 */ 5784 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5785 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5786 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5787 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5789 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5790 .writefn = gt_cntvoff_write, 5791 .nv2_redirect_offset = 0x60, 5792 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5793 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5794 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5795 .writefn = gt_cntvoff_write, 5796 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5797 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5798 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5799 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5800 .type = ARM_CP_IO, .access = PL2_RW, 5801 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5802 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5803 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5804 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5805 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5806 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5807 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5808 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5809 .resetfn = gt_hyp_timer_reset, 5810 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5811 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5812 .type = ARM_CP_IO, 5813 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5814 .access = PL2_RW, 5815 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5816 .resetvalue = 0, 5817 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5818 #endif 5819 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5820 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5821 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5822 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5823 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5825 .access = PL2_RW, 5826 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5827 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5828 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5829 .access = PL2_RW, 5830 .nv2_redirect_offset = 0x80, 5831 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5832 }; 5833 5834 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5835 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5836 .type = ARM_CP_ALIAS | ARM_CP_IO, 5837 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5838 .access = PL2_RW, 5839 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5840 .writefn = hcr_writehigh }, 5841 }; 5842 5843 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5844 bool isread) 5845 { 5846 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5847 return CP_ACCESS_OK; 5848 } 5849 return CP_ACCESS_UNDEFINED; 5850 } 5851 5852 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5853 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5854 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5855 .access = PL2_RW, .accessfn = sel2_access, 5856 .nv2_redirect_offset = 0x30, 5857 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5858 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5860 .access = PL2_RW, .accessfn = sel2_access, 5861 .nv2_redirect_offset = 0x48, 5862 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5863 #ifndef CONFIG_USER_ONLY 5864 /* Secure EL2 Physical Timer */ 5865 { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5866 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0, 5867 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5868 .accessfn = gt_sel2timer_access, 5869 .readfn = gt_sec_pel2_tval_read, 5870 .writefn = gt_sec_pel2_tval_write, 5871 .resetfn = gt_sec_pel2_timer_reset, 5872 }, 5873 { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5874 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1, 5875 .type = ARM_CP_IO, .access = PL2_RW, 5876 .accessfn = gt_sel2timer_access, 5877 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl), 5878 .resetvalue = 0, 5879 .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write, 5880 }, 5881 { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5882 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2, 5883 .type = ARM_CP_IO, .access = PL2_RW, 5884 .accessfn = gt_sel2timer_access, 5885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval), 5886 .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write, 5887 }, 5888 /* Secure EL2 Virtual Timer */ 5889 { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5890 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0, 5891 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5892 .accessfn = gt_sel2timer_access, 5893 .readfn = gt_sec_vel2_tval_read, 5894 .writefn = gt_sec_vel2_tval_write, 5895 .resetfn = gt_sec_vel2_timer_reset, 5896 }, 5897 { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5898 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1, 5899 .type = ARM_CP_IO, .access = PL2_RW, 5900 .accessfn = gt_sel2timer_access, 5901 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl), 5902 .resetvalue = 0, 5903 .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write, 5904 }, 5905 { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5906 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2, 5907 .type = ARM_CP_IO, .access = PL2_RW, 5908 .accessfn = gt_sel2timer_access, 5909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval), 5910 .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write, 5911 }, 5912 #endif 5913 }; 5914 5915 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5916 bool isread) 5917 { 5918 /* 5919 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5920 * At Secure EL1 it traps to EL3 or EL2. 5921 */ 5922 if (arm_current_el(env) == 3) { 5923 return CP_ACCESS_OK; 5924 } 5925 if (arm_is_secure_below_el3(env)) { 5926 if (env->cp15.scr_el3 & SCR_EEL2) { 5927 return CP_ACCESS_TRAP_EL2; 5928 } 5929 return CP_ACCESS_TRAP_EL3; 5930 } 5931 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5932 if (isread) { 5933 return CP_ACCESS_OK; 5934 } 5935 return CP_ACCESS_UNDEFINED; 5936 } 5937 5938 static const ARMCPRegInfo el3_cp_reginfo[] = { 5939 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5940 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5941 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5942 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5943 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5944 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5945 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5946 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5947 .writefn = scr_write, .raw_writefn = raw_write }, 5948 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5949 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5950 .access = PL3_RW, .resetvalue = 0, 5951 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5952 { .name = "SDER", 5953 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5954 .access = PL3_RW, .resetvalue = 0, 5955 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5956 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5957 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5958 .writefn = vbar_write, .resetvalue = 0, 5959 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5960 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5961 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5962 .access = PL3_RW, .resetvalue = 0, 5963 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5964 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5965 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5966 .access = PL3_RW, 5967 /* no .writefn needed as this can't cause an ASID change */ 5968 .resetvalue = 0, 5969 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5970 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5971 .type = ARM_CP_ALIAS, 5972 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5973 .access = PL3_RW, 5974 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5975 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5976 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5977 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5978 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5979 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5980 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5981 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5982 .type = ARM_CP_ALIAS, 5983 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5984 .access = PL3_RW, 5985 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5986 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5987 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5988 .access = PL3_RW, .writefn = vbar_write, 5989 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5990 .resetvalue = 0 }, 5991 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5992 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5993 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5994 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5995 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5996 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5997 .access = PL3_RW, .resetvalue = 0, 5998 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5999 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6000 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6001 .access = PL3_RW, .type = ARM_CP_CONST, 6002 .resetvalue = 0 }, 6003 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6004 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6005 .access = PL3_RW, .type = ARM_CP_CONST, 6006 .resetvalue = 0 }, 6007 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6008 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6009 .access = PL3_RW, .type = ARM_CP_CONST, 6010 .resetvalue = 0 }, 6011 }; 6012 6013 #ifndef CONFIG_USER_ONLY 6014 6015 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6016 bool isread) 6017 { 6018 if (arm_current_el(env) == 1) { 6019 /* This must be a FEAT_NV access */ 6020 return CP_ACCESS_OK; 6021 } 6022 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6023 return CP_ACCESS_UNDEFINED; 6024 } 6025 return CP_ACCESS_OK; 6026 } 6027 6028 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6029 bool isread) 6030 { 6031 if (arm_current_el(env) == 1) { 6032 /* This must be a FEAT_NV access with NVx == 101 */ 6033 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6034 return CP_ACCESS_TRAP_EL2; 6035 } 6036 } 6037 return e2h_access(env, ri, isread); 6038 } 6039 6040 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6041 bool isread) 6042 { 6043 if (arm_current_el(env) == 1) { 6044 /* This must be a FEAT_NV access with NVx == 101 */ 6045 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6046 return CP_ACCESS_TRAP_EL2; 6047 } 6048 } 6049 return e2h_access(env, ri, isread); 6050 } 6051 6052 /* Test if system register redirection is to occur in the current state. */ 6053 static bool redirect_for_e2h(CPUARMState *env) 6054 { 6055 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6056 } 6057 6058 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6059 { 6060 CPReadFn *readfn; 6061 6062 if (redirect_for_e2h(env)) { 6063 /* Switch to the saved EL2 version of the register. */ 6064 ri = ri->opaque; 6065 readfn = ri->readfn; 6066 } else { 6067 readfn = ri->orig_readfn; 6068 } 6069 if (readfn == NULL) { 6070 readfn = raw_read; 6071 } 6072 return readfn(env, ri); 6073 } 6074 6075 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6076 uint64_t value) 6077 { 6078 CPWriteFn *writefn; 6079 6080 if (redirect_for_e2h(env)) { 6081 /* Switch to the saved EL2 version of the register. */ 6082 ri = ri->opaque; 6083 writefn = ri->writefn; 6084 } else { 6085 writefn = ri->orig_writefn; 6086 } 6087 if (writefn == NULL) { 6088 writefn = raw_write; 6089 } 6090 writefn(env, ri, value); 6091 } 6092 6093 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6094 { 6095 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6096 return ri->orig_readfn(env, ri->opaque); 6097 } 6098 6099 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6100 uint64_t value) 6101 { 6102 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6103 return ri->orig_writefn(env, ri->opaque, value); 6104 } 6105 6106 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6107 const ARMCPRegInfo *ri, 6108 bool isread) 6109 { 6110 if (arm_current_el(env) == 1) { 6111 /* 6112 * This must be a FEAT_NV access (will either trap or redirect 6113 * to memory). None of the registers with _EL12 aliases want to 6114 * apply their trap controls for this kind of access, so don't 6115 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6116 */ 6117 return CP_ACCESS_OK; 6118 } 6119 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6120 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6121 return CP_ACCESS_UNDEFINED; 6122 } 6123 if (ri->orig_accessfn) { 6124 return ri->orig_accessfn(env, ri->opaque, isread); 6125 } 6126 return CP_ACCESS_OK; 6127 } 6128 6129 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6130 { 6131 struct E2HAlias { 6132 uint32_t src_key, dst_key, new_key; 6133 const char *src_name, *dst_name, *new_name; 6134 bool (*feature)(const ARMISARegisters *id); 6135 }; 6136 6137 #define K(op0, op1, crn, crm, op2) \ 6138 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6139 6140 static const struct E2HAlias aliases[] = { 6141 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6142 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6143 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6144 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6145 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6146 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6147 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6148 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6149 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6150 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6151 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6152 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6153 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6154 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6155 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6156 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6157 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6158 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6159 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6160 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6161 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6162 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6163 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6164 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6165 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6166 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6167 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6168 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6169 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6170 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6171 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6172 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6173 6174 /* 6175 * Note that redirection of ZCR is mentioned in the description 6176 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6177 * not in the summary table. 6178 */ 6179 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6180 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6181 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6182 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6183 6184 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6185 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6186 6187 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6188 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6189 isar_feature_aa64_scxtnum }, 6190 6191 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6192 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6193 }; 6194 #undef K 6195 6196 size_t i; 6197 6198 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6199 const struct E2HAlias *a = &aliases[i]; 6200 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6201 bool ok; 6202 6203 if (a->feature && !a->feature(&cpu->isar)) { 6204 continue; 6205 } 6206 6207 src_reg = g_hash_table_lookup(cpu->cp_regs, 6208 (gpointer)(uintptr_t)a->src_key); 6209 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6210 (gpointer)(uintptr_t)a->dst_key); 6211 g_assert(src_reg != NULL); 6212 g_assert(dst_reg != NULL); 6213 6214 /* Cross-compare names to detect typos in the keys. */ 6215 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6216 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6217 6218 /* None of the core system registers use opaque; we will. */ 6219 g_assert(src_reg->opaque == NULL); 6220 6221 /* Create alias before redirection so we dup the right data. */ 6222 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6223 6224 new_reg->name = a->new_name; 6225 new_reg->type |= ARM_CP_ALIAS; 6226 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6227 new_reg->access &= PL2_RW | PL3_RW; 6228 /* The new_reg op fields are as per new_key, not the target reg */ 6229 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6230 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6231 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6232 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6233 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6234 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6235 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6236 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6237 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6238 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6239 new_reg->opaque = src_reg; 6240 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6241 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6242 new_reg->orig_accessfn = src_reg->accessfn; 6243 if (!new_reg->raw_readfn) { 6244 new_reg->raw_readfn = raw_read; 6245 } 6246 if (!new_reg->raw_writefn) { 6247 new_reg->raw_writefn = raw_write; 6248 } 6249 new_reg->readfn = el2_e2h_e12_read; 6250 new_reg->writefn = el2_e2h_e12_write; 6251 new_reg->accessfn = el2_e2h_e12_access; 6252 6253 /* 6254 * If the _EL1 register is redirected to memory by FEAT_NV2, 6255 * then it shares the offset with the _EL12 register, 6256 * and which one is redirected depends on HCR_EL2.NV1. 6257 */ 6258 if (new_reg->nv2_redirect_offset) { 6259 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6260 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6261 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6262 } 6263 6264 ok = g_hash_table_insert(cpu->cp_regs, 6265 (gpointer)(uintptr_t)a->new_key, new_reg); 6266 g_assert(ok); 6267 6268 src_reg->opaque = dst_reg; 6269 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6270 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6271 if (!src_reg->raw_readfn) { 6272 src_reg->raw_readfn = raw_read; 6273 } 6274 if (!src_reg->raw_writefn) { 6275 src_reg->raw_writefn = raw_write; 6276 } 6277 src_reg->readfn = el2_e2h_read; 6278 src_reg->writefn = el2_e2h_write; 6279 } 6280 } 6281 #endif 6282 6283 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6284 bool isread) 6285 { 6286 int cur_el = arm_current_el(env); 6287 6288 if (cur_el < 2) { 6289 uint64_t hcr = arm_hcr_el2_eff(env); 6290 6291 if (cur_el == 0) { 6292 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6293 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6294 return CP_ACCESS_TRAP_EL2; 6295 } 6296 } else { 6297 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6298 return CP_ACCESS_TRAP_EL1; 6299 } 6300 if (hcr & HCR_TID2) { 6301 return CP_ACCESS_TRAP_EL2; 6302 } 6303 } 6304 } else if (hcr & HCR_TID2) { 6305 return CP_ACCESS_TRAP_EL2; 6306 } 6307 } 6308 6309 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6310 return CP_ACCESS_TRAP_EL2; 6311 } 6312 6313 return CP_ACCESS_OK; 6314 } 6315 6316 /* 6317 * Check for traps to RAS registers, which are controlled 6318 * by HCR_EL2.TERR and SCR_EL3.TERR. 6319 */ 6320 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6321 bool isread) 6322 { 6323 int el = arm_current_el(env); 6324 6325 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6326 return CP_ACCESS_TRAP_EL2; 6327 } 6328 if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) { 6329 return CP_ACCESS_TRAP_EL3; 6330 } 6331 return CP_ACCESS_OK; 6332 } 6333 6334 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6335 { 6336 int el = arm_current_el(env); 6337 6338 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6339 return env->cp15.vdisr_el2; 6340 } 6341 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6342 return 0; /* RAZ/WI */ 6343 } 6344 return env->cp15.disr_el1; 6345 } 6346 6347 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6348 { 6349 int el = arm_current_el(env); 6350 6351 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6352 env->cp15.vdisr_el2 = val; 6353 return; 6354 } 6355 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6356 return; /* RAZ/WI */ 6357 } 6358 env->cp15.disr_el1 = val; 6359 } 6360 6361 /* 6362 * Minimal RAS implementation with no Error Records. 6363 * Which means that all of the Error Record registers: 6364 * ERXADDR_EL1 6365 * ERXCTLR_EL1 6366 * ERXFR_EL1 6367 * ERXMISC0_EL1 6368 * ERXMISC1_EL1 6369 * ERXMISC2_EL1 6370 * ERXMISC3_EL1 6371 * ERXPFGCDN_EL1 (RASv1p1) 6372 * ERXPFGCTL_EL1 (RASv1p1) 6373 * ERXPFGF_EL1 (RASv1p1) 6374 * ERXSTATUS_EL1 6375 * and 6376 * ERRSELR_EL1 6377 * may generate UNDEFINED, which is the effect we get by not 6378 * listing them at all. 6379 * 6380 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6381 * is higher priority than FGT-to-EL2 so we do not need to list them 6382 * in order to check for an FGT. 6383 */ 6384 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6385 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6386 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6387 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6388 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6389 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6390 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6391 .access = PL1_R, .accessfn = access_terr, 6392 .fgt = FGT_ERRIDR_EL1, 6393 .type = ARM_CP_CONST, .resetvalue = 0 }, 6394 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6395 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6396 .nv2_redirect_offset = 0x500, 6397 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6398 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6399 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6400 .nv2_redirect_offset = 0x508, 6401 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6402 }; 6403 6404 /* 6405 * Return the exception level to which exceptions should be taken 6406 * via SVEAccessTrap. This excludes the check for whether the exception 6407 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6408 * be found by testing 0 < fp_exception_el < sve_exception_el. 6409 * 6410 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6411 * pseudocode does *not* separate out the FP trap checks, but has them 6412 * all in one function. 6413 */ 6414 int sve_exception_el(CPUARMState *env, int el) 6415 { 6416 #ifndef CONFIG_USER_ONLY 6417 if (el <= 1 && !el_is_in_host(env, el)) { 6418 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6419 case 1: 6420 if (el != 0) { 6421 break; 6422 } 6423 /* fall through */ 6424 case 0: 6425 case 2: 6426 return 1; 6427 } 6428 } 6429 6430 if (el <= 2 && arm_is_el2_enabled(env)) { 6431 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6432 if (env->cp15.hcr_el2 & HCR_E2H) { 6433 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6434 case 1: 6435 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6436 break; 6437 } 6438 /* fall through */ 6439 case 0: 6440 case 2: 6441 return 2; 6442 } 6443 } else { 6444 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6445 return 2; 6446 } 6447 } 6448 } 6449 6450 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6451 if (arm_feature(env, ARM_FEATURE_EL3) 6452 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6453 return 3; 6454 } 6455 #endif 6456 return 0; 6457 } 6458 6459 /* 6460 * Return the exception level to which exceptions should be taken for SME. 6461 * C.f. the ARM pseudocode function CheckSMEAccess. 6462 */ 6463 int sme_exception_el(CPUARMState *env, int el) 6464 { 6465 #ifndef CONFIG_USER_ONLY 6466 if (el <= 1 && !el_is_in_host(env, el)) { 6467 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6468 case 1: 6469 if (el != 0) { 6470 break; 6471 } 6472 /* fall through */ 6473 case 0: 6474 case 2: 6475 return 1; 6476 } 6477 } 6478 6479 if (el <= 2 && arm_is_el2_enabled(env)) { 6480 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6481 if (env->cp15.hcr_el2 & HCR_E2H) { 6482 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6483 case 1: 6484 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6485 break; 6486 } 6487 /* fall through */ 6488 case 0: 6489 case 2: 6490 return 2; 6491 } 6492 } else { 6493 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6494 return 2; 6495 } 6496 } 6497 } 6498 6499 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6500 if (arm_feature(env, ARM_FEATURE_EL3) 6501 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6502 return 3; 6503 } 6504 #endif 6505 return 0; 6506 } 6507 6508 /* 6509 * Given that SVE is enabled, return the vector length for EL. 6510 */ 6511 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6512 { 6513 ARMCPU *cpu = env_archcpu(env); 6514 uint64_t *cr = env->vfp.zcr_el; 6515 uint32_t map = cpu->sve_vq.map; 6516 uint32_t len = ARM_MAX_VQ - 1; 6517 6518 if (sm) { 6519 cr = env->vfp.smcr_el; 6520 map = cpu->sme_vq.map; 6521 } 6522 6523 if (el <= 1 && !el_is_in_host(env, el)) { 6524 len = MIN(len, 0xf & (uint32_t)cr[1]); 6525 } 6526 if (el <= 2 && arm_is_el2_enabled(env)) { 6527 len = MIN(len, 0xf & (uint32_t)cr[2]); 6528 } 6529 if (arm_feature(env, ARM_FEATURE_EL3)) { 6530 len = MIN(len, 0xf & (uint32_t)cr[3]); 6531 } 6532 6533 map &= MAKE_64BIT_MASK(0, len + 1); 6534 if (map != 0) { 6535 return 31 - clz32(map); 6536 } 6537 6538 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6539 assert(sm); 6540 return ctz32(cpu->sme_vq.map); 6541 } 6542 6543 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6544 { 6545 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6546 } 6547 6548 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6549 uint64_t value) 6550 { 6551 int cur_el = arm_current_el(env); 6552 int old_len = sve_vqm1_for_el(env, cur_el); 6553 int new_len; 6554 6555 /* Bits other than [3:0] are RAZ/WI. */ 6556 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6557 raw_write(env, ri, value & 0xf); 6558 6559 /* 6560 * Because we arrived here, we know both FP and SVE are enabled; 6561 * otherwise we would have trapped access to the ZCR_ELn register. 6562 */ 6563 new_len = sve_vqm1_for_el(env, cur_el); 6564 if (new_len < old_len) { 6565 aarch64_sve_narrow_vq(env, new_len + 1); 6566 } 6567 } 6568 6569 static const ARMCPRegInfo zcr_reginfo[] = { 6570 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6571 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6572 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6573 .access = PL1_RW, .type = ARM_CP_SVE, 6574 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6575 .writefn = zcr_write, .raw_writefn = raw_write }, 6576 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6577 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6578 .access = PL2_RW, .type = ARM_CP_SVE, 6579 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6580 .writefn = zcr_write, .raw_writefn = raw_write }, 6581 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6582 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6583 .access = PL3_RW, .type = ARM_CP_SVE, 6584 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6585 .writefn = zcr_write, .raw_writefn = raw_write }, 6586 }; 6587 6588 #ifdef TARGET_AARCH64 6589 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6590 bool isread) 6591 { 6592 int el = arm_current_el(env); 6593 6594 if (el == 0) { 6595 uint64_t sctlr = arm_sctlr(env, el); 6596 if (!(sctlr & SCTLR_EnTP2)) { 6597 return CP_ACCESS_TRAP_EL1; 6598 } 6599 } 6600 /* TODO: FEAT_FGT */ 6601 if (el < 3 6602 && arm_feature(env, ARM_FEATURE_EL3) 6603 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6604 return CP_ACCESS_TRAP_EL3; 6605 } 6606 return CP_ACCESS_OK; 6607 } 6608 6609 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6610 bool isread) 6611 { 6612 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6613 if (arm_current_el(env) == 2 6614 && arm_feature(env, ARM_FEATURE_EL3) 6615 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6616 return CP_ACCESS_TRAP_EL3; 6617 } 6618 return CP_ACCESS_OK; 6619 } 6620 6621 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6622 bool isread) 6623 { 6624 if (arm_current_el(env) < 3 6625 && arm_feature(env, ARM_FEATURE_EL3) 6626 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6627 return CP_ACCESS_TRAP_EL3; 6628 } 6629 return CP_ACCESS_OK; 6630 } 6631 6632 /* ResetSVEState */ 6633 static void arm_reset_sve_state(CPUARMState *env) 6634 { 6635 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6636 /* Recall that FFR is stored as pregs[16]. */ 6637 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6638 vfp_set_fpsr(env, 0x0800009f); 6639 } 6640 6641 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6642 { 6643 uint64_t change = (env->svcr ^ new) & mask; 6644 6645 if (change == 0) { 6646 return; 6647 } 6648 env->svcr ^= change; 6649 6650 if (change & R_SVCR_SM_MASK) { 6651 arm_reset_sve_state(env); 6652 } 6653 6654 /* 6655 * ResetSMEState. 6656 * 6657 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6658 * on enable: while disabled, the storage is inaccessible and the 6659 * value does not matter. We're not saving the storage in vmstate 6660 * when disabled either. 6661 */ 6662 if (change & new & R_SVCR_ZA_MASK) { 6663 memset(env->zarray, 0, sizeof(env->zarray)); 6664 } 6665 6666 if (tcg_enabled()) { 6667 arm_rebuild_hflags(env); 6668 } 6669 } 6670 6671 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6672 uint64_t value) 6673 { 6674 aarch64_set_svcr(env, value, -1); 6675 } 6676 6677 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6678 uint64_t value) 6679 { 6680 int cur_el = arm_current_el(env); 6681 int old_len = sve_vqm1_for_el(env, cur_el); 6682 int new_len; 6683 6684 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6685 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6686 raw_write(env, ri, value); 6687 6688 /* 6689 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6690 * when SVL is widened (old values kept, or zeros). Choose to keep the 6691 * current values for simplicity. But for QEMU internals, we must still 6692 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6693 * above aarch64_sve_narrow_vq. 6694 */ 6695 new_len = sve_vqm1_for_el(env, cur_el); 6696 if (new_len < old_len) { 6697 aarch64_sve_narrow_vq(env, new_len + 1); 6698 } 6699 } 6700 6701 static const ARMCPRegInfo sme_reginfo[] = { 6702 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6703 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6704 .access = PL0_RW, .accessfn = access_tpidr2, 6705 .fgt = FGT_NTPIDR2_EL0, 6706 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6707 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6708 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6709 .access = PL0_RW, .type = ARM_CP_SME, 6710 .fieldoffset = offsetof(CPUARMState, svcr), 6711 .writefn = svcr_write, .raw_writefn = raw_write }, 6712 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6713 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6714 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6715 .access = PL1_RW, .type = ARM_CP_SME, 6716 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6717 .writefn = smcr_write, .raw_writefn = raw_write }, 6718 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6720 .access = PL2_RW, .type = ARM_CP_SME, 6721 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6722 .writefn = smcr_write, .raw_writefn = raw_write }, 6723 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6724 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6725 .access = PL3_RW, .type = ARM_CP_SME, 6726 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6727 .writefn = smcr_write, .raw_writefn = raw_write }, 6728 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6729 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6730 .access = PL1_R, .accessfn = access_aa64_tid1, 6731 /* 6732 * IMPLEMENTOR = 0 (software) 6733 * REVISION = 0 (implementation defined) 6734 * SMPS = 0 (no streaming execution priority in QEMU) 6735 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6736 */ 6737 .type = ARM_CP_CONST, .resetvalue = 0, }, 6738 /* 6739 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6740 */ 6741 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6742 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6743 .access = PL1_RW, .accessfn = access_smpri, 6744 .fgt = FGT_NSMPRI_EL1, 6745 .type = ARM_CP_CONST, .resetvalue = 0 }, 6746 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6748 .nv2_redirect_offset = 0x1f8, 6749 .access = PL2_RW, .accessfn = access_smprimap, 6750 .type = ARM_CP_CONST, .resetvalue = 0 }, 6751 }; 6752 6753 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6754 uint64_t value) 6755 { 6756 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6757 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6758 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6759 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6760 6761 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6762 } 6763 6764 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6765 { 6766 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6767 env_archcpu(env)->reset_l0gptsz); 6768 } 6769 6770 static const ARMCPRegInfo rme_reginfo[] = { 6771 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6773 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6774 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6775 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6777 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6778 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6780 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6781 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6782 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6783 .access = PL3_W, .type = ARM_CP_NOP }, 6784 }; 6785 6786 static const ARMCPRegInfo rme_mte_reginfo[] = { 6787 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6788 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6789 .access = PL3_W, .type = ARM_CP_NOP }, 6790 }; 6791 6792 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6793 uint64_t value) 6794 { 6795 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6796 } 6797 6798 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6799 { 6800 return env->pstate & PSTATE_ALLINT; 6801 } 6802 6803 static CPAccessResult aa64_allint_access(CPUARMState *env, 6804 const ARMCPRegInfo *ri, bool isread) 6805 { 6806 if (!isread && arm_current_el(env) == 1 && 6807 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6808 return CP_ACCESS_TRAP_EL2; 6809 } 6810 return CP_ACCESS_OK; 6811 } 6812 6813 static const ARMCPRegInfo nmi_reginfo[] = { 6814 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6816 .type = ARM_CP_NO_RAW, 6817 .access = PL1_RW, .accessfn = aa64_allint_access, 6818 .fieldoffset = offsetof(CPUARMState, pstate), 6819 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6820 .resetfn = arm_cp_reset_ignore }, 6821 }; 6822 #endif /* TARGET_AARCH64 */ 6823 6824 static void define_pmu_regs(ARMCPU *cpu) 6825 { 6826 /* 6827 * v7 performance monitor control register: same implementor 6828 * field as main ID register, and we implement four counters in 6829 * addition to the cycle count register. 6830 */ 6831 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6832 ARMCPRegInfo pmcr = { 6833 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6834 .access = PL0_RW, 6835 .fgt = FGT_PMCR_EL0, 6836 .type = ARM_CP_IO | ARM_CP_ALIAS, 6837 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6838 .accessfn = pmreg_access, 6839 .readfn = pmcr_read, .raw_readfn = raw_read, 6840 .writefn = pmcr_write, .raw_writefn = raw_write, 6841 }; 6842 ARMCPRegInfo pmcr64 = { 6843 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6844 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6845 .access = PL0_RW, .accessfn = pmreg_access, 6846 .fgt = FGT_PMCR_EL0, 6847 .type = ARM_CP_IO, 6848 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6849 .resetvalue = cpu->isar.reset_pmcr_el0, 6850 .readfn = pmcr_read, .raw_readfn = raw_read, 6851 .writefn = pmcr_write, .raw_writefn = raw_write, 6852 }; 6853 6854 define_one_arm_cp_reg(cpu, &pmcr); 6855 define_one_arm_cp_reg(cpu, &pmcr64); 6856 for (i = 0; i < pmcrn; i++) { 6857 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6858 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6859 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6860 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6861 ARMCPRegInfo pmev_regs[] = { 6862 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6863 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6864 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6865 .fgt = FGT_PMEVCNTRN_EL0, 6866 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6867 .accessfn = pmreg_access_xevcntr }, 6868 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6869 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6870 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6871 .type = ARM_CP_IO, 6872 .fgt = FGT_PMEVCNTRN_EL0, 6873 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6874 .raw_readfn = pmevcntr_rawread, 6875 .raw_writefn = pmevcntr_rawwrite }, 6876 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6877 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6878 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6879 .fgt = FGT_PMEVTYPERN_EL0, 6880 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6881 .accessfn = pmreg_access }, 6882 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6883 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6884 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6885 .fgt = FGT_PMEVTYPERN_EL0, 6886 .type = ARM_CP_IO, 6887 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6888 .raw_writefn = pmevtyper_rawwrite }, 6889 }; 6890 define_arm_cp_regs(cpu, pmev_regs); 6891 g_free(pmevcntr_name); 6892 g_free(pmevcntr_el0_name); 6893 g_free(pmevtyper_name); 6894 g_free(pmevtyper_el0_name); 6895 } 6896 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6897 ARMCPRegInfo v81_pmu_regs[] = { 6898 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6899 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6900 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6901 .fgt = FGT_PMCEIDN_EL0, 6902 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6903 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6904 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6906 .fgt = FGT_PMCEIDN_EL0, 6907 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6908 }; 6909 define_arm_cp_regs(cpu, v81_pmu_regs); 6910 } 6911 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6912 static const ARMCPRegInfo v84_pmmir = { 6913 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6914 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6915 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6916 .fgt = FGT_PMMIR_EL1, 6917 .resetvalue = 0 6918 }; 6919 define_one_arm_cp_reg(cpu, &v84_pmmir); 6920 } 6921 } 6922 6923 #ifndef CONFIG_USER_ONLY 6924 /* 6925 * We don't know until after realize whether there's a GICv3 6926 * attached, and that is what registers the gicv3 sysregs. 6927 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6928 * at runtime. 6929 */ 6930 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6931 { 6932 ARMCPU *cpu = env_archcpu(env); 6933 uint64_t pfr1 = cpu->isar.id_pfr1; 6934 6935 if (env->gicv3state) { 6936 pfr1 |= 1 << 28; 6937 } 6938 return pfr1; 6939 } 6940 6941 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6942 { 6943 ARMCPU *cpu = env_archcpu(env); 6944 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6945 6946 if (env->gicv3state) { 6947 pfr0 |= 1 << 24; 6948 } 6949 return pfr0; 6950 } 6951 #endif 6952 6953 /* 6954 * Shared logic between LORID and the rest of the LOR* registers. 6955 * Secure state exclusion has already been dealt with. 6956 */ 6957 static CPAccessResult access_lor_ns(CPUARMState *env, 6958 const ARMCPRegInfo *ri, bool isread) 6959 { 6960 int el = arm_current_el(env); 6961 6962 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6963 return CP_ACCESS_TRAP_EL2; 6964 } 6965 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6966 return CP_ACCESS_TRAP_EL3; 6967 } 6968 return CP_ACCESS_OK; 6969 } 6970 6971 static CPAccessResult access_lor_other(CPUARMState *env, 6972 const ARMCPRegInfo *ri, bool isread) 6973 { 6974 if (arm_is_secure_below_el3(env)) { 6975 /* UNDEF if SCR_EL3.NS == 0 */ 6976 return CP_ACCESS_UNDEFINED; 6977 } 6978 return access_lor_ns(env, ri, isread); 6979 } 6980 6981 /* 6982 * A trivial implementation of ARMv8.1-LOR leaves all of these 6983 * registers fixed at 0, which indicates that there are zero 6984 * supported Limited Ordering regions. 6985 */ 6986 static const ARMCPRegInfo lor_reginfo[] = { 6987 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6988 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6989 .access = PL1_RW, .accessfn = access_lor_other, 6990 .fgt = FGT_LORSA_EL1, 6991 .type = ARM_CP_CONST, .resetvalue = 0 }, 6992 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6994 .access = PL1_RW, .accessfn = access_lor_other, 6995 .fgt = FGT_LOREA_EL1, 6996 .type = ARM_CP_CONST, .resetvalue = 0 }, 6997 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6999 .access = PL1_RW, .accessfn = access_lor_other, 7000 .fgt = FGT_LORN_EL1, 7001 .type = ARM_CP_CONST, .resetvalue = 0 }, 7002 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7003 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7004 .access = PL1_RW, .accessfn = access_lor_other, 7005 .fgt = FGT_LORC_EL1, 7006 .type = ARM_CP_CONST, .resetvalue = 0 }, 7007 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7008 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7009 .access = PL1_R, .accessfn = access_lor_ns, 7010 .fgt = FGT_LORID_EL1, 7011 .type = ARM_CP_CONST, .resetvalue = 0 }, 7012 }; 7013 7014 #ifdef TARGET_AARCH64 7015 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7016 bool isread) 7017 { 7018 int el = arm_current_el(env); 7019 7020 if (el < 2 && 7021 arm_is_el2_enabled(env) && 7022 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7023 return CP_ACCESS_TRAP_EL2; 7024 } 7025 if (el < 3 && 7026 arm_feature(env, ARM_FEATURE_EL3) && 7027 !(env->cp15.scr_el3 & SCR_APK)) { 7028 return CP_ACCESS_TRAP_EL3; 7029 } 7030 return CP_ACCESS_OK; 7031 } 7032 7033 static const ARMCPRegInfo pauth_reginfo[] = { 7034 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7036 .access = PL1_RW, .accessfn = access_pauth, 7037 .fgt = FGT_APDAKEY, 7038 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7039 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7040 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7041 .access = PL1_RW, .accessfn = access_pauth, 7042 .fgt = FGT_APDAKEY, 7043 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7044 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7046 .access = PL1_RW, .accessfn = access_pauth, 7047 .fgt = FGT_APDBKEY, 7048 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7049 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7051 .access = PL1_RW, .accessfn = access_pauth, 7052 .fgt = FGT_APDBKEY, 7053 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7054 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7056 .access = PL1_RW, .accessfn = access_pauth, 7057 .fgt = FGT_APGAKEY, 7058 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7059 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7061 .access = PL1_RW, .accessfn = access_pauth, 7062 .fgt = FGT_APGAKEY, 7063 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7064 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7065 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7066 .access = PL1_RW, .accessfn = access_pauth, 7067 .fgt = FGT_APIAKEY, 7068 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7069 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7071 .access = PL1_RW, .accessfn = access_pauth, 7072 .fgt = FGT_APIAKEY, 7073 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7074 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7075 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7076 .access = PL1_RW, .accessfn = access_pauth, 7077 .fgt = FGT_APIBKEY, 7078 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7079 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7081 .access = PL1_RW, .accessfn = access_pauth, 7082 .fgt = FGT_APIBKEY, 7083 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7084 }; 7085 7086 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7087 { 7088 Error *err = NULL; 7089 uint64_t ret; 7090 7091 /* Success sets NZCV = 0000. */ 7092 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7093 7094 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7095 /* 7096 * ??? Failed, for unknown reasons in the crypto subsystem. 7097 * The best we can do is log the reason and return the 7098 * timed-out indication to the guest. There is no reason 7099 * we know to expect this failure to be transitory, so the 7100 * guest may well hang retrying the operation. 7101 */ 7102 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7103 ri->name, error_get_pretty(err)); 7104 error_free(err); 7105 7106 env->ZF = 0; /* NZCF = 0100 */ 7107 return 0; 7108 } 7109 return ret; 7110 } 7111 7112 /* We do not support re-seeding, so the two registers operate the same. */ 7113 static const ARMCPRegInfo rndr_reginfo[] = { 7114 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7115 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7116 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7117 .access = PL0_R, .readfn = rndr_readfn }, 7118 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7119 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7120 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7121 .access = PL0_R, .readfn = rndr_readfn }, 7122 }; 7123 7124 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7125 uint64_t value) 7126 { 7127 #ifdef CONFIG_TCG 7128 ARMCPU *cpu = env_archcpu(env); 7129 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7130 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7131 uint64_t vaddr_in = (uint64_t) value; 7132 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7133 void *haddr; 7134 int mem_idx = arm_env_mmu_index(env); 7135 7136 /* This won't be crossing page boundaries */ 7137 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7138 if (haddr) { 7139 #ifndef CONFIG_USER_ONLY 7140 7141 ram_addr_t offset; 7142 MemoryRegion *mr; 7143 7144 /* RCU lock is already being held */ 7145 mr = memory_region_from_host(haddr, &offset); 7146 7147 if (mr) { 7148 memory_region_writeback(mr, offset, dline_size); 7149 } 7150 #endif /*CONFIG_USER_ONLY*/ 7151 } 7152 #else 7153 /* Handled by hardware accelerator. */ 7154 g_assert_not_reached(); 7155 #endif /* CONFIG_TCG */ 7156 } 7157 7158 static const ARMCPRegInfo dcpop_reg[] = { 7159 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7161 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7162 .fgt = FGT_DCCVAP, 7163 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7164 }; 7165 7166 static const ARMCPRegInfo dcpodp_reg[] = { 7167 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7169 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7170 .fgt = FGT_DCCVADP, 7171 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7172 }; 7173 7174 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7175 bool isread) 7176 { 7177 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7178 return CP_ACCESS_TRAP_EL2; 7179 } 7180 7181 return CP_ACCESS_OK; 7182 } 7183 7184 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7185 bool isread) 7186 { 7187 int el = arm_current_el(env); 7188 if (el < 2 && arm_is_el2_enabled(env)) { 7189 uint64_t hcr = arm_hcr_el2_eff(env); 7190 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7191 return CP_ACCESS_TRAP_EL2; 7192 } 7193 } 7194 if (el < 3 && 7195 arm_feature(env, ARM_FEATURE_EL3) && 7196 !(env->cp15.scr_el3 & SCR_ATA)) { 7197 return CP_ACCESS_TRAP_EL3; 7198 } 7199 return CP_ACCESS_OK; 7200 } 7201 7202 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7203 bool isread) 7204 { 7205 CPAccessResult nv1 = access_nv1(env, ri, isread); 7206 7207 if (nv1 != CP_ACCESS_OK) { 7208 return nv1; 7209 } 7210 return access_mte(env, ri, isread); 7211 } 7212 7213 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7214 bool isread) 7215 { 7216 /* 7217 * TFSR_EL2: similar to generic access_mte(), but we need to 7218 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7219 * if NV2 is enabled then we will redirect this to TFSR_EL1 7220 * after doing the HCR and SCR ATA traps; otherwise this will 7221 * be a trap to EL2 and the HCR/SCR traps do not apply. 7222 */ 7223 int el = arm_current_el(env); 7224 7225 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7226 return CP_ACCESS_OK; 7227 } 7228 if (el < 2 && arm_is_el2_enabled(env)) { 7229 uint64_t hcr = arm_hcr_el2_eff(env); 7230 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7231 return CP_ACCESS_TRAP_EL2; 7232 } 7233 } 7234 if (el < 3 && 7235 arm_feature(env, ARM_FEATURE_EL3) && 7236 !(env->cp15.scr_el3 & SCR_ATA)) { 7237 return CP_ACCESS_TRAP_EL3; 7238 } 7239 return CP_ACCESS_OK; 7240 } 7241 7242 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7243 { 7244 return env->pstate & PSTATE_TCO; 7245 } 7246 7247 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7248 { 7249 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7250 } 7251 7252 static const ARMCPRegInfo mte_reginfo[] = { 7253 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7255 .access = PL1_RW, .accessfn = access_mte, 7256 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7257 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7259 .access = PL1_RW, .accessfn = access_tfsr_el1, 7260 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7261 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7262 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7263 .type = ARM_CP_NV2_REDIRECT, 7264 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7265 .access = PL2_RW, .accessfn = access_tfsr_el2, 7266 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7267 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7269 .access = PL3_RW, 7270 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7271 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7273 .access = PL1_RW, .accessfn = access_mte, 7274 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7275 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7277 .access = PL1_RW, .accessfn = access_mte, 7278 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7279 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7281 .type = ARM_CP_NO_RAW, 7282 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7283 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7285 .type = ARM_CP_NOP, .access = PL1_W, 7286 .fgt = FGT_DCIVAC, 7287 .accessfn = aa64_cacheop_poc_access }, 7288 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7290 .fgt = FGT_DCISW, 7291 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7292 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7294 .type = ARM_CP_NOP, .access = PL1_W, 7295 .fgt = FGT_DCIVAC, 7296 .accessfn = aa64_cacheop_poc_access }, 7297 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7299 .fgt = FGT_DCISW, 7300 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7301 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7303 .fgt = FGT_DCCSW, 7304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7305 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7307 .fgt = FGT_DCCSW, 7308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7309 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7311 .fgt = FGT_DCCISW, 7312 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7313 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7315 .fgt = FGT_DCCISW, 7316 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7317 }; 7318 7319 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7320 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7321 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7322 .type = ARM_CP_CONST, .access = PL0_RW, }, 7323 }; 7324 7325 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7326 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7328 .type = ARM_CP_NOP, .access = PL0_W, 7329 .fgt = FGT_DCCVAC, 7330 .accessfn = aa64_cacheop_poc_access }, 7331 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7333 .type = ARM_CP_NOP, .access = PL0_W, 7334 .fgt = FGT_DCCVAC, 7335 .accessfn = aa64_cacheop_poc_access }, 7336 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7337 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7338 .type = ARM_CP_NOP, .access = PL0_W, 7339 .fgt = FGT_DCCVAP, 7340 .accessfn = aa64_cacheop_poc_access }, 7341 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7343 .type = ARM_CP_NOP, .access = PL0_W, 7344 .fgt = FGT_DCCVAP, 7345 .accessfn = aa64_cacheop_poc_access }, 7346 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7348 .type = ARM_CP_NOP, .access = PL0_W, 7349 .fgt = FGT_DCCVADP, 7350 .accessfn = aa64_cacheop_poc_access }, 7351 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7353 .type = ARM_CP_NOP, .access = PL0_W, 7354 .fgt = FGT_DCCVADP, 7355 .accessfn = aa64_cacheop_poc_access }, 7356 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7358 .type = ARM_CP_NOP, .access = PL0_W, 7359 .fgt = FGT_DCCIVAC, 7360 .accessfn = aa64_cacheop_poc_access }, 7361 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7362 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7363 .type = ARM_CP_NOP, .access = PL0_W, 7364 .fgt = FGT_DCCIVAC, 7365 .accessfn = aa64_cacheop_poc_access }, 7366 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7368 .access = PL0_W, .type = ARM_CP_DC_GVA, 7369 #ifndef CONFIG_USER_ONLY 7370 /* Avoid overhead of an access check that always passes in user-mode */ 7371 .accessfn = aa64_zva_access, 7372 .fgt = FGT_DCZVA, 7373 #endif 7374 }, 7375 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7376 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7377 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7378 #ifndef CONFIG_USER_ONLY 7379 /* Avoid overhead of an access check that always passes in user-mode */ 7380 .accessfn = aa64_zva_access, 7381 .fgt = FGT_DCZVA, 7382 #endif 7383 }, 7384 }; 7385 7386 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7387 bool isread) 7388 { 7389 uint64_t hcr = arm_hcr_el2_eff(env); 7390 int el = arm_current_el(env); 7391 7392 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7393 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7394 if (hcr & HCR_TGE) { 7395 return CP_ACCESS_TRAP_EL2; 7396 } 7397 return CP_ACCESS_TRAP_EL1; 7398 } 7399 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7400 return CP_ACCESS_TRAP_EL2; 7401 } 7402 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7403 return CP_ACCESS_TRAP_EL2; 7404 } 7405 if (el < 3 7406 && arm_feature(env, ARM_FEATURE_EL3) 7407 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7408 return CP_ACCESS_TRAP_EL3; 7409 } 7410 return CP_ACCESS_OK; 7411 } 7412 7413 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7414 const ARMCPRegInfo *ri, 7415 bool isread) 7416 { 7417 CPAccessResult nv1 = access_nv1(env, ri, isread); 7418 7419 if (nv1 != CP_ACCESS_OK) { 7420 return nv1; 7421 } 7422 return access_scxtnum(env, ri, isread); 7423 } 7424 7425 static const ARMCPRegInfo scxtnum_reginfo[] = { 7426 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7428 .access = PL0_RW, .accessfn = access_scxtnum, 7429 .fgt = FGT_SCXTNUM_EL0, 7430 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7431 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7433 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7434 .fgt = FGT_SCXTNUM_EL1, 7435 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7436 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7437 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7439 .access = PL2_RW, .accessfn = access_scxtnum, 7440 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7441 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7443 .access = PL3_RW, 7444 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7445 }; 7446 7447 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7448 bool isread) 7449 { 7450 if (arm_current_el(env) == 2 && 7451 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7452 return CP_ACCESS_TRAP_EL3; 7453 } 7454 return CP_ACCESS_OK; 7455 } 7456 7457 static const ARMCPRegInfo fgt_reginfo[] = { 7458 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7460 .nv2_redirect_offset = 0x1b8, 7461 .access = PL2_RW, .accessfn = access_fgt, 7462 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7463 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7465 .nv2_redirect_offset = 0x1c0, 7466 .access = PL2_RW, .accessfn = access_fgt, 7467 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7468 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7470 .nv2_redirect_offset = 0x1d0, 7471 .access = PL2_RW, .accessfn = access_fgt, 7472 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7473 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7475 .nv2_redirect_offset = 0x1d8, 7476 .access = PL2_RW, .accessfn = access_fgt, 7477 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7478 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7479 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7480 .nv2_redirect_offset = 0x1c8, 7481 .access = PL2_RW, .accessfn = access_fgt, 7482 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7483 }; 7484 7485 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7486 uint64_t value) 7487 { 7488 /* 7489 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7490 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7491 * about the RESS bits at the top -- we choose the "generate an EL2 7492 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7493 * the ptw.c code detect the resulting invalid address). 7494 */ 7495 env->cp15.vncr_el2 = value & ~0xfffULL; 7496 } 7497 7498 static const ARMCPRegInfo nv2_reginfo[] = { 7499 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7501 .access = PL2_RW, 7502 .writefn = vncr_write, 7503 .nv2_redirect_offset = 0xb0, 7504 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7505 }; 7506 7507 #endif /* TARGET_AARCH64 */ 7508 7509 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7510 bool isread) 7511 { 7512 int el = arm_current_el(env); 7513 7514 if (el == 0) { 7515 uint64_t sctlr = arm_sctlr(env, el); 7516 if (!(sctlr & SCTLR_EnRCTX)) { 7517 return CP_ACCESS_TRAP_EL1; 7518 } 7519 } else if (el == 1) { 7520 uint64_t hcr = arm_hcr_el2_eff(env); 7521 if (hcr & HCR_NV) { 7522 return CP_ACCESS_TRAP_EL2; 7523 } 7524 } 7525 return CP_ACCESS_OK; 7526 } 7527 7528 static const ARMCPRegInfo predinv_reginfo[] = { 7529 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7531 .fgt = FGT_CFPRCTX, 7532 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7533 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7535 .fgt = FGT_DVPRCTX, 7536 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7537 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7539 .fgt = FGT_CPPRCTX, 7540 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7541 /* 7542 * Note the AArch32 opcodes have a different OPC1. 7543 */ 7544 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7545 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7546 .fgt = FGT_CFPRCTX, 7547 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7548 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7549 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7550 .fgt = FGT_DVPRCTX, 7551 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7552 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7553 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7554 .fgt = FGT_CPPRCTX, 7555 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7556 }; 7557 7558 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7559 { 7560 /* Read the high 32 bits of the current CCSIDR */ 7561 return extract64(ccsidr_read(env, ri), 32, 32); 7562 } 7563 7564 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7565 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7566 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7567 .access = PL1_R, 7568 .accessfn = access_tid4, 7569 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7570 }; 7571 7572 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7573 bool isread) 7574 { 7575 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7576 return CP_ACCESS_TRAP_EL2; 7577 } 7578 7579 return CP_ACCESS_OK; 7580 } 7581 7582 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7583 bool isread) 7584 { 7585 if (arm_feature(env, ARM_FEATURE_V8)) { 7586 return access_aa64_tid3(env, ri, isread); 7587 } 7588 7589 return CP_ACCESS_OK; 7590 } 7591 7592 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7593 bool isread) 7594 { 7595 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7596 return CP_ACCESS_TRAP_EL2; 7597 } 7598 7599 return CP_ACCESS_OK; 7600 } 7601 7602 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7603 const ARMCPRegInfo *ri, bool isread) 7604 { 7605 /* 7606 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7607 * in v7A, not in v8A. 7608 */ 7609 if (!arm_feature(env, ARM_FEATURE_V8) && 7610 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7611 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7612 return CP_ACCESS_TRAP_EL2; 7613 } 7614 return CP_ACCESS_OK; 7615 } 7616 7617 static const ARMCPRegInfo jazelle_regs[] = { 7618 { .name = "JIDR", 7619 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7620 .access = PL1_R, .accessfn = access_jazelle, 7621 .type = ARM_CP_CONST, .resetvalue = 0 }, 7622 { .name = "JOSCR", 7623 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7624 .accessfn = access_joscr_jmcr, 7625 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7626 { .name = "JMCR", 7627 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7628 .accessfn = access_joscr_jmcr, 7629 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7630 }; 7631 7632 static const ARMCPRegInfo contextidr_el2 = { 7633 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7634 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7635 .access = PL2_RW, 7636 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7637 }; 7638 7639 static const ARMCPRegInfo vhe_reginfo[] = { 7640 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7641 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7642 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7643 .raw_writefn = raw_write, 7644 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7645 #ifndef CONFIG_USER_ONLY 7646 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7648 .fieldoffset = 7649 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7650 .type = ARM_CP_IO, .access = PL2_RW, 7651 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7652 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7653 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7654 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7655 .resetfn = gt_hv_timer_reset, 7656 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7657 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7658 .type = ARM_CP_IO, 7659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7660 .access = PL2_RW, 7661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7662 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7663 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7664 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7665 .type = ARM_CP_IO | ARM_CP_ALIAS, 7666 .access = PL2_RW, .accessfn = access_el1nvpct, 7667 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7668 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7669 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7670 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7671 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7672 .type = ARM_CP_IO | ARM_CP_ALIAS, 7673 .access = PL2_RW, .accessfn = access_el1nvvct, 7674 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7675 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7676 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7677 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7678 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7679 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7680 .access = PL2_RW, .accessfn = e2h_access, 7681 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7682 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7683 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7684 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7685 .access = PL2_RW, .accessfn = e2h_access, 7686 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7687 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7688 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7689 .type = ARM_CP_IO | ARM_CP_ALIAS, 7690 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7691 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7692 .access = PL2_RW, .accessfn = access_el1nvpct, 7693 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7694 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7696 .type = ARM_CP_IO | ARM_CP_ALIAS, 7697 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7698 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7699 .access = PL2_RW, .accessfn = access_el1nvvct, 7700 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7701 #endif 7702 }; 7703 7704 #ifndef CONFIG_USER_ONLY 7705 static const ARMCPRegInfo ats1e1_reginfo[] = { 7706 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7708 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7709 .fgt = FGT_ATS1E1RP, 7710 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7711 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7713 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7714 .fgt = FGT_ATS1E1WP, 7715 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7716 }; 7717 7718 static const ARMCPRegInfo ats1cp_reginfo[] = { 7719 { .name = "ATS1CPRP", 7720 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7721 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7722 .writefn = ats_write }, 7723 { .name = "ATS1CPWP", 7724 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7725 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7726 .writefn = ats_write }, 7727 }; 7728 #endif 7729 7730 /* 7731 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7732 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7733 * is non-zero, which is never for ARMv7, optionally in ARMv8 7734 * and mandatorily for ARMv8.2 and up. 7735 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7736 * implementation is RAZ/WI we can ignore this detail, as we 7737 * do for ACTLR. 7738 */ 7739 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7740 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7741 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7742 .access = PL1_RW, .accessfn = access_tacr, 7743 .type = ARM_CP_CONST, .resetvalue = 0 }, 7744 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7745 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7746 .access = PL2_RW, .type = ARM_CP_CONST, 7747 .resetvalue = 0 }, 7748 }; 7749 7750 void register_cp_regs_for_features(ARMCPU *cpu) 7751 { 7752 /* Register all the coprocessor registers based on feature bits */ 7753 CPUARMState *env = &cpu->env; 7754 if (arm_feature(env, ARM_FEATURE_M)) { 7755 /* M profile has no coprocessor registers */ 7756 return; 7757 } 7758 7759 define_arm_cp_regs(cpu, cp_reginfo); 7760 if (!arm_feature(env, ARM_FEATURE_V8)) { 7761 /* 7762 * Must go early as it is full of wildcards that may be 7763 * overridden by later definitions. 7764 */ 7765 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7766 } 7767 7768 define_tlb_insn_regs(cpu); 7769 7770 if (arm_feature(env, ARM_FEATURE_V6)) { 7771 /* The ID registers all have impdef reset values */ 7772 ARMCPRegInfo v6_idregs[] = { 7773 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7775 .access = PL1_R, .type = ARM_CP_CONST, 7776 .accessfn = access_aa32_tid3, 7777 .resetvalue = cpu->isar.id_pfr0 }, 7778 /* 7779 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7780 * the value of the GIC field until after we define these regs. 7781 */ 7782 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7784 .access = PL1_R, .type = ARM_CP_NO_RAW, 7785 .accessfn = access_aa32_tid3, 7786 #ifdef CONFIG_USER_ONLY 7787 .type = ARM_CP_CONST, 7788 .resetvalue = cpu->isar.id_pfr1, 7789 #else 7790 .type = ARM_CP_NO_RAW, 7791 .accessfn = access_aa32_tid3, 7792 .readfn = id_pfr1_read, 7793 .writefn = arm_cp_write_ignore 7794 #endif 7795 }, 7796 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa32_tid3, 7800 .resetvalue = cpu->isar.id_dfr0 }, 7801 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa32_tid3, 7805 .resetvalue = cpu->id_afr0 }, 7806 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa32_tid3, 7810 .resetvalue = cpu->isar.id_mmfr0 }, 7811 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa32_tid3, 7815 .resetvalue = cpu->isar.id_mmfr1 }, 7816 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa32_tid3, 7820 .resetvalue = cpu->isar.id_mmfr2 }, 7821 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa32_tid3, 7825 .resetvalue = cpu->isar.id_mmfr3 }, 7826 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa32_tid3, 7830 .resetvalue = cpu->isar.id_isar0 }, 7831 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa32_tid3, 7835 .resetvalue = cpu->isar.id_isar1 }, 7836 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa32_tid3, 7840 .resetvalue = cpu->isar.id_isar2 }, 7841 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa32_tid3, 7845 .resetvalue = cpu->isar.id_isar3 }, 7846 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa32_tid3, 7850 .resetvalue = cpu->isar.id_isar4 }, 7851 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa32_tid3, 7855 .resetvalue = cpu->isar.id_isar5 }, 7856 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa32_tid3, 7860 .resetvalue = cpu->isar.id_mmfr4 }, 7861 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa32_tid3, 7865 .resetvalue = cpu->isar.id_isar6 }, 7866 }; 7867 define_arm_cp_regs(cpu, v6_idregs); 7868 define_arm_cp_regs(cpu, v6_cp_reginfo); 7869 } else { 7870 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7871 } 7872 if (arm_feature(env, ARM_FEATURE_V6K)) { 7873 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7874 } 7875 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7876 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7877 } 7878 if (arm_feature(env, ARM_FEATURE_V7)) { 7879 ARMCPRegInfo clidr = { 7880 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7881 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_tid4, 7884 .fgt = FGT_CLIDR_EL1, 7885 .resetvalue = cpu->clidr 7886 }; 7887 define_one_arm_cp_reg(cpu, &clidr); 7888 define_arm_cp_regs(cpu, v7_cp_reginfo); 7889 define_debug_regs(cpu); 7890 define_pmu_regs(cpu); 7891 } else { 7892 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7893 } 7894 if (arm_feature(env, ARM_FEATURE_V8)) { 7895 /* 7896 * v8 ID registers, which all have impdef reset values. 7897 * Note that within the ID register ranges the unused slots 7898 * must all RAZ, not UNDEF; future architecture versions may 7899 * define new registers here. 7900 * ID registers which are AArch64 views of the AArch32 ID registers 7901 * which already existed in v6 and v7 are handled elsewhere, 7902 * in v6_idregs[]. 7903 */ 7904 int i; 7905 ARMCPRegInfo v8_idregs[] = { 7906 /* 7907 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7908 * emulation because we don't know the right value for the 7909 * GIC field until after we define these regs. 7910 */ 7911 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7913 .access = PL1_R, 7914 #ifdef CONFIG_USER_ONLY 7915 .type = ARM_CP_CONST, 7916 .resetvalue = cpu->isar.id_aa64pfr0 7917 #else 7918 .type = ARM_CP_NO_RAW, 7919 .accessfn = access_aa64_tid3, 7920 .readfn = id_aa64pfr0_read, 7921 .writefn = arm_cp_write_ignore 7922 #endif 7923 }, 7924 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7926 .access = PL1_R, .type = ARM_CP_CONST, 7927 .accessfn = access_aa64_tid3, 7928 .resetvalue = cpu->isar.id_aa64pfr1}, 7929 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7931 .access = PL1_R, .type = ARM_CP_CONST, 7932 .accessfn = access_aa64_tid3, 7933 .resetvalue = 0 }, 7934 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7936 .access = PL1_R, .type = ARM_CP_CONST, 7937 .accessfn = access_aa64_tid3, 7938 .resetvalue = 0 }, 7939 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7941 .access = PL1_R, .type = ARM_CP_CONST, 7942 .accessfn = access_aa64_tid3, 7943 .resetvalue = cpu->isar.id_aa64zfr0 }, 7944 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7946 .access = PL1_R, .type = ARM_CP_CONST, 7947 .accessfn = access_aa64_tid3, 7948 .resetvalue = cpu->isar.id_aa64smfr0 }, 7949 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7951 .access = PL1_R, .type = ARM_CP_CONST, 7952 .accessfn = access_aa64_tid3, 7953 .resetvalue = 0 }, 7954 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7956 .access = PL1_R, .type = ARM_CP_CONST, 7957 .accessfn = access_aa64_tid3, 7958 .resetvalue = 0 }, 7959 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7961 .access = PL1_R, .type = ARM_CP_CONST, 7962 .accessfn = access_aa64_tid3, 7963 .resetvalue = cpu->isar.id_aa64dfr0 }, 7964 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7966 .access = PL1_R, .type = ARM_CP_CONST, 7967 .accessfn = access_aa64_tid3, 7968 .resetvalue = cpu->isar.id_aa64dfr1 }, 7969 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7971 .access = PL1_R, .type = ARM_CP_CONST, 7972 .accessfn = access_aa64_tid3, 7973 .resetvalue = 0 }, 7974 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7976 .access = PL1_R, .type = ARM_CP_CONST, 7977 .accessfn = access_aa64_tid3, 7978 .resetvalue = 0 }, 7979 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7981 .access = PL1_R, .type = ARM_CP_CONST, 7982 .accessfn = access_aa64_tid3, 7983 .resetvalue = cpu->id_aa64afr0 }, 7984 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7986 .access = PL1_R, .type = ARM_CP_CONST, 7987 .accessfn = access_aa64_tid3, 7988 .resetvalue = cpu->id_aa64afr1 }, 7989 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7991 .access = PL1_R, .type = ARM_CP_CONST, 7992 .accessfn = access_aa64_tid3, 7993 .resetvalue = 0 }, 7994 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7996 .access = PL1_R, .type = ARM_CP_CONST, 7997 .accessfn = access_aa64_tid3, 7998 .resetvalue = 0 }, 7999 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8001 .access = PL1_R, .type = ARM_CP_CONST, 8002 .accessfn = access_aa64_tid3, 8003 .resetvalue = cpu->isar.id_aa64isar0 }, 8004 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8006 .access = PL1_R, .type = ARM_CP_CONST, 8007 .accessfn = access_aa64_tid3, 8008 .resetvalue = cpu->isar.id_aa64isar1 }, 8009 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8011 .access = PL1_R, .type = ARM_CP_CONST, 8012 .accessfn = access_aa64_tid3, 8013 .resetvalue = cpu->isar.id_aa64isar2 }, 8014 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8016 .access = PL1_R, .type = ARM_CP_CONST, 8017 .accessfn = access_aa64_tid3, 8018 .resetvalue = 0 }, 8019 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8021 .access = PL1_R, .type = ARM_CP_CONST, 8022 .accessfn = access_aa64_tid3, 8023 .resetvalue = 0 }, 8024 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8026 .access = PL1_R, .type = ARM_CP_CONST, 8027 .accessfn = access_aa64_tid3, 8028 .resetvalue = 0 }, 8029 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8031 .access = PL1_R, .type = ARM_CP_CONST, 8032 .accessfn = access_aa64_tid3, 8033 .resetvalue = 0 }, 8034 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8036 .access = PL1_R, .type = ARM_CP_CONST, 8037 .accessfn = access_aa64_tid3, 8038 .resetvalue = 0 }, 8039 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8041 .access = PL1_R, .type = ARM_CP_CONST, 8042 .accessfn = access_aa64_tid3, 8043 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8044 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8046 .access = PL1_R, .type = ARM_CP_CONST, 8047 .accessfn = access_aa64_tid3, 8048 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8049 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8051 .access = PL1_R, .type = ARM_CP_CONST, 8052 .accessfn = access_aa64_tid3, 8053 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8054 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 8055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8056 .access = PL1_R, .type = ARM_CP_CONST, 8057 .accessfn = access_aa64_tid3, 8058 .resetvalue = cpu->isar.id_aa64mmfr3 }, 8059 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8061 .access = PL1_R, .type = ARM_CP_CONST, 8062 .accessfn = access_aa64_tid3, 8063 .resetvalue = 0 }, 8064 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8066 .access = PL1_R, .type = ARM_CP_CONST, 8067 .accessfn = access_aa64_tid3, 8068 .resetvalue = 0 }, 8069 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8071 .access = PL1_R, .type = ARM_CP_CONST, 8072 .accessfn = access_aa64_tid3, 8073 .resetvalue = 0 }, 8074 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8076 .access = PL1_R, .type = ARM_CP_CONST, 8077 .accessfn = access_aa64_tid3, 8078 .resetvalue = 0 }, 8079 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8081 .access = PL1_R, .type = ARM_CP_CONST, 8082 .accessfn = access_aa64_tid3, 8083 .resetvalue = cpu->isar.mvfr0 }, 8084 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8086 .access = PL1_R, .type = ARM_CP_CONST, 8087 .accessfn = access_aa64_tid3, 8088 .resetvalue = cpu->isar.mvfr1 }, 8089 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8091 .access = PL1_R, .type = ARM_CP_CONST, 8092 .accessfn = access_aa64_tid3, 8093 .resetvalue = cpu->isar.mvfr2 }, 8094 /* 8095 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8096 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8097 * as RAZ, since it is in the "reserved for future ID 8098 * registers, RAZ" part of the AArch32 encoding space. 8099 */ 8100 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8101 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8102 .access = PL1_R, .type = ARM_CP_CONST, 8103 .accessfn = access_aa64_tid3, 8104 .resetvalue = 0 }, 8105 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8106 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8107 .access = PL1_R, .type = ARM_CP_CONST, 8108 .accessfn = access_aa64_tid3, 8109 .resetvalue = 0 }, 8110 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8111 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8112 .access = PL1_R, .type = ARM_CP_CONST, 8113 .accessfn = access_aa64_tid3, 8114 .resetvalue = 0 }, 8115 /* 8116 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8117 * they're also RAZ for AArch64, and in v8 are gradually 8118 * being filled with AArch64-view-of-AArch32-ID-register 8119 * for new ID registers. 8120 */ 8121 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8123 .access = PL1_R, .type = ARM_CP_CONST, 8124 .accessfn = access_aa64_tid3, 8125 .resetvalue = 0 }, 8126 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8128 .access = PL1_R, .type = ARM_CP_CONST, 8129 .accessfn = access_aa64_tid3, 8130 .resetvalue = cpu->isar.id_pfr2 }, 8131 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8133 .access = PL1_R, .type = ARM_CP_CONST, 8134 .accessfn = access_aa64_tid3, 8135 .resetvalue = cpu->isar.id_dfr1 }, 8136 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8138 .access = PL1_R, .type = ARM_CP_CONST, 8139 .accessfn = access_aa64_tid3, 8140 .resetvalue = cpu->isar.id_mmfr5 }, 8141 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8143 .access = PL1_R, .type = ARM_CP_CONST, 8144 .accessfn = access_aa64_tid3, 8145 .resetvalue = 0 }, 8146 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8147 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8148 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8149 .fgt = FGT_PMCEIDN_EL0, 8150 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8151 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8152 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8153 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8154 .fgt = FGT_PMCEIDN_EL0, 8155 .resetvalue = cpu->pmceid0 }, 8156 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8157 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8158 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8159 .fgt = FGT_PMCEIDN_EL0, 8160 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8161 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8162 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8163 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8164 .fgt = FGT_PMCEIDN_EL0, 8165 .resetvalue = cpu->pmceid1 }, 8166 }; 8167 #ifdef CONFIG_USER_ONLY 8168 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8169 { .name = "ID_AA64PFR0_EL1", 8170 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8171 R_ID_AA64PFR0_ADVSIMD_MASK | 8172 R_ID_AA64PFR0_SVE_MASK | 8173 R_ID_AA64PFR0_DIT_MASK, 8174 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8175 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8176 { .name = "ID_AA64PFR1_EL1", 8177 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8178 R_ID_AA64PFR1_SSBS_MASK | 8179 R_ID_AA64PFR1_MTE_MASK | 8180 R_ID_AA64PFR1_SME_MASK }, 8181 { .name = "ID_AA64PFR*_EL1_RESERVED", 8182 .is_glob = true }, 8183 { .name = "ID_AA64ZFR0_EL1", 8184 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8185 R_ID_AA64ZFR0_AES_MASK | 8186 R_ID_AA64ZFR0_BITPERM_MASK | 8187 R_ID_AA64ZFR0_BFLOAT16_MASK | 8188 R_ID_AA64ZFR0_B16B16_MASK | 8189 R_ID_AA64ZFR0_SHA3_MASK | 8190 R_ID_AA64ZFR0_SM4_MASK | 8191 R_ID_AA64ZFR0_I8MM_MASK | 8192 R_ID_AA64ZFR0_F32MM_MASK | 8193 R_ID_AA64ZFR0_F64MM_MASK }, 8194 { .name = "ID_AA64SMFR0_EL1", 8195 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8196 R_ID_AA64SMFR0_BI32I32_MASK | 8197 R_ID_AA64SMFR0_B16F32_MASK | 8198 R_ID_AA64SMFR0_F16F32_MASK | 8199 R_ID_AA64SMFR0_I8I32_MASK | 8200 R_ID_AA64SMFR0_F16F16_MASK | 8201 R_ID_AA64SMFR0_B16B16_MASK | 8202 R_ID_AA64SMFR0_I16I32_MASK | 8203 R_ID_AA64SMFR0_F64F64_MASK | 8204 R_ID_AA64SMFR0_I16I64_MASK | 8205 R_ID_AA64SMFR0_SMEVER_MASK | 8206 R_ID_AA64SMFR0_FA64_MASK }, 8207 { .name = "ID_AA64MMFR0_EL1", 8208 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8209 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8210 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8211 { .name = "ID_AA64MMFR1_EL1", 8212 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8213 { .name = "ID_AA64MMFR2_EL1", 8214 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8215 { .name = "ID_AA64MMFR3_EL1", 8216 .exported_bits = 0 }, 8217 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8218 .is_glob = true }, 8219 { .name = "ID_AA64DFR0_EL1", 8220 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8221 { .name = "ID_AA64DFR1_EL1" }, 8222 { .name = "ID_AA64DFR*_EL1_RESERVED", 8223 .is_glob = true }, 8224 { .name = "ID_AA64AFR*", 8225 .is_glob = true }, 8226 { .name = "ID_AA64ISAR0_EL1", 8227 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8228 R_ID_AA64ISAR0_SHA1_MASK | 8229 R_ID_AA64ISAR0_SHA2_MASK | 8230 R_ID_AA64ISAR0_CRC32_MASK | 8231 R_ID_AA64ISAR0_ATOMIC_MASK | 8232 R_ID_AA64ISAR0_RDM_MASK | 8233 R_ID_AA64ISAR0_SHA3_MASK | 8234 R_ID_AA64ISAR0_SM3_MASK | 8235 R_ID_AA64ISAR0_SM4_MASK | 8236 R_ID_AA64ISAR0_DP_MASK | 8237 R_ID_AA64ISAR0_FHM_MASK | 8238 R_ID_AA64ISAR0_TS_MASK | 8239 R_ID_AA64ISAR0_RNDR_MASK }, 8240 { .name = "ID_AA64ISAR1_EL1", 8241 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8242 R_ID_AA64ISAR1_APA_MASK | 8243 R_ID_AA64ISAR1_API_MASK | 8244 R_ID_AA64ISAR1_JSCVT_MASK | 8245 R_ID_AA64ISAR1_FCMA_MASK | 8246 R_ID_AA64ISAR1_LRCPC_MASK | 8247 R_ID_AA64ISAR1_GPA_MASK | 8248 R_ID_AA64ISAR1_GPI_MASK | 8249 R_ID_AA64ISAR1_FRINTTS_MASK | 8250 R_ID_AA64ISAR1_SB_MASK | 8251 R_ID_AA64ISAR1_BF16_MASK | 8252 R_ID_AA64ISAR1_DGH_MASK | 8253 R_ID_AA64ISAR1_I8MM_MASK }, 8254 { .name = "ID_AA64ISAR2_EL1", 8255 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8256 R_ID_AA64ISAR2_RPRES_MASK | 8257 R_ID_AA64ISAR2_GPA3_MASK | 8258 R_ID_AA64ISAR2_APA3_MASK | 8259 R_ID_AA64ISAR2_MOPS_MASK | 8260 R_ID_AA64ISAR2_BC_MASK | 8261 R_ID_AA64ISAR2_RPRFM_MASK | 8262 R_ID_AA64ISAR2_CSSC_MASK }, 8263 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8264 .is_glob = true }, 8265 }; 8266 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8267 #endif 8268 /* 8269 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8270 * TODO: For RMR, a write with bit 1 set should do something with 8271 * cpu_reset(). In the meantime, "the bit is strictly a request", 8272 * so we are in spec just ignoring writes. 8273 */ 8274 if (!arm_feature(env, ARM_FEATURE_EL3) && 8275 !arm_feature(env, ARM_FEATURE_EL2)) { 8276 ARMCPRegInfo el1_reset_regs[] = { 8277 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8278 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8279 .access = PL1_R, 8280 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8281 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8282 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8283 .access = PL1_RW, .type = ARM_CP_CONST, 8284 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8285 }; 8286 define_arm_cp_regs(cpu, el1_reset_regs); 8287 } 8288 define_arm_cp_regs(cpu, v8_idregs); 8289 define_arm_cp_regs(cpu, v8_cp_reginfo); 8290 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8291 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8292 } 8293 8294 for (i = 4; i < 16; i++) { 8295 /* 8296 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8297 * For pre-v8 cores there are RAZ patterns for these in 8298 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8299 * v8 extends the "must RAZ" part of the ID register space 8300 * to also cover c0, 0, c{8-15}, {0-7}. 8301 * These are STATE_AA32 because in the AArch64 sysreg space 8302 * c4-c7 is where the AArch64 ID registers live (and we've 8303 * already defined those in v8_idregs[]), and c8-c15 are not 8304 * "must RAZ" for AArch64. 8305 */ 8306 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8307 ARMCPRegInfo v8_aa32_raz_idregs = { 8308 .name = name, 8309 .state = ARM_CP_STATE_AA32, 8310 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8311 .access = PL1_R, .type = ARM_CP_CONST, 8312 .accessfn = access_aa64_tid3, 8313 .resetvalue = 0 }; 8314 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8315 } 8316 } 8317 8318 /* 8319 * Register the base EL2 cpregs. 8320 * Pre v8, these registers are implemented only as part of the 8321 * Virtualization Extensions (EL2 present). Beginning with v8, 8322 * if EL2 is missing but EL3 is enabled, mostly these become 8323 * RES0 from EL3, with some specific exceptions. 8324 */ 8325 if (arm_feature(env, ARM_FEATURE_EL2) 8326 || (arm_feature(env, ARM_FEATURE_EL3) 8327 && arm_feature(env, ARM_FEATURE_V8))) { 8328 uint64_t vmpidr_def = mpidr_read_val(env); 8329 ARMCPRegInfo vpidr_regs[] = { 8330 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8331 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8332 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8333 .resetvalue = cpu->midr, 8334 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8335 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8336 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8337 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8338 .access = PL2_RW, .resetvalue = cpu->midr, 8339 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8340 .nv2_redirect_offset = 0x88, 8341 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8342 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8343 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8344 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8345 .resetvalue = vmpidr_def, 8346 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8347 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8348 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8349 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8350 .access = PL2_RW, .resetvalue = vmpidr_def, 8351 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8352 .nv2_redirect_offset = 0x50, 8353 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8354 }; 8355 /* 8356 * The only field of MDCR_EL2 that has a defined architectural reset 8357 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8358 */ 8359 ARMCPRegInfo mdcr_el2 = { 8360 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8361 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8362 .writefn = mdcr_el2_write, 8363 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8364 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8365 }; 8366 define_one_arm_cp_reg(cpu, &mdcr_el2); 8367 define_arm_cp_regs(cpu, vpidr_regs); 8368 define_arm_cp_regs(cpu, el2_cp_reginfo); 8369 if (arm_feature(env, ARM_FEATURE_V8)) { 8370 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8371 } 8372 if (cpu_isar_feature(aa64_sel2, cpu)) { 8373 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8374 } 8375 /* 8376 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8377 * See commentary near RMR_EL1. 8378 */ 8379 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8380 static const ARMCPRegInfo el2_reset_regs[] = { 8381 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8382 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8383 .access = PL2_R, 8384 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8385 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8386 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8387 .access = PL2_R, 8388 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8389 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8390 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8391 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8392 }; 8393 define_arm_cp_regs(cpu, el2_reset_regs); 8394 } 8395 } 8396 8397 /* Register the base EL3 cpregs. */ 8398 if (arm_feature(env, ARM_FEATURE_EL3)) { 8399 define_arm_cp_regs(cpu, el3_cp_reginfo); 8400 ARMCPRegInfo el3_regs[] = { 8401 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8402 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8403 .access = PL3_R, 8404 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8405 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8406 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8407 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8408 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8409 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8410 .access = PL3_RW, .type = ARM_CP_CONST, 8411 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8412 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8414 .access = PL3_RW, 8415 .raw_writefn = raw_write, .writefn = sctlr_write, 8416 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8417 .resetvalue = cpu->reset_sctlr }, 8418 }; 8419 8420 define_arm_cp_regs(cpu, el3_regs); 8421 } 8422 /* 8423 * The behaviour of NSACR is sufficiently various that we don't 8424 * try to describe it in a single reginfo: 8425 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8426 * reads as constant 0xc00 from NS EL1 and NS EL2 8427 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8428 * if v7 without EL3, register doesn't exist 8429 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8430 */ 8431 if (arm_feature(env, ARM_FEATURE_EL3)) { 8432 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8433 static const ARMCPRegInfo nsacr = { 8434 .name = "NSACR", .type = ARM_CP_CONST, 8435 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8436 .access = PL1_RW, .accessfn = nsacr_access, 8437 .resetvalue = 0xc00 8438 }; 8439 define_one_arm_cp_reg(cpu, &nsacr); 8440 } else { 8441 static const ARMCPRegInfo nsacr = { 8442 .name = "NSACR", 8443 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8444 .access = PL3_RW | PL1_R, 8445 .resetvalue = 0, 8446 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8447 }; 8448 define_one_arm_cp_reg(cpu, &nsacr); 8449 } 8450 } else { 8451 if (arm_feature(env, ARM_FEATURE_V8)) { 8452 static const ARMCPRegInfo nsacr = { 8453 .name = "NSACR", .type = ARM_CP_CONST, 8454 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8455 .access = PL1_R, 8456 .resetvalue = 0xc00 8457 }; 8458 define_one_arm_cp_reg(cpu, &nsacr); 8459 } 8460 } 8461 8462 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8463 if (arm_feature(env, ARM_FEATURE_V6)) { 8464 /* PMSAv6 not implemented */ 8465 assert(arm_feature(env, ARM_FEATURE_V7)); 8466 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8467 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8468 } else { 8469 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8470 } 8471 } else { 8472 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8473 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8474 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8475 if (cpu_isar_feature(aa32_hpd, cpu)) { 8476 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8477 } 8478 } 8479 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8480 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8481 } 8482 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8483 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8484 } 8485 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8486 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8487 } 8488 #ifndef CONFIG_USER_ONLY 8489 if (cpu_isar_feature(aa64_ecv, cpu)) { 8490 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8491 } 8492 #endif 8493 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8494 ARMCPRegInfo vapa_cp_reginfo[] = { 8495 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8496 .access = PL1_RW, .resetvalue = 0, 8497 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8498 offsetoflow32(CPUARMState, cp15.par_ns) }, 8499 .writefn = par_write}, 8500 #ifndef CONFIG_USER_ONLY 8501 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8502 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8503 .access = PL1_W, .accessfn = ats_access, 8504 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8505 #endif 8506 }; 8507 8508 /* 8509 * When LPAE exists this 32-bit PAR register is an alias of the 8510 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8511 */ 8512 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8513 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8514 } 8515 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8516 } 8517 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8518 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8519 } 8520 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8521 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8522 } 8523 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8524 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8525 } 8526 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8527 define_arm_cp_regs(cpu, omap_cp_reginfo); 8528 } 8529 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8530 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8531 } 8532 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8533 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8534 } 8535 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8536 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8537 } 8538 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8539 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8540 } 8541 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8542 define_arm_cp_regs(cpu, jazelle_regs); 8543 } 8544 /* 8545 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8546 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8547 * be read-only (ie write causes UNDEF exception). 8548 */ 8549 { 8550 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8551 /* 8552 * Pre-v8 MIDR space. 8553 * Note that the MIDR isn't a simple constant register because 8554 * of the TI925 behaviour where writes to another register can 8555 * cause the MIDR value to change. 8556 * 8557 * Unimplemented registers in the c15 0 0 0 space default to 8558 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8559 * and friends override accordingly. 8560 */ 8561 { .name = "MIDR", 8562 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8563 .access = PL1_R, .resetvalue = cpu->midr, 8564 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8565 .readfn = midr_read, 8566 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8567 .type = ARM_CP_OVERRIDE }, 8568 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8569 { .name = "DUMMY", 8570 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8571 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8572 { .name = "DUMMY", 8573 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8574 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8575 { .name = "DUMMY", 8576 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8577 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8578 { .name = "DUMMY", 8579 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8580 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8581 { .name = "DUMMY", 8582 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8583 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8584 }; 8585 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8586 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8588 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8589 .fgt = FGT_MIDR_EL1, 8590 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8591 .readfn = midr_read }, 8592 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8593 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8594 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8595 .access = PL1_R, .resetvalue = cpu->midr }, 8596 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8598 .access = PL1_R, 8599 .accessfn = access_aa64_tid1, 8600 .fgt = FGT_REVIDR_EL1, 8601 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8602 }; 8603 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8604 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8605 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8606 .access = PL1_R, .resetvalue = cpu->midr 8607 }; 8608 ARMCPRegInfo id_cp_reginfo[] = { 8609 /* These are common to v8 and pre-v8 */ 8610 { .name = "CTR", 8611 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8612 .access = PL1_R, .accessfn = ctr_el0_access, 8613 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8614 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8615 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8616 .access = PL0_R, .accessfn = ctr_el0_access, 8617 .fgt = FGT_CTR_EL0, 8618 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8619 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8620 { .name = "TCMTR", 8621 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8622 .access = PL1_R, 8623 .accessfn = access_aa32_tid1, 8624 .type = ARM_CP_CONST, .resetvalue = 0 }, 8625 }; 8626 /* TLBTR is specific to VMSA */ 8627 ARMCPRegInfo id_tlbtr_reginfo = { 8628 .name = "TLBTR", 8629 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8630 .access = PL1_R, 8631 .accessfn = access_aa32_tid1, 8632 .type = ARM_CP_CONST, .resetvalue = 0, 8633 }; 8634 /* MPUIR is specific to PMSA V6+ */ 8635 ARMCPRegInfo id_mpuir_reginfo = { 8636 .name = "MPUIR", 8637 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8638 .access = PL1_R, .type = ARM_CP_CONST, 8639 .resetvalue = cpu->pmsav7_dregion << 8 8640 }; 8641 /* HMPUIR is specific to PMSA V8 */ 8642 ARMCPRegInfo id_hmpuir_reginfo = { 8643 .name = "HMPUIR", 8644 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8645 .access = PL2_R, .type = ARM_CP_CONST, 8646 .resetvalue = cpu->pmsav8r_hdregion 8647 }; 8648 static const ARMCPRegInfo crn0_wi_reginfo = { 8649 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8650 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8651 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8652 }; 8653 #ifdef CONFIG_USER_ONLY 8654 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8655 { .name = "MIDR_EL1", 8656 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8657 R_MIDR_EL1_PARTNUM_MASK | 8658 R_MIDR_EL1_ARCHITECTURE_MASK | 8659 R_MIDR_EL1_VARIANT_MASK | 8660 R_MIDR_EL1_IMPLEMENTER_MASK }, 8661 { .name = "REVIDR_EL1" }, 8662 }; 8663 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8664 #endif 8665 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8666 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8667 size_t i; 8668 /* 8669 * Register the blanket "writes ignored" value first to cover the 8670 * whole space. Then update the specific ID registers to allow write 8671 * access, so that they ignore writes rather than causing them to 8672 * UNDEF. 8673 */ 8674 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8675 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8676 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8677 } 8678 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8679 id_cp_reginfo[i].access = PL1_RW; 8680 } 8681 id_mpuir_reginfo.access = PL1_RW; 8682 id_tlbtr_reginfo.access = PL1_RW; 8683 } 8684 if (arm_feature(env, ARM_FEATURE_V8)) { 8685 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8686 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8687 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8688 } 8689 } else { 8690 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8691 } 8692 define_arm_cp_regs(cpu, id_cp_reginfo); 8693 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8694 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8695 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8696 arm_feature(env, ARM_FEATURE_V8)) { 8697 uint32_t i = 0; 8698 char *tmp_string; 8699 8700 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8701 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8702 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8703 8704 /* Register alias is only valid for first 32 indexes */ 8705 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8706 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8707 uint8_t opc1 = extract32(i, 4, 1); 8708 uint8_t opc2 = extract32(i, 0, 1) << 2; 8709 8710 tmp_string = g_strdup_printf("PRBAR%u", i); 8711 ARMCPRegInfo tmp_prbarn_reginfo = { 8712 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8713 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8714 .access = PL1_RW, .resetvalue = 0, 8715 .accessfn = access_tvm_trvm, 8716 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8717 }; 8718 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8719 g_free(tmp_string); 8720 8721 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8722 tmp_string = g_strdup_printf("PRLAR%u", i); 8723 ARMCPRegInfo tmp_prlarn_reginfo = { 8724 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8725 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8726 .access = PL1_RW, .resetvalue = 0, 8727 .accessfn = access_tvm_trvm, 8728 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8729 }; 8730 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8731 g_free(tmp_string); 8732 } 8733 8734 /* Register alias is only valid for first 32 indexes */ 8735 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8736 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8737 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8738 uint8_t opc2 = extract32(i, 0, 1) << 2; 8739 8740 tmp_string = g_strdup_printf("HPRBAR%u", i); 8741 ARMCPRegInfo tmp_hprbarn_reginfo = { 8742 .name = tmp_string, 8743 .type = ARM_CP_NO_RAW, 8744 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8745 .access = PL2_RW, .resetvalue = 0, 8746 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8747 }; 8748 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8749 g_free(tmp_string); 8750 8751 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8752 tmp_string = g_strdup_printf("HPRLAR%u", i); 8753 ARMCPRegInfo tmp_hprlarn_reginfo = { 8754 .name = tmp_string, 8755 .type = ARM_CP_NO_RAW, 8756 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8757 .access = PL2_RW, .resetvalue = 0, 8758 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8759 }; 8760 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8761 g_free(tmp_string); 8762 } 8763 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8764 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8765 } 8766 } 8767 8768 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8769 ARMCPRegInfo mpidr_cp_reginfo[] = { 8770 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8771 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8772 .fgt = FGT_MPIDR_EL1, 8773 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8774 }; 8775 #ifdef CONFIG_USER_ONLY 8776 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8777 { .name = "MPIDR_EL1", 8778 .fixed_bits = 0x0000000080000000 }, 8779 }; 8780 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8781 #endif 8782 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8783 } 8784 8785 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8786 ARMCPRegInfo auxcr_reginfo[] = { 8787 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8788 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8789 .access = PL1_RW, .accessfn = access_tacr, 8790 .nv2_redirect_offset = 0x118, 8791 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8792 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8793 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8794 .access = PL2_RW, .type = ARM_CP_CONST, 8795 .resetvalue = 0 }, 8796 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8797 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8798 .access = PL3_RW, .type = ARM_CP_CONST, 8799 .resetvalue = 0 }, 8800 }; 8801 define_arm_cp_regs(cpu, auxcr_reginfo); 8802 if (cpu_isar_feature(aa32_ac2, cpu)) { 8803 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8804 } 8805 } 8806 8807 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8808 /* 8809 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8810 * There are two flavours: 8811 * (1) older 32-bit only cores have a simple 32-bit CBAR 8812 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8813 * 32-bit register visible to AArch32 at a different encoding 8814 * to the "flavour 1" register and with the bits rearranged to 8815 * be able to squash a 64-bit address into the 32-bit view. 8816 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8817 * in future if we support AArch32-only configs of some of the 8818 * AArch64 cores we might need to add a specific feature flag 8819 * to indicate cores with "flavour 2" CBAR. 8820 */ 8821 if (arm_feature(env, ARM_FEATURE_V8)) { 8822 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8823 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8824 | extract64(cpu->reset_cbar, 32, 12); 8825 ARMCPRegInfo cbar_reginfo[] = { 8826 { .name = "CBAR", 8827 .type = ARM_CP_CONST, 8828 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8829 .access = PL1_R, .resetvalue = cbar32 }, 8830 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8831 .type = ARM_CP_CONST, 8832 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8833 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8834 }; 8835 /* We don't implement a r/w 64 bit CBAR currently */ 8836 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8837 define_arm_cp_regs(cpu, cbar_reginfo); 8838 } else { 8839 ARMCPRegInfo cbar = { 8840 .name = "CBAR", 8841 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8842 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8843 .fieldoffset = offsetof(CPUARMState, 8844 cp15.c15_config_base_address) 8845 }; 8846 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8847 cbar.access = PL1_R; 8848 cbar.fieldoffset = 0; 8849 cbar.type = ARM_CP_CONST; 8850 } 8851 define_one_arm_cp_reg(cpu, &cbar); 8852 } 8853 } 8854 8855 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8856 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8857 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8858 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8859 .access = PL1_RW, .writefn = vbar_write, 8860 .accessfn = access_nv1, 8861 .fgt = FGT_VBAR_EL1, 8862 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8863 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8864 offsetof(CPUARMState, cp15.vbar_ns) }, 8865 .resetvalue = 0 }, 8866 }; 8867 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8868 } 8869 8870 /* Generic registers whose values depend on the implementation */ 8871 { 8872 ARMCPRegInfo sctlr = { 8873 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8874 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8875 .access = PL1_RW, .accessfn = access_tvm_trvm, 8876 .fgt = FGT_SCTLR_EL1, 8877 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8878 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8879 offsetof(CPUARMState, cp15.sctlr_ns) }, 8880 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8881 .raw_writefn = raw_write, 8882 }; 8883 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8884 /* 8885 * Normally we would always end the TB on an SCTLR write, but Linux 8886 * arch/arm/mach-pxa/sleep.S expects two instructions following 8887 * an MMU enable to execute from cache. Imitate this behaviour. 8888 */ 8889 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8890 } 8891 define_one_arm_cp_reg(cpu, &sctlr); 8892 8893 if (arm_feature(env, ARM_FEATURE_PMSA) && 8894 arm_feature(env, ARM_FEATURE_V8)) { 8895 ARMCPRegInfo vsctlr = { 8896 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8897 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8898 .access = PL2_RW, .resetvalue = 0x0, 8899 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8900 }; 8901 define_one_arm_cp_reg(cpu, &vsctlr); 8902 } 8903 } 8904 8905 if (cpu_isar_feature(aa64_lor, cpu)) { 8906 define_arm_cp_regs(cpu, lor_reginfo); 8907 } 8908 if (cpu_isar_feature(aa64_pan, cpu)) { 8909 define_one_arm_cp_reg(cpu, &pan_reginfo); 8910 } 8911 #ifndef CONFIG_USER_ONLY 8912 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8913 define_arm_cp_regs(cpu, ats1e1_reginfo); 8914 } 8915 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8916 define_arm_cp_regs(cpu, ats1cp_reginfo); 8917 } 8918 #endif 8919 if (cpu_isar_feature(aa64_uao, cpu)) { 8920 define_one_arm_cp_reg(cpu, &uao_reginfo); 8921 } 8922 8923 if (cpu_isar_feature(aa64_dit, cpu)) { 8924 define_one_arm_cp_reg(cpu, &dit_reginfo); 8925 } 8926 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8927 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8928 } 8929 if (cpu_isar_feature(any_ras, cpu)) { 8930 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8931 } 8932 8933 if (cpu_isar_feature(aa64_vh, cpu) || 8934 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8935 define_one_arm_cp_reg(cpu, &contextidr_el2); 8936 } 8937 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8938 define_arm_cp_regs(cpu, vhe_reginfo); 8939 } 8940 8941 if (cpu_isar_feature(aa64_sve, cpu)) { 8942 define_arm_cp_regs(cpu, zcr_reginfo); 8943 } 8944 8945 if (cpu_isar_feature(aa64_hcx, cpu)) { 8946 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8947 } 8948 8949 #ifdef TARGET_AARCH64 8950 if (cpu_isar_feature(aa64_sme, cpu)) { 8951 define_arm_cp_regs(cpu, sme_reginfo); 8952 } 8953 if (cpu_isar_feature(aa64_pauth, cpu)) { 8954 define_arm_cp_regs(cpu, pauth_reginfo); 8955 } 8956 if (cpu_isar_feature(aa64_rndr, cpu)) { 8957 define_arm_cp_regs(cpu, rndr_reginfo); 8958 } 8959 /* Data Cache clean instructions up to PoP */ 8960 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8961 define_one_arm_cp_reg(cpu, dcpop_reg); 8962 8963 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8964 define_one_arm_cp_reg(cpu, dcpodp_reg); 8965 } 8966 } 8967 8968 /* 8969 * If full MTE is enabled, add all of the system registers. 8970 * If only "instructions available at EL0" are enabled, 8971 * then define only a RAZ/WI version of PSTATE.TCO. 8972 */ 8973 if (cpu_isar_feature(aa64_mte, cpu)) { 8974 ARMCPRegInfo gmid_reginfo = { 8975 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8976 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8977 .access = PL1_R, .accessfn = access_aa64_tid5, 8978 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8979 }; 8980 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8981 define_arm_cp_regs(cpu, mte_reginfo); 8982 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8983 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8984 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8985 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8986 } 8987 8988 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8989 define_arm_cp_regs(cpu, scxtnum_reginfo); 8990 } 8991 8992 if (cpu_isar_feature(aa64_fgt, cpu)) { 8993 define_arm_cp_regs(cpu, fgt_reginfo); 8994 } 8995 8996 if (cpu_isar_feature(aa64_rme, cpu)) { 8997 define_arm_cp_regs(cpu, rme_reginfo); 8998 if (cpu_isar_feature(aa64_mte, cpu)) { 8999 define_arm_cp_regs(cpu, rme_mte_reginfo); 9000 } 9001 } 9002 9003 if (cpu_isar_feature(aa64_nv2, cpu)) { 9004 define_arm_cp_regs(cpu, nv2_reginfo); 9005 } 9006 9007 if (cpu_isar_feature(aa64_nmi, cpu)) { 9008 define_arm_cp_regs(cpu, nmi_reginfo); 9009 } 9010 #endif 9011 9012 if (cpu_isar_feature(any_predinv, cpu)) { 9013 define_arm_cp_regs(cpu, predinv_reginfo); 9014 } 9015 9016 if (cpu_isar_feature(any_ccidx, cpu)) { 9017 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9018 } 9019 9020 #ifndef CONFIG_USER_ONLY 9021 /* 9022 * Register redirections and aliases must be done last, 9023 * after the registers from the other extensions have been defined. 9024 */ 9025 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9026 define_arm_vh_e2h_redirects_aliases(cpu); 9027 } 9028 #endif 9029 } 9030 9031 /* 9032 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9033 * add a single reginfo struct to the hash table. 9034 */ 9035 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9036 void *opaque, CPState state, 9037 CPSecureState secstate, 9038 int crm, int opc1, int opc2, 9039 const char *name) 9040 { 9041 CPUARMState *env = &cpu->env; 9042 uint32_t key; 9043 ARMCPRegInfo *r2; 9044 bool is64 = r->type & ARM_CP_64BIT; 9045 bool ns = secstate & ARM_CP_SECSTATE_NS; 9046 int cp = r->cp; 9047 size_t name_len; 9048 bool make_const; 9049 9050 switch (state) { 9051 case ARM_CP_STATE_AA32: 9052 /* We assume it is a cp15 register if the .cp field is left unset. */ 9053 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9054 cp = 15; 9055 } 9056 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9057 break; 9058 case ARM_CP_STATE_AA64: 9059 /* 9060 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9061 * cp == 0 as equivalent to the value for "standard guest-visible 9062 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9063 * in their AArch64 view (the .cp value may be non-zero for the 9064 * benefit of the AArch32 view). 9065 */ 9066 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9067 cp = CP_REG_ARM64_SYSREG_CP; 9068 } 9069 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9070 break; 9071 default: 9072 g_assert_not_reached(); 9073 } 9074 9075 /* Overriding of an existing definition must be explicitly requested. */ 9076 if (!(r->type & ARM_CP_OVERRIDE)) { 9077 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9078 if (oldreg) { 9079 assert(oldreg->type & ARM_CP_OVERRIDE); 9080 } 9081 } 9082 9083 /* 9084 * Eliminate registers that are not present because the EL is missing. 9085 * Doing this here makes it easier to put all registers for a given 9086 * feature into the same ARMCPRegInfo array and define them all at once. 9087 */ 9088 make_const = false; 9089 if (arm_feature(env, ARM_FEATURE_EL3)) { 9090 /* 9091 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9092 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9093 */ 9094 int min_el = ctz32(r->access) / 2; 9095 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9096 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9097 return; 9098 } 9099 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9100 } 9101 } else { 9102 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9103 ? PL2_RW : PL1_RW); 9104 if ((r->access & max_el) == 0) { 9105 return; 9106 } 9107 } 9108 9109 /* Combine cpreg and name into one allocation. */ 9110 name_len = strlen(name) + 1; 9111 r2 = g_malloc(sizeof(*r2) + name_len); 9112 *r2 = *r; 9113 r2->name = memcpy(r2 + 1, name, name_len); 9114 9115 /* 9116 * Update fields to match the instantiation, overwiting wildcards 9117 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9118 */ 9119 r2->cp = cp; 9120 r2->crm = crm; 9121 r2->opc1 = opc1; 9122 r2->opc2 = opc2; 9123 r2->state = state; 9124 r2->secure = secstate; 9125 if (opaque) { 9126 r2->opaque = opaque; 9127 } 9128 9129 if (make_const) { 9130 /* This should not have been a very special register to begin. */ 9131 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9132 assert(old_special == 0 || old_special == ARM_CP_NOP); 9133 /* 9134 * Set the special function to CONST, retaining the other flags. 9135 * This is important for e.g. ARM_CP_SVE so that we still 9136 * take the SVE trap if CPTR_EL3.EZ == 0. 9137 */ 9138 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9139 /* 9140 * Usually, these registers become RES0, but there are a few 9141 * special cases like VPIDR_EL2 which have a constant non-zero 9142 * value with writes ignored. 9143 */ 9144 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9145 r2->resetvalue = 0; 9146 } 9147 /* 9148 * ARM_CP_CONST has precedence, so removing the callbacks and 9149 * offsets are not strictly necessary, but it is potentially 9150 * less confusing to debug later. 9151 */ 9152 r2->readfn = NULL; 9153 r2->writefn = NULL; 9154 r2->raw_readfn = NULL; 9155 r2->raw_writefn = NULL; 9156 r2->resetfn = NULL; 9157 r2->fieldoffset = 0; 9158 r2->bank_fieldoffsets[0] = 0; 9159 r2->bank_fieldoffsets[1] = 0; 9160 } else { 9161 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9162 9163 if (isbanked) { 9164 /* 9165 * Register is banked (using both entries in array). 9166 * Overwriting fieldoffset as the array is only used to define 9167 * banked registers but later only fieldoffset is used. 9168 */ 9169 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9170 } 9171 if (state == ARM_CP_STATE_AA32) { 9172 if (isbanked) { 9173 /* 9174 * If the register is banked then we don't need to migrate or 9175 * reset the 32-bit instance in certain cases: 9176 * 9177 * 1) If the register has both 32-bit and 64-bit instances 9178 * then we can count on the 64-bit instance taking care 9179 * of the non-secure bank. 9180 * 2) If ARMv8 is enabled then we can count on a 64-bit 9181 * version taking care of the secure bank. This requires 9182 * that separate 32 and 64-bit definitions are provided. 9183 */ 9184 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9185 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9186 r2->type |= ARM_CP_ALIAS; 9187 } 9188 } else if ((secstate != r->secure) && !ns) { 9189 /* 9190 * The register is not banked so we only want to allow 9191 * migration of the non-secure instance. 9192 */ 9193 r2->type |= ARM_CP_ALIAS; 9194 } 9195 9196 if (HOST_BIG_ENDIAN && 9197 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9198 r2->fieldoffset += sizeof(uint32_t); 9199 } 9200 } 9201 } 9202 9203 /* 9204 * By convention, for wildcarded registers only the first 9205 * entry is used for migration; the others are marked as 9206 * ALIAS so we don't try to transfer the register 9207 * multiple times. Special registers (ie NOP/WFI) are 9208 * never migratable and not even raw-accessible. 9209 */ 9210 if (r2->type & ARM_CP_SPECIAL_MASK) { 9211 r2->type |= ARM_CP_NO_RAW; 9212 } 9213 if (((r->crm == CP_ANY) && crm != 0) || 9214 ((r->opc1 == CP_ANY) && opc1 != 0) || 9215 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9216 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9217 } 9218 9219 /* 9220 * Check that raw accesses are either forbidden or handled. Note that 9221 * we can't assert this earlier because the setup of fieldoffset for 9222 * banked registers has to be done first. 9223 */ 9224 if (!(r2->type & ARM_CP_NO_RAW)) { 9225 assert(!raw_accessors_invalid(r2)); 9226 } 9227 9228 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9229 } 9230 9231 9232 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9233 const ARMCPRegInfo *r, void *opaque) 9234 { 9235 /* 9236 * Define implementations of coprocessor registers. 9237 * We store these in a hashtable because typically 9238 * there are less than 150 registers in a space which 9239 * is 16*16*16*8*8 = 262144 in size. 9240 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9241 * If a register is defined twice then the second definition is 9242 * used, so this can be used to define some generic registers and 9243 * then override them with implementation specific variations. 9244 * At least one of the original and the second definition should 9245 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9246 * against accidental use. 9247 * 9248 * The state field defines whether the register is to be 9249 * visible in the AArch32 or AArch64 execution state. If the 9250 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9251 * reginfo structure for the AArch32 view, which sees the lower 9252 * 32 bits of the 64 bit register. 9253 * 9254 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9255 * be wildcarded. AArch64 registers are always considered to be 64 9256 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9257 * the register, if any. 9258 */ 9259 int crm, opc1, opc2; 9260 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9261 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9262 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9263 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9264 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9265 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9266 CPState state; 9267 9268 /* 64 bit registers have only CRm and Opc1 fields */ 9269 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9270 /* op0 only exists in the AArch64 encodings */ 9271 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9272 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9273 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9274 /* 9275 * This API is only for Arm's system coprocessors (14 and 15) or 9276 * (M-profile or v7A-and-earlier only) for implementation defined 9277 * coprocessors in the range 0..7. Our decode assumes this, since 9278 * 8..13 can be used for other insns including VFP and Neon. See 9279 * valid_cp() in translate.c. Assert here that we haven't tried 9280 * to use an invalid coprocessor number. 9281 */ 9282 switch (r->state) { 9283 case ARM_CP_STATE_BOTH: 9284 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9285 if (r->cp == 0) { 9286 break; 9287 } 9288 /* fall through */ 9289 case ARM_CP_STATE_AA32: 9290 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9291 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9292 assert(r->cp >= 14 && r->cp <= 15); 9293 } else { 9294 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9295 } 9296 break; 9297 case ARM_CP_STATE_AA64: 9298 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9299 break; 9300 default: 9301 g_assert_not_reached(); 9302 } 9303 /* 9304 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9305 * encodes a minimum access level for the register. We roll this 9306 * runtime check into our general permission check code, so check 9307 * here that the reginfo's specified permissions are strict enough 9308 * to encompass the generic architectural permission check. 9309 */ 9310 if (r->state != ARM_CP_STATE_AA32) { 9311 CPAccessRights mask; 9312 switch (r->opc1) { 9313 case 0: 9314 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9315 mask = PL0U_R | PL1_RW; 9316 break; 9317 case 1: case 2: 9318 /* min_EL EL1 */ 9319 mask = PL1_RW; 9320 break; 9321 case 3: 9322 /* min_EL EL0 */ 9323 mask = PL0_RW; 9324 break; 9325 case 4: 9326 case 5: 9327 /* min_EL EL2 */ 9328 mask = PL2_RW; 9329 break; 9330 case 6: 9331 /* min_EL EL3 */ 9332 mask = PL3_RW; 9333 break; 9334 case 7: 9335 /* min_EL EL1, secure mode only (we don't check the latter) */ 9336 mask = PL1_RW; 9337 break; 9338 default: 9339 /* broken reginfo with out-of-range opc1 */ 9340 g_assert_not_reached(); 9341 } 9342 /* assert our permissions are not too lax (stricter is fine) */ 9343 assert((r->access & ~mask) == 0); 9344 } 9345 9346 /* 9347 * Check that the register definition has enough info to handle 9348 * reads and writes if they are permitted. 9349 */ 9350 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9351 if (r->access & PL3_R) { 9352 assert((r->fieldoffset || 9353 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9354 r->readfn); 9355 } 9356 if (r->access & PL3_W) { 9357 assert((r->fieldoffset || 9358 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9359 r->writefn); 9360 } 9361 } 9362 9363 for (crm = crmmin; crm <= crmmax; crm++) { 9364 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9365 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9366 for (state = ARM_CP_STATE_AA32; 9367 state <= ARM_CP_STATE_AA64; state++) { 9368 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9369 continue; 9370 } 9371 if ((r->type & ARM_CP_ADD_TLBI_NXS) && 9372 cpu_isar_feature(aa64_xs, cpu)) { 9373 /* 9374 * This is a TLBI insn which has an NXS variant. The 9375 * NXS variant is at the same encoding except that 9376 * crn is +1, and has the same behaviour except for 9377 * fine-grained trapping. Add the NXS insn here and 9378 * then fall through to add the normal register. 9379 * add_cpreg_to_hashtable() copies the cpreg struct 9380 * and name that it is passed, so it's OK to use 9381 * a local struct here. 9382 */ 9383 ARMCPRegInfo nxs_ri = *r; 9384 g_autofree char *name = g_strdup_printf("%sNXS", r->name); 9385 9386 assert(state == ARM_CP_STATE_AA64); 9387 assert(nxs_ri.crn < 0xf); 9388 nxs_ri.crn++; 9389 if (nxs_ri.fgt) { 9390 nxs_ri.fgt |= R_FGT_NXS_MASK; 9391 } 9392 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state, 9393 ARM_CP_SECSTATE_NS, 9394 crm, opc1, opc2, name); 9395 } 9396 if (state == ARM_CP_STATE_AA32) { 9397 /* 9398 * Under AArch32 CP registers can be common 9399 * (same for secure and non-secure world) or banked. 9400 */ 9401 char *name; 9402 9403 switch (r->secure) { 9404 case ARM_CP_SECSTATE_S: 9405 case ARM_CP_SECSTATE_NS: 9406 add_cpreg_to_hashtable(cpu, r, opaque, state, 9407 r->secure, crm, opc1, opc2, 9408 r->name); 9409 break; 9410 case ARM_CP_SECSTATE_BOTH: 9411 name = g_strdup_printf("%s_S", r->name); 9412 add_cpreg_to_hashtable(cpu, r, opaque, state, 9413 ARM_CP_SECSTATE_S, 9414 crm, opc1, opc2, name); 9415 g_free(name); 9416 add_cpreg_to_hashtable(cpu, r, opaque, state, 9417 ARM_CP_SECSTATE_NS, 9418 crm, opc1, opc2, r->name); 9419 break; 9420 default: 9421 g_assert_not_reached(); 9422 } 9423 } else { 9424 /* 9425 * AArch64 registers get mapped to non-secure instance 9426 * of AArch32 9427 */ 9428 add_cpreg_to_hashtable(cpu, r, opaque, state, 9429 ARM_CP_SECSTATE_NS, 9430 crm, opc1, opc2, r->name); 9431 } 9432 } 9433 } 9434 } 9435 } 9436 } 9437 9438 /* Define a whole list of registers */ 9439 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9440 void *opaque, size_t len) 9441 { 9442 size_t i; 9443 for (i = 0; i < len; ++i) { 9444 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9445 } 9446 } 9447 9448 /* 9449 * Modify ARMCPRegInfo for access from userspace. 9450 * 9451 * This is a data driven modification directed by 9452 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9453 * user-space cannot alter any values and dynamic values pertaining to 9454 * execution state are hidden from user space view anyway. 9455 */ 9456 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9457 const ARMCPRegUserSpaceInfo *mods, 9458 size_t mods_len) 9459 { 9460 for (size_t mi = 0; mi < mods_len; ++mi) { 9461 const ARMCPRegUserSpaceInfo *m = mods + mi; 9462 GPatternSpec *pat = NULL; 9463 9464 if (m->is_glob) { 9465 pat = g_pattern_spec_new(m->name); 9466 } 9467 for (size_t ri = 0; ri < regs_len; ++ri) { 9468 ARMCPRegInfo *r = regs + ri; 9469 9470 if (pat && g_pattern_match_string(pat, r->name)) { 9471 r->type = ARM_CP_CONST; 9472 r->access = PL0U_R; 9473 r->resetvalue = 0; 9474 /* continue */ 9475 } else if (strcmp(r->name, m->name) == 0) { 9476 r->type = ARM_CP_CONST; 9477 r->access = PL0U_R; 9478 r->resetvalue &= m->exported_bits; 9479 r->resetvalue |= m->fixed_bits; 9480 break; 9481 } 9482 } 9483 if (pat) { 9484 g_pattern_spec_free(pat); 9485 } 9486 } 9487 } 9488 9489 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9490 { 9491 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9492 } 9493 9494 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9495 uint64_t value) 9496 { 9497 /* Helper coprocessor write function for write-ignore registers */ 9498 } 9499 9500 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9501 { 9502 /* Helper coprocessor write function for read-as-zero registers */ 9503 return 0; 9504 } 9505 9506 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9507 { 9508 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9509 } 9510 9511 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9512 { 9513 /* 9514 * Return true if it is not valid for us to switch to 9515 * this CPU mode (ie all the UNPREDICTABLE cases in 9516 * the ARM ARM CPSRWriteByInstr pseudocode). 9517 */ 9518 9519 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9520 if (write_type == CPSRWriteByInstr && 9521 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9522 mode == ARM_CPU_MODE_HYP)) { 9523 return 1; 9524 } 9525 9526 switch (mode) { 9527 case ARM_CPU_MODE_USR: 9528 return 0; 9529 case ARM_CPU_MODE_SYS: 9530 case ARM_CPU_MODE_SVC: 9531 case ARM_CPU_MODE_ABT: 9532 case ARM_CPU_MODE_UND: 9533 case ARM_CPU_MODE_IRQ: 9534 case ARM_CPU_MODE_FIQ: 9535 /* 9536 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9537 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9538 */ 9539 /* 9540 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9541 * and CPS are treated as illegal mode changes. 9542 */ 9543 if (write_type == CPSRWriteByInstr && 9544 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9545 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9546 return 1; 9547 } 9548 return 0; 9549 case ARM_CPU_MODE_HYP: 9550 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9551 case ARM_CPU_MODE_MON: 9552 return arm_current_el(env) < 3; 9553 default: 9554 return 1; 9555 } 9556 } 9557 9558 uint32_t cpsr_read(CPUARMState *env) 9559 { 9560 int ZF; 9561 ZF = (env->ZF == 0); 9562 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9563 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9564 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9565 | ((env->condexec_bits & 0xfc) << 8) 9566 | (env->GE << 16) | (env->daif & CPSR_AIF); 9567 } 9568 9569 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9570 CPSRWriteType write_type) 9571 { 9572 uint32_t changed_daif; 9573 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9574 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9575 9576 if (mask & CPSR_NZCV) { 9577 env->ZF = (~val) & CPSR_Z; 9578 env->NF = val; 9579 env->CF = (val >> 29) & 1; 9580 env->VF = (val << 3) & 0x80000000; 9581 } 9582 if (mask & CPSR_Q) { 9583 env->QF = ((val & CPSR_Q) != 0); 9584 } 9585 if (mask & CPSR_T) { 9586 env->thumb = ((val & CPSR_T) != 0); 9587 } 9588 if (mask & CPSR_IT_0_1) { 9589 env->condexec_bits &= ~3; 9590 env->condexec_bits |= (val >> 25) & 3; 9591 } 9592 if (mask & CPSR_IT_2_7) { 9593 env->condexec_bits &= 3; 9594 env->condexec_bits |= (val >> 8) & 0xfc; 9595 } 9596 if (mask & CPSR_GE) { 9597 env->GE = (val >> 16) & 0xf; 9598 } 9599 9600 /* 9601 * In a V7 implementation that includes the security extensions but does 9602 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9603 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9604 * bits respectively. 9605 * 9606 * In a V8 implementation, it is permitted for privileged software to 9607 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9608 */ 9609 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9610 arm_feature(env, ARM_FEATURE_EL3) && 9611 !arm_feature(env, ARM_FEATURE_EL2) && 9612 !arm_is_secure(env)) { 9613 9614 changed_daif = (env->daif ^ val) & mask; 9615 9616 if (changed_daif & CPSR_A) { 9617 /* 9618 * Check to see if we are allowed to change the masking of async 9619 * abort exceptions from a non-secure state. 9620 */ 9621 if (!(env->cp15.scr_el3 & SCR_AW)) { 9622 qemu_log_mask(LOG_GUEST_ERROR, 9623 "Ignoring attempt to switch CPSR_A flag from " 9624 "non-secure world with SCR.AW bit clear\n"); 9625 mask &= ~CPSR_A; 9626 } 9627 } 9628 9629 if (changed_daif & CPSR_F) { 9630 /* 9631 * Check to see if we are allowed to change the masking of FIQ 9632 * exceptions from a non-secure state. 9633 */ 9634 if (!(env->cp15.scr_el3 & SCR_FW)) { 9635 qemu_log_mask(LOG_GUEST_ERROR, 9636 "Ignoring attempt to switch CPSR_F flag from " 9637 "non-secure world with SCR.FW bit clear\n"); 9638 mask &= ~CPSR_F; 9639 } 9640 9641 /* 9642 * Check whether non-maskable FIQ (NMFI) support is enabled. 9643 * If this bit is set software is not allowed to mask 9644 * FIQs, but is allowed to set CPSR_F to 0. 9645 */ 9646 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9647 (val & CPSR_F)) { 9648 qemu_log_mask(LOG_GUEST_ERROR, 9649 "Ignoring attempt to enable CPSR_F flag " 9650 "(non-maskable FIQ [NMFI] support enabled)\n"); 9651 mask &= ~CPSR_F; 9652 } 9653 } 9654 } 9655 9656 env->daif &= ~(CPSR_AIF & mask); 9657 env->daif |= val & CPSR_AIF & mask; 9658 9659 if (write_type != CPSRWriteRaw && 9660 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9661 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9662 /* 9663 * Note that we can only get here in USR mode if this is a 9664 * gdb stub write; for this case we follow the architectural 9665 * behaviour for guest writes in USR mode of ignoring an attempt 9666 * to switch mode. (Those are caught by translate.c for writes 9667 * triggered by guest instructions.) 9668 */ 9669 mask &= ~CPSR_M; 9670 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9671 /* 9672 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9673 * v7, and has defined behaviour in v8: 9674 * + leave CPSR.M untouched 9675 * + allow changes to the other CPSR fields 9676 * + set PSTATE.IL 9677 * For user changes via the GDB stub, we don't set PSTATE.IL, 9678 * as this would be unnecessarily harsh for a user error. 9679 */ 9680 mask &= ~CPSR_M; 9681 if (write_type != CPSRWriteByGDBStub && 9682 arm_feature(env, ARM_FEATURE_V8)) { 9683 mask |= CPSR_IL; 9684 val |= CPSR_IL; 9685 } 9686 qemu_log_mask(LOG_GUEST_ERROR, 9687 "Illegal AArch32 mode switch attempt from %s to %s\n", 9688 aarch32_mode_name(env->uncached_cpsr), 9689 aarch32_mode_name(val)); 9690 } else { 9691 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9692 write_type == CPSRWriteExceptionReturn ? 9693 "Exception return from AArch32" : 9694 "AArch32 mode switch from", 9695 aarch32_mode_name(env->uncached_cpsr), 9696 aarch32_mode_name(val), env->regs[15]); 9697 switch_mode(env, val & CPSR_M); 9698 } 9699 } 9700 mask &= ~CACHED_CPSR_BITS; 9701 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9702 if (tcg_enabled() && rebuild_hflags) { 9703 arm_rebuild_hflags(env); 9704 } 9705 } 9706 9707 #ifdef CONFIG_USER_ONLY 9708 9709 static void switch_mode(CPUARMState *env, int mode) 9710 { 9711 ARMCPU *cpu = env_archcpu(env); 9712 9713 if (mode != ARM_CPU_MODE_USR) { 9714 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9715 } 9716 } 9717 9718 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9719 uint32_t cur_el, bool secure) 9720 { 9721 return 1; 9722 } 9723 9724 void aarch64_sync_64_to_32(CPUARMState *env) 9725 { 9726 g_assert_not_reached(); 9727 } 9728 9729 #else 9730 9731 static void switch_mode(CPUARMState *env, int mode) 9732 { 9733 int old_mode; 9734 int i; 9735 9736 old_mode = env->uncached_cpsr & CPSR_M; 9737 if (mode == old_mode) { 9738 return; 9739 } 9740 9741 if (old_mode == ARM_CPU_MODE_FIQ) { 9742 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9743 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9744 } else if (mode == ARM_CPU_MODE_FIQ) { 9745 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9746 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9747 } 9748 9749 i = bank_number(old_mode); 9750 env->banked_r13[i] = env->regs[13]; 9751 env->banked_spsr[i] = env->spsr; 9752 9753 i = bank_number(mode); 9754 env->regs[13] = env->banked_r13[i]; 9755 env->spsr = env->banked_spsr[i]; 9756 9757 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9758 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9759 } 9760 9761 /* 9762 * Physical Interrupt Target EL Lookup Table 9763 * 9764 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9765 * 9766 * The below multi-dimensional table is used for looking up the target 9767 * exception level given numerous condition criteria. Specifically, the 9768 * target EL is based on SCR and HCR routing controls as well as the 9769 * currently executing EL and secure state. 9770 * 9771 * Dimensions: 9772 * target_el_table[2][2][2][2][2][4] 9773 * | | | | | +--- Current EL 9774 * | | | | +------ Non-secure(0)/Secure(1) 9775 * | | | +--------- HCR mask override 9776 * | | +------------ SCR exec state control 9777 * | +--------------- SCR mask override 9778 * +------------------ 32-bit(0)/64-bit(1) EL3 9779 * 9780 * The table values are as such: 9781 * 0-3 = EL0-EL3 9782 * -1 = Cannot occur 9783 * 9784 * The ARM ARM target EL table includes entries indicating that an "exception 9785 * is not taken". The two cases where this is applicable are: 9786 * 1) An exception is taken from EL3 but the SCR does not have the exception 9787 * routed to EL3. 9788 * 2) An exception is taken from EL2 but the HCR does not have the exception 9789 * routed to EL2. 9790 * In these two cases, the below table contain a target of EL1. This value is 9791 * returned as it is expected that the consumer of the table data will check 9792 * for "target EL >= current EL" to ensure the exception is not taken. 9793 * 9794 * SCR HCR 9795 * 64 EA AMO From 9796 * BIT IRQ IMO Non-secure Secure 9797 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9798 */ 9799 static const int8_t target_el_table[2][2][2][2][2][4] = { 9800 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9801 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9802 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9803 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9804 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9805 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9806 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9807 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9808 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9809 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9810 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9811 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9812 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9813 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9814 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9815 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9816 }; 9817 9818 /* 9819 * Determine the target EL for physical exceptions 9820 */ 9821 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9822 uint32_t cur_el, bool secure) 9823 { 9824 CPUARMState *env = cpu_env(cs); 9825 bool rw; 9826 bool scr; 9827 bool hcr; 9828 int target_el; 9829 /* Is the highest EL AArch64? */ 9830 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9831 uint64_t hcr_el2; 9832 9833 if (arm_feature(env, ARM_FEATURE_EL3)) { 9834 rw = arm_scr_rw_eff(env); 9835 } else { 9836 /* 9837 * Either EL2 is the highest EL (and so the EL2 register width 9838 * is given by is64); or there is no EL2 or EL3, in which case 9839 * the value of 'rw' does not affect the table lookup anyway. 9840 */ 9841 rw = is64; 9842 } 9843 9844 hcr_el2 = arm_hcr_el2_eff(env); 9845 switch (excp_idx) { 9846 case EXCP_IRQ: 9847 case EXCP_NMI: 9848 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9849 hcr = hcr_el2 & HCR_IMO; 9850 break; 9851 case EXCP_FIQ: 9852 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9853 hcr = hcr_el2 & HCR_FMO; 9854 break; 9855 default: 9856 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9857 hcr = hcr_el2 & HCR_AMO; 9858 break; 9859 }; 9860 9861 /* 9862 * For these purposes, TGE and AMO/IMO/FMO both force the 9863 * interrupt to EL2. Fold TGE into the bit extracted above. 9864 */ 9865 hcr |= (hcr_el2 & HCR_TGE) != 0; 9866 9867 /* Perform a table-lookup for the target EL given the current state */ 9868 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9869 9870 assert(target_el > 0); 9871 9872 return target_el; 9873 } 9874 9875 void arm_log_exception(CPUState *cs) 9876 { 9877 int idx = cs->exception_index; 9878 9879 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9880 const char *exc = NULL; 9881 static const char * const excnames[] = { 9882 [EXCP_UDEF] = "Undefined Instruction", 9883 [EXCP_SWI] = "SVC", 9884 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9885 [EXCP_DATA_ABORT] = "Data Abort", 9886 [EXCP_IRQ] = "IRQ", 9887 [EXCP_FIQ] = "FIQ", 9888 [EXCP_BKPT] = "Breakpoint", 9889 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9890 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9891 [EXCP_HVC] = "Hypervisor Call", 9892 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9893 [EXCP_SMC] = "Secure Monitor Call", 9894 [EXCP_VIRQ] = "Virtual IRQ", 9895 [EXCP_VFIQ] = "Virtual FIQ", 9896 [EXCP_SEMIHOST] = "Semihosting call", 9897 [EXCP_NOCP] = "v7M NOCP UsageFault", 9898 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9899 [EXCP_STKOF] = "v8M STKOF UsageFault", 9900 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9901 [EXCP_LSERR] = "v8M LSERR UsageFault", 9902 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9903 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9904 [EXCP_VSERR] = "Virtual SERR", 9905 [EXCP_GPC] = "Granule Protection Check", 9906 [EXCP_NMI] = "NMI", 9907 [EXCP_VINMI] = "Virtual IRQ NMI", 9908 [EXCP_VFNMI] = "Virtual FIQ NMI", 9909 [EXCP_MON_TRAP] = "Monitor Trap", 9910 }; 9911 9912 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9913 exc = excnames[idx]; 9914 } 9915 if (!exc) { 9916 exc = "unknown"; 9917 } 9918 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9919 idx, exc, cs->cpu_index); 9920 } 9921 } 9922 9923 /* 9924 * Function used to synchronize QEMU's AArch64 register set with AArch32 9925 * register set. This is necessary when switching between AArch32 and AArch64 9926 * execution state. 9927 */ 9928 void aarch64_sync_32_to_64(CPUARMState *env) 9929 { 9930 int i; 9931 uint32_t mode = env->uncached_cpsr & CPSR_M; 9932 9933 /* We can blanket copy R[0:7] to X[0:7] */ 9934 for (i = 0; i < 8; i++) { 9935 env->xregs[i] = env->regs[i]; 9936 } 9937 9938 /* 9939 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9940 * Otherwise, they come from the banked user regs. 9941 */ 9942 if (mode == ARM_CPU_MODE_FIQ) { 9943 for (i = 8; i < 13; i++) { 9944 env->xregs[i] = env->usr_regs[i - 8]; 9945 } 9946 } else { 9947 for (i = 8; i < 13; i++) { 9948 env->xregs[i] = env->regs[i]; 9949 } 9950 } 9951 9952 /* 9953 * Registers x13-x23 are the various mode SP and FP registers. Registers 9954 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9955 * from the mode banked register. 9956 */ 9957 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9958 env->xregs[13] = env->regs[13]; 9959 env->xregs[14] = env->regs[14]; 9960 } else { 9961 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9962 /* HYP is an exception in that it is copied from r14 */ 9963 if (mode == ARM_CPU_MODE_HYP) { 9964 env->xregs[14] = env->regs[14]; 9965 } else { 9966 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9967 } 9968 } 9969 9970 if (mode == ARM_CPU_MODE_HYP) { 9971 env->xregs[15] = env->regs[13]; 9972 } else { 9973 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9974 } 9975 9976 if (mode == ARM_CPU_MODE_IRQ) { 9977 env->xregs[16] = env->regs[14]; 9978 env->xregs[17] = env->regs[13]; 9979 } else { 9980 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9981 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9982 } 9983 9984 if (mode == ARM_CPU_MODE_SVC) { 9985 env->xregs[18] = env->regs[14]; 9986 env->xregs[19] = env->regs[13]; 9987 } else { 9988 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9989 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9990 } 9991 9992 if (mode == ARM_CPU_MODE_ABT) { 9993 env->xregs[20] = env->regs[14]; 9994 env->xregs[21] = env->regs[13]; 9995 } else { 9996 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9997 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9998 } 9999 10000 if (mode == ARM_CPU_MODE_UND) { 10001 env->xregs[22] = env->regs[14]; 10002 env->xregs[23] = env->regs[13]; 10003 } else { 10004 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10005 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10006 } 10007 10008 /* 10009 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10010 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10011 * FIQ bank for r8-r14. 10012 */ 10013 if (mode == ARM_CPU_MODE_FIQ) { 10014 for (i = 24; i < 31; i++) { 10015 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10016 } 10017 } else { 10018 for (i = 24; i < 29; i++) { 10019 env->xregs[i] = env->fiq_regs[i - 24]; 10020 } 10021 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10022 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10023 } 10024 10025 env->pc = env->regs[15]; 10026 } 10027 10028 /* 10029 * Function used to synchronize QEMU's AArch32 register set with AArch64 10030 * register set. This is necessary when switching between AArch32 and AArch64 10031 * execution state. 10032 */ 10033 void aarch64_sync_64_to_32(CPUARMState *env) 10034 { 10035 int i; 10036 uint32_t mode = env->uncached_cpsr & CPSR_M; 10037 10038 /* We can blanket copy X[0:7] to R[0:7] */ 10039 for (i = 0; i < 8; i++) { 10040 env->regs[i] = env->xregs[i]; 10041 } 10042 10043 /* 10044 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10045 * Otherwise, we copy x8-x12 into the banked user regs. 10046 */ 10047 if (mode == ARM_CPU_MODE_FIQ) { 10048 for (i = 8; i < 13; i++) { 10049 env->usr_regs[i - 8] = env->xregs[i]; 10050 } 10051 } else { 10052 for (i = 8; i < 13; i++) { 10053 env->regs[i] = env->xregs[i]; 10054 } 10055 } 10056 10057 /* 10058 * Registers r13 & r14 depend on the current mode. 10059 * If we are in a given mode, we copy the corresponding x registers to r13 10060 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10061 * for the mode. 10062 */ 10063 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10064 env->regs[13] = env->xregs[13]; 10065 env->regs[14] = env->xregs[14]; 10066 } else { 10067 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10068 10069 /* 10070 * HYP is an exception in that it does not have its own banked r14 but 10071 * shares the USR r14 10072 */ 10073 if (mode == ARM_CPU_MODE_HYP) { 10074 env->regs[14] = env->xregs[14]; 10075 } else { 10076 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10077 } 10078 } 10079 10080 if (mode == ARM_CPU_MODE_HYP) { 10081 env->regs[13] = env->xregs[15]; 10082 } else { 10083 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10084 } 10085 10086 if (mode == ARM_CPU_MODE_IRQ) { 10087 env->regs[14] = env->xregs[16]; 10088 env->regs[13] = env->xregs[17]; 10089 } else { 10090 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10091 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10092 } 10093 10094 if (mode == ARM_CPU_MODE_SVC) { 10095 env->regs[14] = env->xregs[18]; 10096 env->regs[13] = env->xregs[19]; 10097 } else { 10098 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10099 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10100 } 10101 10102 if (mode == ARM_CPU_MODE_ABT) { 10103 env->regs[14] = env->xregs[20]; 10104 env->regs[13] = env->xregs[21]; 10105 } else { 10106 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10107 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10108 } 10109 10110 if (mode == ARM_CPU_MODE_UND) { 10111 env->regs[14] = env->xregs[22]; 10112 env->regs[13] = env->xregs[23]; 10113 } else { 10114 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10115 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10116 } 10117 10118 /* 10119 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10120 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10121 * FIQ bank for r8-r14. 10122 */ 10123 if (mode == ARM_CPU_MODE_FIQ) { 10124 for (i = 24; i < 31; i++) { 10125 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10126 } 10127 } else { 10128 for (i = 24; i < 29; i++) { 10129 env->fiq_regs[i - 24] = env->xregs[i]; 10130 } 10131 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10132 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10133 } 10134 10135 env->regs[15] = env->pc; 10136 } 10137 10138 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10139 uint32_t mask, uint32_t offset, 10140 uint32_t newpc) 10141 { 10142 int new_el; 10143 10144 /* Change the CPU state so as to actually take the exception. */ 10145 switch_mode(env, new_mode); 10146 10147 /* 10148 * For exceptions taken to AArch32 we must clear the SS bit in both 10149 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10150 */ 10151 env->pstate &= ~PSTATE_SS; 10152 env->spsr = cpsr_read(env); 10153 /* Clear IT bits. */ 10154 env->condexec_bits = 0; 10155 /* Switch to the new mode, and to the correct instruction set. */ 10156 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10157 10158 /* This must be after mode switching. */ 10159 new_el = arm_current_el(env); 10160 10161 /* Set new mode endianness */ 10162 env->uncached_cpsr &= ~CPSR_E; 10163 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10164 env->uncached_cpsr |= CPSR_E; 10165 } 10166 /* J and IL must always be cleared for exception entry */ 10167 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10168 env->daif |= mask; 10169 10170 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10171 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10172 env->uncached_cpsr |= CPSR_SSBS; 10173 } else { 10174 env->uncached_cpsr &= ~CPSR_SSBS; 10175 } 10176 } 10177 10178 if (new_mode == ARM_CPU_MODE_HYP) { 10179 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10180 env->elr_el[2] = env->regs[15]; 10181 } else { 10182 /* CPSR.PAN is normally preserved preserved unless... */ 10183 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10184 switch (new_el) { 10185 case 3: 10186 if (!arm_is_secure_below_el3(env)) { 10187 /* ... the target is EL3, from non-secure state. */ 10188 env->uncached_cpsr &= ~CPSR_PAN; 10189 break; 10190 } 10191 /* ... the target is EL3, from secure state ... */ 10192 /* fall through */ 10193 case 1: 10194 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10195 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10196 env->uncached_cpsr |= CPSR_PAN; 10197 } 10198 break; 10199 } 10200 } 10201 /* 10202 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10203 * and we should just guard the thumb mode on V4 10204 */ 10205 if (arm_feature(env, ARM_FEATURE_V4T)) { 10206 env->thumb = 10207 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10208 } 10209 env->regs[14] = env->regs[15] + offset; 10210 } 10211 env->regs[15] = newpc; 10212 10213 if (tcg_enabled()) { 10214 arm_rebuild_hflags(env); 10215 } 10216 } 10217 10218 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10219 { 10220 /* 10221 * Handle exception entry to Hyp mode; this is sufficiently 10222 * different to entry to other AArch32 modes that we handle it 10223 * separately here. 10224 * 10225 * The vector table entry used is always the 0x14 Hyp mode entry point, 10226 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10227 * The offset applied to the preferred return address is always zero 10228 * (see DDI0487C.a section G1.12.3). 10229 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10230 */ 10231 uint32_t addr, mask; 10232 ARMCPU *cpu = ARM_CPU(cs); 10233 CPUARMState *env = &cpu->env; 10234 10235 switch (cs->exception_index) { 10236 case EXCP_UDEF: 10237 addr = 0x04; 10238 break; 10239 case EXCP_SWI: 10240 addr = 0x08; 10241 break; 10242 case EXCP_BKPT: 10243 /* Fall through to prefetch abort. */ 10244 case EXCP_PREFETCH_ABORT: 10245 env->cp15.ifar_s = env->exception.vaddress; 10246 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10247 (uint32_t)env->exception.vaddress); 10248 addr = 0x0c; 10249 break; 10250 case EXCP_DATA_ABORT: 10251 env->cp15.dfar_s = env->exception.vaddress; 10252 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10253 (uint32_t)env->exception.vaddress); 10254 addr = 0x10; 10255 break; 10256 case EXCP_IRQ: 10257 addr = 0x18; 10258 break; 10259 case EXCP_FIQ: 10260 addr = 0x1c; 10261 break; 10262 case EXCP_HVC: 10263 addr = 0x08; 10264 break; 10265 case EXCP_HYP_TRAP: 10266 addr = 0x14; 10267 break; 10268 default: 10269 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10270 } 10271 10272 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10273 if (!arm_feature(env, ARM_FEATURE_V8)) { 10274 /* 10275 * QEMU syndrome values are v8-style. v7 has the IL bit 10276 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10277 * If this is a v7 CPU, squash the IL bit in those cases. 10278 */ 10279 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10280 (cs->exception_index == EXCP_DATA_ABORT && 10281 !(env->exception.syndrome & ARM_EL_ISV)) || 10282 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10283 env->exception.syndrome &= ~ARM_EL_IL; 10284 } 10285 } 10286 env->cp15.esr_el[2] = env->exception.syndrome; 10287 } 10288 10289 if (arm_current_el(env) != 2 && addr < 0x14) { 10290 addr = 0x14; 10291 } 10292 10293 mask = 0; 10294 if (!(env->cp15.scr_el3 & SCR_EA)) { 10295 mask |= CPSR_A; 10296 } 10297 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10298 mask |= CPSR_I; 10299 } 10300 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10301 mask |= CPSR_F; 10302 } 10303 10304 addr += env->cp15.hvbar; 10305 10306 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10307 } 10308 10309 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10310 { 10311 ARMCPU *cpu = ARM_CPU(cs); 10312 CPUARMState *env = &cpu->env; 10313 uint32_t addr; 10314 uint32_t mask; 10315 int new_mode; 10316 uint32_t offset; 10317 uint32_t moe; 10318 10319 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10320 switch (syn_get_ec(env->exception.syndrome)) { 10321 case EC_BREAKPOINT: 10322 case EC_BREAKPOINT_SAME_EL: 10323 moe = 1; 10324 break; 10325 case EC_WATCHPOINT: 10326 case EC_WATCHPOINT_SAME_EL: 10327 moe = 10; 10328 break; 10329 case EC_AA32_BKPT: 10330 moe = 3; 10331 break; 10332 case EC_VECTORCATCH: 10333 moe = 5; 10334 break; 10335 default: 10336 moe = 0; 10337 break; 10338 } 10339 10340 if (moe) { 10341 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10342 } 10343 10344 if (env->exception.target_el == 2) { 10345 /* Debug exceptions are reported differently on AArch32 */ 10346 switch (syn_get_ec(env->exception.syndrome)) { 10347 case EC_BREAKPOINT: 10348 case EC_BREAKPOINT_SAME_EL: 10349 case EC_AA32_BKPT: 10350 case EC_VECTORCATCH: 10351 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10352 0, 0, 0x22); 10353 break; 10354 case EC_WATCHPOINT: 10355 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10356 EC_DATAABORT); 10357 break; 10358 case EC_WATCHPOINT_SAME_EL: 10359 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10360 EC_DATAABORT_SAME_EL); 10361 break; 10362 } 10363 arm_cpu_do_interrupt_aarch32_hyp(cs); 10364 return; 10365 } 10366 10367 switch (cs->exception_index) { 10368 case EXCP_UDEF: 10369 new_mode = ARM_CPU_MODE_UND; 10370 addr = 0x04; 10371 mask = CPSR_I; 10372 if (env->thumb) { 10373 offset = 2; 10374 } else { 10375 offset = 4; 10376 } 10377 break; 10378 case EXCP_SWI: 10379 new_mode = ARM_CPU_MODE_SVC; 10380 addr = 0x08; 10381 mask = CPSR_I; 10382 /* The PC already points to the next instruction. */ 10383 offset = 0; 10384 break; 10385 case EXCP_BKPT: 10386 /* Fall through to prefetch abort. */ 10387 case EXCP_PREFETCH_ABORT: 10388 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10389 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10390 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10391 env->exception.fsr, (uint32_t)env->exception.vaddress); 10392 new_mode = ARM_CPU_MODE_ABT; 10393 addr = 0x0c; 10394 mask = CPSR_A | CPSR_I; 10395 offset = 4; 10396 break; 10397 case EXCP_DATA_ABORT: 10398 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10399 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10400 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10401 env->exception.fsr, 10402 (uint32_t)env->exception.vaddress); 10403 new_mode = ARM_CPU_MODE_ABT; 10404 addr = 0x10; 10405 mask = CPSR_A | CPSR_I; 10406 offset = 8; 10407 break; 10408 case EXCP_IRQ: 10409 new_mode = ARM_CPU_MODE_IRQ; 10410 addr = 0x18; 10411 /* Disable IRQ and imprecise data aborts. */ 10412 mask = CPSR_A | CPSR_I; 10413 offset = 4; 10414 if (env->cp15.scr_el3 & SCR_IRQ) { 10415 /* IRQ routed to monitor mode */ 10416 new_mode = ARM_CPU_MODE_MON; 10417 mask |= CPSR_F; 10418 } 10419 break; 10420 case EXCP_FIQ: 10421 new_mode = ARM_CPU_MODE_FIQ; 10422 addr = 0x1c; 10423 /* Disable FIQ, IRQ and imprecise data aborts. */ 10424 mask = CPSR_A | CPSR_I | CPSR_F; 10425 if (env->cp15.scr_el3 & SCR_FIQ) { 10426 /* FIQ routed to monitor mode */ 10427 new_mode = ARM_CPU_MODE_MON; 10428 } 10429 offset = 4; 10430 break; 10431 case EXCP_VIRQ: 10432 new_mode = ARM_CPU_MODE_IRQ; 10433 addr = 0x18; 10434 /* Disable IRQ and imprecise data aborts. */ 10435 mask = CPSR_A | CPSR_I; 10436 offset = 4; 10437 break; 10438 case EXCP_VFIQ: 10439 new_mode = ARM_CPU_MODE_FIQ; 10440 addr = 0x1c; 10441 /* Disable FIQ, IRQ and imprecise data aborts. */ 10442 mask = CPSR_A | CPSR_I | CPSR_F; 10443 offset = 4; 10444 break; 10445 case EXCP_VSERR: 10446 { 10447 /* 10448 * Note that this is reported as a data abort, but the DFAR 10449 * has an UNKNOWN value. Construct the SError syndrome from 10450 * AET and ExT fields. 10451 */ 10452 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10453 10454 if (extended_addresses_enabled(env)) { 10455 env->exception.fsr = arm_fi_to_lfsc(&fi); 10456 } else { 10457 env->exception.fsr = arm_fi_to_sfsc(&fi); 10458 } 10459 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10460 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10461 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10462 env->exception.fsr); 10463 10464 new_mode = ARM_CPU_MODE_ABT; 10465 addr = 0x10; 10466 mask = CPSR_A | CPSR_I; 10467 offset = 8; 10468 } 10469 break; 10470 case EXCP_SMC: 10471 new_mode = ARM_CPU_MODE_MON; 10472 addr = 0x08; 10473 mask = CPSR_A | CPSR_I | CPSR_F; 10474 offset = 0; 10475 break; 10476 case EXCP_MON_TRAP: 10477 new_mode = ARM_CPU_MODE_MON; 10478 addr = 0x04; 10479 mask = CPSR_A | CPSR_I | CPSR_F; 10480 if (env->thumb) { 10481 offset = 2; 10482 } else { 10483 offset = 4; 10484 } 10485 break; 10486 default: 10487 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10488 return; /* Never happens. Keep compiler happy. */ 10489 } 10490 10491 if (new_mode == ARM_CPU_MODE_MON) { 10492 addr += env->cp15.mvbar; 10493 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10494 /* High vectors. When enabled, base address cannot be remapped. */ 10495 addr += 0xffff0000; 10496 } else { 10497 /* 10498 * ARM v7 architectures provide a vector base address register to remap 10499 * the interrupt vector table. 10500 * This register is only followed in non-monitor mode, and is banked. 10501 * Note: only bits 31:5 are valid. 10502 */ 10503 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10504 } 10505 10506 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10507 env->cp15.scr_el3 &= ~SCR_NS; 10508 } 10509 10510 take_aarch32_exception(env, new_mode, mask, offset, addr); 10511 } 10512 10513 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10514 { 10515 /* 10516 * Return the register number of the AArch64 view of the AArch32 10517 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10518 * be that of the AArch32 mode the exception came from. 10519 */ 10520 int mode = env->uncached_cpsr & CPSR_M; 10521 10522 switch (aarch32_reg) { 10523 case 0 ... 7: 10524 return aarch32_reg; 10525 case 8 ... 12: 10526 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10527 case 13: 10528 switch (mode) { 10529 case ARM_CPU_MODE_USR: 10530 case ARM_CPU_MODE_SYS: 10531 return 13; 10532 case ARM_CPU_MODE_HYP: 10533 return 15; 10534 case ARM_CPU_MODE_IRQ: 10535 return 17; 10536 case ARM_CPU_MODE_SVC: 10537 return 19; 10538 case ARM_CPU_MODE_ABT: 10539 return 21; 10540 case ARM_CPU_MODE_UND: 10541 return 23; 10542 case ARM_CPU_MODE_FIQ: 10543 return 29; 10544 default: 10545 g_assert_not_reached(); 10546 } 10547 case 14: 10548 switch (mode) { 10549 case ARM_CPU_MODE_USR: 10550 case ARM_CPU_MODE_SYS: 10551 case ARM_CPU_MODE_HYP: 10552 return 14; 10553 case ARM_CPU_MODE_IRQ: 10554 return 16; 10555 case ARM_CPU_MODE_SVC: 10556 return 18; 10557 case ARM_CPU_MODE_ABT: 10558 return 20; 10559 case ARM_CPU_MODE_UND: 10560 return 22; 10561 case ARM_CPU_MODE_FIQ: 10562 return 30; 10563 default: 10564 g_assert_not_reached(); 10565 } 10566 case 15: 10567 return 31; 10568 default: 10569 g_assert_not_reached(); 10570 } 10571 } 10572 10573 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10574 { 10575 uint32_t ret = cpsr_read(env); 10576 10577 /* Move DIT to the correct location for SPSR_ELx */ 10578 if (ret & CPSR_DIT) { 10579 ret &= ~CPSR_DIT; 10580 ret |= PSTATE_DIT; 10581 } 10582 /* Merge PSTATE.SS into SPSR_ELx */ 10583 ret |= env->pstate & PSTATE_SS; 10584 10585 return ret; 10586 } 10587 10588 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10589 { 10590 /* Return true if this syndrome value is a synchronous external abort */ 10591 switch (syn_get_ec(syndrome)) { 10592 case EC_INSNABORT: 10593 case EC_INSNABORT_SAME_EL: 10594 case EC_DATAABORT: 10595 case EC_DATAABORT_SAME_EL: 10596 /* Look at fault status code for all the synchronous ext abort cases */ 10597 switch (syndrome & 0x3f) { 10598 case 0x10: 10599 case 0x13: 10600 case 0x14: 10601 case 0x15: 10602 case 0x16: 10603 case 0x17: 10604 return true; 10605 default: 10606 return false; 10607 } 10608 default: 10609 return false; 10610 } 10611 } 10612 10613 /* Handle exception entry to a target EL which is using AArch64 */ 10614 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10615 { 10616 ARMCPU *cpu = ARM_CPU(cs); 10617 CPUARMState *env = &cpu->env; 10618 unsigned int new_el = env->exception.target_el; 10619 target_ulong addr = env->cp15.vbar_el[new_el]; 10620 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10621 unsigned int old_mode; 10622 unsigned int cur_el = arm_current_el(env); 10623 int rt; 10624 10625 if (tcg_enabled()) { 10626 /* 10627 * Note that new_el can never be 0. If cur_el is 0, then 10628 * el0_a64 is is_a64(), else el0_a64 is ignored. 10629 */ 10630 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10631 } 10632 10633 if (cur_el < new_el) { 10634 /* 10635 * Entry vector offset depends on whether the implemented EL 10636 * immediately lower than the target level is using AArch32 or AArch64 10637 */ 10638 bool is_aa64; 10639 uint64_t hcr; 10640 10641 switch (new_el) { 10642 case 3: 10643 is_aa64 = arm_scr_rw_eff(env); 10644 break; 10645 case 2: 10646 hcr = arm_hcr_el2_eff(env); 10647 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10648 is_aa64 = (hcr & HCR_RW) != 0; 10649 break; 10650 } 10651 /* fall through */ 10652 case 1: 10653 is_aa64 = is_a64(env); 10654 break; 10655 default: 10656 g_assert_not_reached(); 10657 } 10658 10659 if (is_aa64) { 10660 addr += 0x400; 10661 } else { 10662 addr += 0x600; 10663 } 10664 } else if (pstate_read(env) & PSTATE_SP) { 10665 addr += 0x200; 10666 } 10667 10668 switch (cs->exception_index) { 10669 case EXCP_GPC: 10670 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10671 env->cp15.mfar_el3); 10672 /* fall through */ 10673 case EXCP_PREFETCH_ABORT: 10674 case EXCP_DATA_ABORT: 10675 /* 10676 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10677 * to be taken to the SError vector entrypoint. 10678 */ 10679 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10680 syndrome_is_sync_extabt(env->exception.syndrome)) { 10681 addr += 0x180; 10682 } 10683 env->cp15.far_el[new_el] = env->exception.vaddress; 10684 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10685 env->cp15.far_el[new_el]); 10686 /* fall through */ 10687 case EXCP_BKPT: 10688 case EXCP_UDEF: 10689 case EXCP_SWI: 10690 case EXCP_HVC: 10691 case EXCP_HYP_TRAP: 10692 case EXCP_SMC: 10693 switch (syn_get_ec(env->exception.syndrome)) { 10694 case EC_ADVSIMDFPACCESSTRAP: 10695 /* 10696 * QEMU internal FP/SIMD syndromes from AArch32 include the 10697 * TA and coproc fields which are only exposed if the exception 10698 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10699 * AArch64 format syndrome. 10700 */ 10701 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10702 break; 10703 case EC_CP14RTTRAP: 10704 case EC_CP15RTTRAP: 10705 case EC_CP14DTTRAP: 10706 /* 10707 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10708 * the raw register field from the insn; when taking this to 10709 * AArch64 we must convert it to the AArch64 view of the register 10710 * number. Notice that we read a 4-bit AArch32 register number and 10711 * write back a 5-bit AArch64 one. 10712 */ 10713 rt = extract32(env->exception.syndrome, 5, 4); 10714 rt = aarch64_regnum(env, rt); 10715 env->exception.syndrome = deposit32(env->exception.syndrome, 10716 5, 5, rt); 10717 break; 10718 case EC_CP15RRTTRAP: 10719 case EC_CP14RRTTRAP: 10720 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10721 rt = extract32(env->exception.syndrome, 5, 4); 10722 rt = aarch64_regnum(env, rt); 10723 env->exception.syndrome = deposit32(env->exception.syndrome, 10724 5, 5, rt); 10725 rt = extract32(env->exception.syndrome, 10, 4); 10726 rt = aarch64_regnum(env, rt); 10727 env->exception.syndrome = deposit32(env->exception.syndrome, 10728 10, 5, rt); 10729 break; 10730 } 10731 env->cp15.esr_el[new_el] = env->exception.syndrome; 10732 break; 10733 case EXCP_IRQ: 10734 case EXCP_VIRQ: 10735 case EXCP_NMI: 10736 case EXCP_VINMI: 10737 addr += 0x80; 10738 break; 10739 case EXCP_FIQ: 10740 case EXCP_VFIQ: 10741 case EXCP_VFNMI: 10742 addr += 0x100; 10743 break; 10744 case EXCP_VSERR: 10745 addr += 0x180; 10746 /* Construct the SError syndrome from IDS and ISS fields. */ 10747 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10748 env->cp15.esr_el[new_el] = env->exception.syndrome; 10749 break; 10750 default: 10751 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10752 } 10753 10754 if (is_a64(env)) { 10755 old_mode = pstate_read(env); 10756 aarch64_save_sp(env, arm_current_el(env)); 10757 env->elr_el[new_el] = env->pc; 10758 10759 if (cur_el == 1 && new_el == 1) { 10760 uint64_t hcr = arm_hcr_el2_eff(env); 10761 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10762 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10763 /* 10764 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10765 * by setting M[3:2] to 0b10. 10766 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10767 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10768 */ 10769 old_mode = deposit32(old_mode, 2, 2, 2); 10770 } 10771 } 10772 } else { 10773 old_mode = cpsr_read_for_spsr_elx(env); 10774 env->elr_el[new_el] = env->regs[15]; 10775 10776 aarch64_sync_32_to_64(env); 10777 10778 env->condexec_bits = 0; 10779 } 10780 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10781 10782 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10783 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10784 env->elr_el[new_el]); 10785 10786 if (cpu_isar_feature(aa64_pan, cpu)) { 10787 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10788 new_mode |= old_mode & PSTATE_PAN; 10789 switch (new_el) { 10790 case 2: 10791 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10792 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10793 != (HCR_E2H | HCR_TGE)) { 10794 break; 10795 } 10796 /* fall through */ 10797 case 1: 10798 /* ... the target is EL1 ... */ 10799 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10800 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10801 new_mode |= PSTATE_PAN; 10802 } 10803 break; 10804 } 10805 } 10806 if (cpu_isar_feature(aa64_mte, cpu)) { 10807 new_mode |= PSTATE_TCO; 10808 } 10809 10810 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10811 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10812 new_mode |= PSTATE_SSBS; 10813 } else { 10814 new_mode &= ~PSTATE_SSBS; 10815 } 10816 } 10817 10818 if (cpu_isar_feature(aa64_nmi, cpu)) { 10819 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10820 new_mode |= PSTATE_ALLINT; 10821 } else { 10822 new_mode &= ~PSTATE_ALLINT; 10823 } 10824 } 10825 10826 pstate_write(env, PSTATE_DAIF | new_mode); 10827 env->aarch64 = true; 10828 aarch64_restore_sp(env, new_el); 10829 10830 if (tcg_enabled()) { 10831 helper_rebuild_hflags_a64(env, new_el); 10832 } 10833 10834 env->pc = addr; 10835 10836 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10837 new_el, env->pc, pstate_read(env)); 10838 } 10839 10840 /* 10841 * Do semihosting call and set the appropriate return value. All the 10842 * permission and validity checks have been done at translate time. 10843 * 10844 * We only see semihosting exceptions in TCG only as they are not 10845 * trapped to the hypervisor in KVM. 10846 */ 10847 #ifdef CONFIG_TCG 10848 static void tcg_handle_semihosting(CPUState *cs) 10849 { 10850 ARMCPU *cpu = ARM_CPU(cs); 10851 CPUARMState *env = &cpu->env; 10852 10853 if (is_a64(env)) { 10854 qemu_log_mask(CPU_LOG_INT, 10855 "...handling as semihosting call 0x%" PRIx64 "\n", 10856 env->xregs[0]); 10857 do_common_semihosting(cs); 10858 env->pc += 4; 10859 } else { 10860 qemu_log_mask(CPU_LOG_INT, 10861 "...handling as semihosting call 0x%x\n", 10862 env->regs[0]); 10863 do_common_semihosting(cs); 10864 env->regs[15] += env->thumb ? 2 : 4; 10865 } 10866 } 10867 #endif 10868 10869 /* 10870 * Handle a CPU exception for A and R profile CPUs. 10871 * Do any appropriate logging, handle PSCI calls, and then hand off 10872 * to the AArch64-entry or AArch32-entry function depending on the 10873 * target exception level's register width. 10874 * 10875 * Note: this is used for both TCG (as the do_interrupt tcg op), 10876 * and KVM to re-inject guest debug exceptions, and to 10877 * inject a Synchronous-External-Abort. 10878 */ 10879 void arm_cpu_do_interrupt(CPUState *cs) 10880 { 10881 ARMCPU *cpu = ARM_CPU(cs); 10882 CPUARMState *env = &cpu->env; 10883 unsigned int new_el = env->exception.target_el; 10884 10885 assert(!arm_feature(env, ARM_FEATURE_M)); 10886 10887 arm_log_exception(cs); 10888 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10889 new_el); 10890 if (qemu_loglevel_mask(CPU_LOG_INT) 10891 && !excp_is_internal(cs->exception_index)) { 10892 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10893 syn_get_ec(env->exception.syndrome), 10894 env->exception.syndrome); 10895 } 10896 10897 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10898 arm_handle_psci_call(cpu); 10899 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10900 return; 10901 } 10902 10903 /* 10904 * Semihosting semantics depend on the register width of the code 10905 * that caused the exception, not the target exception level, so 10906 * must be handled here. 10907 */ 10908 #ifdef CONFIG_TCG 10909 if (cs->exception_index == EXCP_SEMIHOST) { 10910 tcg_handle_semihosting(cs); 10911 return; 10912 } 10913 #endif 10914 10915 /* 10916 * Hooks may change global state so BQL should be held, also the 10917 * BQL needs to be held for any modification of 10918 * cs->interrupt_request. 10919 */ 10920 g_assert(bql_locked()); 10921 10922 arm_call_pre_el_change_hook(cpu); 10923 10924 assert(!excp_is_internal(cs->exception_index)); 10925 if (arm_el_is_aa64(env, new_el)) { 10926 arm_cpu_do_interrupt_aarch64(cs); 10927 } else { 10928 arm_cpu_do_interrupt_aarch32(cs); 10929 } 10930 10931 arm_call_el_change_hook(cpu); 10932 10933 if (!kvm_enabled()) { 10934 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10935 } 10936 } 10937 #endif /* !CONFIG_USER_ONLY */ 10938 10939 uint64_t arm_sctlr(CPUARMState *env, int el) 10940 { 10941 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10942 if (el == 0) { 10943 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10944 switch (mmu_idx) { 10945 case ARMMMUIdx_E20_0: 10946 el = 2; 10947 break; 10948 case ARMMMUIdx_E30_0: 10949 el = 3; 10950 break; 10951 default: 10952 el = 1; 10953 break; 10954 } 10955 } 10956 return env->cp15.sctlr_el[el]; 10957 } 10958 10959 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10960 { 10961 if (regime_has_2_ranges(mmu_idx)) { 10962 return extract64(tcr, 37, 2); 10963 } else if (regime_is_stage2(mmu_idx)) { 10964 return 0; /* VTCR_EL2 */ 10965 } else { 10966 /* Replicate the single TBI bit so we always have 2 bits. */ 10967 return extract32(tcr, 20, 1) * 3; 10968 } 10969 } 10970 10971 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10972 { 10973 if (regime_has_2_ranges(mmu_idx)) { 10974 return extract64(tcr, 51, 2); 10975 } else if (regime_is_stage2(mmu_idx)) { 10976 return 0; /* VTCR_EL2 */ 10977 } else { 10978 /* Replicate the single TBID bit so we always have 2 bits. */ 10979 return extract32(tcr, 29, 1) * 3; 10980 } 10981 } 10982 10983 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10984 { 10985 if (regime_has_2_ranges(mmu_idx)) { 10986 return extract64(tcr, 57, 2); 10987 } else { 10988 /* Replicate the single TCMA bit so we always have 2 bits. */ 10989 return extract32(tcr, 30, 1) * 3; 10990 } 10991 } 10992 10993 static ARMGranuleSize tg0_to_gran_size(int tg) 10994 { 10995 switch (tg) { 10996 case 0: 10997 return Gran4K; 10998 case 1: 10999 return Gran64K; 11000 case 2: 11001 return Gran16K; 11002 default: 11003 return GranInvalid; 11004 } 11005 } 11006 11007 static ARMGranuleSize tg1_to_gran_size(int tg) 11008 { 11009 switch (tg) { 11010 case 1: 11011 return Gran16K; 11012 case 2: 11013 return Gran4K; 11014 case 3: 11015 return Gran64K; 11016 default: 11017 return GranInvalid; 11018 } 11019 } 11020 11021 static inline bool have4k(ARMCPU *cpu, bool stage2) 11022 { 11023 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11024 : cpu_isar_feature(aa64_tgran4, cpu); 11025 } 11026 11027 static inline bool have16k(ARMCPU *cpu, bool stage2) 11028 { 11029 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11030 : cpu_isar_feature(aa64_tgran16, cpu); 11031 } 11032 11033 static inline bool have64k(ARMCPU *cpu, bool stage2) 11034 { 11035 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11036 : cpu_isar_feature(aa64_tgran64, cpu); 11037 } 11038 11039 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11040 bool stage2) 11041 { 11042 switch (gran) { 11043 case Gran4K: 11044 if (have4k(cpu, stage2)) { 11045 return gran; 11046 } 11047 break; 11048 case Gran16K: 11049 if (have16k(cpu, stage2)) { 11050 return gran; 11051 } 11052 break; 11053 case Gran64K: 11054 if (have64k(cpu, stage2)) { 11055 return gran; 11056 } 11057 break; 11058 case GranInvalid: 11059 break; 11060 } 11061 /* 11062 * If the guest selects a granule size that isn't implemented, 11063 * the architecture requires that we behave as if it selected one 11064 * that is (with an IMPDEF choice of which one to pick). We choose 11065 * to implement the smallest supported granule size. 11066 */ 11067 if (have4k(cpu, stage2)) { 11068 return Gran4K; 11069 } 11070 if (have16k(cpu, stage2)) { 11071 return Gran16K; 11072 } 11073 assert(have64k(cpu, stage2)); 11074 return Gran64K; 11075 } 11076 11077 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11078 ARMMMUIdx mmu_idx, bool data, 11079 bool el1_is_aa32) 11080 { 11081 uint64_t tcr = regime_tcr(env, mmu_idx); 11082 bool epd, hpd, tsz_oob, ds, ha, hd; 11083 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11084 ARMGranuleSize gran; 11085 ARMCPU *cpu = env_archcpu(env); 11086 bool stage2 = regime_is_stage2(mmu_idx); 11087 11088 if (!regime_has_2_ranges(mmu_idx)) { 11089 select = 0; 11090 tsz = extract32(tcr, 0, 6); 11091 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11092 if (stage2) { 11093 /* VTCR_EL2 */ 11094 hpd = false; 11095 } else { 11096 hpd = extract32(tcr, 24, 1); 11097 } 11098 epd = false; 11099 sh = extract32(tcr, 12, 2); 11100 ps = extract32(tcr, 16, 3); 11101 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11102 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11103 ds = extract64(tcr, 32, 1); 11104 } else { 11105 bool e0pd; 11106 11107 /* 11108 * Bit 55 is always between the two regions, and is canonical for 11109 * determining if address tagging is enabled. 11110 */ 11111 select = extract64(va, 55, 1); 11112 if (!select) { 11113 tsz = extract32(tcr, 0, 6); 11114 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11115 epd = extract32(tcr, 7, 1); 11116 sh = extract32(tcr, 12, 2); 11117 hpd = extract64(tcr, 41, 1); 11118 e0pd = extract64(tcr, 55, 1); 11119 } else { 11120 tsz = extract32(tcr, 16, 6); 11121 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11122 epd = extract32(tcr, 23, 1); 11123 sh = extract32(tcr, 28, 2); 11124 hpd = extract64(tcr, 42, 1); 11125 e0pd = extract64(tcr, 56, 1); 11126 } 11127 ps = extract64(tcr, 32, 3); 11128 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11129 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11130 ds = extract64(tcr, 59, 1); 11131 11132 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11133 regime_is_user(env, mmu_idx)) { 11134 epd = true; 11135 } 11136 } 11137 11138 gran = sanitize_gran_size(cpu, gran, stage2); 11139 11140 if (cpu_isar_feature(aa64_st, cpu)) { 11141 max_tsz = 48 - (gran == Gran64K); 11142 } else { 11143 max_tsz = 39; 11144 } 11145 11146 /* 11147 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11148 * adjust the effective value of DS, as documented. 11149 */ 11150 min_tsz = 16; 11151 if (gran == Gran64K) { 11152 if (cpu_isar_feature(aa64_lva, cpu)) { 11153 min_tsz = 12; 11154 } 11155 ds = false; 11156 } else if (ds) { 11157 if (regime_is_stage2(mmu_idx)) { 11158 if (gran == Gran16K) { 11159 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11160 } else { 11161 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11162 } 11163 } else { 11164 if (gran == Gran16K) { 11165 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11166 } else { 11167 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11168 } 11169 } 11170 if (ds) { 11171 min_tsz = 12; 11172 } 11173 } 11174 11175 if (stage2 && el1_is_aa32) { 11176 /* 11177 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11178 * are loosened: a configured IPA of 40 bits is permitted even if 11179 * the implemented PA is less than that (and so a 40 bit IPA would 11180 * fault for an AArch64 EL1). See R_DTLMN. 11181 */ 11182 min_tsz = MIN(min_tsz, 24); 11183 } 11184 11185 if (tsz > max_tsz) { 11186 tsz = max_tsz; 11187 tsz_oob = true; 11188 } else if (tsz < min_tsz) { 11189 tsz = min_tsz; 11190 tsz_oob = true; 11191 } else { 11192 tsz_oob = false; 11193 } 11194 11195 /* Present TBI as a composite with TBID. */ 11196 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11197 if (!data) { 11198 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11199 } 11200 tbi = (tbi >> select) & 1; 11201 11202 return (ARMVAParameters) { 11203 .tsz = tsz, 11204 .ps = ps, 11205 .sh = sh, 11206 .select = select, 11207 .tbi = tbi, 11208 .epd = epd, 11209 .hpd = hpd, 11210 .tsz_oob = tsz_oob, 11211 .ds = ds, 11212 .ha = ha, 11213 .hd = ha && hd, 11214 .gran = gran, 11215 }; 11216 } 11217 11218 11219 /* 11220 * Return the exception level to which FP-disabled exceptions should 11221 * be taken, or 0 if FP is enabled. 11222 */ 11223 int fp_exception_el(CPUARMState *env, int cur_el) 11224 { 11225 #ifndef CONFIG_USER_ONLY 11226 uint64_t hcr_el2; 11227 11228 /* 11229 * CPACR and the CPTR registers don't exist before v6, so FP is 11230 * always accessible 11231 */ 11232 if (!arm_feature(env, ARM_FEATURE_V6)) { 11233 return 0; 11234 } 11235 11236 if (arm_feature(env, ARM_FEATURE_M)) { 11237 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11238 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11239 return 1; 11240 } 11241 11242 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11243 if (!extract32(env->v7m.nsacr, 10, 1)) { 11244 /* FP insns cause a NOCP UsageFault taken to Secure */ 11245 return 3; 11246 } 11247 } 11248 11249 return 0; 11250 } 11251 11252 hcr_el2 = arm_hcr_el2_eff(env); 11253 11254 /* 11255 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11256 * 0, 2 : trap EL0 and EL1/PL1 accesses 11257 * 1 : trap only EL0 accesses 11258 * 3 : trap no accesses 11259 * This register is ignored if E2H+TGE are both set. 11260 */ 11261 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11262 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11263 11264 switch (fpen) { 11265 case 1: 11266 if (cur_el != 0) { 11267 break; 11268 } 11269 /* fall through */ 11270 case 0: 11271 case 2: 11272 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11273 if (!arm_el_is_aa64(env, 3) 11274 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11275 return 3; 11276 } 11277 if (cur_el <= 1) { 11278 return 1; 11279 } 11280 break; 11281 } 11282 } 11283 11284 /* 11285 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11286 * to control non-secure access to the FPU. It doesn't have any 11287 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11288 */ 11289 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11290 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11291 if (!extract32(env->cp15.nsacr, 10, 1)) { 11292 /* FP insns act as UNDEF */ 11293 return cur_el == 2 ? 2 : 1; 11294 } 11295 } 11296 11297 /* 11298 * CPTR_EL2 is present in v7VE or v8, and changes format 11299 * with HCR_EL2.E2H (regardless of TGE). 11300 */ 11301 if (cur_el <= 2) { 11302 if (hcr_el2 & HCR_E2H) { 11303 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11304 case 1: 11305 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11306 break; 11307 } 11308 /* fall through */ 11309 case 0: 11310 case 2: 11311 return 2; 11312 } 11313 } else if (arm_is_el2_enabled(env)) { 11314 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11315 return 2; 11316 } 11317 } 11318 } 11319 11320 /* CPTR_EL3 : present in v8 */ 11321 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11322 /* Trap all FP ops to EL3 */ 11323 return 3; 11324 } 11325 #endif 11326 return 0; 11327 } 11328 11329 /* Return the exception level we're running at if this is our mmu_idx */ 11330 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11331 { 11332 if (mmu_idx & ARM_MMU_IDX_M) { 11333 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11334 } 11335 11336 switch (mmu_idx) { 11337 case ARMMMUIdx_E10_0: 11338 case ARMMMUIdx_E20_0: 11339 case ARMMMUIdx_E30_0: 11340 return 0; 11341 case ARMMMUIdx_E10_1: 11342 case ARMMMUIdx_E10_1_PAN: 11343 return 1; 11344 case ARMMMUIdx_E2: 11345 case ARMMMUIdx_E20_2: 11346 case ARMMMUIdx_E20_2_PAN: 11347 return 2; 11348 case ARMMMUIdx_E3: 11349 case ARMMMUIdx_E30_3_PAN: 11350 return 3; 11351 default: 11352 g_assert_not_reached(); 11353 } 11354 } 11355 11356 #ifndef CONFIG_TCG 11357 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11358 { 11359 g_assert_not_reached(); 11360 } 11361 #endif 11362 11363 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11364 { 11365 ARMMMUIdx idx; 11366 uint64_t hcr; 11367 11368 if (arm_feature(env, ARM_FEATURE_M)) { 11369 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11370 } 11371 11372 /* See ARM pseudo-function ELIsInHost. */ 11373 switch (el) { 11374 case 0: 11375 hcr = arm_hcr_el2_eff(env); 11376 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11377 idx = ARMMMUIdx_E20_0; 11378 } else if (arm_is_secure_below_el3(env) && 11379 !arm_el_is_aa64(env, 3)) { 11380 idx = ARMMMUIdx_E30_0; 11381 } else { 11382 idx = ARMMMUIdx_E10_0; 11383 } 11384 break; 11385 case 1: 11386 if (arm_pan_enabled(env)) { 11387 idx = ARMMMUIdx_E10_1_PAN; 11388 } else { 11389 idx = ARMMMUIdx_E10_1; 11390 } 11391 break; 11392 case 2: 11393 /* Note that TGE does not apply at EL2. */ 11394 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11395 if (arm_pan_enabled(env)) { 11396 idx = ARMMMUIdx_E20_2_PAN; 11397 } else { 11398 idx = ARMMMUIdx_E20_2; 11399 } 11400 } else { 11401 idx = ARMMMUIdx_E2; 11402 } 11403 break; 11404 case 3: 11405 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11406 return ARMMMUIdx_E30_3_PAN; 11407 } 11408 return ARMMMUIdx_E3; 11409 default: 11410 g_assert_not_reached(); 11411 } 11412 11413 return idx; 11414 } 11415 11416 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11417 { 11418 return arm_mmu_idx_el(env, arm_current_el(env)); 11419 } 11420 11421 static bool mve_no_pred(CPUARMState *env) 11422 { 11423 /* 11424 * Return true if there is definitely no predication of MVE 11425 * instructions by VPR or LTPSIZE. (Returning false even if there 11426 * isn't any predication is OK; generated code will just be 11427 * a little worse.) 11428 * If the CPU does not implement MVE then this TB flag is always 0. 11429 * 11430 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11431 * logic in gen_update_fp_context() needs to be updated to match. 11432 * 11433 * We do not include the effect of the ECI bits here -- they are 11434 * tracked in other TB flags. This simplifies the logic for 11435 * "when did we emit code that changes the MVE_NO_PRED TB flag 11436 * and thus need to end the TB?". 11437 */ 11438 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11439 return false; 11440 } 11441 if (env->v7m.vpr) { 11442 return false; 11443 } 11444 if (env->v7m.ltpsize < 4) { 11445 return false; 11446 } 11447 return true; 11448 } 11449 11450 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11451 uint64_t *cs_base, uint32_t *pflags) 11452 { 11453 CPUARMTBFlags flags; 11454 11455 assert_hflags_rebuild_correctly(env); 11456 flags = env->hflags; 11457 11458 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11459 *pc = env->pc; 11460 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11461 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11462 } 11463 } else { 11464 *pc = env->regs[15]; 11465 11466 if (arm_feature(env, ARM_FEATURE_M)) { 11467 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11468 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11469 != env->v7m.secure) { 11470 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11471 } 11472 11473 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11474 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11475 (env->v7m.secure && 11476 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11477 /* 11478 * ASPEN is set, but FPCA/SFPA indicate that there is no 11479 * active FP context; we must create a new FP context before 11480 * executing any FP insn. 11481 */ 11482 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11483 } 11484 11485 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11486 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11487 DP_TBFLAG_M32(flags, LSPACT, 1); 11488 } 11489 11490 if (mve_no_pred(env)) { 11491 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11492 } 11493 } else { 11494 /* 11495 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11496 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11497 */ 11498 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11499 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11500 } else { 11501 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11502 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11503 } 11504 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11505 DP_TBFLAG_A32(flags, VFPEN, 1); 11506 } 11507 } 11508 11509 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11510 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11511 } 11512 11513 /* 11514 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11515 * states defined in the ARM ARM for software singlestep: 11516 * SS_ACTIVE PSTATE.SS State 11517 * 0 x Inactive (the TB flag for SS is always 0) 11518 * 1 0 Active-pending 11519 * 1 1 Active-not-pending 11520 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11521 */ 11522 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11523 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11524 } 11525 11526 *pflags = flags.flags; 11527 *cs_base = flags.flags2; 11528 } 11529 11530 #ifdef TARGET_AARCH64 11531 /* 11532 * The manual says that when SVE is enabled and VQ is widened the 11533 * implementation is allowed to zero the previously inaccessible 11534 * portion of the registers. The corollary to that is that when 11535 * SVE is enabled and VQ is narrowed we are also allowed to zero 11536 * the now inaccessible portion of the registers. 11537 * 11538 * The intent of this is that no predicate bit beyond VQ is ever set. 11539 * Which means that some operations on predicate registers themselves 11540 * may operate on full uint64_t or even unrolled across the maximum 11541 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11542 * may well be cheaper than conditionals to restrict the operation 11543 * to the relevant portion of a uint16_t[16]. 11544 */ 11545 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11546 { 11547 int i, j; 11548 uint64_t pmask; 11549 11550 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11551 assert(vq <= env_archcpu(env)->sve_max_vq); 11552 11553 /* Zap the high bits of the zregs. */ 11554 for (i = 0; i < 32; i++) { 11555 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11556 } 11557 11558 /* Zap the high bits of the pregs and ffr. */ 11559 pmask = 0; 11560 if (vq & 3) { 11561 pmask = ~(-1ULL << (16 * (vq & 3))); 11562 } 11563 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11564 for (i = 0; i < 17; ++i) { 11565 env->vfp.pregs[i].p[j] &= pmask; 11566 } 11567 pmask = 0; 11568 } 11569 } 11570 11571 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11572 { 11573 int exc_el; 11574 11575 if (sm) { 11576 exc_el = sme_exception_el(env, el); 11577 } else { 11578 exc_el = sve_exception_el(env, el); 11579 } 11580 if (exc_el) { 11581 return 0; /* disabled */ 11582 } 11583 return sve_vqm1_for_el_sm(env, el, sm); 11584 } 11585 11586 /* 11587 * Notice a change in SVE vector size when changing EL. 11588 */ 11589 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11590 int new_el, bool el0_a64) 11591 { 11592 ARMCPU *cpu = env_archcpu(env); 11593 int old_len, new_len; 11594 bool old_a64, new_a64, sm; 11595 11596 /* Nothing to do if no SVE. */ 11597 if (!cpu_isar_feature(aa64_sve, cpu)) { 11598 return; 11599 } 11600 11601 /* Nothing to do if FP is disabled in either EL. */ 11602 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11603 return; 11604 } 11605 11606 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11607 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11608 11609 /* 11610 * Both AArch64.TakeException and AArch64.ExceptionReturn 11611 * invoke ResetSVEState when taking an exception from, or 11612 * returning to, AArch32 state when PSTATE.SM is enabled. 11613 */ 11614 sm = FIELD_EX64(env->svcr, SVCR, SM); 11615 if (old_a64 != new_a64 && sm) { 11616 arm_reset_sve_state(env); 11617 return; 11618 } 11619 11620 /* 11621 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11622 * at ELx, or not available because the EL is in AArch32 state, then 11623 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11624 * has an effective value of 0". 11625 * 11626 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11627 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11628 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11629 * we already have the correct register contents when encountering the 11630 * vq0->vq0 transition between EL0->EL1. 11631 */ 11632 old_len = new_len = 0; 11633 if (old_a64) { 11634 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11635 } 11636 if (new_a64) { 11637 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11638 } 11639 11640 /* When changing vector length, clear inaccessible state. */ 11641 if (new_len < old_len) { 11642 aarch64_sve_narrow_vq(env, new_len + 1); 11643 } 11644 } 11645 #endif 11646 11647 #ifndef CONFIG_USER_ONLY 11648 ARMSecuritySpace arm_security_space(CPUARMState *env) 11649 { 11650 if (arm_feature(env, ARM_FEATURE_M)) { 11651 return arm_secure_to_space(env->v7m.secure); 11652 } 11653 11654 /* 11655 * If EL3 is not supported then the secure state is implementation 11656 * defined, in which case QEMU defaults to non-secure. 11657 */ 11658 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11659 return ARMSS_NonSecure; 11660 } 11661 11662 /* Check for AArch64 EL3 or AArch32 Mon. */ 11663 if (is_a64(env)) { 11664 if (extract32(env->pstate, 2, 2) == 3) { 11665 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11666 return ARMSS_Root; 11667 } else { 11668 return ARMSS_Secure; 11669 } 11670 } 11671 } else { 11672 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11673 return ARMSS_Secure; 11674 } 11675 } 11676 11677 return arm_security_space_below_el3(env); 11678 } 11679 11680 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11681 { 11682 assert(!arm_feature(env, ARM_FEATURE_M)); 11683 11684 /* 11685 * If EL3 is not supported then the secure state is implementation 11686 * defined, in which case QEMU defaults to non-secure. 11687 */ 11688 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11689 return ARMSS_NonSecure; 11690 } 11691 11692 /* 11693 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11694 * Ignoring NSE when !NS retains consistency without having to 11695 * modify other predicates. 11696 */ 11697 if (!(env->cp15.scr_el3 & SCR_NS)) { 11698 return ARMSS_Secure; 11699 } else if (env->cp15.scr_el3 & SCR_NSE) { 11700 return ARMSS_Realm; 11701 } else { 11702 return ARMSS_NonSecure; 11703 } 11704 } 11705 #endif /* !CONFIG_USER_ONLY */ 11706